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Abstract. We give a formal model for systems that store data in en-
tangled form. We propose a new notion of entanglement, called all-or-
nothing integrity (AONI) that binds the users’ data in a way that
makes it hard to corrupt the data of any one user without corrupting
the data of all users. AONI can be a useful defense against negligent or
dishonest storage providers who might otherwise be tempted to discard
documents belonging to users without much clout. We show that, if all
users use the standard recovery algorithm, we can implement AONI us-
ing a MAC, but, if some of the users adopt the adversary’s non-standard
recovery algorithm, AONI can no longer be achieved. However, even for
the latter scenario, we describe a simple entangling mechanism that pro-
vides AONI for a restricted class of destructive adversaries.

1 Introduction

Suppose that I provide you with remote storage for your most valuable infor-
mation. I may advertise various desirable properties of my service: underground
disk farms protected from nuclear attack, daily backups to chiseled granite mon-
uments, replication to thousands of sites scattered across the globe. But what
assurance do you have that I will not maliciously delete your data as soon as
your subscription check clears?

If T consider deleting the data of a rich or powerful customer, I may be de-
terred by economic, social, or legal repercussions. The small secret joy I might
experience from the thought of the loss will not compensate me for losing a
posted bond, destroying my reputation, or being imprisoned. But if you are an
ordinary customer who does not have much clout, and I see a lucrative opportu-
nity in altering — or simply neglecting to keep — your data, then deterrence loses
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its effectiveness. Consequently, data of powerful customers end up being more
protected than data of average customers. To convince an average customer that
she will not lose her data at my random whim, I might offer stronger technical
guarantees that I cannot destroy her data without serious costs. One way to
do this would be to link the fate of her documents to the documents of enough
other users that I cannot hope to offend them all with impunity. We shall call
such documents entangled.

Data entanglement was initially suggested as a mechanism for increasing
censorship-resistance in document-storage systems, e.g., Dagster [21] and Tan-
gler [22]. These systems split data into blocks in such a way that a single block
becomes part of several documents. New documents are represented using some
number of existing blocks, chosen randomly from the pool, combined with new
blocks created using exclusive-or (Dagster) or 3-out-of-4 secret sharing [19] (Tan-
gler). Dagster and Tangler use entanglement as one of many mechanisms to pre-
vent a censor from tampering with unpopular data; others involve disguising
the ownership and contents of documents and (in Tangler) storing documents
redundantly.

It is not clear that data entanglement is actually useful for censorship resis-
tance. Instead of having to specifically attack a target document, a censor only
needs to damage any document entangled with the target to achieve his goal.
Instead, we consider data entanglement for a different purpose: protecting the
data from an untrusted storage provider that might be tempted to damage or
destroy the data through negligence or malice. Entanglement provides an in-
centive for the storage provider to take extra care in protecting average users’
documents by increasing the cost of errors.

We begin in Section 2 by analyzing the intuitive notion of entanglement
provided by Dagster and Tangler. We show that entanglement as provided by
Dagster and Tangler is not by itself sufficiently strong to deter a dishonest storage
provider from tampering with data, because not enough documents get deleted
on average when destroying a block of a typical document. This motivates our
efforts to obtain a stronger form of an entanglement than the ones provided by
these systems.

In Section 3, we define our general model of entanglement in an untrusted
storage system. Our goal here is to model the entanglement operation itself, and
we do not address the question of where in the system entanglement occurs.
However, we do assume that the storage provider does not carry out the entan-
gling operation itself, as giving it the users’ raw data would allow it to store
copies that it could selectively return later, even if the entangled store were
lost or damaged. Instead, some trusted third party is assumed to carry out the
entangling operation, and a negligent or malicious storage provider is modeled
separately as a “tamperer” that has access only to the entangled store.

Section 4 contains our definitions of document dependency, where a doc-
ument cannot be recovered if any document it depends on is lost, and all-or-
nothing integrity, where no document can be recovered if any document is
lost. These definitions allow a system-independent description of the binding be-
tween entangled documents. We then consider how different levels of attacks on
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the common data store do or do not prevent enforcement of document depen-
dency or all-or-nothing integrity.

In particular, we show that, if all clients use a standard algorithm to re-
cover their data, then all-or-nothing integrity requires only the ability to detect
tampering using a MAC (Section 5.1); in this model, the standard recovery al-
gorithm is too polite to return any user’s data if any other user’s data has been
lost. Relying on such fastidiousness provides only a weak guarantee; what we re-
ally want is that all data becomes irretrievable even by non-standard algorithms
if any is lost. We show that this goal is impossible if an adversary is allowed
to both tamper with the common store arbitrarily and provide a replacement
recovery algorithm (Section 5.2). Despite such upgrade attacks, it is still pos-
sible to provide a weaker guarantee that we call symmetric recovery, in which
each document is equally likely to be destroyed (Section 5.3). Furthermore, if we
restrict the adversary to destructive tampering, which reduces the amount
of information in the common store, all-or-nothing guarantees are possible even
with upgrade attacks (Section 5.4).

These results provide a first step toward understanding document depen-
dency. Suggestions for further work are given in Section 6.

Because of space limitations, many proofs are omitted from this extended
abstract. Complete proofs can be found in the full version, available as a Yale
CS technical report [2].

1.1 Related Work

Entanglement is motivated by the goal of deterring data tampering by untrusted
servers, a more general problem that has been studied extensively. Entangle-
ment has been used specifically in Dagster [21] and Tangler [15], as we describe
in Section 2. Other approaches to preventing or deterring tampering include
replication across global networks of tamper-resistant servers [1,4,5,9,17, 23]
or tamper detection [6-8,12-14,20] using digital signatures and Merkle hash
trees [16]. Replication protects against data loss if a small number of servers are
compromised; tamper detection prevents data loss from going unnoticed. Both
techniques complement the entanglement approach considered here.

All-or-nothing integrity as defined in the present work is related to the guar-
antee provided by the all-or-nothing transform proposed by Rivest [18]. An
all-or-nothing transform is an invertible transform that guarantees that no bits
of the preimage can be recovered if ¢ bits of the image are lost. All-or-nothing
transforms are not directly applicable to our problem, because we consider the
more general case in which the image may be corrupted in other ways, such as
by superencryption or alteration of part or all of the common store.

2 Dagster and Tangler

We now review how Dagster [21] and Tangler [22] work, concentrating on their
operations at a block level and omitting details of how documents are divided
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into blocks. We then analyze the resulting entangling effects and show their
shortcomings for protecting data from a negligent storage provider, motivating
our stronger notions of entanglement in Section 4.

2.1 Dagster

The Dagster storage system may run on a single server or on a P2P overlay
network. Each document in Dagster consists of ¢ + 1 server blocks: ¢ blocks of
older documents and one new block, an exclusive-or of previous blocks with the
document. The ¢ + 1 blocks that must be XORed to recover the document are
listed in a Dagster Resource Locator.

2.2 Tangler

The Tangler storage system uses (3, 4) Shamir secret sharing [19] to entangle the
data: Each document is represented by four server blocks, any three of which are
sufficient to reconstruct the original document. The blocks get replicated across
a subset of Tangler servers. Hashes of blocks are recorded in a data structure,
similar to Dagster Resource Locator, called an inode.

2.3 Analysis of Entanglement

At a given point in time, a Dagster or Tangler server contains a set of blocks
{C1,...,Cp} comprising documents {d,...,d,} of a group of users. (Here
m,n € N and m > n.) Data are partitioned in a way that each block be-
comes a part of several documents. We can draw an entanglement graph (see
Figure 1), which has an edge (d;, C%) if block Cj belongs to document d;. This
connection is rather tenuous — even if (dj, C) is in the graph, it may still be
possible to reconstruct d; from blocks excluding Cj. Document nodes in Dag-
ster’s entanglement graph have an out-degree ¢ + 1, and those in Tangler’s have
out-degree 4. Entangled documents share one or more server blocks. In Fig-
ure 1, documents d; and dy are entangled because they share server block Cf;
meanwhile, documents d; and dy are not entangled.

This shared-block notion of entanglement has several drawbacks. Even if
document d; is entangled with a specific document, it may still be possible
to delete d; from the server without affecting that particular document. For
example, knowing that d,, is entangled with d; (as in Figure 1), and that d; is
owned by some Very Important Person, may give solace to the owner of d,,, who
might assume that no adversary would dare incur the wrath of the VIP merely
to destroy d,. But in the situation depicted in the figure, the adversary can still
delete server blocks Cy and C,,, and corrupt d,, but not dj.

The resulting dependence between documents is thus very weak. In the full
paper, we show:

Theorem 1. In a Dagster server with n documents, where each document is
linked with ¢ pre-existing blocks, deleting a block of a random document destroys
on average O(c) other documents.
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Fig. 1. An entanglement graph is a bipartite graph from the set of documents to the
set of server blocks. Edge (dj, Ck) is in the graph if server block Cj can be used to
reconstruct document d;.

Theorem 2. In a Tangler server with n documents, deleting two blocks of a

random document destroys on average O (10%) other documents.

Even a small chance of destroying an important document will deter tam-
pering to some extent, but some tamperers might be willing to run that risk.
Still more troubling is the possibility that the tamperer might first flood the
system with junk documents, so that almost all real documents were entangled
only with junk. Since our bounds show that destruction of a typical document
will on average affect only a handful of others in Dagster and almost none in
Tangler, we will need stronger entanglement mechanisms if entanglement is to
deter tampering by itself.

3 Our Model

In Section 3.1, we start by giving a basic framework for systems that entangle
data. Specializing the general framework gives specific system models, differ-
entiated by the choice of recovery algorithms and restrictions placed on the
adversary. We discuss them in Section 3.2.

Our model abstracts away many details of storage and recovery processes.
It concentrates on a single entanglement operation, which takes documents of a
finite group of users and intertwines these documents to form a common store. In
practice, the server contents would be computed as an aggregation of common
stores from multiple entanglement operations. We defer analyzing this more
complex case to later work; see the discussion of possible extensions to the model
in Section 6.

3.1 Basic Framework

The model consists of an initialization phase, in which keys are generated
and distributed to the various participants in the system; an entanglement
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phase, in which the individual users’ data are combined into a common store; a
tampering phase, in which the adversary corrupts the store; and a recovery
phase, in which the users attempt to retrieve their data from the corrupted store
using one or more recovery algorithms. For simplicity of notation, we number

the users {1,...,n}, where every user i possesses a document d; that he wants
to publish.
initializer )
k) e
g g
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encoding &
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Fig. 2. Initialization, entanglement, and tampering stages.

An encoding scheme counsists of three probabilistic Turing machines, (I, E, R),
that run in time polynomial in the size of their inputs and a security parameter
s. The first of these, the initialization algorithm I, hands out the keys used
in the encoding and recovery phases. The second, the encoding algorithm
E, combines the users’ data into a common store using the encoding key. The
third, the recovery algorithm R, attempts to recover each user’s data using
the appropriate recovery key.

Acting against the encoding scheme is an adversary (I,T,R), which also
consists of three probabilistic polynomial-time Turing machines. The first is an
adversary-initialization algorithm I; like the good initializer I, the evil T
is responsible for generating keys used by other parts of the adversary during
the protocol. The second is a tampering algorithm 7', which modifies the
common store. The third is a non-standard recovery algorithm R, which
may be used by some or all of the users to recover their data from the modified
store.

We assume that I, 7' and R are chosen after I, E, and R are known but that
a single fixed I, T, and R are used for arbitrarily large values of s and n. This
is necessary for polynomial-time bounds on 7' and R to have any effect.

Given an encoding scheme (I, E, R) and an adversary (f, T, R), the storage
protocol proceeds as follows (see also Figure 2):
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1. Initialization. The initializer I generates a combining key kp used by the
encoding algorithm and recovery keys k1, ko, . . . k,,, where each key k; is used
by the recovery algorithm to recover the data for user 7. At the same time,
the adversary initializer I generates the shared key k for T and R.

kE, kl,k?Q, .. k’n — I(ls,n),
E— I(1°,n).

2. Entanglement. The encoding algorithm E computes the combined store C
from the combining key kg and the data d;:

C E(kE, dl, dg, e dn)
3. Tampering. The tamperer T alters the combined store C' into C':
C —1T(k,0O).

4. Recovery. The users attempt to recover their data. User ¢ applies his re-
covery algorithm R; to k; and the changed store C. Each R; could be either
the standard recovery algorithm R, supplied with the encoding scheme, or
the non-standard algorithm R, supplied by the adversary, depending on the
choice of the model. §

We say that user ¢ recovers his data if the output of R; equals d;.

3.2 Adversary Classes

We divide our model on two axes: one bounding the users’ choices of reconstruc-
tion algorithms and the other bounding the adversary’s power to modify the
data store. With respect to recovery algorithms, we consider three variants on
the basic framework (listed in order of increasing power given to the adversary):

— In the standard-recovery-algorithm model, the users are restricted to a
single standard recovery algorithm R, supplied by the system designer. For-
mally, this means R; = R for all users i; The adversary’s recovery algorithm
R is not used. This is the model used to analyze Dagster and Tangler.

— In the public-recovery-algorithm model, the adversary not only mod-
ifies the combined store, but also supplies a single non-standard recovery
algorithm R to all of the users. Formally, we have R; = R for each i. The
original recovery algorithm R is not used!. We call this an upgrade attack
by analogy to the real life situation of a company changing the data format
of documents processed by its software and distributing a new version of the

! Though it may seem unreasonable to prevent users from choosing the original re-
covery algorithm R, any R can be rendered useless in practice by superencrypting
the data store and distributing the decryption key only with the adversary’s R. We
discuss this issue further in Section 5.2.
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software to read them. We believe such an attack is a realistic possibility,
because most self-interested users will be happy to adopt a new recovery
algorithm if it offers new features or performance, or if the alternative is
losing their data.

— In the private-recovery-algorithm model, the adversary may choose to
supply the non-standard recovery algorithm R to only a subset of the users.
The rest continue to use the standard algorithm R. Formally, this model is
a mix of the previous two models: R; = R for some i and R; = R for others.

We also differentiate between two types of tamperers:

— An arbitrary tamperer can freely corrupt the data store and is not re-
stricted in any way. Most real-life systems fit into this category as they place
no restrictions on the tamperer.

— A destructive tamperer can only apply a transformation to the store
whose range of possible outputs is substantially smaller than the set of in-
puts. The destructive tamperer can superimpose its own encryption on the
common store, transform the store in arbitrary ways, and even add addi-
tional data, provided that the cumulative effect of all these operations is to
decrease the entropy of the data store. Though a destructive tampering as-
sumption may look like an artificial restriction, it subsumes natural models
of block deletion or corruption, and either it or some similar assumption is
needed to achieve all-or-nothing integrity in the private-recovery-algorithm
model.

An adversary class specifies what kind of tamperer T" is and which users,
if any, receive R as their recovery algorithm. Altogether, we consider 6 (=3x%x2)
adversary classes, each corresponding to a combination of constraints on the
tamperer and the recovery algorithms.

4 Dependency and All-or-Nothing Integrity

We now give our definition of document dependency for a particular encoding
scheme and adversary class. We first discuss some basic definitions and assump-
tions in Section 4.1. Our strong notions of entanglement, called dependency
and all-or-nothing integrity, are defined formally in Section 4.2.

4.1 Preliminaries

Because we consider protocols involving probabilistic Turing machines, we must
be careful in talking about probabilities. Fix an encoding (I, E, R), an adversary
A = (I,T,R), and the recovery algorithm R; for each user i. An execution of
the resulting system specifies the inputs k; and d; to E, the output of E, the
tamperer’s input & and output C, and the output of the recovery algorithm
Ri (R(k;,C) or R(k,k;,C) as appropriate) for each user. The set of possible
executions of the storage system is assigned probabilities in the obvious way: the
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probability of an execution is taken over the inputs to the storage system and
the coin tosses of the encoding scheme and the adversary. It will be convenient
to consider multiple adversaries with a fixed encoding scheme. In this case, we
use Pry(Q) to denote the probability that an event @ occurs when A is the
adversary.

During an execution of the storage system, the tamperer alters the combined
store from C into C. As a result, some users end up recovering their documents
while others do not. We summarize which users recover their documents in a
recovery vector, which is a vector-valued random variable  in which r; = 1
if R;(ki,C) = d; (i.e., if user i recovers his document) and 0 otherwise. For
example, if the server contains documents dy, ds, and d3 and in an execution we
recover only dy and ds, then » = 110.

4.2 OQOwur Notions of Entanglement

In Section 2, we observed that the block-sharing notion of entanglement provided
by Dagster and Tangler is not adequate for our purposes. This motivates us to
propose the notion of document dependency, which formalizes the idea that
“if my data depends on yours, I can’t get my data back if you can’t.” In this way,
the fates of specific documents become linked together: specifically, if document
d; depends on document d;, then whenever d; cannot be recovered neither can
d;.

Given just one execution, either users ¢ and j each get their data back or
they don’t. So how can we say that the particular outcome for i depends on the
outcome for 77 Essentially, we are saying that we are happy with executions in
which either j recovers its data (whether or not ¢ does) or in which j does not
recover its data and ¢ does not either. Executions in which j does not recover
its data but ¢ does are bad executions in this sense. We will try to exclude these
bad executions by saying that they either never occur or occur only with very
low probability. Formally:

Definition 1. A document d; depends on a document d; with respect to a class

of adversaries A, denoted d; 4 d;, if, for all adversaries A € A,

1?41“[7"1-:0\/7"]-:1]21—6.

Remark 1. Hereafter, € refers to a negligible function of the security parameter
2
5~

The ultimate form of dependency is all-or-nothing integrity. Intuitively,
a storage system is all-or-nothing if either every user i recovers his data or no
user does:

2 A function € : N — (0,1) is negligible if for every ¢ > 0, for all sufficiently large s,
e(s) < 1/s°. See any standard reference, such as [10], for details.
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Definition 2. A storage system is all-or-nothing with respect to a class of
adversaries A if, for all A € A,

1?41"[7“:0”\/7“:1”]2176.

It is easy to show that

Theorem 3. A storage system is all-or-nothing with respect to a class of ad-

. . . .. A
versaries A if and only if, for all usersi,j, d; — d;.

All-or-nothing integrity is a very strong property. In some models, we may
not be able to achieve it, and we will accept a weaker property called symmetric
recovery. Symmetric recovery requires that all users recover their documents
with equal probability:

Definition 3. A storage system has symmetric recovery with respect to a
class of adversaries A if, for all A € A and all users i and j,

f;lr[ri =1]= 1?41“[7"]- =1].

Symmetric recovery says nothing about what happens in particular execu-
tions. For example, it is consistent with the definition for exactly one of the data
items to be recovered in every execution, as long as the adversary cannot affect
which data item is recovered. This is not as strong a property as all-or-nothing
integrity, but it is the best that can be done in some cases.

5 Possibility and Impossibility Results

The possibility of achieving all-or-nothing integrity (abbreviated AONI) de-
pends on the class of adversaries we consider. In Sections 5.1 through 5.3, we
consider adversaries with an arbitrary tamperer. We show that AONI cannot
always be achieved in this case. Then in Section 5.4, we look at adversaries with
a destructive tamperer. We give a simple interpolation scheme that achieves
all-or-nothing integrity for a destructive tamperer in all three recovery models.

5.1 Possibility of AONI for Standard-Recovery-Algorithm Model

In the standard-recovery-algorithm model, all users use the standard recovery
algorithm R; that is R; = R for all users 1.

This model allows a very simple mechanism for all-or-nothing integrity based
on Message Authentication Codes (MACs)3. The intuition behind this mecha-
nism is that the encoding algorithm FE simply tags the data store with a MAC

3 Informally, a MAC consists of a key generator GEN, a tagging algorithm TAG
that associates a tag o with message m, and a verification algorithm V ER that
can be used to check if (m, o) is a valid message/tag pair. A MAC is existentially
unforgeable under chosen message attacks if the adversary cannot forge a valid
message/tag pair even after interacting polynomially many times with a signing
oracle (see [11] for details).
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using a key known to all the users, and the recovery algorithm R returns an
individual user’s data only if the MAC on the entire database is valid.

We now give an encoding scheme (I, E, R) based on a MAC scheme (GEN,
TAG,VER):

Initialization. The initialization algorithm I computes kyrac = GEN(1%). Tt
then returns an encoding key kg = kasac and recovery keys k; = (i, karac).
Entanglement. The encoding algorithm E generates an n-tuple
m = (dy,da,...,d,) and returns C = (m, o) where 0 = TAG(kprac,m).
Recovery. The standard recovery algorithm R takes as input a key k; = (4,
kamrac) and the (possibly modified) store C = (m,&). It returns 7, if
VER(kyac,m,d) = accept and returns a default value L otherwise.

The following theorem states that this encoding scheme achieves all-or-nothing
integrity with standard recovery algorithms:

Theorem 4. Let (GEN,TAG,VER) be a MAC scheme thatl is existentially
unforgeable against chosen message attacks, and let (I, E, R) be an encoding
scheme based on this MAC scheme as above. Let A be the class of adversaries
that does not provide non-standard recovery algorithms R. Then there exists
some minimum sg such that for any security parameter s > sg and any inputs
dy,...,d, with > |d;| <s, (I, E,R) is all-or-nothing with respect to A.

5.2 Impossibility of AONI
for Public and Private-Recovery-Algorithm Models

In both these models, the adversary modifies the common store and distributes
a non-standard recovery algorithm R to the users (either to all users or only to
a few select accomplices). Let us begin by showing that all-or-nothing integrity
cannot be achieved consistently in either case:

Theorem 5. For any encoding scheme (I, E,R), }f A is the class of adver-
saries providing non-standard recovery algorithms R, then (I, E,R) is not all-
or-nothing with respect to A.

The essential idea of the proof is to have the adversary supply a defective
recovery algorithm R that fails randomly with probability 1 /n. This yields a
constant probability converging to 1/e that some document is not returned,
while all others are.

This proof is rather trivial, which suggests that letting the adversary sub-
stitute an error-prone recovery algorithm in place of the standard one gives the
adversary far too much power. But it is not at all clear how to restrict the model
to allow the adversary to provide an improved recovery algorithm without al-
lowing for this particular attack. Allowing users to apply the original recovery
algorithm R can be defeated by superencrypting the data store and burying the
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decryption key in the error-prone R; defeating this attack would require analyz-
ing R to undo the superencryption and remove the errors, a task that is likely
to be difficult in practice?.

On the other hand, we do not know of any general mechanism to ensure that
no useful information can be gleaned from R, and it is not out of the question
that there is an encoding so transparent that no superencryption can dlsgmse
it for sufficiently large inputs, given that both R and the adversary’s key k are
public.

5.3 Possibility of Symmetric Recovery
for Public-Recovery-Algorithm Model

As we have seen, if we place no restrictions on the tamperer, it becomes impos-
sible to achieve all-or-nothing integrity in the public-recovery-algorithm model.
We now show that we can still achieve symmetric recovery.

Because we cannot prevent mass destruction of data, we will settle for pre-
venting targeted destruction. The basic intuition is that if the encoding process is
symmetric with respect to permutations of the data, then neither the adversary
nor its partner, the non-standard recovery algorithm, can distinguish between
different inputs. Symmetry in the encoding algorithm is not difficult to achieve
and basically requires not including any positional information in the keys or
the representation of data in the common store. One example of a symmetric
encoding is a trivial mechanism that tags each input d; with a random k; and
then stores a sequence of (d;, k;) pairs in random order.

Symmetry in the data is a stronger requirement. We assume that users’ docu-
ments d; are independent and identically distributed (i.i.d.) random variables. If
documents are not i.i.d (in particular, if they are fixed), we can use a simple trick
to make them appear i.i.d.: Each user ¢ picks a small number r; independently
and uniformly at random, remembers the number, and computes d, = d; ®G(r;),
where G is a pseudorandom generator. The new d; are also uniform and inde-
pendent (and thus computationally indistinguishable from i.i.d.). The users can
then store documents d; (1 < ¢ < n) instead of the original documents d;. To
recover d;, user ¢ would retrieve d} from the server and compute d; = d; & G(r;).

We shall need a formal definition of symmetric encodings:

Definition 4. An encoding scheme (I, E,R) is symmetric if, for any s and
n, any mputs dyi,ds,...d,, and any permutation w of the indices 1 through n,
if the joint distribution of ki,ka, ..., k, and C in executions with user inputs
di,da,...d, is equal to the joint distribution of kr,,kry, ..., ks, and C in exe-
cutions with user inputs dr,,dr,,...dx, .

4 Whether it is difficult from a theoretical perspective depends on how well R can be
obfuscated; though obfuscation is impossible in general [3], recovering useful infor-
mation from R is likely to be difficult in practice, especially if the random choice to
decrypt incorrectly is not a single if-then test but is the result of accumulating error
distributed throughout its computation.



Towards a Theory of Data Entanglement 189

Using this definition, it is easy to show that any symmetric encoding gives
symmetric recovery:

Theorem 6. Let (I, E, R) be a symmetric encoding scheme. Let A be a class of
adversaries as in Theorem 5. Fix s andn, and let dy, ..., d, be random variables
that are independent and identically distributed. Then (I, E, R) has symmetric
recovery with respect to A.

5.4 Possibility of AONI for Destructive Adversaries

Given the results of the previous sections, to achieve all-or-nothing integrity we
need to place some additional restrictions on the adversary.

A tampering algorithm 7' is destructive if the range of 7' when applied to
an input domain of m distinct possible data stores has size less than m. The
amount of destructiveness is measured in bits: if the range of 7' when applied
to a domain of size m has size r, then T' destroys lgm — lgr bits of entropy.
Note that it is not necessarily the case that the outputs of T are smaller than
its inputs; it is enough that there be fewer of them.

Below, we describe a particular encoding, based on polynomial interpolation,
with the property that after a sufficiently destructive tampering, the probability
that any recovery algorithm can reconstruct a particular d; is small. While this
is trivially true for an unrestrained tamperer that destroys all lgm bits of the
common store, our scheme requires only that with n documents the tamperer
destroy slightly more than nlg(n/e) bits before the probability that any of the
data can be recovered drops below e (a formal statement of this result is found
in Corollary 1). Since n counts only the number of users and not the size of the
data, for a fixed population of users the number of bits that can be destroyed
before all users lose their data is effectively a constant independent of the size
of the store being tampered with.

The encoding scheme is as follows. It assumes that each data item can be
encoded as an element of Z,,, where p is a prime of roughly s bits.

Initialization. The initialization algorithm [ chooses ki, ko, ...k, indepen-
dently and uniformly at random without replacement from Z,. It sets kg =
(k1,ka,...,kn) and then returns kg, k1, ... kp.

Entanglement. The encoding algorithm E computes, using Lagrange interpo-
lation, the coefficients ¢, _1,¢,—2,...¢co of the unique degree (n — 1) poly-
nomial f over Z, with the property that f(k;) = d; for each 4. It returns
C = (Cnfl, Cn—2,-. .Co).

Recovery. The standard recovery algorithm R returns f(k;), where f is the
polynomial whose coefficients are given by C.

Intuitively, the reason the tamperer cannot remove too much entropy without
destroying all data is that it cannot identify which points d = f(k) correspond to
actual user keys. When it maps two polynomials f; and f5 to the same corrupted
store C, the best that the non-standard recovery algorithm can do is return
one of fi(k;) or fa(k;) given a particular key k;. But if too many polynomials



190 James Aspnes et al.

are mapped to the same C, the odds that R returns the value of the correct
polynomial will be small.

A complication is that a particularly clever adversary could look for poly-
nomials whose values overlap; if fi(k) = f2(k), it doesn’t matter which f the
recovery algorithm picks. But here we can use that fact that two degree (n —1)
polynomials cannot overlap in more than (n — 1) places without being equal.
This limits how much packing the adversary can do.

As in Theorem 6, we assume that the user inputs dy,...,d, are chosen in-
dependently and have identical distributions. We make a further assumption
that each d; is chosen uniformly from Z,. This is necessary to ensure that the
resulting polynomials span the full p™ possibilities®.

Theorem 7. Let (I, E, R) be defined as above. Let A = (I, T, R) be an adversary
where T' is destructive: for a fized input size and security parameter, there is a
constant M such that for each key k,

{T(k, )} < M,

where [ ranges over the possible store values, i.e. over all degree-(n — 1) polyno-
mials over Zy. If the d; are drawn independently and uniformly from Z,, then
the probability that at least one user i recovers d; using R is

22 Ml/n
Prfr # 0"] < amn
A p

even if all users use R as their recovery algorithm.

We can use Theorem 7 to compute the limit on how much information the
tamperer can remove before recovering any of the data becomes impossible:

Corollary 1. Let (I, E, R) and (I,T, R)V be as in Theorem 7. Let € > 0 and let
p > 4n3/e. If for any fized k, tamperer T destroys at least nlg(n/e) + 1 bits of
entropy, then

Prfr=0">1-¢
A

6 Conclusion and Future Work

Our results are summarized below:

|| ||Destructive Tamperer| Arbitrary Tamperer ||

Standard Recovery all-or-nothing all-or-nothing
Public Recovery all-or-nothing symmetric recovery
Private Recovery all-or-nothing no guarantees possible

5 The assumption that the documents are i.i.d. does not constrain the applicability of
our results much, because the technique to get rid of it described in Section 5.2 can
also be used here.
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They show that it is possible in principle to achieve all-or-nothing integrity
with only mild restrictions on the adversary. Whether it is possible in practice
is a different question. Our model abstracts away most of the details of the stor-
age and recovery processes, which hides undesirable features of our algorithms
such as the need to process all data being stored simultaneously and the need
to read every bit of the data store to recover any data item. Some of these un-
desirable features could be removed with a more sophisticated model, such as a
round-based model that treated data as arriving over time, allowing combining
algorithms that would touch less of the data store for each storage or retrieval
operation at the cost of making fewer documents depend on each other. The
resulting system might look like a variant of Dagster or Tangler with stronger
mechanisms for entanglement. But such a model might permit more dangerous
attacks if the adversary is allowed to tamper with data during storage, and find-
ing the right balance between providing useful guarantees and modeling realistic
attacks will be necessary. We have made a first step towards this goal in the
present work, but much still remains to be done.
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