Blog Mining for the Fortune 500

James Geller, Sapankumar Parikh, and Sriram Krishnan

College of Computing Sciences,
Department of Computer Sciences,
New Jersey Institute of Technology

Newark, NJ 07102

Abstract. In recent years there has been a tremendous increase in the
number of users maintaining online blogs on the Internet. Companies,
in particular, have become aware of this medium of communication and
have taken a keen interest in what is being said about them through such
personal blogs. This has given rise to a new field of research directed to-
wards mining useful information from a large amount of unformatted
data present in online blogs and online forums. We discuss an imple-
mentation of such a blog mining application. The application is broadly
divided into two parts, the indexing process and the search module. Blogs
pertaining to different organizations are fetched from a particular blog
domain on the Internet. After analyzing the textual content of these
blogs they are assigned a sentiment rating. Specific data from such blogs
along with their sentiment ratings are then indexed on the physical hard
drive. The search module searches through these indexes at run time for
the input organization name and produces a list of blogs conveying both
positive and negative sentiments about the organization.

1 Introduction

A blog, which is a collection of web pages on some website or portal, serves
as an online diary maintained by an individual to share his thoughts and ideas
and express his feelings. Blogs are powerful in the sense that they allow indi-
viduals over the globe to bring forth their ideas and garner feedback from other
Internet users. Blogs appeared in the late 1990s but have since seen an unprece-
dented increase. Given the astounding blog-posting frequency and the amount
of information communicated through online blogs, they are being viewed as po-
tentially valuable resources of research. Furthermore, many people seem to get
their news and form their opinions from authoritative blogs instead of standard
media outlets, like broadcast news and newspapers [3].

Blog Mining techniques serve as an effective tool in social network analysis,
economic research and network theory and form the basis for a myriad of services
offered by popular blog analysis engines. For example, as a step towards social
community mining, blog mining techniques can be used to find a community
of bloggers who share a similar topic distribution in their blogs. This concept

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 379-391] 2007.
© Springer-Verlag Berlin Heidelberg 2007

380 J. Geller, S. Parikh, and S. Krishnan

is referred to as latent friend mining, wherein a latent friend is one who shares
similar interests [2]. Determining communities of web pages based on named
entity terms is another area where blog mining can prove to be useful. Named
entity terms are names of persons, organizations, locations, etc. that occur in
web documents with some relationships between them. Named entity terms are
of high interest in web and blog search. While query strings can vary from a
product model to a scientific concept, named entity terms are among the most
frequently searched terms on the web [5].

“Reputation Management,” is another technique under development by several
companies [I]. Companies have now become aware of the potential of blogs to hurt
them and have taken a two-pronged approach to dealing with the problem. On the
one hand, many companies have created their own corporate blogs which have
multiple purposes of keeping their customers and users informed, involved, and
in some cases to garner feedback about products before releasing them to a wider
audience. On the other hand, new blog mining startups have been created, which
are hired by major companies to keep an eye on the blog space []].

This paper discusses the latter kind of sentiment mining of the blog text.
The architecture of the system is detailed in Figure 1.

3
I Title | ‘ Srippet I | Coogle £FT ‘ URL
Eetriewe Te xt TIRL)

Text retriewer

A
| HazhMapZlassifier |
b
s MMT@ Sentiment
Farling
b
=I Drocurnent I:

Fig. 1. System Architecture

Blog Mining for the Fortune 500 381

The strength of positive or negative feelings is expressed by the sentiment rank-
ing number that our program assigns to each blog. This sentiment ranking is a
logarithmic number of positive or negative word counts from the blog text. The
whole procedure of classifying a blog and giving it a ranking is done at index time,
i.e. blogs are ranked and indexed prior to search time. This technique reduces the
time required for searching results as they are already stored on the machine.

2 Blog Search

To search for blogs of a specific organization on the Internet we use APIs pro-
vided by Google. Google API is a lightweight framework developed for searching,
made available by Google [6]. For implementation purposes, the Internet blog
domain used is blogspot.com. The format of the query supplied to Google APIs
is “company-name site:blogspot.com”. The company names are obtained from a
database table storing the list of Fortune 500 companies. The results returned
are sorted according to Google’s proprietary Page Rank method.

Each result returned consists of several parts as shown in Figure 2. These
parts are:

summary - If the search result has a listing in the Open Directory Project
directory, the ODP summary appears here as a text string. The Open Directory
Project is a web directory of Internet resources. A web directory is something
akin to a huge reference library. This directory is hierarchically arranged by sub-
ject - from broad to specific. The ODP is maintained by community editors who
evaluate sites for inclusion in the directory. In Figure 2, the result does not have
a summary from ODP.

URL - The URL of the search result, returned as text, with an absolute
URL path. In Figure 2, “planetmath.org/encyclopedia/TimeComplexity.html”
is a URL to reach this page.

snippet - A text excerpt from the results page that shows the query in con-
text as it appears on the matching results page. This is formatted HTML and
query terms are highlighted in bold in the results, and line breaks are included
for proper text wrapping. If Google searched for stemmed variants of the query
terms using its proprietary technology, those terms are also highlighted in bold
in the snippet. Note that the query term does not always appear in the snippet.
In Figure 2, “Time complexity refers to a function describing how much time it
will take an algorithm ... The exact expression for time complexity of a partic-
ular sorting...” is the snippet. Snippet and summary are used interchangeably.

title - The title of the search result, returned as HTML. “PlanetMath: time
complexity” is the title of the result shown in Figure 2.

cachedSize - Text (Integer + “k”). Indicates that a cached version of the
URL is available; size is indicated in kilobytes. In the figure 22k is the size of
the cached page.

relatedInformationPresent - Boolean indicating that the “related:” query term
is supported for this URL. This is not a visible component of the results returned
by Google.

382 J. Geller, S. Parikh, and S. Krishnan

hostName - When filtering occurs, a maximum of two results from any given
host are returned. When this occurs, the second resultElement that comes from
that host contains the host name in this parameter.

directoryTitle - 1f the URL for this resultElement is contained in the ODP
directory, the title that appears in the directory appears here as a text string.
Note that the directoryTitle may be different from the URL. [6]

Planethiath: time complexity

Time complexity refers to a function describing hiow much time it will take an algorithm ... The exact
BXAression far time complexity af a padicular sarting
planetmath.argfencyclopediaMimeC omplexity. html - 22k - Cached - Similar pages

Fig. 2. Format of a result returned by Google API

3 Relevant Text Extraction

The URL of each result is used, in our program, to extract the text content of the
corresponding web page. For this purpose we have used JTidy. JTidy is a Java
port of HTML Tidy, an HTML syntax checker and pretty printer. Like its non-
Java cousin, JTidy can be used as a tool for cleaning up malformed and faulty
HTML. In addition, JTidy provides a Document Object Model interface (DOM)
to the document that is being processed, which effectively makes you able to use
JTidy as a DOM parser for real-world HTML [I1I]. The text retriever module
uses JTidy to get a DOM representation of the web page and then extract text
from it.

As seen on many blog portals, it is quite common to have several blogs listed
on a single web page. These blogs are mostly written on different topics and are
not related to each other. Of these, only a single topic or a few more may be
relevant to the organization we are interested in. Doing a classification on all
words of the web page yields highly erroneous results.

Hence, after fetching the text of the entire blog page, it is further processed to
fetch pieces of text relevant to the corresponding organization. A record of the
association between the query i.e. organization name and links corresponding
to it, maintained during the Blog Search procedure described in Section 2, is
utilized to extract such relevant text blocks. The complete text is split into
various blocks with the company name as the delimiter. If the company name
consists of more than one word then each individual block obtained in the first
iteration is split further using any of the individual words in the company name
as a delimiter.

For example, consider the text of a web page fetched for “Morgan Chase.”
The process of extracting relevant text is clarified in Figure 3.

After dividing the text into different blocks, the process of retrieving relevant
text starts. Since there is a low probability that a "large” piece of text located
before the first occurrence of the organization name would actually describe the
organization, only 30 words are considered from the first block. Thereafter, each
block is examined to check if its length is greater than 150 words. If no, the

Blog Mining for the Fortune 500 383

entire block is considered relevant. If yes, only the first 75 words from both the
start and end of the block are considered relevant. Finally, for the last block, the
first 75 words from the beginning of the block are taken. If the size of the last
block is less than 75 words the entire block is used. To check for organization
name matches within the text of the web page, regular expressions have been
utilized which further improves the accuracy of the text extraction process.

——— Jlwords ——————

Idom=an

- Tluwonls ————

Blog test = 150 words. Corsider only 75 womds
fomb othbegining and end.

—— Timads ——————

Mom=an 5 anlev

} Blog test = 150 words. Corsider the ertie block.

S@nkvw

- Tiumds ——————

Lastblock. Corsider only 75 words fiom the
hegitring.

Fig. 3. Algorithm for extracting the relevant pieces of text

A sample run of the RelevantTextExtractor module on the content of a par-
ticular piece of blog text extracted from the web is shown in Figures 4 and 5. As
shown in Figure 4, the blog is titled ”J.P. Morgan posts 68% rise in quarterly
profit” and the relevant text being extracted pertains to the company JP Mor-
gan Chase. The RelevatTextExtractor module uses the procedure described in
Figure 3 to search for occurrences of the phrase ”Morgan Chase” or each indi-
vidual word ”Morgan” or ”Chase” within the text, divide the text into blocks
based on these occurrences and extract pieces of relevant text from the blocks.
The output of the Relevant TextExtractor module is shown in Figure 5.

4 HashMap Classifier

4.1 Implementation

In order to determine the sentiment ranking of a piece of blog text, a table of
words conveying either positive or negative sentiments was implemented. The

384 J. Geller, S. Parikh, and S. Krishnan

J.P.pnsts 68% rise in quarterly profit
15 l & Co. said its fquarterly earnings soared 68% on strong investment hanking growth and a gain from

the sale of the bank's corporate trust business. But credit gquality weakened somewhat, as it has at other major banks,
suggesting that both commercial and individual customers are having more trouble keeping up with their bhills.

The Manhattam-based bank, the nation's third largest, earned $4.53 billion, or §1.26 a share, in the fourth gquarter,
up from §2.7 hillion, or 76 cents a share, a ¥ear earlier. Excluding the $622 million after-tax gain on the sale of
its trust business, net income was $3.9 billion, or #1.09 a share. Revenue rose 19% to $16.05 billion.

Analysts had projected a profit of 95 cents a share. Some analysts beliewve the weakening housing market and slowing
econony are affecting credit cuality and worry it could worsen in coming months. Mr. Dimon has been warning for some
time that the stellar credit conditions -- which reflected a growing econowy and reform of national bankruptcy laws in
the fall of 2005 -- could not continue, In fact, weaker credit cquality has begun showing in sewveral divisions

J.P.‘s strongest fourth-quarter performance came from the investment bank, where net income grew 51% to 1

billion in the latest guarter. 5till, the prowision for credit losses in this division rose to $63 million from §7
million in the third gquarter.

Fig. 4. Sample blog pertaining to the company J. P. Morgan Chase

Block 0---3 J.P.
Block 1---> posts 68% rise in quarterly profic J.P.
Block 2---» & Co. said its gquarterly earnings soared 68% oh strong investment banking growth and a gain

from the zale of the bank's corporate trust business. But credit gquality weakened somewvhat, as it has
at other major banks, suggesting that both commercial and individual customers are having more trouble
keeping up with their bills.The Manhattan-hased bank, the nation's third largest, earned §4.53
billion, or 5l.26 a share, in the fourth quarter, up from 52.7 billion,

Block 3---> a profit of 95 cents a share. Some analysts beliewe the weakening housing market and slowing
economy are affecting credit quality and worry it could worsen in coming months. Mr. Dimon has heen
warning for some time that the stellar credit conditions -- which reflected a growing econowy and
reform of national bankruptcy laws in the fall of 2005 -- could not contimie. In fact, weaker credit
fquality has begqun showing in sewveral divisions. J.F.

EBlock 4---3> 's strongest fourth-guarter performance came from the investment bank, where net income grew
51% to §1 billion in the latest muarter. 5till, the provizion for credit losses in this division rose
to $63 million from £7 million in the third fquarter.

Fig. 5. Set of relevant text blocks extracted from Figure 4

table contains the actual word, its category i.e. positive or negative and its weight
which is a numerical value ranging between -1.5 and +1.5 in increments of 0.25,
excluding 0. Weights less than 0 are assigned to words that convey negative
sentiments and those greater than 0 are given to words that convey positive
sentiments. The value of the weight indicates the extent to which a word is
positive or negative. The table, at present, stores over 400 positive and negative
words. We initially settled on 6 positive and 6 negative steps. To avoid ”infinite”
decimal numbers we chose the limit of 1.5 instead of 1, which will always provide
exact decimal numbers.

When starting the sentiment mining process on a given blog, a hash table is
created in memory, which contains the words conveying sentiments as keys and
weight numbers between -1.5 and 1.5 as values. The information loaded into this
hash table is extracted from the table mentioned above, which is implemented in
Oracle (see Figure 6). Every word in the relevant text blocks of a blog, extracted
as explained in Section 3, is then checked to see if it matches with the keys in the
hash map. Whenever a blog word matches a hash table key, the weight for this
key is returned. The weight of the entire set of relevant text blocks is obtained by
calculating the sum of weights of individual words that have a match in the hash
map. A negative word weight lowers the blog weight and a positive word weight
adds to it. Finally, the logarithm of the absolute value of the resultant sum is

Blog Mining for the Fortune 500 385

used as the sentiment rating for the blog text. The complete blog is classified
as positive or negative depending on whether the resultant logarithmic value is
greater or less than zero, respectively. If the resultant value is 0 then the blog
is neutral, in which case, it is skipped. However, this is a rare condition and the
probability of occurrence of such blogs is minimal.

To get a closer match between the words in the text and those in the hash
map, the base words and their variations have been included in the database.
An example of this is also shown in the figure 6.

As shown in Figure 6, both "loves” and "loved” give a match with ”love” in
the hash map. If a particular word in the text is not found in the map, a check is
performed to see if the word ends with any of the common suffixes. If a common
suffix is found, it is stripped and the remaining part of the word is again checked
for a match in the hash map. Common suffixes of 1, 2, 3 and 4 character lengths
have been used for this purpose. These are listed in Figure 7. This helps limit
the size of the wordlist table by reducing the number of variations to be entered
for each word in the database. It also helps achieve better classification due to
the probability of getting more matches.

Hash Map
Extracted Text Word Weight
.. loves — ——i love +
o lved . — loving +1
....amazged __ - | amaze +1.5
. | amazing +15
Lo amazing .., ———

Fig. 6. Text word match with hash map keywords

4.2 Comparison of Classifiers

We have compared our HashMap classifier with two other classifiers, Dynamic
Language Model Classifier and Binary Language Model Classifier, which are
included in the LingPipe framework. LingPipe is a suite of natural language
processing tools that performs tokenization, sentence detection, named entity
detection, co-reference resolution, classification, clustering, part-of-speech tag-
ging, general chunking, and fuzzy dictionary matching [12].

In order to compare our results with existing research, we needed a set of
test documents which are publicly accessible and have already been classified
as positive or negative. For that purpose, we have used LingPipe’s language
classification framework to perform the classification task on a set of test data,
which is actually a collection of positive and negative movie reviews. Lee and

386 J. Geller, S. Parikh, and S. Krishnan

Suffixes having a single character length s, d, ¥

Suffixes having a length of 2 characters ed, ar, Iy

Suffixes having a length of 3 characters ing, ent, ism, ive, ful, ous, ity
Suffixes having a length of 4 characters ness, ahle, less, ment

Fig. 7. Table of common suffixes used

Pang have provided such movie review data for testing purposes. This data is
already divided into two segments (slices), positive and negative. These reviews
can be obtained from the link http://www.cs.cornell.edu/people/pabo/movie-
review-data/review polarity.tar.gz. This test data set contains a total of 2000
movie reviews, 1000 with positive sentiments and 1000 with negative sentiments.
Following standard machine learning methods, for the purpose of training, 1800
movie reviews, 900 positive and 900 negative, are used. For testing, the remaining
200 movie reviews are used.

For each classifier and each training case, the number of training characters,
the time to train, the correctness of the tests, and the total time for testing are
given in Figure 8. The five cases of the experiment were done with different train-
ing and test data sets. For each case, 1800 training files were randomly picked
and both the classifiers were trained with them. The remaining 200 files were
used to test those trained classifiers. The highest accuracy achieved with the
Dynamic-LM Classifier was about 83%, while the lowest was 77%. On the other
hand, the accuracy of the BinaryLMClassifier was always 100%. The Binary-LM
Classifiers also takes less time for training because it gets trained on only one
category. This means that if the DynamicLMClassifier was trained on 1800 files
then the Binary-LM Classifier was trained only on 900 files.

The Dynamic Language Model Classifier (DLM) is slow in both cases of
training and evaluation. But the advantage of the Dynamic classifier against the
Binary LM Classifier (BLM) is that it can support n classifications. That means
that DLM can be trained to classify sentiments into several categories such as
positive, extremely positive, neutral, negative, etc.

On the other hand the BLM is very fast. As the name suggests, it can classify
only two categories, positive and negative. BLM only gets trained on one cate-
gory and it rejects the other category. When a file is fed to it, it returns ”true”
or "false,” true if the file belongs to the category it was trained on. For every
other category it returns false. So, if there are only two categories this model
works perfectly fine with a high level of precision.

We used our HashMap classifier for the movie review data set, without adapt-
ing the key words to the movie domain. We only used generic sentiment terms
as we would use for any kind of blog mining. Looking at the results in Figure 8,
it becomes clear that the HashMap classifier does not require any training time,
as opposed to the Dynamic-LM and the Binary-LM classifier. Its classifica-
tion performance of 66% is below the results for both the classifiers. However,
HashMap classifier runs faster than both classifiers even during testing.

Blog Mining for the Fortune 500 387

Training | Training Training | Evaluation | Correct % Time to
Cases Chars Time Cases Evaluations | Correct | evaluate

{ms) {ms)

Dynamic

LM-

Classifier

Caze 1 1800 7037314 138282 | 200 154 7T 29374

Caze 2 1800 039554 138609 | 200 156 T8 26610

Caze 3 1800 038941 143578 | 200 157 78.4 2889

Case 4 1800 7044936 TR3IZYY | 200 1645 A2.4 29344

Casef 1800 7000543 140828 | 200 158 749.4 29047

Binary

LM-

Classifier

Case 1 1800 7037314 13663 200 200 100 2625

Case 2 1800 7039554 1124 200 200 100 1109

Case 3 1800 70354941 44R4 200 200 100 1218

Case d 1800 TO45536 4109 200 200 100 1250

Case h 1800 7000543 4094 200 200 100 1287

HashMap

Classifier | 0 I i 2000 1320 i3] 7140

Fig. 8. Statistics for different classifiers

Note that in Figure 8 the time for our HashMap classifier is given for 2000
movie reviews, while the times for the two other classifiers are given for 200 only.
Thus, if we want to compare equal work loads, we need to divide the run time
of 7140 ms by 10, giving 714 ms, which is faster than the fastest time of the
Binary-LM Classifier.

5 Lucene Indexing

5.1 Indexing Records

The next step consists of indexing the Google API results with the sentiment
rank. In order to do the indexing we have used Lucene [I0]. Lucene is a free,
open source information retrieval API originally implemented in Java by Doug
Cutting. It is supported by the Apache Software Foundation and is released
under the Apache Software License. While suitable for any application which
requires full text indexing and searching capability, Lucene has been widely
recognized for its utility in the implementation of Internet search engines and
local, single-site searching.

At the core of Lucene is an index. Although Lucene is used for text indexing
it does not index files, it indexes document objects. A document is a collection
of fields which are nothing but name value pairs. An index in turn contains a
set of documents.

The following piece of code demonstrates how document objects have been
created in our module.

388 J. Geller, S. Parikh, and S. Krishnan

public Document indexThis (IndexWriter writer, String query,
GoogleSearchResultElement r, HashMap wordWeightMap)
throws Exception

{
Document doc = new Document () ;
Double reverseBoost;
RelevantTextExtractor rte = new RelevantTextExtractor();
String url = r.getURL() .replaceAll ("", "");
String snippet = r.getSnippet () .replaceAll ("", "");
String title = r.getTitle() .replaceAll ("", "");
String text = rte.parseThis(query, url).toString();
Double boost =
new Double (HashMapClassifier.evaluate(text, wordWeightMap)) ;
if (boost.doublevValue() >= 0)
reverseBoost = new Double(100.0 - boost.doublevalue()) ;
else
reverseBoost = new Double(100.0 + boost.doublevValue()) ;
doc.add (Field.Text ("url", url));
doc.add (Field.Text ("snippet", snippet)) ;
doc.add(Field.Text ("title", title));
doc.add(Field.Text ("rating", boost.toString()));
doc.add(Field.Text ("reverse_rating",
reverseBoost.toString()));
return doc;
}

As shown in the code segment, a new instance of document object is created.
The URL, snippet and title are extracted from each search result returned by
the Google API. The URL is then passed to the RelevantTextExtractor module
to retrieve the entire text of the blog web page and extract relevant text content
from it. This relevant text is then passed to a static ”evaluate” function of
the HashMapClassifier class which returns a sentiment rating of the blog text.
A reverse sentiment rating is also calculated, which is useful to sort blogs in
descending order of their sentiment ratings. A document object is then created
using the values of URL, snippet, title, rating and reverse rating. The document
is then added to a new index or appended to one if the index already exists.

5.2 Searching Indexes

The search module provides a simple JSP page allowing a user to enter an
organization name and search for it in the records already indexed on the hard
drive. The snippet fields of all documents are checked for a match with the
organization name. Once such records are found, positive and negative blogs

Blog Mining for the Fortune 500 389

500
800 ——
700 — "

BO0

500 L

400 f/
300

200
100 -
D T T T T

0 5 10 15 0 25

Time in minutes

Number of Indexed Records

Fig. 9. Indexing Speed

are sorted and displayed separately on the JSP page. The displayed records are
again in the form of small documents with a title, sentiment rating, snippet
and URL.

6 Performance Statistics

Figure 9 shows the time required to complete the entire indexing process. This
includes fetching blog URLs using Google APIs, extracting text from the blog
web pages, determining sentiment rating to classify them as well as indexing
blog data. To index blogs from about 800 web pages takes just over 22 minutes,
which is fast considering the amount of processing that is done before indexing.
Moreover, this does not affect run time performance since indexing is done offline,
before hand.

-1 00
[o }

|
/
\

m
[}

o
o}

o}
o}

Classification Rate (%)
]
[

—
o

]

o al 100 180 200 2490 300 340 400

Number or Classified Records

Fig. 10. Classification Rate

390 J. Geller, S. Parikh, and S. Krishnan

Figure 10 gives a plot of the number of blogs classified versus the percentage
of correct classifications. As seen from the figure, this varies between 60-73%.
Also, as seen from the comparison table in Figure 8, the average classification
rate for 2000 movie reviews is 66%.

7 Conclusions and Future Work

For companies trying to determine where they stand in the market with respect
to their customers, suppliers and many other stakeholders, blogs are becoming
a prime medium. With the help of blog mining software, employees can easily
go through the existing blogs to gain an insight into the feelings and opinions
of users about the organization. This helps them make important decisions on
improving product quality, increasing profit, market standing, and customer sat-
isfaction.

Our implementation performs this kind of sentiment mining on blogs. The
URLSs of blogs specific to an organization are first fetched using APIs provided by
Google. The entire text of the blog page corresponding to each URL is then ex-
tracted. The size of text is further reduced by determining pieces of text relevant
to the organization. Using a table of words conveying sentiments the sentiment
rating of the blog is determined and the blog is categorized as either positive or
negative. The data for each blog is then indexed using Lucene APIs and stored
on the hard drive. Since this entire classification takes place offline, the run
time search procedure only needs to search through the indexed records already
created, thereby keeping access time to a minimum. In our implementation, we
have currently indexed 100 blogs for each of the Fortune 500 companies from
the domain blogspot.com.

Using a hash map data structure for classification of blogs makes the index-
ing process very fast. However, since the classification relies only upon a list
of positive and negative words the accuracy achieved is about 60-75%. To im-
prove accuracy the size of the word list in the database needs to be increased
by adding new positive and negative words as and when found. Note that due
to the efficient retrieval of data from hash tables, adding new terms will, on an
average, have a small effect on evaluation time. Thus, an expected increase in
classification accuracy will maintain the positive timing characteristics of our
approach. As an additional enhancement, a table of the most commonly occur-
ring phrases conveying sentiments along with their weights can be created. An
initial text weight can be determined first by checking for these common phrases
in the extracted relevant text. These phrases can then be eliminated from the
text and remaining text can be classified using our Hash Map classifier. This
would further refine the classification task. Moreover, in addition to searching
for only the company name, its products and/or services can also be used to
fetch relevant text. This would result in a larger text on which classification
would be more accurate.

Blog Mining for the Fortune 500 391

References

© 0 O

12.

. Aschenbrenner, A., Miksch, S.: Blog Mining in a Corporate Environment, Technical

Report ASGAARD-TR~2005-11, Technical University Vienna (September 2005)
(accessed February 1, 2007),http://ieg.ifs.tuwien.ac.at/techreports/
Asgaard-TR-2005-11.pdf

. Shen, D., Sun, J.-T., Yang, Q., Chen, Z.: Latent Friend Mining from Blog Data.

In: International Conference on Data Mining, pp. 552-561 (2006)

. Tirapat, T., Espiritu, C., Stroulia, E.: Taking the community’s pulse: one blog at

a time. In: International Conference on Web Engineering, pp. 169-176 (2006)

. Mishne, G.: Experiments with Mood Classification in Blog Posts. In: Style2005 the

1st Workshop on Stylistic Analysis of Text for Information Access, at SIGIR 2005
(August 2005)

. Li, X., Liu, B., Yu, P.S.: Mining Community Structure of Named Entities from

Web Pages and Blogs. In: AAAI Spring Symposium, Computational Approaches
to Analyzing Weblogs, pp. 108-114 (2006)

. Google Web APIs (March 10, 2006), http://code.google.com/apis
. Fischer, 1., Torres, E.: A Distributed Blog Search Platform (2006)

. The Blog in the Corporate Machine, The Economist, (February 11, 2006)
. Fortune 500 Full List, CNNMoney (April 17, 2006),

http://money.cnn.com/magazines/fortune/fortune500/full 1list

. Hatcher, E., Gospodnetic, O.: Lucene in Action (2006)
11.

JTidy - HTML Parser and Pretty-Printer in Java (March 10, 2006),
http://jtidy.sourceforge.net
LingPipe (2007), http://www.alias-1.com/lingpipe

http://ieg.ifs.tuwien.ac.at/techreports/Asgaard-TR-2005-11.pdf
http://ieg.ifs.tuwien.ac.at/techreports/Asgaard-TR-2005-11.pdf
http://code.google.com/apis
http://money.cnn.com/magazines/fortune/fo rtune500/full_list
http://jtidy.sourceforge.net
http://www.alias-i.com/lingpipe

	Blog Mining for the Fortune 500
	Introduction
	Blog Search
	Relevant Text Extraction
	HashMap Classifier
	Implementation
	Comparison of Classifiers

	Lucene Indexing
	Indexing Records
	Searching Indexes

	Performance Statistics
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

