
A.L.C. Bazzan and S. Labidi (Eds.): SBIA 2004, LNAI 3171, pp. 276–285, 2004. 
© Springer-Verlag Berlin Heidelberg 2004 

An Efficient Clustering Method 
for High-Dimensional Data Mining 

Jae-Woo Chang and Yong-Ki Kim 

Dept. of Computer Engineering 
Research Center for Advanced LBS Technology 

Chonbuk National University, Chonju, Chonbuk 561-756, South Korea 
{jwchang,ykkim}@dblab.chonbuk.ac.kr 

Abstract. Most clustering methods for data mining applications do not work ef-
ficiently when dealing with large, high-dimensional data. This is caused by so-
called ‘curse of dimensionality’ and the limitation of available memory. In this 
paper, we propose an efficient clustering method for handling of large amounts 
of high-dimensional data. Our clustering method provides both an efficient cell 
creation and a cell insertion algorithm. To achieve good retrieval performance 
on clusters, we also propose a filtering-based index structure using an approxi-
mation technique. We compare the performance of our clustering method with 
the CLIQUE method. The experimental results show that our clustering method 
achieves better performance on cluster construction time and retrieval time. 

1   Introduction 

Data mining is concerned with extraction of information of interest from large 
amounts of data, i.e. rules, regularities, patterns, constraints. Data mining is a data 
analysis technique that has been developed from other research areas such as Ma-
chine Learning, Statistics, and Artificial Intelligent. However, data mining has three 
differences from the conventional analysis techniques. First, while the existing tech-
niques are mostly applied to a static dataset, data mining is applied to a dynamic data-
set with continuous insertions and deletions. Next, the existing techniques manage 
only errorless data, but data mining can manage data containing some errors. Finally, 
unlike the conventional techniques, data mining generally deals with large amounts of 
data. 

The typical research topics in data mining are classification, clustering, association 
rule, and trend analysis, etc. Among them, one of the most important topics is cluster-
ing. The conventional clustering methods have a critical drawback that they are not 
suitable for handling large data sets containing millions of data units because the data 
set is restricted to be resident in a main memory. They do not work well for clustering 
high-dimensional data because their retrieval performance is generally degraded as 
the number of dimensions increases. In this paper, we propose an efficient clustering 
method for dealing with a large amount of high-dimensional data. Our clustering 
method provides an efficient cell creation algorithm, which makes cells by splitting 
each dimension into a set of partitions using a split index. It also provides a cell inser-
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tion algorithm to construct clusters of cells with more density than a given threshold 
as well as to insert the clusters into an index structure. By using an approximation 
technique, we also propose a new filtering-based index structure to achieve good 
retrieval performance on clusters. 

The rest of this paper is organized as follows. The next section discusses related 
work on clustering methods. In Section 3, we propose an efficient clustering method 
to makes cells and insert them into our index structure. In Section 4, we analyze the 
performances of our clustering method. Finally, we draw our conclusion in Section 5. 

2   Related Work 

Clustering is the process of grouping data into classes or clusters, in such a way that 
objects within a cluster have high similarity to one another, but are very dissimilar to 
objects in other clusters [1]. In data mining applications, there have been several 
existing clustering methods, such as CLARA(Clustering LARge Applications) [2], 
CLARANS(Clustering Large Applications based on RANdomized Search) [3], 
BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies) [4], 
DBSCAN(Density Based Spatial Clustering of Applications with Noise) [5], 
STING(STatistical INformation Grid) [6], and CLIQUE(CLustering In QUEst) [7]. 
In this section, we discuss a couple of the existing clustering methods appropriate for 
high dimensional data. We also examine their potential for clustering of large 
amounts of high dimensional data. 

The first method is STING(STatistical INformation Grid)[6]. It is a method which 
relies on a hierarchical division of the data space into rectangular cells. Each cell is 
recursively partitioned into smaller cells. STING can be used to answer efficiently 
different kinds of region-oriented queries. The algorithm for answering such queries 
first determines all bottom-level cells relevant to the query, and constructs regions of 
those cells using statistical information. Then, the algorithm goes down the hierarchy 
by one level. However, when the number of bottom-level cells is very large, both the 
quality of cell approximations of clusters and the runtime for finding them deterio-
rate. 

The second method is CLIQUE(CLustering In QUEst)[7]. It was proposed for 
high-dimensional data as a density-based clustering method. CLIQUE automatically 
finds subspaces(grids) with high-density clusters. CLIQUE produces identical results 
irrespective of the order in which input records are presented, and it does not presume 
any canonical distribution of input data. Input parameters are the size of the grid and 
a global density threshold for clusters. CLIQUE scales linearly with the number of 
input records, and has good scalability as the number of dimensions in the data. 

3   An Efficient Clustering Method 

Since the conventional clustering methods assume that a data set is resident in main 
memory, they are not efficient in handling large amounts of data. As the dimensional-
ity of data is increased, the number of cells increases exponentially, thus causing the 
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dramatic performance degradation. To remedy that effect, we propose an efficient 
clustering method for handling large amounts of high-dimensional data. Our cluster-
ing method uses a cell creation algorithm which makes cells by splitting each dimen-
sion into a set of partitions using a split index. It also uses a cell insertion algorithm, 
which constructs clusters of cells with more density than a given threshold, and stores 
the constructed cluster into the index structure. For fast retrieval, we propose a filter-
ing-based index structure by applying an approximation technique to our clustering 
method. The figure 1 shows the overall architecture of our clustering method. 

 

Fig. 1. Overall architecture of our clustering method. 

3.1   Cell Creation Algorithm 

Our cell creation algorithm makes cells by splitting each dimension into a group of 
sections using a split index. Density based split index is used for creating split sec-
tions and is efficient for splitting multi-group data. Our cell creation algorithm first 
finds the optimal split section by repeatedly examining a value between the maximum 
and the minimum in each dimension. That is, it finds the optimal value while the 
difference between the maximum and the minimum is greater than one and the value 
of a split index after splitting is greater than the previous value. The split index value 
is calculated by Eq. (1) before splitting and Eq. (2) after splitting. 
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Using Eq. (1), we can determine the split index value for a data set S in three steps: 
i) divide S into C classes, ii) calculate the square value of the relative density of each 
class, and iii) subtract from one all the square values of the densities of C classes. 
Using Eq. (2), we compute a split index value for S after S is divided into S1 and S2. 

If the split index value is larger than the previous value before splitting, we actually 
divide S into S1 and S2. Otherwise, we stop splitting. Secondly, our cell creation algo-

rithm creates cells being made by the optimal split sections for n-dimensional data. 
As a result, our cell creation algorithm creates fewer cells than the existing clustering 
methods using equivalent intervals. Figure 2 shows our cell creation algorithm. Here, 
the subprogram called ‘Partition’ is one that partitions input data sets according to 
attributes. The subprogram is omitted because it is very easy to construct it by slightly 
modifying the procedure ‘Make_Cell’. 



An Efficient Clustering Method for High-Dimensional Data Mining      279 

In Figure 3, we show an example of our cell creation algorithm. We show the 
process of splitting twenty records with two classes in two-dimensional data. The 
split index value for S before splitting is calculated as 1- [(10/20)2 + (10/20)2] = 0.5. 
A bold line represents a split index of twenty records in the X-axis. First, we calculate 
all the split index values for ten intervals. Secondly, we choose an interval with the 
maximum value among them. Finally, we regard the upper limit of the interval as a 
split axis. For example, for an interval between 0.3 and 0.4, the split index value is 
calculated as (4/20)* [1- (3/4)2 - (1/4)2] + (16/20)*[1- (7/16)2 - (9/16)2] = 0.475. For 
an interval between 0.4 and 0.5, the split index value is calculated as (9/20)*[1-
 (6/11)2 - (5/11)2 ] + (11/20)*[1- (6/11)2 - (5/11)2] = 0.501.  

Procedure Make_Cell(attributes, input data set S) 
Begin 
  For each attribute in S do 
    For each split_point in attribute do 
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 then return 

      Else  
        Split S into S1 and S2 by max split_point 
        Partition(attribute, S1) 
        Partition(attribute, S2) 
      Endif 
    End of for 
  End of for 
End. 

Fig. 2. Cell creation algorithm. 
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Fig. 3. Example of cell creation algorithm. 

We determine the upper limit of the interval (=0.5) as the split axis, because the 
split index value after splitting is greater than the previous value. Thus, the X axis can 
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be divided into two sections; the first one is from 0 and 0.5 and the second one is 
from 0.5 to 1.0. If a data set has n dimensions and the number of the initial split sec-
tions in each dimension is m, the conventional cell creation algorithms make mn cells, 
but our cell creation algorithm makes only K1*K2*...*Kn cells (1 ≤K1, K2, .. ,Kn≤m). 

3.2   Cell Insertion Algorithm 

Using our cell creation algorithm, we obtain the cells created from the input data set. 
Figure 4 shows an insertion algorithm used to store the created cells. First, we con-
struct clusters of cells with more density than a given cell threshold and store them 
into a cluster information file. In addition, we store all the sections with more density 
than a given section threshold, into an approximation information file. 

Procedure Insert_Cell(cells) 
Begin 
  For each cells which is made form make cell do 
    Compare the cell-threshold with cell density 
    If cell_density >cell-threshold then 
      Insert cell-information into cluster_info_file 
    Compare section-threshold with section_density 
    If secton_density > section-threshold then 
      Approximation_info_file[volume] =1 
    Else Approximation_info_file[volume] =0 
  End of for 
End. 

Fig. 4. Cell insertion algorithm. 
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The insertion algorithm to store data is as follows. First, we calculate the frequency 
of a section in all dimensions whose frequency is greater than a given section thresh-
old. Secondly, in an approximation information file, we set to ’1’ the corresponding 
bits to sections whose frequencies are greater than the threshold. We set other bits to 
’0’ for the remainder sections. Thirdly, we calculate the frequency of data in a cell. 
Finally, we store cell id and cell frequency into the cluster information file for cells 
whose frequency is greater than a given cell threshold. The cell threshold and the 
section threshold are shown in Eq. (3). 

3.3   Filtering-Based Index Scheme 

In order to reduce the number of I/O accesses to a cluster information, it is possible to 
construct a new filtering-based index scheme using the approximation information 
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file. Figure 5 shows a two-level filter-based index scheme containing both the ap-
proximation information file and cluster information file. 

Let assume that K clusters are created by our cell-based clustering method and the 
numbers of split sections in X axis and Y axis are m and n, respectively. The follow-
ing equation, Eq.(4), shows the retrieval times (C) when the approximation informa-
tion file is used and without the use of it. We assume that α is an average filtering 
ratio in the approximation information file. D is the number of dimensions of input 
data. P is the number of records per page. R is the average number of records in each 
dimension. When the approximation information file is used, the retrieval time de-
creases as α decreases. For high-dimension data, our two-level index scheme using 
the approximation information file is an efficient method because the K value in-
creases exponentially in proportion to dimension D. 

i) Retrieval time without the use of an approximation information file  

  2PKC =   (Disk I/O accesses) 

ii) Retrieval time with the use of an approximation information file 
( )  )1(** αα −+= PRDC   accesses) I/O(Disk   2PK  (4) 

When a query is entered, we first obtain sections to be examined in all the dimen-
sions. If all the bits corresponding to the sections in the approximation information 
file are set ‘1’, we calculate a cell number and obtain its cell frequency by accessing 
the cluster information file. Otherwise, we can improve retrieval performance without 
accessing the approximation information file. Increase in dimensionality may cause 
high probability that a record of the approximation information file has zero in at 
least one dimension. 

Figure 5 shows a procedure used to answer a user query in our two-level index 
structure when a cell threshold and a section threshold are 1, respectively. For a query 
Q1, we determine 0.6 in X axis as the third section and 0.8 in Y axis as the fourth 
section. In the approximation-information file, the value for the third section in X axis 
is '1' and the value for the 4-th section in Y axis is '0'. If there are one or more sec-
tions with '0' in the approximation-information file, a query is discarded without 
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Fig. 5. Two-level filtering-based index scheme. 
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searching the corresponding cluster information file. So, Q1 is discarded in the first 
phase. For a query Q2, the value of 0.55 in X axis and the value of 0.7 in Y axis be-
long to the third section, respectively. In the approximation information file, the third 
bit for X axis and the third bit for Y axis have ’1’, so we can calculate a cell number 
and obtain its cell frequency by accessing the corresponding entry of the cluster in-
formation file. As a result, in case of Q2, we obtain the cell number of 11 and its 
frequency of 3 in the cluster information file. 

4   Performance Analysis 

For our performance analysis, we implemented our clustering method on Linux 
server with 650 MHz dual processors and 512 MB of main memory. We make use of 
one million 16-dimensional data created by Synthetic Data Generation Code for Clas-
sification in IBM Quest Data Mining Project [8]. A record in our experiment is com-
posed of both numeric type attributes, like salary, commission, age, hvalue, hyears, 
loan, tax, interest, cyear, balance, and categorical type attributes, like level, zipcode, 
area, children, ctype, job. The factors of our performance analysis are cluster con-
struction time, precision, and retrieval time. We compare our clustering method 
(CBCM) with the CLIQUE method, which is one of the most efficient conventional 
clustering method for handling high-dimensional data. For our experiment, we make 
use of three data sets, one with random distribution, one with standard normal distri-
bution (variation=1), and one with normal distribution of variation 0.5. We also use 5 
and 10 for the interval of numeric attributes. Table 1 shows methods used for per-
formance comparison in our experiment. 

Table 1. Methods used for performance comparison (MI:Maximal Interval). 

Methods Description 
CBCM-5R 
CLIQUE-5R 

CBCM for data set with random distribution(MI = 5) 
CLIQUE for data set with random distribution (MI=5) 

CBCM-10R 
CLIQUE-10R 

CBCM for data set with random distribution  (MI=10) 
CLIQUE for data set with random distribution (MI=10) 

CBCM-5SND 
CLIQUE-5SND 

CBCM with standard normal distribution (MI=5)  
CLIQUE with standard normal distribution (MI=5) 

CBCM-10SND 
CLIQUE-10SND 

CBCM with standard normal distribution (MI=10) 
CLIQUE with standard normal distribution (MI=10) 

CBCM-5ND(0.5) 
CLIQUE-5ND(0.5) 

CBCM with normal distribution of variation 0.5 (MI=5)  
CLIQUE with normal dist. of variation 0.5 (MI=5) 

CBCM-10ND(0.5) 
CLIQUE-10ND(0.5) 

CBCM with normal distribution of variation 0.5 (MI=10) 
CLIQUE with normal dist. of variation 0.5 (MI=10) 

Figure 6 shows the cluster construction time when the interval of numeric attrib-
utes equals 10. It is shown that the cluster construction time increases linearly in 
proportion to the amount of data. This result is applicable to large amounts of data. 
The experimental result shows that the CLIQUE requires about 700 seconds for one 
million items of data, while our CBCM needs only 100 seconds. Because our method 
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creates smaller number of cells than the CLIQUE, our CBCM method leads to 85% 
decrease in cluster construction time. The experimental result with the maximal inter-
val (MI)=5 is similar to that with MI=10. 

 
Fig. 6. Cluster Construction Time. 

Figure 7 shows average retrieval time for a given user query after clusters were 
constructed. When the interval of numeric attributes equals 10, the CLIQUE needs 
about 17-32 seconds, while our CBCM needs about 2 seconds. When the interval 
equals 5, the CLIQUE and our CBCM need about 8-13 seconds and 1 second, respec-
tively. It is shown that our CBCM is much better on retrieval performance than the 
CLIQUE. This is because our method creates a small number of cells by using our 
cell creation algorithm, and achieves good filtering effect by using the approximation 
information file. It is also shown that the CLIQUE and our CMCM require long re-
trieval time when using a data set with random distribution , compared with normal 
distribution of variation 0.5. This is because as the variation of a data set decreases, 
the number of clusters decreases, leading to better retrieval performance. 

 

 
Fig. 7. Retrieval Time. 

Figure 8 shows the precision of the CLIQUE and that of our CBCM, assuming that 
the section threshold is assumed to be 0. The result shows that the CLIQUE achieves 
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about 95% precision when the interval equals 10, and it achieves about 92% precision 
when the interval equals 5. Meanwhile, our CBCM achieve over 90% precision when 
the interval of numeric attributes equals 10 while it achieves about 80% precision 
when the interval equals 5. This is because the precision decreases as the number of 
clusters constructed increases. 

Because both retrieval time and precision have a trade-off, we estimate a measure 
used to combine retrieval time and precision. To do this, we define a system effi-
ciency measure in Eq. (5). Here EMD is the system efficiency of methods (MD) shown 

in Table 1 and Wp and Wt are the weight of precision and that of retrieval time, re-

spectively. PMD and TMD are the precision and the retrieval time of the methods 

(MD). PMAX and TMIN are the maximum precision and the minimum retrieval time, 

respectively, for all methods. 
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Fig. 8. Precision. 
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Figure 9 depicts the performance results of methods in terms of their system effi-
ciency when the weight of precision are three times greater than that of retrieval time 
(Wp=0.75, Wt =0.25). It is shown from our performance results that our CBCM out-

performs the CLIQUE with respect to the system efficiency, regardless of the data 
distribution of the data sets. Especially, the performance of our CBCM with MI=10 is 
the best. 

5   Conclusion 

The conventional clustering methods are not efficient for large, high-dimensional 
data. In order to overcome the difficulty, we proposed an efficient clustering method 
with two features. The first one allows us to create the small number of cells for 
large, high-dimensional data. To do this, we calculate a section of each dimension 
through split index and create cells according to the overlapped area of each fixed 
section. The second one allows us to apply an approximation technique to our cluster-
ing method for fast clustering. For this, we use a two-level index structure which 
consists of both an approximation information file and a cluster information file. For 
performance analysis, we compare our clustering method with the CLIQUE method. 
The performance analysis results show that our clustering method shows slightly 
lower precision, but it achieves good performance on retrieval time as well as cluster 
construction time. Finally, our clustering method shows a good performance on sys-
tem efficiency which is a measure to combine both precision and retrieval time. 
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