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Abstract. Homology modeling predicts the three-dimensional structure
of a protein (target), given its sequence, on the basis of sequence similar-
ity to a protein of known structure (template). The main factor deter-
mining the accuracy of the model is the alignment of template and target
sequences. Two methods are described to improve the reliability of this
step. First, multiple alignment are produced, converted into models, and
then the structure with the lowest free energy is chosen. The method
performs remarkably well for targets for which a good template is avail-
able. In the second approach, the alignment is based on the consensus of
five popular methods. It provides reliable prediction of the structurally
conserved framework region, but the alignment length is reduced. A ho-
mology modeling tool combining the two methods is in preparation.

1 Introduction

Over the last decade the exponential growth of sequenced genes has prompted
the development of several methods for the prediction of protein structures. The
most successful prediction method to date is homology modeling (also known
as comparative modeling), which predicts the three-dimensional structure of a
protein (target), given its sequence, on the basis of sequence similarity to proteins
of known structure (templates) [1,2]. The approach is based on the structural
conservations of the framework regions between the members of a protein family.
Since the 3D structures are more conserved in evolution than sequence, even the
best sequence alignment methods frequently fail to correctly identify the regions
that possess the desired level of structural similarity, and the quality of alignment
remains the single most important factor determining the accuracy of the 3D
model [3]. Therefore, it is of substantial interest to develop methods that can
provide highly accurate sequence alignment, and possibly identify regions were
the similarity is too low for building a meaningful model on the basis of the
template structure [4].

In this paper we describe two approaches to reduce the uncertainty of the
alignment. The first approach to dealing with this uncertainty is based on the
use of multiple models [5]. A number of pairwise alignments (using simple dy-
namic programming with variation of parameters), is generated. This is followed
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by energy based discrimination of the generated models [6,7]. The approach was
tested at the CASP4 (Comparative Assessment of Structure Prediction) compe-
tition in 2000 (see http://predictioncenter.llnl.gov/casp4/). As we will show, in
view of its relative simplicity the approach provides surprisingly good result for
the easy targets, i.e., for targets with a good template available, but the dynamic
programming is too rudimentary to obtain any good alignment for difficult tar-
gets. Thus, the free energy ranking algorithm had too choose one among such
inferior models, and the method was unable to compete with approaches based
on more sophisticated sequence alignment algorithms which employed evolution-
ary relationships between all homologues, and accounted for the known structure
of the template.

The second approach involves a consensus alignment algorithm for the pre-
diction of the framework regions that are structurally conserved between two
proteins [8]. The target and template sequences are aligned by the five best
algorithms currently available, and each position is assigned a confidence level
(consensus strength) based on the consensus of the five methods. The regions
reliable for homology modeling are predicted by applying criteria involving sec-
ondary structure and solvent exposure profile of the template, predicted sec-
ondary structure of the target, consensus confidence level, template domain
boundaries and structural continuity of the predicted region with other predicted
regions. The methodology was developed based on a diverse set of 79 pairs of
homologues with an average sequence identity of 18.5%, and was validated using
a different set of 48 target-template pairs. On the average, our method predicts
structures that deviate from the native structures by about 2.5 Å, and the pre-
dictions extend to almost 80% of the regions that are structurally aligned in
the FSSP database [9]. The approach was tested at the as an automatic server,
participating in the CAFASP3 competition of such servers, described on the
webpage http://www.cs.bgu.ac.il/∼dfischer/CAFASP3/.

2 Methods

2.1 Multiple Model Approach to Homology Modeling

The basic idea of the method is to generate a large number of align-
ments, construct a homology model for each, and rank the models accord-
ing to their free energies. The current implementation of the procedure starts
with traditional template selection using BLAST and PSI-BLAST [10]. The
Domain Profile Analysis developed in Temple Smith’s lab (http://bmerc-
www.bu.edu/bioinformatics/profile request.html) has also been consulted. One
or (infrequently) several proteins have been selected as templates for the com-
parative modeling. In the second step of the algorithm, we generate multiple
alignments between target and template sequences by varying the alignment pa-
rameters (gap-opening, gap-extension, and scoring matrix) for producing semi-
global alignments by standard dynamic programming. The blosum62 and gonnet
matrices were used with gap opening penalty values 5, 6, 7, 8, 9, 10, 12, 14, 17,
20, 25, and gap extension penalty values 0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.25, 1.6, 2.0,
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2.5, 3, 4, 5, 7, 10. We produced only one alignment for each set of parameters
using a single trace-back path in the dynamic programming matrix, thus result-
ing in 330 alignments for each template-target pair. Any alignment was deleted
if it was a duplicate, or less than 75% of the target residues were aligned to the
template, generally resulting in 80 to 150 retained alignments.

In the third step, all alignments are used for model construction via the MOD-
ELER program developed by Sali and co-workers [2,11]. The resulting models
were minimized for 200 steps using the Charmm potential [12], and ranked by
using an empirical free energy function [6,7]. The function combines molecular
mechanics with empirical solvation/entropic terms to approximate the free en-
ergy G of the system consisting of the protein and the solvent, the latter averaged
over its own degrees of freedom. The free energy is given by G = Econf + Gsolv.
The conformational energy Econf is calculated by Version 19 of the Charmm
potential, Econf = Eelec + Eint, where the internal (bonded) energy, Eint, is the
sum of bond stretching, angle bending, torsional, and improper terms, Eint =
Ebond + Eangle + Edihedral + Eimproper[12]. The electrostatic energy, Eelec, is
calculated using neutral side chains and the distance-dependent dielectric εg=
4r. Gsolv is the solvation free energy, obtained by the atomic solvation parameter
model of Eisenberg and McLachlan [13].

Notice that the function does not include the van der Waals energy term
[6,7]. This approximation is based on the concept of van der Waals cancellation
which assumes that the solute-solute and solute-solvent interfaces are equally
well packed, and hence the van der Waals contacts lost between solvent and
solute are balanced by new solute-solute contacts formed upon protein folding.
This cancellation is promoted by a procedure called van der Waals normalization,
prior to the free energy calculations. Van der Waals normalization impliesthat
all conformations are minimized for a moderate number of steps, the structure
with the lowest van der Waals energy is selected, and all other structures are
further minimized to attain the same van der Waals energy value. The van der
Waals cancellation implies that we can remove both the solute-solvent and the
solute-solute van der Waals terms from the free energy function.

2.2 Consensus Alignment

In a benchmarking analysis [8], we have tested ten widely used methods and
selected five of them in a hierarchical manner so that we cover a broad range of
alignments. The five methods are as follows:

(1) BLAST-Pairwise: Target sequence is blasted against the template se-
quence to get an alignment.

(2) T99-BLAST: A PSI-BLAST [10] alignment of the target and template
hits is supplied as the ‘seed alignment’ to Target99 script. It is tuned up, an
HMM is built using this alignment, and target and template are aligned to it
[14].

(3) HMMER-BLAST: The PSI-BLAST generated alignment of target and
template hits is used to build a model. Target and template sequences are then
aligned to it [15].
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(4) T99-HSSP: Family alignment around the template (downloaded from the
FSSP database) is used to build the initial model. The combined hits of target
and template sequences are then aligned to this model and “tuned up” using
the target99 script. A model is then constructed from this alignment and target
and template are aligned to it.

(5) HMMER-HSSP: A model is built using the template family alignment.
The combined hits of target and template are aligned to it to get a multiple
sequence alignment. Another model is then constructed from this alignment and
used to get a target-template pairwise alignment.

For our training set targets [8], at least one of the above methods was able to
produce an alignment resulting in a low RMSD model, but it was not possible
to predict which of the methods would perform well for a particular problem.
Therefore we developed a selection procedure for determining whether or not two
aligned residues can be included for accurate homology modeling. This process
also invokes structural considerations, e.g., secondary structure and solvent ex-
posure information, on the template, and to a lesser degree secondary structure
prediction of the target. A flow chart of the overall algorithm is depicted in Fig.
1.

As shown in Fig. 2, the consensus strength (CS) is a measure of the agreement
between the five alignment methods calculated for all target-template residue
pairs. If all three methods T99-BLAST, HMMER-BLAST and BLAST-PW align
target residue Xtar to template residue Xtem then CS = 9. If only two of the
above three methods concur in aligning Xtar to Xtem, then CS = 6 for the
XtarXtem pair. If any three out of the five methods concur then CS = 7, and
concurrence of only any 2 out of 5 means CS = 5. Consensus strengths between 4
and 0 are assigned to the residue pairs aligned by only one method, the methods
respectively being T99-BLAST, HMMER-BLAST, BLAST-PW, T99-HSSP and
HMMER-HSSP. Obviously, the methods will differ in certain regions. Consensus
among certain alignment methods for a certain region may be incompatible with
consensus among other methods for a different region. In such a case, the region
with higher consensus strength receives priority.

Since consensus strength does not eliminate all the regions of potential struc-
tural dissimilarity, the following selection method is applied. If CS is 9 and tem-
plate residue Xtem is buried, XtarXtem pair is selected. If there are no pairs with
a CS of 9, then pairs with a CS of 7 that are buried are selected. This forms
the core of the selection. Subsequently the selected regions are extended towards
the N and C termini as long as neighboring residues have CS of 7, or until a
misaligned GLY residue occurs. Moreover, alignment regions where the template
has long helices and sheets are selected subject to their CS, solvent exposure and
percentage match of the predicted secondary structure of the target (using JNET
of Cuff and Barton [16]) with the actual secondary structure of the correspond-
ing template region. Other structural criteria such as single beta-sheet pairing,
taut regions in template with limited potential for conformational variation are
also used for selection. Regions corresponding to potentially loose termini, and
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Fig. 1. A summary flow chart of the method, as implemented in the Consensus
server
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Fig. 2. Consensus of the output from five alignment methods

uncertain regions with high number of gaps are deselected. Consensus strength
is always considered in all selection and deselection steps.

The output of the algorithm consists of the full selected consensus. The se-
lected regions of target are then predicted by simply following the backbone of
corresponding regions of the template. If the template is multi-domain, target
regions corresponding to each domain are predicted separately. In such cases,
full predictions were submitted as first models and the domains as subsequent
models. The entire method is automatic and available as a server at the webpage
http://structure.bu.edu/.

3 Results and Discussion

3.1 Multiple Model Approach

Out of 43 targets in the fourth Critical Assessment of Techniques for Protein
Structure Prediction (CASP4), we submitted models for 20 targets, eight of
them not in the comparative modeling category. Figure 3 shows the prediction
results in terms of Global Distance Test (GDT). The GDT algorithm identifies
in the prediction the sets of residues deviating from the target by not more than
specified Ca distance cutoff using many different superpositions. Each residue in
a prediction is assigned to the largest set of the residues (not necessary contin-
uous), deviating from the target by no more than a specified distance cutoff on
the x axis of the plot. The figures show submissions by all groups, participating
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Fig. 3. Results of homology modelling at CASP4 in terms of the Global Distance
Test (GDT). The GDT algorithm identifies in the prediction the set of residues
deviating from the target by not more than a specified distance cutoff. The
figures show the percent of such residues vs. the distance cutoff. All predictions
for each target are shown, our prediction is indicated by the dark blue curve.
For Target 114 we also submitted a second model, shown in light blue.

in CASP4, our submission being shown in dark blue. For target 114 there were
two submissions from us, shown in dark and light blue. Results for targets 88,
93 and 119 have not been published, and hence are not shown here.

According to the above Figure 3, the multiple model approach provides good
result for the relatively easy targets, i.e., for the targets were at least one groups
predicted over 80 % of the residues below 5 Å distance cutoff (targets 99, 111,
112, 113, 117, 122, 123, 125, and 128). Indeed, with the exception of targets
117 and 125, for these easy cases our predictions are among the bests, but they
are above average even for targets 117 and 125. Our prediction is also very
good for target 121, a more difficult case. In addition, we had one of the largest
prediction lengths for these targets. However, for most of the really difficult
targets for which no group was able to predict at least 80% of residues below 5
Å distance cutoff (targets 86, 89, 90, 92, 94, 100, 114, 116, and 117) our method
yields average or below average results. The main reason is that for these targets
any available template had low sequence similarity, and the simple alignment by
dynamic programming produced poor results for any of the parameters. Thus,
the free energy ranking algorithm had too choose one among inferior models, and
the method was unable to compete with approaches based on more sophisticated
sequence alignment algorithms, utilizing the evolutionary relationships between
all available homologues, and accounting for the known structure of the template.

3.2 Homology Modeling Using Consensus Alignment

For the validation of the method, 48 target-template pairs were selected from the
FSSP database. The selection was governed by following criteria: (a) each target
belongs to a different family in FSSP; (b) the length of the structural alignment
must be greater than 100 residues; (c) the percent identity, defined as the number
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of identical residues divided by the length of shorter sequence, must be less than
35%. The percent identity is between 2 and 29%, averaging 16.8%. The full list
of targets and templates is available at http://structure.bu.edu/consdoc.html.

Figure 4 compares, in terms of the average RMSD of the aligned residues,
the structural superposition alignment from the DALI database, the homology
models obtained from the five methods used in our analysis, and the consensus
based method. Also shown are the standard deviations for all the models. We find
that, for the training set, the Consensus algorithm not only provides the lowest
RMSD but also has the smallest standard deviation. It should be emphasized
that in these comparison the individual alignment methods have benefited from
an automatic splitting and cropping of domains which do not align with the
target sequence [8], otherwise the average RMSD for, say, T99-BLAST would
be higher than 6 Å. The main result to consider here is that the RMSD has
been brought down to about 2.2 Å (lower than the average DALI RMSD) while
keeping the alignment length to about 75% of the DALI alignment.

Performances in terms of Alignment Length (Validation Set)
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Fig. 4. Comparison of the models generated from five alignment methods and
their selected consensus with respect to DAL1 in terms of RMSD and the number
of aligned residues. Bars indicate one standard deviation from the average.

Figure 5 compares the CASP5 predictions we have obtained using the auto-
matic consensus server (server #98) to the best result for each target, as well
as to the output of server #45, that was deemed to produce the best overall
results in the homology modeling competition. Since we restrict consideration to
the highly reliable regions of the proteins, the direct comparison is of somewhat
limited value, because the reliable regions, selected by the consensus method,
constitute about 60 % of the total length, thus substantially smaller than for
the competing methods. However, the average RMSD on the reliable regions is
2.65 Å, much lower than for the other methods. Thus, homology modeling based
on consensus alignment is a reasonable first step, provided the alignment can be
extended to the less reliable regions of the target (see below).
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Fig. 5. CAFASP3 results of the consensus server, http://structure.bu.edu. NT
– total number of nucleotides, NP – number of aligned residues, CA – CαRMSD
from the x-ray structure of the target.
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4 Conclusions

The multiple model approach, using a simple dynamic programming alignment
with variation of the parameters, yields very good models for the relatively easy
homology modeling targets, but its performance deteriorates if good template is
not available. The consensus method keeps the RMSD values low (2.65 Å), but
models are constructed only for 60 % of all residues. We are in the process of
developing a homology modeling procedure that will integrate the two methods,
and will perform the following steps:

1. The consensus alignment method is used to identify and align regions on
which the alignment is highly reliable.

2. Multiple alignments are generated with the reliable regions constrained.
This would result in far fewer alignments than without constraints, and will also
reduce the false positive problem.

3. The models are ranked using a simple free energy evaluation expression,
and the model with the lowest free energy is used as the prediction. Alternatively,
the generated models are clustered on the basis of the pairwise RMSD, and the
largest clusters are retained as predictions.
Acknowledgement This research has been supported by grants DBI-0213832
from the National Science Foundation, and P42 ES07381 from the National
Institute of Environmental Health.
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