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Abstract. Given a multiple alignment over k sequences, an evolution-
ary tree relating the sequences, and a subadditive gap penalty function
(e.g. an affine function), we reconstruct the internal nodes of the tree
optimally: we find the optimal explanation in terms of indels of the ob-
served gaps and find the most parsimonious assignment of nucleotides.
The gaps of the alignment are represented in a so-called gap graph, and
through theoretically sound preprocessing the graph is reduced to pave
the way for a running time which in all but the most pathological ex-
amples is far better than the exponential worst case time. E.g. for a tree
with nine leaves and a random alignment of length 10.000 with 60% gaps,
the running time is on average around 45 seconds. For a real alignment
of length 9868 of nine HIV-1 sequences, the running time is less than one
second.

1 Introduction

The relationship of biological sequences such as proteins and DNA can be de-
scribed by a rooted tree, with a series of bifurcations corresponding to duplica-
tions in the past. Because of fluctuations in rates of evolution of such molecules
it is not possible to determine the position of the root and the relative order of
ancient duplications. When a rooted bifurcating tree is stripped of this informa-
tion it becomes an unrooted tree, where all internal vertices have three incident
edges. Protein and DNA sequencing techniques allow the determination of the
sequences at the leaves of such a tree (the present). The sequences that repre-
sent ancestral molecules are unobservable and must be reconstructed according
to some principle.

Usually the principle of parsimony is invoked: given a function that measures
the distance between two sequences, choose ancestral sequences that minimize
the total distance between neighbors in the tree, i.e. the overall amount of evo-
lution. The distance function defines the penalty, or cost, of basic events such
as substitutions and insertions/deletions (indels), and thus the distance between
two sequences s1 and s2 is the “cheapest” process of evolution in terms of sub-
stitutions and indels which transforms s1 into s2. Application of the parsimony
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principle falls in two categories, depending on whether the phylogeny is known
or not. If the phylogeny is known, it is the small parsimony problem; otherwise
it is the large parsimony problem. This article will only address the small parsi-
mony problem, but since it is a hard version involving complete sequences, it is
called a large version of the small parsimony problem.

The simplest case where only substitutions have occurred and they all have
cost 1 was first addressed by Fitch [1] and independently by Hartigan [3]. This
was generalized to allow substitutions with arbitrary costs by Sankoff [5]. The
computing time used by these algorithms was of the order O(n · k), where n
is the length of the sequences and k the number of sequences. The situation
with two sequences subject to substitutions and indels of length 1 was solved by
Sellers [4] and Sankoff [2]. This is called the approximate string matching problem
and uses O(n2) computing time. Sankoff [5] combined the string matching and
Fitch-Hartigan-Sankoff algorithms to devise an algorithm that reconstructs the
history of a set of sequences if their phylogenetic tree is known. Its running time
was O(nk · 2k · k), which is prohibitive.

Waterman et al. [6] introduced sequence comparisons of two sequences with
indels longer than one. Their algorithm uses O(n3) computing time. Gotoh [7]
gave an algorithm that uses time O(n2) if the gap penalty function is of the
form g(l) = α + β · l, where l is the length of the gap. Fredman [8] generalized
Gotoh’s algorithm to three sequences if the gap penalty function was of the form
g(l) = α, i.e. the cost of an indel is independent of its length.

Wang et al. [10] studied the tree alignment problem where a multiple align-
ment is found by reconstructing the sequences at the internal nodes of a phy-
logeny minimizing the sum of all pairwise alignments between neighbors in the
tree. In their approach gap costs are linear and the overall goal is to find a multi-
ple alignment of the given sequences. The algorithm was improved in [11] where
a polynomium time approximation scheme is given which yields a solution with
a cost of at most 1.583 times the optimum, for sequences of length up to 200.

Finally, much work exists on finding the best multiple alignment of k se-
quences with no phylogeny given, e.g. [12,13]. Hein [9] devised an algorithm
which finds an approximation to the optimal multiple alignment of k sequences
and simultaneously reconstructs their ancestors, given the tree. However, multi-
ple alignment is not our aim in this article: we give an algorithm which optimally
reconstructs the sequences at the internal nodes of a phylogeny, given an align-
ment of the sequences at the leaves. The algorithm allows indels of any length
and any subadditive gap penalty function (e.g. an affine function on the form
g(l) = α+β · l with α, β ≥ 0). Its worst-case time complexity is exponential, but
in practice it is very fast and has been succesfully tested for nine HIV sequences
of length 9868.

2 Indels of Length Greater than One

Given a multiple alignment the problem arises of how to interpret gap symbols
as indels. When only indels of length one are allowed each column can be treated
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separately. When longer indels are allowed the problem becomes non-trivial as
illustrated in Figure 1.

s1: nnn
s2: −−n
s3: n−−

s1

s2
s3

s1: nnn
s2: −−n
s3: n−−

s1

s2
s3

s1: nnn
s2: −−n
s3: n−−

s1

s2
s3

 a: ???

aaa

1) Two long indels

 a: nnn

2) Three short indels

 a: n−n

Fig. 1. Two possible explanations for the gaps in an alignment with three sequences
(in rounded rectangle). Small boxes represent indels. For clarity we focus on indels and
ignore substitutions, thus denoting all nucleotides simply by ’n’.

There are gap symbols in sequences s2 and s3. The gaps partly overlap and
they can be explained in two ways:

(1) Two long indels have occurred: one on the evolutionary path between a and
s2 causing s2’s gaps, and one on the path between a and s3 causing s3’s gaps.
Consequently, a, the closest common relative of s2 and s3, has no gaps.

(2) Three short indels have occurred: one on the path between s1 and a causing
gaps in the middle interval in both a, s2 and s3 in one go; one between a
and s2 accounting for s2’s gap in the first column, and one between a and
s3 accounting for s3’s gap in the last column. With this explanation, a has
a gap in the middle.

If we solve the problem the same way as when indels have length one, we
would place the gaps as high (i.e., as far from the leaves) as possible in the
tree, and so we would choose explanation 2) in Figure 1 — but that means that
three indels have occurred whereas choosing explanation 1 means only two. On
the other hand, since now both the number and length of the indels may vary
between possible explanations, it is no longer obvious that the most parsimonious
explanation is simply the one with the fewest indels. Whether two long indels
are cheaper than three short ones depends on the chosen gap penalty function.
With the function g(l) = α + βl, where l is the length of the gap, the costs of
the two explanations are 2(α + 2β) versus 3(α + β), respectively.

Not only is it non-trivial to exhaustively list all possible explanations; it may
also be non-trivial to find the cost of a given explanation. Consider the example
in Figure 2: in explanation 1), the gaps are caused by three indels; one of length
2 on the edge between s2 and a causing s2’s gaps, one of length 1 on the edge
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s1

s2

s3

s4

s1: nnnn
s2: n−−n
s3: n−nn
s4: −−−n

s1: nnnn
s2: n−−n
s3: n−nn
s4: −−−n

s1: nnnn
s2: n−−n
s3: n−nn
s4: −−−n

s1

s2

s3

s4

3)

s1

s2

s3

s4

1) 2)

a a a abb b b

s1: nnnn
s2: n−−n
s3: n−nn
s4: −−−n

s1

s2

s3

s4

Fig. 2. Three possible explanations for the gaps in an alignment with four sequences.
Obviously explanation 1) involves three indels, but in fact explanations 2) and 3) also
only involve three and not four as it would seem. See text.

between s3 and b causing s3’s gaps, and one of length 3 on the edge between s4

and b causing s4’s gaps.
In explanation 2), a single indel occurring between a and b causes gaps in

both s3 and s4 (and b) in the second column of the alignment. In explanation 3)
this indel is pushed further back to the edge between s1 and a now causing gaps
in s2, s3 and s4 (and a and b) all at once. Depending on the direction of evolution,
this indel is either an insertion happening after, or a deletion happening before
the emergence of b, s3, and s4. In both cases, the first and third alignment
columns are in fact consecutive in b, s3, and s4. Therefore, though it might seem
we need two indels to account for the two remaining gaps in s4, they may be
the result of only one. Thus, in this particular case, one indel can explain gaps
in two non-adjacent alignment columns because the intermediate symbols have
been deleted earlier or inserted later in the evolution. Concluding the example,
we end up with the following costs for the three explanations: 1) 3α + 6β, 2)
3α+5β, and 3) 3α+4β. In passing, we observe that 3) is the optimal explanation
for any (positive) choices of α and β.

These examples hopefully illustrate the complexity of handling indels of
length more than 1. In general two questions arise: “What are the consistent ex-
planations of a given multiple alignment in terms of indels?” and second: “Given
some gap penalty function, which explanation is optimal?” In the following we
give an algorithm that solves the problem.

3 Our Algorithm

We assume we are given a multiple alignment M of k > 2 sequences S1 . . . Sk, and
a phylogeny in the form of a binary evolutionary tree T relating these sequences.
Thus each Si is a leaf in T , and all other nodes in T have three neighbors. We
do not take branch lengths into account. The length of M is n with the columns
numbered 1 to n. Each sequence is a string over some alphabet Σ extended with
a gap symbol ’−’. Further, we are given a gap penalty function g(l) defining the
cost of a gap of length l. We assume g is subadditive: g(l1 + l2) ≤ g(l1)+g(l2). In
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the following, for brevity we will let Σ denote the set of nucleotides {A, C, G, T },
and we will use the affine gap cost function g(l) = α+βl, although any alphabet
applies as well as, e.g., logarithmic or root gap cost functions. We will write [a : b]
to denote the sequence of integers from a to b, including the endpoints a and b.

No sequence has all gaps, and neither does any column. We assume that
aligned nucleotides are related (call it the R assumption): if sequences si and sj

both have a nucleotide in some column, the closest common ancestor of si and
sj also has a nucleotide in this position. It follows that all sequences on the path
from si to sj in T have nucleotides in this position. We make no assumption
about the direction of time in the tree T . In other words, T is not rooted. For
a leaf, we can talk about the unique closest relative since it has only one edge;
for an internal node, the closest relative is not well-defined since internal nodes
have three edges.

If an edge connecting two nodes a and b is removed from T , the result is two
disjoint rooted subtrees Ta and Tb rooted at a and b, respectively. An insertion
that occurs on this edge inserts nucleotides in all nodes in Ta and gaps in all
nodes in Tb, or vice versa. Similarly, a deletion converts nucleotides to gaps in all
nodes in Ta and leaves the nucleotides in all nodes in Tb, or vice versa. In other
words, an indel affects a whole subtree of T . Thus we can and will identify an
indel by the subtree in which it inserts gaps. Note that the closest relative of a
subtree T ′ ⊂ T is well-defined: it is the unique node n �∈ T ′ which has an edge
to the root of T ′.

It is easily shown that a tree with k > 2 leaves has

s3:−−−−nnn
s2:nn−−nnn
s1:nn−−−−−

s1 s3

s4s2

s4:n−nn−−−

Fig. 3.

4k − 5 different non-empty subtrees. We can represent a
subtree T ′ of T unambiguously by its leaves; of course not
all leaf subsets represent subtrees. Consider Figure 3: this
tree with k = 4 leaves has 4k − 5 = 11 different subtrees
(counting T itself); e.g., {s1}, {s3, s4}, and {s1, s2, s4}.
Note that, for example, {s2, s3} is not a subtree: one can-
not cut one edge and end up with a subtree containing
exactly the leaves {s2, s3}.

3.1 Construction of a Gap Graph

An alignment column has a gap configuration given by the sequences that have
gap symbols in this column. A maximal interval I ⊆ [1 : n] where alle columns
have the same gap configuration is called a gap interval. E.g., the alignment
in Figure 3 has four gap intervals: I1 = [1 : 1], I2 = [2 : 2], I3 = [3 : 4], and
I4 = [5 : 7]. Gap intervals are important since the indels used to explain the
gaps in one column of a gap interval can be extended to explain the remaining
columns without the cost of introducing extra indels (by subadditivity of the
gap cost function this is cheaper, so indels are never broken off in the middle
of a gap interval). Recall that each leaf in the evolutionary tree T corresponds
to a sequence. The tree covering of a gap interval I is the minimal forest F of
subtrees of T where
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(C1) All leaves of T with gap symbols in I belong to a subtree in F
(C2) All leaves in each subtree in F have gap symbols in I

Thus, a tree covering of I “covers” exactly the sequences that have gaps in
I and not the ones that have nucleotides. Note that a tree covering is minimal
in the number of subtrees that satisfy the above conditions. In other words,
each subtree is maximal: it can not be extended without including leaves with
nucleotides in I. In the following, we will represent a gap interval by a pair
(F , I), where I is the gap interval itself and F is its associated tree covering.

Look again at Figure 3. In I1, to satisfy condition C1 we need to cover the
sequence s3 only. Therefore, the tree covering F1 associated with I1 is {{s3}}, a
forest of only one subtree. I2 and I3 are also covered by single subtree forests:
F2 = {{s3, s4}}, and F3 = {{s1, s2, s3}}. Finally, to cover I4 we need two sub-
trees: F4 = {{s1}, {s4}}. This is a minimal forest: any subtree with more than
one leaf would include s2 or s3 which have nucleotides in I4, and thus the subtree
would violate condition C2.

For now we focus on the gaps, and so we simply represent the alignment by
its constituent gap intervals, i.e. the set {(Fi, Ii)}, where, for all i, interval Ii

precedes interval Ii+1 in the alignment and
⋃

Ii is a disjoint partition of [1 :n].
We call such a set a gap division.

A gap division D now induces a gap graph in the following manner. Each gap
interval (Fi, Ii) ∈ D gives rise to a set of vertices in the graph: for each subtree
T ′ in the tree covering Fi, a vertex (T ′)Ii is created. We say that the vertex
(T ′) lies in the interval Ii. We observe that since no alignment columns have all
gaps, the subtree T ′ of any vertex is a true subtree of the whole evolutionary
tree T and so T ′ has a closest relative. As we shall see, a vertex (T ′)Ii represents
a potential indel: an indel occurring on the edge between the root of T ′ and its
closest relative could be the cause of all the gaps in the sequences in T ′ in the
gap interval Ii.

Consider a gap graph with two vertices (T1)I1 and (T2)I2 that lie in consecu-
tive intervals I1 and I2. Then the subtree T1 has one of five possible relationships
with T2:

– (twin) T1 = T2

– (son) T1 ⊂ T2

– (father) T1 ⊃ T2

– (cousin) T1 ∩ T2 �= ∅, but T1 �⊆ T2 and T1 �⊇ T2

– (unrelated) T1 ∩ T2 = ∅

These five relationships are manifested in the gap graph as follows:

– If T1 and T2 are twins the two vertices are merged into a vertex (T1)I1∪I2 that
lies in the interval I1 ∪ I2 (note that this new interval is not a gap interval
since it does not have the same gap configuration everywhere).

– If T1 is the son of T2 a directed edge is created from the vertex (T1)I1 to the
vertex (T2)I2 .
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– If T1 is the father of T2 a directed edge is created from the vertex (T2)I2 to
the vertex (T1)I1 .

– If T1 and T2 are cousins, an undirected zigzag edge is created between the
vertices (T1)I1 and (T2)I2 .

– If T1 and T2 are unrelated, no edges are created.

Thus, to construct a gap graph from a gap division D = {(Fi, Ii)}, we first
create a vertex for each subtree in each tree covering Fi. Then we traverse the
gap intervals Ii looking at two consecutive intervals at a time and merge any twin
vertices, create directed edges between fathers and sons, and create undirected
zigzag edges between cousins. Note that twin vertices may be extended to more
than two gap intervals. We next proceed to a full example.

Figure 4 shows an alignment of five sequences. It has four gap intervals
I1, . . . I4, each with its own tree covering F1, . . .F4. Each subtree in each tree
covering induces a vertex in the gap graph, so initially we get the six vertices
{2}I1 , {2}I2 , {4, 5}I2,

I1 I2 I3 I4
1: nnnn-----

2: ---------

3: nnnn--nnn

4: nn-------

5: nn--nnnnn

� � �

�

�

�

�

�

��
�
��

�
��

�

��
�

3

5

42

1

{2}I1∪I2 {1, 2}I4

{1, 2, 3, 4}I3

{4, 5}I2 {4}I4

Fig. 4. Alignment with five sequences 1–5 and
four gap intervals I1–I4, evolutionary tree, and
induced gap graph. The tree coverings for the
four gap intervals are F1 = {{2}}, F2 =
{{2}, {4, 5}}, F3 = {{1, 2, 3, 4}}, and F4 =
{{1, 2}, {4}}.

{1, 2, 3, 4}I3, {1, 2}I4, and
{4}I4 . Traversing the gap in-
tervals, first we merge the two
{2}-vertices since they lie in con-
secutive intervals, and then we
create a directed edge from this
new vertex to {1, 2, 3, 4}I3 since
{2} ⊂ {1, 2, 3, 4}. Next we create
an undirected zigzag edge be-
tween {4, 5}I2 and {1, 2, 3, 4}I3

since neither is contained in the
other while they still share the
leaf 4. Finally, we create directed
edges going from {1, 2}I4 and
{4}I4 to {1, 2, 3, 4}I3. For clarity
we write the subtree of a gap
graph vertex as either a variable
in parentheses, like in (T ′)I , or
a specific list of leaves with no
parentheses, like in {1, 2}I.

Our algorithm now works
with the gap graph to find the
most parsimonious set of indels
that explains the gaps in the alignment, given a gap penalty function g(l) =
α + βl. We first go through a preprocessing phase in which we reduce the po-
tentially very large and complex gap graph. In the second phase, we resolve the
reduced graph to find the optimal solution.
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3.2 Preprocessing the Gap Graph

As already said, an indel θI,T results in gaps in all nodes of a subtree T in
some (set of) interval(s) I of the alignment. The following theorem establishes
a strong connection between indels and gap graph vertices. Before we can prove
the theorem, we need a small lemma.

Lemma 1. Given a subtree T ′ and a sequence S of gap graph vertices (Tk)Ik

such that ∀k, (1) T ′ ⊂ Tk, and (2) Tk ⊆ Tk+1 or Tk ⊇ Tk+1 (i.e., no neighbors
are cousins). Then there exists a subtree T ⊃ T ′ such that T ⊆ Tk for all k.

Proof. Since T ′ is a real subtree of the Tk’s, T ′ has a closest relative a, and
each Tk consists of at least T ∪ a. Now a cannot be a leaf since the Tk’s are
real subtrees of the whole evolutionary tree (if some Tw were the whole tree, all
sequences would have gaps in the associated interval Iw). Thus, a has relatives b
and c with associated (possibly empty) subtrees Tb and Tc, and the evolutionary
tree looks like the figure below. Consider T1, the first subtree in the sequence S.

Since it contains T ′ and a, it must also contain either Tb

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
� Tc

b
a

c

Tb

T ’

or Tc, but not both. Assume without loss of generality
that it contains Tb. Then its neighbor in the sequence, T2

contains Tb as well. If not, T1 and T2 would be cousins:
they have T ′ in common, T1 contains Tb (and not all of Tc),
but T2 would contain Tc. This argument is easily extended
by induction to show that all subtrees Tk contain Tb. Let

T = T ′ ∪ a ∪ Tb. Then T ⊃ T ′ and T ⊆ Tk for all Tk ∈ S. 
�

Theorem 1. Let E be an optimal set of indels explaining an alignment M
with respect to a gap cost function g(l) = α + βl, and let G be the gap graph
associated with M. Let θI,T ∈ E be an indel that creates gaps in the nodes of
the subtree T in the interval I. Then

1) ∃ a vertex (T ′)I′ in G with I ′ ⊆ I such that T ′ = T , or
2) ∃ two cousins in I, (T1)I1 and (T2)I2 such that T ⊆ T1 and T ⊆ T2.

Thus, either the indel corresponds to (the subtree of) an exisiting vertex that lies
somewhere in the indel’s interval I, or it “crosses” a cousin edge in I.

Proof. Let I =
⋃

Ik where the Ik are are disjoint gap intervals in the gap graph
G. All leaves of T have gaps in all of I, and so these leaves are covered in each
gap interval Ik in G. Thus, in each Ik there exists a vertex (Tk)Ik

such that
T ⊆ Tk. Let S be the set of subtrees of these vertices. If two neighbor subtrees
in S, Tk and Tk+1, are cousins, we are done. Otherwise, we have that Tk ⊆ Tk+1

or Tk ⊇ Tk+1 for all k. Assume that ∀Tk : T ⊂ Tk.
Lemma 1 ensures the existence of a subtree T ∗ such that T ⊂ T ∗ ⊆ Tk

for all Tk ∈ S. Recalling that each Tk comes from a vertex (Tk)Ik
in the gap

graph, all nodes/sequences in T ∗ must have gaps in I. By assumption, the
optimal explanation E contains one indel θI,T that accounts for the gaps in
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T in interval I. The cost of this indel is α + β�, if we let � be the length of
I. Further, some number of indels (say, m > 0) must account for the gaps
in the nodes in T ∗ \ T in interval I. Note that these m indels may stretch
beyond I, so their total cost is mα +β(m�+ d), where we sum the extra lengths
beyond I in d. Thus, we can write the total cost g of the optimal explanation E as

g = (α + β�) + mα + β(m� + d) + q

where q is the cost of all indels accounting for other gaps. Consider the expla-
nation E∗ obtained from E by replacing θI,T with the indel θI,T ∗ which creates
gaps in interval I in all nodes in the subtree T ∗. The cost of this new indel is
still α + β�, while we no longer have to let the m extended indels affect inter-
val I. Thus we save βm� on the cost, and the total cost g∗ of the explanation E∗ is

g∗ = (α + β�) + mα + βd + q < g

But this contradicts the optimality of E. Therefore, T must be equal to at
least one of the Tk’s, and so the gap graph G must have a vertex (Tk)Ik

that
corresponds to the indel θI,T . 
�

In general, given a vertex (T ′)I , the question is whether it corresponds di-
rectly to an indel happening on the edge between the root of T ′ and its closest
relative, or whether the gaps of T ′ resulted from several indels happening in-
side T ′. In the latter case we say that the vertex is decomposed, otherwise it is
confirmed. Theorem 1 tells us where to look when searching for the indels in
the optimal explanation: Candidates are found among the (subtrees of the) gap
graph vertices, and the intersection between cousins. In a (part of a) gap graph
with no cousin edges all indels in the optimal explanation correspond directly
to subtrees of existing vertices. If a cousin edge is present, however, the optimal
explanation may contain indels not represented directly as vertices; such an in-
del must then correspond to a subtree which is contained in both of the cousins’
subtrees and thus lies in their intersection.

Thus, Theorem 1 serves two causes. First it pins out cousin vertices as special
cases, and second it justifies the perhaps intuitively reasonable notion that one
should not place indels “lower” than necessary in the tree: if a vertex {1, 2}I is
not connected to leaf vertices {1}Ij and {2}Ik

anywhere (and no cousins either),
the corresponding gaps in sequences s1 and s2 do not both extend beyond I, and
so there is no reason not to make the gaps in s1 and s2 in I in one go, i.e. on the
edge between the root of the subtree {1, 2} and its closest relative. In fact we
can say that if a vertex is decomposed, all of the decomposing indels continue
and help explain other vertices in the gap graph. We formalize this in a lemma
(which follows easily from Theorem 1 so we omit the proof) and elaborate it in
a theorem.

Lemma 2. If a gap graph vertex (T )I is decomposed in the optimal explanation
of the corresponding alignment, then all of the indels explaining gaps in T extend
beyond interval I.
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Theorem 2. If a gap graph vertex (T ′)I is decomposed in the optimal expla-
nation of the corresponding alignment, the decomposing indels do not all extend
from I in the same direction.

Proof. Let (T ′)I be decomposed into m indels. By Lemma 2, all decomposing
indels extend beyond interval I. Assume they all extend in the same direction.

Let r be the root of T ′ and let a be the closest relative of T ′. Let � be the
length of I. Let g(l) = α + βl be the cost of an indel of length l, and let g∗ be
the cost of the optimal explanation E∗ of all gaps in the alignment, (i.e. the
explanation that minimizes the total cost over all indels). In this explanation,
the gaps in the leaves of T ′ are explained by the m indels that extend beyond
I. The total cost of these indels can be written as mα + β(m� + d) (each such
indel has some length greater than � and we sum these extra lengths in the
constant d). We can then write

g∗ = mα + β(m� + d) + q

where q is the total cost of all other indels. Since T ′ is decomposed into at least
two indels, m ≥ 2.

These m indels all start in interval I and by assumption they extend in the
same direction. If they all end in exactly the same column ce in the alignment, we
replace them with only one indel occurring between r and a and extending from
I to ce. Such an explanation would trivially be cheaper than g∗, contradicting
the optimality of E∗. Thus, the m indels do not have equal lengths. Let c be the
first alignment column where one of the m indels ends (call this indel θ1). The
column c is outside of I since θ1 extends beyond I. Define Ix to be the extended
interval that starts with and includes I and ends in column c; let its length be
�x.

Consider the explanation E1 obtained from E∗ by replacing θ1 with the
indel θIx,T ′ occurring between r and a in the evolutionary tree and extending
all through the interval Ix. This new indel explains the gaps in all T ′ in all of
Ix, including I, while m− 1 of the original indels (all except θ1) still have to be
made since they go beyond Ix; however, as we have covered all gaps in Ix with
θIx,T ′ we save βm�x on the cost. Therefore, the cost of explanation E1 is

g1 = (α + β�x) + (m − 1)α + β(m� + d) + q − βm�x =

mα + β(m� + d) + q − β(m�x − �x) = g∗ − β�x(m − 1)

Since m ≥ 2 we have that β�x(m−1) > 0 and thus g1 < g∗. But this contradicts
the optimality of E∗ and so our assumption must be wrong. Therefore, the
decomposing indels do not all extend in the same direction. 
�

Recall that a gap graph vertex represents gaps in a subtree of sequences in
some region of an alignment. The vertex may have edges to other vertices, and
these edges can have three different types (in-, out-, and cousin edges). It turns
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out that vertices with certain configurations of edges can immediately be con-
firmed to correspond to optimal indels. In other words certain types of vertices
can be “decided” immediately and locally. Using the two strong Theorems 1 and
2 we can characterize formally exactly which types of vertices we can immedi-
ately decide. We will not go into the details here but simply give the results.3

A vertex is called a leaf vertex if its subtree consists of one leaf node only.
Such a vertex can be confirmed right away and thus corresponds to an optimal
indel occurring between this node and its closest relative in the tree. Likewise,
orphans and end vertices can be confirmed: they are vertices with no edges and
vertices with edges on one side only, respectively. All sequences in the subtree
of an orphan have nucleotides on either side of its interval.

Consider a vertex (T ′)I where some but not all of the leaves of its subtree T ′

have gaps in an adjacent interval. Such a vertex is called a patriarch. A patriarch
has at least one edge (zigzag or in-going), but its subtree also has at least one
leaf which is not included in a subtree in any vertex in an adjacent interval.
We say that such a leaf has solo gaps: it has gaps in interval I but nucleotides
on both sides. Patriarchs may also be confirmed immediately (using Lemma 2);
intuitively, since it is necessary to spend an indel on the solo gaps, this indel
may as well create all other gaps of the vertex’ subtree also. A patriarch has
another important property: after its confirmation, its edges are removed and
new edges are created directly between its former neighbors on either side (if any
are needed). A patriarch has no out-edges, and its subtree contains the subtrees
of its in-edge neighbors; thus, by the same argument explained in connection
with Figure 2, the intervals associated with the patriarch’s neighbors are in fact
consecutive and so the neighbors may be connected directly if they share leaves.
A special case is when the patriarch has two cousins; in this situation the edges
cannot be removed since we have to keep the information that no indel with
a larger subtree than that of the patriarch can “pass” the patriarch and cause
gaps on both of its sides in one go.

A few other reduction rules help reduce the gap graph further. The prepro-
cessing phase makes use of these theoretical results by going over the gap graph
in a series of passes, each pass reducing the graph by local applications of the re-
duction rules. Since the removal of edges following a patriarch confirmation may
turn previously undecidable vertices decidable, several passes are performed.

3.3 Resolving the Reduced Gap Graph

Once the preprocessing is done, the gap graph has been reduced significantly
(as illustrated by Figure 6 below). In other words, most of the gaps have been
(optimally) explained. We now turn to the chains of the gap graph: two vertices
belong to the same chain if and only if there exists a path connecting the two
which does not cross a leaf vertex. Thus, chains often end in leaf vertices, some
of which may belong to two chains (see Figure 5). The chains are important

3 Proofs are found at http://www.daimi.au.dk/∼chili/BiRC/gapgraphAppendix.pdf.
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since they can be dealt with independently: indels causing gaps in the vertices
of one chain could not have caused gaps in vertices of another chain.

Say that after preprocessing, (a part of) the gap graph looks like Figure 5. In
the second phase of our algorithm, we analyze each chain in turn. Looking first at
chain a, we see that only the vertex (123) is still undecided (the others being leaf
vertices). Referring to Theorem 1, we note that since there are no cousin edges
in this chain, the only indels we need to consider for the optimal explanation
are the ones already represented by vertices in the chain. That means there are
only two possible explanations for the gaps represented by the vertex (123): 1)
Either they are the result of one indel occurring between the root of the subtree
{1, 2, 3} and its closest relative (in which case we confirm the vertex), or 2) they
are the result of three indels occurring between 2 and its closest relative, 1 and its
closest relative, and 3 and its closest relative, respectively, extending the already
confirmed neighboring indels/vertices (in which case we decompose the vertex).
If we let l123 be the length of its associated alignment interval, the extra cost
for resolving the vertex (123) in each of these two explanations is α + βl versus
3βl. For the optimal explanation we simply choose the cheaper one (in general,
if several options are optimal, we choose one arbitrarily).

1 12

2 123 1234 345 5 45 4

3

chain a:

(2), (123), (1), (3)

chain b:

(1), (12), (1234), (345), (5)

chain c:

(5), (45), (4)

Fig. 5. Gap graph with three chains (same tree as in Figure 4). We omit interval labels
on the vertices, and we write, e.g., (2345) to denote the subtree {2, 3, 4, 5}.

Chain b has three undecided vertices: (12), (1234), and (345). Moreover, the
latter two are cousins and so by Theorem 1 we need to consider indels whose
subtrees lie in their intersection. That gives two additional potential indels not
already represented in the chain by vertices, namely {3} and {4}. Interestingly,
the vertex (12) can therefore be confirmed right away: its only possible decom-
position is in subtrees {1} and {2}, but since {2} is neither present as a vertex
nor lies in the cousin intersection, this indel could never be part of an optimal
explanation. For the same reason, the vertex (1234) may either be confirmed or
decomposed in one way only, namely with three indels with the subtrees {1, 2},
{3}, and {4}. And finally the vertex (345) may either be confirmed or decom-
posed in three indels with the subtrees {3}, {4}, and {5} (this time, Theorem 1
dictates that the indel {4, 5} is not an option in chain b). In total therefore we
have four combinations which we need to check in this chain. Lastly, in chain c
we may either confirm the vertex (45) or decompose it in {4} and {5}.
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Checking all combinations we find the optimal indels. Each causes gaps in
some set of columns in a full subtree, and by the R assumption (see Section 3)
we place anonymous nucleotides in the internal nodes in the rest of the tree
in the same columns. It remains to optimally name these nucleotides. For each
column we ignore the subtrees that have all gaps and get a still connected tree
with all nucleotides, and on this tree we now perform the Finch-Hartigan-Sankoff
algorithm as a final step to optimally assign nucleotides to the internal nodes.

4 Performance and Future Work

Checking the cost of each combination of confirmation/decomposition of all the
vertices in a chain cannot be done in constant time. E.g., looking again at Fig-
ure 5 and the combination in chain b of decomposing both (1234) and (345) we
have to look at both decompositions to see that the decomposing indels {3} and
{4} can extend to both vertices and do not have to be opened anew. Note also
that since we have to check “all with all”, the number of combinations to check
is exponential in the number of undecided vertices in the chain. I.e., it is critical
that as many edges as possible are removed in the preprocessing phase. If the tree
is large, some vertices may have many possible decompositions; if the alignment
has many “crisscrossing” gaps, the chains may become very long. Encountering,
e.g., a chain with 11 undecided vertices each with five possible decompositions
(including not decomposing) except two which have 10 decompositions, we have
in total 59 · 102 = 195312500, close to 200 million, combinations to check (each
taking some hard to characterize but more than constant amount of time) for this
chain alone (see Figure 6). Thus, the worstcase time complexity is exponential
in the length of the alignment.

On the other hand, if the gaps mostly fall in straight blocks delimited by full
columns of nucleotides, chains will be short and the running time will be very
fast. Thus, the running time of our algorithm is extremely dependent on the par-
ticular problem instance. To demonstrate this, we have tested the algorithm on
a huge number of different alignments and phylogenies. The main type of data
was randomly generated alignments with some ratio of gaps scattered individu-
ally across all sequences. We wanted to challenge our algorithm with very hard
data, and a long such alignment with a high gap ratio of 60% is indeed a very
hard problem to solve. Real alignments do not look like this (see Figure 7 for a
screenshot of our program running a 60% gap alignment): first they do not have
that many gaps unless the aligned sequences are only very distantly related. And
second, since gaps appear as the result of indels, they do appear in connected
blocks and not as much as independent single gaps. For this reason we also did
some experiments on alignments with only 40% and 50% gaps, and finally we
ran the algorithm on an alignment of nine full HIV-1 subtype genomes.

In the left plot of Figure 6 we show the average performance for random
alignments with 60% gaps over different alignment lengths with 1000 trials for
each, on a tree with nine leaves. For an alignment of length 10000 the average
time was around 40 seconds. For lengths below 6000, the time is less than 10
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Fig. 6. Performance on random alignments with 60% gaps. Left plot: average times
for different lengths, on tree with nine leaves. Right plot: 95% fractiles of the number of
combinations to check for different alignment lengths, on trees with six and nine leaves
(6L/9L) with and without preprocessing (pre/no pre). The curve ’9L, pre’ comes from
an experiment similar to the one underlying the left plot.

seconds.4 The curve does not appear smooth; this is due to the abovementioned
dependency on the particular problem instance resulting in a huge variance.
The right plot of Figure 6 is an attempt to show the effect of the preprocess-
ing phase. Since it would have been too time consuming to actually find the
optimal explanation in 1000 trials with no preprocessing, we instead report the
number of combinations it would have been necessary to check. Again, the vari-
ance is huge so we report the 95% fractiles (i.e., a value of 10000 means that
in 95% of the trials, the number of explanations to check was at most 10000).
We did experiments with and without preprocessing, and to also get an idea of
the performance for different tree sizes we used both a tree with nine leaves and
one with six leaves. For example, for alignment length 10000 and a tree with
nine leaves, the numbers are about 500.000 with preprocessing versus about 100
million without preprocessing; i.e. preprocessing reduces the number of combi-
nations to check by a factor of about 200 in this case. We also observe that for
the smaller tree, the number of combinations to check is substantially smaller.

This performance is contrasted by our results for a tree with nine leaves
and alignments with only 40% or 50% gaps: for all lengths up to 8000, the av-
erage running time was less than one second. We also analyzed a full genome
alignment of B.ES.89.S61K15, B.FR.83.HXB2, B.GA.88.OYI, B.GB.83.CAM1,
B.NL.86.3202A21, B.TW.94.TWCYS, B.US.86.AD87, B.US.84.NY5CG, and
B.US.83.SF2, nine HIV-1 subtypes retrieved from the Los Alamos HIV database
(http://hiv-web.lanl.gov/content/index). After constructing a phylogeny
using the neighbor-joining Sanger Institute Quicktree software (http://www.
sanger.ac.uk/Software/analysis/quicktree/)we had a tree with nine leaves
4 All experiments were done on a 2.4 GHz Pentium 4 machine with 512 MB RAM

running Linux.
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and an alignment of length 9868 (this example only serves to demonstrate our
algorithm, the methods chosen to obtain phylogeny and alignment were arbi-
trary). Solving this problem again took less than one second. Because of the
great similarity of the sequences, the resulting gap graph was small and simple.

We are interested in

Fig. 7. Screenshot with phylogeny, alignment, and in-
duced gap graph. Note what a random alignment with
60% gap looks like.

running our program on
more, real data sets with
alignments and trees of var-
ious sizes. Much larger trees
with shorter alignments
(100–500 leaves, length
< 500) is an interesting
application which we have
not yet looked at. Also, we
intend to combine the algo-
rithm with some heuristic
search method so as to find
an approximately optimal
alignment which fits the
tree, rather than assume it
is given (a variant of the
tree alignment problem).
One might consider our
algorithm a way of ranking
a given combination of
tree and alignment using
a gap cost function and a
substitution matrix, and
so trying different align-
ments, or even trees, might
actually improve the data.
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