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Preface 

 
This book, written as a treatise on mathematical finance, has two parts:  

deterministic and stochastic models. 

The first part of the book, managed by Ernesto Volpe di Prignano, aims to give a  
complete presentation of the concepts and models of classical and modern 
mathematical finance in a mainly deterministic environment. Theoretical aspects and 
economic, bank  and firm applications are developed.  

The most important models are presented in detail after the formalization of an 
axiomatic theory of preferences. This performs the definition of “interest” and the 
financial regimes, which are the basis of financial evaluation and control the models. 
They are applied by means of clarifying examples with the solutions often obtained 
by Excel spreadsheet.  

Chapter 1 shows how the fundamental definitions of the classical financial 
theory come from the microeconomic theory of subjective preferences, which 
afterwards become objective on the basis of the market agreements. In addition, the 
concepts of interest such as the price of other people’s money availability, of 
financial supply and the indifference curve are introduced.    

Chapter 2 develops a strict mathematical formalization on the financial laws of 
interest and discount, which come from the postulates defined in Chapter 1. The 
main properties, i.e. decomposability and uniformity in time, are shown.  

Chapter 3 shows the most often used financial law in practice. The most 
important parametric elements, such as interest rates, intensities and their relations, 
are defined. Particular attention is given to the compound interest and discount laws 
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in different ways. They find wide application in all the pluriennial financial 
operations.   

Chapter 4 gives the concept of discrete time financial operation as a set of 
financial supplies, of operation value, of fair operation, of retrospective and 
prospective reserve at a given time, of the usufruct and bare ownership. In addition, 
a detailed classification of the financial projects based on their features is given. The 
decision and choice methods among projects are deeply developed. In the appendix 
to this chapter, a short summary of simple numerical methods, particularly useful to 
find the project internal rate, is reported.     

Chapter 5 discusses all versions of the annuity operations in detail, as a particular 
case of financial movement with the same sign. The annuity evaluations are given 
using the compound or linear regime.   

Chapter 6 is devoted to management mathematical procedures of financial 
operations, such as loan amortizations in different usual cases, the funding, the 
returns and the redemption of the bonds. Many Excel examples are developed. the 
final section is devoted to bond evaluations depending on a given rate or on the 
other hand to the calculus of return rates on bond  investments.     

In Chapters 7 and 8, the financial theory is reconsidered assuming variable 
interest rates following a given term structure. Thus, Chapter 7 defines spot and 
forward structures and contracts, the implicit relations among the parameters and the 
transforming formulae as well. Such developments are carried out with parameters 
referred to real and integer times following the market custom. Chapter 8 discusses 
the methods developed in Chapters 5 and 6 using term structures. 

Chapter 9 is devoted to definition and calculus of the main duration indexes with 
examples. In particular, the importance of the so-called “duration” is shown for the 
approximate calculus of the relative variation of the value depending on the rate. 
However, the most relevant “duration” application is given in the classical 
immunization theory, which is developed in detail, calculating the optimal time of 
realization and showing in great detail the Fisher-Weil and Redington theorems. 

The second part of the book, managed by Jacques Janssen and Raimondo Manca, 
aims to give a modern and self-contained presentation of the main models used in 
so-called stochastic finance starting with the seminal development of Black, Scholes 
and Merton at the beginning of the 1970s. Thus, it provides the necessary follow up 
of our first part only dedicated to the deterministic financial models. 

However, to help in assuring the self-containment of the book, the first four 
chapters of the second part provide a summary of the basic tools on probability and 
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stochastic processes, semi-Markov theory and Itô’s calculus that the reader will need 
in order to understand our presentation. 

Chapter 10 briefly presents the basic tools of probability and stochastic processes 
useful for finance using the concept of trajectory or sample path often representing 
the time evolution of asset values in stock exchanges. 

Chapters 11 and 12 summarize the main aspects of Markov and semi-Markov 
processes useful for the following chapters and Chapter 13 gives a strong 
introduction to stochastic or Itô’s calculus, being fundamental for building stochastic 
models in finance and their understanding. 

With Chapter 14, we really enter into the field of stochastic finance with the full 
development  of classical models for option theory including a presentation of the 
Black and Scholes results and also more recent models for exotic options. 

Chapter 15 extends some of these results in a semi-Markov modeling as 
developed in Janssen and Manca (2007). 

With Chapter 16, we present another type of problem in finance, related to 
interest rate stochastic models and their application to bond pricing. Classical 
models such as the Ornstein-Uhlenbeck-Vasicek, Cox-Ingersoll-Ross and Heath-
Jarrow-Morton models are fully developed . 

Chapter 17 presents a short but complete presentation of Markowitz theory in 
portfolio management and some other useful models. 

Chapter 18 is one of the most important in relation to Basel II and Solvency II 
rules as it gives a full presentation of the value at risk, called VaR, methodology and 
its extensions with practical illustrations. 

Chapter 19 concerns one of the most critical risks encountered by banks: credit 
or default risk problems. Classical models by Merton, Longstaff and Schwartz but 
also more recent ones such as homogenous and non-homogenous semi-Markov 
models are presented and used for building ratings and following the time evolution. 

Finally, Chapter 20 is entirely devoted to the presentation of Markov and semi-
Markov reward processes and their application in an important subject in finance, 
called stochastic annuity. 

As this book is written as a treatise in mathematical finance, it is clear that it can 
be read in sections in a variety of sequences, depending on the main interest of the 
reader. 
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This book addresses a very large public as it includes undergraduate and 
graduate students in mathematical finance, in economics and business studies, 
actuaries, financial intermediaries, engineers but also researchers in universities and 
RD departments of banking, insurance and industry.  

Readers who have mastered the material in this book will be able to manage the 
most important stochastic financial tools particularly useful in the application of the 
rules of governance in the spirit of Basel II for banks and financial intermediaries 
and Solvency II for insurance companies. 

Many parts of this book have been taught by the three authors in several 
universities: Université Libre de Bruxelles, Vrije Universiteit Brussel, University of 
West Brittany (EURIA) (Brest), Télécom-Bretagne (Brest), Paris 1 (La Sorbonne) 
and Paris VI (ISUP) Universities, ENST-Bretagne, University of Strasbourg, 
Universities of Rome (La Sapienza), Napoli, Florence and Pescara. 

Our common experience in the field of solving financial problems has been our 
main motivation in writing this treatise taking into account the remarks of 
colleagues, practitioners and students in our various lectures.  

We hope that this work will be useful for all our potential readers to improve 
their method of dealing with financial problems, which always are fascinating. 
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Deterministic Models 
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Chapter 1 

Introductory Elements  
to Financial Mathematics 

1.1. The object of traditional financial mathematics 

The object of traditional financial mathematics is the formalization of the 
exchange between monetary amounts that are payable at different times and of the 
calculations related to the evaluation of the obligations of financial operations 
regarding a set of monetary movements. 

The reasons for such movements vary and are connected to: personal or 
corporate reasons, patrimonial reasons (i.e. changes of assets or liabilities) or 
economic reasons (i.e. costs or revenues). These reasons can be related to initiatives 
regarding any kind of goods or services, but this branch of applied mathematics 
considers only the monetary counterpart for cash or assimilated values1.  

The evaluations are founded on equivalences between different amounts, paid at 
different times in certain or uncertain conditions. In the first part of this book we 
will cover financial mathematics in a deterministic context, assuming that the 
monetary income and outcome movements (to which we will refer as “payment” 
with no distinction) will happen and in the prefixed amount. We will not consider in 

                              
1 The reader familiar with book-keeping concepts and related rules knows that each monetary 
movement has a real counterpart of opposite movement: a payment at time x (negative 
financial amount) finds the counterpart in the opening of a credit or in the extinction of a debt. 
In the same way, a cashing (positive financial amount) corresponds to a negative patrimonial 
variation or an income for a received service. The position considered here, in financial 
mathematics, looks to the undertaken relations and the economic reasons for financial 
payments. 
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this context decision theory in uncertain conditions, which contains actuarial 
mathematics and more generally the theory of random financial operations2. 

We suppose that from now, unless otherwise specified, the deterministic 
hypotheses are valid, assuming then – in harmony with the rules of commonly 
accepted economic behavior – that: 

a) the ownership of a capital (a monetary) amount is advantageous, and everyone 
will prefer to have it instead of not having it, whatever the amount is; 

b) the temporary availability of someone else’s capital or of your own capital is a 
favorable service and has a cost; it is then fair that whoever has this availability 
(useful for purchase of capital or consumer goods, for reserve funds, etc.) pays a 
price, proportional to the amount of capital and to the time element (the starting and 
closing dates of use, or only its time length). 

The amount for the aforementioned price is called interest. The parameters used 
for its calculation are calculated using the rules of economic theory. 

1.2. Financial supplies. Preference and indifference relations 

1.2.1. The subjective aspect of preferences 

Let us call financial supply a dated amount, that is, a prefixed amount to place at 
a given payment deadline. A supply can be formally represented as an ordinate 
couple (X,S) where S = monetary amount (transferred or accounted from one subject 
to another) and X = time of payment. 

Referring to one of the contracting parties, S has an algebraic sign which refers 
to the cash flow; it is positive if it is an income and negative if it is an outcome, and 
the unit measure depends on the chosen currency. Furthermore, the time (or instant) 
can be represented as abscissas on an oriented temporal axis so as to have 
chronological order. The time origin is an instant fixed in a completely discretionary 

                              
2 In real situations, which are considered as deterministic, the stochastic component is present 
as a pathologic element. This component can be taken into account throughout the increase of 
some earning parameter or other artifices rather than introducing probabilistic elements. 
These elements have to be considered explicitly when uncertainty is a fundamental aspect of 
the problem (for example, in the theory of stochastic decision making and in actuarial 
mathematics). We stress that in the recent development of this subject, the aforementioned 
distinction, as well as the distinction between “actuarial” and “financial” mathematics, is 
becoming less important, given the increasing consideration of the stochastic aspect of 
financial problems. 
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way and the measure unit is usually a year (but another time measure can be used). 
Therefore, even the times X, Y, etc., have an algebraic sign, which is negative or 
positive according to their position with respect to the time origin. It follows that 
“X<Y” means “time X before time Y”. 

From a geometric viewpoint, we introduce in the plane (2) the Cartesian 
orthogonal reference system OXS (with abscissas X and ordinate S). (2) is then 
made of the points P  [X,S] that represent the supply (X,S), that is the amount S 
dated in X. 

As a consequence of the postulates a) and b), the following operative criteria can 
be derived: 

c) given two financial supplies (X,S1) and (X,S2) at the same maturity date X, 
the one with the higher (algebraically speaking) amount is preferred; 

d) given two financial supplies (X,S) and (Y,S) with the same amount S and 
valued at instant Z before both X and Y, if S>0 (that is, from the cashing viewpoint) 
the supply for which the future maturity is closer to Z is preferred; if S<0 (that is, 
from the paying viewpoint) the supply with future maturity farther from Z is 
preferred. More generally Z3, with two supplies having the same amount, the 
person who cashes (who pays) prefers the supply with prior (with later) time of 
payment.  

Formulations c) and d) express criteria of absolute preference in the financial 
choices and clarify the meaning of interest. In fact, referring to a loan, where the 
lender gives to the borrower the availability of part of his capital and its possible use 
for the duration of the loan, the lender would perform a disadvantageous operation 
(according to postulate a) and b) and criteria c) if, when the borrower gives back the 
borrowed capital at the fixed maturity date, he would not add a generally positive 
amount to the lender, which we called interest, as a payment for the financial 
service. 

The decision maker’s behavior is then based on preference or indifference 
criteria, which is subjective, in the sense that for them there is indifference between 
two supplies if neither is preferred. 

To provide a better understanding of these points, we can observe that: 

– the decision maker expresses a judgment of strong preference, indicated with 
, of the supply (X1,S1) compared to (X2,S2) if he considers the first one more 

advantageous than the second; we then have (X1,S1) (X2,S2); 
                              
3 It is known that the symbol  has the meaning “for all”. 
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– the decision maker expresses a judgment of weak preference, indicated with 
, of the supply (X1,S1) compared to (X2,S2), if he does not consider the second one 

more advantageous than the first; we then have (X1,S1) (X2,S2)4. 

The amplitude of the set of supplies comparable with a given supply for a 
preference judgment depends on the criteria on which the judgment is based. 

Criteria c) and d) make it possible to establish a preference or no preference of 
(X0,S0), but only with respect to a subset of all possible supplies, as we show below. 

From a geometric point of view, let us represent the given supply (X0,S0) on the 
plane (2), with reference system OXS, by the point P0 [X0,S0]. Then, considering 
the four quadrants adjacent to P0, based only on criteria c) and d), it turns out that: 

1) Comparing S0>0 to supplies with a positive amount, identified by the points Pi 
(i=1,…,4) (see Figure 1.1), being incomes, it is convenient to anticipate their 
collection. Therefore, all points P2 [X2,S2] in the 2nd quadrant (NW) are preferred 
to P0 because they have income S2 greater than S0 and are available at time X2 
previous to time X0; whereas P0 is preferred to all points P4 [X4,S4] in the 4th 
quadrant (SE) because they have income S4 smaller than S0 and are available at time 
X4 later than X0; it is not possible to conclude anything about the preference between 
P0 and points P1 [X1,S1] in the 1st quadrant (NE) or points P3 [X3,S3] in the 3rd 
quadrant (SW). 

 

Figure 1.1. Preferences with positive amounts 

                              
4 The judgment of weak preference is equivalent to the merging of strong preference of 
(X1,S1) with respect to (X2,S2) and of (X2,S2) with respect to (X1,S1). In other words: 

– weak preference = strong preference or indifference; 
– indifference = no strong preference of one supply with respect to another. 
The economic logic behind the postulates a), b), from which the criteria c), d) follow, 

implies that the amounts for indifferent supply have the same sign (or are both zero). 
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2) Comparing S0<0 to supplies with a negative amount, identified by the points 
Pi (i=1,…,4) (see Figure 1.2), being outcomes, it is convenient to postpone their 
time of payment. Therefore all points P1 [X1,S1] in the 1st quadrant (NE) are 
preferred to P0 because they have outcome S smaller than S0 and are payable at time 
X later than X0; whereas P0 is preferred to all points P3 [X3,S3] in the 3rd quadrant 
(SW) because they have outcome S3 greater than S0 and are payable at time X3, 
which is later than X0. Nothing can be concluded on the preference between P0 and 
all points P2 [X2,S2] of the 2nd quadrant (NW) or all points P4 [X4,S4] of the 4th 
quadrant (SE).  

Briefly, on the non-shaded area in Figures 1.1 and 1.2 it is possible to establish 
whether or not there is a strong preference with respect to P0, while on the shaded 
area this is not possible.  

To summarize, indicating the generic supply (X,S) also with point P [X,S] in 
the plane OXS, we observe that an operator, who follows only criteria c) and d) for 
his valuation and comparison of financial supplies, can select some supplies P’ with 
dominance on P0 (we have dominance of P' on P0 when the operator prefers P’ to 
P0) and other supplies P" dominated by P0 (when he prefers P0 to P"), but the 
comparability with P0 is incomplete because there are infinite supplies P'" not 
comparable with P0 based on criteria c) and d). To make the comparability of P0 
with the set of all financial supplies complete, corresponding to all points in the 
plane referred to OXS, it is necessary to add to criteria c) and d) – which follow from 
general behavior on the ownership of wealth and the earning of interest – rules 
which make use of subjective parameters. The search and application of such rules – 
to fix them external factors must be taken into account, summarized in the “market”, 
making it possible to decide for each supply if it is dominant on P0, indifferent on P0 
or dominated by P0 – is the aim of the following discussion.  

 

Figure 1.2. Preferences with negative amounts 
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To achieve this aim it is convenient to proceed in two phases: 

1) the first phase is to select, in the zone of no dominance (shaded in Figures 1.1 
and 1.2), the supplies P* [X*,S*] with different times of payment from that of P0 
and in indifference relation with P0; 

2) the second phase, according to the transitivity of preferences, is to select the 
advantageous and disadvantageous preferences with respect to P0, with any 
maturity. 

In the first phase, we can suppose an opinion poll on the financial operator to 
estimate the amount B payable in Y that the same operator evaluates in indifference 
relation, indicated through the symbol , with the amount A payable in X. For such 
an operator we will use: 

(X,A)  (Y,B) (1.1) 

Given the supply (X,A), on varying Y the curve obtained by the points that 
indicate the supplies (Y,B) indifferent to (X,A), or satisfying (1.1), is called the 
indifference curve characterized by point [X,A]. 

From an operative viewpoint, if two points P' [X,A] and P" [Y,B] are located 
on the same indifference curve, the corresponding supplies (X,A) and (Y,B) are  
exchangeable without adjustment by the contract parties.  

If (1.1) holds, according to criteria c) and d), the amounts A and B have the same 
sign and |B|-|A| has the same sign of Y-X. The fixation of the indifferent amounts 
can proceed as follows, as a consequence of the previous geometric results (see 
Figures 1.1 and 1.2). 

Let us denote by P0  [X0,S0] the point representing the supply for which the 
indifference is searched. Then: 

– if S0>0 (see Figure 1.3), with X=X0 , Y=X1>X0, the rightward movement from 
P0 to A1  [X1,S0] is disadvantageous because of the income delay; to remove such 
disadvantage the amount of the supply must be increased. The survey, using 
continuous increasing variations, fixes the amount S1>S0 which gives the 
compensation, where P0 and P1 [X1,S1], obtained from A1 moving upwards, and 
represents indifferent supply (or, in brief, P1 and P0 are indifferent points). Instead, 
if Y=X3<X0, the leftwards movement from P0 to A3 [X3,S0] is advantageous for the 
income anticipation; therefore, in order to have indifference, there needs to be a 
decrease in the income from S0 to S3, obtained through a survey with downward 
movement of the indifference point P3  [X3,S3] with S3<S0; 
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Figure 1.3. Indifference curve assessment – positive amounts 

 

Figure 1.4. Indifference curve assessment – negative amounts 

– if S0<0 (see Figure 1.4), since the delay of outcome is advantageous and its 
anticipation is disadvantageous, proceeding in a similar way starting from 
A2 [X2,S0] and A4 [X4,S0], the points (indifferent to P0) P2 [X2,S2], with X2<X0, 
S2>S0, are obtained through leftwards and then upwards movement, or P4 [X4,S4], 
with X4>X0, S4<S0, through rightwards and then downwards movement. 

Continuously increasing or decreasing the abscissas Xi (i=1,3), we obtain, if 
S0>0, a continuous curve with increasing ordinate in the plane OXS, resulting from 
P0 and the points of type P1 and P3, all indifferent to P0. If S0<0, the continuous 
curve resulting by P0 and the points of type P4 and P2 , all indifferent to P0, 
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obtained by continuously varying Xi (i=2,4), have a decreasing ordinate5. However, 
if P0 is fixed, these curves of indifference are individualized from P0 by definition. 

We can now define, in general terms, the interest defined in section 1.1, 
considering only the positive amount. If (1.1) holds with X<Y, the exchange 
between indifferent supplies implies that giving away the availability of amount A 
from X to Y is fairly compensated by the payment of the amount 

I = B – A  0. (1.2) 

We will say that A is the invested principal, I is the interest, and B is the 
accumulated value, in an operation of lending or investment. 

If (1.1) holds with X>Y, the anticipation of the income of A from X to Y is fairly 
compensated by the payment in Y of the amount  

D = A – B  0 (1.3) 

We will say that A is the capital at maturity, D is the discount and B is the 
present value or discounted value, in an operation of discounting or anticipation. 

The second phase is applied in an easy way. It is enough to add, referring to (1.1) 
in the case A>0, that if a generic P [Y,B] is indifferent to a fixed P0 [X,A] then all 
the points P’ [Y,B’] where B’>B are preferred to P0, while P0 is preferred to all 
points P” [Y,B”] where B”< B. This leads to the conclusion that, once the 
indifference curve through P0 is built, all the supplies of the type (Y,B') are preferred 
to the supply (X,A), while the opposite occurs for all supplies of type (Y,B"). 

1.2.2. Objective aspects of financial laws. The equivalence principle 

The previous considerations enable us to give a first empirical formulation of the 
fundamental “principle of financial equivalence”, which is that it is equivalent6 to a 

                              
5 If criteria d is removed, supplies with same amount and different time become indifferent 
and the indifference curves have constant ordinate. All loans without interest made for free 
are contained in this category. 
6 “Equivalent” is often used instead of “indifferent”; if this does not make sense then imagine 
that P’ equivalent to P” means that these supplies are in the same equivalence class as in the 
set theory meaning. For this to be true, other conditions are needed. which we will discuss 
later. 
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cash (pay) amount today or to cash (pay) at a later time if there is the cashing 
(payment) of the interest for such deferment. 

In Chapter 2, the indifference curves and the principle of financial indifference 
will be formalized in objective terms, defining financial factors, rates and intensities 
for lending and discounting operations, in relation to the possible distribution of 
interest payments in the deferment period. The equivalence principle will then 
become objective, assuming the hypothesis that different parties to a financial 
contract agree in fixing a rule, valid for them, to calculate the equivalent amount B, 
according to the amount A and the times X, Y. 

1.3. The dimensional viewpoint of financial quantities 

In financial mathematics, as in physics, it is necessary to introduce, together with 
numerical measures, a dimensional viewpoint distinguishing between fundamental 
quantities and derived quantities. 

To describe the laws of mechanics, the oldest of the physical sciences, the 
following fundamental quantities are introduced: length l, time t, mass m, with their 
units (meter, second, mass-kilogram) and the derived quantities are deduced, such as 
volume l3, velocity l/t, acceleration l/t2, force ml/t2, etc. Their units are derived from 
those of the fundamental quantity. We then speak about the physical dimension of 
different quantities, which are completely defined when they are given the 
dimensions and the numbers which represent the measurement of the given quantity 
in the unit system. 

In financial mathematics we also make a distinction between fundamental 
quantities and derived quantities.  

The fundamental quantities are: 

1) monetary amount (m), to measure the value of financial transaction in a given 
unit (i.e., dollar, euro, etc.); 

2) time (t), to measure the length of the operation and the delay of its maturity in 
a given unit (i.e. year). 

The derived quantities, relating to the fundamental quantities based on 
dimensions, are: 

1) flow, defined as amount over time (then with dimension m1t-1);  

2) rate, defined as amount over amount (thus a “pure number”, with dimension 
m0t0);  
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3) intensity, defined as amount over the product of amount multiplied by time 
(then with dimension m0t-1). 

To clarify: 

– flow relates the monetary amount to the time interval in which it is produced; a 
typical flow is the monetary income (i.e.: wages, fees, etc.) expressed as the 
monetary amount matured in a unit of time as a consequence of the considered 
operation; 

– rate relates two amounts which are connected and thus is a “pure number” 
without dimension; for example, the rate is the ratio between matured interest and 
invested principal; 

– intensity, obtained as the ratio between rate and time or flow and amount, takes 
into account the time needed for the formation of an amount due to another amount; 
for example, the ratio between interest and invested principal time length of the 
investment.  

This is all summarized in the following dimensional table where we go from left 
to right, dividing by a “time” and from top to bottom, dividing by an “amount”.  

 

amount (m1t0) flow (m1t-1) 

rate (m0t0) intensity (m0t-1) 

Table 1.1. Financial dimensions 

 

 



Chapter 2 

Theory of Financial Laws 

2.1. Indifference relations and exchange laws for simple financial operations 

Let us consider again the indifference relation, indicated by  in (1.1), which 
depends on the judgment of an economic operator which gives rise to indifferent 
supplies with the process described in section 1.2.  

In a loan operation of the amount S at time T the economic operator can 
calculate the repayment value S' in T' > T such that (T',S') (T,S). Therefore, S'  S is 
calculated according to a function (subjective) of S, T, T' and it is written as 

S' = fc (S, T; T') (2.1) 

where fc is the accumulation function (given that in S' the repayment of S and the 
incorporation of the possible interest is included) that realizes indifference. 

In a discounting operation, at time T" <T', of amount S' with maturity T', let  
S"  S' be the discounted value so that subjectively (T",S")  (T',S'). We then have  

S" = fa (S', T'; T")  (2.2) 

where fa is the discounting function (because S' is discounted at time T" with a 
possible reduction due to anticipation of availability) that realizes indifference. 

It is obvious that if two operators, one at each side of a loan or discounting 
contract, want to realize an advantageous contract according to their preference 
scale, it is not always possible for them to do so.  
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It can be the case that, in a loan in T' of the principal S', indicating by S"a the 
indifferent accumulated amount (= min acceptable) for the lender to cash in T" and by 
S"b the indifferent accumulated amount (= max acceptable) for the borrower to pay 
out in T", if S"b<S"a the contract is not stipulated. In the same way, we can prove that, 
in a discounting operation of the capital S' at maturity T', indicating by S"a the present 
indifferent value (= max acceptable) for the lender to pay out in T" < T ' and by S"b 
the present indifferent value (= min acceptable) for the borrower to cash in T" < T ', if 
S"a < S"b the contract is not stipulated. 

EXAMPLE 2.1.– Let us suppose that Mr. Robert, who is lending the amount S' at 
time T' for the period (T',T"), wants to cash in T" at least 1.09.S'. At the same time 
Mr. George, who is borrowing S' for the same time interval, wants to pay back in T" 
no more than 1.07.S'. It is obvious that in this way they will not proceed with the 
loan contract. Indeed: 

– with S" < 1.07.S', the lender prefers not to lend; 

– with 1.07.S' <S" < 1.09.S', the lender prefers not to lend and the borrower 
prefers not to borrow; 

– with S" > 1.09.S', the borrower prefers not to borrow. 

EXAMPLE 2.2.– Let us suppose that Mr. John wants to discount a bill from Mr. 
Tom, which is amount S' for the time from T' to T"<T' offering a discounted value 
not greater than 0.92.S', while Mr. Tom wants to offer this discount for an amount 
not lower than 0.94.S'. It is clear that the contract cannot be reached, because each 
discounted amount is considered disadvantageous by at least one of the parties. 

To further consider the economic theory of market prices, we carry on our 
analysis using objective logic and supposing that the operators, in a specific market, 
want a fair contract between two supplies (T,S) and (T',S') in a loan, if their 
fundamental quantities satisfy equation (2.1); and in the same way, for a discount, 
which is a type of loan, if equation (2.2) is satisfied. We will now talk about a fair 
contract if equation (2.1) or equation (2.2) is satisfied, but as favorable (or 
unfavorable) for one of the parties if the equations are not satisfied. Trade contracts 
between two supplies (T',S') and (T",S") give rise to simple financial operations. As 
already mentioned in Chapter 1: 

– if T" > T' (= loan or investment), the parties consider fair the interest S"-S' as 
the payment for the lending of S' from T' to T", as delayed payment in T"; then S" is 
called accumulated amount in T" of the amount S' lent in T'; 
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– if T" < T' (= discount or anticipation), both parties consider fair the interest  
S'-S" for the discount of S' from T' to T", as advance payment in T"; then S" is called 
discounted value from time T" of the amount S' to maturity T'1. 

The indifference relation thus assumes a collective value. The function fc defined 
in equation (2.1) is an accumulation law (or interest law), while the function fa 
defined in equation (2.2) is a discount law. Referring now to the case of positive 
interest and fixing S and T in equation (2.1), the value S' is an increasing function of 
T'; fixing S' and T' in equation (2.2), and the value S" is also an increasing function 
of T", because it decreases when T" decreases. 

Applying equation (2.1) and then equation (2.2) with T" =T, we obtain the 
present value in T of the accumulated amount in T' of S invested in T  T', given by  

S* = fa [{ fc (S,T;T')},T';T ] (2.3) 

If (S,T,T') is S* = S, the fa neutralizes the effect of fc, acting as the inverse 
function, and the following investment or anticipation operation is called the 
corresponding operation; in this case the laws expressed by fc and fa are said to be 
conjugated.  

Unifying the cases T  T' and T>T', we can talk of an exchange law given by a 
function f that gives the amount S' payable in T' and exchangeable2 with S payable 
in T. It follows that 

S' = f (S,T;T')  (2.4) 

where if T  T' then f = fc, whereas if T >T' then f = fa . 

                                   
1 Lending and discounting operations are the same thing because in both cases there is an 
exchange of a lower amount in a previous time for a greater amount in a future time. The only 
difference is that in the first case the lower and previous amount is fixed, whereas in the 
second case the greater and future amount is fixed. 
2 We will not use “equivalent” – even if it is used in practice – in the cases that we will 
consider later where  gives rise to an equivalence relation (see footnote 6 of Chapter 1). 
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Let us consider some properties of the indifference relation :  

1) reflexive property 

If (T,S) we have (T,S )  (T,S), we will say that  satisfies the reflexive 
property3; 

2) symmetric property 

If (S,T,T'), from (T,S)  (T’,S') follows (T’,S')  (T,S), we will say that  
satisfies the symmetric property4; 

3) property of proportional amounts  

If (S,T,T'), k>0, from (T,S )  (T',S') follows (T,kS)  (T',kS'), we will say that 
 satisfies the property of proportional amounts. 

Because of criteria c) and d), if T -T the amount in T  exchangeable with S in T 
is the same as S. Therefore in the set  of financial supplies the relation  always 
satisfies the reflexive law. We can then define the exchange law for all three 
variables as 

f (S,T;T’ ) =   

fc (S,T;T’ ),  if  T < T’

         S         ,   if  T = T’    

fa (S,T;T’ ),  if  T > T’   (2.5) 

If the symmetric law holds in the considered set P, then 

S = fa[{ fc (S,T,T')},T',T ], (S,T,T'), T<T' 5  (2.6) 

In this case, recalling (2.3), the laws fc and fa are conjugated, and because of 
(2.4), (2.5) can be written in the form  

S = f [{ f (S,T,T')},T',T], (S,T,T')  (2.6') 

                                   
3 Let us recall that a binary relation  between elements a, b, ... of a set  satisfies the 
reflexive law if: a  a, a  . 
4 Let us recall that a binary relation  between elements a, b, ... of a set  satisfies the 
symmetric law if: a  b b  a, a,b  .  
5 If T>T' is given, fc and fa have to be exchanged in (2.6). 
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which remains valid with the same f if the primed values are changed with the 
unprimed values and vice versa6. 

If, in the considered set ? the property of proportional amounts holds, f as 
defined in (2.4) is linear homogenous compared to the amount7. 

2.2. Two variable laws and exchange factors 

Let us continue the analysis of exchange laws the reflexive and proportional 
amount properties assumed to be valid for . Due to the second property, it is 
possible to transform (2.1) in the multiplicative form 

S' = S. m(T,T'), T  T'  (2.1') 

where m(T,T'), increasing with respect to T', is called the accumulation factor and 
expresses the accumulation law only as a function of the two temporal variables; in 
the same way it is possible to transform (2.2) in the form 

S" = S'. a(T',T"), T'  T"  (2.2') 

where a(T',T"), increasing with respect to T", is called the discounted factor and 
expresses the discounting law only as a function of the two temporal variables. We 
will now address the two variables laws. 

The reflexive law for  is now equivalent to  

m(T,T) = a(T,T) = 1, T  (2.7) 

Furthermore if, using T" =T in systems (2.1') and (2.2'), we obtain S" =S, i.e.  
the symmetric property is valid for , the laws m(.) and a(.) satisfy 

 m(T,T') . a (T',T) = 1, T T'  (2.8) 

                                   
6 The symmetric case – far from being realistic in the contracts with companies and banks, 
due to the different conditions and onerousness of the lending market (which leads to costs 
for the companies) compared to the investment market (which leads to profits for the 
companies) – can be applied to the contracts between persons or linked companies and, from 
a theoretical point of view, makes it possible to deal with the two systems in a similar 
manner.  
7 The property of proportional amounts is normally used in theoretical schemes, but should 
only be used with smaller amounts. The financial profits for the unit of invested capital can 
change according to the value of the capital and the contractual strength of the investors. 
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 Equation (2.8) shows that conjugated laws for the same time interval give rise 
to reciprocal factors. 

When describing (2.4) in detail, we consider the exchange law of two variables 
characterized by the exchange factor z(X,Y), a pure number increasing with respect 
to Y, defined using  

   

z(X,Y ) =   

m(X,Y ) ,    if  X < Y

         1     ,      if   X = Y   

 a(X,Y ) ,    if  X > Y   (2.5') 

(2.5 ) being a particular case of (2.5). 

To summarize, given an indifference relation , the corresponding exchange law 
expressed by the factor z(X,Y), such that (X,S1)  (Y,S2), is equivalent to  
S2 = S1 z(X,Y). The exchange factor z(X,Y) is a function defined for each couple 
(X,Y) of exchange times, which “brings” the values from X to Y forward (= 
accumulation) if X<Y and backward (= discounting) if X>Y.  

 
We will now assume that 

z(X,Y) > 0, X,Y)  (2.5") 

(considering, if needed, only the part of the definition set for the function z where 
such a condition holds) in order that it cannot be possible that an encashment 
(payment) can never be indifferent to a payment (encashment) with different time 
maturity. 

In geometric terms, let us consider the Cartesian plane OXY with the points  
G (X,Y) with the aforementioned meaning8. The exchange factor is then the point 
function z(G). Because of (2.5'), z(G)=1 if G is on the bisector of the coordinate 
axes. Furthermore, if G is over the bisector (i.e. if X<Y), then z(G) = m(X,Y) > 1; 
otherwise, if G is under the bisector (i.e. if X>Y), z(G) = a(X,Y)<1 and more 
precisely because of (2.5"): 0<a(X,Y)<19.  
                                   
8 Note that the functions m(X,Y) and a(X,Y) are defined in the disjoint half-planes X<Y and 
X>Y, i.e. over and under the bisector of coordinate axes. It can be useful to extend their 
definition on the bisector Y=X, recalling (2.7) and putting m(X,X) = a(X,X) = 1. 
9 (2.5') brings to a general formulation of exchange value of two variables, which does not 
imply the symmetry of financial relations. It follows that the law z(X,Y) can be used to 
schematize not just the time variability of the cost and profit parameters, but also their 
difference in investment and discount operations which are of interest to any company. For 
example, if a company obtains liquid assets through anticipation of future credits and uses 
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Recalling the considerations of Chapter 1 (especially criteria d) for positive 
amounts, given that z(X,Y) is the exchange value of unitary amount), in the 
hypothesis of positive returns for the money the contour curves z(X,Y) = const. are 
graphs of strictly increasing functions Y= (X)10.  

If relation  expressed by z(X,Y) satisfies the symmetric property, as a particular 
case of (2.6') the below condition follows: 

z(X,Y).z(Y,X) = 1; (X,Y)  (2.9) 

If z(X,Y) satisfies (2.9), then it defines a couple of two-variable financial interest 
and discount laws which are conjugated. 

It is obvious that if the indifference relation is symmetric, it is enough to be able 
to define z(X,Y) in one of the two half-planes to obtain the value of z in the second 
half-plane using the following rule: the values of z for points which are symmetric 
with respect to the bisector are reciprocal. In this case z(X,Y) = 1/z(Y,X), (X,Y) 
then the couples of contour curves of accumulation factor z = k >1 and discount 
factor z = 1/k <1 are functions which are mutually inverse. 

2.3. Derived quantities in the accumulation and discount laws 

In light of the laws defined in (2.1') and (2.2'), we can deduce the following 
derived quantities11.  

2.3.1. Accumulation 

As a function of the initial accumulation factor  

 iaf:= m(X,Y)  (2.10)  

                                                                                                                  
them in financial operations, and if the parameters a and m used in such an operation and 
summarized in z are not reciprocal, a non-zero spread is created. 
10 In fact if we assume z(X,Y) to be continuous and partially differentiable everywhere, it 

follows that:  z

X
< 0,  z

 Y
 > 0 X,Y). Therefore, the contour curves z(X,Y) = const. are 

continuous and strictly increasing; they are graphs of functions Y = (X) invertible. In fact, 

for a theorem on implicit function, it follows that: '(X) = -  z

X
/  z

Y
, where in the 

aforementioned hypothesis (X) is continuous and '(X) > 0. 
11 In this section we will denote with roman capital letters the temporal variables meaning 
time or epoch and with small roman letters, variables meaning length.  
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(:= means “equal by definition”) – which measures the multiplicative increment 
from X to Y>X of the invested capital in X. The factor is “initial” because the date X 
of investment coincides with the beginning of the time interval (X,Y) on which such 
an increment is measured. We can also define (see Figure 2.1): 

– the initial interest (per period) rate (= interest on the unitary invested capital 
in the time interval from X to Y>X) is expressed by 

iir:= m(X,Y) – 1  (2.11) 

– the initial interest (per period) intensity, expressed by 

iii  {m(X,Y) – 1}/(Y-X) = {m(X,X+t) – 1}/ t  (2.12) 

where t = Y-X > 0. 

Alternatively, still using X as the investment time and imposing X<Y<Z, the 
capital increment is measured on a time interval (Y,Z) subsequent to X, then 
continuing with respect to interval (X,Y) without disinvesting in Y, we can then 
generalize and define continuing factors, rates and intensities in the following way: 

– the continuing accumulation factor from Y to Z (= accumulated amount in  
Z=Y+u, u>0, of the unitary accumulated amount in Y=X+t, t>0, for the investment 
started in X) is expressed by 

caf  r(X;Y,Z) = m(X,Z)/m(X,Y) = m(X,Y+u)/m(X,Y)  (2.13) 

– the continuing interest (per period) rate from Y to Z (= interest for unitary 
accumulated amount in Y passing from Y to Z=Y+u, u>0, for the investment started 
in X) is expressed by 

cir  caf - 1 = {m(X,Z) - m(X,Y)}/m(X,Y)  (2.14)  

= {m(X,X + u) – m(X,Y)}/m (X,Y)  

– the continuing interest (per period) intensity from Y to Z = Y+u, u>0 is 
expressed by  

( ; , ) 1 ( , ) - ( , ) ( , ) - ( , )cii:= =
( - ) ( , )   ( , )

r X Y Z m X Z m X Y m X Y u m X Y
Z Y Z Y m X Y u m X Y   (2.15) 
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Figure 2.1. Times in accumulation 

(2.13) is justified if we point out that if the amount K is invested at date X, the 
accumulated amount in Y has the value KY = K m(X,Y) while that in Z has the value 
KZ = K.m(X,Z). By definition r(X;Y,Z) satisfies KZ = KY r(X;Y,Z). For comparison 

r(X;Y,Z) = KZ / KY = m(X,Z) / m(X,Y)  

It is obvious that if X=Y, (2.13), (2.14) and (2.15) become respectively (2.10), 
(2.11) and (2.12), i.e. the “continuing” quantities become the “initial” quantity. In 
symbols: r(Y;Y,Z) = m(Y,Z). 

Intensity (2.15) is obtained by dividing the partial incremental ratio of function 
m( ), considered with =X and respect to  from Y to Y +u, by m(X,Y). In the 
hypothesis that m( ) is partially differentiable with respect to  with a continuous 
derivative in the interesting interval, the right limit of (2.15) then exists when u 0, 
which represents the instantaneous interest intensity12 (implying: continuing) in Y 
of an investment started in X, indicated by (X,Y). Using symbols, where “loge” is 
indicated with “ln”: 

0

= =Y

m( , + )- ( , ), lim   
  ( , )

              / ( , ) =( , ) ln ( , )

u

Y

X Y u m X Y
X Y

u m X Y

m X Ym X m X

  (2.16) 
 

Working on the variables ,  , with , it can be concluded that is the 
logarithmic derivative (partial with respect to of m ). 

 

                                   
12 It can also be called the interest force or (but improperly from a dimensional point of 
view) instantaneous interest rate. 
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Inverting function  and the derivative operator in (2.16), the important 
relationship is obtained for continuing accumulated amount (2.13) as a function of 
the instantaneous intensity13: 

  

m(X,Y + u)
m(X,Y )

 =  (X , )dY
Y + u

e 
 (2.16') 

2.3.2. Discounting 

Let X be the final time of a financial operation (for example, the maturity of a 
credit). Analogously to accumulation, as a function of the initial discounting factor  

idf  a(X,Y) > 0  (2.17) 

we can also define (see Figure 2.2): 

– the initial per period discounting rate (= discount for unitary capital at 
maturity for the anticipation from X to Y<X), given by 

idr  1 - a(X,Y)  (2.18) 

as well as, given t = X-Y > 0: 

– the initial per period discounting intensity, which can be expressed by: 

idi  {1 - a(X,Y)}/(X-Y) = {1 - a(X,X - t)}/ t  (2.19) 

The dynamic expressions for “continuing discount” for an increment of the 
length of discount are seldom used, but they have meaning in discounting because 
of the decrease of the present value in relation to the length of anticipation. 
Therefore, we also define, in relation to the discount, the continuing per period 
intensity as well as the instantaneous intensity, related to time X>Y>Z. Indicating by 
u>0 the length of further discount Z = Y - u, we define:  

                                   
13 From (2.16) it follows that, for small u, m(X,Y). (X,Y) u linearly approximates m = 
m(X,Y+u) – m(X,Y). Furthermore, in the profitable hypothesis of the invested capital, which 
implies m(X,X+t)>1 and increasing with t, the positivity of X , X, because of (2.17) 
and of a well known property of integrals, follows. The opposite is true. A similar conclusion 
is obtained for the discounting instantaneous intensity, which will be introduced later. 
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– the continuing discounting factor from Y to Z (= present value in Z<Y of the 
present unitary value in Y<X of the capital at maturity in X, then of amount 
1/a(X,Y)), expressed by: 

cdf  a(X,Z)/a(X,Y) = a(X,Y-u)/a(X,Y)  (2.20) 

– the continuing discounting rate from Y to Z (= discount for the anticipation 
from Y to Z of the present unitary value in Y<X of a capital with maturity in X, then 
of amount 1/a(X,Y)), expressed by: 

cdr:=1 cdf ( , ) - ( , ) ( , ) - ( , - )    
 ( , )   ( , )

a X Y a X Z a X Y a X Y u
a X Y a X Y   (2.21) 

– the continuing discounting intensity from Y to Z, expressed by: 

1- ( , ) - ( , ) ( , - ) - ( , )cdi:=
- ( - ) ( , ) -   ( , )
fsp a X Y a X Z a X Y u a X Y

Y Z Y Z a X Y u a X Y   (2.22) 

 

Figure 2.2. Times in discounting 

Considering the limit as already calculated for the instantaneous interest 
intensity, it is possible to obtain:  

– the instantaneous discounting intensity in Y, indicated by (X,Y) and given by:  

= =

, = / ( , ) ( , ) ln ( , )
Y Y

X Y  a X Y  a X  a X

  (2.23) 

As (X,Y) is the logarithmic derivative (partial with respect to Y  X) of a(X,Y), 
by inverting the process we obtain, Z < Y, 

  

a(X,Z )
a(X,Y )

  =     (X , )d
Y
Z

e  =   (X , )d
Z
Y

e 
  (2.24) 
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2.4. Decomposable financial laws 

2.4.1. Weak and strong decomposability properties: equivalence relations  

In the case of the financial law of two variables, we consider the meaning and 
the consequences of the decomposability property, which was introduced by 
Cantelli. 

We have decomposability in an accumulation (or discounting) operation when 
investing (or discounting) a given capital available at time X, we have the same 
accumulated amount (or present value) in Z, both if we realize and reinvest 
immediately the obtained value in a intermediate time Y, or if we continue the 
financial operation. To summarize, decomposability means invariance of the result 
with respect to interruptions of the financial operation. 

With reference to the interest law m(X,Y), which follows from relation , and to 
the three times X, Y, Z, with X<Y<Z, let S2 be the realized accumulated amount in Y 
of S1 invested in X; moreover, let S3 be the accumulated amount in Z of S2 
immediately reinvested in Y. Instead S'3 is the accumulated amount Z after only one 
accumulation of S1 from X to Z. Due to (2.1')  

S2 = S1 m(X,Y); S3 = S2 m(Y,Z); S'3 = S1 m(X,Z) . (2.25) 

If 

S3 = S'3, (S1, X<Y<Z)  (2.26) 

the interest law is decomposable. It follows from (2.25) that (2.26) is equivalent to 

m(X,Y) m(Y,Z) = m(X,Z)  (2.27) 

which expresses the decomposability condition for an interest law in terms of 
accumulation factors. 

In the same way, referring to the discount law a(X,Y) following  and recalling 
(2.2'), if X > Y > Z we can define the following discounted values starting from S1, 
payable in X: 

S2 = S1 a(X,Y); S3 = S2 a(Y,Z); S'3 = S1 a (X,Z)  (2.28) 
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If  

S3 = S'3, (S1, X>Y>Z)  (2.29) 

the discount law is decomposable and because of (2.28) the decomposability 
condition for this law can be written as 

a(X,Y) a(Y,Z) = a(X,Z)  (2.30) 

Until now, we have defined in weak form the decomposability of single laws in 
accumulation or discounting operations, considering the times X, Y, Z in increasing 
or decreasing order. This signifies that we require the prospective transitivity or 
respectively the retrospective transitivity to the indifference relations, which give 
rise to the laws.14 In this case we will talk of weak decomposability. 

If instead the previous considerations are related to an exchange law following 
an indifference relation  and expressed by the factors z(X,Y) defined in (2.5'), we 
can think of extending the decomposability relation in (2.25) and (2.26) for any 
order of payment times. So the relation  satisfies the strong decomposability 
property, which bi-implies 

{(X,S1) (Y,S2) {(Y,S2) (Z,S3)   (X,S1) (Z,S3), (X,Y,Z)  (2.31) 

and then the following condition on the exchange factors: 

z(X,Y) z(Y,Z) = z(X,Z), (X,Y,Z)  (2.32) 

The following result holds:  

THEOREM A.– If and only if for the exchange law the strong decomposability is 
valid, the relation  is reflexive, symmetric and transitive, then it is an equivalence 
relation, which we denote by .  

Proof 

Sufficiency: the strong decomposability implies (2.32); putting Y = Z we obtain 
the reflexivity; putting Z = X we obtain the symmetry; the transitivity is obvious. 

Necessity: if  = , the unitary amount in X is exchangeable with z(X,Z) in Z and 
also with z(X,Y) in Y, which is exchangeable with z(X,Y) z(Y,Z) in Z (whatever order 

                                   
14 Let us recall that a binary relation  on a set  satisfies the transitivity property if (a  
b) (b c)  a  c,  a,b,c  . 
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may be among X, Y and Z because of the symmetry property); then (2.32) is also 
valid if X = Z or if Y = Z. 

Note: this argument could be developed, in a more formally complicated, but 
equipollent way, based on relation (2.31).    

Considering the relation between weak decomposability (WD) and strong 
decomposability (SD), it is obvious that the condition of SD implies WD, when X, 
Y, Z are in increasing or decreasing order from which there are only accumulation or 
discounting respectively. However, the WD does not imply SD in other cases, when 
both an accumulation and a discounting occur together. Then, if SD holds, the 
properties of an equivalence are immediately verified. In fact, considering X < Z < 
Y (analogously we could consider X > Z > Y), the SD expressed by (2.32) gives rise 
to 

m(X,Y) a(Y,Z) = m(X,Z)  (2.33) 

and the WD following the SD also implies m(X,Z) m(Z,Y) = m(X,Y), or, for (2.33), 
m(Z,Y) = m(X,Y)/m(X,Z) = 1/a(Y,Z), or also that 

m(Z,Y) a(Y,Z) = 1, Y<Z  (2.34) 

Then, because of the generic choice of times, m and a are conjugate laws, the 
financial relation is symmetric, as well as transitive, but also reflexive (it is enough 
to impose Y = Z in (2.33) obtaining a(Z,Z) = 1 and then for (2.34), m(Z,Z) = 1). 
Therefore, the relation is an equivalence; the opposite also holds. 

Let us summarize as follows. Given an indifference relation  in the hypothesis 
of proportional amount, the strong decomposability, expressed by (2.32) for the 
exchange factor z(X,Y), implies that  is reflexive, symmetric and transitive, and 
then it is an equivalence indicated by . In this case, the derived interest and 
discount laws are decomposable and conjugated to each other. 

EXAMPLE 2.3.– An investor with liquid assets invests the amount S1 at time X 
until time Y in a term deposit. A prospectively decomposable accumulation law with 
accumulation factor m(X,Y) is applied and a refund of S2 = S1 m(X,Y) is expected. 
At time Z (with X < Z < Y) the investor needs liquidity, but he cannot use the capital 
in the term deposit; therefore, the accumulated amount, given by 

S'3 = S1 m(X,Z) = 
  
S2

m(X,Z)

m(X,Y)
 =  2S

m(Z,Y)
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is not available (as when the capital is invested in a bank account); it is only 
possible to transfer the credit S2 with a bank advance, applying a retrospectively 
decomposable discounting law to a(Y,Z). In practice, in these cases the laws m(Z,Y) 
and a(Y,Z) are not conjugated, i.e. (2.34) does not hold. Thus, we do not have strong 
decomposability of the resulting exchange law, even if the laws m and a are weakly 
decomposable. We usually have a(Y,Z) < 1/m(Z,Y), i.e. the cost for discount is 
greater than that resulting from applying the conjugate law of that regulating the 
deposit. It follows that S3 < S’3 and S’3 - S3 is the cost due to the locking up of 
capital S1 until Y. The SD would cause S’3 = S3 and would avoid such cost.  

2.4.2. Equivalence classes: characteristic properties of decomposable laws  

Based on theorem A, if an indifference relation  gives rise to a strongly 
decomposable exchange law, it is an equivalence relation 15 between all elements 
(T,S) of the set  of supplies, which makes it possible to separate such supplies into 
equivalence classes. Each class is made up of financially equivalent supplies, but 
which are indifferent. However, two supplies in different classes are not equivalent 
because it is possible to express a judgment of strong preference. Each class is 
characterized by an abstract, made up of the intrinsic financial value of its supplies. 

By geometrically representing the supplies (T,S) on the plane OTS, a class of 
equivalent supplies is identified by a curve, a locus of points P  [T,S], 
corresponding to equivalent supplies. The infinite curves do not have common 
points. In addition: 

1) for each point in the plane there is one and only one curve, which is a locus of 
equivalent points;  

2) such curves are the graph of functions S = (T) (continuous and 
differentiable, under suitable hypotheses) and, if the postulate on money return 
holds, increasing where positive, decreasing where negative. 

The classes of equivalent supplies on the basis of an SD, i.e. the elements of the 
quotient set / , form a totally ordered set, because the elements of each couple are 
comparable for a weak preference judgment , using the meaning specified in 
section 1.2. Moving monotonically towards the classes (= curve in the plane OTS), 
the intrinsic financial value of the supplies improves in one sense (but gets worse in 

                                   
15 It is well known that equivalence relations E on the elements of a set H make it possible to 
stratify these elements in equivalence classes, such that each element is only in one class. 
Each class is characterized by an abstract common to its elements, indicating by quotient set 
H/E the set whose elements are the abstracts. 
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the other sense)16. It follows that the SD laws, on the basis of stratification in 
equivalence classes, allow a global, rather than just local, comparison between 
                                   
16 We set out the definition of some properties that are applied in the set of financial supplies. 
Let  be a set and  a binary relation between elements a, b, c, ...  . The following 
properties can hold for  (where = means coincidence between elements, ~ means negation, 
 means union or logic sum and  means intersection or logic product):  

1) reflexive property: a  a, a  ; 2) symmetric property: a  b b  a,  a,b  ; 3) 
transitive property: (a  b) ((b  c) a  c; a,b,c  ; 4) non-reflexive property: ~(a  a), 

a  ; 5) anti-symmetric property: (a  b) (b a) a=b; a,b ; 6) asymmetric 

property: a  b  ~(b  a), a,b  ; 7) completeness property: (a  b) b  a) is certainly 
verified, i.e. at least one of (a  b) and (b  a), a b   holds.  

We have already talked about the first three properties, pointing out that a binary relation 
between elements of  is an equivalence relation  if for every choice of elements the 
symmetric, reflexive and transitive properties hold. When a,b   it is verified that (a  b) 

~(a  b), and then (a  b) is an event, in the logic meaning, referred to elements of . We 
give the following definition regarding ordering. A binary relation  on the set  is called a 
relation of partial order if for each element in  the reflexive, anti-symmetric and transitive 
properties hold.  is then said to be partially ordered. With this hypothesis, if all elements 
of  are comparable two by two (= completeness property), then the relation is called of total 

order and  is said to be totally ordered. A binary relation  on the set  is said to be 
almost ordered or preordered (total or partial, if it is comparable or not) if the reflexive or 
transitive properties hold when it is then called almost ordered (partially or totally). Briefly, 
an order relation  brings to a classification which do not consider “equal elements” while a 
almost order relation  allows “equal elements”.  

 Note that if on the set  a total  relation holds, the completeness relation is satisfied, 
i.e. however chosen b  , a  , a b, it certainly satisfied that (a b) (b a). Given 
that (a  b) (b  a) = [(a b) ((b  a)] [(a  b)(~(b  a)] [~(a  b)((b  

a)] and that the three possibilities written between square brackets in the second term are 
incompatible, they make a partition. More briefly, the completeness derived from the totality 
of  is equivalent to the possibility of the realization of ~(a  b) ~(b  a). 

 Let us now consider the equivalence relation , such that a  b if the first possibility is true 
i.e. (a  b)  (b  a); in such a case we write a b. If the second or third possibility is 
true, we write respectively a b and b a. Relation  (or ) is said to be a (strong) 
preference, characterized by the asymmetric property. Writing a b is equivalent to b a. In 
conclusion, as a consequence of the relation  in , of the three possibilities, a b, a b, 
a b, one and only one is verified. With a fixed , the quotient set / , i.e. the set of the 
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supplies, i.e. due to transitivity they make it possible to extend to any number of 
supplies on the plane OTS the preference or indifference relations introduced in 
Chapter 1 with respect to a given supply. 

It is easy to give a method for such a comparison, verifying the existence of total 
order in  . It is enough to identify the classes using supplies that have the same 
maturity T0; then class  identified by (T0,S'0) is preferred to class  identified by 
(T0,S"0) if S'0 > S"0;  is preferred to  if S'0 < S"0;  and  are equivalent if  
S'0 = S"0. 

Let us consider some characteristic properties of decomposable laws of two 
variables, which proceed from the following theorems. 

THEOREM B.– Referring to definitions (2.10) and (2.13), an interest law is weakly 
decomposable if and only if, for each choice of subsequent times X<Y<Z, the initial 
accumulation factor from Y to Z is equal to the continuing accumulation factor from 
Y to Z of an accumulation started in X. In symbols: r(X;Y,Z)=r(Y;Y,Z)=m(Y,Z). 
Therefore, the decomposability implies independence of r(X;Y,Z) from the time of 
investment, and vice versa. There is an analogous condition in relation to the 
discount factors (2.17) and (2.20), for each choice of time X>Y>Z holds for a 
weakly decomposable discount law. 

THEOREM C.– An interest law is weakly decomposable if and only if the 
instantaneous intensity (X,T), continuous by hypothesis, does not depend on the 
initial time X but only on the current time T. The analogous condition on the 
intensity X,T) holds for a weakly decomposable discount law. Under the same 
condition necessary and sufficient on the instantaneous intensity of interest and 

                                                                                                                  
equivalence classes with respect to  of the elements in , results totally ordered because 
between the classes {a}, {b} identified by a, b only one relation holds: {a}={b}, {a} {b}, 
{a} {b}. To summarize, an almost order relation (total) on  induces an equivalence 
relation  and then an order (total) relation on / . 
 In financial applications it follows that if the exchange law applicable to the supplies 
(T,S)   is strongly separable and then follows from an equivalence relation , then:  
1) There is an almost order between each supply   (total if the law is applicable to all 
supplies) where between two supplies or there is indifference or one is preferred (strongly). 
There is then the possibility of “equals” or indifference. 
2) There is order (total in the same hypothesis) between supply equivalence classes, elements 
of / , where between two different classes there is always a strong preference relation, 
regarding each pair of supplies each taken in a class. In formula, {a} {b}  a b,  (a 

{a}, b {b}). 
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discount, a strong decomposability of an exchange law specified by the factor 
identified by (2.5') which satisfies (2.9) can be verified. 

THEOREM D.– An exchange law specified by the factor identified by (2.5') which 
satisfies (2.9) is strongly decomposable if and only if there exists an increasing 
function h(T) such that 

    
z(X,Y ) =  

h(Y )
h( X )

   ,  (X,Y )
  (2.35) 

Given z(.) = m(.), (2.35) (X Y) gives a WD condition for an interest law (= of 
prospective transitivity for ); furthermore, (2.35), X Y), and given z(.) = a(.), is 
WD condition for a discount law (= of retrospective transitivity for ). If  is not 
symmetric, i.e. (2.9) is not valid, we have weak decomposability of interest and the 
discount law is not conjugated following  if and only if there exist two different 
functions h1(T) and h2(T) such that (2.35) holds where: h(T) = h1(T) if X Y; h(T) = 
h2(T) if X>Y 17. 

Briefly, theorems C and D show that: 1) a characteristic property of strongly 
decomposable exchange laws is the coincidence of interest and discount intensity in 

                                   
17 The proofs of theorems B, C and D are as follows:  

– theorem B is proved by noticing that, with respect to the interest (or discount) laws, the 
equality between m(Y,Z) and m(X,Z)/m(X,Y) (or between a(Y,Z) and a(X,Z)/a(X,Y)) bi-implies 
(2.28) or (2.31);  

– theorem C is proved, with respect to interest laws, by noticing that because of (2.17) 
and of theorem B the decomposability of law m is equivalent to the identity chain: 

   (X , )d Y
 Z

e  =  
m(X,Z)

m(X,Y)
 =  m(Y,Z) =   (Y , )d Y

 Z

e , (X<Y<Z) 

which, because of the arbitrariness of time, bi-implies (X, ) = (Y, ), i.e. because of the 
same arbitrariness, an intensity depends only on current time. An analogous proof holds in 
regard to the condition on the intensity (X,T) to have decomposability of the discount law, 

(X>Y>Z), and on the intensity condition (X,T) = (X,T) = (T) to have strong 
decomposability of the exchange law z(X,T), (X,Y,Z); 

– theorem D for exchange law is proved by noticing that: 
sufficient condition: if there is h(T) verifying (2.30), clearly z(X,X) = 1, X, and then (2.9) 
and (2.33) hold so that  =  and the exchange law is strongly decomposable,  
necessary condition: if z (X,Y) identifies a strongly decomposable law, because of theorem C 
the interest and discount intensity are expressed by the same function (T) and the requested 
function h(T), which is clearly defined regardless of a multiplicative constant, has the 
dimension and meaning of an amount valued in T and must satisfy the differential equation: 

h'(T) = (T)h(T), where the general expression h(T) =  k ( )d
0T

T

e  is assumed as having 
the meaning of valuation in T, based on the exchange law z of the amount k dated at time T0. 
Theorem D regarding conditions of weak decomposability is an immediate corollary. 
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a function (T) which depends only on current time; 2) the exchange factor of a 
strongly decomposable law assumes the characteristic form  

 (X , )d X
 Y

z(X,Y)=e   (2.36) 

 
EXAMPLE 2.4.– Give the following accumulation law  

0.05 0.002, Y X Y X Y Xm X Y e  

using an instantaneous intensity t) = 0.05 + 0.004 t, a function only of the current 
time t, where m(X,Y) is a decomposable law. 

Let us verify the decomposability using (2.27). We obtain 

2 20.05 0.002, Z X Z Xm X Z e ; 
2 20.05 0.002, Y X Y Xm X Y e   

2 20.05 0.002, Z Y Z Ym Y Z e  

then (2.6) (X<Y<Z) holds. 

If we put: X = 1; Y 5
5

12
5.417; Z 6

1

12
6.083, it results in  

0.05 4.417 0.002 28.344 0.277538,      1.319876 m X Y e e  
0.05 0.666 0.002 7.659 0.048618,        1.049819 m Y Z e e   
0.05 5.083 0.002 36.003 0.326156,      1.385632 m X Z e e  

and then (summing the exponents of e) (2.6) is verified. Even the alternative 
expression following theorem B is verified as 

, 1.385632; , 1.049819 , ; ,
, 1.319876

m X Z
r X Y Z m Y Z r Y Y Z

m X Y  

EXAMPLE 2.5.– Given, with Y<Z, 

m(Y,Z) = 1+1.06Z – 1.06Y 



32     Mathematical Finance 

satisfying m(Y,Y)=1, increasing with Z, decreasing with Y, resulting in: m(0,Z) = 
1.06Z. Put S1=1,450, Y 5

5

12
5.417, Z 6

1

12
6.083, it follows that 

m(Y,Z) = 1 + 1.425396 - 1.371140 = 1.054256 

and then: S2 = 1,528.67; initial per period rate = 0.054256; initial per period 
intensity = 0.081465 years-1. 

Given X = 1 it follows, in continuing terms, that: 

r X;Y ,Z  
1 1.425396 1.06

1 1.371140 1.06
 

1.365396

1.311140
 1.04138  m Y ,Z

 . 

This financial law is not decomposable. In addition:  

– the continuing per period rate is 0.041381;  

– the continuing per period intensity is 0.062078 years-1. 

2.5. Uniform financial laws: mean evaluations 

2.5.1. Theory of uniform exchange laws  

The hypothesis of uniformity (or homogenity) in time is common in financial 
practice. In formal terms, an indifference financial relation  is uniform in time if: 

 (X,S1)  (Y,S2)  (X+h,S1)  (Y+h,S2), h  (2.37) 

that is, an indifference relation is not changed by a time translation (i.e. moving X 
and Y of the same time interval forwards or backwards), as long as the payment 
times remain in the applicability interval of the financial law.  

Assuming the proportionality of amounts, because of (2.37) for the exchange 
factor z(X,Y) = S2 /S1 the following property is worth:  

z(X,Y) = z(X+h,Y+h), h  (2.38) 

To summarize: a uniform relation is characterized by the property that the 
exchange factor does not change with a rigid time translation such that the time 
difference Y - X = (Y +h) -(X +h) does not change. 
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It follows for the corresponding financial law (which we will call uniform) that 

z(X,Y)  g (Y-X)  g ( ) > 0, (2.39) 

that is, in a uniform law the exchange factor depends only on the duration (with 
sign) =Y-X of the financial operation and not just on the times X,Y of the beginning 
and the end of the operation, considered separately.  

If the relation  is uniform and also symmetric, the couples of conjugated interest 
and discount laws are expressed by the factors g( ) and g(- )18 satisfying 

g( ) g(- ) = 1, (2.40)

If the exchange law z(X,Y) is uniform on time, the contour curves z(X,Y) = const. 
are lines parallel to the bisector Y=X. Furthermore, if  is also symmetric, 
considering geometrically (2.40), the increasing graph of g( ) is such that the 
opposite values of  correspond with the reciprocal values of g( ). Such factors 
remain constant respectively on parallel lines equidistant of the bisector  = 0, from 
which z(X,X) = g(0) = 1 follows. 

Often the accumulation and discount factor, instead of being considered unified 
through g( ), are considered separately and expressed as a function of the (absolute) 
duration t = |Y–X| = | |. 

Obviously we have:  

t = , if  > 0; t = - , if  < 0. 

We can then put a correspondence between a uniform relation , which is 
characterized by a exchange factor g( ), defined , and two laws, the former of 
interest, expressed by an accumulation factor u(t), the latter of discount, expressed 
by a discount factor v(t), both defined t 0 in the following way:  

  

u(t) =  g(t) =  g( ) ,   if   =  t >  0 

u(0) =  v(0) =  g(0) =  1
v(t) =  g( ) =  g(-t) , if   = -t <  0   (2.41) 

In (2.41), the second equation express the reflexive property of ; the first and 
the third equation express respectively the exchange factor in accumulation and 
discount. By assuming the usual hypothesis of onerous nature of a loan, u(t)  1 is a 

                                   
18 More precisely, in an accumulation law, the result is  = Y-X > 0 and g( ) is the 
accumulation factor, whereas g(- ) = 1/g( ) is the conjugate discount factor from Y to X. 
However, in a discount operation, the result is  = Y-X < 0 and g( ) is the discount factor 
while g(- ) = 1/g( ) is the conjugated accumulation factor from Y to X. 
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strictly increasing function of the duration t, and v(t), subject to 0 < v(t)  1, is a 
strictly decreasing function of t. 

If  is also symmetric, from (2.40) and (2.41) it follows that: 

u(t) v(t) = 1, t > 0  (2.42) 

that is, the accumulation and the discount factors for a fixed duration t are 
reciprocal. 

It is useful at this point to adopt for the uniform laws and for the exchange 
factors u(t) and v(t) the definitions and positions introduced for the factors m(X,Y) 
and a(X,Y). The following table is then obtained19. 

 
FACTORS, RATES AND INTENSITIES FOR UNIFORM LAWS 

Financial quantity Interest laws Discount laws 

I) initial accumulation factor for duration t u(t)  v(t)  

II) initial rate for duration t u(t) -1 1- v(t)  

III) initial intensity for duration t 
  
u(t) -1 

t
 

1- v(t) 

t
 

IV) continuing accumulation factor for the 
subsequent duration h after t 

u(t + h)

u(t)
 

v(t + h)

v(t)
 

V) continuing rate for the subsequent duration 
h after t 

u(t +h)

u(t)
-1  1-

v(t + h)

v(t)
  

VI) continuing intensity for the subsequent 
duration h after t 

u(t +h) - u(t)

h  u(t)
 v(t) - v(t + h)

h  v(t)
 

VII) instantaneous intensity in t (*) (t) =
u' (t)

u(t)
 (t) = -

v' (t)

v(t)
 

(*) (VII) is the limit case of (VI) when h 0 and assumes the derivability of exchange factors u(t) and 
v(t). Prime means differentiation. For simplicity, intensities are indicated with the same symbols  and 

used for those connected with law of two variables. 

Table 2.1. Factors, rates and intensities for uniform laws 

                                   
19 We notice that because of the invariance with translation following (2.39), it is possible 
and convenient to choose the time origin as X, the “beginning” time of the operation, and to 
measure time forwards (in interest laws) or backwards (in discount laws) for a time interval 
of length t. 
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From definition VII in Table 2.1, which expresses (t) and - (t) as logarithmic 
derivatives of u(t) and v(t), by inversion it follows that:  

u(t)  =    (z) dz
0

t

e ; v(t)  =    (z) dz
0

t

e   (2.43) 

 If the uniform interest and discount laws are conjugated (i.e. in the symmetry 
hypothesis), it results in (t) = (t) . In fact, it validates the theorem.  

THEOREM.– The necessary and sufficient condition in order for (2.42) to hold is 
the equality (t) = (t), t  0. 

Proof: 

Necessity: if (2.42) holds, it follows that t  0: ln u(t) = -ln v(t) and, 
differentiating, (t) = (t).  

Sufficiency: if (z) = (z), z  0, for (2.43) it follows, t  0, that 

  u(t) v(t) =    [( (z) (z)] dz
0

t

e  =  1 

because the integrand function is identically zero in the interval (0,t). 

Examples and applications of laws uniform in time will be shown in Chapter 3. 

2.5.2. An outline of associative averages 

Let us recall the concept of mean, as introduced by Chisini and developed by de 
Finetti20, from which the mean of quantities x1, x2, ..., xn with respect to a quantity y 
= f(x1, x2, ..., xn), which depends univocally on x1, x2,...,xn by the function f, is a 
value x̂  such that:  

f ( ˆ x , ˆ x ,..., ˆ x ) f (x1, x2, ...,xn)  (2.44) 

where if x1, x2,...,xn are replaced by ˆ x , f remains unchanged. In such a way the 
individuation of mean, which has a summarizing meaning, depends on the 
considered problem which constitutes a choice criterion.  

 
                                   
20 See, for example, de Finetti (1931); Volpe di Prignano (1985). 
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A mean is said to be associative when the same result is obtained, averaging out 
the given quantities (each with its weight) or averaging out the partial averages of 
their subgroup (each with the total weight of the subgroup). The consequent 
“associative property” is verified by the center of mass of a distribution of masses 
concentrated on the point of a line, a center whose abscissa x  = phh

xh / phh  

is the weighted arithmetic mean21 of the abscissas  xh  where the masses are put, 
with weights  ph corresponding to the masses. It can be proved (see the Nagumohy 
Kolmogoroff-de Finetti theorem) that, given the distribution   (xh , ph) , (h = 1, ..., n), 
the set of its associative averages coincides with the set of transformations of the 
arithmetic mean through a function q(x) chosen in the class of continuous and 
strictly monotonic functions. In other words, with q(x) continuous and strictly 
decreasing or increasing, the number ˆ x q , solution of the following equation in x 

( ) /h hh h h
q(x) =  q xp p

  (2.45) 

is an associative average of the values xh  with weights  ph  and all the others can be 
obtained by varying q(x) in the class specified above. Since q(x) has an inverse 
function q-1(x), we univocally obtain 

-1ˆ  = q  ( ) /q h h hh hx q xp p
  (2.46) 

ˆ x q , called q-average, is invariant for linear transformation on q(x), because it 
follows from (2.45) that 

[ ( ) ] /h hh h h
a q(x)+b = a q x bp p

 

The more important averages used in applications are associative.22 

The following properties hold: 

1) the geometric mean can be obtained as the limit of the power mean when 
k 0;  

                                   
21 If the weights are all equal, the mean is called “simple”.  
22 Let us recall the mean of powers of order k, with transformation function q(x) = xk (the 
arithmetic mean for k = 1, the quadratic mean for k = 2, and the harmonic mean for k = -1), 
the geometric mean for q(x) = log x, and the exponential mean for q(x) = ecx. 
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2) with the same data, power means with exponent k give values increasing 
with k; 

3) the inequality between ˆ x q  and x  depends on the feature of q(x), resulting: 

– ˆ x q  > x , if q(x) is increasing convex or decreasing concave, 

– ˆ x q  < x , if q(x) is increasing concave or decreasing convex. 
 
The concavity and convexity are, as usual, downwards. 

The aforementioned properties are shown in Figure 2.3, which explains the 
calculation of a simple associative average of two elements. 

(a) (b)

 
Figure 2.3.a Associative average with convex q(x) 

Figure 2.3.b Associative average with concave q(x) 

2.5.3. Average duration and average maturity 

Let us consider a financial relation  expressed by a law with an always positive 
intensity, and suppose that the exchange factors q(t) consequent to  are continuous 
and strictly monotonic of the duration. 

Let us also consider the following problem: given the amounts K1, K2, ..., Kn 
accumulated or discounted according to the same exchange law q(t) and the 
respective durations t1, t2, ..., tn, we want to find the duration  ˆ t q  of investment (or 
discount) according to q(t) of the amount K = h hK  so as to have the same 
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interest (or discount) obtainable as with the original operation on the n amounts K1, 
K2,..., Kn23. 

Under these assumptions the value ˆ t q  is univocally determined and is called the 
average length (or average maturity, choosing 0 as starting point) of the operation. 
This makes it possible, having fixed the starting time T0 (i.e. the beginning of the 
investment or maturity of the amount to be discounted), to find the average maturity 
T1 = T0 + ˆ t q  (in accumulation) or T1 = T0 - ˆ t q  (in discounting).  

The average length  ˆ t q  depends on the choice of q(t) and can be found by using 
(2.46) with  ˆ x q  =  ˆ t q , ph = Kh, xh = th. Based on the financial meaning, in 
accumulation the interest obtained with the n investments based on the factor q(t) = 
u(t) for the given times th is Khh 1

n u(th ) 1 , while that obtained with only one 

investment of Khh 1
n  for the time t is 

 ( Khh 1
n ) u(t) 1 ; these values are the 

same if t =  ˆ t q . The position is analogous in discounting with q(t) = v(t). This proves 
the following theorem. 

THEOREM.– In a financial operation of investment or discount of more than one 
amount with different durations th, the average length ˆ t q  is associative and 
coincides with the q-average of the lengths, weighted with the amounts Kh, where 
the transformation function q(t) coincides with the factor u(t) or v(t), respectively in 
an accumulation or discount operation.  

2.5.4. Average index of return: average rate 

Let us consider the following problem of averaging. Let us invest for the same 
duration t the amounts C1, C2,...,Cn by using accumulation laws (for simplicity 
following the same regime) with different returns, based on the factors u1(t),..., 
un(t). We want to find the accumulation factor that leaves the total interest 
unchanged for the same duration t. The solution is: 

ˆ u (t) Chuh (t) /
h 1
n

Chh 1
n   (2.47) 

                                   
23 The financial operations with n>2 amounts, which are called complex, will be discussed in 
Chapter 4.  
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The same result is obtained for a discount of length t, with factors vh(t) applied 
at maturity to the amounts Mh. 

The following theorem is then proved. 

THEOREM.– Applying different exchange factors to different amounts for the same 
duration t, in accumulation or discount operations, the factor which does not 
change the returns is the arithmetic average of factors weighted with the amounts. 

If the accumulation factors uh(t) can be expressed t with the same invertible 
function q(ih;t) of the interest rates ih (h = 1,...,n), the mean rate  ˆ i q (t)  is defined by 

-1
1 1

ˆ ( )   ( ; ) /n n
q h h hh h

i t q C q i t C
  (2.48) 

In the same way, the mean rate  ˆ d q (t)  of the discount rates dh (h = 1,...,n) is 
defined for discounting, using in (2.48) the discount factors q(dh;t) instead of the 
accumulation factors q(ih;t) and the capitals at maturity Mh instead of the invested 
capitals Ch. 

2.6. Uniform decomposable financial laws: exponential regime 

We have already shown the practical importance of uniform financial laws. In 
relation to a financial regime – defined as a set of financial laws, based on a 
common feature and identified in the set by a parameter – it is important to 
investigate the existence and the properties of regimes which are decomposable and, 
at the same time, uniform. Hence, given that the financial laws  

u(t) = e t   ;   v(t) = e- t                               (2.49) 

are called exponential laws and, by varying the parameters  and  they constitute 
the exponential regime (often considered in symmetric hypothesis i.e. = ), the 
following theorem holds. 

THEOREM.– The exponential regime, characterized by intensities constant in time, 
is the only one to be decomposable and uniform. 

Proof: 

1) If X  Y  Z, given Y - X = t1, Z - Y = t2 and then Z - X = t1+t2, if  is 
uniform, it follows that: m(X,Y) = u(t1); m(Y,Z) = u(t2); m(X,Z) = u(t1+t2). From 
(2.27), because of decomposability, we obtain the following characterization of 
decomposable and uniform interest laws:  
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u(t1) u(t2) = u(t1+t2); (t1  0, t2  0)  (2.50) 

2) If X  Y  Z, given X - Y = t1, Y - Z = t2 and then X - Z = t1+t2, if  is uniform, 
it follows that a(X,Y) = v(t1); a(Y,Z) = v(t2); a(X,Z) = v(t1+t2). From (2.30), because 
of decomposability, we obtain the following characterization of decomposable and 
uniform discount laws: 

v(t1) v(t2) = v(t1+t2); (t1  0, t2  0)  (2.50') 

It is known that in the hypothesis that is valid for u(t) and v(t), the functional 
equations (2.50) and (2.50') are satisfied only by exponential functions; this proves 
the theorem24. 

If  is uniform and strongly decomposable, and then symmetric, in (2.49) this 
results in . The exchange factors then assume the form 

 g(t) = e t, t   (2.51) 

which satisfies (2.40). Equation (2.51), which is a particular example of (2.36), 
summarizes the exponential regime in the symmetric hypothesis and for all choices 
of  identifies an exchange law that is strongly decomposable and uniform. Briefly, 
the exchange exponential laws, and only those laws, correspond to indifferent 
relations that are equivalences that are uniform in time25.  

                                   
24 The previous result can be deduced directly by observing that intensity depends on the 
initial time X and on the current time T, but if the law is decomposable the intensity must 
depend at the most on T, X, while if the law is uniform the intensity must depend at the 
most on T-X. Then if the law is decomposable and uniform, both principles X being valid, it 
is necessary and sufficient that the intensity does not depend on any time variables, and it is 
constant; for compound accumulation laws, which in the continuous case lead to the 
exponential laws, see Chapter 3.  
25 In the strongly decomposable and uniform law, which follows from a relation of uniform 
equivalence, the curves S = (T), which correspond to the equivalence classes that are 
characterized, because of uniformity, by the further property of invariance by translation. 
Therefore, they follow by only one curve, which is translated continuously with a movement 
rigid and parallel to the time axes. The exponential curves S k e  T  e (T -T' ) (where T' = 
ln k/ ) are obtained, such that all the supplies equivalent to (T0,S0), so that all the supplies 

and only them, are represented by a point on the curve obtained putting k =  S0 e T0 . 



Chapter 3 

Uniform Regimes in Financial Practice 

3.1. Preliminary comments 

In this chapter we will consider financial laws widely applied in the practice of 
investment and discount. One of their common features is the uniformity in time, so 
that the calculation of accumulated and discounted values depends only on the 
duration of the operation. 

It is clear that the return of an operation is measured by a per period rate1. In a 
uniform law, if the rate remains constant for all given periods (we then talk about 
flat structure, in the field of all possible term structures of interest rate, concepts that 
we will consider later), it is clear that percentage returns remain unchanged 
wherever the operation is located in the time axis. This does not happen in financial 
markets, where to be at least approximately realistic, it would be necessary, in order 
to keep the simplicity of uniform law, to use the flat structure for a relatively short 
period. If this cannot be done because of the variability of returns with time, it is 
necessary to use the laws of two variables, characterized by per period rates 
changing with current time.  

We will consider three couples of uniform financial regimes2 that give rise to 
many infinite families of uniform laws of interest and discount identified by the 
return parameters.  

                                   
1 Let us recall that the per period rate measures the price for the availability of money in the 
given period. 
2 When we distinguish between accumulation and discount, instead of “regime” we can talk 
about “couple of regimes” of interest and discount. 
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Because of uniformity we can use 0 as the initial time of the operation of 
investment (or the maturity of discounts), using small letters for duration (see 
section 2.5). 

3.1.1. Equivalent rates and intensities 

In any given financial regime of interest or discount, the problem of comparing 
rates or interest relative to different duration often arises. The following definitions 
hold. 

Two per period interest (or discount) rates for different durations are said to be 
equivalent if they give rise to the same percentage of annual return and then, 
according to previous definitions, if they follow from the same financial law of 
interest (or discount). 

Two intensities of interest (or discount) for different durations are said to be 
equivalent if they correspond to equivalent rates, and then if they follow from the 
same financial law of interest (or discount). 

Two per period rates, one of interest for the length t' and the other of discount for 
the length t", are said to be equivalent if they give rise to returns expressed by the 
annual interest and discount corresponding to conjugate laws. The equivalence for 
intensities follows from the equivalence for per period rates. 

Rates and intensities for the regimes, discussed in the following text, are to be 
considered “initial”. 

3.2. The regime of simple delayed interest (SDI) 

Continuing the considerations in section 1.1, we observe that the simplest way to 
calculate interest on a loan amount C is to consider the interest I proportional both to 
the principal C and the duration t = y-x (with no dependence on the initial time x) 
obtained as: 

I = C i t (3.1) 

Parameter i, which is usually given in percentage form r% = r/100, where  
r = 100 i, measures the interest for a unitary capital and a unitary time interval. 
Assuming from now on (unless otherwise stated) that the year is the unit measure for 
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time, i is called the annual interest rate (delayed). The accumulated amount  
M = C+I after time t is then given by  

M = C (1 + i t)  (3.2) 

Relations (3.1) and (3.2) for each choice of C, i, t, are characteristic of the 
regime of simple delayed interest (SDI), in which interests are paid, or booked, only 
at the end of the loan of length t. 

It follows from (3.1) and (3.2) that for accumulation laws in the SDI regime 

– the accumulation factor for the length t = y – x > 0 is  

ut = 1 + i t  (3.3) 

– the per period interest rate (1.3) for the length t is 

it = i t  (3.4) 

– the per period interest intensity for the length t is  

jt = it /t = i  (3.5) 

independent of the duration and equal to the annual interest rate3. 

Relation (3.4) gives the equivalent per period rates to a given annual rate i. More 
generally, for durations that are not alike and different from a year, there exists 
proportionality between equivalent per period rates and lengths. In symbols, if it’ 
and it” are the rates for the length t' and t", they are equivalent if  

it' /t' = it" /t" = I  4   (3.6) 

EXAMPLE 3.1.– If in the SDI regime the quarterly interest (t' = 1/3) is 5.25%, the 
equivalent semi-annual rate (t"= 1/2) is: 0.05253/2 = 0.07875, or 7.875%. They both 
give rise to the annual return i = 0.1575 which also measures the intensity. 

                                   
3 Such equality, which is only numeric and not dimensional, is due to the fact that the interest 
rate is measured annually. 
4 t',t") members in (3.6) are equal to the per period intensity and then the equivalence of 
rates gives the equivalence of the per period intensities between them and to i. “per period” 
refers to the period in which the return matures. 
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If the intensity changes during the lifetime of the loan, assuming the values 
i(1), …, i(n) for the length t1,...,tn, (where tss 1

n  =  t ), (3.2) can be generalized as: 

  M =  C (1 +  i (s)tss=1

n ) =  C (1 +  i  t)   (3.7) 

where i  is the arithmetic mean of intensities i(s) weighted with the length ts. 

EXAMPLE 3.2.– We invest €150,000 in the SDI regime obtaining for the first 3 
months the annual interest (= intensity) of 5%, for the next 4 months interest of 
5.5%, and for the next 6 months interest of 5.2%. The accumulated amount at the 
end is: 

M = 150,000.[1 + (0.05.3+0.055.4+0.052.6)/12] = €158,525 

Exercises on the SDI regime 

3.1 

Calculate in the SDI regime the interest earned for 6 months on a principal of 
€1,500,000 at the annual rate of 8.25%.  

A. Applying (3.1): I = €61,875 

3.2 

Calculate in the SDI regime (adopting bank year, with 360 days and each month 
having 30 days) the accumulated amount of a loan of €2,500,000 and of length 2 
years, 6 months and 25 days at the annual rate of 9.5%. 

A. Applying (3.2): M = €3,110,243 

3.3 

Calculate the accumulated amount as in Exercise 3.2, applying the varying 
interests: 9.5% in the 1st year, 10.5% in the 2nd year, 9% in the 3rd year.  

A. Applying (3.3):  

M = 2,500,000 (1 + 0.095 + 0.105 + 0.09 205/360) = €3,128,125 

The average annual interest for the operation is 0.25125.360/925 = 9.778%. 
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3.3. The regime of rational discount (RD) 

From the SDI laws we can deduce the conjugated discount laws that give rise to 
reciprocal factors. They fall within the rational discount (RD) regime. The 
discounted value C, payable in x instead of the amount M at maturity y>x, is 
obtained from (3.2), resulting in 

  
C =  M

1 + i t
  (3.8) 

Giving the annual interest rate i of the conjugate SDI law, we obtain the RD law 
for which: 

– the discount factor for the length t is  

vt = 1/(1 + i t) (3.9)  

– the per period discount rate for the length t is 

dt = 
i t

1 i t
  (3.10) 

– the per period discount intensity for the length t is  

t = dt /t = i

1 i t
  (3.11) 

If the annual discount rate d = i/(1+i) is given5, from which i = d/(1-d), the 
previous quantities (3.9), (3.10) and (3.11) are obtained as a function of d: 

  

v
t
  

1

1-
d t

1- d

 =  
1 -  d

1- d(1- t)
 (3.9') 

  
d

t
  1 v

t
 =

d t

1- d(1- t)
 (3.10') 

                                   
5 This law has a trivial interpretation: i is the interest paid at the end of the year on the unitary 
capital, while d is the discount or the interest paid at the beginning of the year. Then d is the 
discounted value of i, the relation is obtained from (3.10) posing t = 1. It is useful to make use 
of such arguments based on the financial equivalence’s principle.  
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  t
 =  d

t
/ t =  

d 

1- d(1- t)
 (3.11') 

Equation (3.10') gives the per period discount rate for the length t equivalent to 
the annual discount rate d. 

EXAMPLE 3.3 

1) If in the RD regime the delayed interest i = 7.40%, using (3.10) we obtain the 
semi-annual, four-monthly, quarterly and monthly discount rates: 3.5680%, 
2.4073%, 1.8164% and 0.6129%. 

2) If in the RD regime the advance rate is d = 6.80%, using (3.10') we obtain the 
semi-annual, four-monthly, quarterly and monthly discount rates: 3.5197%, 
2.3743%, 1.7914% and 0.6043%. 

3) If in the RD regime the four-monthly discount rate is d1/3 = 2.15%, inverting 
(3.10) with t = 1/3 we obtain the equivalent annual rate i = 3.0.0215/0.9785 = 
0.065917. Then the equivalent semi-annual rate i1/2 is obtained through (3.10) and it 
is 3.1907%. 

The amount D of the discount on M and the discounted amount C as a function 
of d are given respectively by 

D = M dt = 
  

M d t
1- d(1- t)

 ; C = M vt = 
 

M (1- d)
1- d(1- t)

  (3.12) 

In Figure 3.1, for an SDI law, the graph of I = I(t) and M = M(t) are shown (see 
(3.1) and (3.2)) as a function of t. Figure 3.2 shows, for an RD law, the graph  
C = C(t). 

 

Figure 3.1. Simple delayed interest 



Uniform Regimes in Financial Practice     47 

 

Figure 3.2. Rational discount 

Comments 

All linear laws, including conjugated laws, are used in general for short time 
periods. For the SDI laws, by indicating as g the number of days in the financial 
operation, the interest can be written as  

I =  
C g

T/i
   (3.13) 

where T=360 if the “bank year” is used and T=365 if the “calendar year” is used. 
The numerator in (3.13) takes the name of “number” and the denominator that of 
“fixed dividend” because it depends only on the rate.  

(3.13) is useful for finding the interest on a current account ruled by the SDI law 
in a given period (bank accounts are typical), because in order to calculate the 
interest in the considered period it is enough to sum the numbers relative to the days 
between two changes and divide by the fixed dividend. 

Exercises on the RD regime 

3.4 

Calculate in the RD regime the discount to cash with a 3 month advance a credit 
of €30,000 at an annual interest rate of 6%. 

A. By applying (3.10) and (3.12) with i = 0.06, t = 0.25, the following is 
obtained 

dt = 0.015/1.015 = 0.014778 = 1.4778% 

D = M dt = €443.35 
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3.5 

Calculate in the SD regime the discounted amount at 31 March of an amount of 
€160,000 payable on 31 August, following the calendar year and applying an annual 
discount rate of 6%. 

A. By applying (3.12) with d = 0.06, t = 153/365 = 0.419178, M = 160,000, the 
following is obtained: 

C = (160,000.0.94)/[1-0.06(1-0.419178)] = €155,830.6. 

3.4. The regime of simple discount (SD) 

If in the choice of financial regime we consider the problem of discount and – 
with a symmetric argument that gave rise to the SDI laws – we want to find a regime 
that gives rise to proportionality between payment and terminal value and 
anticipation time, we obtain the simple discount (SD) regime. In the SD regime, the 
amount D of discount on a terminal value M for a length t is given by 

D = M d t   (3.14) 

Parameter d, which is usually given in percentage r%, where r = 100 d, has the 
meaning of discount for unitary capital and for a unitary time interval and is called 
the annual rate of discount. The discounted amount C = M-D at time x, 
corresponding to the amount M payable at maturity y = x+t > x, is given by 

C = M (1 – d t)  (3.15) 

From (3.14) and (3.15) it follows that, for a law in the SD regime, 

– the discount factor for length t of advance is  

vt = 1 - d t   (3.16)  

– the per period discount rate (1.4) for length t is 

dt = d.t   (3.17)  

– the per period discount intensity for length t is  

t = dt / t = d   (3.18) 
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independent of the length, and numerically equal to the given annual discount rate d. 

As in the SDI regime with (3.4) and (3.5), (3.17) gives the per period discount 
rate equivalent to the annual rate d. More generally, there exists proportionality 
between equivalent per period rate and length, and 

dt' / t' = dt" / t" = d  (3.19) 

results, so we have the independence of the discount intensity from length. 

EXAMPLE 3.4.– If in the SD regime the bimonthly rate (t' = 1/6) is 1.25%, the 
equivalent semi-annual rate (t"= 1/2) is: 0.0125.6/2 = 0.0375 = 3.75%. Both give the 
percentage of advance annual return d = 7.50%. 

Exercises on the SD regime 

3.6 

Let us assume that a bill of €3,500 has a deadline on 30 September of the year T. 
We ask for the discount at bank Z, in the SD regime at the annual rate of 7% with 
payment on 25 June of the same year. Not considering transaction costs, calculate 
the return. 

A. Because of (3.15) it is given by  

C = 3,500 (1 - 0.07 97

360
) = €3,433.99. 

3.7 

It has been agreed on the anticipation at 20 May of the amount of €68,000 with 
maturity at 30 September of the same year, in the SD regime (using the calendar 
year) and fixing the four-monthly equivalent rate of 2.65%. Calculate the amount of 
discount. 

A. The annual equivalent rate d is 0.0265.3 = 0.0795. Using (3.14): 

D = 68,000.0.0795 133

365
 = €1,969.86 
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3.5. The regime of simple advance interest (SAI) 

The interest law conjugated to the simple discount gives rise to the regime of 
simple advance interest (SAI), which is also called the regime of commercial 
interest.  

Using the annual advance interest rate d in an SAI law:  

– the accumulation factor for length t is 

ut = 1 / (1 - d t)   (3.20)  

i.e. inverse of the factor vt defined in (3.16); 

– the per period interest rate (delayed) for length t is6  

it = 
  

d t
1 -  d t

   (3.21) 

– the interest intensity for length t is  

jt = it /t = d

1 -  d t
   (3.22) 

Multiplying (3.20) for a capital C invested in x the accumulated amount is 
obtained 

M = C ut   (3.20')  

at time y = x+t > x.  
 

                                   
6 Equation (3.21) gives the per period interest rate equivalent to the advance annual rate d or 
to the delayed annual rate i = d/(1-d) of the conjugate law. 
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Figure 3.3. a) Simple discount; b) simple advance interest 

EXAMPLE 3.5 

1) In the SAI regime, given the advance rate d = 8.20%, the semi-annual, four-
monthly, quarterly, monthly, etc., interest rate can be found using (3.21); 4.2753%, 
2.8101%, 2.0929% and 0.6880% respectively are obtained. 

2) In the SAI regime, given the delayed rate i = 9.50%, the corresponding rate d 
is 0.095/1.095 = 0.086758 = 8.6758%, and applying (3.21) the semi-annual, four-
monthly, quarterly, monthly, etc., interest rate can be found; 4.5346%, 2.9781%, 
2.2170% and 0.7282% respectively are obtained. 

3) In the SAI regime, given the four-monthly interest rate i1/3 = 2.35%, inverting 
(3.21) with t = 1/3 the equivalent annual rate d = 3.0.0235/1.0235 = 0.068881 can be 
found. Then the equivalent semi-annual rate i1/2 can be found, using (3.21) to be 
3.5669%. 

Exercises on the SAI regime 

3.8 

Calculate the accumulated amount after 20 months of the investment of 
€120,000 in the SAI regime at the advance annual interest rate of 4.50%, and also 
the per period equivalent interest rate. 

A. By applying (3.20) and (3.20') the following is obtained 

M = 120,000/(1 - 0.045.20/12) = €129,730. 

The per period equivalent interest rate is calculated by (3.21) and the following 
is obtained:  

0.075/(1 - 0.075) = 8.1081%. 
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3.9 

It is known that an 8 month discount operation in the SD regime at the annual 
rate d = 6% gives a discounted amount C = €155,000. Calculate: 

– the capital at maturity; 

– the per period discount rate; 

– the per period interest rate in the conjugate law. 

A. Given that the conjugate law to the applied SD law is an SAI: 

– the capital at maturity is calculating using (3.20'):  

M = 155,000/(1 - 0.06.8/12) = €161,458; 

– the per period discount rate is 0.06.8/12 = 4%; 

– the per period interest rate in the conjugate law is 0.04/1.04 = 4.1667%. 

3.10 

Consider the same problem as in Exercise 3.9 but with: C = €155,000, d = 6% 
and t = 10.75 (= 10y+9m). 

A. The capital at maturity is M = €436,620, the per period discount rate is 
64.50% and the interest rate of the SAI law is 181.69%: note that the spread between 
the two rates increases. Note that the critical length threshold t = 1/d, such that the 
delayed interest and the accumulated amount diverge, is in this case 1/0.06 years=16 
years and 8 months. 

3.6. Comments on the SDI, RD, SD and SAI uniform regimes  

Each of the two couples of uniform financial regimes considered in sections 3.2 
and 3.3 and in sections 3.4 and 3.5 is made of a regime with factors which are linear 
functions of the length and another regime, which includes the conjugate laws, with 
factors which are a rational function of the length (their graph is an equilateral 
hyperbola). We can summarize this by saying that such regimes are made of uniform 
linear laws and their conjugate. 

Let us summarize further properties of and observations about such couples. 

3.6.1. Exchange factors (EF) 

Using the symbols in section 2.4 we indicate by g( ) the exchange factor (EF) for 
the length with sign (accumulation if >0, discount if <0) and we put t=| |. If the 
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corresponding laws are conjugate, (2.41) holds; then, , g( ) and g(- ) are 
reciprocal.  

If we consider a couple of SDI and RD conjugate laws, we have, with = t > 0: 

g( ) = 1+i  = 1+i t (SDI) ; g(- ) = 1/g( ) = 1/(1+i t) (RD) 
 
If we consider a couple of SD and SAI conjugate laws, we have, with = -t < 0: 

g( ) = 1+d  = 1-d t (SD) ; g(- ) = 1/g( ) = 1/(1- d t) (SAI) 

3.6.2. Corrective operations 

We notice, in the example of uniform financial laws considered here, that the 
operative role is similar to an “offsetting entry” that the conjugate laws have. 
Indeed, if an investment of C has been agreed with an SDI (or SAI) law for the 
length t, which gives rise to M, and to cancel such an investment, instead of an 
offsetting entry, we can restore the previous situation by applying to M the 
corresponding RD (or SD) factor.  

3.6.3. Initial averaged intensities and instantaneous intensity 

As already mentioned in footnote 3, values (3.5), (3.11), (3.18) and (3.22) are 
initial averaged intensities in the interval (0,t) for investment or anticipation. The 
instantaneous intensity7 in t (time from investment or time to maturity) has another 
meaning: it is obtained as a limit case of the continuing intensity defined in section 
2.3.  

Recalling that in the interest laws the instantaneous intensity are obtained from 
the logarithmic derivatives with respect to t of the exchange factors, the following 
expression for the instantaneous intensity in t can be easily deduced: 

a) SDI (rate i): t = i/(1 + it) decreasing with t 

  RD (rate i'): t = i'/(1 + i't) decreasing with t 

b) SAI (rate d): t = d/(1 - dt) increasing with t 

                                   
7 Summarizing the definition in Chapter 2, in the accumulation of an investment made in x=0 
the instantaneous intensity in y=t>0 is the limit of the per period intensity between y and 
y+ y, with y>0, while in the discount of capital with maturity in x=0 the instantaneous 
intensity at time y=-t<0 is the limit of the per period intensity between y and y+ y, with y<0. 
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  SD (rate d') t = d'/(1 - d't) increasing with t8 

If in a) i = i' or in b) d = d', the corresponding laws are conjugate to each other. 

3.6.4. Average length in the linear law and their conjugates 

By applying the considerations in sections 2.5.2 and 2.5.3, it is easily verified that: 

– in the SDI regime: the factor ut = 1+it is linear and then the average length ˆ t q  
is the arithmetic mean of the investment length th, weighted with the amounts Ch. It 

can be verified that the equality between the interests Chh 1
n ith , obtained with 

investments on times th,, (h=1,…,n), and the interests it Chh 1
n  obtained with only 

one investment for time t, can be obtained if and only if t = Chh 1
n th / Chh 1

n ; 

– in the SD regime: the factor vt = 1-dt is linear and then the average length ˆ t q  is 
the arithmetic mean of the discount length th, weighted with the amounts Mh; 

– in the SAI regime: ˆ t q  is an associative mean of the length th, such that 1-d ˆ t q  is 
the harmonic mean of the factors 1-dth, weighted with the amounts Ch; 

– in the RD regime: ˆ t q  is an associative mean of the length th, such that 1+ i ˆ t q  
is the harmonic mean of the factors 1+ith, weighted with the amounts Mh. 

3.6.5. Average rates in linear law and their conjugated laws 

Referring to the symbols introduced in section 2.5.4 and using the same 
arguments used for the average length, we can deduce that: 

– in the regime SDI: the average rate is the arithmetic mean of the rates ih with 
weights given by the used amounts Ch;  

– in the regime SD: the average rate is the arithmetic mean of the rates dh with 
weights given by the capital at maturity Mh; 

                                   
8 The formal coincidence, due to the analytic properties of the exchange factors, of formulae 
(3.11) and (3.22) of initial intensity in the RD and SAI regimes with the respective 
instantaneous intensity does not change the difference between initial intensity, which is a 
domain function, and instantaneous intensity, which is a point function.  
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– in their conjugate regime, the average rates are obtained as associative means 
given by harmonic mean of the exchange factors, i.e. 1+iht with weights Ch in the 
RD regime and 1-dht with weights Mh in the SAI regime. 

3.7. The compound interest regime  

3.7.1. Conversion of interests 

Let us reconsider the interest formation with an SDI law, which reflects a 
spontaneous propensity of the market due to the double proportionality of the 
interest with respect to the amount of the invested capital and also the length of 
investment, as (3.1) shows. However, we observe that if the interest is added to the 
principal at the end of the operation, then there is an asynchrony between the 
position of the lender, which gives his supply continuously (making it possible that 
other persons use his capital, depriving himself of its profitable use), and the 
borrower, who delays his payment until maturity. Such asynchrony, prejudicial for 
the lender, is greater the longer the time of investment. Thus, an investor can accept 
this regime, with equal return rates, only in the short-term (usually not longer than 
one year)9. 

Briefly, with the SDI regime the earned interest remains unprofitable until the 
end of the operation. Concerning SDI we can imagine the presence of two accounts: 
on the first account we book the principal C, giving interest with flow C i and then 
with amount C i t for every time of length t. However, such interest is booked on 
the second unprofitable account. At the end of the operation of length t the sums on 
both accounts, given by C and I = Cit, are withdrawn and transferred to the 
creditor10. It is then preferable to consider financial regimes that realize synchrony 
between the parties making the earned interest profitable. The transferring of earned 
interest between the unprofitable interest/account and the profitable 
principal/account, without having to wait until the capital is no longer being used, is 
called interest conversion. When these amounts are available for the creditor, he will 
be able to cash and use them elsewhere (and then the profitable capital in the 
original operation will remain unchanged) or he can add them to the capital (giving 

                                   
9 A rough solution to the damage connected with the asynchrony can be obtained easily with 
an increment of the interest rate. Furthermore, the fair increment would increase with the 
length. 
10 The SDI process is analogous to those of the following hydraulic scheme. A first tank 
holds a constant volume C of water; since time 0, by means of an open input tap some water 
flows into a second tank with a closed output tap; a gear is applied so that the inflow is 
proportional to C on the basis of the factor i, so we obtain a flow Ci. At time t the output tap is 
opened and the contents Cit of the second tank are poured into the first tank. All the water 
C(1+it) is soon withdrawn. 



56     Mathematical Finance 

more interest) in the same operation11. In this second case, a movement of money is 
not needed and it is enough to credit the interest in the same profitable 
principal/account. 

It is obvious that intermediate conversions increase the amount, i.e. the lender 
credit, in t, as is shown below (considering, for simplicity, only one conversion). Let 
a principal C be invested at time 0 at annual rate i for the length t, with the 
assumption that the interest is formed using an SDI law but let the interest be 
converted at time t1 = t – t2 < t and keep it invested at the same rate until t. Adding 
to C the interest Cit1 earned at time t1, the amount with the added interest becomes 
M(t1) = C(1+it1) and the amount at term time t reaches the level: M(t) = 
C(1+it1)(1+it2) = C[(1+it) + i2t1t2]. It is thus proved that an intermediate 
conversion increases, at the same interest, the final amount: the simple interest for 
time t2 is added to the interest Cit1 earned in the time t1. 

The compound interest regime is characterized by the conversion of simple 
interests to profitable capital during the operation.  

Such a regime can be applied in two ways: 

1) the conversion is made with per period terms, or more generally in the 
discrete scheme; this is the method used in bank and commercial practice, with 
conversion at the end of the calendar year, calendar quarter, etc. We will then talk 
about discretely compound interest (DCI); 

2) the conversion is made continuously over time, only in this case there is a 
perfect synchrony between the parties in the contract. We will then talk about 
continuously compound interest (CCI).  

3.7.2. The regime of discretely compound interest (DCI) 

A general approach to the DCI laws leads to the following scheme: the use of 
principal C for the length t = t1+t2+ ... +tn (using a year as measure of time, unless 
otherwise stated), such that in the sub-period of length ts the intensities i(s), (s = 1, 
…, n) are used, and at the term of each sub-period the conversion is made. We then 
obtain the amount in t, given by 

  M (t)  =   C (1+
s=1
n

 i (s)ts)   (3.23) 

                                   
11 The decision will depend on convenience and alternative uses and we will talk about this 
when discussing investment choices (see Chapter 4). 
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The product gives the accumulation factor from 0 to t in the DCI law12. 

Let us now consider some particular cases of discrete conversion that are 
relevant for banking and business application. 

Accumulation with annual conversion 

Assume in (3.23): ts = 1, s, then t=n  (  = set of natural numbers); i(s) = 
constant = i. A particular case of this model is for the conversion of interests at the 
end of the solar year. When we have only one payment C, made at the beginning of 
first year, the amount at the end of nth year is given by 

M(n) = C (l + i)
n  (3.24)  

EXAMPLE 3.6.– If €1,263,500 is banked at the beginning of 1998 in a bank account 
ruled by compound interests, annual conversion, at the annual rate of 4.35%, the 
terminal value at the 6th year (soon after the 6th conversion) is €1,631,285. 

Mixed accumulation with annual conversion 

With the hypothesis that the conversion is done on 31 December of each year, 
the amount M(t) for the use of a principal C for a length t, in between n+2 years (i.e. 
the final part f1 of the first year, other n years and the initial part f2 of the (n + 2)th 
year, then t = f1 + n + f2 < n+2) is given by  

M(t) = C (1 + i f1 ) (1 + i)n (1 + i f2)  (3.25)  

where the simple interest law is applied for a fraction of a year.  

To maintain a bank account in which banking and withdrawal are made, we can 
apply the direct method making the algebraic sum of the relative amounts calculated 
using (3.25) from the time of movement until the common last time t. However, the 
scalar method is more often used, in which the “numbers” are found between 
subsequent balances in each calendar year and the conversion of interest is made at 
the end of the year or when the bank account is closed.  

                                   
12 Recalling that, due to the conversions, parameters i(s) are intensities and not also annual 
return rates, investing in 0 the principal C, the amount obtained after the 1st conversion is: 
M(t1) = C(1+i(1)t1) and becomes profitable with intensity i(2); then at the 2nd conversion we 
obtain: M(t2) = C(1+i(1)t1)(1+i(2)t2). And then, at the nth conversion i.e. at time t, we obtain the 
result specified in (3.23). 
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EXAMPLE 3.7.– On 4 September 1996, Mr. John banks €23,500 on a bank account 
ruled by 4.65% per year, with mixed accumulation and annual conversion. The 
amount on 20 October 1999 is 

M = 23500 (1+0.0465.118/360) (1.0465)2 (1+0.0465.292/360) = €27,114. 

Accumulation with fractional conversion 

Let s: ts = 1/m in (3.23), where m-1 ; i(s) = constant = j(m). We then have 
the conversion m times per year, where m is called frequency of the conversion of 
interest in profitable capital, indicating j as a function of the conversion frequency. 
This is the intensity parameter, where K j(m) t is the interest for the profitable 
capital K for the length t<1/m. Parameter j(m) is sometimes called the nominal 
annual rate, convertible m times a year or, more briefly, the annual m/convertible 
rate. The fractional conversion is usually used with the frequencies m = 2, 3, 4, 6, 
12. 

EXAMPLE 3.8.– If m = 4 (= quarterly conversion) and j(4) = 8%/year, the interest 
on the capital K is 0.08.K. t for a period t  1/4 and for a quarter the interest is 
0.08.0.25 K = 0.02K. Using C for the capital at the beginning of the year, the amount 
at the end of the year (after 4 conversions) is 

C (1 + 0.02)4 = C.1.08243216 

where the effective annual return is measured by i = 8.243216% > 8%. 

In the fractional accumulation with frequency m (o m-fractionated), if i is the 
effective annual rate, then 

– the accumulation factor for the length 1/m is: u1/m = 1+i1/m; 

– the per period interest rate for the length 1/m is: 

i1/m = (1 + i)1/m – 1  (3.26) 

which is found from the equivalence relation between rates: (1+i1/m)m = 1+i; 

– the per period interest intensity for the duration 1/m is: 

j(m) = m i1/m  (3.26') 

and relation i > j(m) can be deduced, if m-1 . 
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EXAMPLE 3.9.– We want to receive a return measure by the annual rate i = 6.45% 
with a prefixed use with monthly conversion. Then the monthly rate is i1/12 = 
0.522%, the corresponding intensity is j(12) = 6.266802%/year and the monthly 
accumulation factor is u1/12 = 1.00522. 

Mixed accumulation with conversion m times per year 

Using the assumption that the conversion is made at the end of each mth of the 
solar year, if f1< 1/m measures the interval between the investment and the first 
conversion and f2 < 1/m the interval between the last conversion and the end of the 
operation, by a generalization of (3.25) and using t = f1 + k/m + f2, we obtain: 

M(t) = C(1 + j(m) f1) (1 + j(m)/m)k (1 + j(m) f2)   (3.27) 

EXAMPLE 3.10.– On 4 September 1996, Mr. Tizio withdraws €23,500 from a bank 
account ruled by a nominal 4-convertible rate = 4.65%/year, with mixed 
accumulation quarterly converted. The debt on 20 October 1999 is 

M = 23500.(1+0.0465.26/360).(1+0.0465/4)12.(1+0.0465.20/360) = €27,157. 

Note: comparing this with the results in Example 3.7 using equal time and rate, the 
increase of the amount, which goes from €27,114 to €27,157 due to the more 
frequently interest conversion, will be noticed. 

Equivalent rate and intensity in the fractional conversion 

Two compound accumulation laws, the first with annual conversion at rate i and 
the second with m-fractional conversion at per period rate i1/m, are called equivalent 
if they give the same annual return. This happens if i and i1/m satisfy (3.26); in this 
case such rates are said to be equivalent.  

More generally, two compound accumulation laws, the first with m'-fractional 
conversion at rate i1/m' and the second with m"-fractional conversion at rate i1/m", are 
called, for the same reason, equivalent if 

(1 i1/ m ' )
m =  (1 i1/ m")

m" (3.28)  

and then i1/m' and i1/m" are called per period equivalent rates.  
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An analogous definition for the intensities can be given. Due to (3.26') and 
(3.28), if  

(1
j(m )

m 
)m =  (1

j(m")

m"
)m" (3.29) 

is true, then j(m') and j(m") are equivalent intensities. 

Exercise 3.11 

Calculate the per period rates and intensities for the annual, semi-annual, four-
monthly, quarterly, bimonthly, monthly, weekly, daily conversion frequencies in the 
compound regime at the annual rate of 5.27% and the quarterly rate of 1.36%, using 
Excel. 

A. The given frequencies are: m = 1, 2, 3, 4, 6, 12, 52, 360. To obtain the 
solution we will use an Excel spreadsheet, which is particularly useful for 
calculating formulae with repeated structures (here varying m), using the “copy and 
paste” function. This is because in Excel the “copy” operation does not refer to the 
number in the cell but to the formula written in this cell, which works on the values 
written in other cells; besides, by “pasting” into another cell the formula is 
“translated”, i.e. it works on the cells corresponding by translation (unless the 
command $ is used). For example, if C6 includes a formula depending on the 
contents of the cells A9 and B10, by copying C6 and pasting in C9, the result is the 
value of the same formula applied on the contents of the cells A12 and B13: indeed, 
there is a three cell translation downwards. Consequently, changing data on the 
cells, all the results are instantaneously changed, which is very advantageous. This 
should be remembered for all exercises in this book that use Excel. 

Using an Excel spreadsheet, using such techniques we will find the solutions 
based on (3.26), (3.26') and (3.28), (3.29) starting from the given rates 5.27% 
(annual) and 1.36% (quarterly). The following table is obtained. 
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CALCULATION OF EQUIVALENT RATES AND INTENSITIES 

 Equivalent to 
rate i = 5.27%  Equivalent to 

rate i1/4 = 1.36% 

m i1/m j(m)  i1/m j(m) 

1 5.270% 0.05270  5.552% 0.05552 

2 2.601% 0.05202  2.738% 0.05477 

3 1.727% 0.05180  1.817% 0.05452 

4 1.292% 0.05169  1.360% 0.05440 

6 0.860% 0.05158  0.905% 0.05428 

12 0.429% 0.05147  0.451% 0.05416 

52 0.099% 0.05138  0.104% 0.05406 

360 0.014% 0.05136  0.015% 0.05404 

Table 3.1. Equivalent rates and intensities 

The Excel instructions are as follows. The first three rows are used for data and 
titles; D3: 0.0527; G3: 0.0136. The 4th row is empty. The 5th row has the column 
titles; from the 6th to 13th rows: 

– column A (frequency): given frequency; 

– column B: empty; 

– column C (equivalent rates): C6:= (1+$D$3)^(1/A6)-1; copy C6, then paste on 
C7 to C13; 

– column D (equivalent intensity) D6:= A6*C6; copy D6, then paste on D7 to 
D13; 

– column E: empty; 

– column F (equivalent rate): F6:= (1+$G$3)^(4/A6)-1; copy F6, then paste on 
F7 to F13; 

– column G (equivalent intensity): G6:= A6*F6; copy D6, then paste on G7 to 
G13. 
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Note: rates are expressed in %; intensities are expressed in unitary form.  

Effects of frequency variations  

It is instructive to assess the effects on returns connected with a change of the 
conversion frequency, observing that: 

a) if the intensity j, i.e. the flow of interest accruing divided by the updated 
principal, is fixed (constant in the time), the annual rate i that measures the return of 
the unitary principal after one year of investment with m equally spaced conversions 
is given by 

  
i   f ( j,m) = (1 j

m
)m   1 (3.30) 

which is a sequence increasing with m; 

b) if the annual rate i, i.e. the return of a unitary principal after one year of 
investment with m equally spaced conversions, is fixed, the intensity j (constant in 
the time) is given by  

j g(i ,m) m[(1 i)1 m  1]  (3.31) 

which is a sequence decreasing with m.  

EXAMPLE 3.11 

a) Let the intensity be j = 12% per year, i.e. it is established that within each 
interval between two subsequent conversions, the interest, which is still 
unprofitable, on the profitable sum S(t) is earned according to the flow 0.12.S(t); it is 
then the product of such flow and the considered length t. The interest earned after 
one year is an increasing function of the number m of conversions, each done after 
1/m of a year, and is given by the product Si, where i = f(j,m) is given, for the usual 
choices of m, by the values in the 3rd column of Table 3.2 below, obtained using 
(3.30). 

b) Let the delayed annual interest be i = 12%; it is then established that, whatever 
the number m of conversions in one year, the intensity j (constant in the time) is 
such to assure at the end of the year of investment and interest return equal to 
0.12.C, where C is the principal. With the increase of m the intensity j = g(i,m) 
decreases and assumes, for the usual choices of m, the values in the 4th column in 
Table 3.2, obtained using (3.31). 

The calculations are made on an Excel spreadsheet. 
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  Problem a) j = 0.12 Problem b) i = 0.12 

Conversion frequency M i, given j j, given i 

Annual 1 0.120000 0.120000 

Semi-annual 2 0.123600 0.116601 

Four-monthly 3 0.124864 0.115496 

Quarterly 4 0.125509 0.114949 

Bimonthly 6 0.126162 0.114406 

Monthly 12 0.126825 0.113866 

Weekly 52 0.127341 0.113452 

Daily 360 0.127474 0.113347 

Table 3.2. Correspondence between i and j 

The Excel instructions are as follows. The first three rows are used for data and 
titles; C3: 0.12; D3: 0.12. The 4th row is empty. The 5th row has column titles. From 
the 6th to 13th rows: 

– column A: conversion frequency; 

– column B (frequency): given frequency; 

– column C (equiv. annual rat.) C6:= (1+C$3/B6)^B6-1; copy C6, then paste on 
C7 to C13; 

– column D (equiv. intensity) D6:= B6*((1+D$3)^(1/B6)-1); copy D6, then paste 
on D7 to D13. 

3.7.3. The regime of continuously compound interest (CCI)  

We showed in section 3.7.1 that perfect synchrony of the supplies between the 
two contracting parties of a financial investment is obtained only with the CCI 
regime, which makes the accumulation with continuous conversion of interest that is 



64     Mathematical Finance 

accrued during the use of the capital13. The mathematical calculations have the 
difficulty of considering infinitesimal times, and it is necessary to use infinitesimal 
calculus. We will keep the hypothesis of per period rates and intensities constant in 
time. 

We can consider two different ways to undertake the calculation: 

1) the first is to assume the continuous conversion as the limit case of the 
fractional conversion when the frequency diverges (i.e. m + ); 

2) the second, having general validity and also being suitable to describe the 
eventuality of time variable returns, consists of a direct approach to the formation of 
interest and their conversion, described with differential calculus. This is 
spontaneously related, in the case of constant in time returns, to the exponential 
regime described in section 2.6. We showed that the laws for such a regime, and 
only these, satisfy the properties of decomposability (and of strong decomposability, 
if we consider the couple of conjugate interest and discount laws) and uniformity in 
time. 

The first way brings us to consider the limit of (3.30) and (3.31) with diverging 
m. By the limit of (3.30), given the instantaneous intensity (constant over time) of 
return, denoted by , we obtain the equivalent annual rate i, which is also the upper 
bound for m = 1, of the intensities j(m) referred to the fractional conversion 
(according to the convexity of e t). By the limit of (3.31), given the annual rate i, we 
obtain the equivalent instantaneous intensity , lower bound for m  +  of the 
intensities j(m). Using formulae  

  

i lim
m

f ( ,m) lim
m

1
m

m

1  e 1

 lim
m

g(i ,m) lim
m

(1 i)1/ m 1

1/ m
ln(1 i)

 (3.30') 

EXAMPLE 3.12.– By using the data in Table 3.2, given the constant intensity  
j = 0.12 and taking the limit m + , it is calculated that in continuous 
accumulation i = f(0.12,+ ) = 0.1274969 holds. Instead, using the effective annual 
rate i = 0.12, it is calculated that in continuous accumulation the instantaneous 
intensity  = g(0.12,+ ) = 0.1133287 holds. By comparing these results with the last 

                                   
13 In the hydraulic analogy of footnote 10, in continuous accumulation the second tank 
always has the input and output taps open, so that the “drops” of interest just formed go to the 
first tank and the second tank is almost always empty. 
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row of Table 3.2, it can be seen that the daily values (m = 360) are a good 
approximation of the continuous conversion’s values. 

An annual time horizon is not needed to define fractional and continuous 
accumulation. More generally, accumulating in the interval [0,T] using the intensity 
j, the amount in T corresponding to the principal C invested in 0 with equally spaced 
conversions in [0,T] is: 

  
M (T ) C(1 j

T

m
)m   (3.32) 

and taking the limit for m + , if the intensity j(i,m) (varying with m so that i 
remains unchanged) converges to a real value indicated with in CCI the following 
is obtained14 

M(T) = lim
m

C(1 j(i,m)
T

m
)  m  = (3.33) 

  = C lim
m

(1
j(i ,m)T

m
)

m

j( i,m )T

j( i,m )T

= C e j(i,+ ) T = C e T  

The second way formalizes the continuous conversion with constant rate. It 
follows from the following postulates:  

– the linearity, that is, the proportionality between interests flow and the 
principal that generates them; 

– the circularity, that is, the immediate and continuous transferring of earned 
interests to the profitable fund that generates them. 

                                   
14 This formulation of continuous accumulation, intended as a limit of the fractional 
accumulation, introduces the restriction of all equal subdivision intervals. Furthermore, in this 
limit we need the convergence of the intensity as a function of the fractioning. This last 
property exists in both cases examined in the table with varying m:  

– when in the different fractioning situations the annual rate i (or a given per period rate 
i1/m) is kept unchanged because in such a hypothesis the intensity, being decreasing, 
converges to = ln(1+i) = ln(1+i1/m)m}; 

– when the intensity does not change.  
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From these follows the equality between the amount’s increment between t and 
t+dt, approximated by dM(t)=M'(t)dt, and the infinitesimal interest M(t).dt. Then 
the simple differential equation (which is linear homogenous of the 1st order and 
with separable variables) is derived 

M'(t) = M(t)   (3.34)  

for which the particular solution, relative to the condition M(0) = C, is 

M(t) = C e t, t  [0,T]  15  (3.35) 

Equation (3.34) can be obtained with more details from the following 
considerations. Given the constant intensity  >0, investing C at time 0 and without 
any interest conversion, at time T the interest is C and if at that time the interest is 
added to the principal, the amount M(t) becomes C(1+ T). This SDI scheme satisfies 
linearity but not circularity, in the time interval [0,T], where circularity instead 
implies that in the infinitesimal interval dt between times t and t+dt in [0,T], the 
amount is increased by the earned interest, expressed by M(t)dt + o(dt), where 
o(dt) represents an infinitesimal error of order greater than dt. The following 
differential relation holds, t [0,T]  

M(t+dt) = M(t) + M(t)dt + o(dt)   (3.34') 

which gives the amount, originated by the principal C invested in t=0 and without 
any other financial flow, as a function of t that is continuous and differentiable t > 
0. Taking the limit for dt 0 and taking into account that lim o(dt)/dt = 0, (3.34) is 
obtained. 

It is obvious that such a financial mechanism, based on linearity and circularity, 
realizes the CCI regime with constant rate, that, taking into account (2.50), is 

                                   
15 Considering, for the sake of simplicity, the unitary capital invested at time 0, the accumulated 
amount in t without previous conversion (then only due to linearity) is: M1(t) = 1+ t, while with 
previous continuous conversion (then also due to circularity) it is  

  
M (t) e  t 1  t

2

2
t2

3

3!
t3 ...

n

n!
t n ... 1  t = M1(t)  

which shows that   M (t) M1(t)  and also M1(t) is the linear approximation in t=0 of M (t). 
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equivalent to the accumulation with the exponential regime16. A law of such a 
regime, and which is called an exponential law, applicable in the interval [0,T], 
given the annual rate i or the per period rate i1/m, is obtained from (3.35) using (see 
footnote 15) 

 = ln (1+i) = m ln (1+i1/m).   (3.31') 

If the intensity  is given, the following inverse formulae hold 

  i e 1      ;       i1/m e / m 1.   (3.31") 

Then, given the annual rate i, (3.35) can be written as 

M(t) = C (1+i)t, t  0   (3.35') 

It follows from (3.35) and (3.35') that for the accumulation laws in the CCI regime17: 

– the accumulation factor for the length t = y-x > 0 is 

ut = (1+i)t = e t   (3.36) 

– the per period interest rate for the length t is  

it = (1+i)t - 1 = e t – 1   (3.37) 

– the per period interest intensity for the length t is 

jt = it /t = [(1+i)t - 1]/ t = (e t - 1)/t   (3.38) 

Exercise 3.12 

Let us consider an investment of €4,550 in the CCI regime at the annual rate of 
6.78% for 5 months and 18 days. Calculate the accumulation factor, the per period 
rate and the corresponding intensity, the instantaneous intensity and the earned 
interest at time t.  

                                   
16 Let us consider here the exponential regime in the formation of interests for problems of 
accumulation with constant rate (or with “flat structure”). For the analogous discount regime 
see section 3.8.  
17 For these and other questions of financial mathematics, see S. Kellison (1991), Irwin; 
Poncet, Portait, Hayart (1993).  
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A. Adopting the bank year, this results in:  

 t = 5/12+18/360 = 0.46667; then:  

 ut = 1.06780.466667 = 1.031087; it = 1.0670.466667 - 1 = 0.031087; 

 jt = 0.031087/0.466667 = 0.066615/year;  

  = ln 1.0678 = 0.0656/year; It = 4550.0.031087 = €141.45.  

Exercise 3.13 

Let us consider the investment of the previous exercise with the same interest 
rate but for a length of 2 years, 3 months and 7 days. Calculate the accumulation 
factor, the per period rate, the corresponding intensity and the interest earned at time 
t. 

A. t = 2+3/12+7/360 = 2.269444 holds, and then: 

ut = 1.06782.269444 = 1.161023; it = 1.06782.269444 - 1 = 0.161023; 

jt = 1.161023/2.269444 = 0.070953; It = 4550.0.160123 = €732.65. 

The problem of equivalent rate and intensities in the CCI regime is resolved by a 
generalization of (3.28) and (3.29), which is useable only if we consider natural 
numbers >1, since now we have to assume t  +. Two per period rates for 
different periods t' and t" are equivalent if, expressed as annual rates in the 
aforementioned regime, they give the same return in terms of rate i or instantaneous 
intensity . Two per period intensities are equivalent if they correspond to 
equivalent rates. In formulae, to have equivalence, the rates it'  and it" must satisfy  

(1+it')1/t' = (1+it")1/t" (= 1+i = e )   (3.39) 

and the intensities jt' and jt" must satisfy  

(1+ jt' t')1/t' = (1+jt" t")1/t" (= 1+i = e )   (3.40) 

Exercise 3.14  

Let us consider an investment of €156,000 in the CCI regime for the length t' = 
(7m+24d) = 0.651620 year at the per period rate 0.0371. Calculate: 1) the 
corresponding intensity; 2) the rates and intensities equivalent to the previous ones, 
extending the investment for the length t" = (1y+4m+17d)=1.380556 year; 3) the 
interest earned after one year of investment. 

A. Using (3.39) and (3.40) the following is obtained: 

1) jt' = 0.0371/0.651620 = 0.056935/year; 
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2) it" = (1+it')t"/t' - 1 = 1.03712.118652 - 1 = 0.080235; the intensity j(t") follows 
from (3.40) or (3.38), which leads to 

jt" = [{1+t' jt'}t"/t'-1]/t" = [{1 + 0.056935.0.651620}2.118652-1]/1.380556  
= 0.058118; or jt" = it"/t" = 0.080235 / 1.380556 = 0.058118; 

3) by inverting (3.37) the equivalent annual rate is obtained i = 1.03711/0.651620 -
1 = 0.057496, and then the interest for one year of investment is 

I1 = 156,000.0.057496 = €8,969.38. 

3.8. The regime of continuously compound discount (CCD) 

We now consider the compound discount, only with regard to the continuously 
compound discount (CCD) (or exponential) regime which gives rise to a family of 
discount laws conjugated to those of CCI that can be specified by the instantaneous 
discount intensity  The function C(t) = discount value of M for effect of an 
anticipation of length t verifies the differential relation: 

C(t+dt) = C(t) - C(t)dt - o(dt)   (3.41) 

(where C(t)dt is the elementary discount between t and t+dt) under the initial 
condition C(0) = M. Then C(t) is expressed by 

C(t) = M e- t   (3.42) 

Recalling (3.35), it is obvious that the law of exponential discount in (3.38) with 
parameter  is conjugated to the law of exponential accumulation with parameter  
if and only if . 

Working with a CCD law characterized by the intensity  on annual interval  
(t =1) or fraction of year (t =1/m), it follows from (3.42) that the annual discount 
factor v, the per period discount factor v1/m, the annual discount rate d and the per 
period discount rate d1/m for time 1/m are given respectively by: 

v = C (1)/M = e-  ; v1/m = C (1/m)/M = e- /m   (3.43) 

d = {M - C (1)}/M = 1 - v = 1 - e-    (3.44) 
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d1/m = {M - C(1/m)}/M = 1 - e- /m  (3.45) 

resulting in the following equivalence relations on discount rates for different 
frequencies 

(1 - d1/m')
m' = (1 - d1/m)m = 1 – d   (3.46) 

In addition, the definition of per period discount intensity relative to the 
frequency m (also called nominal discount rate convertible m times a year) is 
expressed by 

(m) = m d1/m = m (1 - e- /m)   (3.47) 

 
Figure 3.4. Interest and discount exponential law 

EXAMPLE 3.13.– Considering the CCD law with  = 0.0689, we obtain for the 
factor and the rate of annual discount the values v = e-0.0689 = 0.93342 and d = 1-v = 
0.06658, while for the quarterly discount length (m=4) we obtain for the per period 
factor, the per period rate and the corresponding intensities the following values:  

v1/4 = e-0.0689/4 = 0.982923; d1/4 = 1 - v1/4 = 0.017077; (4) = 4 d1/4 = 0.06831. 

If m' = 6 (= bimonthly period), for (3.46) the equivalent discount rate is d1/6 = 1-
(1-d1/4)4/6 = 0.011418. 

Comparing (3.45) with (3.26), the rates i1/m and d1/m come from m-fractional and 
conjugated compound laws if the following relation holds: 

(1 + i1/m ) (1 - d1/m) = 1 (3.48) 
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and, taking into account (3.26') and (3.47), the intensities for conjugated laws satisfy 
the relation  

(1 + j(m)/m )(1 - (m)/m) = 1         (3.48') 

Exercise 3.15 

Using the CCD law with instantaneous intensity  = 0.0523, calculate the rates 
and the per period intensities, equivalent to each other, of such a law for the usual 
frequencies. Also calculate the rates and the per period intensities of interest for the 
same frequencies, based on the instantaneous intensity =  or = 0.0473  . 

A. Using Excel, the rates d1/m and the intensities m for changing m are 
obtained using (3.45) and (3.47). Furthermore, if = = 0.0523, the CCI law is 
conjugated to the CCD law; so the rates i1/m and the intensities j m  are obtained 
using (3.48) and (3.49). The following table is obtained. 
 

CALCULATION OF EQUIVALENT PER PERIOD RATES AND INTENSITIES 
with conjugated CCD and CCI laws 

  intensity  = intensity  =  0.0523  

m  D1/m (m)  i1/m J(m) 

1  5.096% 0.05096  5.369% 0.05369 
2  2.581% 0.05162  2.649% 0.05299 
3  1. 728% 0.05185  1.759% 0.05276 
4  1.299% 0.05196  1.316% 0.05264 
6  0.868% 0.05207  0.875% 0.05253 

12  0.435% 0.05219  0.437% 0.05241 
52  0.101% 0.05227  0.101% 0.05233 
360  0.015% 0.05230  0.015% 0.05230 

Table 3.3. Equivalent per period rates and intensities 

The Excel instructions are as follows. Rows 1, 2, 4, 5 are for data and titles; F4: 
0.0523. The 4th row is empty. From the 6th to 13th rows: 

– column A (frequency): insert the given frequencies; 
– column B: empty; 
– column C (per period disc. rate): C6:= 1-EXP(-$F$4/A6); 
– column D (per period disc. intensity): D6:= A6*C6; copy D6, then paste on D7 

to D13; 
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– column E: empty; 
– column F (per period interest rate): F6:= 1/(1-C6)-1; copy F6, then paste on F7 

to F13; 
– column G (per period interest intensity): G6:= A6*(1/(1-D6/A6)-1); copy G6, 

then paste on G7 to G13. 

The convergence of the per period intensities to = = 0.0523 is verified. 

If instead = 0.0473, the laws are not conjugated and the calculation of the 
interest rates and intensities proceeds autonomously on the basis of (3.31') and 
(3.38) with t = 1/m. We then obtain the following table. 

 
CALCULATION OF EQUIVALENT PER PERIOD RATES AND INTENSITIES 

with unconjugated CCD and CCI laws 

  intensity  = 0.0523  intensity  = 0.0473 

m  d.1/m Q(m)  i.1/m J(m) 

1  5.096% 0.05096  4.844% 0.04844 

2  2.581% 0.05162  2.393% 0.04786 

3  1.728% 0.05185  1.589% 0.04767 

4  1.299% 0.05196  1.190% 0.04758 

6  0.868% 0.05207  0.791% 0.04749 

12  0.435% 0.05219  0.395% 0.04739 

52  0.101% 0.05227  0.091% 0.04732 

360  0. 015% 0.05230  0.013% 0.04730 

Table 3.4. Equivalent per period rates and intensities 

The Excel instructions are as follows. Rows 1, 2, 4, 5 are for data and titles; D4: 
0.0523; G4: 0.0473; the 4th row is empty; from the 6th to 13th rows: 

– column A (frequency): insert the given frequencies; 

– column B: empty; 

– column C (per period disc. rate): C6:= 1-EXP(-$D$4/A6); 

– column D (per period disc. intensity): D6:= A6*C6; copy D6, then paste on D7 
to D13; 
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– column E: empty; 

– column F (per period interest rate): F6:= EXP($G$4/A6)-1; copy F6, then paste 
on F7 to F13; 

– column G (per period interest intensity): G6:= A6*F6; copy G6, then paste on 
G7 to G13. 

This verifies the convergence of the per period intensities to the respective 
instantaneous intensities with frequency divergence. 

In general, with diverging m, (3.47) converges to the instantaneous intensity . 
Indeed, using h = -1/m 

lim
m

(m) = lim
h 0

(e h-1)/h = (3.49)

Working with a CCD law whose instantaneous intensity is  on any discount 
length t >0 due to (3.42) the discount factor, the per period discount rate and the per 
period discount intensity for the length t are given respectively by 

vt = e- t   (3.50) 

dt = 1 - e- t   (3.51) 

t = dt / t = (1 - e- t )/t   (3.52)  

EXAMPLE 3.14.– Using the same discount law as in Example 3.13 and applying t = 
(2y+7m+21d) = 2.641667, the following values for (3.50), (3.51) and (3.52) are 
obtained: 

vt = 0.83359229; dt = 0.16640771; t = 0.06299345 

The comparison between (3.50) and (3.36) shows that if ln(1+i), ut and vt 
are reciprocal, where the corresponding CCI and CCD laws are conjugated. 
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3.9. Complements and exercises on compound regimes 

Complement 1: graphical interpretation 

Let us recall that the exponential functions differ from their reciprocal functions 
only by the sign of the exponent: 1/e  = e- = e (- ). Therefore, it can be concluded 
that the same function e  represents, depending on the sign of  compound 
accumulation or discount, if we consider the following durations: 

– in the first case a positive duration  > 0 between the beginning and the end of 
accumulation; 

– in the second case a negative duration proceeding backwards from the 
maturity, taken as origin, until time  < 0 where the discount is carried out. 

This enables us to represent in only one graph f(t)= e t, t, shown in Figure 3.5, 
the typical quantities of the exponential regime, choosing an intensity >0 which 
represents the interest intensity for the accumulation law and the discount intensity 
for the discounting law. 

time length

rates

 
Figure 3.5. Rates and intensities in the exponential law 

Interpretation of Figure 3.5 

Let us consider in Figure 3.5 the following typical points of the graph of the 
function f(t) = e t identified by the Cartesian coordinates on the plain Otf: 

A = (1,e ); B = (1/m,e m); Q = (0,1); C = (-1/m,e- m); D = (-1,e- ) 

where m is the conversion frequency. The points B', C', D' are intersections with t=1 
of the secants of the exponential f = e t respectively for the fixed point Q and the 
varying points B, C, D; furthermore, point Q' is the intersection in t=1 of the tangent 
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of the curve in Q (= limit line of the secants). The point U, R, S, V on the horizontal 
f =1 have the same abscissa as A, B, C, D. 

Let us observe that because of the proportionality between catheti of similar 
triangles QRB and QUB': UB' = RB/ QR  = slope of the secant QB. Using a similar 
argument: UC'  = SC / QS = slope of the secant QC. Because QU=1, then UQ' = 
slope of the line QQ' tangent in Q to e t as well. 

Because e = 1+i, e m = 1+i1/, e- m = 1-d1/m, e- = 1-d and also j m  = m.i1/m, 
m  = m.d1/m, the following graphical interpretation can be obtained: 

– ordinate of D = v = discount factor for one year; 

– ordinate of C = v1/m = discount factor for 1/m of one year; 

– ordinate of B = u1/m = accumulation factor for 1/m of one year; 

– ordinate of A = u = accumulation factor for one year; 

– VD  = UD' = d = (1) = annual discount rate = discount intensity on one year; 

– RB = d1/m = discount rate per period for 1/m of one year; 

– SC  = i1/m = interest rate per period for 1/m of one year; 

– UA  = i = j(1) = annual interest rate = interest intensity on one year base; 

– UB' = j m  = interest intensity per period on 1/m of one year; 

– UQ' =  = instantaneous interest intensity; 

– UC'  = m  = discount intensity per period on 1/m of one year. 

It is clear that rates and intensities relative to different periods, taken from the 
same function e t, are equivalent. 

Using the same graph as in Figure 3.5, the relations between the fundamental 
quantities u, v, i, d (which, referring to one year, are valid for all uniform regimes 
considered in this chapter) can be considered, as well as the relations between the 
fundamental quantities and the instantaneous intensity . Such relations are 
summarized in the following table, where each quantity given in the 1st column is 
expressed as a function of the quantities given in the 1st row. 
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u v i d

u u 1
v

1 i 1
1 d

e

v 1
u

v 1
1 i

1 d e

i u 1 1 v
v

i d
1 d

e 1

d u 1
u

1 v i
1 i

d 1 e

ln u ln v ln (1 i) ln (1 d)  

(3.53)

 

Table 3.5. Transformation formulae between rates or intensities 

Complement 2: average length and average rate in the compound regime  

By applying the same considerations as in sections 2.5.3 and 2.5.4 to the 
compound regime, it can be easily verified that: 

– using a CCI law and the accumulation factor ut = (1+i)t, the average length t̂   
(equal to the average term if the investment starts at 0) is given by the exponential 
mean with base (1+i) of the length th of the investment on the principal Ch. Then:  

1 i
ˆ t Ch 1 i

h 1

n

Chh 1

n

th

 (3.54) 

In the same way, using a CCD law and the discount factor vt = (1+i)-t, the 
average length t̂  is given by the exponential mean with base (1+i)-1 of the length th 
of the discount on the terminal amount Mh. Then: 

1 i
ˆ t Mh 1 i

h 1

n

Mhh 1

n

th

 (3.55) 
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– using a CCI law, the average rate î  relative to the investment of principal Ch 
for the same length t made with rate ih is the mean of powers with exponent t 
defined by 

1

1

1ˆ1

tn
t h hh

n
hh

C i
i

C
  (3.56) 

In the same way, using a CCD law, the average rate î  relative to the discount 
on terminal value Mh for the same length t made at rate ih is the mean of powers 
with exponent -t defined by 

1

1

1ˆ1

tn
t h hh

n
hh

M i
i

M
           (3.57) 

Complement 3: plurality of accounts and problems of averaging 

Let us consider the following application which implies an averaging problem. A 
company has to operate financially through a plurality of accounts, all ruled by a 
compound regime, which is decomposable, but with different rates. Let uh be the 
annual accumulation factor on the principal Ch > 0 invested at time 0 in the hth 
account (h = 1, ..., n). 

We are interested in valuing the characteristics of this accumulation regime 
connected to the total financial management of the n account, considering only the 
effect of such initial investments. So the accumulation factor for the 1st year is 
m(0,1) = Chuhh / Chh = ˆ u  = weighted arithmetic mean of the single factors (= 
first moment of the distribution {uh,Ch}); for two years of consecutive investment 
the accumulation factor is: m(0,2) = Chuh

2
h / Chh = mean of squared uh (= 

second moment of the distribution {uh,Ch}). 

The decomposability valid on each account is maintained at a global level as 
long as, supposing for example an interruption after one year, further accumulation 
for the 2nd year of the obtained amounts Chuh is made h with the same factor uh 
valid in the 1st year. The following is obtained indeed: 
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2( ) (0, 2)(1,2)
(0,1)

h h h h hh h

h h h hh h

C u u C u m
m

mC u C u
     (3.58) 

However, it can be observed that: 

– the values in (3.58) are given by the anti-harmonic mean of the factors uh, 
which is not associative18; 

– the total amount = Chuhh  at time 1 of the principal Chh  can be obtained 
by also applying the mean annual rate û to each account, but if the rate û is also 
applied to each account in the 2nd year, after the interruption, we would obtain a 
lower total amount and the global process would not be separable. The result of such 
a hypothesis is that: 

1 = m(0,2) / m(0,1) = 2 ˆ/h h hh h
C u u C  

2 = m(1,2) = Chuhh  ˆ u / Chuhh
ˆ u  

Putting 3 = h h hh h
C u C  > 0, we obtain 

( 1 - 2) 3 = ChCk (uh uk )2
h k

 > 0 

and then 1 > 2. Thus, the statement is proved.  

The problem is more complicated if some of the amounts are credits and some 
are debits, without the possibility of compensation. 

Such simple observations should make the financial operator consider the 
delicacy of such problems and the attention needed in choices when averaged values 
are used. 

Exercises on equivalent rates and intensities  

It is convenient to stress that the consideration of a rate per period for 1/m of a 
year does not have meaning in annual conversion; it only has meaning in m-
fractional conversion or m'-fractional, with m' multiple of m, or in an exponential 
                                   
18 Generalizing this conclusion, we can observe that a feature of the compound regime is the 
fact that the continuing annual accumulation factor for the kth year is the anti-harmonic mean 
of order k given by Chuh

h
h / C huh

h 1
h ; see: Caliri (1981). 
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regime (m + ). In the latter case the interest rate can be considered for any period 
t, expressed by e t-1. 

Exercise 3.16 

Firm Y receives from Bank X a short-term loan with 7.60% nominal annual rate 
with quarterly conversion and uses it in an operation with monthly income. 
Calculate the minimum monthly rate of return necessary to assure a positive spread 
of 2% on the cost rate in terms of effective annual rates. 

A. The parameter 0.076 = nominal annual rate 4-convertible = j(4), is an 
intensity, referred to the quarterly conversion. It corresponds to effective annual rate 
i = (1+j(4))4-1 = 0.078194. Therefore, the minimum annual rate of return is: i' = 
0.098194, to which corresponds the monthly rate (1+i')1/12 - 1 = 0.007836 = 
0.7836%. 

Exercise 3.17 

For the loan of the principal C = €250,000, there will be delayed bimonthly 
interest payments of €2,900, until the time of repayment in one transaction. 

Calculate the amount of per period equivalent interest payments: 

a) in the case of monthly advance payments; 

b) in the case of semi-annual delayed payments; 

c) in the case of quarterly advance payments. 

A. Having established the final repayment of the total loan, the installments paid 
by the debtor are pure interest. Furthermore, the equivalent installments have to be 
calculated using the same DCI law with the monthly conversion (monthly because 
12 is the least common multiple of the frequencies considered here). 

So, because of the data, the accumulation law used here gives rise to a value for 
the bimonthly interest rate equal to  

i1/6 = 2,900/250,000 = 0.0116 = 1.16% 

Recalling (3.28), (3.46) and (3.48): 

a) 
0.5

1/12 1/6
1/12 0.5

1/12 1/6

(1 ) 1
0.005750  

1 (1 )
i i

d
i i

  



80     Mathematical Finance 

therefore the equivalent advance monthly installment is: C d1/12 = €1,437. 

b) i1/2 = (1 + i1/6)3 - 1 = 0.035205 

therefore the equivalent delayed semi-annual installment is: C i1/2 = €8,801. 

c) 
1.5

1/4 1/6
1/4 1.5

1/4 1/6

(1 ) 1
0.017151  

1 (1 )
i i

d
i i

 

therefore the equivalent advance quarterly installment is: C d1/4= €4,288. 

Exercise 3.18 

1) For an investment of €10,000 in compound regime at the annual effective rate 
of 5%, let us compare the amount after 5 years and 7 months in the three following 
options: 

a) with CCI law; 

b) with mixed law with quarterly conversion; 

c) with mixed law with annual conversion. 

For b) and c) use the assumption that the investment is made at one prefixed time 
of conversion (for example on 1 January). 

A. In case a), apply (3.35'), use C = 10,000; i = 0.05; t = 5+7/12 = 5.583333; 
then:  

Ma = 10,000.(1.05)5.583333 = €13,131.27. 

In case b), apply (3.27) with f1 = 0; f2 = 1/12; m = 4; k = 22; j(4) = 4 (1.101/4 - 1) 
= 0.040989; C = 10,000; then:  

Mb = 10,000.(1+0.040989/4)22 .(1+0.040989.0.083333) = €13,131.50. 

In case c), apply (3.25) with f1 = 0; n = 5; f2 = 7/12; C = 10,000; then:  

Mc = 10,000.(1.05)5.(1+0.05.0.583333) = €13,135.06. 

The amounts are in increasing order, given that they follow from the same 
effective rates. In addition, Mb is very close to Ma. 
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2) Make the comparison for the amounts made in 1 but for a length of 5 years. 

A. As will be shown in section 3.10, for integer length the three amounts are the 
same. For 5 years this gives: Ma = Mb = Mc = 12762.82. 

3) Make the comparison as in 1, but calculating for 5 years and 7 months with a 
common intensity j = 0.05 for any frequency of conversion. 

A. In such a case, introducing j both in the compound law for integer year and in 
the linear law for fractions of a year, we obtain: 

Ma = 10,000 e0.055·583333 = €13,220.27 

Mb = 10,000 (1+0.05/4)22 (1+0.05.0.083333) = €13,197.64 

Mc = 10,000 (1+0.05)5 (1+0.05.0.583333) = €13,135.06 

The value Mc coincides with that in 1 because numerically i = j(1). The amounts 
are now in decreasing order with the decreasing number of conversions (Ma > Mc 
because e  >1+ t). 

4) Make the comparison as in 1), but for 5 years as in 2). 

A. Obviously the equality between the amounts is lost and then:  

Ma = €12,840.25; Mb = €12,820.37; Mc = €13,762.82. 

Exercise 3.19 

Consider the same problem as in Exercise 3.18, 1), using the same data, but 
removing the assumption that the investment starts at the conversion dates, but 
instead starts 12 days in advance. 

A. Using the bank year (= 12 months of 30 days each), results in: 

– case a), no changes because the exponential law depends only on the total 
length, which has not changed; therefore, Ma = €13,131.27; 

– cases b) and c) concern mixed law, then not a uniform law, and the result 
changes.  

In case b), using in (3.27): f1 = 0.03333 = (12 d); k = 22; f2 = 0.05 (= 18 d); j(4) = 
0.049089; C = €10,000, the following is obtained: 

Mb =10,000 (1+1.049089.0.03333).(1+0.049089/4)22 (1+0.049086.0.05) = 
€13,131.55. 
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In case c), putting in (3.25): f1 = 0.033333; f2 = 7/12 - 12/360 = 0.55; n = 5; i = 
0.05; C = 10,000, the following is obtained  

Mc = 10,000 (1+1.05.0.03333).(1+0.05)5 .(1+0.05.0.55) = €13,135.65. 

If with the law assumed in case b), used in banks on current accounts, the 
fractions f1 and f2 are calculated relating the effective numbers of day to the bank 
year, i.e. 360, and can assume values greater than 1/4 (so that from 1 July to 29 
September inclusive, there are 91 days, resulting in 91/360 = 0.252778>1/4). 

Exercise 3.20 

In Exercise 3.19 we verified that, with the same interest and length, in mixed 
accumulation the result changes according to the placement of the investment 
interval with respect to the conversion interval. Calculate the values that, using the 
same data, maximize the amount. 

A. Considering for the sake of simplicity case c), we have to work on variables f1 
and f2 such that f1+f2 = t-n = constant = H and maintaining the number n+2 of 
conversions. Using f1 = x, f2 = H-x, with the data of Exercise 3.17 it is necessary to 
maximize the accumulation factor 

g(x) = M(t)/C = (1 + 0.05x).1.055.[1 + 0.05(H-x)]; 

its graph is a concave downward parabola, thus having only one maximum point 
where the first derivative is zero. It is g'(x) = 0 for x = H/2, i.e. when f1 = f2. 

In conclusion, if the length and frequency (annual, but this also holds for the 
fractional case, as it is easy to verify) are given, it is convenient for the creditor that 
the interval of investment is positioned symmetrically with respect to the conversion 
intervals. 

EXAMPLE 3.15.– Given an investment for 3 years and 6 months between 2005 and 
2009 at an annual rate of 5.50%, with conversion at the end of the calendar year, 
taking into account that the beginning cannot be before 1 July 2005 and the term 
cannot be after 3 June 2009, we obtain the maximum accumulation factor, equal to 
1.206755, when the investment begins on 1 October 2005 and ends on 31 March 
2009. Indicating by x the number of months in 2005 and by y = 6-x the number of 
months in 2009, by varying x with the respect of the given constraints, we obtain the 
following results which gives the order of magnitude of the variations.  

 
 



Uniform Regimes in Financial Practice     83 

Investment intervals x y Accumulation factor g(x) 

01/07/05 – 31/12/08 6 0 1.206533 

01/08/05 – 31/01/09 5 1 1.206656 

01/09/05 – 28/02/09 4 2 1.206730 

01/10/05 – 31/03/09 3 3 1.206755 

01/11/05 – 30/04/09 2 4 1.206730 

01/12/05 – 30/05/09 1 5 1.206656 

01/01/06 – 30/06/09 0 6 1.206533 

Table 3.6. Comparison among accumulation factors 

3.10. Comparison of laws of different regimes 

After collecting the results of previous section we can make a comparison 
between the amounts obtainable with different uniform accumulation regimes 
already considered or between the present values connected with different uniform 
discount regimes. 

We will consider in this section: 

a) in accumulation, the comparison among simple, delayed or advance, and 
continuously compound interest laws; 

b) in discount, the comparison among rational, simple and continuously 
compound discount laws. 

The result of such a comparison depends on the functional form of the exchange 
factors but also on the return parameters (rates or intensities) used for the single 
laws.  

When referring to the different accumulation regimes, if we only consider a 
comparison in the assumption of equal i, i.e. among: 

– an SDI law with annual rate i; 

– a CCI law with the same annual rate i; 

– an SAI law with annual rate d = i/(1+i);  
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we can conclude straight away that: 

1) the three SDI, CCI and SAI laws give rise to the same return of interest after 
one year of investment, i.e. the indifference length is 1; 

2) indicating here with  the preference among laws 

(SDI) (CCI) (SAI), if t < 1, 

(SAI) (CCI) (SDI), if t > 1. 

Regarding comparison among discount regimes, it is enough to observe that the 
RD, CCD and SD regimes give rise to conjugated laws, respectively, to SDI, CCI 
and SAI. Then it is enough to consider the reciprocal factors and repeat all 
reasoning, to conclude, when comparing the following:  

– an RD law with annual rate i; 

– a CCD law with the same annual rate; 

– an SD law with annual rate d = i/(1+i);  

that 

1) the three RD, CCD and SD laws give rise to the same discount return after one 
year of anticipation, i.e. the indifference length is 1; 

2) the preference among laws, indicated here by f , is 

(SD) (CCD) (RD), if t < 1, 

(RD) (CCD) (SD), if t > 1.  

Graphical interpretation 

Figure 3.6 shows the comparison among interest laws: (SDI)  line (a), (CCI)  
line (b), (SAI)  line (c), when the delayed interest rates coincide in the different 
law and the indifferent length is 1. The comparison among discount conjugate law 
(RD) line(a'), (CCD) line(b'), (SD) line(c'), with the same conditions and 
indifferent length, is also shown. 
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Figure 3.6. Comparisons among interest and discount laws  

Let us now solve the problem of comparing the various regimes two by two, 
when different rates are applied to the laws of accumulation or discount. In this way 
we can also find the indifference lengths which depend on the couples of the chosen 
rates. 

With reference to interest laws, the following results are obtained. 

A1) Comparison between SDI and CCI laws 

Let i0 be the annual rate of an SDI law and i the annual effective rates for a CCI 
law. With reference to the accumulation factors, the principal and the amount being 
proportional, the returns coincide in both laws if the length t satisfies the relation 

1 + i0t = (l + i)t  (3.59) 

We will not consider the solution t = 0, because we are interested only in a 
positive solution t': 

– if i0 >  = ln(1+i), such a solution exists and is unique, given the upward 
concavity of (1+i)t. The calculation of indifference length t' must be done 
numerically. If i and i0 satisfy (3.59), 1+i0t > (l+i)t if t<t' holds, while 1+i0t < (l+i)t 

if t>t'. Therefore, the compound law is preferable for the investor only for a length 
greater than the indifference length, which is  

t' = 1/m if i0 = j(m); t' = 1 if i0 = i. 
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– if i0  , there is no indifference length and the compound law is always 
preferable. 

Exercise 3.21  

Given the (SDI) law with an annual rate of i0 = 0.061 and the (CCI) law with an 
annual rate of i = 0.062, calculate the indifference length using the methods 
described in this section. 

A. Given the annual rate i0 = 0.061 > ln(1+i) = 0.060154, there exists the 
indifference length t' > 0. We have t' = 1 if i0 = i; but being i0 < i, t' < 1 follows. 
Finally: 0 < t' <1 and the compound factor prevails if t > t'.  

Indicating with (t) = (1+i)t - (1+i0t) the spread between the factors (where by 
definition (t')=0) is (1) = i-i0 and with the given rates: (1) = 0.001. Let us 
calculate in the interval (0,1) a time t such that (t) < 0. With decreasing t we have 
for example: (0,4) = -0.000047. Proceeding initially with the dichotomic method 
(see section 4.5.3) between t=1 and t=0.40, we obtain: (0.70) = 0.000307; (0.55) = 
0.000088; etc. The convergence is slow. 

Let us proceed with the secant method (see section 4.5.4), with upper bound t = 
0.55 fixed and increasing lower bound from t = 0.40.  

1st step: linear interpolation between t = 0.40 and t = 0.55: 

 
t 0.40

0.55 0.40

0 (0.40)

(0.55) (0.40)

47

88 47
0.348148  

then t = 0.40 + 0.15. 0.348148 = 0.452222; (t) = -0.000009. 

2nd step: linear interpolation between t = 0.452222 and t = 0.55: 

 
t 0.452222

0.55 0.452222

0 (0.452222)

(0.55) (0.452222)

9

88 9
0.092784    

then t = 0.452222 + 0.097778. 0,092784 = 0.461294; (t) = -0.000002. 

3rd step: linear interpolation between t = 0.461294 and t = 0.55: 

 
t 0.461294

0.55 0.461294

0 (0.461294)

(0.55) (0.461294)

2

88 2
0.022222   

then t = 0.461294 + 0.088706. 0.022222 = 0.463265; (t) = -0.000000035. 
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Let us stop the iterative process, because time 0.463265 = (5m+17d) is a good 
estimation (approximated by defect) of the indifference length t', implying a spread 

 of almost zero. 

A2) Comparison between SDI and SAI laws  

Let i be the annual rate of an SDI law and d the annual discount rate of an SAI 
law. We have coincidence of returns (for length t < 1/d) if 

1 + it = (1 - d t)-1   (3.60)  

and we have the only positive solution t' = (i0-d)/i0d if and only if i0>d. In particular 
t' = 1 if i0 = d/(1-d).  

Due to the sign of concavity (l - dt)-1, the SDI law is convenient for the investor 
if t<t', but the SAI law is convenient if t>t'. 

EXAMPLE 3.16.– Comparing an SDI law with an annual rate i0 = 4.70% with an 
SAI law with an annual advance rate d = 4.30%, the indifference length is given by:  

t' = (0.047-0.043)/(0.047.0.043) = 1.979218 = 1y+11m+23d. 

Using instead the corresponding rate d = 0.047/1.047 = 4.489% we obtain t' = 1. 

A3) Comparison between SAI and CCI laws  

Let d be the annual discount rate of a SAI law and i the effective annual rate of a 
CCI law. The returns are the same if the length satisfies the relation 

(1 - d t)-1 = (1+i)t   ,  t < 1/d (3.61) 

For this comparison the calculation of indifference length t' must be performed 
numerically. We have a solution t'>0 (which can be shown to be unique) to the 
problem of equivalent length if and only if d<  In such a case, if t<t' the CCI law 
is convenient for the investor; if t>t', then the SAI laws are convenient. If instead  
d > , the SAI law is always convenient for the investor.  

 

                                   
19 This is because the curves (1-dt)-1 and (1+i)t are both convex and have right derivatives in 
t=0 equal respectively to d and . 
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Exercise 3.22 

Given the law (CCI) at the annual rate i = 0.062 and the law (SAI) at the annual 
delayed rate d = 0.059, calculate the indifference length using the method described 
in section 4.5. 

A. Given that d = 0.059 < = ln(1+i) = 0.060154, there exists the indifference 
length t' > 0. To calculate this, we proceed as in Exercise 3.21, where the CCI and SDI 
laws are compared. Furthermore, with length t=1 the SAI law is convenient, because 
the following is obtained for the accumulation factors: 1/(1-d) = 1.062699>1.062000 = 
1+i. Then: 0<t'<1 and the simple advance factor prevails if t > t'.  

Indicating with (t) = (1-d t)-1-(1+i)t the spread between the factors (where by 
definition (t')=0), with the given rates we obtain: (1) = 0.000699. In addition, 
(0.5) = -0.000137. Starting with the dichotomic method between t=1 and t=0.50, we 

obtain: (0.750) = 0.000150; (0.625) = -0.000025; ..... 

To speed up the convergence, we proceed with the secant method, using the 
upper bound t = 0.750 fixed and the increasing lower bound from t = 0.625. 

1st step: linear interpolation between t = 0.625 and t = 0.750: 

 
t 0.625

0.750 0.625

0 (0.625)

(0.750) (0.625)

25

150 25
0.142857   

from which t = 0.625 + 0.125. 0.142857 = 0.642857; t) = -0.000004. 

2nd step: linear interpolation between t = 0.642857 and t = 0.750: 

 
t 0.642857

0.750 0.642857

0 (0.642857)

(0.750) (0.642857)

4

150 4
0,025974    

from which: t = 0.642857 + 0.107143. 0.025974 = 0.645640; (t) = -0.000001. 

We stop here: time 0.645640 = (7m+22d) is a good estimation (approximated by 
default) of the indifference length t', because the spread is close to zero.  

With reference to discount laws, for the problem of 

B1) comparison between RD and CCD laws; 

B2) comparison between RD and SD laws; 

B3) comparison between SD and CCD laws. 
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we obtain the same indifference length t' valid for the interest conjugate laws, as it is 
simple to prove by observing that the equations giving the solutions concern the 
reciprocals of the terms which appear in equations (3.59), (3.60), (3.61) and then 
coincide with the aforementioned relations.  

Furthermore, for length t  t', going from interest laws to their conjugated 
discount laws, the preference relations are inverted20. 

                                   
20 In fact the discount laws give rise to factors reciprocal to those of the interest laws 
conjugated with the previous discount laws. Therefore, the inequalities and the sign of 
concavities of the corresponding graphs are inverted. In addition, considering discount, in the 
right derivatives in t=0 only the sign changes, i.e. there are -i0, -d, -d. This is in agreement 
with the generally valid property, that the differentiable functions f(x) and their reciprocal 
function have in the intersection points opposite derivatives. Indeed, if f(x0)= 1/f(x0), we 
obtain: [f(x0)]2 = 1 and then 1/f(x)x=x0 = –f ’(x0). 
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Chapter 4 

Financial Operations and their Evaluation: 
Decisional Criteria 

4.1. Calculation of capital values: fairness 

In financial practice there is often the problem of evaluation, at a given time and 
based on a given exchange law, of a finite set of financial supplies, i.e. of incomes or 
payments to be made at a fixed time. It is easy to generalize about an infinite 
number of supplies or to a continuous flow of payments as a theoretical model 
which approximates a sequence of financial transactions of small amount with close 
maturity.  

Such a set is called a financial operation because it is the financial reflex of 
economic acts regarding flows or funds (like transferring assets, payments for 
services, loans with a unique or periodic repayment schedule, installation or 
management of industrial equipment, etc.). 

Referring to the concept of financial supply (T,S) as well as to the equivalence 
principle based on a given exchange law, a financial operation O, which we will 
firstly consider as discrete payments, can then be defined as union of supplies, using  

O = (Th h 1
 nU ,Sh )  (4.1) 

If n , it is necessary to introduce some conditions. Without loss of 
generality we will consider {Th} increasing with h, i.e. in chronological order; in 
addition, Sh>0 are incomes for the agent “A” whereas Sh<0 are payments. The 
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operation O is also called a financial project if it is referred to dated amounts that 
are expected by a feasible project. 

The operation O can be alternatively expressed in transposed form with respect 
to (4.1), using a pair of n-dimensional vectors (“maturities {Th}, cash flow1{Sh}”, 
h=1,...,n), instead of a n-tuple of two-dimensional vectors which identify the 
supplies “time Th, amount Sh”. Therefore, we can write 

O = (T1, T2,...,Tn)&(S1, S2,...,Sn) = {Th}&{Sh} (4.1') 

where & = correspondence between vector components and where corresponding 
pairs (Th,Sh) with the same h identify the supply. 

It is usual to distinguish in (4.1) between the cases n=2, which give rise to a 
simple operation, and n>2, which give rise to a complex operation. A simple 
operation, if S1 and S2 have opposite sign, is just an exchange between two amounts 
with different maturities.   

Let us consider an economic agent “A” who wants to value O at time T, based on 
an indifference relation  which gives rise to the exchange factors z(X,Y), given by 
(2,5'), which express the used financial law. We then define as capital value (or just 
value) of the operation O at time T (from the point of view of agent “A”) the amount 
V(T;O,z) so that “A” considers O to be fairly exchangeable with the supply (T, 
V(T;O,z)). In other words, from the point of view of “A” there is indifference 
between obtaining the supplies O and acquiring the amount V(T;O,z) in T. 

We can apply what we have said above to calculate the selling value of a 
company. If O, expressed by (4.1), concerns all financial transactions related to its 
management and expected by one party (for example, the seller) in T<T1 (and then 
T<Th, h), then V(T;O,z) is the value in T given to the company based on the law z, 
which has to be compared with the offered price to judge whether it is convenient to 
sell2. 

To measure V(T;O,z) we can consider that, because of results in section 2.2, the 
amount exchangeable in T with Sh in Th is S'h = Sh:z(Th,T), and this is the value in T 
of (Th,Sh); furthermore, we will usually assume the additive property, by which the 

                                   
1 Correctly speaking, flow should be used for the continuous case, but it is also frequently 
used in finance for the discrete case when there is a sequence of payments.   
2 The comparison between values (subjective, as a consequence of the choice of z) and prices 
(objective, because they are fixed by the market) is the basis of the decisions and choices 
theory between “financial projects” that we will consider later. 
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value in T of the union of supplies O = 1( , )n
h hh T S  is the sum of the values at the 

same time T of each supply. Therefore 

    V (T ;O, z ) S 'hh 1
n Shz(Th ,T )h 1

n .          (4.2) 

When there is no ambiguity on O and on the law z, we will write V(T) instead of 
V(T;O,z). 

We will say that “A” considers fair (or well-balanced) the operation O in T 
based on his choice of law z or, briefly, that the operation O is fair in T if and only if 
V(T;O,z) = 0.  

Adopting exchange laws z(X,Y) which are always positive with any X and Y, the 
fairness of O implies that there is no concordance in algebraic sign of all amounts of 
O. 

A simple fair operation is a pure exchange (i.e. a repurchase agreement) 
balanced according to z, resulting in S2 = -S1.z(T1,T2). 

Complements on fair operations 

We will say that an exchange law identified by , according to which the fairness 
of an operation O is valued, verifies the invariance property if an operation 
considered fair in T0 is also fair in all other times T. Furthermore, given that fairness 
implies the zero value of O, the additive property implies that the union of two or 
more operations (defined as the union of the sets of their supplies), all judged fair in 
T0, is fair in T0. 

As invariance does not generally hold, then the value V(T;O,z) if it is zero in 
T=T0 can become different from zero in a different T; it is then necessary to specify 
the evaluation time. However, given that, as can be proved, the strong 
decomposability implies additivity and invariance together, if z satisfies such a 
property, the judgment of fairness of the operations does not depend on the 
evaluation time T. 

It is important to observe here that – given that an exchange law implies the 
payment of interest for the deferring of the availability of a principal amount – 
saying that “A” considers the operation O to be fair having assumed the law z(X,Y) 
means that O gives exactly the return expressed by z. In other words, i.e. with 
inflows and outflows at the times Th on a profitable account ruled by such a law, if 
V(T0;O,z) = 0, this means that in T0 the evaluations of Sh, taking into account the 
interest, are balanced. If instead V(T0;O,z) > 0 (< 0), the operation O gives rise to a 
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spread of positive (negative) returns added to the return implied by the law z. This is 
the starting point of the theory of comparisons and choices between financial 
operations on the basis of the returns. 

If the law z identified by  is uniform, not decomposable, and therefore the 
exchange factor has the form g( ) (see (2.40)), it is enough to replace in (4.2) z(Th,T) 
= g( h), where h = T-Th, and then 

V (T;O,z) Sh g(T Th )
h 1
n                 (4.3) 

Particular cases 

a) Simple delayed interest (SDI) law at rate i and its conjugate rational discount 
(rd) 

SDI: g( ) = 1 + i , if  > 0; rd: g( ) = 1/(1 + i | , if  < 0 

b) Simple advance interest (SAI) law at rate d and its conjugate simple discount 
(sd)  

SAI: g( ) = 1/(1 - d , if  > 0; sd: g( ) = 1 - d | , if  < 0 

If the law z identified by  is strongly decomposable (s.dec), non-uniform, 
characterized by an intensity ( ) as a function of current time (see section 2.4), 
the exchange factor in (4.2) is written3: z(Th,T) = exp ( ) 

h

T
T d . 

If the law z identified by  is uniform and also s.dec, it falls within (as shown in 
Chapter 2) the exponential regime where  is a relation of uniform equivalence. 
Therefore, it gives rise to the following case. 

c) Continuously compound interest (CCI) law with intensity  and its conjugate 
continuously compound discount (CCD) 

CCI: g( ) = e , (  > 0 ); CCD: g( ) = e , (  < 0 ) 

 
 
and then 
                                   

3 It is well known that exp ( ) b
a d  is often used, for simplicity, instead of  e

( ) a
b d . 
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  V (T;O,z) Sh e (T-Th )
h 1

n
Sh (1+i )T-Th

h 1

n

         (4.4) 

Exercise 4.1 

Let us consider the following operation  

O = {(0, -1,500) (2.5, -1,850) (3.5, 520 (5, 4,500)} 

where time is measured in months, and let us calculate its value in T=4 using the 
SDI law with an annual rate i = 5.5% and its conjugate rd. 

A. By applying (4.3), we obtain 

4 1.5 0.5(4) 1,500 (1 0.055 ) 1,850 (1 (4) 0.055 ) 520 (1+ 0.055 )
12 12 12

1           4,500  1,610.44
11+ 0.055

12

V V

 

Exercise 4.2 

Let us consider the same operation as in Exercise 4.1, i.e.  

O = {(0, -1,500) (2.5, -1,850) (3.5, 520) (5, 4,500)} 

where time is measured in months, and let us calculate its value at time T=4 using 
the SAI law with an annual discount rate d equivalent to i =5.5% and its conjugate 
sd. 

A. The equivalent rate d is 0.052133. Applying (4.3) 

4

1 1            520 4,500 (1 0.052133 ) 1,612.920
0.5 121- 0.052133
12

V
1 1

1,500   1,850
4 1.5

1- 0.052133 1- 0.052133 
12 12
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Exercise 4.3  

Let us consider the same operation as in Exercise 4.1, i.e.  

O = {(0, –1,500) (2.5, –1,850) (3.5, 520) (5, 4,500)} 

where time is measured in years, and let us calculate its value at time T=4 using the 
exponential exchange law with an annual interest i = 6%. 

A. The equivalent instantaneous intensity  is 0.058269. By applying (4.4)  

g( ) = e0.058269 = 1.06  

and then 

V(4) = 4 1,5 0,5 -11500  1.06 1850  1.06 520  1.06 4500 1.06  = 867.97 

The value can also be found with an Excel spreadsheet where in the 1st row we 
put the rate values and evaluation time, in the 2nd row the column’s titles and from 
the 3rd to 6th rows the needed values: terms and amounts of supplies; exchange 
factors from the terms to 4; amount valued at time 4, then the sum gives V(4) = 
867.97. The following table is obtained. 
 

Rate = 0.06 Time = 4 
Term Amount Exchange factor at 4 Value at 4 

0.0 –1,500.00 1.2624770 –1,893.715 
2.5 –1,850.00 1.0913368 –2,018.973 
3.5 520.00 1.0295630 535.373 
5.0 4,500.00 0.9433962 4,245.283 

  V(4) = 867.967 

Table 4.1. Calculation of values 

The Excel instructions are as follows. B1: 0.06; D1: 4. The first two rows are for 
data and column titles; from the 3rd to 6th rows: 

– column A (maturity): A3: 0; A4: 2.5; A5: 3.5; A6: 5; 

– column B (amounts): B3: –1,500; B4: –1,850; B5: 520; B6: 4,500; 

– column C (exchange factors in 4): C3: = (1+B$1)^(D$1-A3); copy C3, then 
paste on C4 to C6; 

– column D (evaluation in 4): D3: = B3*C3; copy D3, then paste on D4 to D6; 
(value at time 4): D7: = SUM(D3;D6). 
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Financial operation with continuous flow 

Let us consider briefly the calculation of the value of operations with continuous 
flow. In the continuous case the elementary supply is expressed by [t, (t)dt  with 

(t) defined in t'  t  t" and therein continuous (however, to calculate the values the 
integrability is enough). Then (4.2), (4.3), (4.4) become respectively 

V (T;O,z) (t)z(t,T )dt
t'
t"                 (4.2') 

V (T;O) (t)g(T t)dt
t'
t"                 (4.3')  

V (T;O) (t)e (T t)dt
t'
t"                   (4.4') 

Using an s.dec and non-uniform exchange law, the exponential in (4.4') becomes 

exp ( )T
t d . 

Naturally, there can be a mixed operation, which puts together continuous and 
discrete operations, and due to additivity the value will be given by the sum of the 
values (4.2) and (4.2') (or of the values for the other particular cases). 

4.2. Retrospective and prospective reserve 

With reference to an operation O and an exchange law z(X,Y), let us assume T in 
the interval [T1,Tn] is logically distinct4 from each Th. Let r be the number of 
supplies before T and n-r those after T (0  r  n).  

We then define as retrospective reserve (briefly: retro-reserve) of O at time T 
according to z the amount M(T;O,z) given by the opposite of the value in T of the 
sub-operation O' consisting of the set of all supplies of O before T. If there is no 
ambiguity, we write M(T) instead of M(T;O,z). 

We define as prospective reserve (briefly: pro-reserve), or residual value, of O 
at time T according to z the amount W(T;O,z) given by the value in T of the sub-
operation O" consisting of the set of all supplies of O after T. If there is no 
ambiguity, we write W(T) instead of W(T;O,z). 
                                   
4 By logically distinct we mean that T is different from the time of payment Th or, if they 
coincide, that there is a method to establish if the corresponding Sh has to be added to the 
payments before or after T (for example, with a rule of “delayed” or “advance” payment per 
period). 
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Because of (4.1) we have:  

M (T;O,z) Shh 1
r

 z(Th ,T )               (4.5) 

W (T;O,z) Shh r 1
n

 z(Th ,T )               (4.6) 

Notice that in (4.5) we have only accumulation processes and in (4.6) only 
discount processes. Therefore, due to (2.5'), instead of z(Th,T) we can use m(Th,T) in 
(4.5) and a(Th,T) in (4.6).  

If the exchange law is uniform (non-decomposable), (4.5) and (4.6) can be 
written, giving th = | h| and recalling (2.42)  

  M (T ) Sh 
h 1
r

u(th )                   (4.7) 

  W (T ) Shh r 1
n

 v(th )                (4.8) 

If the exchange law is s.dec (non-uniform) with intensity ( )>0, the exchange 

factor in (4.5) and (4.6) is written as: , exp ( ) 
h

T

h T
z T T d . 

In particular, if the exchange law is exponential with rate i, the expressions for 
the reserves are  

M (T ) Sh 
h 1
r (1 i)(T Th )  ;  W (T ) Sh 

h r 1
n (1 i) (Th T )

   (4.9) 

From the definitions, whichever exchange law is used for the operation O, it 
follows that  

V(T) = W(T) - M(T),  T                (4.10) 

Therefore, if the exchange law implies fairness for O at time T0 only for this time 
it follows that 

M(T0) = W(T0)                    (4.11)  

However, if for such a law the invariance property holds (in particular if the 
s.dec holds) (4.11) implies that 
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M(T) = W(T),   T                  (4.12)  

In the continuous case, with operations spread in (t',t"), the reserves are obtained 
by adopting the previous formulae. Therefore: 

– in the general case of two variables law z: 

M (T;O,z) (t)z(t,T )dt
t'
T

  ;   W (T;O,z) (t)z(t,T )dt
T
t"     (4.5') 

– with the non-decomposable uniform law: 

M (T ) (t)g(T t)dt
t'
T

   ;   W (T ) (t)g(T t)dt
T
t"       (4.7') 

– with the exponential law: 

M (T ) (t)e (T t)dt  ;   
t'
T

W (T ) (t)e ( t T )dt    
T
t"      (4.9') 

while with any s.dec law with intensity ( ) the exponentials in (4.9') must be 
replaced by  exp( ( ) t

T d ) . 

With a mixed operation, valued with a law of two variables, the retro-reserve is 
obtained by adding M(T) written in (4.5) and (4.5') and the pro-reserve by adding 
W(T) written in (4.6) and (4.5'); when particular regimes are used, the 
aforementioned corresponding expressions for M(T) and W(T) must be added.  

Observation 

The previous definitions need some interpretation. As mentioned in footnote 1 of 
Chapter 1, a financial transaction is usually coupled with a real transaction of 
opposite side. In particular, an operation O can be concerned with financial 
transactions, managed by Mr A, connected with the management of a company for 
the production or the trade of assets or services, which we call project O. According 
to the accounting principle of “double entry”, such transactions are registered by Mr 
A on an account giving interest, assigned to O; each payment implies a charging of 
the account and then the creating of a credit of Mr A (or the settlement of a debt) 
while each income implies a crediting on the account and then the creating of a debt 
of Mr A (or the settlement of a credit). 

Given that according to the definitions the retrospective reserve M(T;O,z) 
represents the financial statement of Mr A at time T following the transactions with 
the sub-operation O'; it is positive or negative (i.e. a credit or a debit for Mr A) 
depending on the fact that before T is greater the number of payments or else 
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incomes for Mr A, valued financially in T through the exchange law z. 
Consequently, M(T;O,z) is the amount that, if the supplies of O subsequent to T 
would cancel, Mr A should cash (algebraically) in T such that the resulting 
operation, consisting of {O' [T, M (T;O,z)]}, would be fair in T.  

Vice versa, the prospective reserve W(T) is the capital value in T of the supplies 
of the sub-operation O”, i.e. the amount that, if the supplies of O before T would 
cancel, Mr A should pay (algebraically) in T such that the resulting operation, 
consisting of {O" [T, -W(T;O,z)]}, is fair in T.  

The names retrospective reserve and prospective reserve are also used (referring 
to expected values) in the stochastic financial insurance operations. 

Exercise 4.4 

Let us consider again Exercise 4.3 and observe that O is not fair, given that 
V(4)=867.97. It is enough to add the supply (4, -867.97) to obtain, using a rate of 
6%, a fair operation (at each time, given that the adopted law is decomposable) 

ˆ O  ={(0, -1,500) (2.5, -1,850) (3.5, 520) ((4, -867.97) (5; 4,500)} 

Calculate the reserves of ˆ O  in T=3 verifying the validity of (4.12). 

A. By applying (4.9) we obtain for ˆ O : 

M(3) = 1,500.1.063 + 1,850.1.060.5 = 3,691.22 

W(3) = -867.966.1.06-1 +520.1.06-0.5 +4,500.1.06-2 = 3,691.22 

Using an Excel spreadsheet for the same calculation, we have to proceed as 
follows. For the calculation of the retro-reserve it is necessary to take into account 
only the supplies before T=3; therefore, expanding along the columns, the supplies 
below are not considered; vice versa for the calculation of the pro-reserve it is 
necessary to take into account only the supplies after T=3; therefore, expanding 
along the columns, the supplies above are not considered. To do this (if the Excel 
macros are not applied), given that  

a' = (a+|a|)/2a = 1 if a>0, = 0 if a<0; a" = (a-|a|)/2a = 0 if a>0, = 1 if a<0   

then for the calculation of M(T) in the 1st of (4.9) Sh (1 i)(T Th )  is preserved if 
T Th  > 0 and we use 0 if T Th  < 0; on the contrary for the calculation of W(T) in 
the 2nd formula of (4.9) we use 0 if T Th  > 0 and Sh (1 i) (Th T)  is preserved if 
T Th  < 0. Therefore, setting such values by columns, we obtain the retro-reserve 



Financial Operations     101 

adding the amounts valued at time 3 multiplied by a', while the pro-reserve is 
obtained adding the amounts valued at time 3 multiplied by a".  

 
i = 0.06 T = 3 

Th Sh T-Th Sh(T) a' a" Am.(T>Th) Am.(T<Th) 

0.0 -1,500.000 3.00 -1,786.52 1.0 0.0 1,786.524 0.000 

2.5 -1,850.000 0.50 -1,l904.69 1.0 0.0 1,904.692 0.000 

3.5 520.000 -0.50 505.07 0.0 1.0 0.000 505.069 

4.0 -867.967 -1.00 -818.84 0.0 1.0 0.000 -818.837 

5.0 4,500.000 -2.00 4,004.98 0.0 1.0 0.000 4,004.984 

      3,691.216 3,691.216 

Table 4.2. Calculation of retro-reserves and pro-reserves 

The Excel instructions are as follows. The first two rows are for data and titles; 
C1: 0.06; F1: 3. From the 3rd to 7th rows: 

– column A (maturity): A3: 0; A4: 2.5; A5: 3.5; A6: 4; A7: 5; 

– column B (amounts): B3: –1,500; B4: –1,850; B5: 520; B6: 867.967; B7: 4,500; 

– column C (maturity): C3: = F$1-A3; copy C3, then paste on C4 to C7; 

– column D (amounts valued in 3): D3:= B3*(1-C$1)^(F$1-A3); copy D3, then 
paste on D4 to D7; 

– column E (a' = indicates M(T)): E3: = (C3+ABS(C3))/2/C3; copy E3, then 
paste on E4 to E7; 

– column F (a" = indicates W(T)): F3: = (C3-ABS(C3))/2/C3; copy F3, then 
paste on F4 to F7; 

– column G (amounts for M(T)): G3: = -D3*E3; copy G3, then paste on G4 to G7; 

– column H (amounts for W(T)): H3: = D3*F3; copy H3, then paste on H4 to H7; 
(retro-reserve in 3): G8: = SUM(G3;G7); (pro-reserve in 3): H8: = SUM(H3;H7). 
Then: G8 = H8.  

Exercise 4.5 

From the data of the operation considered in Exercise 4.1, we observe that  
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ˆ O ={(0, -1,500) ( 2.5
12 , -1,850) ( 3.5

12 , 520) ( 4
12 , -1,610.44) ( 5

12 , 4,500)} 

is fair in T0 = 4
12 . Verify the validity of (4.11) if T0 = 4

12  and its non-validity (i.e. 

unfairness of ˆ O ) if T0= 1
12 , due to the non-decomposability of the adopted laws. 

A. We add ( 4
12 , -1,610.44) to the payments after 4

12 . By calculating the 

accumulation with an SDI law at the annual rate of 5.5% we obtain M( 4
12

) = 
3,390.18; by calculating the discount with an RD law with the same rate we obtain 
V( 4

12
) = 3,390.18 = M( 4

12
). By evaluating at the time 1

12 , we obtain M( 1
12

) = 

1,506.87; instead V( 1
12

) = 1,507.12  M( 1
12

), then ˆ O  is not fair if valued at such 
time. 

The “differential equation of accumulated value” with principal flow 

A particular mixed O in the interval (0,T), which at the same time allows a 
generalization of (3.35), is obtained by considering an initial supply (0,S0) and other 
later supplies with infinitesimal amounts (t, t dt), (0  t  T), following a 
continuous principal flow t . This is useful to schematize the management of a 
small firm, by considering an initial cost for establishment and then small financial 
transactions as inflows and outflows. 

The accumulation of interest always proceeds according to the cci law with 
instantaneous intensity . With such a hypothesis the retro-reserve M(t) varies for 
effect of the financial transactions due to the flow t , as well as for the continuous 
accumulation of interest, due in S0 and in ( d (  t) according to the flow 

M(t). This process can then be obtained by solving the following linear and non-
homogenous differential equation: 

M'(t) =  M(t) - (t)  (4.13) 

In fact, generalizing (3.34'), t (0,T) in the given hypothesis the dynamics of 
the retro-reserve are described by 

M(t dt) = M(t)  M(t) dt - (t)dt  o(dt)           (4.13') 

Dividing by dt and taking the limit dt 0, given that o(dt)/dt 0, (4.13) follows. 
This equation is also called the differential equation of the accumulated value. It is 
indeed easy to see that the retro-reserve in T coincides with the amount, valued in T, 
of the invested principal due to the outflows, subtracting the inflows, before T.  
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The analytical solution of (4.13) is immediate. In fact, by multiplying both 
members by e- t, it is soon found that the general integral is 

  ( )  ( ) constantt tM t e t e dt             (4.14) 

and, due to the continuity of M(t) after 0, the particular solution of (4.13), where 
M(0) = -S0, is 

0

( )  ( )  (0) ( ) (0) ( )
t t

0
tt tM t e M e d M e e d   (4.14') 

Value (4.14') can be financially interpreted observing that, due to the s.dec of the 
exponential exchange law, the retro-reserve in t can be obtained by accumulating in t 
the property evaluations in 0 connected to the financial transactions occurring 
between 0 and t (and then of opposite sign). 

If an s.dec law is used with intensity instead of the cci, solution (4.14') is 
generalized as 

    M (t)  M (0)exp( ( )
0
t

d ) - ( )exp( ( )t
d )0

t
d       (4.15) 

EXAMPLE 4.1.– Mr. B opens in a financial institution a c/a both for deposit (when 
Mr B is in credit) and for lending (when Mr B is in debt), ruled by an exponential 
exchange regime and with reciprocal rate, i.e. with the same instantaneous intensity, 
both the earned interest on the credits and the passive interest on the debts are 
obtained and converted time by time. Assuming the monetary unit MU = €1,000 
euros, let us suppose that the transaction in the c/a in the interval (0,t) is given by a 
deposit in 0 of MU 25.48 followed by deposits and withdrawals based on a 
continuous flow which is assumed with a parabolic shape ( ) = a+b +c 2, (0 t). 
Let us use t=2, finding the function ( ) by interpolation on the basis of the values at 
times 0, 1, 2, that are respectively: (0) = - 4 (= infinitesimal payment -4dt), (1) = 
+5 (= infinitesimal income 5dt); (2) = +12 (= infinitesimal income 12dt). Mr B 
wants to estimate the retro-reserve at time 2, i.e. his position M(2) (of credit if 
M(2)>0, of debit if M(2)<0), with a CCI law at the reciprocal annual rate of 5%. 

To do this we firstly need to calculate the flow function imposing its passage for 
the points Pi = (i, (i)), i=1,2,3, and deducing the parameters a, b, c. Then we have 
to solve the linear system 

a = -4 ; a+b+c = 5; a+2b+4c = 12   
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which has as unique solution: a = -4 , b = +10 , c = -1. Then: ( ) = -4+10 - 2. In 
addition,  = ln(1.05) = 0.04879. Therefore, due to (4.14'), M(2) is obtained from the 
following expression  

20.09758 2 0.04879
0(2) 25.48 [ 4 10 ]M   e e d . 

Integrating by parts:  2 0.04879[ 4 10 ]e d   = 

 = 
0.04879

21 2 24 10 10 .
0.04879 0.04879 0.048790.04879

cost
e  

and then the integral: 2 2 0.09758
0 [ 4 10 ]e d      

0.09758 0.097581 1 2 24 10 10 2 4
0.04879 0.04879 0.048790.04879 0.04879

e e  = 

=  8.64434   

Therefore:    0.09758(2) 25.48 8.64434 18.56131M   e   MU 

It follows that, withdrawing from  the accumulated incomes on the  
accumulated payments, the result in t=2 is negative, i.e. there is a decrement of 
credit, equal to €9,530.38, compared to 25480.1.1025 = €28,091.69 = credit in the 
c/a that Mr B would have in absence of the flow  in the interval [0,2]. 

4.3. Usufruct and bare ownership in “discrete” and “continuous” cases 

Assuming an s.dec exchange law z and supposing that the operation O is fair at a 
given time T0 and then, due to the invariance of z, T (if this is not true, to make O 
fair it is enough to add to the original supplies (T0,-V(T0)), it is important, under the 
practical point of view the decomposition into two parts of the pro-reserve W(T) at 
time T (where inside the symbol in W() are implicit the symbols O and z): 

a) the first, called usufruct and indicated by U(T), is the evaluation in T of the 
financial transactions due only to the interest settled after T; 

b) the second, called bare ownership and indicated by P(T), is the evaluation in T 
of the remaining transactions, i.e. the supplies of O" without interest. 

Then by definition 

W (T) = U (T) + P (T), T              (4.16) 
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and, once W(T) and U(T) are calculated, the bare ownership is given by the 
difference. The distinction made in (4.16) is important, because in a financial 
operation there can be difference in the owners of the rights to the two supplies. 

The calculation of the usufruct and the bare ownership is usually done according 
to the discrete scheme that approximates the scheme of the interest continuous 
formation. Taking as an example a lending operation with periodic payments, at 
such times the interest shares are also calculated based on the current debt position 
and the time that has passed since the last payment. The usufruct in discrete case 
U(T) is then the present value in T of the interest shares after T and the bare 
ownership in discrete case P(T) is the present value in T of the principal share after 
T. On this point we will talk about amortizations and their evaluation in the 
following chapters. 

However, usufruct and bare ownership can be calculated rigorously according to 
the continuous scheme, assuming the continuous payment of interest as obtained. 
Indicating by  

˜ U ( t ) and   ˜ P ( t )  the usufruct and bare ownership in continuous case, 
we have 

W (t) =   ̃  U (t)  +   ̃  P (t) , t               (4.16') 

For   ˜ U (t)  and   ˜ P (t)  clearly additivity holds, i.e. they are obtained as the sum of 
the usufructs and the bare ownerships, calculated by the continuous scheme, of each 
supply of O”.  

Let us find the expression for  ˜ U (t)  and  ˜ P (t)  in the hypothesis that O consists 
only of transactions (Th,Sh). Let ( ) be the instantaneous intensity connected to an 
s.dec law and then dependent only on the current time . Also let Th (h = r+1,...,n) 
be the maturity times later than T. We obtain 

1
( ) ( ) ( )

h hT Tn
hh r T T

U t S d dexp           (4.17) 

1
( ) ( ) - ( ) ( ) 1 ( )

h hT Tn
hh r T T

P t W t U t S d dexp   (4.18) 

Proof 

Given the additivity, we first consider one supply (Th,Sh) with h fixed between 
r+1 and n. The earned interest between time X and X+dX is (not considering errors 
that vanish with the following integration) M(X) (X)dX, but because z is s.dec and O 
is fair, we have M(X) = W(X), X. To calculate  ˜ U (t)  we must integrate from T 
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onwards the interest M(X ) (X)dX =W(X) (X )dX discounted in T, multiplying by 

  
exp ( )

X
T

d . The prospective reserve on (Th,Sh) is: Wh(X) = 

exp ( )
hT

h
X

S d  if X Th; otherwise Wh(X) = 0 and then the integration of 

interest for X>Th gives no contribution. After some calculations we obtain: 

1
( ) ( ) ( ) exp ( )

Xn
hh r T

U t W X X d dX

1 exp ( ) ( )h hT Tn
hh r T T

S d d  

i.e. (4.17) holds. Expression (4.18) for   P(t)  is obtained subtracting the 2nd member 

of (4.17) from 1
( ) exp ( )

n h
hh r

T

T
W t S d . 

Let us find the expression for  ˜ U (t)  and  ˜ P (t)  maintaining the hypothesis of fair 
O, which we assume to be mixed, extended to the time interval (t',t") with discrete 
and continuous supplies, and assuming an exponential exchange law with intensity 
. Because of uniformity of the law, we can assume the beginning of the operation in 

the origin of time, i.e. t' = 0. Using (4.17) and (4.18) for the discrete component and 
considering that for the continuous component it is enough that the sums of the 
amounts Sh, with th (t, t"), are replaced by integral on the time of the flows ( ) 
with (t,t"), the following formulae are easily obtained 

  
˜ U (t) Shh r 1

n e (th t) (th t) ( )e ( t)
t
t" ( t)d      (4.17 ) 

  
˜ P (t) Shh r 1

n e (th t) 1 (th t) ( )e ( t)
t
t" 1 ( t) d   (4.18') 

 

Figure 4.1. Plot of the values M(t) =W(t) if O is fair 
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4.4. Methods and models for financial decisions and choices  

4.4.1. Internal rate as return index 

We will now discuss the parameters of implicit return in a financial operation, 
for which we have already considered the evaluation of the whole or of some of the 
parts (reserve, usufruct or bare ownership), as well as the decisional criteria for 
financial operations (discrete) O = {Th}&{Sh} that, considering the set of economic 
and technical facts below the set of supplies (Sh,Th), we will call financial projects 
(of whatever type: realized in agriculture, industry, commerce, services, etc.). It is 
fundamental to give a general definition of internal rate (of return for the investor, 
of costs for the borrower), relative to O. 

Let us recall the advantage of using a uniform financial law, according to which 
all evaluations can be performed at time zero, and then the exchange factors are all 
discount factors. If the law is also decomposable, which we will suppose to be true 
from now on, then it is the exponential law, characterized by a constant intensity. 
With reference to the payments, we will still use a positive sign for the incomes (or 
receipts, or cash inflows) and a negative sign for the outcomes (or outlays, or cash 
outflows) from the point of view of the subject who evaluates. We should also recall 
that an operation at a given rate is fair if its balance at a given time (and then at all 
times if the law is decomposable) is zero. However, we have seen in section 4.1 that 
the fairness of an operation depends not only on its supplies, but also on the used 
exchange law z. If we adopt an exponential exchange law, this is identified by the 
annual rate i.  

The rate i* of the CCI (or exponential) exchange law that makes the given 
operation O fair, i.e. which makes (4.4) zero, is called the internal rate of return 
(IRR)5. It summarizes the return of the project made in O and, as we will see, is 
normally used as the basis of a decisional criterion on financial projects. 

Let us analyze the concept of IRR to better clarify its meaning and its limits as a 
return measure. We have already shown that in a simple financial operation, of pure 
exchange, made of the supplies (T1,-C), (T2,+M), the percentage variation (M-C)/C, 
i.e. the related rate per period, is a measure of the return of the operation. More 
generally, for a complex operation O, defined in (4.1) or (4.1') with n>2, the IRR of 
the operation O = {Th}&{Sh} is generalized as mentioned, as the interest rate of the 
exponential operation that makes O fair. 

                                   
5 We note that with respect to O an operator can be both the investor and the borrower. We 
also observe that V(T;O,z) = 0 with an exponential law at rate i* implies, due to the 
decomposability of the law, a compensation between payments and incomes of O taking into 
account the interest at the rate i* and the current balances. 
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The meaning given to the internal rate, as a parameter whose use assures the 
fairness to the operation, implies that: 

– such a parameter can be used to measure the investment return (or the 
financing cost) in the sense that summarizes the instantaneous returns, also a 
variable in time, in their evolution in the time interval of O; 

– therefore, it corresponds to a constant instantaneous intensity in such a time 
interval, which becomes an exponential financial law. 

Indeed we have seen in section 4.1 that if O is fair in cci at the rate i*, clearly the 
discount factor i*=IRR is also the return rate inherent in the supplies of O together 
with the interest on the current reserves. We observe that it is not necessary that the 
retro-reserves (coinciding with the pro-reserves if O is fair) keep their sign in the 
time (i.e. that O is a pure project). The property also holds in the case of sign 
alternation (O = mixed project), as long as i* is a reciprocal rate, i.e. it is valid both 
for earned and passive interest6. Using (4.4) with i=i* we obtain 

- S1 =  Sh (1+i*)-(T1-Th )
h 2
n                (4.4'') 

i.e. O can be interpreted, considering the case S1>0, as the investment of S1 at time 
T1 that gives rights to the supplies (Th,Sh), h=2,...,n, and i* is the return rate of the 
operation. 

If the payments are periodic, it is not restrictive to assume a unitary period 
(changing the unit measure and using the equivalent rate in the compound regime). 
In such a case, using v = (1+i)-1, owing to (4.4) the calculation of IRR starts from the 
equation 

V (0;O,i) Sh vh 0
h 1
n               (4.19) 

i.e. an algebraic equation of degree n in the unknown v. From the solution v* the 
IRR i* = 1/v* - 1 is obtained. Well known theorems give information on the 
solutions of (4.19) in relation to the coefficients Sh.  

                                   
6 For the general mixed project ruled by a non-reciprocal rate, it is necessary to use more 
general methods, which will be discussed in section 4.4.6. The interpretation of IRR as a 
return index in the mixed projects also implies a more rigorous widening of its meaning. This 
would lead to giving a return meaning to the IRR only when it is an index of totally detached 
or totally incorporated return, and only in the case of uniqueness of IRR for a given operation 
(see footnote 7). 
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The existence and uniqueness of the IRR for the operation O is not always 
verified. However, in order that the problem of IRR is mathematically well posed 
and financially meaningful as a return index, it is necessary that the solution v* (and 
then i*) exists and is unique. In this case we will say that i* is IRR operative. This 
eventuality is verified in some special type of investments (or also of financings, 
obtainable reversing the algebraic sign of investment amounts), in which there is 
only one sign inversion in the sequence of amounts Sh. We will consider this later. 

The value V(0;O,i) is called the discounted cash-flow (DCF) and i* is the rate 
that makes the DCF become zero. 

4.4.2. Outline on GDCF and “internal financial law”  

The concepts of DCF and IRR can be generalized going from a flat structure of 
interest rates to any structure, as long as it follows an s.dec financial law. 

If we consider a financial operation O made of the amounts s0, s1,...,sn paid at 
increasing time t0, t1,...,tn (= intervals from a given time origin) then O = 

(th ,sh )h 1
nU . We know that according to the signs of sh, O can be an investment or 

a financing. Let us evaluate according to a exchange law z( ) that, using x<y, 
becomes z(y,x) = a(y,x) for discount from y to x, while z(x,y) = m(x,y) for 
accumulation from x to y, being m(x,y) = 1/a(y,x) in the symmetric hypothesis. Let 
us only consider discounting. Then the functional G(a) =  sh  h=0

n a(th , t0 ) depends 
on the function a and is called the generalized discounted cash-flow (GDCF) of O in 
t0.  

If     G (ˆ a ) shh=0
n  ˆ a (th , t0) = 0 results, the discount law is called the internal 

financial law (IFL) for O and is identified with  ̂  a (th , t0) , defined in the payment 
times. Using IFL we obtain the fairness of O, i.e. the balancing between income and 
payments valued in t0.  

If   ̂  a (th , t0) =  (1+i*)-(th t0 ), the GDCF gives rise to DCF and the IFL gives rise 
to the only parameter i* (=IRR), that is the internal rate of return for O. 

If the law a(y,x) is s.dec and symmetric, we have a(y,x) = 1/m(x,y) and the 
fairness does not depend on the evaluation time. Given the payment times {t0, 
t1,...,tn}, we put 

  ah = a(th-1 ,th ) ;   mh = m(th-1 ,th ), h=1,....,n         (4.20) 
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where mh = 1/ah. 

Let us consider again the retro-reserve for O, which coincides with the pro-
reserve because of the fairness. Let us indicate by ch the retro-reserve calculated at 
time th just after the transaction sh, which represents the credit obtained in th due to 
the previous transactions. The extreme values of the sequence {ch} are constrained 
by: 

– c0 = -s0, having no earned interest yet;  

– cn = 0, due to the fairness of O valued with the IFL. 

For the other values there exists a wide flexibility, connected to the choice of the 
accumulation factors {mh}. 

The following fundamental theorem holds. 

THEOREM.– For all operations O consisting of the cash-flow (thh 1
nU ,sh ) , each 

sequence {ch} of retro-reserves, with c0 = -s0, cn = 0 under the condition ch  
0, h<n, gives rise biuniquely to a sequence of per period accumulated factors 
{ ˆ m h } ={ ˆ m (th-1, th )} that form an IFL for O, owing to the recurrent system 

ch = ch-1 mh - sh , h = 1,....,n.              (4.21) 

Proof 

The evidence of the biunique correspondence is based on the fact that the 
constraints give rise to a system of determined equations, which, given the supplies 
(th ,sh ) , identifies {mh} as a function of {ch} and vice versa. We can prove that 
{mh} is an IFL for O proceeding by induction on h. In fact 

  ch  =  c0 mzz 1
h - suu=1

h mzz u 1
h  =  c0 m(t0, th ) su  m(tu , th )u 1

h
  (4.22) 

due to the decomposability of the financial law. Using h=n and taking into account 
the constraints on the extreme of {ch}, we obtain the fairness condition  

  su m(tu ,tn )
u 0
n

 =  0                (4.23) 

satisfied by the sequence   { ˆ m (th-1, th )}, which is IFL for O. Going backwards, we 
can prove the opposite. From the factors ˆ m h  forming an IFL, we can obtain the 
intensities for the interval (th-1, th) 
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jh = ( ˆ m h )1/( th th 1 ) 1                 (4.24) 

that give rise to the corresponding annual return. 

4.4.3. Classifications and property of financial projects 

If the retro-reserve of a project at the initial time 0 is zero, the value V at this 
time obviously coincides with the pro-reserve W.  

If V(i) is a decreasing function of i in the interval (0,+ ) and if (from the point of 
view of the investor)  

lim
i 0

V (i) Sh 0
h

lim
i

V (i) S0 0
                   (4.25) 

this is a sufficient condition for existence and uniqueness of a positive solution i=i* 
of (4.19) that gives the internal rate (sometimes called implicit rate), while its 
definition has no operative meaning without uniqueness. 

The previous sufficient condition implies that for the investor the initial supply is 
a payment and that the algebraic sum of the amounts of O is positive, i.e. there exists 
a reward given by the surplus between incomes and payments. Starting the project 
with a payment (or an income) is in fact a characteristic of investment operations (or 
financing operations). The following definitions hold. 

 

A project is called: 

– investment in the strict sense, if all payments come before all incomes; 

– investment in the broad sense, if the average maturity (defined in section 2.5.2) 
of payments comes before that of incomes at any evaluation rate. 

We have a financing (in strict or broad sense) if the aforementioned definitions 
hold after the inversion of the sign of the amounts. 

A project can be characterized by input and output amounts paid only one time 
or spread over more times, giving rise to four possibilities:  

1) PIPO (= point, input, point output); 



112     Mathematical Finance 

2) CIPO (= continuous input, point output); 

3) PICO (= point input, continuous output); 

4) CICO (= continuous input, continuous output). 

For PIPO and PICO an investment project is simple if it is formed by one 
payment followed only by incomes; symmetrically a financing project is simple if it 
is formed by one income followed only by payments. For the simple projects of 
investment (or financing), the decreasing monotonic (or, respectively, increasing 
monotonic) V(i) is assured, and if  

0 0 0 00 0 or 0 0h hh h
S S S   S S S  

the operative internal rate exists. 

Considering investment projects, it is interesting to give more general conditions 
for the existence for the operative IRR. It can be proved that in the hypothesis of 
V(0) > 0 of the project, besides the simple investment PIPO and PICO projects 
(which are investment in strict sense), there is existence and uniqueness of the 
solutions of (4.19) also in the following cases: 

– in the other investment projects in the strict CIPO and CICO sense; 

– in the investment project in the broad sense, of type CICO, when the condition 
(also sufficient because the project is an investment in the broad sense) that the 
arithmetic mean of the time of payments (= their average maturity when i  0) 
comes before the time for the first income (= average maturity of incomes when i  
+ ) is satisfied.  

Indeed, in both cases V(i) is decreasing until it remains positive, and approaches 
S0 < 0 when i diverges, which gives the existence and uniqueness of its roots. 

The IRR has the following properties: 

– it does not change with a proportional change of the amounts; 

– the project sum of two projects with internal rate has an internal rate with value 
between the rates of the two projects, then, if the two rates coincide, the rate of the 
project sum coincides with them. 

If the aforementioned conditions for the average maturities are not satisfied, we 
can lose the existence or uniqueness of the roots of (4.19), no longer having the 
possibility of defining an operative IRR. Reversing the sign of the amounts in the 
cash-flow, the investment becomes a financing. Then the decreasing of V(i) changes 
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to increasing and the return rate is a cost rate for the financing, maintaining the 
previous property. 

Summarizing the operative interpretation of the IRR of an investment project, 
this rate is (if it exists) a return index, because it is just the interest rate of a 
profitable account fed only from the financial transactions connected with the 
project, such that, also considering the interest, the balance is zero just after the last 
transaction7.  

EXAMPLE 4.2.– We give here two examples, regarding cash-flow of investment 
projects, for which the properties defined above are satisfied. To consider financing 
projects of the same type, it is enough to reverse the sign of the monetary amounts: 

– a project of investment in the strict sense of type CICO, called , is as follows. 
In an industrial plant the following costs and revenues apply: for the first 2 
semesters only costs apply; so €70,000 in the 1st semester for buying the plant, and 
€40,000 in the 2nd semester for installations in the plant; in each of the following 10 
semesters we have operating costs for €6,000 and income for €19,000; in the 13th 
semester the divestment of the plant occurs with a net return of €15,000. The 
algebraic sum of these transactions is €35,000, thus it is a profitable investment. 
Valuing the amounts at the end of each semester, the cash-flow of  is shown by the 
following graph: 

 

-70,000  -40,000  13,000  13,000                         13,000  13,000    15,000

    1           2           3           4                         11          12          13 

 is an investment project in the strict sense, with a unique IRR, because when 
balancing in the year incomes and payments, the time of the last (net) payment 
comes before that of the first (net);  

– an investment project in the broad sense assumes an average maturity of 
payments preceding that of incomes (in net terms) at whatever evaluation rate is 
used; for this it is sufficient condition that the arithmetic mean maturity of payments 
(= their average maturity when i 0) comes before the time of first income (= 
average maturity of incomes when i + ).  

                                   
7 Here it is assumed that, if the balance does not remain constant in sign due to the dynamic 
of the financial supplies, the allowed interest rate is the same as the charged rate, i.e. the c/a 
bears reciprocal rate. In some cases, this is a strong limitation, the overcoming of which 
requires a more general approach (see section 4.4.6). 
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An example of such a type of project can be obtained by modifying the project 
in  adding a payment of €15,000 after 6 semesters. Compensating with a net 

operating income in the period for €13,000 we obtain for the 6th semester a net 
payment of €2,000 and then the cash-flow of  can be described by the following 
graph: 

  
-70,000 -40,000 13,000 13,000 13,000 - 2,000 3,000             13,000  15,000
_|_____ |______|______|______|______|______|___............._|______|___ 

1          2           3           4           5       6      7                   12          13 
 

Measuring in semesters, the arithmetic mean maturity of  payments is:  

(-70,000 -40,000.2 - 2,000 6)/(-112,000) = 1.4469 

whereas the time for the first income is 3 and then the project   is an investment in 
the broad sense with unique IRR; it is profitable because the algebraic sum of the 
amounts is +5,000. 

4.4.4. Decisional criteria for financial projects 

It is fundamental in mathematical finance to give a criterion to decide if it is 
convenient or not for an economic subject to realize a project identified by the 
financial operation O8. 

Not considering a particular criterion based on parameters and particular points 
of view, we will focus our attention on the two more important criteria as they are 
better justified in general in the light of financial equivalencies and are universally 
used in business practice.  

The first criterion is based on the value V of O in a given time of evaluation9. 
This has been defined in this chapter and its meaning is clear in quantifying O. The 
second criterion is based on the internal rate of return of O, already defined, if it is 
operative.  

Usually the first criterion is considered subjective, because V depends on the 
evaluation rate x that is subjectively fixed by the decision maker, while the second 
criterion is considered objective, because the internal rate depends only on objective 
elements, such as the fixed supplies of O. However, looking carefully at both 

                                   
8 For further discussion on the internal rate and, in general, on decision and choice in 
financial projects, see in Italian literature: Levi (1967); Trovato (1972). 
9 If the valuation time is not after the beginning of the operation or if the supplies before such 
time do not matter, the value V can be changed with the prospective reserve of O. 
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criteria, as we will see later, the decision follows from a comparison between an 
external value (due to the market, which implies a subjective evaluation by the 
decision maker) and an internal value (connected with the objective features of the 
project, i.e. its supplies or internal rate). 

It is clear that the evaluation depends on the choice of the financial law, but if, as 
is usually the case, an exponential regime is used, a feature of which is a flat 
structure of rates, it is sufficient to fix the annual rate to identify the exponential law. 
In this way the decision is not influenced by a changing of the evaluation time and 
not even by a uniform deferment of the financial supplies.  

We can therefore enunciate the first decisional criterion in the following way. 

CRITERION OF THE PRESENT VALUE (PV): the project identified by a 
financial operation O* of investment or financing is convenient for the economic 
subject “A”, and then the decision on it is positive, if and only if, at the evaluation 
rate x* chosen by “A”, the value V of O* at the evaluation time results in: V(x*) > 
0. The project identified by O* is not convenient, and then the decision on it is 
negative, if and only if in the same conditions the result is: V(x*) < 0. Finally, if and 
only if V = 0 the project is indifferent10. 

This is reasonable according to the profit criterion: if and only if the cash-flow of 
the projects implies withdrawals and deposits on a profitable account at the 
(reciprocal) rate x* (that – taking into account the received and allowed interest on 
the balance, initially zero, that is accruing from time to time – give rise to a final 
positive spread, for which the discounted evaluation V(x*) remains positive), the 
project is convenient. Otherwise it is unacceptable or, at most, indifferent.  

From the above the criterion to choose the evaluation rate immediately follows: 
it is necessary to choose the market rate of the financial operations, which are 
alternatives to the examined project. 

We could not add anything on the projects decision, given the overall validity of 
the PV criterion and its dependence on the fundamental principles of financial 
                                   
10 The decisional criterion can be extended to many projects, if the decision maker has 
available funds and he is interested in sustaining more than one, in the following way: given n 

 2 investment projects O1,...,On, each being convenient according to the evaluation rate x* 
(concerning the opportunities of financing the projects, or by vanishing profit or by rising 
cost), let us put them in decreasing order of their value, such that V1(x*) >..…> Vn(x*). For 
the decision maker it is convenient to carry on the first r  n projects with values V1(x*),..., 
Vr(x*) for which he has enough funds. He can also add one of the subsequent projects, in 
convenience order, if it can be split (as, for example, is done with stocks or company’s share), 
thus buying a part of the project. 
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equivalency and on the arbitrariness of the choice of the evaluation law. 
Furthermore, we need to take into account the common wish of economic operators, 
especially in the business world, to fix a criterion on an objective basis. This 
explains the wide spread of the second decisional criterion, which can be given as 
follows. 

CRITERION OF THE INTERNAL RATE OF RETURN (IRR): if an investment 
project, identified by an operation O*, with internal rate i* (to be considered like 
return rate), is convenient, then the decision is positive, if and only if i* > x*, where 
x* is the evaluation rate, in particular the market rate (to be considered like 
external rate of the financing costs needed for the investment). If O* is not 
convenient, then the decision is negative, if and only if i* < x*. 

For the financing projects it is enough to change signs and the inequalities side, 
and the following formulation holds: if a financing project O*, with internal rate i* 
(to be considered likecost rate) is convenient, then the decision is positive, if and 
only if i* < x*, where x* is the evaluation rate, in particular the market rate (to be 
considered like external rate of return of the investments following the financing). If 
O* is not convenient, then the decision is negative, if and only if i* > x*. 

Regarding the criterion IRR to decide on a single project, we observe that: 

– it does not have an overall validity, because it assumes the existence of an 
operative internal rate for O*; 

– the arbitrariness is not eliminated because in any case it is necessary to choose 
the external rate x*, in order to compare it with i*;  

– the foundation of the criterion, when it is enforceable, comes from that of the 
present value criterion, as follows by the proof here schematized for investment or 
financing projects with a positive internal rate. 

If V(i), which is strictly decreasing or increasing depending on the project being 
an investment or a financing, has only one root i*, the following inequality couples 
are equivalent (in the sense that one is necessary and a sufficient condition for the 
other):  

– investment projects: 

V(x*) > 0  i* > x*: O* = convenient investment 

V(x*) < 0  i* < x*: O* = non-convenient investment 
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– financing projects: 

V(x*) > 0  i* < x*: O* = convenient financing 

V(x*) < 0  i* > x*: O* = non-convenient financing 

Comment 

The positive decision on the project identified by O* is equivalent to the choice 
of O* instead of the “no project” (that is, the project of doing nothing), featured by 
the absence of cash-flow and then by the maintenance of the “status quo ante”, 
according to which the wealth of the economic subject was profitably invested, for 
example at the evaluation rate x*. The criterion IRR in the previous formulation then 
follows, because “doing O*” means the “transferring financial funds”, from the 
market to the project if O* is an investment or from the project to the market if O* is 
a financing.  

EXAMPLE 4.3.– Evaluation of investment projects. Calculation of IRR. Decisions.  

We will consider three investment projects, all having an operative IRR. 

A) The simple investment project  of the PICO type is the buying with cash at 
time 0 of a real estate equipped with an industrial plant that is producing a detached 
return, with a sale after 5 year that implies an incorporated return. Let the purchase 
price be € 47,500, the semiannual return balanced at the end of term, after tax and 
operating expenses, is €3,000, the selling price at the end of the 5th year is €50,000. 
It is then a financial project featured by the following supplies: 

 
                  -47,500      +3,000        +3,000 .......   .........+3,000       +53,000              (amounts)

 

                  0                 1/2              1                            9/2               5                         (time)  
 

Using “semester” as a measure of time and indicating with x the semiannual 
evaluation rate, the PV (or DCF) of the project , given by the initial value of its 
supplies, is expressed by 

V(x) = -47,500 + 3,000 [(1+x)-1+…+(1+x)-10] + 50,000 (1+x)-10 

which results in: 

V(0.062) = 1,770.626; V(0.07) = – 1,011.791  

Decisions according to PV criterion. By using money borrowed at a semiannual 
rate of 6.2% (for self-financing by vanishing profit or external financing by rising 
cost) the investment is convenient; however, by using money borrowed at a 
semiannual rate of 7% the investment is not convenient. 
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Calculation of semiannual IRR. The semiannual IRR, unique and certainly 
between 0.062 and 0.07, will be calculated first of all, obtaining an estimation 
through linear interpolation in the interval (0.062, 0.07) and then, to obtain the 
solution (with 9 exact decimals required), proceeding with a classical iteration (for 
more detail on these methods, see section 4.5) starting from the approximate 
solution, using Excel spreadsheets11.  

The linear interpolation leads to solving the equation  

0.062 0 1,770.92
0.07 0.062 1,011.79 1,770.92

x
 

with solution x  = 0.067091. To obtain the exact solution  ̂x  with 9 decimals, we 
apply to the classical iteration the transformation “f(x) = xg(x)/g0” to go from 
equation “f(x) = x” to the equivalent equation “g(x) = g0”, which is more useful 
here, thus using  

g(x) = V(x) + 47,500 (= present value of incomes); g0 = 47,500 (= initial payment) 

With an Excel spreadsheet we build the following five columns. The resulting 
Excel table is as follows. 

                                   
11 We notice that Excel has included a function for the calculation of IRR, starting from a 
given cash-flow with periodic payments. Furthermore, for calculating the IRR by means of 
the Excel method we need a starting approximated evaluation, which can be obtained with the 
formula in footnote 22 of this chapter regarding the linear interpolation method. However, for 
the calculation of IRR, it is useful to give an illustration of classical numerical methods. 
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0 0.067091000 47,475.956 0.999494 0.067057039 

1 0.067057039 47,487.647 0.999740 0.067039600 

2 0.067039600 47,493.652 0.999866 0.067030641 

3 0.067030641 47,496.737 0.999931 0.067026037 

4 0.067026037 47,498.323 0.999965 0.067023670 

5 0.067023670 47,499.138 0.999982 0.067022454 

6 0.067022454 47,499.557 0.999991 0.067021829 

7 0.067021829 47,499.772 0.999995 0.067021508 

8 0.067021508 47,499.883 0.999998 0.067021342 

9 0.067021342 47,499.940 0.999999 0.067021257 

10 0.067021257 47,499.969 0.999999 0.067021214 

11 0.067021214 47,499.984 1.000000 0.067021191 

12 0.067021191 47,499.992 1.000000 0.067021180 

13 0.067021180 47,499.996 1.000000 0.067021174 

14 0.067021174 47,499.998 1.000000 0.067021171 

15 0.067021171 47,499.999 1.000000 0.067021169 

16 0.067021169 47,499.999 1.000000 0.067021168 

17 0.067021168 47,500.000 1.000000 0.067021168 

18 0.067021168 47,500.000 1.000000 0.067021168 

Table 4.3. Intermediate calculations for the case of A 

The first column is built with natural numbers (i = number of steps) and the 1st 
row (i=0) has components: 0; x0= x =0.067091; g(x0); g(x0)/g0; f(x0). The 2nd row 
(i=1) starts with: 1; x1 = f(x0); the remaining part is built, using the “copy and paste” 
function, by columns. In the 3rd, 4th and 5th columns the values g(xi); g(xi)/g0; f(xi) 
for i 1 are obtained; and then in the 2nd column we obtain the values xi for i 2, that 
are the sequence converging to the solution ˆ x = 0.067021168. We get such value by 
the 17th iteration, because g(x17) = 47,500 and at the 18th iteration we can see that 
with 9 decimals x18 = x17 and then such a value is ˆ x . The compound annual IRR is 
(1+ ˆ x )2 - 1 = 0.138534. 

The Excel instructions are as follows: A1: 0; B1: 0.067091; C1: = 3000*(1-
(1+B1)^-10)/B1+50,000*(1+B1)^-10; D1: = C1/47500; E1: = B1*D1. 

A2: = A1+1; B2: = E1; copy B1,C1,D1,E1,A2, then paste on the subsequent 
elements of the same column.  
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Decisions according to IRR criterion. If the annual evaluation rate (in practice 
the market rate by vanishing profit or by rising cost) is less than 13.8534%, the 
decision on the project is positive; otherwise it is negative. 

B) The pure investment project in the strict sense of CICO type, and then with 
unique IRR, is as follows. Let us consider an industrial plant which gives: for the 
first 2 years only payments, so a purchase cost of €7,000 in the 1st year and an 
installation cost of €4,000 in the 2nd year; for the next 5 years in operative phase one 
has annual managing costs of €1,200 and annual incomes of €3,800; for the next 
year the plant is sold for a net return of €1,500. The algebraic sum of the 
transactions is €3,500 and then we have a profitable investment. Valuing the 
amounts at the end of each year, the cash-flow of  is expressed by  

 
  -7,000         -4,000        +2,600        +2,600       +2,600        +2,600        +260        +1,500     (amounts)

 

        1                2                3                 4                  5                6                 7               8               (time)  
 
Using v = (1+x)-1, the PV is expressed by 

V(x) = -7,000 v + [-4,000 + 2,600(v+v2+v3+v4+v5)]v2 + 1,500 v8  

and then 

V(0.07) = +148.51   ;   V(0.08) = -200.36  

Decisions according to PV criterion. If money is borrowed at the annual rate of 
7%, the investment is convenient, but if money is borrowed at the annual rate of 8% 
(both rates by vanishing profit or by rising cost) the investment is inconvenient. 

Calculation of IRR. The IRR, which is unique and certainly between 0.07 and 
0.08, will be calculated starting with an approximation through linear interpolation 
in the interval (0.07; 0.08) and then, to obtain the solution (with 9 decimals 
required), with a classical iteration starting from the approximate solution. The 
linear interpolation leads to the solution of the following equation: 

0.07 0 148.51
0.08 0.07 200.36 148.51

x  

This (approximate by excess) solution is x  = 0.074257. In order to obtain the 
exact solution ˆ x , we apply the classical iteration method. Furthermore, we cannot 
start from the equation x = f(x), where f(x) = x +V(x), because in a neighborhood of 
ˆ x  is |f’(x)| >1. We need to start from the equation x = h(x) (equivalent to x = f(x)) 

where h(x) = [f(x)-mx]/[1-m]. We should use m = f’( ˆ x ) to obtain h’( ˆ x )=0 and an 
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immediate convergence, but this is not possible because ˆ x  is unknown. 
Furthermore, in order to obtain the convergence with the sequence {xi} obtained by 
xi+1 = h(xi), it is enough that |h’( ˆ x )| <1, for which m must be a well approximated 
value of f’( ˆ x ). We can use: m = f/ x = 1+ V/ x in a neighborhood of ˆ x . Thus, 
we obtain the following function, suitable for the iteration 

h(x)
V (x) x 1

V

x
x

1 1
V

x

V (x) x
V

x
V

x

 

We assume V/ x on the interval (0.07; 0.08) containing ˆ x , thus using some 
previous calculations: V/ x = [-200.36 -148.51]/ [0.08-0.07] = -34887 results, 
which is to be substituted in the previous expression for h(x). Given that, let us use 
Excel and proceed as in section A of this example. We obtain the results in Table 
4.4. 

0 0.074257000 -3.22391125 0.074164590 

1 0.074164590 0.01840163 0.074165117 

2 0.074165117 -0.00011144 0.074165114 

3 0.074165114 0.00000067 0.074165114 

4 0.074165114 0.00000000 0.074165114 

Table 4.4. Intermediate calculations for the case of B 

The 1st row is the vector with components: 0, x , V( x ), [V( x )+34,887 x ]/ 
34,887; the 2nd row starts with the values 1, [V( x )+34,887 x ]/34,887 and the 
remaining part of the table is completed using the copy and paste function. The 2nd 
column shows the rate sequence converging to the solution; already in the 4th 
iteration we obtain ˆ x = 0.074165114 with 9 exact decimals and V( ˆ x ) = 0.  

The Excel instructions are as follows:  

– A1: 0; B1: 0.074257;  

– C1: = -7,000*(1+B1)^-1+(1+B1)^-2*(-4,000+2,600*(1-(1+B1)^-5)/B1+1,500* 
(1+B1)^-8;  

– D1:= (C1+3,4887*B1)/34,887;  
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– A2: = A1+1; B2: = D1; copy B1, D1, A2, then paste on the following column 
cells.  

Decisions according to IRR criterion. If the annual evaluation rate is less than 
7.4165114%, the decision on the project is positive; otherwise it is negative. 

C) Let us consider the project obtained modifying  with the addition of 
repairing costs after 6 months for €3,000. Compensating with the net operating 
income for €2,600, at the 6th year we have a net payment of €400 and the cash-flow 
is given by  
  
-7,000       -4,000         +2,600        +2,600       +2,600         -400         +2,600     +1,500   (amount)

 

   1                 2                 3                 4                5                 6                 7               8     (time)  
 

The new project is not an investment in the strict sense, but it verifies the 
sufficient condition in order that it is an investment in the broad sense and the IRR 
exists and is unique. In fact, the arithmetic averaged maturity of payments is (-7,000 
-4,000.2 - 400.6)/(-11,400) = 1.53, and the time of first income is 3. Furthermore, 
the project is profitable because the algebraic sum of the monetary transactions is 
+500. Using v = (1+x)-1, the PV is given by 

V(x) = -7,000 v + (-4,000 + 2,600 (v+v2+v3+v5)] v2 - 400 v6 + 1,500 v8 

and 

V(0.01) = +77.49 ;  V(0.07) = -311.98.  

Decisions according to the PV criterion. If money is borrowed at the annual rate 
of 1% (by vanishing profit or by rising cost) the investment is convenient, but if 
money is borrowed at the annual rate of 2% the investment is inconvenient. 

Calculation of the IRR. We proceed in the same way as for , having the same 
conditions. The IRR, which is unique and between 0.01 and 0.02, will be calculated 
starting from an approximated value estimated using linear interpolation in the 
interval (0.01; 0.02) and then, to obtain the solution (with 9 exact decimals 
required), proceeding with classical iteration starting from the approximated 
solution. The linear interpolation leads to the following solution of the equation:  

x 0.01
0.02 0.01

0 77.49
311.98 77.49
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and then the solution x  = 0.011989. To obtain the exact solution ˆ x , we apply the 
classical iteration method, with the same transformation and procedures applied in 
section B of this example. The function to use for the iteration on the equation x = 
h(x) is 

h(x)
V (x) x

V

x
V

x

 

We assume V/ x in the interval (0.01;0.02) containing ˆ x : we obtain  

V/ x = ( 311.98 77.49) /(0.02 0.01) 38947   

and such a value is to be substituted in the previous expression for h(x). As a result, 
using Excel as in section A, the following table is obtained. 
 

0 0.011989000 1,426.860635 -1,429.377990 -2.517356 0.011924365 

1 0.011924365 1,429.813919 -1,429.751608 0.062310 0.011925964 

2 0.011925964 1,429.740801 -1,429.742360 -0.001559 0.011925924 

3 0.011925924 1,429.742630 -1,429.742591 0.000039 0.011925925 

4 0.011925925 1,429.742584 -1,429.742585 -0.000001 0.011925925 

5 0.011925925 1,429.742585 -1,429.742585 0.000000 0.011925925 

Table 4.5. Intermediate calculations for the case C 

The 1st row is the 6 component vectors: 0, x , two addends of V( x ) needed for 
the calculation, V( x ), [V( x )+38,947 x ]/38,947; the 2nd row starts with the values 1, 
[V( x )+38,947 x ]/38,947 and the remainder of the table is completed with the copy 
and paste function. The 2nd column shows the sequence of rates converging till the 
solution; at the 5th iteration we obtain ˆ x = 0.011925925 with 9 exact decimals and 
V( ˆ x ) = 0. 
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The Excel instructions are as follows.  
– A1: 0;  
– B1: 0.011989;  
– C1: = -7,000*(1+B1)^-1+(1+B1)^-2*(-4,000+2,600*(1-(1+B1)^-5)/B1);  
– D1: = -3,000*(1+B1)^-6+1,500*(1+B1)^-8;  
– E1: = C1*D1;  
– A2: = A1+1;  
– B2: = F1; copy C1,D1,E1,A2,B2, then paste on the subsequent column cells.  

Decisions according to the IRR criterion. If the annual evaluation rate (really the 
market rate by vanishing profit or by rising cost) is less than 1.1925925%, the 
decision on the project is positive; otherwise it is negative. 

Comparison between Example 4.3B and Example 4.3C. The input in  of the 
payments of €3,000 at the 6th year reduces the convenience threshold from 7.42% to 
1.19% in terms of the highest acceptable rate, making the investment C almost 
inconvenient at the current rates.   

4.4.5. Choice criteria for mutually exclusive financial projects  

In section 4.4.3 we considered a project as the only alternative to no project. 
However, it can be necessary to make a choice between two projects, which are each 
convenient on their own, but not together12. 

For this particular problem we can use a criterion based on the present value or 
otherwise on the internal rate. However, we first need to observe that a coherent 
choice implies comparability between the cash-flows of the mutually exclusive 
project in homogenous conditions; we use in this case the expression complete 
alternative, which, in the case of PIPO or PICO investment projects with only one 
initial payment, means: 

– same initial payment;  
– same time length. 

                                   
12 We stress that the external comparison rate to judge the convenience of two projects could 
not be the same, with a choice based on the circumstances. Then if the first project can be 
realized with self-financing, disinvesting a previous investment, the internal rate must be 
compared with its return rate (by vanishing profit), whereas if the second project can be 
realized only by borrowing money, its convenience must be evaluated by comparing the 
internal rate with the external rate of the financing (by rising cost), which is usually greater 
than the return rate. 



Financial Operations     125 

If there is not a complete alternative between the two projects, we need to 
consider additional operations of shorter initial cost or length for the projects, which 
allow a comparison between homogenous elements. In short – considering two 
projects – if O1 and O2 do not give rise to complete alternatives, in order to make 
the comparison it is necessary to go back to complete alternatives, considering two 
additional projects Q1 and Q2 so that the unions O1 Q1 and O2 Q2 (where  is a 
union between projects) are a complete alternative13.  

Therefore, in order to choose between two projects, we can apply the following 
criterion. 

PRESENT VALUE CRITERION. Given two investment projects characterized by 
cash-flows with values V1(x*), V2(x*) positive according to an evaluation rate x* 
(concerning the projects’ financing opportunities, by vanishing profit or by rising 
cost), the decision maker who, in a complete alternative condition, can carry on only 
one of them chooses the project that gives rise to a higher value14. The same 
decisional criterion holds for mutually exclusive financing projects. 

The consideration of criteria based on the internal rate points out delicate 
questions that need to be clarified. Indeed, for the financial valuations only in the 
initial part of the company’s life we can neglect the pre-existing conditions; when 
considering the alternative projects, we need to think in terms of substitutive 
projects and then consider the difference of cash-flows. 

Indeed, if  represents the projects already realized by the considered company 
(assuming a past activity) and if the owner has to decide between two new projects 

 and  (both acceptable, if individually considered), the owner does not have to 
compare  and  but   and   and then the owner must choose, assuming a 
favorable preliminary decision on , whether or not to substitute  for  and then 
must decide on  –  = ( ) – ( ). In such a case the owner, after having 
decided to add  and , considers it more advantageous to withdraw such a decision 
(i.e. subtract  to go back from  to , not considering costs) and then to add  
to . 

In summary, a choice in alternative between  and , both investment or both 
financing projects, is equivalent to a decision on  – . Thus, the general extension 
of the IRR criterion to alternative choices with reference to the rates of the projects 
to be compared is not justified. Because of the overall validity of the evaluation, it is 

                                   
13 It is not necessary to take into account Q1 (or Q2) if its internal rate equals the evaluation 
rate, because then the value increment due to the integration is zero. 
14 Notice that a such criterion can be obtained as a particular case of the criterion described in 
footnote 10 using n = 2, r = 1. 
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indeed necessary to value the difference project of two alternative projects 
(considering that  –  and  –  have the same internal rate, if it exists operative, 
as defined in section 4.4.1) and to apply to such difference project the decisional 
criterion IRR (see Figures 4.2a and 4.2c).  

Furthermore, in the particular case of dominance between projects, we will say 
that the project b is dominant over the project a if  

  V (0;b,x*) V (0;a ,x*) ,  x* X *             (4.26) 

results (where X * is the set of variation of all possible evaluation rates), there is no 
IRR for the difference operations. In addition 

– with reference to investment, the project with higher value for each rate also 
has higher IRR. In particular, if (4.26) holds, because of the decrease of V, the 
inequality i*(b) > i*(a) concerning the IRR of a and b (see Figure 4.2b);  

– with reference to financing, the project with higher value for each rate also has 
lower IRR. In particular, if (4.26) holds, because of the increase of V, the inequality 
i*(b) > i*(a) concerning the IRR of a and b (see Figure 4.2d). 

 

 

Figure 4.2a. Investment projects Figure 4.2b 

 

Figure 4.2c. Financing projects Figure 4.2d 
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In conclusion, for the alternative choices we can enunciate the following. 

INTERNAL RATE CRITERION  

1) Case of no dominance. Given two convenient investment projects a and b 
without dominance in the rates set X*, if there exists operative IRR i* of the 
difference operation a-b (and then of b-a) and if at the rate 0 is 
  V (0;b,0) V (0;a,0) , then, indicating by x* the external evaluation rate chosen by 
the decision maker, if x* < i*, b is preferred to a; if x* > i*, a is preferred to b. 

The opposite inequalities hold if  V (0;b,0) V (0;a,0) . 

2) Case of dominance. Given two convenient investment projects a and b in a 
dominance relation in the rates set X* and having operative IRR i*(a) and i*(b), the 
decision maker prefers the project with the higher IRR. 

If the two projects to be compared are financing, their cash-flows are obtained 
from that of the investment projects changing the amounts’ sign. So, the previous 
criterion holds except for an inversion of the inequalities between the rates 
considered in case 1), whereas the project with lower IRR is chosen in case 2).  

4.4.6. Mixed projects: the TRM method  

In section 4.4.5 we clarified the relation connecting the choice between two 
alternative projects and the so-called substitutive financial operations, which are 
obtained formally as difference operations between two operations (of investment or 
financing). Such operations are used when, among other things, we want to cancel a 
project already chosen to substitute it with another project corresponding better to 
the new company’s aim15. We saw that the choice between two projects that are 
both acceptable can lead back to a difference operation.  

The next problem is moreover that a difference operation  –  between two 
investment (or financing) projects having operative IRR is not always a project with 
operative IRR. This leads to careful discussions about the non-existence or plurality 
of solutions to the IRR problem for a substitutive project. However, it is an added 
basic issue which, when resolved, leads to canceling the discussed problems and 
some formulation defects. We wish to consider this problem. 

The present value criterion described in sections 4.4.4 and 4.4.5 uses the 
evaluation rate referable to the received rates in the investment markets or the 
allowed rates in the financing markets. If the project is profitable for the 

                                   
15 See Volpe di Prignano and Sica (1981).  
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entrepreneur, he uses his profits on the investment market at a received rate of 
return; however, if the project receives money from the entrepreneur, he gets it from 
the financing market at an allowed cost rate. Yet because the project to which the 
criterion is applied changes, as usual, between investment and financing periods, the 
received and allowed rates in the respective markets are usually different and it does 
not correspond to reality to use the same rate, i.e. operate at a reciprocal rate, as 
implicitly postulated by the criterion on decisions and choices problems. We then 
have to leave, for this type of project, the restrictive view followed so far and to 
introduce new definitions and formulations, also increasing the dimension of the 
variability space of the examined quantities. 

With that aim we will now follow a formalized approach that has given rise to 
the TRM16 method. The generalization in the approach will be clarified later. 

In such an approach the entrepreneur is seen as an operator in intermediate 
position between market and project, which can be realized in an industrial (or 
commercial or financial or other) venture, which: 

a) obtains money, as input to investments for the entrepreneur – who puts his 
own means, which were profitably invested, or is financed by the external money 
market, for the most the bank system – with a cost that in the first case is lost profit, 
and in the second case is emerging cost;  

b) gives subsequently (but the cycle could be reversed, as in the insurance sector) 
output as money that the entrepreneur then invests in a profitable manner.  

In the process described here, there are, in general, four different rates that are 
considered:  

– a pair of rates, usually different17, for the cost and profit of money, which are 
the received and allowed rates (for the entrepreneur) of external type on the money 
market, i.e. the cost rate r* of financing or self-financing needed for investment in 
the project and the return rate k* of the investments made with the profit from the 
project;  

– a pair of internal rates, ˆ r  to debit and ˆ k  to credit of the project, i.e. that relate 
to the objective characteristics of the project. As we will see, this second pair is 
enlarged on an infinite set of equivalent pairs. 

Let us assume a discrete approach, i.e. considering the supplies of the 
entrepreneur relative to the project and the following balances only periodically (in 

                                   
16 See Teichroew, Robichek, Montalbano (1965a) and (1965b). 
17 We will come back to this later. 
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particular, annually). In addition, let us indicate by {ai}, (i = 0, 1,..., n) the cash-flow 
of the project (i.e. ai < 0 for payments, ai > 0 for income of the entrepreneur).  

In the TRM method the following classification is introduced, relative to the 
dynamic of the cumulated current balance St = St (k,r), (t= 0,1,..., n), of a c/a 
devoted to the examined project. From this c/a the inputs come out and to this c/a 
the outputs come in, both connected to the project18.  

A project is said to be pure (at a given rate) when accounting the financial 
transactions connected to a project in a profitable c/a at such a rate, the balances Sh, 
h=0,...,n-1 before the last transaction have the same sign, while Sn = Sn(k,r) can be 
>=< 0, constituting the final result of the project (from the viewpoint of the 
entrepreneur).  

Obviously: 

– we have a project of pure investment (at the investment rate r) if the first 
financial transaction is a payment and, accounting for the interest charged to the 
project at the rate r, the balances Sh, h=0,...,n-1, remain  0. In formulae this is: 

St St 1(1 r) at ,   t =1,...,n

S0 a0 < 0   ;    Sh 0  ,  h =1,...,n -1
            (4.27) 

– we have a project of pure financing (at the financing rate k) if the first 
financial transaction is an income and, accounting for the interest charged to the 
project at the rate k, the balances Sh, h=0,...,n-1, remain  019. In formulae this is:  

St St 1(1 k) at ,   t =1,...,n

S0 a0 > 0   ;    Sh 0  ,  h =1,...,n -1           (4.28) 

A project is said to be mixed (at the investment rate r and at the financing rate k) 
if it is neither a pure investment at the rate r, nor a pure financing at the rate k. Thus, 
accounting the interest charged or favorable to the project at such rates, the balances 
Sh, h=0,...,n-1, do not remain of constant sign, and it can result in >=< 0, with 
alternating phases of investment and financing. In formulae 
                                   
18 Observe that the balance from the viewpoint of the entrepreneur is equal to the retro-
reserve from the viewpoint of the project, identified as a counterpart of the entrepreneur. 
19 An example of a project of pure investment is given, if S(tn) = 0, by the management of a 
loan at the rate r from the viewpoint of the lender. An example of a pure financing project is 
given, if S(tn) = 0, by managing a loan at the rate k from the viewpoint of the borrower. For 
the management of loan with amortization, see Chapter 6. 
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S0 a0

     St St 1(1 r) at     if   St-1 < 0    

St St 1(1 k) at      if   St-1 0

t = 1,...,n          (4.29) 

Both for mixed and pure projects the value 

S(k,r) = Sn = Sn(k,r)                  (4.30) 

can be >=< 0, constituting the final result of the project (from the viewpoint of the 
entrepreneur), given by the returns, which are also financial, the net of costs, which 
are also financial, at the final time instead of at the initial time (as seen for the 
present value), and on the basis of a complex and non-decomposable financial law, 
identified by (4.29), if the project is mixed and a non-reciprocal rate is applied, i.e. if 
r and k are both used for calculation and they are different. 

We can now see the substantial limit of the present value criterion (see section 
4.4.4) which is not useful for projects that interchange in time the role of investment 
taking money (if St < 0) and that of loan giving money (if St > 0) because we use 
only one evaluation rate whereas the rules of the money and financial market usually 
give rise to different return rates in the two cases. 

The specification of the rate, when the pure or mixed feature of the project is 
specified, is needed because such a feature depends on the level of the investment or 
financing rate. In fact, every mixed project with a0 < 0, when r increases and 
exceeds a given r-min, becomes a project of pure investment and the result does not 
depend on k; in the same way every mixed project with a0 > 0, when k increases 
beyond a given k-min, becomes a project of pure financing and the result does not 
depend on r. 

The property can be proved immediately observing that, if a0 < 0 and thus the 
interest is initially accrued at the rate r, there exists a proper r-min, such that, h = 
1,...,n-1, the absolute value of the decrement Sh - Sh-1 exceeds every ah >0. Thus the 
balances, initially negative, remain negative for the whole time-length before the last 
transaction that gives the final result and the project results of a pure investment. 
Analogously, if a0 > 0 and then the interest is initially accrued at the rate k, there 
exists a proper k-min such that h = 1,...,n-1 the increment Sh - Sh-1 exceeds the 
absolute value of each ah  0. Thus the balances, initially positive, remain positive 
for the whole time length before the last transaction that gives the final result and the 
project results of a pure financing.  



Financial Operations     131 

Let us consider the geometric approach on the Cartesian plane. Restricting 
oneself to the mixed projects on the basis of the given rates (then with r<r-min if a0 
< 0, with k<k-min if a0 > 0), while (4.30) generalizes the concept of present value of 
a project, the generalization of the internal rate is obtained choosing among the level 
curves of the surface (4.30), defined on the quadrant k 0, r 0  of the plane Okr, 
the one corresponding to the parameter = 0 and then to a nil final result. 
Analogously the IRR is solution  ̂ i  of the equation V( ˆ i ) = 0. Therefore the equation   

S(k,r) = 0                      (4.31) 

implicitly defines on the aforementioned quadrant a continuous and increasing 
curve, that is called final fairness curve (or more briefly, fairness curve, or also 
curve of equilibrium) of the project, generally asymptotic to the straight line r = r-
min if a0 < 0 or to the straight line k = k-min if a0 > 0. The explicit forms of (4.31), 
to be considered alternatively, can be written as 

r r0(k)

k k0(r)
                       (4.32) 

where r0 and k0 are the functional operators, one inverse of the other, which realize 
the final fairness of the project. Any pair ( ˆ k , ˆ r )  satisfying (4.31) and then, because of 
(4.32), such that  

ˆ r r0( ˆ k )  or ˆ k k0( ˆ r )             (4.33) 

identifies a point on the fairness curve and then has the following meaning: given 
the cash-flow of the mixed project, if in the investment stages of the project, 
interests (positive for the entrepreneur) are debited to it at the rate ˆ r , such that the 
project is in equilibrium (i.e. gives rise to a null final balance) we have to credit 
interest (negative for the entrepreneur) at the rate ˆ k  during the financing stages of 
the project. And the inverse holds. The points on curve (4.31), with coordinates of 
type ( ˆ k , ˆ r ), are financially equivalent in the sense that they all assure a zero final 
result 

THEOREM.– The generalization of IRR implies a connection between internal 
allowed and charged interest rates, i.e. needed to maintain the equilibrium of the 
project, with necessarily concordant variations rate.  
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Proof 

Given that it is not restrictive to suppose that the function S(k,r) has continuous 
first order partial derivatives, we have 

S

k
0    ;     

S

r
0                     (4.34) 

This is because according to (4.29), on curve (4.31) if k increases, fixing r, at the 
end of the process, S increases; while if r increases, fixing k, S decreases. Given that 
the derivative of the function r r0 (k)  exists and is continuous, explicit equation of 

the curve S=0. Moreover, dr0 (k)
dk

dr

dk

S

k
/

S

r
0  holds. Analogous conclusion 

for the inverse function k k0 (r)  with derivative dk0 (r)
dr

dk

dr

S

r
/

S

k
0 . 

 On the contrary, if a0 < 0 and r = r-min or a0 > 0 and k = k-min, the project 
becomes pure and the fairness curve becomes a parallel to the r = 0 or k = 0 axis 
respectively. In such a case it is enough to consider only one of the external rates, r* 
of cost or k* of return; then the problem is led back to the one-dimensional case and 
to the criteria as given in sections 4.4.4 and 4.4.5. 

 Summarizing the geometric point of view, on varying the supplies, the fairness 
curves (4.31), locus of the points (k,r), cover: a) if a0 < 0, a mixed region defined by 
(k>0, 0<r<r-min) and in the top a region as pure investment defined by (k>0, r r-
min); b) if a0 > 0, a mixed region defined by (0<k<k-min, r>0) and in the right side a 
region as pure financing defined by (k k-min, r>0) (see Figure 4.3). 

 

Figure 4.3a and b. Fairness curves 
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4.4.7. Decisional criteria on mixed projects 

 Let us now extend the decisional and choice criteria for mixed project as seen 
with the one rate approach in sections 4.4.4 and 4.4.5. In addition, we observe that it 
is enough to consider here decisional criteria: indeed, substitutive operations can be 
led back to a mixed project and we have shown in section 4.4.5 the way in which 
decision on them is equivalent to choices in alternative between projects of 
investment or financing. The decisional criterion discussed later has a geometric 
interpretation in Figure 4.4 with reference to the plane Okr. 

 

 

Figure 4.4a and b. Plot of the decisional criterion 

When we are interested in rates that generate a mixed project (i.e. when there is 
plurality in the sign of the periodic balances sequence), from the viewpoint of the 
entrepreneur, the broker between the project and the financial market, the following 
decisional criteria apply. 

a) The final result (FR) criterion, which extends the present values (PV) criterion  

The decision depends on the sign of the final balance evaluated at the external 
cost rates r* and returns k*, already defined, on the capital market. Therefore, the 
criterion can be formulated as follows. 

If 

S(k*,r*) > 0                       (4.35) 

the mixed project is convenient for the firm; if  

S(k*,r*) < 0                       (4.35') 
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the mixed project is inconvenient for the firm; if 

S(k*,r*) = 0                      (4.35") 

the mixed project is indifferent for the firm. 

Proof 

It is obvious that (4.35), (4.35') and (4.35”) generalize the criterion of present 
value described in section 4.4.4, which uses the relations V(x*)>0, V(x*)<0 and 
V(x*)=0. To prove the FR criterion with a direct argument, it is enough to observe 
that, from the viewpoint of the acting firm, the amounts of the cash-flow towards the 
market regarding the examined project are exactly the opposite of those of the cash-
flow towards the project. In other words, the firm takes the amounts from the market 
with charged interest rate k* and invests them in the project at the allowed rate ˆ r , 
and, in addition, takes the amounts from the project with charged interest rate ˆ k  and 
invests them in the market at the allowed rate r*. If the final effect of such a 
transaction is a spread S(k*,r*)>0, then the mixed project is convenient, otherwise it 
is not. 

b) With the return and cost rates (RCR) criterion, which extends the internal rate 
(IRR) criterion 

In such a criterion (which, in contrast to the IRR criterion, can always be 
applied) it is necessary to consider four types of rates already indicated, i.e. the pair 
(k*,r*) of return and cost rates on the external market and the infinite pairs 
(k0(r),r0(k)), coordinates of points on the well established fairness curve which 
replaces the IRR, with varying ˆ r  = investment rate in the project and ˆ k  = financing 
rate from the project, from the viewpoint of the firm. The RCR criterion can then be 
formulated as follows. 

Given a mixed project  (at the considered rate) with a fairness curve of 
equation (4.31) with explicit form: r = r0(k) (i.e.: k = k0(r)), using (from the 
viewpoint of the acting firm): 

– k* = external allowed return rate on the market;  

– r* = external charged cost rate on the market20; 
                                   
20 The original formulation of the TRM criterion, more limited than the one shown here, 
introduces only one external rate called cost rate of the capital, then assuming k*=r* and 
considering the point P* bounded on the bisector r=k. Thus, only the intersection points are 
meaningful of the fairness curve with the bisector r=k, which have coordinates equal to each 
other and to the IRR of the project, which are non-operative in the case of absence or plurality 
of solutions, leading back to the inconveniences of the IRR criterion. We consider more 
advantageous a more general schematization to complete the innovative contribution of this 
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– k0(r*) = charged internal financing rate from the project, corresponding to the 
internal investment rate ˆ r  = r*; 

– r0(k*) = allowed internal investment rate in the project, corresponding to the 
internal financing rate ˆ k  = k*; in the hypothesis that the firm has access without 
limitation to the financing market at the rate r* and to the investment market at the 
rate k* (constant rates for the whole length of the mixed project), thus; 

– if and only if the point P* = (k*,r*) is below the fairness curve, where  

r0(k*) > r* ;   k0(r*) < k*               (4.36) 

(the inequalities are either both true or both false due to the increasing behavior of 
the fairness curve), the project  is convenient for the firm; 

– with the same hypothesis and positions, if and only if the point P* = (k*,r*) is 
above the fairness curve (4.31), where 

r0(k*) < r* ;   k0(r*) > k*              (4.36') 

(the inequalities are either both true or both false), the project  is inconvenient for 
the firm; 

– with the same hypothesis and positions, if and only if the point P* = (k*, r*) is 
on the fairness curve (4.31), where 

r0(k*) = r*;  k0(r*) = k*              (4.36") 

(the equalities are either both true or both false), the project  is indifferent for the 
firm. 

Proof 

(4.36") follows from the definition of fairness curve. In addition, we can verify 
the equivalence between (4.35) and (4.36), between (4.35') and (4.36'), and between 
(4.35") and (4.36"), from which the RCR criterion follows.  

To prove the validity of the RCR criterion with a direct argument, we firstly 
observe that a project is convenient or inconvenient if it gives rise to a property 
variation that increases the return rate and/or decreases the cost rate or it gives rise to 

                                   
scheme, also due to the fact that in the capital market it is used to work with non-reciprocal 
rates. 
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a property variation with opposite effects. Besides, let us indicate by St the balance 
with accumulated interest until time t, as defined in (4.29). 

So if, when St < 0, the firm has invested in the mixed project  at the rate r* 
equal to the cost rate on the market (then without spread), then in equilibrium 
condition the financing from , when St > 0, is ruled by the rate k0(r*). Therefore: 

– if the second inequality of (4.36) holds, investing the profit from such 
financing on the market at the rate k* > k0(r*), the firm has a positive spread and  
is convenient; 

– if the second inequality of (4.36’) holds, investing the profit from such 
financing on the market at the rate k* < k0(r*), the firm has a negative spread and  
is inconvenient; 

– if the second equality of (4.36”) holds, investing the profit from such financing 
on the market at the rate k* = k0(r*), the firm has zero spread and  is indifferent. 

Otherwise if, when St > 0, the firm is financed from the mixed project  at the 
rate k* equal to the return rate on the market (then without spread), then in 
equilibrium condition the investment in , when St < 0, is ruled by the rate r0(k*). 
Therefore 

– if the first inequality of (4.36) holds, taking money on the market at the rate r* 
< r0(k*), the firm has a positive spread and  is convenient; 

– if the first inequality of (4.36’) holds, taking money on the market at the rate r* 
> r0(k*), the firm has a negative spread and  is inconvenient; 

– if the first inequality of (4.36”) holds, taking money on the market at the rate 
r* = r0(k*), the firm has zero spread and  is indifferent. 

EXAMPLE 4.4.– Regarding decisions on mixed projects, we use the classical 
example of the oil pump project shown by Lorie and Savage21 to be a typical 
substitutive operation in the industrial field. Let us suppose that from an oil well, 
containing crude valued US$20,000 (we are using low numbers for sake of brevity: 
it would be enough to assume as unit a suitable power of 10), oil is being extracting 
at time 0 with a pump system that enables the completion of the extraction in 2 
years, and there will be a gross profit of US$10,000 at the end of the 1st year and the 
same at the end of the 2nd year. It is then necessary to evaluate at time 0 the 
convenience of the installation of a more efficient pump, with a substitution cost of 
US$1,600, which enables the extraction to be completed within one year, with a 
profit of US$20,000 before the end of the 1st year. 

                                   
21 See Lorie and Savage (1955) (see footnote 16). 
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Not considering previous flows, which have no influence here, the project  (= 
old pump) implies the following supply sequence: 

 : (1; +10,000) (2; +10,000) 

while the project  (= new pump) implies the following supplies: 

 : ( 0; -1,600) (1; +20,000). 

Note that  does not have IRR and it is convenient with any evaluation rate, 
while  is a simple project with IRR = 1,150%. However, here, being a substitutive 
operation, we are interested in the difference project given by  

 - : (0, -1,600) (1, +10,000) (2, -10,000) 

Now  -  is a mixed project that starts with a payment and becomes a pure 
investment project only if r  r-min = 525%. 

The final fairness curve r = r0(k) has equation 

r = 5.25 – 6.25/(1 + k)                  (4.37) 

an explicit form of S = 0, which in this case is written as follows: 

[–1,600 (1 + r) +10,000] (1 + k) –10,000 = 0 

On the basis of the original criterion TRM (see footnote 20), the intersections of 
(4.37) with the bisector r=k correspond to the following IRR values: 

k* = r* = 0.25 = 25% ;   k* = r* = 4 = 400% 

(non-operative IRR because we have obtained more solutions). Therefore, the 
substitution of the pump, i.e. the change from  to  is convenient if and only if 
the market rate, reciprocal for investments and financings, chosen for the evaluation 
is between 25% and 400%. Indeed, the fairness curve (4.37) has the concavity 
downwards and, intersecting the 1st bisector in points P1 = (0.25;0.25) and P2 = 
(4;4), all points P* of such a bisector between P1 and P2, with 0.25 < k* = r* < 4, 
are such that S(P*) > 0. So, with such external rates the substitution is convenient. 
Instead, if k* = r* is > 4 or < 0.25, the substitution is inconvenient.  
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On the basis of the version of TRM introduced here, which considers market 
rates k* and r* to be different, it is necessary to evaluate the pair (k*,r*) to adopt 
and accept the substitution if and only if the point P* = (k*,r*) is below the curve 
(4.37). 

Observe that the oil company, if it performs the substitution, will have to obtain 
at time 0 a loan of US$1,600 at the cost rate r* and will have to invest at time 1 the 
higher profit of US$10,000 at the return rate k*. 

4.5. Appendix: outline on numerical methods for the solution of equations 

4.5.1. General aspects 

As seen in this chapter and as will be seen in Chapter 5 in the particular case of 
annuity flows, the congruity relations between the flows of a financial operation and 
their capital values at a given time are often considered in financial mathematics 
under different hypotheses on the adopted financial laws. However, such a relation 
can be thought of as equations where the unknown is the length or the rate, and all 
other quantities are given. The duration is seldom considered unknown indeed,  
while the rate is often considered like this. Then there is the classic problem of the 
calculation of the IRR of a financial operation O. We saw the importance of this in 
the previous sections, but we did not consider its calculation.  

The solution of such a problem is not simple and sometimes it is impossible from 
the algebraic viewpoint, when the equation on the rate is not simple enough to give a 
solution in closed form. It is then necessary to apply numerical methods that give 
approximate solutions, unless iterative methods are applied to obtain the numerically 
exact solution in the desired number of decimals. The field of application of such 
methods is much greater than the calculation of IRR. We then consider it opportune 
to give a brief insight into the theoretical and applicative aspects of more suitable 
numerical methods even if the software available on PCs enables an easy evaluation 
of equation roots, in particular the IRR of an operation O. 
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On the choice of the calculation methods for IRR, it is necessary to consider that 
due to the versatility and popularity of PCs, and also of the pocket calculator, many 
of the methods used in the past are now obsolete. We will consider few classic 
methods, favoring the iterative ones. 

4.5.2. The linear interpolation method 

Given a function f(x), which is continuous and monotonic in an assigned interval, 
and given a value k, it is necessary to find the value ˜ x  such that f( ˜ x )=k, i.e. the root 
of the equation:  

g(x):= f(x)-k = 0                  (4.38)  

The linear interpolation is done starting from the values x1 and x2, which are 
close enough between them and to the root22, and such that f(x1) > k, f(x2) < k  23 as 
well. Then an approximate estimation of ˜ x , which we will indicate by x0, is 
obtained from the abscissa of the intersection with y = k of the secant line to the 
graph of y=f(x) in the points with abscissas x1 and x2. Indeed, x0 is also the root of 
the secant the graph of g(x) in the points with abscissas x1 and x2. This easily results 
in 

x0 x1
k f (x1)

f (x2) f (x1)
(x2 x1)

              (4.39) 

                                   
22 The search for x1 and x2 “by chance” is not easy and not very scientific. In the financial 
problems in which we are interested, a starting approximate value ˆ x  of the solution ˜ x , in 
order to find by small steps such values x1 and x2 , can be easily obtained on the basis of 
linear hypothesis, using the arithmetic mean and the SDI law. In particular we consider an O 
satisfying the condition that the arithmetic mean maturity of the payments precedes the time 
of first income; we know that it is enough for O to be an investment in the broad sense and 
then to have an operative IRR. Let us denote by i the arithmetic mean of incomes, with e 
that of payments, with E the sum of payments and with I the sum of incomes. Thus, being e < 

i, the IRR approximated ˆ x  is found from: E[1+( i- e) ˆ x ] = I. In the particular case of simple 
investment with payment V0 in 0 and incomes Rh in h, the arithmetic mean maturity of 
payments is then e = 0, that of incomes is i = hR

hh / R
hh  and ˆ x  follows from: V0 (1 + 

i ˆ x ) = Rhh . We have such a situation in the amortization of the debt V0 with installments 
Rh (see Chapters 5 and 6). 
23 Then x1 > x2 if f increases in the interval, and x1 < x2 if f decreases. If f(x) is the initial 
value of an annuity at rate x, then f is decreasing and convex, so ˜ x < x0 (see Chapter 5). 
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Proof 

 The secant defined before is the straight line through P1 [xl, f(xl)] and P2 x2, 
f(x2)], with equation 

y f (x1)
f (x2) f (x1)

x x1

x2 x1                  (4.39') 

and making a system with y=k, the solution x=x0 expressed by (4.39) is obtained. 

The solution x0 is an approximation by excess, i.e. greater than the exact value, if 
f(x) (and then g(x)) is also decreasing and convex (i.e. with upwards concavity)24 or 
increasing and concave (i.e. with downwards concavity); instead x0 is an 
approximation by defect, i.e. smaller than the exact value, if f(x) (and then g(x)) is 
decreasing and concave or increasing and convex.  

The linear interpolation procedure can be iterated using in the procedure the 
found approximated root, i.e., using the initial positions, acting analogously on the 
interval (x0, x1) or alternatively (x0, x2), thus  satisfying the condition of sign 
discordance between f(xi)-k, i = 1 or 2, and f(x0)-k. The estimation x0

(2)  of the root is 
then obtained. Proceeding analogously again we obtain a sequence x0

(i) , i = 2, 3,... 
converging to the root ˜ x , i.e. such that f( x0

(i)) converges to k; this procedure gives 
the secant method (see below)  

Exercise 4.6 

To buy a shed to be used in an industrial company for the price of €170,000, the 
entrepreneur sells stocks earning €22,000 and for the remaining part he enters into a 
loan to repay (for the amortization procedure see Chapter 6) with 10 annual delayed 
installments Rh = R+hD, (h = 1,...,10), where R = 17,030, D = 0.04R; then R1= 
17,711.20; R2 = 18,392.40;.....; R10 = 23,842.00. Find the loan rate. 

A. The loaned amount is S = 170,000 – 22,000 = €148,000; the length is n = 10; 
the installments are given. To find the rate we apply the linear interpolation method 
on the function f(x), related to the equivalence (6.2) specified in section 6.2 

S f (x) : Rh (1 x) h
h 1
10

 

We start from a rough rate ˆ x  according to footnote 22. This results in  
                                   
24 We find this case in the search for IRR in an amortization operation for a capital given as 
loan, with given cash-flow and maturity of installments (see Chapter 6), solving an equation 
of type V(i) = 0, with V(i) decreasing and with upwards concavity. 
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i h(R hD)h / (R hD)h  = (55+0.04.385)/(10+0.04.55) = 5.77; V0 
(1 i  ˆ x ) R

hh
 becomes: 148,000 (1+ 5.77 ˆ x ) 207.766  

then: ˆ 0.06999x . We obtain: g(0.06999) = -4,724.11 and with g(x) decreasing the 
root is a value < 7%. Acting on f(x), with decreasing x we easily obtain using Excel 

f(0.0675) = 145,037.74 

f(0.0650) = 146,832.06 

f(0.0625) = 148,659.58 

The solution ˜ x  is evidently between 6.50% and 6.25%. Applying (4.39) we 
obtain: 

0
148,000.00 148,659.580.0625 0.025 0.06340
146,832.06 148,659.58

x   
 

In accordance with the fact that x0 is approximation by excess, f(0.0634) = 
147,996.13 < 148,000 follows. Interpolating on the interval (0.0625; 0.0634) (2nd 
step of the “secant method”, of which the starting interpolation is the 1st) we obtain:  

00
148,000.00 148,659.580.0625 (0.0634 0.062) 0.063395
147,996.13 148,659.58

x   
  

The process can be iterated again if we require many exact decimal digits; 
otherwise the rate 6.3395% is a satisfactory estimation of the loan rate, giving rise to 
a relative spread of less than 10-4.  

Financial application with numerical solution using the linear interpolation 
methods has been developed in section 4.4.4, Example 4.3. 

4.5.3. Dichotomic method (or for successive divisions) 

This is a procedure with slow convergence, which can be applied, due to its 
simplicity, if we have a calculator.  

In order to solve equation (4.38), assuming f(x) to be continuous and monotonic, 
by assumption we know that the searched root is in an interval with known extreme 
a, b, with a<b, considering the case: f(a) > k, f(b) < k.  

Let us define x0 = (a+b)/2, d = |a–b| and then, with recursive process, 
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xh xh 1

d

2h
  ;   h = 1, 2, ...               (4.40) 

using in (4.40) the sign + or - according to, respectively, f(xh-1) > k or f(xh-1) < k. In 
such a case we obtain a sequence x0, x1,…,xh,… approximating a root ˜ x  of (4.38), 
in the sense that the pairs of consecutive values xh-1, xh are extremes of numeric 
interval containing ˜ x  and of amplitude d/2h geometrically decreasing with ratio 1/2. 

4.5.4. Secants and tangents method 

Given equation (4.38) with f(x) continuous and differentiable, considering the 
case that f(x) is decreasing and has upwards concavity (the changes are obvious for 
the other cases), it is necessary to find the abscissa ˜ x  of the point X intersection of 
the graphs y = f(x) and y = k (see Figure 4.5). The procedure on the secants being 
considered here is a particular case of that shown in section 4.5.2. 

 

Figure 4.5. Secants and tangents method 

Initial step 

Starting from point A of the f(x) graph with abscissa xA > ˜ x  (where f(xA) < k), 
possibly already approximated to ˜ x  on the basis of preliminary information (see 
footnote 22), the tangent to the curve in A is analytically found, whose equation is 

y - f(xA) = f'(xA) - (x - xA)                  (4.41) 
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and by using y=k we obtain the abscissa xT of the point T intersection of the tangent 
with the line y=k: 

xT = xA + (k - f(xA))/f'(xA)                  (4.42) 

Due to a well known property of the upwards concave function, the inequalities  
xT< ˜ x <xA hold. Then (4.42) is an estimate of ˆ x approximated by defect. 

Furthermore, we obtain the equation of the secant to the curve through A and the 
point T' of the graph with abscissa of T, obtaining     

y f (xA )
f (xT ) f (xA )

x xA

xT xA

                 (4.43) 

and using y=k we find from (4.43) that xS is an approximation that is better than xA. 
We then find the numeric interval, with extremes xT , xS, which includes the 
searched solution ˜ x . 

Next step  

The procedure can be iterated, starting from xS, instead of xA, obtaining an 
approximated interval, which is contained in the previous intervals and has 
decreasing amplitude converging to 0, thus obtaining  a very good estimate of ˜ x .  

4.5.5. Classical iteration method 

Let us give a brief insight on a widely-applied method – classical iteration – 
which requires the availability of a personal computer (or a programmable 
calculator). Let us consider an equation, written in the form x =f(x), where f(x) exists 
continuously in an interval containing the root , for which the approximate value 
x0 is known. If the equation is given in the form: g(x) = g0, it is enough to use: f(x) 
= x+g(x)- g0 or, if g0 0, to use: f(x) = x g(x)/g0. The method consists of finding the 
following sequence, starting from x0: 

xh = f(xh-1);  (h = 1, 2, 3,...)                (4.44) 

because if {xh} converges, its limit is necessarily given by the root of the given 
equation.  

The validity of the procedure arises from the following theorem. 
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THEOREM.– If there exists a root  of the equation x = f(x) – where f(x) is defined, 
continuous and differentiable in the interval J containing  and x0 is a value of first 
approximation of – and moreover if, for a given prefixed constant H satisfying: 0 
<H <1, we obtain x J: |f'(x)|  H, then the sequence {xh} converges and its limit 
is the root . If, instead, in J we obtain: |f'(x)| > 1, then the sequence does not 
converge to 25. 

Figures 4.6a and b geometrically show the convergence and divergence cases of 
the iteration method. 

 

 
 (convergence to x ) (divergence from x ) 

Figure 4.6a and b. Convergence and divergence cases of the iteration method 

Referring to the graphs of y = x and y = f(x), it is geometrically obvious that the 
convergence of the procedure is faster the closer the value of |f '( )| is to zero. 
Therefore, the following transformation is used to accelerate the convergence or to 
make it possible when it is not on f, i.e. if |f '( )| > 1. Using  
                                   
25 Let us give a brief proof of the theorem. If |f'(x)|  H with 0<H<1, due to the Cavalieri-
Lagrange theorem we can write, given that by definition ˜ x f ( ˜ x ) , recalling (4.44) and 
introducing x 0  between ˜ x  and x0): 

˜ x x1 f ( ˜ x ) f (x0 ) f ' (x 0 )  ˜ x x0 ˜ x x0 ˜ x x0  

and analogously, for h = 2,3,... 

˜ x xh f ( ˜ x ) f (xh 1) f ' (x h 1)  ˜ x xh 1 ˜ x xh 1
h ˜ x x0  

Because of the formula: lim
h

h 0  and of a comparison theorem, 

 
0 lim

h
˜ x - xh = ˜ x - x0 lim

h

h 0       that is        lim
h

xh ˜ x  

follows, and then the thesis. Again for a comparison theorem, if |f'(x)|>1 holds in a 
neighborhood of ˜ x , a diverging geometric sequence is minorant of {xh-x0}, therefore this 
sequence is also diverging and its values deviate from the solution ˜ x . 
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m = f '( )   ;   g(x) = [f(x) - m x]/(1 - m)           (4.45) 

g'(  = 0 follows, and it is easy to verify that the equation x = g(x), to which the 
iteration method can be applied in the best conditions, is equivalent to x = f(x), so it 
has the same roots. Obviously m cannot at first be found in an exact way because it 
is unknown ; however, an approximate value almost satisfies the condition and 
then the method can be applied in order to obtain a quick convergence.  

Financial applications using the classical iteration method for numerical 
solutions have been developed in section 4.4.4, Example 4.3.  
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Chapter 5 

Annuities-Certain and their  
Value at Fixed Rate 

5.1. General aspects 

From now on we will consider problems that more frequently come into the 
financial practice, solving them in light of given theoretical formulation and on the 
basis of the financial equivalence principle following a prefixed exchange law. 

 
The aforementioned principle was applied in Chapter 4 where, referring mostly 

to complex financial operations evaluated with exchange laws at fixed rate (i.e. 
constant in time; we can thus talk – as already mentioned – of flat structure rates, as 
in the regimes described in Chapter 3), their values V(t) and also reserves M(t) and 
W(t) are found at a generic time t. We stressed there the importance of fair 
operations, such that, if the exchange law is strongly decomposable, t, we obtain 
V(t) = W(t)-M(t) = 0. 

 
In this chapter we will consider the application of the correspondences in both 

sides between flows given by the operation and funds given by their capital values, 
V(t) at a given time t, all in a specific case: that of operation ˆ O  constituted by a 
finite or infinite sequence of dated amounts with the same sign, that for one of the 
contracting parts is positive (and then they are incomes). Assuming, as it is used, an 
exchange law such that the equivalent amounts at different times always keep the 
same sign in the given temporal interval, the capital value V(t) of ˆ O  at whichever 
time t has the same sign as the concordant transactions and therefore ˆ O  can never 
be a fair operation, whichever exchange law parameters are used. However, a fair 
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operation O* is obtained by adding to ˆ O  the supply made by the opposite of such 
capital value paid at the evaluation time.  

 
We will usually call an annuity the particular unfair operation ˆ O , formed by a 

sequence of dated amounts with the same sign and made at equal intervals in time1. 
We will use the following definitions when referring to an annuity: 

– period = constant temporal distance between two consecutive payments, 
usually of one year, or a multiple or sub-multiple of this; 

– frequency = inverse of period, i.e. the number of payments per year; 

– interval = time separating the beginning of the first period and the end of the 
last; 

– term = length of the interval; 

– installment = payment amount, constant or varying. 

In addition, we will distinguish the annuities in the following ways: 

– annual, when the period is one year, standard unit measure of time, or 
fractional or pluriannual, if the period is a submultiple or a multiple of one year; 

– annuity-due, when the payment is made at the beginning of each period, or 
annuity-immediate, when it is made at the end of each period; a case of theoretical 
interest is that of continuous annuity, when the period tends towards zero and we 
have a continuous flow of payments; 

– certain, if we assume that the established payments will be made with 
certainty, or contingent, if we assume that the payment of each installment is made 
only if a given event occurs2; in this part we will not consider contingent annuities 
and thus “certain” annuities will always be implied.  

– constant or varying, referring to the installment sequence; 

– temporary or perpetuity, if the term is finite or not. 
 
EXAMPLE 5.1 

1) The monthly payments for the rent of real estate can be considered as a 
certain annuity-due which is constant (or varying), monthly and temporary. 

                                   
1 Originally the meaning of the word “annuity” was restricted to annual payments, but it has 
been extended to include payments made at other regular intervals as well. 
2 For a discussion on contingent annuities, which we consider in the field of “actuarial 
mathematics”, it is necessary to have knowledge of basic probability calculus. 
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2) The future wages of a worker is a contingent annuity (considering the 
possibility of leaving the job due to death, invalidity, resignation, etc.), varying (due 
to the variation of wage), weekly- or monthly-immediate and temporary. 

3) The “landed rent” of a cultivated field is, from an objective viewpoint (i.e. not 
considering the change of owners), a certain annuity, varying for perpetuity. 

4) Another example of annuities is the payment of bills, accommodation 
expenses, etc. 

 
In the problems of evaluation and negotiation we are interested in the annuity 

capital value even more than the annuity itself. This is, on the basis of what we have 
stated above, the amount that, associated with the evaluation time, gives rise to the 
indifferent supply3 to the sequence of concordant supplies that form the annuity. 
The value thus depends on the evaluation time and the financial exchange law. 

 
Usually this time is at the end of the annuity interval or at its initial time but it 

can even be before this. In the first case the capital value is called final value or 
accumulated value; in the second case initial value or present value of a prompt 
annuity; in the third case present value of a delayed annuity4. 

 
As concerns the exchange law, if the annuities are multi-year, a compound law, 

with a given interest conversion period and the corresponding rate per period, is 
usually used. For a short-term annuity, we usually use a simple interest law for the 
evaluation of the final value and a simple discount law for that of the initial value. 
Such financial laws are uniform, thus the annuity interval can always be translated, 
without changing the results5.  

                                   
3 Or “equivalent” in the sense specified in Chapter 2, if the exchange law is strongly 
decomposable (s.dec.). 
4 We usually distinguish between “annuity” and “delayed annuity” according to the 
comparison of their initial times and their evaluation times, something that does not take the 
payment characteristics into consideration. We observe that if we limit ourselves to the 
preceding choices, the evaluation time is never inside the annuity interval, so that in order to 
calculate the capital value, consideration of a complete exchange law, union of accumulation 
and, possibly conjugate, discount laws is not needed. In fact, it is enough to use a discount 
law for the present value and an accumulation law for the final value. Therefore, the weak 
decomposability of such laws is enough to obtain the equivalence between ˆ O  and its final or 
present value at the evaluation time.  
5 Sometimes a distinction between simple annuity, when the conversion and payment period 
coincide, and general annuity, when such periods do not coincide, is introduced; but they are 
usually commensurable (i.e. the ratio of their length is a rational number). Furthermore, a 
general annuity can always be led back to a simple annuity using equivalent rates to obtain a 
conversion with the same period as the annuity rates (see Hummel, Seebeck (1969)).  
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In Chapter 6, when discussing amortization and accumulation, we will consider 
in applicative terms the step, briefly considered above, from a unfair operation ˆ O  of 
an annuity to a fair operation O* associated with it. It will be enough to add to ˆ O  a 
supply given by the couple of numbers: [a time extreme of the annuity interval; the 
opposite of the value at such time]. Due to the financial equivalence between the 
whole of the supplies of an annuity between T1 and T2 and its initial value in T1 or 
final value in T2, we can conclude that: 

a) the annuity payments are installments of a debt amortization equal to their 
initial value V(T1), in the sense that if a loan of amount V(T1) has been made, the 
annuity supplies amortize the debt i.e. pay it back both for the principal and for the 
charged interest, if the discount law applied to the annuity corresponds to the law 
that rules the loan; 

b) the annuity payments are installments for the accumulation of a capital (i.e. 
funding) equal to their final value V(T2), in the sense that, depositing the dated 
amounts of the annuity into a profitable account according to the applied 
accumulation law, such an account accumulates (considering also the accrued 
allowed interests) a credit that will reach in T2 the value V(T2). 

5.2. Evaluation of constant installment annuities in the compound regime 

5.2.1. Temporary annual annuity 

For simplicity, choosing as t=0 the beginning of the interval, let us now calculate 
the initial value (IV) at the annual rate i of a temporary annual annuity – thus 
featured in the interval [0,n] by payments at the beginning or end of each year, 
according to the annuity being due or immediate, which is defined as the sum of the 
present values of each payment, and indicated with the symbol V0 or 0V . Let n be 
the length of the annuity and thus the number of payments. 

 
In the specific case of a unitary annual annuity (i.e. with unitary installments) 

which is temporary, or respectively immediate or due, for the IV we use the 
symbols an |i or an|i

6, referring to annual periods and rates, and by definition  

                                   
6 Such symbols, separately for immediate and due case, depend on the duration (or number of 
periods) n and the per period equivalent rate i. The diaeresis denotes annuity-due. The results 
of suitable calculations of these values for the immediate case (those for the due case can be 
calculated using the previous case: see e.g. (5.2)) and of other quantities are scheduled in 
specific “financial tables”, depending on the most important parameters. However, the 
increasing availability of very good pocket scientific calculators enables exact calculations of 
the value of any parameters, thus making tables obsolete. 
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an |i:= [(1+i)-1 + (1+i)-2 + ... + (1+i)-n]            (5.1) 

an|i := [1 + (1+i)-1 + (1+i)-2 + ... + (1+i)-(n-1)] = (1+i) an |i = 1 + an-1 |i  

According to the equivalence principle, it is immediately verified that, as  
v = (1+i)-1 = annual discount factor, d = 1-v = iv = annual discount rate, we obtain7: 

an |i = 1 (1 i) n

i

1 vn

i
; an|i  = 1 (1 i) n

d

1 vn

d
 (5.2) 

and thus, for the annuity-immediate with installment R and annuity-due with 
installment R , the IV are respectively: 

V0  = R an |i ; 0V  = R an|i  (5.3) 

Due to the observation at the end of section 5.1, in (5.3), R is the constant 
installment of delayed amortization in n years at the annual rate i of the debt V0, ( R  
is for the advance amortization of the debt 0V ). 

Exercise 5.1  

Calculate the amount to be paid today as an alternative to 5 payments of €1,000 
with a deadline at the end of each year, with the annuity starting today, and adopting 
a compound annual exchange law at the annual delayed interest rate of 8.25% 

A. We apply (5.3) using: R = 1,000; i = 0.0825; n = 5. 

The following is obtained 

V0 = 1,000 (1 – 1.0825-5)/0.0825 = 3,966.54 

                                   
7 This and the following formulations can be proved algebraically, but we prefer to use 
financial arguments, as we consider them to be more appropriate here. Thus, to obtain (5.2), 
recalling that it is indifferent to defer an income if in the meantime the interest is accrued 
according to the prefixed accumulation law, using the compound regime and valuing at time 
0, it is indifferent to receive the amount S at time 0 (present value = S) or receiving it at time 
n (present value = S vn) with the addition of the delayed annual interests, forming an annual 
annuity-immediate for n years of installment Si (present value = Si an |i ) or advance, forming 
an annual annuity-due for n years of installment Sd (present value = Sd an|i ). Thus, S, the 
financial equivalences: S = S vn + Si an |i  ; S = S vn + Sd an|i , and thus (5.2) can be obtained. 



152     Mathematical Finance 

If we are interested in the final value (FV) Vn (or nV ) of the annual temporary 
annuity-immediate or -due, defined as the sum of the accumulated values in n of 
each payment, due to the decomposability of the compound law, it is equivalent to 
accumulating each payment until time n and adding the results or discount each 
payment until time 0 and accumulating for n years the sum of the obtained values. 
Therefore,  

Vn   =   (1+i)n V0      ;     nV    =   (1+i)n 0V  (5.4) 

Therefore, indicating with sn |i  and sn|i  the final value of unitary temporary 
annual annuity, respectively -immediate and -due, and using the same argument as 
for the IV, by definition the following is the result: 

sn |i := 1 + (1+i) + (1+i)2 + ... + (1+i)n-1 (5.5) 

  sn|i := (1+i) + (1+i)2 + ... + (1+i)n 

and the following is easily obtained8 

n|is  = (1+i)n an |i
 = (1 i)n 1

i
 (5.6) 

n|is  = sn+ 1 |i   – 1 = |n ia  (1+i)n  =  (1 i)n 1
d

sn |i  

while for annuity-immediate with installment R or -due with installment R  it results 
in 

Vn  =  R sn |i        ;    nV   =  R  n|is  (5.7) 

                                   
8 The last terms of (5.6) can be obtained from financial equivalence valuing at time n the 
amount S paid in 0 or the same amount paid in n plus the annual delayed or advance interest, 
between 0 and n and obtaining the equalities: S (1+i)n = S + Si sn |i  ; S (1+i)n = S + Sd  sn|i . 
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In (5.3) R is the constant delayed installment of the accumulation of Vn in n 
years at the annual rate i whereas R  is the constant advance installment of the 
accumulation of nV . 

 
The following symbols are frequently used and can be found on tables for the 

most common values of n and i: 

n |i = 1/ an |i ; n|i  = 1/ n|ia  ; n |i = 1/ sn |i  ; n|i  = 1/ n|is . (5.8) 

These form the coefficient to be applied to the IV or FV of an annuity-
immediate or annuity-due to obtain the constant installments. In fact, obtaining R 
and R  from (5.3) and (5.7), it follows that 

R   =V0 n |i ; R   = 0V  n|i  ; R  = Vn n |i  ; R   = nV n|i    (5.8') 

The values in (5.8') thus give the amortization installment of the debt V0 and the 
delayed or advance funding installment of the capital Vn

9. 

Calculation of rate and length 

Considering only the annuity-immediate case, (5.3) is a constraint between the 
quantities V0, R, n, i, which enables expression one to be dependent on the other 
three. The first parts of (5.3) and (5.8) explain V0 and R. The calculation of i is 
reduced to that of the IRR (see Chapter 4) of the operation O* = ˆ O (0, V0)U  
defined in section 5.1. Sometimes more needs to be said about the calculation of the 
implicit length n. 

 
From the 1st part of (5.3) we obtain, recalling (5.2): 

    
V0
R

1 (1 i) n

i
    i.e.     1-

iV0
R

= (1 + i)-n  = e- n 
  

Considering the natural logarithm and (3.30') we obtain the implicit length:  

                                   
9 The comparison between (5.8) and (5.8') makes it possible to give a financial meaning to 
the values n |i , n|i , n |i , n|i . They are, in order, the constant delayed and advance 

installments of amortization of the unitary debt and of funding of the unitary capital. 
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n

ln 1
iV0

R  (5.8") 

Solution (5.8") is positive, because 0 1 iV0 R 1 , but usually it is not a 
natural number. We can consider the natural n0 that better approximates the 
solution, again calculating (if desired) the IV as a function of n0. 

 
Between the quantities (5.8) there are the following relations, which have a 

relevant financial meaning10: 

;i  dn|i n|i n|i n|i   (5.9) 

It is useful to consider that (as can be deduced from their algebraic values and 
financial meaning): 

– an |i is an increasing function of n and decreasing of i;

– n |i  is a decreasing function of n and increasing of i; 

– sn |i  is an increasing function of n and increasing of i; 

– n |i is a decreasing function of n and decreasing of i. 

The same dynamics apply to the annuity-due values. 
 
We have examined, so far, the evaluation of annuities carried out at the 

beginning of the interval (and thus, as already specified in section 5.1, we talk about 
IV and prompt annuities). Furthermore, we obtain present values of delayed annuity 
(PVDA) if the evaluation time precedes the beginning of the interval. Putting it in -r 
we have a deferment, and then an increment, of the discount times of all payments, 
of r years (r can also be not integer). Therefore, indicating with r / an |i  or /r an|i  the 
PVDA in the case of unitary temporary installments, annuity-immediate or annuity-
due, it is obvious that 

                                   
10 Equation (5.9) can be easily deduced algebraically but it can be justified financially with 
an equivalence between amortizations: for the debtor it is equivalent to paying, at the end or 
beginning of the year, to the creditor the constant amortization installment referred to as the 
unitary debt (for n years at rate i) or to paying only the interest amount, i or d, and 
accumulating in n years the unitary capital to pay back to the creditor in only one payment at 
the end. In the alternative, the annual constant payments must be equal. Thus, equation (5.9) 
is justified. We will come back to this in Chapter 6 when considering “American” 
amortization. 
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r / an |i  = vr an |i = vr v r n

i
; /r an|i  = vr an|i  = vr v r n

d
   (5.10) 

and in the case of constant installment R of an annuity-immediate or R  of an 
annuity-due, we obtain: 

 / 0 / / 0 / ; r r r rV R a V R an|i n|i           (5.3') 

5.2.2. Annual perpetuity 

 Let us now consider annual perpetuity, observing that, in the case of constant 
installments, the FV is not considered because it goes to infinity11. However, the IV 
are finite and are obtained using n  +  in the previous formulae from (5.1) to 
(5.3). It follows that12 

a |i = 1/i, a |i  = 1/d ; V0  = R/i, 0V  = R /d (5.11) 

and, for the PVDA:  

r / a |i = vr/i; /r a |i  = vr/d; r /V0  = R vr/i; / 0r V  = R vr/d   (5.11') 

Exercise 5.2  

1) Calculate the initial and final value of an annual annuity-due with constant 
installment R  = €150, annual interest rate i = 8.55% = 0.0855, length n = 17. 

A. Using (5.3) we obtain 

0V  = 150 + 150 (1 – 1.0855-16)/0.0855 = 150 (1 + 8.5484723) = 1,432.27 

In addition, we obtain d = 0.0855/1.0855 = 0.0787656 and, applying (5.6), 

 nV R sn|i  = (1.085517 – 1)/0.07876555 = (1.085518 – 1)/0.0855 = 38.515980 

and thus 

                                   
11 It should be calculated in the compound regime, at whatever non-negative rate, as the sum 
of the elements of a geometric sequence with ratio  1, which is positively diverging. 
12 The expressions in (5.11), with their formal simplicity, are of fundamental importance in 
the accumulation problems of perpetual incomes of lasting assets. 
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17V  = 150. 38.5159796 = 5,777.40 

(5.4) is soon verified, resulting in 

(1.0855)171432.27 = 4.033732164 1432.27 = 5,777.40 

2) An estate can be bought with an advance of €5,600 and a loan that involves 
15 annual delayed installments of €850 each. Calculate the equivalent price in cash, 
if the annual loan rate is 6%. 

A. Let P be such a price, and applying (5.2) the result is:  

P = 5600 + 850 (1-1.06-15)/0.06 = 5600 + 8255.41 = 13,855.41. 

3) A reserve fund of a company at the closing balance is €156,500. If we want to 
increase it in 5 years to the level of €420,000 through constant earmarking at the end 
of each following year in a savings account at the compound annual interest of 6%, 
calculate the amount of each annual earmarking, assuming they are constant. 

A. Denoting the earmarking by C, it is given by 

C = (420,000 – 156,500) 5|0.06 = 263,500 0.06/(1.065 – 1) = 263,500.0.17739640  
= €41,743 

4) Verify (5.9) for the values n = 15, i = 0.09 

A. The first formula gives rise to the equality: 0.12405888 = 0.03405888 + 0.09 
and the second to: 0.11381549 = 0.03124668 + 0.08256881, obtained from the 
previous one multiplying by v=1/(1 + i) = 1/1.09 = 0.91743119.  

5.2.3. Fractional and pluriannual annuities 

In sections 5.2.1 and 5.2.2 we considered the evaluation in the compound 
regime, with annual conversion of interest, of annuities with annual installments. 
The same formulae can be used for m-fractional annuities i.e. with installments of 
frequency m (usually m = 2, 3, 4, 6, 12, 52, 360 for the usual fraction of a year, even 
if only the constraint m-1  follows from the definition) for the evaluation of 
which we use the m-fractional conversion of interest and then it is given the delayed 
per period rate i1/m for 1/m of a year or the intensity j(m) = m i1/m. It is sufficient to 
use in such formulae i1/m instead of i and as a temporal parameter the number of 
payments, then changing the unit measure of time. For the pluriannual annuities 
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with a payment every p years it is sufficient to use m = 1/p and instead of i the p-
annual equivalent rate, given by ip = (1+i)p-1  13. 

 
In fact, we recall that in a compound accumulation process we obtain the same 

return with an annual conversion at rate i or with the m-fractional conversion at the 
rate per period i1/m if the two rates are equivalent, i.e. linked by (3.26). 

Temporary fractional annuities 

The IV at the delayed rate i of an m-fractional annuity with length n  +  (i.e. 
an annuity such that the annual amount R is fractionated into the annual interval in 
m equally spaced installments, the amount of which is R1/m = R/m, so the annuity 
has period 1/m) can be evaluated, distinguishing the annuity-immediate from the 
annuity-due case, through formulae analogous to (5.3), obtaining 

V0
(m) R1/ mamn |i1/m

 ; 
1/m

(m)
1/ mn|i0 mV R a  14      (5.12) 

In the specific case of an annuity unitary m-fractional (i.e. with installments of 
amount 1/m so as to have a unitary annual amount) temporary, respectively annuity-
immediate or annuity-due, for the IV we use the symbols a(m)

n|i  or n|ia  and, 
analogously to (5.2), we obtain the following formulae 

  an|i
(m) = 

1 vn

j(m)
; (m)

n|ia  = (1+i)1/m
 an|i

(m) = 
1 vn

(m)
   15    (5.13) 

In general, with an annual total R, (5.12) can be rewritten, using (5.13), as 

V0
(m) R1/ mamn |i1/m

; 
1/m

(m)
1/ m mn|i0V R a            (5.12') 

                                   
13 Given that these transformations leave the period of the annuity and the conversion 
unchanged, we are still in the case of basic annuities, specified in footnote 5. 
14 In the fractional annuity the number of payments nm can be large and, if we use financial 
tables, it can be higher than the maximum in the table. In such cases, the following 
decomposition can be useful: an +p | i  = an | i  + (1+i)-n ap | i , which enables calculation of the 1st 
member when the length n+p goes beyond the limit of the table, provided that (n.p) is 
whichever duration included in the table. 
15 Proceeding analogously to footnote 7, (5.13) can be obtained taking into account the 
financial equivalence between the amount S in 0 or the same amount in n adding the delayed 
or advance interest paid with frequency m. Their annual total is thus, respectively mSi1/m or 
mSd1/m. Therefore, the equivalences give rise to the equations: S = S j(m) an |i

(m)+ S (1+i)-n,  

S = S (m) an |i
(m) + S (1+i)-n, and thus (5.13). 
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The step from (5.12) to (5.12') is justified observing that  

V0
(m) R

m

1 (1 i1/ m ) mn

i1/ m

R
1 (1 i) n

j(m)
 

(m)
0V  = R

m
 
1 (1 i1/ m ) mn

i1/ m
(1 i1/ m )  = R 

1 (1 i) n

(m)
 

To obtain the FV of a temporary m-fractional annuity for n years, annuity-
immediate or annuity-due, given the decomposability of the compound laws it is 
enough to accumulate the IV during the interval of the annuity. If the annual total is 
unitary, the FV, indicated in the two cases with 

 
sn|i

(m) and (m)
n|is , are 

  sn|i
(m)   =  (1+i)n 

  an|i
(m)  ;  (m)

n|is   =  (1+i)n (m)
n|ia          (5.6') 

In general, with annual total R, analogously to (5.4'), the FV are given by 

  Vn
(m) =  R   sn|i

(m)  =  R (1+i)n
 an|i

(m)  =  (1+i)n 
 V0

(m)         (5.4') 

(m)
nV  =  R (m)

n|is  =  R (1 + i)n (m)
n|ia  = (1+i)n (m)

0V  

Exercise 5.3 

Calculate the IV and FV of the annuity formed by the income flow with monthly 
delayed installment of €650 for 10 years at the nominal annual rate 12-convertible 
of 9%. 

A. We have i1/12 = 0.0075, i = 0.0938069, R = 7,800, and then 

  V0
(12) = 

1201 1.0075650 650 78.9416927 51,312.10
0.0075

     , or 

10
(12)

0
1 1.09380697,800 7,800 7,800 6.5784744 51,312.10

0.09
V  a(12)

10|i  

In addition:     Vn
(12)  = 5,1312.10.1.0075120 = 125,784.28  
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Applying footnote 14 and assuming there is a financial table with a maximum 

length of 100, choosing the length 70 and 50, with 70+50=120, this results in 

a120 |0.0075 a70 |0.0075 1.0075 70 a50 |0.0075 = 54.3046221 + 

0.59271533.41.5664471 = 78.9416925, 

and thus V0
(12)  = 51312.10, i.e. the same value as previously. 

If, with the same data, the installments are in advance, this results in: d1/12 = 
0.0074442;  = 0.08933 and 

(12)
0V =7,800 (12)

10|0.0938069a  =
101 1.09380697,800

0.08933

 

  = 7,800.6.6278135 = 51,696.96 

(12)
10V  = 51696.96 .1.0075120 = 126,727.71 

For completeness, let us mention briefly annuities m-fractional delayed for r 
years, for which the PVDA are obtained multiplying by vr the corresponding IV 
With a unitary annual total we have, with the obvious meaning of the symbols 

  r / an|i
(m)

 =  v
ran |i

(m)  = vr vn r

j (m)
; 

(m)
/ n|ir a  = (1+i)1/m

 r / an|i
(m)  = vr vn r

(m)
 (5.13') 

while in general, with installment R/m it is enough to multiply by R the values (5.13'). 

Exercise 5.4 

Using the data in exercise 5.3, calculate the PVDA with 4 years deferment. 

A. The following is obtained:  

  4 / a10 |9.38069%
(12)  = 1.0938069-4

 
a10 |9.38069%

(12)  = 0.6986141.6.5784744 = 4.5958166 

(12)
10|9.38069%4 /

a  = 1.0938069-4 (12)
10|9.38069%a  = 0.6986141.6.6278135 = 4.6302842  

Fractional perpetuity 

The IV of the fractional perpetuity are obtained from those for temporary values 
putting n +  and taking into account that in such a case vn 0. If the annual 
total is unitary, we obtain, analogously to (5.11), 
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  a |i
(m) = 1/j(m)  ;  ( )

|i
ma  = (1+i)1/m 

 a |i
(m) = 1/ (m) (5.14) 

while with installment R/m  

  V0
(m)

  =   R 
  a |i

(m)  =  R/j(m)  ;  
(m)

0V  =  R (m)
|ia  =  R/ (m) (5.14') 

and, for the PVDA the result is16  

  r / a |i
(m)   =  vr/j(m)    ;  (m)

/ |ir a =  vr/ (m)                  (5.15)  

  r /V0
(m) =  R vr/ j(m)    ;  (m)

/ 0r V  = R  vr/ (m) 

Exercise 5.5 

Using the data from Exercise 5.4, calculate the IV and the PVDA of an 
immediate or due perpetuity with flow equal to €5,600/year. 

A. Applying (5.14') for the IV we obtain 

( )
0

mV = 5,600
 
a |9.38069%

(12)  = 
5,600
0.09

  = 62,222.22 

( )
0

mV  = 5,600 (12)
|9.38069%a  = 

5,600
0.08933

 = 62,688.91; 

and for the PVDA discounting we obtain 

                                   
16 A comparison between the formulae shows the intuitive fact that both for annual annuity, a 
fractional annuity and (as we will see) a continuous annuity, the following decomposition 
holds: the IV of a perpetuity is the sum of the IV of a corresponding temporary annuity and of 
the PVDA of the corresponding delayed annuity at the end of the previous one. In the simplest 
case, of a unitary annual annuity-immediate, the result is: a | i= ar | i + r / a | i , following the 
identity: 1/i = (1-vr)/i + vr/i. This splitting up is similar to the juridical splitting with usufruct 
and bare ownership (but in a different meaning as used in Chapter 4). The usufruct is like the 
temporary annuity, whereas the bare ownership is like the delayed annuity, which starts after 
the end of the temporary one. However – unlike what occurs in annuities-certain – the 
splitting up with usufruct and bare ownership leads to uncertain values, since it is linked to a 
random usufructuary lifetime. Therefore, in a random case we calculate mean values 
according to expected lifetime. 
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(12)
4 / 0V  = 0.698614.62222.22 = 43,469.32; 

(12)
4/ 0V  = 0.698614.62688.91 = 43,795.35 

or applying (5.15)  

(12)
4/ 0

0.6986145,600
0.09

V   = 43469.32; (12)
4/ 0

0.6986145,600
0.08933

V   = 43,795.35 

Continuous annuities 

Let us briefly consider continuous annuities (temporary or perpetuities, prompt 
or delayed), characterized by a continuous flow of payments, which we assume here 
to be constant. They can be considered as a specific case of fractional annuities, for 
m  + . For uniformity of symbols and easier comparison we assume the flow of R 
per year, where R is also the amount paid in one year. Since the period goes to 0, the 
distinction between annuity-immediate and annuity-due does not make sense.  

Indicating with     an|i
( )  the IV, with   sn|i

( )  the FV (only if n< ), with r/    an|i
( )  the 

PVDA of the unitary annuity (R=1), taking into account (5.13), (5.13'), (5.14), 
(5.15) and the convergences (m)  j(m) when m  + , using these limits the 
following is easily obtained: 

  an |i
( )  = 1 vn

;   sn |i
( ) = (1 i)n 1 ;  r / an |i

( ) = vr v r n

;     (5.16) 

  a |i
( )  = 

  
1

;   r / a |i
( ) = 

vr

  

Exercise 5.6 

Using the data in exercise 5.4, calculate the values in (5.16) of the unitary 
perpetuities. 

A. We have: i = 0.0938069 and  = ln 1.0938069 = 0.0896642; thus the 
following is obtained:  

 
a

10 |i
( )

 = 6.603113; 
 
s10 |i
( )  = 16.186588;  4 /

a
10 |i
( )

 = 4.613027; 

  
a |i

( )
 = 11.152723;  4 / a |i

( )
 = 7.791450. 
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If the annuity has flow R, it is enough to multiply by R the values of (5.16)17. 

Pluriannual annuity, temporary or perpetuities 

We will now comment briefly on pluriannual annuities, characterized by 
constant installments, annuity-immediate or annuity-due, equally spaced over p 
years, therefore with frequency 1/p. They find application, for example, in the 
evaluation of the charges due to industrial equipment renewal.  

 
If such annuities are temporary, it is necessary that n = kp (where k  is the 

number of installments). Thus, indicating with ip = (1+i)p-1 = i sp |i  the p-annual rate 
equivalent to i, to obtain the capital value it is enough to assume an interval of p 
years as the new unit measure and apply the formulae for the annual annuities using 
i1/p as the rate and k as the length. 

 
In more detail, considering as unitary (referring to the annual amount) p-annual 

annuity that with installment Rp = p, we indicate with 
 
an |i

(1/p)  or (1/p)
n|ia  the IV of the 

temporary one with length n, -immediate or -due. It thus follows that: 

  an |i
(1/p) =  p 

1 (1 i p) k

i p

 = p 
1 (1 i) n

(1 i) p 1
 =  p p |i  < an |i      (5.17) 

(1/p)
n|ia   =   (1 + i)p 

  
an |i

(1/p)     =   p 1 (1 i) n

1 (1 i) p
 =  p an |i p |i  > an |i 

                                   
17 The value of continuous annuity can be calculated analytically in the compound regime 
using the integrals of continuous flow, which are discounted or accumulated. If the flow is the 
constant R, the results are:  

 
R an | i

( )  =   R
1 vn

 ;    
 
R sn|i

( )  =
 R e0

n (n  t )
dt   = R

e  n 1 ; 

 
R r /an |i

( )   = 
  R e0

n  t
dt  =  

 R er
r n  t

dt  =  R
e r e (r n )

; 

  
R a | i

( )   =  
  R e0

 t
dt  =

R ; 
 
R r /a | i

( )   =
 R er

 t
dt  = R

e  r
, 

i.e. the values obtained from (5.16). With varying flow   (t) , the IV of a temporary annuity is 

given by 
   (t) e0

n  t
dt , with obvious modification for the other cases. 
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and, in general, the IV of the analogous annuity with installment Rp-immediate or 
Rp-due are  

    V0
(1/ p)  = Rp 

    

1 (1 i) n

(1 i) p 1
 = Rp an |i p |i;         (5.17') 

(1/ )
0

pV = Rp 
    

1 (1 i) n

1 (1 i ) p
 = Rp an |i p |i 

Multiplying (5.17') by (1+i)n the FV of such annuities are obtained. Multiplying 
them instead by (1+i)-r the PVDA of the analogous annuity p-annual temporary 
delayed for r years are obtained. Using instead n  + , the IV of the analogous p-
annual perpetuity are obtained. For the unitary IV it is found that 

  a |i
(1/p) = 

  

p

(1 i) p 1
 =  

1
j(1 p)

            (5.18)  

(1/ p)
|ia  = 

  

p

1 (1 i) p
 =  

1
(1 p)

 =  a |i
(1/p) + p 18 

and it is generally sufficient to substitute Rp to p, obtaining:  

    V0
(1/ p)  = 

    

Rp

(1 i) p 1
 Rp a |i p |i           (5.18') 

(1/ )
0

pV  = 
    

Rp

1 (1 i) p  Rp a |i p |i 

                                   
18 Observe that, as for (5.14), the values in (5.18) represent the reciprocal of the intensity per 
period on a length of p years. In the second part of (5.18), the last term is justified noting that 
the annuity-due value is obtained from the annuity-immediate value adding the initial Rl/p = p 
and subtracting nothing due to perpetuity. 
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and also: (1/ )
0

pV =   V0
(1/p) + R. 

Exercise 5.7 

1) Calculate the IV of a five-yearly annuity at the annual rate of 7%, -immediate 
or -due, with a length of 20 years or perpetuity, with delayed installments of 
€58,500. 

A. By applying formulae from (5.17) to (5.18') the following is obtained: 

– in the temporary case: 

(1/5)
20|0.07a  = 5 1 (1.07) 20

(1.07)5 1
 = 9.2110032 

  V0
(1/5) = 58,500 1 (1.07) 20

(1.07)5 1
 = 107,768.74 

(1/5)
20|0.07a  = 5 

20

5

1 (1.07)
1 (1.07)

 = 12.9189075 

(1/5)
0V  = 58,500 1 (1.07) 20

1 (1.07) 5
 = 151,151.22 

– in the perpetual case: 

  
a |0,07

(1/5)   =  5

(1,07)5 1
  = 12.4207639    ;    V0

(1/5)  =  58500

(1.07)5 1
 = 145,322.92 

 (1/5)
|0,07a   =  5

1 (1,07) 5
 = 17.9189075   ;   (1/5)

0V   =  58500

(1.07)5 1
 = 203,822.92 

2) For the functioning of a company the owner buys equipment that must be 
replaced, due to wear and obsolescence, every 5 years. A horizon of 20 years is 
established for the company’s activity, for which the return rate is 7.45%. The mean 
cost of the equipment is evaluated in €255,000. On the basis of such estimations, 
calculate the IV for the purchase expenses of such equipment for the whole time 
horizon. 

A. The IV asked for is that of a 5-year temporary annuity-due for 20 years, and 
according to (5.17') it is 

(1/5)
0V  = (1/5)

20|0.0745a  = 255,000 1 (1.0745) 20

1 (1.0745) 5
 = 255,000.2.5259699 = 644,122.34 
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3) A forestry company wants to buy a wood, the income of which follows the 
periodic cutting down of the trees and use of the wood, with spontaneous 
reforestation, at a price which, according to the principle of “capitalization of 
income”, is given by the present value, at a rate corresponding to cost-opportunity, 
of future profits. Supposing that:  

– the trees are cut down every 12 years; 

– costs and returns between the periods are compensated; 

– the profit due to each harvest is €55,000; 

– the evaluation rate is 6.20%; 

calculate the price offered by the company, in the alternative hypotheses that 

a) the trees have only just been cut down; 

b) all the trees have an age of 7 years;   

c) all the trees have an age of 12 years. 
 
A. In the given problem the return can be considered perpetual19. Therefore, the 

price P following the accumulation of the profit (then the IV of the annuity of future 
returns) is obtained as follows: 

a) P =Pa is the IV of the 12-year annuity-immediate with constant installment 
Rp = 55,000:  

Pa = 
  

R12
i12

 =  
55000

1.06212 1
 = 51,973.51  

b) P =Pb is the PVDA of a 12-year annuity-due delayed for 5 years, with 
constant installment Rp = 55,000:  

Pb = (1+i)-5

  

R12 (1 + i12)
i12

 =  
55000 1.0627

1.06212 1
 = 70.210,91 

c) P =Pc is the IV of a 12-year annuity-due with constant installment Rp = 55,000:  

                                   
19 A strong limitation for the meaning of this calculus, and all those concerning perpetuities 
with constant installment, follows the unrealistic hypothesis of periodic constant profits in an 
unlimited time. Furthermore, if we suppose profit changing every p years in geometric 
progression, i.e. varying with constant rate, then – as we will see in the case of annuity with 
varying rates – Fisher’s equation permits exact calculation by means of constant annuities, 
which are equivalent to those varying in geometric progression, if one assumes a new 
evaluation rate as a function of the given one and of the one in progression. 
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Pc = 
  

R12 i12
1 i12

 =  
55000 1.06212

1.06212 1
 = 106,973.51 

4) A field with poplars is bought by a private person just after the harvest and 
following reforestation. He leases the field to a forestry company for 4 productive 
cycles; if the cut is every 8 years, the length is 32 years. The rent on the basis of 
market prices is €43,500 to pay after each cut, with the tenant bearing the cost of 
reforestation. Calculate the IV of such a contract at the annual evaluation rate of 
4.5%. In addition, in the hypothesis that the owner is able to obtain from the tenant 
the same total amount, but divided into annual advance installments, calculate the 
percentage increments of the contract value. 

A. The IV of the standard contract is that of an 8-year temporary annuity-
immediate for 32 years; thus, according to (5.17'),  

  V0
(1/8) = R8

-32
(1/8)
32|0.045 8

1-1.04543,500
1.045 1

 

a     = 77,858.22 

The IV   
ˆ V 0

(1/8) of the contract is that of an annual annuity-due, temporary for 32 
years, with installment R8/8. Therefore, using d = 0.0430622, we obtain  

(1/8)8
32|0.0458

R
a  = 5,437.50

321 1.045
0.0430622

= 5,437.50.17.5443913 = 95,397.63 

and thus the percentage increment is  

100 

 

ˆ V 0
(1/8) V0

(1/8)

V0
(1/8)

 = 22.527 % 

5.2.4. Inequalities between annuity values with different frequency: correction factors 

We have seen that, in relation to all the unitary annuities considered so far, by 
changing frequency their IV are in inverse relation to the corresponding per period 
interest or discount intensities. Therefore, denoting by j p  and p  the p-annual 
interest and discount intensities and by m the frequency of the fractional annuity, 
given using the compound regime we  obtain: p  < d < (m) <  < j(m) < i < 
j p , the following inequalities hold: 

(1/p)
|ian  > n|ia  > (m)

|an i  > 
 
an |i

( )  > 
 
an |i

(m) > 
 
an |i  > 

 
an |i

(1/p) ; (n  )      (5.19) 
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Analogous inequalities hold for the PVDA with same deferment r and for the 
FV of temporary unitary annuities. 

 
Formulae shown in section 5.2.3 enable direct calculation of the capital value of 

non-annual annuities. Furthermore, it can be convenient to use correction factors to 
apply to the IV or to the installments of annual annuities, if these elements are easily 
available, to obtain, by multiplying, the IV or the FV or the equivalent installments 
of fractional or pluriannual annuities. 

 
The correction factor to go from the IV to the FV of a temporary annuity for n 

years of whichever type is, in all cases, (1+i)n and it is the reciprocal for the inverse 
transformation.  

 
More complex are the factors to go from annual annuities to fractional or 

pluriannual ones, and vice versa. 
 
In light of this, we distinguish between two problems on such transformations, 

from frequency 1 (annual case) to frequency m with m-1  (fractional case) or 
m=1/p (pluriannual case with payments every p years). 

 
PROBLEM A.– Transformation of the capital value (at a given time) of the annual 
annuity in that of the annuity with the same length and annual rate but with 
frequency m (or, more generally, with a frequency changing from m' to m") which 
leaves unchanged the total annual payment20. 
 
PROBLEM B.– Transformation of the installment of the annual annuity in that of 
the annuity with the same length and annual rate but with frequency m (or, more 
generally, with a frequency changing from m' to m") which leaves unchanged the 
capital value (at a given time). 

 
Problem A is solved by applying to the capital value the correction factor fA 

given by the reciprocal of the ratio between the corresponding per period intensities, 
i.e.: 

– for annuity-immediate, fA = i/j(m) > 1 (being i = j(1)), applying it to the value 
of the annual annuity, and fA = j(m’)/j(m”) in general; 

– for annuity-due, fA= d/ (m) < 1 (being d = (1)), applying it to the value of the 
annual annuity21, and fA = (m’)/ (m”) in general. 
                                   
20 Observe that corresponding annuities in the sense of Problem A have installments 
proportional to the periods. 
21 In practice this factor is seldom used, it is preferred to apply the factor (1+i)1/m i/j(m) to the 
value of the annual annuity-immediate. 
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Problem B is solved by applying to the capital value the correction factor fB 
given by the ratio between the corresponding per period rates, i.e.: 

– for annuity-immediate, fB = i1/m/i < 1/m, applying it to the annual rate R, and 
fB = i1/m"/i1/m' in general; 

– for annuity-due, fB = d1/m/d >1/m, applying it to the annual rate R , and fB = 
d1/m"/d1/m' in general. 
 

The installments for different frequencies, obtained solving Problem B, can be 
said to be equivalent because they are obtained by proportionality at different rates. 
The argument still holds if a regime different from the compound regime is used. 

 
Reciprocal factors are applied for inverse transformations.  
 
The factors for Problem A are directly justified, on the basis of the expressions 

for the values of the annuities considered in sections 5.2.2 and 5.2.3, observing that 
inverse proportionality exists between such values and the per period delayed or 
advance intensities with corresponding fractioning. Limiting ourselves to the IV of a 
temporary annuity (given that in all other cases the development is the same, 
changing only the numerator of the ratios), by indicating with R the annual total of 
the payments that remains unchanged, we have: 

– for annuity-immediate: R
 
an |i

(m) = R
 
an |i i/j(m); R  

an |i
(m") = R (m')

n|ia j(m’)/j(m”); 

– for annuity-due: R (m)
n|ia  = R n|ia  d/ (m) = R

 
an |i

(m) (1+i)1/m = R
  
an |i 

(i/j(m))(1+i)1/m = R
  
an |i i/ (m) (i.e. i/ (m) is correction factor from 

 
an |i to (m)

n|ia ); 

R (m")
n|ia  = R (m')

n|ia (m)'/ (m'') 
 

In the case of pluriannual annuities, it is obvious that the correction factor to go 
from the IV of the annual annuity-immediate to the p-annual one, if -immediate is 
i/j(1/p), if -due is i/ (1/p) . 
 

As concerns the factors from problem B, it is obvious that R1/m is the installment 
of an annuity m-fractional -immediate equivalent (in the sense of the equality of 
capital values) to an annual annuity-immediate with installment R if and only if it is 
the installment of accumulation in one year of the amount R. Thus, the result is: 
R m |i1/m 1/m =

    
R

i1/ m

(1 + i1/ m )m R
i1/ m

i

22. We obtain an analogous result in general.  

                                   
22 Note that, i1/m/i being the installment to be paid at the end of each mth year to capitalize at 
the end of the year the unitary capital, it is also the correction factor to be applied to the 
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With annuity-due, 1/mR  is the installment of a m-fractional annuity-due 

equivalent to the annual annuity-due with installment R  if and only if it is the 
advance installment of amortization in one year of the amount R . Therefore we 
have: 

1/ 1/ 1/ 1/
1/

1/

(1+ )
   (1+ ) =  

(1+ ) 1

m
m m m m

m m
m

d i d d
R R R R i R

i di1/mm|i
 

We obtain an analogous result in general.  
 
It is obvious that if we transform the annual delayed installment (see footnote 

20), 1/ mR  is the corresponding accumulation advance installment, thus the 

correction factor is i1/ m

i(1 i1/ m )
. 

 
In the case of pluriannual annuity, the correction factor to go from the annual 

delayed installment to the p-annual one, if -immediate, is 
 
sp |i  and, if -due, is 

  
ap |i

23.  

EXAMPLE 5.2.– Using the data in exercise 5.3, as i = 0.0938069 and thus d = 
0.085768, 12 = 0.08933, the unitary annual and monthly annuity are 

  
a10 |i  = 6.3116048; 

  
a10 |i

(12)
 = 6.5784744; 

(12)
10|ia  = 6.6278135; 10|ia = 6.9035675 

and thus the transformations using the correction factors are easily verified: 

  
a10 |i

(12) = 
  
a10 |i0.0938069/0.09   ;  

(12)
10|i

a  = 10|i
a  0.08933/0.0857618 

                                   
delayed annual installment of amortization or accumulation in a prefixed number of years to 
obtain the equivalent delayed m-fractional installment of amortization or accumulation in the 
same number of years. We obtain an analogous result for advance payments, considering the 
fractional installment d1/m/d. 
23 If the annual installment is in advance, it is enough to use respectively sp|i  or ap|i . This 
can be verified directly using m=1/p or simply observing that the annual installment is an 
installment of accumulation in p years of the amount given by the p-annual delayed 
installment or else installment of amortization in p years of the amount given by the p-annual 
advance installment. 
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The unitary continuous annuity is 
 
a10 |i

( )  = 6.6032175 and the inequalities are 
verified as 

  
a10 |i  <  

 
a10 |i

(12) < 
 
a10 |i

( )  < 
(12)
10|ia  <  10|ia  

Exercise 5.8 

1) Calculate the IV of the 10-year 4-fractional unitary annuity, both -immediate 
and -due, at the annual rate of 5%, knowing that the annual annuity-immediate value 
is 7.1217349. 

A. By applying the correction factors with given rates and times, we obtain 

  
a10 |0.05

(12)    =  
 
a10 |0.05 

0.05
0.0490889

  7.8650458 

(12)
10|0.05a   =   10|0.05a 0.05 (1.05)1/ 4

0.0490889
  7.9615675 

2) Solve Problem A with data from exercise 5.3, maintaining the annual total of 
€7,800 and calculating the IV of the quarterly annuity-immediate through the 
correction factor on the IV of the monthly one (see Example 5.1). 

A. We have i = 0.0938069 and thus j(4) = 0.0906767; the following is obtained: 

 
a10 |i

(4)  = 
  
a10 |i

(12) j (12)
j (4)

 =  6.5784744 
0.09

0.0906767
 = 6.5293807 

3) Solve Problem A of question 2 but referring to annuity-due. 

A. We have  = 0.0886667 and thus  = 0.08933; the following is 
obtained: 

(4)
10|ia  = (12)

10|i
0.0893300(12)  = 6.627813 (4) 0.0886667

a  = 6.6773945 

4) Solve Problem B with data from exercise 5.3, calculating the monthly 
installment equivalent to the annual one of €7,800, both in the -immediate and -due 
cases. 

A. With delayed installments, using R = 7,800, the result is 

R1/12 = R i1/12
i

 = 7,800 0.0075
0.0938069

 = 623.62. 
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With advance installments, given R  = 7,800 and being d1/12 = 0.0074442 from 
which d = 0.0857618, we obtain 

 1/12R  = 1/12 0.0074442  = 7,800 
0.0857618

d
R

d
 = 677.04 

5) We have to amortize (in the sense specified in section 5.1) the debt V0 = 
€50,000 over 5 years at the annual rate of 8.75% with delayed annual installments 
R. Calculate the constant installments. To amortize with six-monthly delayed or 
advance installments, calculate the value using correction factors. 

A. The annual installment is R = V0  5 |0.0875 = 12,771.35, and thus the six-

monthly equivalent delayed and advance installments are: 

R1/2   =   R i1/ 2
i

  = 12771.35 . 0.4895164 =  6,251.79 

1/ 2R  =  R 
i1/ 2

i (1 i1/ 2)
  =  6251.79 . 0.9589266 =  5,995.00 

6) We have to accumulate (in the sense specified in section 5.1) a capital sum of 
€37,500 in 8 years at the annual rate of 6.15% with constant installments, annual 
delayed or quarterly. Calculate these installments. 

A. The annual installment is R = V8  8 |0.0615 = 3,768.50 and then the quarterly 

equivalent delayed or advance installments are 

R1/4  = R i1/ 4
i

 = 3768.50  0.244329 = €921.15 

 1/ 4R  = R 
i1/ 4

i (1 i1/ 4 )
 = 3768.50 . 0.2408129 = €907.50 

Exercise 5.9 

1) We have to amortize, at the annual rate of 6.60%, a debt of 1,450,000 
monetary units (MU) with constant annual delayed installments over 20 years. To 
evaluate the convenience of an amortization with four-yearly installments, solve 
Problem B calculating the equivalent delayed and advance installment. 

A. The annual installment is R = V0 20 |0.066  = 1450000.0.0914786 = 
132643.95. The 4-yearly equivalent delayed and advance installments are  
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R4 = R 4 |0.066  = 132643.95.4.4137115 = 585,452.13 

4R  = R a4 |0.066  = 132643.95.3.4180241 = 453,380.22 

2) Solve Problem B of question 1) in circumstances where the annual constant 
amortization installment is advance. 

A. The annual installment is R  = V0 20|0.066  = 1450000.0.0858148 = 

124,431.48. The 4-annual equivalent delayed and advance installments are 

R4 = R 4|0.066  = 124431.48.4.7050165 = 585,452.16 

4R  = R 4|0.066  = 124431.48.3.6436137 = 453,380.25 

Obviously the values R4 and 4R  are the same in the results of 1) and 2) (except 
for rounding-off errors), due to the decomposability of the financial law used.  

5.3. Evaluation of constant installment annuities according to linear laws 

5.3.1. The direct problem 

We have already mentioned that uniform financial laws, different from the 
compound laws, are sometimes used to evaluate annuities. It is worth studying the 
problem in detail. 

 
As seen in Chapter 2, the need for simplicity leads us to use, for short lengths of 

time, the simple interest law in an accumulation process and the simple discount law 
in a discounting process24. Thus for some applications the following questions are 
relevant: 

– the initial evaluation of an annuity on the basis of the simple discount law; 

– the final evaluation of an annuity on the basis of the simple interest law. 

Although the reader is referred to section 5.5 for the case of general installments, 
we give here the most important formulae for the case of m-fractional annuities 
(owing to short times) with constant installments and, always fixing 0 as the 
beginning of the annuity’s interval, let us give the following definitions: 

– m > 1 = annual frequency of payments; 
                                   
24 For them the exchange factor is linear, and they are called linear laws. Their conjugate, 
with hyperbolic factors, are usually used for indirect problems, e.g. offsetting, etc. 
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– s = total number of payments; 

– i = interest intensity = annual interest rate; 

– d = discount intensity = annual discount rate; 

– R = delayed constant installment; 

– R  = advance constant installment. 
 
If the payments are delayed, the hth amount R is paid at time h/m, and the IV on 

the basis of the simple discount (SD) law at the rate d and the FV in s on the basis of 
the simple delayed interest (SDI) at rate i are given, respectively, by 

0  1 ( 1) / 2V s R d s m  ; R 1+i( -1) / 2sV s s m        (5.20) 

Instead, if payments are in advance, the hth amount R  is paid at time (h-1)/2m, 
and the IV on the basis of the SD law at rate d and the FV in s on the basis of the 
SDI law at rate i are given, respectively, by 

0 R 1-d(s-1) / 2mV s  ;   1 ( 1) / 2sV s R i s m      (5.21) 

Equations (5.20) and (5.21) are obtained from the sum of terms in arithmetic 
progression. More simply, observing that t' = (s-1)/2m is the average length of 
accumulation of the s delayed installments and the average length of the discounting 
of the s advance installments, while t" = (s+1)/2m is the average length of 
accumulation of the s advance installments and the average length of the 
discounting of the s delayed installments, we obtain: 

0 (1 )    ;   (1 )sV s R d  t" V s R i t'           (5.20') 

0  (1  ')   ;    (1  )sV s R d t V s R i t"           (5.21') 

equivalent to (5.20) and (5.21). 

Exercise 5.10 

1) We have to build up a fund of €12,000 with 10 constant delayed or advance 
monthly payments in a saving account at 6% annual in the SDI regime: calculate the 
value of each installment. 
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A. In the case of delayed payments, from the 2nd expression of (5.20) the 
following is obtained 

912,000 10 (1 0.06 ) €1,173 59
24

R  /  .  

The difference of 264.10 between the accumulated amount of €12,000 and the 
total payments, which amount to €11,735.90, is due to the interest accrued in the 
fund. In the case of advance payments, due to the 2nd expression of (5.21) the 
installment is 

1112,000 / 10 (1 0.06 ) €1,167.88
24

R  

2) In a hire purchase the client accepts 10 quarterly delayed payments of €400 
each. If the seller is able to discount the payments at the annual rate of 8% in a 
simple discount regime, calculate the amount obtainable by the seller. 

A. The obtainable amount is equal to the initial value V0 given by the 1st 
expression of (5.20). This results in 

0
114,000 1 0.08 3,560
8

V   

The spread of €440 with respect to the total payments of €4,000 is the amount of 
discount, as reward for the advance availability. 

5.3.2. Use of correction factors 

If the SDI law is used with factor u(t) = 1+it and the m-fractional annuity is 
considered with accumulation of interest only at the end of the year, the correction 
factors to be applied to the annual delayed installment R to have the equivalent m-
fractional delayed installment R1/ m  or advance  installment 1/ mR , are obviously 

delayed case: f p
1

m
m 1

2
i

; advance case: fa
1

m
m 1

2
i

  (5.22) 

The correction factor is also the periodic installment for the accumulation of unit 
capital in one year. In fact, considering the temporal interval between 0 and 1, at 
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time 1 the FV V1 of the annual payment is R, while the FV V1
(m )  of the delayed m-

fractional payments is R1/ m m  (for the principal) + R1/ m
m(m 1)

2
i  (for the 

interest); therefore, under the constraint we obtain R1/ m /R  = fp given by the first 
formula in (5.22). With advance m-fractional payments we have 

(m)
1V = 1/

1(1 )
2mR

mm i  and the constraint 1V = (m)
1V  implies 1/ /mR R  = fa 

given by the second formula in (5.22).  

5.3.3. Inverse problem 

Equations (5.20) and (5.21) have been presented for the solution of the direct 
problem, consisting of the evaluation of the initial value and final value of an 
annuity given according to linear law. However, the same formulae solve univocally 
the inverse problem, consisting of: 

– the calculation of the constant delayed (or advance) installment of amortization 
of the debt V0 (or 0V ) with a simple discount law; 

– the calculation of the constant delayed (or advance) installment of capital 
funding Vs  (or sV ) with a simple interest law. 

 
Amortization and accumulation are usually carried out with such laws for short 

durations. 

Exercise 5.11 

We have to extinguish a debt of €5,000 at 9% annually in 3 years with delayed 
annual installments in the annual compound regime. There is the choice to amortize 
the debt with constant monthly delayed or advance installments with the assumption 
that the payments during the year produce simple interest, which only at the end of 
the year are accumulated and used for the amortization. Calculate the installments. 

A. The amount for the annual installment is R = 5,000 3 |0.09  = 1,975.27. 

Using the correction factors (5.22) on R, the following values for the other are 
obtained: 

– monthly delayed: R1/12 = R fp = 1,975.27/ 11(12 0.09)
2

 = 1,975.27.0.08003 = 

158.08; 
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– monthly advance: 1/12R  = R  fa = 1,975.27/ (12
13
2

0.09)  = 1,975.27 . 0.07946 

= 156.95 
 
In the monthly compound regime it would be:  

i1/m / i = 0.0800814; monthly delayed installment = 158.18 

i1/m (1 + i)-1/m / i = 0.0795083; monthly advance installment = 157.05 

5.4. Evaluation of varying installments annuities in the compound regime 

5.4.1. General case 

For the evaluation in the compound regime of annuities with varying 
installments, with the same signs, we can follow the classification shown in section 
5.2. Here we will deal with such an argument, showing the similarities, but taking 
into account that the schemes based on the regularity of installments are not 
conserved.  

 
Thus, we will limit ourselves to developing the calculus for the IV V0 of annual 

temporary annuities-immediate (for n years), as for the other annuity schemes it is 
enough to take into account that, starting from the previous case, we can apply the 
following changes, valid with varying installments as well as constant installments:  

– in the fractional (or pluriannual) case it is enough to use in the formulae, 
instead of years and annual rate, the number of payments and the equivalent per 
period rate; 

– in the -due case each amount is paid one year before, thus the IV is V0(1+i); 

– in the delayed25 case each amount is paid after r years, thus the PVDA are 
V0(1+i)-r; 

– the FV Vn is given by V0(1+i)n; 

– in the perpetuities case it is enough to use n  + , but such a calculation can 
be carried out only if a rule on the formation of installments in an unlimited time is 
given.  
 

By putting together the previous five rules we can obtain all the results of the 
classification seen in section 5.2 if the aforementioned value V0 has been calculated. 
                                   
25 It is almost unnecessary to observe that, in the case of varying installments, the annuity-
immediate value coincides with that of the corresponding annuity-due delayed by one period. 
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 Denoting by Rh or hR  (in chronological order) the different delayed or advance 
installments the annuity is the union of the concordant dated amounts (h h 1

 nU ,Rh )  

or  1
 ( 1, )n

hh h R . Considering from now on the case of non-negative installments 
(and at least one positive one), due to (4.3") the IV of the annuity-immediate or -due 
are:  

    V0 Rh (1 i) h
h=1
n   ;   ( 1)

0 =1  (1 )n h
hhV R i         (5.23) 

Proceeding analogously, the FV of the annuity-immediate or -due are 

1 (1 )n n-h
n hh=V  = R +i  ;    

1
1 (1 )n n-h+

n hh=V  = R +i  
      (5.24) 

EXAMPLE 5.3.– Applying (5.23) and (5.24), calculate the IV and FV of annuities-
immediate or -due. An Excel spreadsheet can be used and the installments put 
directly into columns, applying recurrent formulae, such as  

– Vh-1 = (Rh+Vh)(1+i)-1 from Vn=0, to calculate pro-reserves and IV in the  
-immediate case; 

– Vh-1 = 1hR +Vh(1+i)-1 from Vn=0, to calculate pro-reserves and IV in the  
-due case; 

– Mh = Mh-1(1+i)+Rh from M0=0 to calculate retro-reserves and FV in the  
-immediate case; 

– Mh = (Mh-1+ 1hR )(1+i) from M0=0, to calculate retro-reserves and FV in the  
-due case.  

The following table is obtained where, both in the -immediate and the -due case, 
the IV is given by the pro-reserve in 0 and the values below in the column give the 
pro-reserve for the following years, while the FV is given by the retro-reserve in n 
as credit for the counterpart which pays the installments, and the values above in the 
column give the retro-reserve for the preceding years. Obviously, given that an 
annuity operation is unfair, the retro-reserves and pro-reserves will never coincide in 
the various years. 
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 Rate = 0.042  Length = 10  
Year delayed 

installment 
advance 

installment 
delayed 

pro-
reserve 

advance 
pro-reserve

delayed 
retro-reserve

advance 
retro-reserve 

0 0.00 521.44 5,230.48 5,450.16 0.00 0.00 
1 521.44 412.36 4,928.72 5,135.73 521.44 543.34 
2 412.36 125.61 4,723.37 4,921.75 955.70 995.84 
3 125.61 1,544.98 4,796.14 4,997.58 1,121.45 1,168.55 
4 1,544.98 897.33 3,452.60 3,597.61 2,713.53 2,827.50 
5 897.33 69.55 2,700.28 2,813.69 3,724.83 3,881.27 
6 69.55 587.11 2,744.14 2,859.39 3,950.82 4,116.76 
7 587.11 897.54 2,272.28 2,367.72 4,703.87 4,901.43 
8 897.54 1,258.32 1,470.18 1,531.93 5,798.97 6,042.53 
9 1,258.32 285.10 273.61 285.10 7,300.85 7,607.48 

10 285.10 0.00 0.00 0.00 7,892.58 8,224.07 
   
 IV annuity- 
immediate = 

  
         5,230.48 

 

 IV annuity- 
due      = 

  
 5,450.16 

 

 FV annuity  
immediate = 

  
 7,892.58 

 

 FV annuity 
due.     = 

  
 8,224.07 

Table 5.1. Pro-reserves and retro-reserves in the immediate and due case  

The Excel instructions are as follows. C1: 0.042; F1: 10; use the first two rows 
for data and column titles, the annual values from 0 to 10 are in rows 3-13: 

– column A (year): A3: 0; A4:= A3+1; copy A4, then paste on A5-A13; 

– column B (installments in the -immediate case): B3: 0; from B4 to B13: (insert 
data: delayed installments);  

– column C (installments in the -due case): copy from B4 to B13, then paste on 
C3 to C12 (insert data: advance installments); C13: 0;  

– column D (pro-reserve in the -immediate case): D13: 0; D12: = (B13+D13)* 
(1+C$1)^-1; copy D12, then paste backwards on D11 to D3; 

– column E (pro-reserve in the -due case): E13: 0; E12: = C12+E13*(1+C$1)^-
1; copy E12, then paste backwards on E11 to E3; 
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– column F (opposite of the retro-reserve in the -immediate case): F3: 0; F4: = 
F3*(1+C$1)+B4; copy F4, then paste on F5 to F13; 

– column G (opposite of the retro-reserve in the -due case): G3: 0; G4: = 
(G3+C3)*(1+C$1); copy G4, then paste on G5 to G13; (initial and final value of 
annuities-immediate and -due): D15: = D3; E16: = E3; F17: = F13; G18: = G13.  

Continuous flow 

 In case of continuous flow (t) of annuity from 0 to n, the IV and the FV are 
expressed respectively by 

V 0 (t)e tdt0
n                     (5.23') 

V n (t)e (n t)dt0
n                    (5.24') 

With the previous formulae the direct problem is solved by finding the IV or the 
FV of an annuity with varying installments. The same formulae form a constraint 
for the inverse problem, by finding an annuity, i.e. a sequence of dated amounts 
with the same sign, which has a given IV or FV. Thus, as already seen regarding 
annuities with constant installments, if the IV is given, we have a problem of 
gradual amortization of an initial debt, while if the FV is given, we have a problem 
of gradual funding at the end of the time interval. In the case of constant 
installments we obtain a unique solution, owing to n-1 equality constraints between 
the installments. Instead, in general the solution of the inverse problem is not 
unique, having n-1 degrees of freedom. Furthermore, in the amortization, due to 
technical and juridical reasons, inequality constraints are introduced so that the 
amortization installments cover at least the accrued interests. 

5.4.2. Specific cases: annual annuities in arithmetic progression  

 Let us here consider some relevant models, which refer to specific cases of 
annual annuities with varying installments. Among them, we can consider the 
installment evolution in arithmetic progression (AP). We obtain such a feature when 
all the subsequent installments vary according to a constant rate  (positive or 
negative) of the first installment R. Thus, the subsequent differences are constant, 
and are given by the ratio D. Therefore, D = R and  

Rh = R + (h-1)D > 0,(h = 1, …, n)           (5.25) 
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 Let us focus first on the normalized or unitary annuity, also called an increasing 
annuity, where the first installment and the ratio are unitary; therefore Rh = h. In the 
temporary case the IV is indicated with the symbol (Ia)n |i; its value is 

( )a n|iI  = n
h=1

1 (1 )  = 1 (1  )(1 )
i d

h nh i n d i      (5.26) 

For perpetuities (n = ), prompt and delayed, given that lim
n

 n(1+i)-n =  0 , 
we obtain the IV of an increasing perpetuity 

(Ia) |i  = 
  

h 
h=1
+ (1 i) h  =  

1
i d

 ;  r / (Ia) |i  = 
 
vr

i d
      (5.26') 

 Denoting by (Is)n |i  = (1+i)n (Ia)n |i the FV in the delayed case, in the other cases 
the symbols for the values of the increasing annuities are easily extended as in 
section 5.2. 
 
 To deduce the closed form given in (5.26) and then in (5.26'), some algebraic 
developments are needed. However, it is also possible to use financial equivalences, 
which we will use starting from perpetuities. Let us observe, first, that the relation  
an |i  = a |i  – n / a |i (see footnote 16) can be generalized as follows 

(Ia)n |i  = (Ia) |i   – n / (Ia) |i  – n n / a |i            (5.27)  

(because (Ia) |i  – n / (Ia) |i is the IV of a perpetuity, increasing until time n but  
with constant installments after n; thus to obtain the IV of a temporary annuity we 
still need to subtract n n / a |i). We have an analogous conclusion for the -due case.  

The 1st part of (5.26') is justified for the transitivity property of the equalities. 
We can observe, in fact, that using the delayed evaluation rate i (equivalent to the 
advance rate d = i/(1+i)), the supply (0,S) is equivalent to the perpetuity of its 
advance interests, i.e. (h h 0

 U ,Sd)  with graph  

0

0

Sd

1

Sd

2
...

Sd

h
 

Furthermore, each supply (h,Sd) is equivalent to the perpetuity, delayed by h 
years, of its delayed interests Sid, i.e. (kk h 1U ,Sid)  with graph 

Sid

h 1

Sid

h 2
...

Sid

k
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and adding to h, for all supplies, the triangular development (kk h 1U ,Sid)h 0U  

= (k k 1
 U ,kSid)  is obtained, with graph  

[ 0

0

Sid

1

2Sid

2
...

kSid

k
]. 

This last annuity, for which the IV is Sid (Ia) |i
26, is equivalent to (0,S) for 

which the IV is S. Therefore, Sid (Ia) |i  = S, i.e.: (Ia) |i  = 1/id. This proves the 1st 
part of (5.26'). The 2nd part  is obvious. Developing (5.27), we obtain  

(Ia) |i  – n / (Ia) |i – n n / a |i =  

= 1
i d

(1 i) n

i d
n

1 (1 i) n

i
 = 

1 1 (1 )(1 ) nn d i
i d   

i.e. (5.26). 
 
 After what has been said about the relationship between the different cases, this 
is an exercise to give the expressions for the other values of the annual increasing 
annuity. Starting from (5.26) and (5.26'), it is found that 

n|i(I )s   = (1 i)n

i d
1 (1  )(1 ) nn d i  ( )s n|iI  = 

    

(1 i)n

 d2 1 (1 )(1 ) nn d i ;  

                                   
26 Considering that, by definition, (Ia) |i  is the IV of (k,k)k 1U , by multiplying the 

amounts by Sid the IV of the annuity (k,kSid)k 1U  is obtained. We ascertain here the 
strength of the compound discount: at whichever rate, the present value of an annuity with 
diverging installment and infinite length is finite, i.e. it is in no case diverging! This is due to 
the fact that an increasing exponential function becomes infinite faster than a linear one, and 
also a polynomial one. Therefore, the result also holds true for increasing perpetuities of the 
higher order, which we can define for subsequent sums, in this manner: the hth installment of 
the perpetuity-due with IV 1/dm (m>2) is the sum of the first h installments of the annuity for 
which the IV is 1/dm-1. With m=3, 1/d3 is the IV of the perpetuity with advance installments 
which are the partial sums of the installments’ sequence corresponding to the IV 1/ d2, i.e.: 1; 
1+2=3; 1+2+3=6, ..., 1 +...+n = n(n+1)/2, ... 
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( )a n|iI  = 
    

1
 d2 1 (1  )(1 ) nn d i  ;  

( )a |iI  = 
    

1
 d2 ;  

/ ( )r a n|iI  = 
    

vr

 d2 1 (1  )(1 ) nn d i  

/ ( )r a |iI  = 
    

vr

 d2  

EXAMPLE 5.4.– To have an order of magnitude, let us give in Table 5.2 the IV, 
PVDA, FV for two parametric scenarios. 

Type of annuity    Symbol        (i = 4.20%; r = 5)  (i = 11.35%; r = 2) 
 n = 20 n =  n = 9 n =  
-immediate IV (Ia)n | i   122.141386  590.702948  23.457999  86.436774 

-due IV ( )a n|iI    127.271304  615.512472 26.120482 96.247340 

-immediate PVDA   r / (Ia)n | i   99.431559 480.87316 18.919538 69.713696  

-due PVDA  / ( )r a n|iI   103.607684 50.069840 21.066905 77.626194 

-immediate FV (Is)n | i   278.110396   61.730949  

-due FV ( )s n|iI   289.791032        68.737412       

Table 5.2. IV, PVDA, FV calculation  

In addition, for the two scenario perpetuities with n and i, we obtain 

 n / (Ia) |i   259.426752 32.846309 

 / ( )n a |iI   270.322676  36.574365 

 n / a | i    10.456740   3.348052 

 /n a |i    10.895924   3.728056 

 (5.27) is verified with these parameters in the two scenarios, distinguishing 
between annuity-immediate and annuity-due: 

1st scenario, annuity-immediate:  590.702948 – 259.426752 – 20.10.456740 = 122.141386 
1st scenario, annuity-due:   615.512472 – 270.322676 – 20.10.895924 = 127.271324 
2nd scenario, annuity-immediate:  86.436774 – 32.846309 – 9.3.348052 = 23.457999 
2nd scenario, annuity-due:   96.574365 – 36.574365 – 9.3.72805 = 26.120482 
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We can now give the formulae for an annual annuity in AP which is 
characterized by the couple (R,D). These formulae generalize those of the 
increasing annuity. For the reasons already mentioned, we can consider only the IV 
and FV of an annuity-immediate, temporary for n years. The following is obtained:  

V0 = R an |i + D 1/ (Ia)n-1 |i  = (R-D) an |i + D (Ia)n |i   (5.28)  

Vn = V0 (1+i)n = (R-D) sn |i   + D (Is)n |i          (5.28') 

In fact, by definition, particularizing (5.23) with Rh given by (5.25): 

    V0  Rh  h=1
n (1 i) h  = R +(h -1)D  h=1

n (1 i) h  = R an |i + D 1/ (Ia)n-1 |i  

The last side of (5.28) follows from the simple identity: R+(h-1)D = (R-D)+ hD. 

Exercise 5.12 

A lease of a company has been agreed between the parties for an annual rent, 
delayed for 12 years, of €285,000 for the first year, with an annual increment of 3% 
of the initial rent. At the compound annual rate of 6.20%, calculate the IV of such 
an annuity. 

 A. By applying (5.28) where: i=0.062; d=0.058380; v=0.941620; R=285000; 
D=8,550, the following is the result 

V0 = R a12 |0.062  + D (1.062)-1 (Ia)11 |0.062 = 

= 285,000.8.292677 + 8,550.0.941620.33.856815 = 2,635,989.12 

5.4.3. Specific cases: fractional and pluriannual annuities in arithmetic progression  

The linear variability of the installments of an annuity in AP is in practice more 
frequently applied using fractional installment. 

 
Let us observe, first, that the fractioning can concern both the frequency of 

payments k, and the frequency of variations h, where h , k=wh being w  the 
number of consecutive unchanged payments. Considering that formulae to 
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generalize (5.28) are needed to obtain the IV of annuities in AP27, it is sufficient 
here to extend to the fractional case the increasing annuity that will enter into the 
calculations, through an appropriate normalization that is convenient to apply so as 
to maintain the increments in the annual total of payments as unitary. 

 
Given the above, it is easy to verify that: 

– the increasing fractional annuity-immediate (-due) with annual increment of 
the installment (proportionally to a natural number), i.e. with h=1, k=w>1, is 
formed by installments payable at the end (beginning) of each kth of year and of 
amount 1/k in the

 
1st year, 2/k in the 2nd year, etc. Generalizing (5.26), the IV of 

annuities-immediate is 

k1   n i
1(I ) 1 (1  )(1 )

( ) 
= na n d i

j k d
|
| ; k 1

i
1(I )   a

j(k) d
=|

|     (5.29) 

which is obtainable by applying to the value of the annual annuity the same 
correction factor i/j(k) (= ratio between intensities) already used for constant 
annuity. The same factor has to be applied also for FV and PVDA; 

– the increasing fractional annuity-immediate (-due) with h>1, k=wh>1, is formed, 
due to the aforementioned normalization, by installments payable at the end 
(beginning) of each kth of year, so that, for the -immediate case, the first w payments 
of the 1st year are of amount 1/hk, the second w payments of the 1st year are of amount 
2/hk,... the last w payments of the 1st year are of amount 1/k,.... the first w payments of 
the nth year are of amount [(n-1)h+1]/hk, the second w payments of the nth year are of 
amount [(n-1)h+2]/hk, …. the last w payments of the nth  year (in the case of a 
temporary annuity for n years) are of amount n/k. The IV of this annuity-immediate is 

k h k h
n i i

1 1(I ) 1 (1 ( ))(1 ) ; (I )
( ) ( )

n    a n h i a
j(k) h j(k) h

= =|
|

|
|  (5.30) 

and generalizes (5.26) in the sense that the annual intensities i and d are substituted 
in (5.30) for those relative to frequency k and h. The same thing holds true for FV 
and PVDA; 

– if all the payments of an increasing fractional annuity-immediate, with h=1 or 
h>1, are backdated for 1/k of a year, we obtain an increasing fractional annuity-due, 
the IV of which follows from that of the annuity-immediate on multiplying by 

                                   
27 In generalizing (5.28) for the fractional case it is convenient to consider its last term, at 
least when h>1, which implies installment variations during the year, to avoid the 
complication of deferment for a fraction of years. 
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(1+ik); therefore it is sufficient to substitute j(k) with (k) into the formulae in (5.29) 
and (5.30). 

Proof 

Let us first observe that (5.27) is generalized in  

     (Ia)n |i
k|h = (Ia) |i

k|h
  

n /
(Ia) |i

k|h  n n /a |i
(k)           (5.27') 

Therefore, to prove (5.29) and (5.30) it is sufficient to consider the perpetuities, 
because using their value we obtain that of the temporary annuities. (5.29) is proved 
observing that, analogously to what was seen for the annual annuity, an amount S in 
0 is equivalent to the annual perpetuity, starting with 0, of advance interest Sd and 
that each installment Sd is equivalent to the subsequent k-fractional perpetuity of 
delayed interest Sdi1/k. The total of the payments is, therefore: 

– S d i1/k at the end of each period with duration 1/k of the 1st year; 

– 2 S d i1/k at the end of each period with duration 1/k of the 1st year; 

– etc. 

Therefore it is sufficient to use S=1/j(k)d in order to obtain (5.29) as IV of the 
annuity with fractional payments 1/k in the 1st year, 2/k in the 2nd year, etc., and thus 
unitary increments in the annual total of payments, which is 1 in the 1st year.  

 
Equation (5.30), which generalizes (5.29), is proved observing that the supply 

(0,S) is equivalent to the subsequent h-fractional perpetuity-due with constant 
installments Sd1/h, each of which is equivalent to the following k-fractional annuity-
immediate of constant installments Sd1/hi1/k. The amount S is thus the IV of the 
perpetuity with payments:  

– Sd1/hi1/k at the end of each of the first k/h periods with duration 1/k of the 1st 
year;  

– 2Sd1/hi1/k at the end of each of the second k/h periods with duration 1/k of the 
1st year;  

– hSd1/hi1/k at the end of each of the last k/h periods with duration 1/k of the 1st 
year;  

– (h+1)Sd1/hi1/k at the end of each of the first k/h periods with duration 1/k of the 
2nd year;  

– (h+2)Sd1/hi1/k at the end of each of the second k/h periods with duration 1/k of 
the 2nd year; 
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– 2hSd1/hi1/k at the end of each of the last k/h periods with duration 1/k of the 2nd 
year;  

– etc. 
 
It is sufficient to use S = 1/[j(k) (h)] in order to obtain the perpetuity that starts 

with the fractional payment 1/(hk), reaching the level n/k after n years, for which the 
IV is given by the 2nd of (5.30).  

 
It is obvious that the IV of the annuity, temporary (or perpetuity), which has 

installments proportional to those of an increasing fractional annuity-immediate 
(with h>1, k=wh>1) and first payment H, is obtained from the first (or second) 
value in (5.30) multiplying by Hhk. More generally, the IV of whichever fractional 
annuity in AP is obtained with an appropriate linear combination of the unitary IV 

  
an |i

(k)  and       (Ia)n |i
k |h.  

Observation 

 When h>1, the value of payments of the1st year is no longer unitary; its value is 
T1 = (h+1)/2h. In general the total payment of the year s+1 is 

Ts 1
k

h

sh 1
hk

...
(s 1)h

hk

h 1
2h

s , s = 0,1,2,...    (5.31) 

thus Ts+1 = Ts+1, (s,h) and the unitary normalization of the annual increments is 
verified. The total of payments in the first n years is 

T (n ) Ts 1s 0
n 1 n

2
n

1
h

                (5.31') 

Continuous increasing annuity  

 The values in the continuous case are obtained, as usual, on diverging the 
frequency. However, in this case we have two frequencies: the frequency of 
payments and the frequency of increments.  
 
 Recalling that lim

k
j (k) lim

h
(h) , we observe that there is no distinction 

between -due and -immediate in the case of varying installments as well. Let us give 
the results, that can be easily proved, starting from (5.30), in both cases: 

– if only the payment frequency k diverges, the IV is  

h
n i

1(I ) 1 (1 ( ))(1 )
( )

n  a n h i
 h

=|
| ; h

i
1(I )
( )

  a
h

=|
|   (5.32) 
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– if both the payment frequency k and the increment frequency h diverge, the IV is 

i 2
1(I ) 1 (1 )(1 ) n  na n i

 
=|

|  ; +
i 0 2

1(I ) -  t  a  t  e dt=|
|   (5.32') 

and the total of payments in the first n years is n2/2. 

EXAMPLE 5.5.– Let us make some numerical comparisons on the fractional 
increasing annuity, changing the fractioning with the constraint h  k, verifying the 
increasing behavior if using the same h from higher deferment to higher anticipation, 
decreasing if h increases, fixing the other parameters. Let us assume i=0.07; n=10. 
Considering the frequency 1, 4, 12, the equivalent values are: d=0.0654206, 
j(4)=0.0682341, j(12)=0.0678497, (4)=0.0670897, (12)=0.0674683, =0.0676586 
and the following table is obtained, where T (10)  is the maximum value obtainable 
(h,k) at zero rate.  

 k h             T (10 )      (Ia) |i
k|h       |( k|h

iIa)  

 1 1 55.000 34.7390688 37.1707813 
 4 1 55.000 35.6381167 36.2460231 
 12 1 55.000 35.8400231 36.0426277 
  1 55.000 35.9412524 35.9412524 
 4 4 51.250 32.8980119 33.4591782 
 12 4 51.250 33.0843943 33.2714212 
  4 51.250 33.1778403 33.1778403 
 12 12 50.417 32.4783090 32.6619097 
  12 50.417 32.5700432 32.5700432 
   50.000 32.2671080 32.2671080 

Table 5.3. Comparisons on the fractional increasing annuities 

Exercise 5.13 

1) An industrial company has to pay a monthly delayed rent for leasing 
(equipment, etc., see section 6.5) equal to the amortization installment at the interest 
rate of 9.50% for 7 years proportional to the initial value of the plant of €48,500, net 
of 5% of the value initially paid as an advance, and without any other clause except 
for an annual increment of 12% on the initial rent. Calculate the rents for the 7 years 
and the initial value of the borrowed amount at the evaluation rate for the supposed 
income of 12% per year. 
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A. 

a) calculation of the installments: Borrowed amount = M = 48,500 (1–0.05) = 
€46,075; for (5.13), being j12 = 0.0910984, initial rent = C = M/(12

 
a7 |0.095

(12) ) = 

46,075/(12.5.1615977) = €743.87. 
 
Given the adjustment clause there is an annual increment of the monthly rent of 

€18.60 resulting in: 

– Monthly rent in the 1st year = €743.87 

– Monthly rent in the 2nd year = €762.47 

– Monthly rent in the 3rd year = €781.07 

– Monthly rent in the 4th year = €799.67 

– Monthly rent in the 5th year = €818.27 

– Monthly rent in the 6th year = €836.87 

– Monthly rent in the 7th year = €855.47 
 
A. 
b) calculation of the IV: using (5.13), (5.29) and: n=7; i=0.12; k=12; h=1; R = 

743.874 12 = 8926.488; D = 18.597 2 = 223.164 (in terms of annual flows) and 
generalizing (5.28) in  

V0 = R
  
ar n |i

(k) + D 1/  
(Ia)n |i

k|h
 = (R-D)

 
an |i

(k) + D
 
(Ia)n |i

k|h , 

the following is obtained: 

V0 = 8926.488.4.8096288 + 223.164.13.7441973 = €46,000.30 

2) A three-year work contract starting on the 1st January has an annual wage bill 
of €13,390 to be paid in 12 delayed monthly salaries + 13th salary for Christmas, and 
also an increasing benefit to add to the 12 monthly, initially equal to 5% of the 
initial salary but with quarterly increments all equal to it, not affecting the 13th one. 
To calculate the end of job indemnity, let us value the FV of such a contract at an 
evaluation rate of 6.60%. 

A. It is convenient to first calculate the IV, afterwards accumulating it for 3 
years, and keep separate the 13th salary from the ordinary monthly salaries, 
including the increasing benefit.  
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The payments for the 13th salary give rise to an annual annuity-immediate with 3 

installments of 13,390/13 = €1,030, with IV of: V'0 = 1030 a3 |0.066  = €2,722.92.  
 
The ordinary monthly salaries give rise to a 12-fractional increasing temporary 

annuity with quarterly increments, formed by 3 delayed monthly installments of 
€1,081.50 followed by another 3 of €1,133.00, etc. The parameters are: n=3; h=4; 
k=12; i=0.066. Thus applying the last term of (5.28), its IV is 

V"0 = 1,030.12.
  
a3 |0.066

(12)  + 1,030.0.05.4.12.
 
(Ia)3 |0.066

12|4  = 31,784.29 + 10,027.48 = 

=  €41,811.77 

Thus, the IV of the contract is, at the rate of 6.6%, V0 = V'0 + V"0 = €44,534.69 
and the FV is V3 = 10663 V0 = €53,947.34. 

Pluriannual increasing annuities 

 Let us briefly mention the pluriannual increasing annuities, from which can be 
deduced with linear combination the IV of the pluriannual annuities in AP, which 
find practical application generalizing the annuities with constant installments. Let 
us consider only the case of h=k=1/p (i.e. p-annual increasing annuity with period 
1/k and increment after each payment)28. The following normalization implies that 
the sth installment is sp2; thus the rth, at the end of n years, if n=rp, is rp2=np. 
Therefore, the IV are obtained using (5.30), where the expressions already used in 
(5.18) for the p-annual intensities j(1/p) = [(1+i)p-1]/p; (1/p) = [1-(1+i)-p]/p are 
taken into account. For the perpetuities we obtain the following results 

1 1
p p

2|
|i 1 1

1=
( ) ( ) (1 ) (1 ) 2

(I ) p pp p
p

j i i
a         (5.30') 

1 1
p p

2

2 2

|
|i 1

1=
( ) 1 (1 )

(I )
pp

p

i
a  

                                   
28 The conclusions for this specific case can be easily obtained from those of the annual 
increasing annuity (see (5.26) and (5.26')) assuming as the new unit measure the p-year and 
thus adopting proper measures for time and rates. 



190     Mathematical Finance 

while for the temporary case it is enough to multiply (5.30') by [1-
(1+n (1/p))(1+i)n]. To have the values of the annuity, proportional to the previous 
one, for which the first installment is H, it is sufficient to multiply by H/p2.  

Exercise 5.14 

 Consider again the problem of Exercise 5.7 assuming that the cost of the plants 
due to the five-yearly replacements increases by 26% in respect to the initial cost. 
 
 A. The parameters are: n=20; p=5; i=7.45% thus (1/5) = (1-1.0745-5)/5 = 
0.0603638. The cost for the plant at time 0 is €255,000; the increment of cost for 
each replacement is: 255,000.0.26 = €66,300 starting at time 5 for 3 times. To avoid 
deferments let us divide the five-yearly varying cost by the sum of a five-yearly 
advance cost of 255,000-66,300 = €188,700 and by an increasing cost proportional 
to an increasing five-yearly annuity-due with a first installment of €66,300. Thus, 
applying (5.17) and (5.30') modified for the temporary case, the IV of such an 
operation is 

V0  = 
1 1
5 5(1/5)

20|0.0745 0.0745 20
188,700 66,300 (I )

255
n n |

|  = 37,740.5.
20

5

1 1.0745
1 1.0745

 + 

+ 
25

66,300 25
25 1 1.0745

[1-(1+20.0.0603638)(1.0745)-20] = 37,740.12.6298497 + 

+ 2,652.130.5014439 = 476,650.53 + 346,089.83 = €822,740.36 

5.4.4. Specific cases: annual annuity in geometric progression 

Temporary annuities 

 Often in annuities the installment variation is proportional to a fixed ratio of the 
previous installment instead of the initial one. It follows that the behavior of 
installments is in geometric progression (GP), the ratio of which we will indicate 
with q. Typical are those phenomenon of  adjustment with constant rate: if a salary 
increases at the rate of 5% the following index numbers are obtained 

100, 105, 110.75, 115.7625, 121.5506, etc. 

in GP with ratio q=1.05. 
 
 Let us define a temporary annual unitary annuity-immediate in geometric 
progression with ratio q>0 with the following operation: 
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(h h 1
 nU ,qh 1)                    (5.33) 

with graph: 
11

...
1 2

nq q
n

.  

 
 If the period is not annual, it can always be assumed to be a unit measure of time 
(and in such case i is the corresponding per period rate), thus unifying the treatment. 
 
 The IV of the unitary annuity (5.33) in a compound regime is given by 

      
(Ga)n |i

[q]   qh 1
h 1
n

vh  
nv   ,  if  q = 1+i

v
1 (qv)n

1 qv
,  if  q 1+ i

       (5.34) 

If we have an unitary annuity-due, its IV   (Gä)n |i
[q] is obtained multiplying the 

values in (5.34) by (1+i) and 

      
(Gä)n |i

[q]   qh 1
h 1
n

vh 1  
n   ,  if  q = 1+i

1 (qv)n

1 qv
,  if  q 1+ i

       (5.34') 

 More generally, the IV of annuities in GP, -immediate or -due, with a first 
installment equal to R are given by 

    V0 R(Ga)n |i
[q];        [q]

0 n|i(G )V R a            (5.34'') 

Using = q-1 (=algebraic rate of variation of the GP), if q<1+i i.e. <i, qv is the 
discount factor at the rate  = (1/qv)-1 > 0 such that the IV (5.34') is also that of a 
constant annuity-due at the rate (see (5.2)). If instead q>1+i i.e. >i, qv is the 
accumulation factor at the rate  = qv-1 > 0 such that the IV (5.34') is also the FV of 
a unitary constant annuity-immediate at the rate (see (5.6)). In formulae29:  

                                   
29 See the observation in footnote 19. We obtain a formula analogous to the 1st expression of 
(5.35) for annuity-immediate if it is normalized assuming the first installment equal to q, 
coherently with the following viewpoint: considering the annuity in g.p. (kk 0

nU ,qk ), the 
IV of the annuity-due is calculated on the first n supplies; the IV of the annuity-immediate 
takes account of the following n supplies after the first one. For all choices of q and i, the two 
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q<1+i :  [q]
n|i(G )n  = an| ;  q>1+i :  [q]

n i(G )ä |  = sn | (5.35)

where 

  
q  1 =

1 i

1
  (1 i)(1 )               (5.36) 

Equation (5.35) speeds up the calculation of (5.34) and (5.34') leading it back to 
that of the values of constant annuities. 

 
Due to the decomposability, the FV  (Gs) , (G )s  and the p.v.d.a . 

  r / (Ga) , / (G )r a  of unitary annuities in GP, -immediate and -due, are obtained from 
IV with the usual factors: 

    (Gs)n|i
[q] (1 i)n (Ga)n|i

[q]  ;  [q] [q]
n i n i(G ) (1 ) (G )ns i ä| |      (5.37) 

    r / (Ga)n| i
[q] (1 i) r (Ga)n| i

[q]  ;     r / (Gä)n| i
[q] (1 i) r (Gä)n| i

[q]   (5.38) 

From a general point of view, let us consider annuities with installments that are 
sum of two addends: the former is constant, the latter is varying in GP Considering 
an annual temporary annuity-immediate (or with another period to assume as 
unitary) with installment Rh = H + Kqh-1, its IV and FV are 

    

V0 H an |i K(Ga)n| i
[q]

Vn H sn |i K(Gs)n| i
[q]                  (5.39) 

 Analogous formulae hold for other types of annuities in GP.  

Real and monetary variations  

The formulation that leads to (5.36) is a specific case – which considers rates 
that are constant in time – of the problem of financial evaluation with rates that vary 
in time and with variation of the purchasing power of money. Such a problem, 
which has an important application in macroeconomics and finance, can be shown 
with a simple argument. Let mt and ct be the interest rate for the year (t-1,t), on the 
                                   
theoretical rates  and  introduced in (5.35), because of (5.36) are linked by the relation 
(1+ )(1+ ) = 1, thus they have opposite signs. Also, we have to consider the case q=1+i, in 
which  =  = 0. 
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monetary market and on the commodity market (such as wheat, for example) 
respectively, in the sense that: 

– for M euros loaned in t-1, we pay back M(1+mt ) euros in t; 

– for C kilograms of wheat loaned in t-1, we give back C(1+ct) kilograms of 
wheat in t.  
 

In addition, let rt be the variation rate of the wheat price in euros, i.e. C 
kilograms are traded today for M euros and after one year for M(1+rt) euros. It is 
obvious that the three rates mt, ct, rt are bound by an equation, which is deduced as 
follows. If at time t-1 the C kilograms of wheat are traded on the market for M 
euros, two equivalent loans of C and M lead in t to the equivalent return of C(1+ct) 
kilos and M(1+mt) euros; but in such time C kilos are traded with M(1+rt) euros, 
and thus C(1+ct) kilograms are traded with M(1+rt)(1+ct) euros. For comparison the 
multiplicative relation is found, which is also called Fisher’s equation30, 

1 + mt = (1 + rt)(1 + ct)                   (5.40) 

Supposing a market economy with only one commodity (wheat), mt is the 
monetary interest rate (or rate in value), ct is the real interest rate (or rate in 
volume), rt is the variation rate of the commodity price. (5.40) thus expresses the 
market constraint in terms of exchange annual factors. If rt and ct are small, the 
product rt ct in the development of (1+rt)(1+ct) can be ignored and (5.40) can be 
approximated using the simple relation 

mt = rt + ct    (5.40') 

usually used (and sometimes abused) in the description of macroeconomic 
phenomena.  

 
In the specific case of constant rates, putting m=i, c= , r= , (5.40) is reduced to 

(5.36) and adding the effects for n years, the 1st expression of (5.35) is found, which 
expresses the equality between: a) the IV at rate i (which acts as the monetary rate 
m) of the annuity in GP with ratio q, i.e. with variation rate , and: b) the IV at rate 

, which act as real rate c, of the constant annuity31. This also holds in cases in 

                                   
30 See Fisher (1907). 
31 If there is a devaluation of the commodity compared to the money, then 0<q<1, while in 
the case of appreciation it is q>1. If and only if the real rate  is positive, then <i, while =0 
implies =i. It can happen that the rate of price increment is higher than the monetary interest 
rate, so we obtain a real rate <0. In this last case, to avoid the use of a negative rate in the 
formulae, it is enough to introduce the value  linked to  by (5.36) and to apply (5.35). 
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which all the installments are multiplied by the constant R. Therefore, we have to 
consider equivalent to a discount:  

– at a real rate  a constant annuity with installments given by the constant 
values of fixed quantities at the constant price of the initial year; or  

– at the corresponding monetary rate i, the annuity of the varying values of the 
same quantities at the current prices that vary at the rate 32  

Perpetuities 

If the annuity in GP is a perpetuity – differently from what happens for 
perpetuity linearly increasing33 or according to powers with integer exponent 
greater than 1 – of time, its IV assumes a finite value only if q<1+i. We obtain in 
such a case: lim[ (1 ) ] 0n n

n
q i  and thus 

    
(Ga) |i

[q]   
v

1 qv
 ; 

    
(Gä) |i

[q]   
1

1 qv
         (5.41) 

In general, with an initial installment R1, the IV V0 is obtained from (5.41) and 
multiplying by R1. The other values are obtained simply by applying the 
corresponding factors. 

Exercise 5.15 

1) Let a loan have paid back delayed installments indexed at 3%, the first of 
which coincides with the constant amortization installment of the debt of €140,000 
over 10 years at the rate of 6.3%. Calculate the sequence of installments and the IV 
of the temporary annuity and the IV of the corresponding perpetuity, if it is finite. 

                                   
32 To generalize the 1st expression of (5.35) in the case of installments Rh and varying rates 
mt,rt,ct it is enough to replicate Fisher’s equation (5.40) using t=1,2,..,n, and we obtain with 
simple developments the equality 

Rh
1 rt

1 mt
t 1
h

h 1
n

h

 =  Rh
1

1 ct
t 1
h

h 1
n

h

  

between the IV at the monetary rates mt of the varying amounts Rh indexed at the rate rt, i.e. 
evaluating the commodity at the current prices, and the IV at the real rates ct of the amounts 
Rh which are not indexed, i.e. evaluating the commodity at a constant price. If the rates are 
linked by (5.40'), the equality is an approximation. 
33 We can observe that the arithmetic progression behavior is a discretization of the linear 
behavior while the geometric progression behavior is a discretization of the exponential 
behavior. It is important to analyze this comment thoroughly, from the viewpoint of the 
mathematical analysis, and the problems that come up when we consider perpetuities. 
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A. We obtain qv = 0.9689558 < 1, R1 = 140,000 10 |0.063, Rh = 1.03 Rh-1 
(h=2,...,10) and the following values in euros are found for the installments: 

R1 = 19,292.79; R2 = 19,871.57; R3 = 20,467.72; R4 = 21,081.75; R5 = 21,714.20 

R6 = 22,365.63 ; R7 = 23,036.60; R8 = 23,727.70;R9 = 24,439.53;R10 = 25,172.71   

Due to (5.34”), the IV is 

101.03
1.063[1.03]

0 1 1.03
1.063

10 0.063
1

(G ) 19,292.79 19,292.79 8.1962415
1.063 1

V R a | €158,128.37 

which has to compare with the value 140,000 of the annuity with constant 
installment.  

 
If we consider a perpetuity, using q = 1.03 < 1+i = 1.063, (5.41) is applied and 

the IV of the perpetuity is bounded and is 

[1.03]
0 1 1.03

1.063
0.063

19, 292.79(G ) 19,292.79 34.2414848 €660,613.77
1.063 1

V R a |   

2) Assuming the compound regime and using the annual rate of 6%, let us 
consider a sequence of advance annual rent indexed at 9% for 10 years, the first of 
which coincides with the funding annual constant installment of the amount of 
€100,000 in 10 years. Calculate the IV and the FV of the aforementioned annuity, 
and also the rate of the equivalent constant annuity. Also consider the perpetuity. 

 
A. The first advance installment is 

R1 = 100,000 10|0.06  = 100,000.0.0715735 = 7,157.35 

and the following installments are  

R2 = 1.09 R1 = 7,586.80; ............; R10 = 1.099 R1 = 12,092.20 

By applying (5.34") and (5.37), the following is the result: 

[1.09]
0 1 10|6%(G )V R a  = 7157.35 . 11.3746307 = €81,412.21 

[1.09]
10 1 10 6%(G )V R s | 7157.35 . 20.3702312 = €145,796.87 
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The value €145,796.87, if compared with the capital of €100,000 accumulated 
with 10 constant installments of €7,157.35, shows the effect of the compound index 
at 9%. 

 
The rate  applied in (5.35) results here as (1.09/1.06)-1 = 0.0283019 

independently from n and forming an active rate of accumulation. The constraint 
(1+ )(1+ ) = 1 holds true (see footnote 29), and thus if we exchange the two rates i 
and q-1, using the index at 6% and the interest at 9%, the following is obtained:  

 = (1.12/1.09)-1 -1 = 0.0283019, coinciding with  but to be interpreted as the 
allowed amortization rate. 

 
As q>1+i, not only the values of the temporary annuities, but also the single 

discounted values, increase with n, and thus the perpetuity has unlimited value.  

5.4.5. Specific cases: fractional and pluriannual annuity in geometric progression 

Proceeding analogously as for the annuities in AP, let us briefly examine the 
changes connected with the fractioning of annuities in GP. 

 
This is useful because sequences of payments and variations subdivided during 

the year are widely used (see section 5.4.5). With the positions already used, let 
h  be the variation frequency and k=wh the payment frequency, with w  
being the number of consecutive unchanged payments.  

 
To simplify the discussion without loss of generality, it is convenient to use h=1 

and then k=w. This is obtained assuming as a new unit measure of time, the period 
between two consecutive installment variations, which we will call the invariance 
period, having fractioned the installment in k equal parts34, with delayed and 
advance payments at each kth of the period; rate i will be the equivalent rate.  

The normalization that leads to the unitary fractional prompt annuity is that in 
which, fractioning the payment of each period into k equal parts, the total of 
payments of the first period is unitary and those for the following periods proceeds 
in GP of ratio q, as shown in the following graph for an -immediate with temporary 
n 
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34 With the symbols used in section 5.4.3, this is the case of h=1, k=r. 
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while for an -due the same amounts are backdated by 1/k. Their IV are obtained 
from (5.34) and (5.41) by applying for each invariance period, and thus for the 
whole n years, the same correction factors fA obtained in section 5.2.4 for Problem 
A, respectively i/j(k) and i/ (k)35.  

 
With the symbols taking their obvious meanings, we obtain:  

      
(Ga)n |i

[q;k]   
d n /j(k)  ,  if  q = 1+i

d[1 (qv)n ]
j(k)[1 qv]

, if  q 1+ i
            (5.42) 

      
(Ga) |i

[q;k] d

j(k)[1 qv]
,  if  q 1+ i             (5.42') 

[q;k]
n i

( ) if 1
(G ) [1 ( ) ] if   1

( )[1 ]

n

d  n / k   ,   q= +i
a   d qv , q +i

k qv
|           (5.42'') 

[q;k]
i(G ) if   1

( )[1 ]
d

a ,  q +i
k qv|

        (5.42''') 

If all of the payments of the first invariance period are R, to obtain V0, it is 
enough to multiply R by (5.42) or (5.42') in the immediate case, or else to multiply 
R by (5.42’’) or (5.42’’’). To obtain the FV and the PVDA of r periods, multiply by 
(1+i)n and vr. For the IV in perpetuity, use (qv)n = 0.  

 
For Problem B the correction factors are those already used, i.e. those needed to 

obtain the k-fractional installments with an addendum in GP from one invariance 
period to the next. Therefore, in the -immediate case we can write the installments 
                                   
35 A proof based on equivalences is the following. For the (h+1)-th period we want the 
financial equivalence in h+1 (which is the instant of the end of the period and also the instant 
of payment of the per period non-fractional installment qh) between such an installment and 
all of the fractional installments of the period, for which the valuation is 

1
kr 1

k qh (1 i1/ k )k r  1
k

qh (1 i1/ k )k (1 i1/ k ) r
r 1
k  

= 1
k

qh (1 i1/ k)k (1 i1/ k ) k (1 i
1/ k

)k 1

1 i1/ k
1

qh i

j
k

 

Therefore, also in this case: fA
i

jk

. 
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as Rh
(k) H (k ) K (k)qh 1, so to not modify the values (5.39). In the -due case the 

results are analogous, obtaining ( )kH  and ( )kK  from H  and K . With the latter 
we have36 

( )1/ 1/( ) , kk kk i i
H H K K  

i i
, ( ) ( )1/ 1/

1/ 1/(1 ) (1 )
k kk k

k k

i i
H H ,K K

i i i i  
 (5.43)  

For the pluriannual case, going back to the annual unit of measure, we only 
consider the case h=k=1/p, i.e. of a normalized p-annual annuity with variation at 
each payment; it is not restrictive to assume, to be consistent with the parameters of 
the annual annuity, the ratio qp (that would be obtained by annually applying the 
ratio q). To calculate the IV of a temporary annuity it is sufficient to apply (5.34) 
and (5.34'), assuming as the unit of measure the interval of p years. Therefore, in 
terms of annual parameters, the following is easily obtained, in the -immediate case: 

      

(Ga)n|i
[q p ; 1

p ]
  

n(1+i)-p /p  ,  if  q = 1+i

1 (qv)n

(1 i) p q p
   ,  if  q 1+i

           (5.44) 

and in the -due case: 

p 1
p[q ; ]

n i

if 1

(G ) 1 ( ) if   1
1 ( )

n

p

n/p        ,    q= +i

a    qv
,  q +i

qv
|             (5.44') 

The IV of a perpetuity assumes a finite value only if q<1+i, resulting, in such a 
case, in: lim

n
(qv)n 0 , and thus  

    
(Ga) |i

[q; 1
p ]

  
1

(1 i) p q
   ;    (Gä) |i

[q; 1
p ] 1

1 (qv) p
       (5.45) 

                                   
36 It is enough to observe that also here , ,H K   H ,K   are the FV of the annuities in the 

invariance period with installments respectively ( ) ( ) ( )( ) , , ,k k kkH K H  K . 
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 By using q=1, we go back to the values of constant annuities. The usual factors 
are used to obtain the FV and the PVDA In order to obtain the corresponding values 
of the effective annuities, multiply the values in (5.44), (5.44’) or (5.45) for the first 
installment. 

Continuous annuities in geometric progression 

 With continuous flows of payments, it is enough to consider two possibilities 
which, acting on the amplitude of the invariance periods, cover all cases: 

a) continuous constant flow in each year (or more generally in each invariance 
period to which the parameters refer) and variations in GP with ratio q from one 
period to the next; 

b) varying continuous flow in exponential way. 

 The normalized values for case a) are obtained from those of the k-fractional 
annuities with k  (the non-normalized values are obtained by multiplying for the 
total of the first period). By applying the correction factor d/  from (5.34) and (5.41) 
the IV are obtained  

    
(Ga)n|i

[q; ]
 dn /            if  q = 1+i

d[1 (qv)n ]
(1- qv)

 if  q 1+i  
;  (Ga) |i

[q; ] d

(1- qv)
if  q <1+i  (5.46)  

To obtain the normalized values for case b), which give the highest continuity 
degree with k , h , let us first define the variation intensity of continuous flow 
(constant, because the payment flow evolves in an exponential way) given by 
  ln q  which is consistent with the annual ratio q = e . Thus, the evolution of 
the discounted flows is given by e( )t and the IV can be obtained using the 
integral calculus (analogously to the case of constant annuities: see footnote 17) 
obtaining37  

                                   

37 We can write: 
    
V0 = e( )t

0
n

dt =
e( )n 1

 =
(qv)n 1

ln(qv)
,  if  q 1+i ; V0 =n if q = 1+i, 

that implies . Recalling the Taylor series of ln(1+x), it is seen that qv-1 is the linear 
approximation of ln(qv), which is very precise when qv 1. In such cases, the difference 
between the normalized IV of annual annuity and of continuous annuity are negligible; in fact 
the change of deadlines does not bring practical effects because increasing the flow 
compensates the discount.  
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[q]
n i

if  1
(G ) ;( ) 1 if  1

( )

n

 n  ,       q= +i
a qv

,  q +i  
ln qv

|
[q]

i(G ) 1/ ln( ),a qv|  if q < 1+i  (5.46') 

 The IV of a continuous perpetuity in GP in cases a) and b) assume a finite value 
only if q<1+i.  

Exercise 5.16

Calculate the IV and FV at the 4-convertible annual rate = 0.056 on the three-
yearly interval of validity of the contract, of the annuity given by a delayed monthly 
wage of a worker. This wage is set up by a fixed part of €1,700 and by a benefit 
initially at €400 and then increasing at the quarterly ratio of 0.8%. Compare the 
results with those of a continuous annuity with the same financial parameters. 

 
A. It is convenient to assume the quarter period to be unitary and to use: fixed 

part = 5,100; initial benefit =1,200; ratio q=1,008; rate i=0.056/4=0.014; frequency 
of payments k=3; length n=12; thus: v=0.9861933; d/j(3)=0.9907814; 
qv=0.9940828; (qv)12=0.9312595. Using (5.12) and (5.42) the IV is 

V0 = 5,100
  
a12 |0.014

(3)  + 1,200    
(Ga)12 |0.014

[1.008;3]  5,100.11.0267981 + 1,200.11.5099724 = 

56,236.67 + 13,811.97 = 70,048.64 

The FV is 

Vn = 1.01412 V0 = 1.1815591.70,048.64 = 82,766.61 

For comparison, let us calculate, using the same parameters of amount and rate, 
the values in the case of continuous flow with continuous increments. Leaving the 
quarter as the unit measure of time and using (5.16) and (5.46'), the following is 
obtained  

V0 = 5,100
 
a 12 |0.014

( )  + 1,200    (Ga )12|0.014
[1.008]  5,100.11.0524121 + 1,200.11.5826613 

= 56,367.30 + 13,899.19 = 70,266.50 

Vn = 1.01412 V0 = 1.1815591.70,266.50 = 83,024.02 

The values of the constant continuous unitary annuity are only different by a 
small amount from those of the analogous monthly annuity and this also holds true 
for the varying annuity in GP given that qv = 0.9940828 1 (see footnote 37).  
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Exercise 5.17 

An industrial company works at a plant for which the initial cost of €280,000 is 
already covered, but – expecting an average economic length of 5 years, without 
break-up value and with cost increments for periodic renewal at the annual 
compound rate of 5% – wants to cover the renewal cost in 20 years through 
semiannual delayed payment in a profitable bank fund at the compound rate of 6%. 
Calculate the semiannual payments: 

a) using the hypothesis of constant payments in the 20 years; 

b) using the hypothesis of payments increasing every 5 years in progression 
corresponding to the variation of the annual compound rate of 5%. 

A. Computation of cost of five-yearly renewals: 

– after 5 years: C1 = 280,000(1.05)5 = €357,358.84; 

– after 10 years: C2 = C1(1.05)5 = €456,090.50; 

– after 15 years: C3 = C2 (1.05)5 = €582,099.89; 

– after 20 years: C4 = C3 (1.05)5 = €742,923.36. 
 
The outflows for such costs give rise to a pluriannual annuity-immediate in GP 

with p = 5; n = 20; i = 0.06; ratio qp = 1.055 = 1.2762816, and the IV, due to (5.44), 
is  

V0 = 357,358.84     (Ga)20|0.06
[1.2762816, 1

5]  = 357,358.84 
20

5 5
1 0.990566
1.06 1.05

 = 

= 357,358.84 . 2.7878276 = €996,254.84 

We now have to find the installments of the annuity to accumulate in the fund 
what is needed for the periodic renewal in the two cases a) and b) specified above. 

Hypothesis a) 

Assuming the year is the unit measure, using i=0.06; n=20; m=2 and using the 
correction factor i1/2/i specified in section 5.2.4, the semiannual delayed installment 
R1/2 to deposit in a fund that provides the payments for the costs C1,...,C4 calculated 
above, is obtained. The following result holds true:  

R1/2 = V0 n |i  i1/2/i = 996,254.84. 0.0871846 . 0.4927169 = €42,796.45 

The values R1/2 form constant outflows so as to balance over the 20 years the 
deposits in a fund with increasing costs; therefore during the 20 years a reserve is 
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formed, equal to the current balance and always to the credit of the depositing 
person and in debt of the institution that is managing the fund (so 6% is always a 
debit rate for this institution). This fund dies away after 20 years, as is confirmed by 
the following scheme of balances at the end of each five-years of the 20 years, 
where the FV of the five-yearly annuity at 6% annual of payments R1/2 is 
489,627.13. In the following table each row refers to a five-year period. 
 

NG. 
 

Existing   
balance 

(1)  

FV of 5- 
year 

payments 
(2) 

Updated 
balance 

(3) = 
(1)+(2) 

Withdraw 
for renewal 

(4) 

Residual of 5 -
year period  

(5) = (3) – (4) 

Fund after 5 
years  

(6)=(5)1.065 

1 0.00  489,627.13 489,627.13 357,358.84 132,268.30 177,004.82 

2 177,004.82 489,627.13 666,631.96 456,090.50 210,541.46 281,751.97 

3 281,751.97 489,627.13 771,379.11 582,099.89 189,279.22 253,298.29 

4 253,298.29 489,627.13 742,925.43 742,923.36 (°)   2.07  
(°) Apparent final balance = 2.07 instead of 0, due to rounding-off.  

Table 5.4. Dynamics of a fund in hypothesis a)  

Hypothesis b) 

In order to form the amount of five-yearly costs for renewal, we now have 
delayed constant semi-annual payments inside each five-year period, increasing 
when passing from one five-year period to the next with the same annual ratio of 
5% with which the renewal costs increase. This implies, as we will verify, the 
balancing between the FV of the payments and the absorption of substitutions, 
already calculated, with consequent lack of residuals and thus zeroing of the reserve 
at the end of each five-year period. We can develop the calculation assuming the 
five-year period as a unit measure of time and solving in respect to K the first 
equation in (5.39), using: H=0; i = (1.06)5-1 = 0.3382256; n=4; V0 = 996254.84. 
This equation becomes 

   
V0 K (Ga)20 |0.06

[1.2762816; 1
5]

  

from which: K=357,358.84. This value is the equivalent FV of the semiannual 
payments K(10) of the first five-year period, which are obtainable by applying the 
correction factor i1/10/i=0.0973983; therefore, we have K(10)=0.0973983.357,358.84 = 
31,235.38. For the following five-year periods the semiannual payments and their 
five-year period FV increase in GP with ratio 1.2762816 every 5 years. The 
evolution of such payments in the four five-year periods and the verification of the 
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zeroing of residuals are shown in the following table, where each row is referred to 
a five-year period.  
 
N. Existing 

balance 
(1) 

Semiannual 
payment 

(2) 

FV of 5-year 
payments 

(3) 

Withdrawal 
for renewal 

(4) 

Residual of 5-
year period 

(5)=(3) – (4) 

Fund after  
5 years  

(6)=(5)1,06 

1 0 31,235.38 357,358.84 357,358.84 0 0 

2 0 39,865.14 456,090.50 456,090.50 0 0 

3 0 50,879.15 582,099.89 582,099.89 0 0 

4 0 64,936.12 742,923.36 742,923.36 0 0 

Table 5.5. Dynamics of a fund in hypothesis b) 

Also in hypothesis b), the fund is never in credit because, due to the semiannual 
payments, it remains in debt inside each five-year period, but becomes 0 at its end 
and remains 0 during the first following half-year. 

Exercise 5.18 

1) Recall the second problem of exercise 5.15, which considers a temporary 
annual annuity-due in GP; using the same data let us consider the following 
variations:  

a) annually varying continuous flow with the same progression; 

b) continuous flow with continuous increments, given by e t, with  = ln 1.09, 
discounted according to the intensity  = ln 1.06. 

A. Case a) The annual installment is substituted for the constant annual flow, 
equal to €7,157.35 during the 1st year, afterward in GP at 9% for 10 years, all 
evaluated in the compound regime with i = 6%. Due to (5.46), the IV is obtained by 
applying the correction factor d/  = 0.9714233 to that of the annual case. We obtain: 
V0 = 7157.35.11.0495810 = 79,085.72. The FV is given by: V10 = V0(1.06)10 = 
79085.72.1.7908477 = 141,630.48.  

A. Case b) By applying (5.46’), IV=
10

0

1.09 /1.06 1
7,157.35

ln 1.09 /1.06
V  

 
= 

7,157.35.11.5348438 = 82,558.91 is obtained, and also FV = V10 = V0(1.06)10 = 
82,558.91.1.7908477 = 147,850.44. 

Compare the results obtained here with those from the second part of Exercise 
5.15. 
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2) Calculate the IV for the normalized annuities as in part 2 of exercise 5.15 and 
part 1 of exercise 5.18, but assuming q = 1.03. 

A. Using the formulae already discussed, the normalized IV are summarized in 
the following table. 
 

Type of payment of the annuity temporary (10 years) perpetuity 

Advance annual payments 8.8179309 35.3332994 

Continuous flow with annual increments 8.5659496 34.3236102 

Continuous flow with continuous increments 8.6925517 34.8309069 

 

Table 5.6. Calculation of the normalized IV 

5.5. Evaluation of varying installment annuities according to linear laws   

5.5.1. General case  

Also varying installments are often used for short periods linear exchange laws. 
Let us find here the IV and FV at time s of a m-fractional annuity with varying 
installments, considering again the symbols and assumptions of section 5.3, but 
indicating with Rh the hth delayed installment and with hR  the hth advance 
installment. Such annuities are the operations ˆ O  for which the supplies are (h/m, 
Rh) in the delayed case and ((h-1)/m, hR ) in the advance case. 

Therefore, if the payments are delayed, the IV according to the SD law at rate d 
and the FV in s according to the SDI law at rate i are given, respectively, by  

V0 Rh 1 d 
h

mh 1

s ; Vs Rh 1 i
s h

mh 1

s        (5.47) 

However, if the payments are in advance, the IV, according to the SD law at rate 
d and the FV in s according to the SDI law at rate i, are given, respectively, by 

V0 Rh 1 d 
h

mh 1

s

  ;   
Vs Rh 1 i

s h

mh 1

s

  (5.47') 
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Equations (5.47) and (5.47') solve the already-mentioned direct problem 
(installment value)38, but we also have to consider here the inverse problem 
(value installment) to solve amortization and accumulation calculus with varying 
installments according to linear laws. We have to consider that, as opposed to what 
we have seen in section 5.3, with constant installments where there is always a 
unique solution for the installment, here the variability of the installments usually 
leads to infinite solutions. The problem becomes determinate, and thus has a unique 
solution due to the linearity of the installment in (5.47) and (5.47'), only if the 
number of constraints between the installments at different maturities is enough to 
cancel out that of the degrees of freedom; i.e. s-1 further constraints in addition to 
(5.47) or (5.47'). This is obtained, in particular, imposing that the installments 
evolve in AP or in GP 

5.5.2. Specific cases: annuities in arithmetic progression  

 Let us consider annuities in AP using 

h hR  = R   = H+D h                  (5.48) 

Under the hypothesis of h hR =R =h  (i.e. H=0, D=1 in (5.48)) the IV of the 
unitary annuity in AP -immediate or -due, i.e. of the increasing annuity with SD 
law, are obtained39 and expressed respectively by 

Is
(m ) h 1 d

h

mh 1
n s(s 1)

2
1 d

2s 1
3m          (5.49) 
2

( )
1

1 ( 1) 11 1
2 3

nm
s h

h s s s
I h d d

m m
       (5.49') 

Thus for the IV of annuities with delayed or advance installments given in (5.48) 
the following is easily obtained, from the 1st part of (5.47) and (5.47'), 

                                   
38 We only consider the IV and FV of a temporary annuity because: 1) due to the short 
application interval of the linear law it is not relevant to consider perpetuities; 2) for the same 
reason the PVDA are not important; furthermore, given the decomposability of the SD law, 
the PVDA is not obtained from the IV applying the discount; a direct calculation is needed. 

39 We will use here: h2 n(n 1)(2n 1)
6h 1

n , h(h 1) =
n(n2 1)

3h 1
n . 



206     Mathematical Finance 

( )
0 1

1 1 2 11 1 1
2 2 3

s m
sh

h s s s
V H d D I s H d D d

m m m   
(5.50) 

( ) 2
0 1

( 1 ( 1) ( 1)1 1 ( 1)
2 2 3

s m
sh

d h- ) d s s d
V H D I s H D s

m m m  (5.50') 

For the FV of the aforementioned annuities, from the 2nd part of (5.47) and (5.47') 
the following is obtained 

1
11 11 1 1

2 2 3
s

s h
s ss h i s s

V H Dh i sH s D i
m m m

  

 (5.51) 

1

1 1 ( 1) 2( ) 1 1 1
2 2 3

s

hs
s h s s s s

V H D h i sH i D i
m m m

  (5.51') 

Exercise 5.19 

Calculate the IV and FV in the -immediate and -due case, of an annuity formed 
by 15 monthly payments, the first one of €6,500 and the following payments 
varying in arithmetic progression with a ratio of €150, evaluating with linear laws 
and equivalent rates at the annual discount rate of 6.4%. Consider the inverse 
problem for amortization and accumulation. 

A. The IV of the annuity-immediate is obtained by applying (5.50) with: 
H=6,350; D=150; m=12; s=15, d=0.064. 

0
16 16 3115 6, 350 1 0.064 150 1 0.064
24 2 36

V  = 91,186 +17,008 = 108,194.00 

The IV of the annuity-due is obtained by applying (5.50') with: H=6,350; 
D=150; m=12; s=15; d=0.064. The result is: 

0
16 16 22415 6,350 1 0.064 150 0.064
24 2 36

V = 91,694 +17,104 = 108,798.00 

The FV of the annuity-immediate is obtained by applying (5.51) with: H=7,100; 
D=160; m=12; s=15; i = 0.064/0.936 = 0.0683761. The result is: 
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15
0.0683761 16 16 1415 6, 350 1 15 150 1 0.0683761

12 2 2 36
V  = 117,527.78 

The FV of the annuity-due is obtained by applying (5.51') with: H=7,100; 
D=160; m=12; s=15; i = 0.064/0.936 = 0.068376. The result is: 

15
16 16 1715 6,350 1 0.0683761 150 1 0.0683761
24 2 36

V  = 118,173.08 

For the inverse problem, let us observe that the percentage ratio in the first 
installment is: = D/(H+D) = 0.0230769. Therefore, if we want to amortize, using 
an SD law, the debt of €108,194 by 15 increasing delayed monthly installments in 
AP at 2.30769% of the first installment, this and thus all payments are found to 
solve the system formed by two equations: (5.50), with the given parameters and V0 
= 108194, and D = 0.0230769(H+D), in the two unknowns H and D. The result is: 
H = 6350, D = 150, from which the first installment is 6,500 and the other increase 
by 150 per month. The same installments, if paid at the beginning instead of the end 
of each month, are consistent to amortize a debt of €108,798, as we see using (5.50') 
with 0V  = 108,798. 

 
Proceeding analogously using (5.51) and (5.51'), we can see that, with SDI law 

at the rate of 6.83761%, the same 15 monthly installments form a final capital of 
€117,527.78 if delayed, or of €118,173.08 if advance. 

5.5.3. Specific cases: annuities in geometric progression 

Let us consider the problems of section 5.5.2 using fractional annuities in GP, 
writing the installments in the form 

1h
h hR R R q                 (5.52) 

where R is the first installment, m is the frequency, s is the total number of 
installments and q is the ratio of the GP. Using: 

    
Gs k q k

k 0
s 1 ( s 1)q s

q 1
q s 1

(q 1)2
           (5.53) 
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the IV of the annuity-due with SD law at the rate d and with installments written in 
(5.52) is given, according to (5.53), by 

1
0 0

11
1

k
k

ss
s

k q d
V R q d R G

m q m
         (5.54) 

For the IV of the annuity-immediate with installments in (5.52), for comparison 
with (5.54), we obtain:  

1
0 01

11
1

h
h

ss h d q
V R q d V R 

m m q
  

and therefore40  

0
11

1

s
s

d q d
V R G

m q m
             (5.54') 

With similar development as above, the FV of the annuity-due with installments 
(5.52), according to the SDI law with rate i, is obtained. It follows that  

1

0

11 ( ) 1
1

k
k

ss
s s

i is q i
V R q  s - k R G

m m q m
    (5.55) 

Comparing with (5.55), we obtain 

1
01

11
1

h
h

ss
s

s-h i q
V R q i V R 

m m q
 

and thus 

                                   

40 Observe that V0 is the arithmetic mean of R
qs 1
q 1

 and -RGs .  
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Vs R 1 i( s 1)

m
q s 1
q 1

i
m

Gs             (5.55') 

Exercise 5.20 

A small loan is amortized over a short period according to a SD law with 
monthly advance installments in GP. Let us assume the following parameters:  

– initial installment R = €650; 

– variation monthly rate = 1.2%; 

– annual discount rate for the amortization = 5.60%; 

– number of monthly rate s = 10. 
 
Calculate the debt to amortize and, also, the debt in the case of delayed 

installments. 

A. Due to (5.53), (5.54) and (5.54') we have 

10  10

10  2
9 1,012 1,012 1 47.9724838 

0,012 (0,012)
G ; 

0 650 9.4443164 0.2238716 5,993.29V   

0 650 (0.9953333 9.4443164 0.2238716 ) 5,964.64 V  

Obviously, if we assign, with the rate, time and ratio given above, 

a) the debt of 5,993.29 to amortize with monthly advance payments; 

b) the debt of 5,964.64 to amortize with monthly delayed installments,  

the given installments would be found as a solution. 

Exercise 5.21 

An industrial company, with increasing turnover, has to replace an old plant over 
a short period of time. To partially finance the replacement they are able to deposit, 
at the beginning of every quarter, amounts increasing at 2.5%, the first of which is 
€6,900, into a savings account with SDI law at 6% per year, for 9 months. Calculate 
the final balance of the account. Also, calculate in the case of delayed payments. 

A. s = 3; q = 1.025. Due to (5.53), (5.55) and (5.55')  
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G3

2 1.025 3

0.025
1.025 3 1

0.025 2
36.87375  

  V3 6900 (1.03 3.0756250 + 0.5531062) = 25,674.90 

Obviously if we assign, with the rate, time and ratio given above, the capital of 
25,993.23 to accumulate with quarterly advance installments, or the capital of 
25674.90 to accumulate with quarterly delayed installments, the given installments 
would be found as solution. 

 
       



Chapter 6  

Loan Amortization and Funding Methods 

6.1. General features of loan amortization 

We have already seen in Chapter 5 that, given a discount law, the inverse 
problem of the computation of initial value of an annuity is an amortization, in the 
sense that the annuity’s installments are the amortization’s installment of a debt 
equal to its initial value. 

Having then clarified the general concept of loan amortization, we will consider 
in this chapter the classification and description of the most common amortization 
methods of a debt contracted at a given time. We will consider in sections 6.2, 6.3, 
and 6.4 the amortization of unshared loans (i.e. with only one lender, which is the 
creditor, and only one borrower, which is the debtor) at fixed rates and at varying 
rates. In the loan mortgage contract the borrower guarantees payment to the lender. 

The exchange law used will be that of discrete compound interest (DCI), because 
in this context we usually consider operations having pluriennial length and the 
calculation of interest is performed periodically when the borrower pays. 

In sections 6.8 and 6.9 we will consider shared loans (i.e. among a number of 
creditors, in the presence of quite a large amount of debt) at fixed rate. The need for 
the same conditions among many creditors leads to technical complications and 
problems in financial evaluations, that we have to consider.  
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In an unshared loan, assuming a discrete scheme for repayment1, we can 
distinguish between the following: 

a) only one lump-sum repayment of the principal at the end of the term:  
 a1) with only one interest payment at the end of the term, 
 a2) with periodic interest payment; 
b)  periodic repayments of the principal together with the accrued interests. 

The formulation will consider the scheme of annual payments: for different 
cases, it is enough to assume the used period as the unit measure, and introduce the 
equivalent rate. We will then indicate with i the rate per period and with n the 
number of periods.  

In case a1), operation ˆ O  is simple, consisting of the exchange between the 
principal C given by the lender in 0 and the amount M paid by the borrower in n as 
repayment of the debt and payment of all the accrued interests. M is obviously the 
accumulated value of C after n periods, obtainable using equation (3.24) for a fixed-
rate loan and equation (3.23) for loans with varying rates and given times. 
Therefore, ˆ O (0, C)U(n, M )  from the viewpoint of the lender. 

In case a2), still considering only one final repayment, the interest, which is 
always calculated on the initial debt, is paid at the end (or beginning) of each period 
and calculated at rate i (or respectively at the rate d). In the two cases the operations 
are written as 

 (0, C)U(1,Ci)U ...U(n 1,Ci)U(n,C(1 i))  (6.1) 

 (0, C(1 d))U(1,Cd)U ...U(n 1,Cd)U(n,C)  (6.1') 

Example 6.1 

Referring to a debt of €255,000 to pay back with the scheme in a1), after 5 years 
at the fixed rate of 6.50%, the final debt amount, together with interest, is  

D  =  255,000.1.0655 = 255,000.1.3700867 = €349,372.10. 
Using scheme a2) with delayed annual installments for the interest, for the given 
debt we have to pay €16,575.00 at the end of each of the first 5 years, adding at the 
end of the 5th year the repayment of the debt. Adopting, instead, advance annual 
installments for the interest, we have to pay €15,563.38 at the beginning of each of 
the first 5 years, with the repayment of the debt after 5 years. Case b) considers in 
general terms the gradual amortization, the form of which at fixed rate will be 

                                                 
1 An amortization in a continuous scheme, instead, would lead to consideration of a 
continuous annuity for the debt amortization. Such scheme is possible but has no practical 
relevance. 
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described in section 6.2. The periodicity of the installments is usually annual or 
semi-annual (but sometimes it is quarterly or monthly) and delayed2; less frequent 
are advance payments. 

6.2. Gradual loan amortization at fixed rate 

6.2.1. Gradual amortization with varying installments 

The gradual amortization, once the initial debt S, the per period rate i and the 
length (or number of periods) n are given, the installments (also simply named  
payments) Rh in the delayed case or hR  in the advance case (where h indicates the 
integer date of payments between 0 and n), must satisfy the constraint of financial 
closure expressed in the two cases by one of the equations in (5.23) where in the left 
side, S instead of v0 or 0V  is used, obtaining 

  S Rh 
h=1
n

(1 i) h   (6.2) 

 
1

h=0 (1 )n- h
hS R i

  (6.2') 

The amortization annuities are, in fact, in the two cases: 1
 ( , ) 
n

hh h R , 
1
0

 ( , ) 
n-

hh h R . 

The aforesaid installments, altogether equivalent to the initial debt, are divided 
into two amounts:  

– the “principal repaid”, ch in the delayed case or hC  in the advance case, that 
decreases the debt; 

– the “interest paid” ih in the delayed case or hI  in the advance case, which is 
a gain for the creditor and is proportional to the level of remaining debt (i.e. the 
outstanding loan balance, defined below)3. 
                                                 
2  In the practice of bank loans there can be a “pre-amortization” phase (see also the following 
footnote 3), from the day the loan is granted to the end of the first period, in which the debtor 
pays only the accrued interest and the amortization begins, the times of which are parts of a 
calendar year. 
3 To avoid the remaining debt overcoming the initial loan during the amortization, something 
that the lender cannot allow (due to the consequent lack of guarantees), the principal 
repayments must never be negative, i.e. the installment are at least at the level of the amount 
of the interest paid. It is in particular verified the equality “installments = interest paid” ie the 
absence of principal repayments, during an interval of “pre-amortization” in the initial phase. 
The creditor can allow such facility in special cases, for instance when the investment 
financed by the loan implies a delay in the return and then an initial lack of liquidity for the 
debtor. In such cases, if the pre-amortization lasts for m periods, then R1 =...= Rm = Si and the 
real amortization is included in the following n-m periods. Observe that the amortization with 
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By definition, the principal repayments must satisfy the constraints of elementary 
closure expressed by 

 1
1 0  ;  n n

h hh hC S C S  (6.3) 

 As time increases during the gradual amortization, it is necessary to account at 
the internal due dates (= end of periods) the outstanding loan balance (or 
outstanding balance, or simply balance) Dh and the discharged debt  Eh = S - Dh.   

 Let us consider the delayed gradual amortization. This results in  

 D0 = S   ;  Dh S Ckk 1
h ;  (h=1, ...,n) (6.4) 

and then Dn = 0  owing to the 1st part of (6.3). 

We have already seen that in section 5.4 amortization as the inverse problem of 
calculating the initial value (IV) of an annuity with varying installments, that the 
solution is not unique, having n-1 degrees of freedom: we have only one constraint 
on the n unknowns Rh.  In order that the number of such degrees be zero, so as to 
have a unique solution, we need to introduce other n-1 constraints that are linearly 
independent. This can be carried out in an infinite number of ways: one of which is 
the imposition of installments in arithmetic or geometric progression, as was shown 
in section 5.5. However, in general, we can fix the installments under the constraint 
in (6.2) or the principal repayments under the constraint in the 1st  part of (6.3), 
taking into account the needs of both parties to the contract.  

 The solution can be found recursively from the system of 3n equations 

 (h 1,...,n)

Dh Dh 1 Ch

Ih i Dh 1

Rh Ch Ih

 (6.4') 

in the 3n unknowns Dh , Ih , Rh , (h = 1, ..., n) with the initial condition D0 = S4. 

                                                                                                                   
only one final repayment of type a2 can be considered as a total pre-amortization until the end 
of the loan. 
4 This means that, taking into account the initial condition D0 = S, if the installments Rh are 
given, I1 is found from the 2nd part of (6.5), C1 from the 3rd part, D1 from the 1st part, and we 
repeat such a procedure by increasing h. Instead, if the principal repayments Ch , (h = 1, ..., 
n), are given, it is found I1 from the 2nd part of (6.5), D1 from the 1st  part, R1 from the 3rd part, 
and we repeat such a procedure by increasing h.  
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From (6.4') the recursive relation is found          

 Dh  =  Dh-1 (1+i) – Rh  (6.5) 

that gives the following alternative for the calculation of Rh: 

 Rh   =  Dh-1 (1+i) - Dh  = (Dh-1  - Dh) + i Dh-1 (6.5') 

Both (6.5) and (6.5') have an expressive financial meaning referring to the 
dynamic of amortization.5  

It is convenient, for calculation in case of assignments or advance discharge, to 
give the reserve defined in Chapter 4. At the rate i (which can be the one in the 
contract or a different one for the evaluation in k) and at the integer due date h the 
retro-reserve is 

 Mh S(1 i)h Rk (1 i)h k
k 1
h  (6.6) 

while the pro-reserve is 

 Wh Rk (1 i) (k h )
k h 1
n  (6.6') 

We can easily verify that, due to the fairness of the amortization operation 
expressed by (6.2),6 using for the valuation the loan rate i, Mh = Wh  = Dh follows.7 

                                                 
5 Let us verify that (6.6) is equivalent to (6.2), i.e. implies the financial closure, and let us 
give the closed expression for the balances. From (6.6) we find: Dh-1 = (Rh+Dh)v and when 
using it for decreasing values of h the following is obtained: Dn-1 = Rnv; Dn-2 = (Rn-1+Dn-1)v 

= Rn-1 v + Rn v2; ... ; Dn-h = (Rn-h+1+Dn-h+1) v = Rn h kv k
k 1
h ;....; S = D0 = (R1+D1) v = 

Rkvk
k 1
n and vice versa. We can also write: Dh = Rh kvk

k 1
n h , which gives the remaining 

debt at the hth due date as a function of the installments following Rh.   
6 The fairness can be controlled in an alternative way, but which is equivalent, from the final 
debt. In fact it can soon be seen that if Dn = 0 is satisfied, the operation consisting of the loan 
of S amortized with the sequence {Rh} with delayed due dates is fair at rate i. Otherwise, 
while the pro-reserve is zero due to the absence of remaining obligation, the retro-reserve 
would not become zero and the final spread Dn, positive or negative, would make the 
operation favourable respectively for the borrower or for the lender. 
7 The retrospective and prospective reserves, evaluated in whichever integer time h [0,n], 
maintain their meaning of evaluation of the net obligation before and after h, even if in h it is 
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Furthermore, bare ownerships and usufructs, as defined in Chapter 4, at the 
integer times h and with discontinuous formation of interests, being 
Ik iDk 1 i Css k

n , are given by 

(h 1,...,n)
Ph Ck (1 i) (k h )  

k h 1
n

 

Uh Ik (1 i) (k h ) = i (1 i) (k h ) Css k

n

k h 1
n

k h 1
n

 (6.7) 

If we use the CCI regime, it would be possible to define the reserves at each 
intermediate time between two due dates in succession, to calculate in the exact way 
the assignment or discharge value for whichever time t =k+s (where k = integer part 
of t; s = decimal part of t). We obtain 

M(t)  =  Mk (1+i)s   ;  W(t)  =  Wk  (1+i)s 

Let us consider briefly the variation in an advance gradual amortization. 
Analogously to the delayed case, the solution can be obtained considering 
recursively the system of 3n equations   

  
1

1( 0,..., 1)  
h h h

h h

h h h

D D C
h n I d D

R C I
 (6.4") 

in the 3n unknowns dh+1 (= outstanding balance after h and until h+1) , hI  , hR  , (h 
= 0, ..., n-1) with the usual initial condition D0 = S. 

 

                                                                                                                   
adopted for the evaluation of a rate i different from that established at the inception of the 
loan. However, in such a case we lose the equality between prospective reserve and 
outstanding balance and also that between prospective reserve and retrospective reserve 
because, if the sequence of the installments Rh is unchanged, (6.2) does not hold any more 
and the fairness of the whole operation is lost. The same considerations hold for the case of 
advance amortization, considered later. 
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Figure  6.1. Plot of delayed amortization 

From (6.4") we obtain  

hR  = Dh - Dh+1 v (6.5") 

from which the recursive relation results:  

 Dh = Dh+1 (1-d) + hR  (6.5''') 

being Dn = 0 for the 2nd of (6.3).               

Furthermore, at the delayed loan interest i=d/(1-d) and at the due integer date h 
the retro-reserve is 

 1
0  (1 ) (1 )hh h k

h kkM S i R i  (6.6") 

while the pro-reserve is 

  1 ( )(1 )n k h
h kk hW R i  (6.6''') 

and due to (6.2') we obtain the fairness.  

Furthermore, bare ownerships and usufructs at the integer times h and with 
discontinuous formation of interests, as 1

1 1
n

k k ss kI dD d C , are given by 
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1 ( )

1 1( )
1

(1 )
( 0,..., 1)

(1 )

n k h
h kk h

n nk h
h sk h s k

P C i
h n

U d i C
 (6.7') 

 

Figure 6.2. Plot of advance amortization 

Debt amortization schedules 

In the operative practice an amortization schedule is summarized in a table in 
which for each payment is reported on the same row: 1) period, 2) outstanding 
balance at the beginning of the period, 3) principal repaid, 4) interest paid, 5) 
installment, 6) outstanding balance at the end of the period. In the case of delayed 
installments the following table is obtained, for h=1,...,n.   

(1) (2) (3) (4) (5) (6) 
… … … … … … 
h Dh-1 Ch Ih = i Dh-1 Rh = Ch+Ih Dh 
… … … … … … 
      

Table 6.1. Amortization schedule    

Here, it is enough to consider only one of the columns (2) or (6), which coincide 
except for the displacement of one period. This is easy to change in the case of 
advance installments, in which case h hI d D . 
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Example 6.2  

What we discussed regarding a gradual amortization with delayed or advance 
payments is numerically explained here. Consider the delayed or advance 
amortization of a debt of €90,000 in 5 years at the annual delayed rate i = 5.50% 
with principal repayment given by:  

1 0 5 4 16,000 C C C C  ;  2 1 4 3 3 219,000 ; 20,000C C C C C C . 

The elementary closure is verified, as it can be easily observed. 

By applying (6.4') for the delayed case and using D0 = €90,000, the following 
schedule is recursively obtained, by using a calculator or an Excel spreadsheet, as 
explained below 

Debt = 90000 Rate i = 0.055 Length = 5 

h   Dh-1   Ch   Ih   Rh   Dh 
1 90000.00 16000.00 4950.00 20950.00 74000.00 

2 74000.00 19000.00 4070.00 23070.00 55000.00 

3 55000.00 20000.00 3025.00 23025.00 35000.00 

4 35000.00 19000.00 1925.00 20925.00 16000.00 

5 16000.00 16000.00 880.00 16880.00 0.00 

Table 6.2. Example of gradual amortization with delayed payments 

The Excel instructions are as follows. B1: 90000; D1: 0.055; F1: 5; using the 
first two rows for data and column titles, from the 3rd row we have: 

column A (year):  A3: 1; A4=A3+1; copy A4, then paste on A5 to A7 
column B (outstanding balance ante): B3: = B1; B4: = F3; copy B4, then paste on 
       B5 to B7; 
column C (principal repaid):  from C3 to C7: (insert given data); 
column D (interest paid):  D3: = D$1*B3; copy D3, then paste on D4 to D7; 
column E (installments):  E3: = C3+D3; copy E3, then paste on E4 to E7; 
column F (outstanding balance post): F3 = B3-C3; copy F3, then paste on F4 to F7;  

For the advance case, being d = 5.21327%, by applying (6.4"), and using D0 = 
€90000, the following schedule is obtained by using a calculator or an Excel 
spreadsheet, as explained below. 

Debt = 90000 Rate d = 0,052133 Length = 5 
h   Dh C¨h I¨h R¨h Dh+1 
0 90000.00 16000.00 3857.82 19857.82 74000.00 
1 74000.00 19000.00 2867.30 21867.30 55000.00 
2 55000.00 20000.00 1824.64 21824.64 35000.00 
3 35000.00 19000.00 834.12 19834.12 16000.00 
4 16000.00 16000.00 0.00 16000.00 0.00 

Table 6.3. Example of gradual amortization with advance payments 
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The Excel instructions are as follows. B1: 90000; D1: 0.055; F1: 5. Using the 
first two rows for data and column titles, from the 3rd row we have: 

column A (year):   A3: 0; A4=A3+1; copy A4, then paste on A5-A7; 
column B (balance ante): B3: = B1; B4: = F3; copy B4, then paste on B5 to B7; 
column C (principal repaid):  from C3 to C7: (insert given data);   
column D (interest paid):  D3: = $D$1*F3; copy D3, then paste on D4 to D7; 
column E (installment):  E3: = C3+D3; copy E3, then paste on E4 to E7; 
column F (balance  post):  F3: = B3-C3; copy F3, then paste on F4 to F7. 

For the manual calculation of the polynomials in v in (6.2) and (6.2') it is enough 
to alternate multiplications by v = 0.9478763 and installment additions:  

calculating: (R5v R4 )v R3 v R2 v R1 v  in the delayed case, and 

4 3 2 1 0( )R v R v R v R v R   in the advance case, 90,000 is obtained. 

When stopping the calculation after k installments from below, the backwards 
outstanding balances D5-k  are obtained, i.e. 16,000; 35,000; 55,000; 74,000.  

Exercise 6.1 

We have to discharge a loan of 45 million monetary units (MU) for the financing 
of the building of an industrial plan which, owing to long assembly time, will give 
net profits only 2 years and 6 months from the inception date of the loan. 
Furthermore, having the possibility of increasing in time the accumulation of capital 
for the repayment, the parts agree that, after a pre-amortization with 5 semi-annual 
installments, the loan is amortized in 7 years with delayed semi-annual installments, 
increasing in arithmetic progression at the rate of 5% per half-year. Annual rates of 
8% for the pre-amortization and 7% for the amortization, are agreed. Calculate the 
pre-amortization and amortization installments in the two alternatives: 

a) the rates are effective annually, 

b) the rates are nominal annual 2-convertible, 

using for the evaluation the effective amortization rate.  

A. Assuming the half-year as unit measure and using S = 45,000,000;  R = base 
of installment ; D = ratio = 0.05 R ; i1 = semiannual effective pre-amortization rate; 
i2 = semiannual effective amortization rate; the equivalence relation must hold (at 
the amortization rate): 

S = S i1 a5 |i2
+ (1+i2)-5[R a14 |i2

+ D (Ia14 |i2
] 
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For case a):  

i1 = 0.0392305;  i2 = 0.0344080; (1+i2)-5 = 0.8443853; a5 |i2
= 4.5226323; 

a14 |i2
= 10.9640169; (Ia14 |i2

 = 76.2254208; then the relation becomes 

     45.106 = 1765372.4.5226323  + 0.8443853 R [10.9640169 + 0.05.76.2254208] 

then: R = 2,966,957.60; D = 148,347.90. Therefore: 
– pre-amortization installments: S i1  = 1,765,372.50; 
– amortization installments: R1 = 3,115,305.50 ; R2 = 3,263,653.40 ; R3 = 

3,412,001.30 ; ...; R14 = 5,043,828.20. 
In case b): 
 i1 = 0.04;  i2 = 0.035; (1+i2)-5 = 0.8419732; a5 |i2

= 4.5150524; a14 |i2
= 

 = 10.5691229;   

214|i(I )a = 75.8226691;  then the relation becomes 

    45.106  = 1800000.4.5150524  + 0.8419732 R [10.5691229 + 0.05.75.8226991] 
then: R = 2,966,983.60; D = 148,349.20. Therefore: 

pre-amortization installments: S i1  = 1,800,000.00; 
amortization installments: R1 = 3,115,332.80; R2 = 3,263,682.00; R3 = 

3,412,031.20 ; ...; R14 = 5,043,872.40. 

6.2.2. Particular case: delayed constant installment amortization 

Having developed the general case, it is enough to consider briefly the more 
diffused cases of the amortization of unshared loans at fixed rates. Let us start from 
the classical case, in which a loan of amount S is paid back in n periods (annual or 
shorter) with constant delayed installments R calculated on the basis of DCI law at 
the rate per period i. The equivalence constraint is the particular case of (6.2), as it is 
given on the basis of the symbols defined in Chapter 5, by: 

  S  = R an |i    from which     R  = S n |i (6.8)    

The 2nd part of (6.8) gives univocally the amortization installment as a function 
of S, n, i. We obtain here a particular case of system (6.4') by using Rh = R. 

An important property of such amortization, also called French amortization, 
that justifies the name of progressive amortization, consists of the fact that the 
principal repayments increase in geometric progression (GP) with ratio (1+i). 

Proof. Particularizing (6.6) for consecutive values h and h+1, it is found that: 
R = Dh-1 (1+i) - Dh  ;  R = Dh (1+i) - Dh+1 . 
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Subtracting term by term, we find  
0 = (Dh-1 - Dh) (1+i) - (Dh - Dh+1) 

from which 

 Ch+1 = Ch  (1+i)  ,   h = 1, …, n-1 (6.9)  

As Ch+1/Ch  is independent from h, this proves the evolution of Ch in GP. 

Starting from the value of the installment given in (6.8) we easily obtain the 
following French amortization schedule8. 

 
 Debt  (S)              Rate  (i)  Length  (n)  Installment  (R = S n |i) 

---------------------------------------------------------------------------------------------------- 
Period (h)  Principal (Ch) Interest (Ih)          Balance (Dh) 

---------------------------------------------------------------------------------------------------- 
 1 R vn R(1 - vn) R an-1 |i   
 2 R vn-1 R(1 - vn-1)  R an-2 |i   
  .. .......... ................. ............ 
 h R vn-h+1 R(1 - vn-h+1)  R an-h |i    
 .. .......... ................. ............ 
 n-1 R v2 R(1 - v2)  R a1 |i   
 n R v R(1 - v) 0 

=========================================================== 
Table 6.4. French amortization 

In fact, applying (6.4') recursively with Rh = R, it results in: 

I1 = R i an |i  = R(1 - vn) ; C1 = R - I1 = Rvn ; D1 = R an |i  - Rvn = R an-1 |i ,  

I2 = R i an-1 |i  = R(1 - vn-1) ;C2 = R - I2 = Rvn-1 ; D2 =  R an-1 |i  - Rvn-1 = R an-2 |i ;  
etc. The GP behavior of Ch is confirmed.  

                                                 
8 It is easy to calculate the principal repaid, the interest paid and the outstanding balance as 
functions of the debt S. Due to (6.9) and the 1st part of (6.3), we find: 

S C h C1 (1 i)h 1
h 1
n

h 1
n

C1 sn | i    

i.e.: C1= S n |i , Ch = S n |i(1+i)h-1  = S n |ivn-h+1 ; Dh Ch kk 1
n h  S an -h | i /an | i  ; 

I h i Dh 1  = S (1-vn-h+1) / an | i . 
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Exercise 6.2  

Make the schedule of a French amortization with annual installments for a debt 
of €255,000 to pay back in 5 years at the rate i = 0.065 (same data as Example 6.1).  

A. The constant annual installment of amortization for (6.8) is R = 
€61,361.81 and the schedule can be obtained using D0 = 255,000 and using the 
recursive system: Ih = iDh-1, Ch = R-Ih, Dh = Dh-1-Ch (h=1,...,5). The following 
amortization schedule with annual due date is obtained, using an Excel spreadsheet: 

Debt = 255000.00  Rate i = 0.065 

Length = 5   Installment = 61361.81 

Year 
h 

        Interest     
         Ih 

         Principal  
       Ch           

      Installment 
       Ih+Ch 

Balance    
Dh 

1 16575.00 44786.81 61361.81 210213.19 

2 13663.86 47697.95 61361.81 162515.24 

3 10563.49 50798.32 61361.81 111716.93 

4 7261.60 54100.21 61361.81 57616.72 

5 3745.09 57616.72 61361.81 0.00 

Table 6.5. Example of French amortization 

The Excel instructions are as follows: the first 3 rows are used for data and 
column titles; B1: 255000; E1: 0.065; B2: 5; E2: = B1*E1/(1-(1+E1)^-B2$B$2.  

From the 4th  row:  
column A (year):   A4: 1; A5: = A4+1; copy A5, then paste on A6 to A8. 
column B (interest paid):  B4: = E1*B1; B5: = $E$1*E4; copy B5, then paste on 

B6 to B8. 
column C (principal repaid):  C4: = $E$2-B4;  copy C4, then paste on C5 to C8. 
column D (installment): D4: = B4+C4; copy D4, then paste on D5 to D8. 
column E  (balance):   E4: = B1-C4; E5: = E4-C5; copy E5, then paste on E6 

to E8.  

Calculation of usufructs and bare ownerships in French amortization 

Sometimes it is necessary to distinguish in the attribution to the entitled parties 
the values due to interest and due to principal transaction, i.e. usufructs and bare 
ownerships (see Chapter 4). As known, we can make two different hypotheses on 
the formation of interest that brings about the evaluation of usufruct: 

a) continuous formation of interest, with intensity ; 

b) periodic formation of interest at the end of the period at the per period rate 
i e 1. 



224     Mathematical Finance 

Case a) gave rise to the general formule for  ˜ U (t)  and  ˜ P (t) = W(t) -  ˜ U (t)  
developed in section 4.3 and valid in the exponential financial regime. 

In case b), given that interest is formed with impulsive flow only at the time of 
payments, the usufruct U(t) is simply the sum of the discounted interest payments, 
and the bare ownership P(t) is the sum of the discounted principal repayments. 

The distinction between cases a) and b) can be applied to a generic financial 
operation with discrete distribution of payments and the differences in results have 
little relevance. To illustrate, let us develop the comparison between  ˜ U (t)  and U(t), 
evaluated according to the same , in the particular case of remaining payments of 
an annuity with constant periodic installments R, in the case of fair operation: it is 
enough to consider the French amortization of an amount S, with the constraint (6.8) 
between S and R. Then: 

a) with continuous formation of interest, at a generic time t=h+s , with 
0<s<1, the following is obtained: 

      
˜ U (t) = R(k s)e (k s)

k=1
n h Re s [ (Ia)n-h |i  - s an-h |i] = 

 
    
= R

id
(1 ds )e s 1 d(n t) e ( n t)  (6.10) 

From (6.10), with s  0, we find  ˜ U (t)  at integer time h, obtaining 

 
    
˜ U h = R

id
1 1 d(n h) e (n h )  (6.10') 

The bare ownership   ˜ P (t)  is easily obtained as the difference between W(t) = 
Whe s and (6.10); 

b) with periodic formation of interest, it is meaningful to calculate usufruct and 
bare ownership only at the integer time h. Using the loan rate, we obtain 

 Ph Ckvk h (n h)Ch (n h)Rvn 1 h
k h 1
n  (6.11) 

As W(k) = Dk, the usufruct is obtained as difference: 

 Uh = Dh - Ph = 
 

R
i

1 1 d(n h) vn h  (6.12) 
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and from the comparison with (6.10') it results in: 

 ˜ U h  =  Uh /d (6.13) 

Then, for the French amortization case, the spread of the usufructs is small, 
giving a value   ˜ U (h)  slightly bigger than Uh and proportional to the coefficient /d.   

6.2.3. Particular case: amortization with constant principal repayments  

In such a form of amortization with delayed installments9, also called uniform or 
Italian, given the debt S, the number of periods n and the per period rate i, as a main 
feature the principal repayments Ch , (h 1,...,n) , are constant in time, and then the 
outstanding balances Dh linearly decrease. The following recursive relations hold, 
with the initial condition D0 = S: 

 (h 1,...,n)

Ch Dh 1 Dh
S

n
Ih iDh 1

Rh Ch Ih

 (6.14) 

from which we obtain the following closed forms according to S: 

 

    

(h 1,...,n)
Ch

S
n

         ;                  D h
n h

n
S

Ih
n h 1

n
S i ;  Rh =

1+ ( n - h +1 )i
n

S  
   (6.14') 

Equation (6.14) enables us to perform the Italian amortization schedule. 
Furthermore, with the periodic formation of interests, the bare ownership Ph and the 
usufruct Uh at the loan rate i are: 

 Ph  = S

n
an-h |i ;  Uh  =  S

n
 (n - h - an-h |i) ;  (h = 1,...,n) (6.15) 

                                                 
9 The amortization with constant principal repaid and advance installments, as well as  
advance interest paid, is seldom used. 
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Exercise 6.3 

Prepare the schedule for the Italian amortization with annual installments for a 
debt of €255,000 to be paid back in 5 years at the rate i = 0.065 (the same data as in 
Exercise 6.2). 

A. By applying (6.14) and using Excel, the following amortization schedule with 
annual due dates is obtained:   

Debt  = 255000.00  Rate  = 0.065 

Length = 5    

Year Principal Interest Installment Balance 

1 51000.00 16575.00 67575.00 204000.00 

2 51000.00 13260.00 64260.00 153000.00 

3 51000.00 9945.00 60945.00 102000.00 

4 51000.00 6630.00 57630.00 51000.00 

5 51000.00 3315.00 54315.00 0.00 

Table 6.6. Example of Italian amortization 

The Excel instructions are as follows:  B1: 255000; E1: 0,065; B2: 5; using the 
first 3 rows for data and column titles, from the 4th row we have: 

column A (year):   A4: 1; A5: = A4+1; copy A5, then paste on A6 to A8. 
column B (principal repaid):  B4: = B$1/B$2;  copy B4, then paste on B5 to B8. 
column C (interest paid):      C4: = E1*B1; C5: = $E$1*E4; copy C5, then paste on 

C6 to C8. 
column D (installment): D4: = B4+C4; copy D4, then paste on D5 to D8. 
column E (outstanding balance): E4: = B1-B4; E5: = E4-B5; copy E5, then paste on 
  E6 to E8.   

6.2.4. Particular case: amortization with advance interests10 

For the general case of advance interest, let Jh be the advance interest paid for 
the period (h,h+1), Ch be the delayed principal repaid for the period (h-1,h) and Rh

*  
be the total amount paid in h, (h=0,1,...,n). Comparing with (6.4') and (6.4") we 
have: 

Jh  = v Ih+1 = d Dh   (h=0,1,...,n-1) ;  Jn  = 0 (6.16) 

 0*

1

  ,                                        =0
1h

h h h h h

J S d if   h
R

J C D vD = R ,    if   h = ,...,n
 (6.16') 

                                                 
10 This is a classic case, even if seldom used, of amortization. 
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The operation is fair at the rate i11.  

In the particular hypothesis in which the advance installments following the first, 
made up only by interest paid in 0, are equal to the constant R*, the amortization is 
called German; in such a case the delayed principal repaid increases in geometric 
progression with ratio (1+i), as in the French amortization. Therefore, the first is C1 
= S n |i  and R* = S n|i . 

Proof: If Rh
* R*, (h=1,...,n), by writing the relation Kh = Kh-1(1+i)- R* for 

consecutive values of h and subtracting, this results for h=1,...,n-1:  
Ch+1 = Dh- Dh+1 = (1+i)(Kh-Kh+1)  = (1+i)2 (Kh-1-Kh) = (1+i)(Dh-1-Dh) = (1+i)Ch. 

Exercise 6.4  

With the same data as in Exercise 6.2, apply the German amortization with 
constant annual installment Rh

* R* (h 1) to obtain the amortization schedule. 
A. By applying (6.16), (6.16’), and using Excel, we can obtain the amortization 

schedule at the annual due date. We find: C1 = 44,786.81;  R* =  57,616.72. The 
following schedule is the result:  

     Debt  = 255,000  Delayed rate  = 0.065 

Length = 5 Advance rate = 0.061033 57,616.72 

h      Ch Dh    jh      R*h 

0 0.00 255000.00 15563.38 15563.38 

1 4478.81 210213.19 12829.91 57616.72 

2 47697.95 162515.24 9918.77 57616.72 

3 50798.32 11171.93 6818.40 57616.72 

4 54100.21 57616.72 3516.51 57616.72 

5 57616.72 0.00 0.00 57616.72 

Table 6.7. Example of German amortization 

The Excel instructions are as the follows. We use the first three rows for titles, 
data and basic calculations; B1: 255000; E1: 0.065; B2: 5; D2: = E1/(1+E1) (= 
advance rate) ; E2: = B1*C2/(1-(1+E1)^-B2) (= installment at h=1,...,5); from the 
4th row, we have:  
                                                 
11 Proof: using Kh = Dh - Jh  = vDh  ,(h=0,1,...,n), this results in: Kh = Kh-1(1+i) - Rh

* , (h = 
1,...,n). From here, given that Kn = 0, we obtain 

* ( 1) *
1 0 01 1

(1 ) (1 ) (1 )  
n nh h h

h h hh h
R i K i K i K S R ,     i.e. 

S = Rh
* (1 i) h

h 0
n . Then the installments Rh

*  amortize fairly at the rate i the debt S. For 

h 1 they coincide with the advance installments Rh 1
*  paid the previous period. 
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column A (time):         A4: 0; A5: = A4+1; copy A5, then paste on A6 to A8. 
column B (principal repaid): B4: 0; B5: = B1*E1/((1+E1)^B2-1); B6: 
        =B5*(1+$E$1); copy A5, then paste on A6 to A8. 
column C (outstanding balance): C4: = B1;  C5: = C4-B5; copy C5, then paste on 

C6 to C8. 
column D (interest paid):  D4: = D$2*C4; copy D4, then paste on D5 to D8. 
column E (installment):   E4: = B4+D4; copy E4, then paste on E5 to E8. 

6.2.5. Particular case: “American” amortization 

To introduce American amortization let us consider a variation of the form a2) of 
amortization as seen in section 6.1. In such a form the debtor could have difficulties 
in preparing a large amount as a lump-sum final payment; as guarantee for the 
creditor, it could be appropriate to agree that the debtor makes constant periodic 
payments into a bank account so that at the end of the loan the debtor has the 
amount to be paid back.  

In the resulting scheme, the accumulation fund to pay back the debt is called a 
sinking fund (see section 6.4) and such a structure gives rise to American 
amortization that provides for three economic agents: 1) the creditor or lender; 2) 
the debtor or borrower; 3) the bank (or other financial institution) managing the 
funding. 

For a debt of amount S to be paid back in n periods, we have to fix a reward rate 
i, i.e. the rate of the loan, which rules the periodic interest paid by the borrower, 
different from (and usually higher than) the accumulation rate i*, which rules the 
interest earned by the borrower on the funding12. On the basis of such elements: 

– the debtor at the end of each period pays to the creditor the accrued interest Si 
and pays into the sinking fund the periodic funding installment S n |i*  in order to 
reach at maturity the amount S that the bank, instead of the debtor, will pay to the 
creditor; then the debtor against the initial cash inflow (0,+S) pays 
U h 1

n (h, R(i,i*)) , where  
 R(i ,i*)  = S (i + n |i*) (6.17)  

– the creditor, due to (6.1), has the cash-flow 
(0, S)U(1,Si)U ...U(n 1,Si)U(n,S(1 i))  

– the bank manages in the interval of n periods the sinking fund at the rate i* 
with periodic inflow S n |i*   and the final outflow -S.   

                                                 
12 In fact, it is well known that, for obvious market reasons, for a private operator against a 
bank the allowed rates are lower than charged rates. 
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The role of the bank as a broker allows the different structure of the cash-flow 
following the inception, for both lender and borrower. For the lender, case a2), of 
one lump-sum repayment, holds, while for the borrower we have periodic constant 
payments, as in progressive amortization. It is then useful to find the cost rate z for 
the debtor of the American amortization in the usual hypothesis: i > i*. z is the 
solution of the equation 

n |z =  i + n |i*                                   (6.18) 

obtained making the constant installment of the French amortization at rate z equal 
to that of the American amortization and then dividing by S. The problem leads back 
to the search of the internal rate implied by the cost of a constant annuity (see 
section 5.2). 

Observe that the right side of (6.18) can be written: (i-i*) + n |i*  (alternative 
formula for the American installment of the unitary debt) and then (6.18) becomes: 

n |z = (i-i*) + n |i*                                      (6.18') 

If i>i*, n |z > n |i* results, and then, n |z being an increasing function of z, 
we obtain: z>i*; if instead i<i*, we obtain: z<i*. Furthermore, n |z being a 
decreasing function of z, if i>i*, recalling (5.9) we obtain  n |z = i  + n |i* > i + 

n |i  = n |i   and then, due to the behavior of n |z, we have: z>i; if instead i<i*, 
using analogous developments we obtain: z<i.  

In conclusion, z is external (and not internal mean) to the interval between i and 
i*, being the only alternative between i*<i<z (usual case) and i*>i>z (exceptional 
case). In the usual case the American amortization is more expensive for the 
borrower than the French at rate i, because the borrower must accumulate the 
amount for the repayment at the earned interest rate i*<i . 

American amortization with equality of rates   

It is appropriate to consider the case i=i* in the American amortization13. With 
regard to the cost rate z for the debtor, i*=i=z results. In addition, for (5.9), the 

                                                 
13 We have has to mention that the “geographical” terms for the different amortization that 
are usually used to differentiate are not always unique; it can be preferred to use technical 
adjectives (progressive and uniform instead of French and Italian). de Finetti (1969) (cited for 
deeper investigation, together with Volpe di Prignano (1985)) uses “English” amortization for 
the scheme, which we here call “American”, with two different rates and “American” when 
the rates are the same.    
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periodic payment S(i + n |i) of the debtor coincides with S n |i, payment that he 
would have on the basis of the French amortization at the rate i.  However, this is the 
same as the total payment that he would have if he pays the interests Si to the lender 
and accumulates the repayment capital S at the same rate i agreed for the payment. 
This situation can be realized if the bank14 that manages the sinking fund at the rate 
i*<i is not present. It could be the same lender, if a financial institution gives loans at 
the rate i, to operate at the reciprocal rate i with the borrower for a deposit operation 
as guarantee for the loan. In such a case the American amortization with sinking 
fund is managed by the lender, because (5.9) is substantially reduced to the 
progressive amortization at the rate i. 

However, this is not the case for the formal aspects. If the sinking fund at rate i is 
not managed by the lender, or it is but with separate accounting until maturity, then 
the periodic payment S n |i for the sinking fund is not “principal repaid”, because it 
does not reduce the debt that always remains at the level S, but “accumulation 
amount”; in the same way Si is not French “interest paid” but is constant “reward 
amount”. However, if the accumulation payments are accounted periodically at the 
rate i to the lender to reduce the debt, so that at the due date h it becomes 
San-h |i /an |i , a sinking fund does not arise and we lead back to installment S n |i 
decomposition in principal repaid and interest paid of a progressive amortization,15 
varying with h and given by  

Ch S n |i (1 i)h 1, Ih S n |i (1 vn h 1) . 

In such cases, the American amortization does not hold. 

Exercise 6.5  

We have to amortize the amount S = 35000 in n = 10 years with the sinking fund 
method with two different rates; i = 7.2% for debt repayment, i *a

 = 3.6% in case a) 

and *
bi = 4.7%  in case b) for accumulation. Calculate the delayed annual payment 

R(i,i*) for the borrower and the constant rate z solution of (6.18) in the two cases. 

A. On the basis of (6.17), the annual payment is given: 
– in case a) by  R(0.072; 0.036) = 2520.00 + 2969.69 = 5489.69     
– in case b) by  R(0.072; 0.047) = 2520.00 + 2821.86 = 5341.86 

then being the amount in the sinking fund equal to 2969.69 and 2821.86 in the two 
cases. For the calculation of the cost rate z, we can use the numerical methods 

                                                 
14 See de Finetti (1969). 
15 Recall that in such amortization the principal repaid is S n |i  only for the 1st period, after 
that it increases in GP while the interest paid decreases proportionally to the outstanding 
balance. 
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described in section 5.2 to obtain exact results through iterative methods until 
convergence, or with lower approximation if we use the linear interpolation; 

– in case a), using equation: 10 |z  = 5489.69/35000 = 0.1568483 and a financial 
calculator with: [n] = 10; [pv] = -35000; [pmt] = 5489.69; [fv]=0; comp[i]; we 
obtain ˆ z  = 9.14969%. With the linear interpolation on (9%; 9.25%) the results are: 

10 |9%  = 0.1558201; 10 |9.25%  = 0.1575389 ; then   

 
102820,09  0.0025 0.0914955 
17188

z  

We can also apply the classic iteration method, using Excel starting from z0 
z 0.0914955. Since the equation 10 |z= 0.1568483 has the form g(z)=g0, with 

g(z)= 10 |z , g0 = 0.1568483, we can go to the canonical form f(z)= z using f(z) = 
z 10 |z /g0. However, the iteration process on f diverges, resulting 
in: f ' (z ) =1.4400328>1. We then have to apply the transformation, analogous to 
that seen in case B of Example 4.3: h(z)=[f(z) -mz]/[1-m], where h(z)= z  is 
equivalent to f(z)= z, using m = f ' (z ) . Starting from z0 = z , the following 

expansion, rapidly converging to ˆ z , is obtained. 
 

 [g0,z0,f'(z0)] = 0.15684830 0.09149550 1.44003280 

k zk G(zk) f(zk) h(zk) 
0 0.09149550 0.15684730 0.09149492 0.09149683 

1 0.09149683 0.15684821 0.09149678 0.09149694 

2 0.09149694 0.15684829 0.09149694 0.09149695 

3 0.09149695 0.15684830 0.09149695 0.09149695 

4 0.09149695 0.15684830 0.09149695 0.09149695 

Table 6.8. Calculation of cost rate by iteration 

The Excel instructions are as follows. The first two rows are used for data and 
titles; A1: 10 (= length); C1: 0.1568483 (= 10 |z ); D1: 0.0914955 (= z ); E1: 
1.44003280 (= f ' (z ) ); from the 3rd row: 

column A (step k);  A3: 0; A4: = A3+1; copy A4, then paste on A5 to A7; 
column B (approximate rate zh);   B3: = D1; B4: = E3; copy B4, then paste on B5 to 
B7; 
column C (g(zk)); C3: = B3/(1-(1+B3^-A$1); copy C3, then paste on C4 to C7; 
column D (f(zk));  D3: = B3*C3/C$1; copy D3, then paste on D4 to D7; 
column E (h(zk)); E3: = (D3-E$1*B3)/(1-E$1); copy E3, then paste on E4 to E7; 
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– in case b), the solving equation is: 10 |z   = 5341.86/35000 = 0.1526246; 
using the financial calculator with: [n]=10; [pv]=-35000; [pmt]=5341.86; [fv]=0; 
comp [i], we obtain z = 0.0853193. With the linear interpolation on (8.5%; 8.75%) 
the results are: 10 |8.5%  =  0.1524077; 10 |8.75%= 0.1541097; then 

      z 0.085
2169

17020
0.0025 0.0853186  

 By using the Excel spreadsheet, it is sufficient to change the rate i*.  

6.2.6. Amortization in the continuous scheme 

A gradual amortization scheme that is widely used for theoretical aims is 
produced using a continuous annuity. 

Let us consider briefly such a case, assuming a continuous flow (t) of payments 
covering interest, used to amortize in a temporal interval I(t1) from time 0 to t1 the 
amount S. It is not restrictive to assume for simplicity that S=1 (otherwise it is 
enough to multiply the results by S). In addition, let us assume a financial law 
strongly decomposable with intensity (t), that, as known, is a function only of the 
varying time t (in particular (t)=  if the exponential law is assumed). Using: 

 (t) = (z)dz
0
t

      ,    t I(t
1
)  (6.19) 

(t) is the natural logarithm of the accumulation factor from 0 to t. With such 
positions, the flow (t) can be fixed varying in the interval I(t1), but must satisfy the 
constraint of financial closure: 

 (t)e ( t)dt 1
0
t1

 (6.20) 

If (t) =  constant and (t) =  constant, due to (5.16) and (6.20), 

   1/ at1|i
( )

 (6.20') 

holds, with extension of the meaning of the symbol 
 
at1|i

( )  if t1 is not integer.   
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In addition, let us define:  
– c(t) = amortization flow (for the principal repayment) at time t;  
– j(t) = interest flow (allowed for the borrower) at time t;  
– B(t,t1) = discharged debt at time t; 
– D(t,t1) = 1 - B(t,t1) = outstanding balance at time t;  
– A(t,t1) = initial value of the payments of the borrower made from 0 to t.  

Such quantities are linked by the following relations, of trivial interpretation, that 
determine them completely: 
   (t) c(t) j(t)      ,    t I (t1)  (6.21) 

   c( t)dt 10
t1

 (6.22) 

   B(t,t1) c(z)dz
0
t

      ,   t I (t1)  (6.23) 

   D(t,t1) c(z)dz
t
t1     ,    t I (t1)  (6.24)  

 1 1( )  1 ( , ) ( )      ,    t ( )j t B t t t tI  (6.25) 

   A(t,t1) (z)e (z )dz
0
t

      ,     t I (t1)  (6.26) 

The value M (t, t1)= 1 A(t, t1) e (t) represents the retrospective reserve (or 
retro-reserve, at credit for the lender) at time t with the meaning defined in Chapter 
4. In addition,  W (t, t1) = (z)e

( )d
t

z

dz
t
t1  expresses the prospective reserve (or 

pro-reserve). Maintaining in  t I (t1)  the decomposable financial (t) initially 
adopted that assures the validity of (6.20), i.e. the fairness of the amortization 
operation, the following equalities hold:  

 M (t,t1)  = W (t,t1)  = D(t,t1)      ;  
 t I (t1)  (6.27) 

then from (6.20) follows 

1t(t) [ ( )- ( )]
1

t 1
1 ( , ) = ( ) e dz    ,    t ( )z tA t t e z I t    

and D(t,t1)  is also the amount which can be fairly cashed in t instead of the 
payments with flow { (t)} in the interval (t, t1) 16.  

                                                 
16 In the continuous scheme the observations in footnote 7 on the lack of inequality between 
the prospective reserve, the outstanding balance and the retrospective reserve calculated in 
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6.3. Life amortization 

6.3.1. Periodic advance payments       

So far we have analyzed the debt amortization methods in case of certainty, then 
through annuities certain, not considering randomness in the repayment of the loan 
or on the interest payment. This is assuming that, in the event of the borrower dying, 
his heirs or other people must enter into and fulfill his obligations. 

We can take into account the risk of death of the borrower and the difficulty for 
his heirs to pay back the loan, excluding, due to the contract, the continuation of the 
repayment in case of death of the borrower and then establishing for the borrower 
the debt amortization through a temporary life annuity of n years (= life of the loan). 
In such a way the debt is discharged by means of a life amortization17 and the 
contract becomes stochastic, as with an insurance contract: the financial equivalence 
is obtained only as average, i.e. it has an actuarial nature. 

We have to take into account the uncertainty on the borrower’s survival, the 
probability of which is considered to depend only on his age x at the inception date 
of the amortization. This is obtained by replacing the financial discount factors 
(1+i)-h by the demographic-financial ones hEx18.  

                                                                                                                   
t I(t1) remain valid, when at such a time an interest intensity in I(t1) different from 
the intensity initially fixed is used, maintaining unchanged in I(t1) the flow . In fact, 
in such case, (6.20) does not hold. 
17 For a better understanding of life amortization see Boggio, Giaccardi (1969) and also 
Volpe di Prignano (1985). 
18 We recall here that – with the symbols used in actuarial mathematics and assuming the 
discrete time scheme, starting from a demographic table of survival {lx} as a function of age 
(integer) x of a generic member of the community – the survival probability for h years of a 
person aged x is introduced and it is indicated with h px  resulting in h px lx h / lx ; in 
particular for surviving one year we put px  1px . In addition, considering the financial 

discount factor (1 i) h  for h years at the annual rate i, we introduce the value 

h Ex h px (1 i) h  which is called demographic-financial (or actuarial) discount factor and is 
the mean present value of the unitary amount payable within h years only in case of the 
survival of a person aged x, i.e. the amount that it is fair to pay with certainty today, at age x, 
to receive the unitary amount within h years only in case of survival. It is obvious that 
0 Ex 1 and we use 1Ex Ex . Also, we introduce, for a person aged x, the mean present 

value of a unitary life perpetuity-due or -immediate, denoted respectively by xa or ax , and 

also of a unitary life annuity-due or -immediate for n years, denoted respectively by / n xa  or 
/ n ax . Such perpetuities or annuities give the unitary annual amount until death or at most for 
n years. This is,  obviously: 
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Let us describe the operation with integer length n at fixed rate for the initial debt 
D0  = S, incepting at time 0, with the borrower aged x (integer). 

To discharge the loan the borrower pays a periodic life annuity-immediate, in 
particular annual, n-temporary with varying installments , ,z x n S , payable at times z 
= 0, 1, n-1, referring to the periods (z, z+1). For the congruity of the amortization, 
the constraint of actuarial equivalence 

 1
, ,0  n

z x n S z xz E S  (6.28) 

has to be satisfied. Equation (6.28) generalizes (5.23) of Chapter 5. Therefore the 
sequence , ,z x n S  can be chosen with n-1 degrees of freedom19.  

 We can immediately verify that by the installment , ,z x n S  (or briefly: z , 
omitting x,n,S) the borrower pays:  

1)  the advance principal repaid , ,z x n Sc  (or briefly:  zc ); 

2)  the advance financial interest paid dDz+1 on the outstanding balance  Dz+1 in 
z+1; 

3) and also – and here is the difference of the life amortization compared to the 
certain amortization – the insurance natural premium for the year (z,z+1). Recalling 
that v=(1+i)-1=1-d and using: qy = 1-py = 1-l(y+1)/l(y) (= death probability between 
ages y,y+1), such a premium is given by vqx+zDz+1, proportional to the outstanding 
balance Dz+1 that the borrower will not discharge in case of his death at the year 
(z,z+1), leaving such duty to the lender, which in this aspect acts as insurer.20  

The three installment’s components make it possible to understand how the life 
amortization can be interpreted as a normal gradual amortization together with an 
insurance policy in case of the death of the borrower, which lasts for the length of 
the loan, and with varying capital given by the current outstanding balance, the 
premium of which is an addition of the financial installment.  

                                                                                                                   
1 1

0 1 0 10
 ( 0);   ;  ;  ;

n n n

n x x k /n x h x /n x h x x h x x h x
h h h hk

E E n a E a E a E a E
 

and for k<n results in: /n x  /k x k x /n-k x+ka  = a + E  a . 
19 The inequality constraints that can be introduced for the non-negativity of the principal 
repayments do not reduce the number of degrees of freedom, because such a decrease holds 
only by the equality constraints. 
20 If the lender does not manage the insurance himself, he can transfer the premium to an 
insurance company that accept the same technical bases to cover the risk. 
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We can define as actuarial interest paid for the year (z,z+1), indicating it with 

, ,z x n Sj  (or briefly:
 zj ), the amount  [dDz+1 + vqx+zDz+1] = (1- Ex z )Dz+1, the sum 

of the amounts defined in points 2) and 3) above. Therefore, as in the certain case, 
the installment is divided into principal repaid and interest paid, but the interest paid 
is actuarial. 

A more precise argument leads to the conclusion that the two components in the 
expression for

 
', "i i

z zj j , i.e. dDz+1 and vqx+zDz+1 , are antithetic with respect to 
the rate: in the first, the rate is at debt for the borrower; in the second, it is at credit. 
If due to market law we keep them separate, indicating them with i' and i", (i' >i"), 
then the actuarial interest amount is      

', " 1 1
11 (1 ') (1 ")i i

z x z zj i i q D  

We obtain ', "i i
z zj j if i‘=i”. Therefore, analogously to what happens for the 

American amortization, indicating with x the cost rate for the borrower, the result is:  
x >i' >i". This scheme, which leads to further complications, is not discussed 
further.     

To better clarify, let us consider the dynamic aspect of the life operation, 
assuming as already fixed the principal repayments zc , which are under the 
elementary closure constraint      

 1
0

n
zz c S  (6.29) 

– in the first year the actuarial interest paid is 0j (1- Ex )D1, where 

1 0 0D D c , and 0 0 0 10 ... xj D E Dc ; 
– in the second year the development, starting from the debt  D1, is repeated; 

we obtain: 1 1 2(1 )xj E D , where  

2 1 1D D c , and 1 1 1 1 1 2... xj D E Dc ; 

– and in general, due to: 1z z zD D c  and z  = zc  + zj , we obtain for the 
year (z,z+1), where z+1  n, 

 1(1 )z x z zj E D 1z z x z zD E D .21 (6.30) 

 If instead the installments z  under constraint (6.28) are fixed in advance, then 
for the actuarial equivalence z = 0,1,...,n-1, (6.28) is generalized in  

                                                 
21 These formulae generalize (6.5) and (6.6'''), which hold in the absence of death. In fact, if 

constant, 1,  zz zl p , results. 
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 1  n
z k k z x zk zD E  (6. 31) 

By obtaining zD  and Dz 1 from (6.31) it is immediately verified that (6.30) is 
satisfied for z , and also for zj , given by definition 1z z zD Dc . Therefore 
the components of z  are obtained from 

 1z z zc D D    ;     1(1 )z x z zj E D  
22

 (6.32) 

The life amortization with advance installments schedule has in the row relative 
to the period (z,z+1), (z=0,...,n-1), the following elements 

– payment time:      z 

– principal repaid:     zc  

– discharged debt (after payment in z):  1 0
z

z kkB c  

– outstanding balance (after payment in z):  1
1 1

n
z kk zD c   

– actuarial interest paid    1(1 )z x z zj E D  

– installment     1z z z z x z zj c D E D  

Making successive substitutions on Dz+1 in the expression for z  for z=0,...,n-1 

and taking into account z Ex Ex kk 0
z 1

 we obtain: 

1
0 0  k

z z x k x kD S E E D , 

from which, due to k=n, (6.28) follows.    

The expression 

 
1
0  

 
k

z z xz
k

k x

S E
M

E
 (6.33) 

can be interpreted as retro-reserve at time k of the life amortization operation from 0 
to n, extending what is seen in Chapter 4 to the mean values obtaining, in the 
                                                 
22 Note that: ( ) (1 )z z x z z z x z z x z zD E D c E c E D . Therefore, z  is the 
weighted mean of zc and Dz . In addition, in the particular case  where z=n--1, as Dn = 0, 

1 1 1n n nD c  results, and then 1 0nj , in accordance with the fact that for the period 
(n-1,n) both the financial interest and the insurance premium are zero. 
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actuarial sense an insurance retro-reserve. In fact, such a formula gives the 
difference between the expected supplies of the lender and the borrower between the 
dates 0 and k, evaluated actuarially at time k. Instead, the insurance pro-reserve, 
considered as the difference between the expected obligations of the borrower and 
the lender (the latter are absent, because the lender’s supply occurs only at the 
inception of the loan) between the dates k and n, evaluated actuarially at time k, is 
given by  
 1   n

k z z k x kz kW E  (6.33') 

Maintaining in k (0,n)  the actuarial base {i, lx}  initially adopted that ensures 
the validity of (6.28), i.e. the actuarial fairness of the operation of life amortization, 
Mk = Wk = Dk k  hold, taking into account (6.28) and the fact that Dk is the 
amount in k that finds a fair counterpart in the payments of z  (z = k,...,n-1).23  

If the life amortization is carried out with constant installment z , for (6.28) it 
must be / /z n xS a  and the outstanding balances are given by  

 / /
/ /

/
    S /  n x z x

z n z x z n x
n x z x

a aSD a a
a E

 (6.31') 

Equation (6.32) is still applied for the calculation of the principal repayments and 
interest payments. 

Exercise 6.6 

We have to make a life amortization of €95,000 with advance annual 
installments for 10 years at rate i = 4.50% on a borrower aged 42 years. Calculate 
the amortization schedule on the basis of principal repayments assigned. 

A. The survival probability is found on suitable tables for an age x = 42. We can 
apply the formulations on footnote 18 and in (6.30), using a calculator or an Excel 
spreadsheet. The values E42+z are calculated and the principal repayments for z = 0, 
1, ..., 9, the sum of which is 95000, are assigned. Then we find the discharged debts 
and the outstanding balances for 10 years, and also the actuarial interest payments 
and the advance installments. With both procedures the following schedule is found, 
with obvious meaning:  

                                                 
23 Due to its decomposability the simplification effects of the actuarial law that leads to the 
discount k Ex  and accumulation 1/ k Ex  factors are obvious. Extended for the retro-reserve 
and pro-reserve in actuarial sense, the considerations of footnote 16 if at time k  are adopted 
the technical bases {i,l(x)}different from the ones initially used to prepare the life 
amortization . 
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 Debt = 95000  Rate = 0.045  Length = 10 

z l42+z E42+z cz Bz Dz jz Installment 

cz+jz 
Installment 

(6.30) 
0 96400 0.955230 8700 0 95000 3863.62 12563.62 12563.62 

1 96228 0.955128 8650 8700 86300 3484.32 12134.32 12134.32 

2 96046 0.954975 9800 17350 77650 3054.94 12854.94 12854.94 

3 95849 0.954761 9600 27150 67850 2635.15 12235.15 12235.15 

4 95631 0.954486 9300 36750 58250 2227.90 11527.90 11527.90 

5 95386 0.954189 10100 46050 48950 1779.76 11879.76 11879.76 

6 95112 0.953879 9700 56150 38850 1344.42 11044.42 11044.42 

7 94808 0.953647 9750 65850 29150 899.24 10649.24 10649.24 

8 94482 0.953302 9200 75600 19400 476.32 9676.32 9676.32 

9 94123 0.953105 10200 84800 10200 0.00 10200.00 10200.00 

10 93746   95000 0   
total   95000     

Table 6.9. Example of general life amortization 

The Excel instructions are as  follows. The 1st row contains data: C1: 95000; F1: 
0.045; I1: 10. The 2nd row is for column titles.  The values for the year z are in the 
row z+3 and are as follows: 

column A (time).   A3:  0 ; A4: = A3+1; copy A4, then paste on A5 to A13; 
column B (l42+z).  from B3 to B13: demographic data l42,...,l52 
column C (E42+z).  C3: = B4*(1/(1+F$1))/B3; copy C3, then paste on C4 to C12; 
column D ( zc ).  from D3 to D12; principal repayments; D14:= SUM(D3:D12) 
 (= C1 to control); 
column E (Bz).    E3:  0; E4: = E3+D3; copy E4, then paste on E5 to E13; 
column F (Dz).    F3: = C1; F4: = F3-D3; copy F4, then paste on F5 to F13; 
column G ( zj ).   G3: = (1-C3)*F4; copy G3, then paste on G4 to G12; 

column H ( z = z zc j ).  H3: = D3+G3; copy H3, then paste on H4 to H12; 
column I  ( z  from (6.30)). I3: = F3 -F4*C3; copy I3, then paste on I4 to I12. 

Exercise 6.7 

Calculate an advance life amortization with the same data as in Exercise 6.6 for 
the debt amount, length, rate and the borrower data, but with constant installments. 
Calculate the installment amount and make the amortization schedule.    

A. The survival probability is found on suitable tables for an age of x=42. 
Applying the formulae in footnote 17 and in (6.31) and (6.32), and using an Excel 
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spreadsheet, where the debt  is in C1 and the rate is in E1, the following schedule, 
divided into two parts, is set up. 
 

Debt    = 95000 Rate   = 0.045    Length =10 

z l42+z E42+z zE42 za42 10-za42|z 
0 96400 0.955230 1.000000 0.000000 8.191301

1 96228 0.955128 0.955230 1.000000 7.528342

2 96046 0.954975 0.912367 1.955230 6.835045

3 95849 0.954761 0.871288 2.867598 6.110155

4 95631 0.954486 0.831872 3.738886 5.352285

5 95386 0.954189 0.794010 4.570757 4.559820

6 95112 0.953879 0.757636 5.364768 3.730728

7 94808 0.953647 0.722693 6.122404 2.862761

8 94482 0.953302 0.689194 6.845097 1.953302

9 94123 0.953105 0.657010 7.534291 1.000000

10 93746  0.626200 8.191301 0.000000

 Installment =  11597.67  

   

z Dz cz jz Installment control = cz +jz 
0 95000.00 7688.78 3908.89 11597.67

1 87311.22 8040.63 3557.04 11597.67

2 79270.59 8407.04 3190.63 11597.67

3 70863.55 8789.52 2808.15 11597.67

4 62074.03 9190.75 2406.92 11597.67

5 52883.28 9615.53 1982.14 11597.67

6 43267.75 10066.40 1531.27 11597.67

7 33201.35 10547.61 1050.06 11597.67

8 22653.75 11056.08 541.59 11597.67

9 11597.67 11597.67 0.00 11597.67

10 0.00   

Table 6.10. Example of life amortization with constant installments 

The Excel spreadsheet is set up in two parts.  

In the top part, taking into account that the first two rows are for data and 
column titles, the values for the year z are in row z+3. The instructions are as 
follows: 

column A (year).   A3:  0 ; A4: = A3+1;  copy A4, then paste on A5 to A13; 
column B (l42+z).    demographic data l42,...,l52; 
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column C (E42+z).   C3: = B4*(1/(1+$E$1))/B3; copy C3, then paste on C4 to C13; 
column D (zE42).    D3:  1 ; D4: = C3*D3 ;  copy D4, then paste on D5 to D13; 
column E ( / 42z a ).   E3:  0 ; E4: = E3+D3 ;  copy E4, then paste on E5 to E13; 
column F ( /10 42z za ). F3: = ($E$13-E3)/D3 ;  copy F3, then paste on F4 to F13. 

In C14 the installment is calculated according to: //z n xaS , then C14: = 
C1/E13. 

In the bottom part, row 16 is for column titles and the values for year z are in 
row z+17 with the following instructions:   

column A(year).  A17:  0 ; A18: = A17+1;  copy A18, then paste on A19 to A27; 
column B (Dz).    B17: = $C$1*F3/$E$13 ;  copy B17, then paste on B18 to B27; 
column C ( zc ).   C17: = B17-B18 ;  copy C17, then paste on C18 to C26;  
  C28: = SUM(C17:C26) (= C1 to control); 
column D ( zj ).    D17: = (1-C3)*B18 ;  copy D17, then paste on D18 to D26; 
column F  ( z = z zjc ).  F17: = C17+D17 ;  copy F17, then paste on F18 to F26. 

6.3.2. Periodic payments with delayed principal amounts   

The life amortization, still with advance actuarial interest payments, can also be 
made with delayed principal repayments cz. We then have an actuarial 
generalization of the scheme seen in section 6.2.4, in particular of the German 
scheme if the installment invariance is imposed. 

Easy calculations lead to the conclusion that, when we have chosen the principal 
repayments cz so that their sum is equal to the initial debt D0 = S, the installments 
that realize the equivalence have the following values: 

– 0 0 0ˆ (1 )xj E D  
– 1 1 1 0 1 1 1 0 1 1ˆ ( )x xc j D D D D Dd vq E  
– 1 1ˆ ( ) ;( 2 1)z z z z z x z z z x z zc j D D D D Dd vq E z = ,...,n -  24 

                                                 
24 It is soon seen that the values ˆ z  paid in z , if introduced in (6.28), satisfy it, therefore 
realizing the actuarial congruity of this life amortization form. In fact, considering that 

cz Sz 1
n  and Dn = 0, and that  h Ex Ex+h   h 1Ex ,  h 0 , the following formulae: 

    
ˆ zz 0

n
z Ex =  (1-Ex )D0 (D0 D1Ex 1)Ex (Dz 1 DzEx z )z Ex Dn 1 z Exz 2

n 1

D0 D0 Ex D0 Ex D1 2Ex + D1 2Ex ... Dn 1 nEx Dn 1 nEx D0 S  
are obtained . 



242     Mathematical Finance 

– ˆ n cn Dn 1      

The calculation of the retro-reserves and pro-reserves in z can be undertaken 
immediately, analogously to what was seen in section 6.3.1. 

6.3.3. Continuous payment flow 

In sections 6.3.1 and 6.3.2 we considered life amortization in the discrete scheme 
of periodic payments, in particular annual, for the loan. However, theoretically, for a 
limit case or as an approximation of a scheme with fractional payments with high 
frequency, for such a operation we can adopt a continuous payment flow, 
generalizing to the stochastic case the scheme considered in section 6.2.6. 

Using the time origin in the inception date of the loan and assuming for the life 
amortization a length t*, thus the time interval of the corresponding annuity is I(t*) = 
[0,t*], we indicate with (t;x,t*), or more easily (t), the payment flow25 from the 
borrower for the loan and assuming a demographic technical base in the 
continuum26. It is then obvious that the actuarial equivalence constraint, i.e. the 
congruity of (t) in order to realize the life amortization of the debt, that we assume 
unitary, in the interval I(t*), is expressed by 

 (t) tE xdt 10
 t*  (6.28') 

 
 

                                                 
25 The symbol used for the payment flow is chosen in analogy with  and ˆ  for the 
discrete case, stressing therefore the dimensional difference. 
26 With such an aim we consider a survival law{l(x)}as a function of the age x   where 

l(x) l(a)e
(y)dy

a
x

and (y)
l' (y)
l(y)

 is the mortality intensity in y. Thus, the continuous 

actuarial discount factor, which is also dependent on the intensity (t) of the financial 
exchange law, that is assumed as strongly decomposable (in particular, (t)=  constant in the 
exponential case) it is written:    

h E x e hl(x h) / l (x) e
[ (x t)]dt0

h

 

 while its reciprocal is the continuous actuarial accumulation factor. Furthermore the IV of a 

unitary life  annuity paid in the interval I(t*) is expressed by 
/ t* a x e

[ (x t )]dt0
h

0
t*

dh . 
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which can be written  

 (t)e ( t)dt 1
0
 t*  (6.28") 

where (t)= [ (x )
0
t

]d is the natural logarithm of the actuarial accumulation 

factor,  being the intensity of the exponential financial law and resulting, 
obviously, in (0) = 0. 

Proceeding as in section 6.2.6, let us define the following quantities: 
– c(t) = amortization flow (for principal repayment) at time t;  
– j(t) = actuarial interest flow at time t;  
– B(t,t*) = mean discharged debt at time t; 
– D(t,t*) = 1- B(t; t*) = mean outstanding balance at time t;  
– A(t,t*) = mean initial value of the borrower payments made from 0 to t.  

The following constraints are valid: 

   (t) c(t) j(t) ,  t I (t*)  (6.21') 

 c(t)dt 1
0
t*  (6.22') 

 
  B(t,t*) c(z)dz

0
t

  ,  t I (t*)  (6.23') 

 
  D(t,t*) c(z)dz

t
t*

  ,  t I (t*)  (6.24')  

 *( )  ( , *) + (x+t)   ,  t ( )j t D t t I t  (6.25')
 

   A(t,t*) (z)e (z)dz
0
t

   ,   t I (t*)  (6.26') 

Evaluating at time t in the actuarial sense (i.e. acting on the mean values), the 
value  

M(t,t*) = (t)* 1 ( , )A t t e  

expresses the retro-reserve, while  

W(t,t*) = (z)e
[ ( )]d

t
z

dzt
t*  

expresses the pro-reserve. Maintaining in  t I (t*)  the bases , (x)  fixed at the 
inception date, we obtain 

M(t,t*) = W(t,t*) = D(t, t*)   ,    t I(t*)  
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given that, as  ( ) ( ) [ ( )]z
tz t x d  from (6.28"), it follows that 

1 A(t, t*) e (t) =  (z)e
[ ( )]d

t
z

dzt
t*  

and, furthermore, that D(t, t*)  is a fair actuarial counterpart for payments in the 
interval (t,t*) with flow (z).27  

The previous formulations show that with a continuous payment flow we move 
from the certain amortization to the life one, substituting the purely financial 
intensity with the actuarial one (x t)  and then the function (t), defined in 
(6.19), with (t).   

We obtain easy generalizations by assuming, instead of the intensity  of the 
exponential financial law, the intensity (t) of any decomposable financial law.  

6.4. Periodic funding at fixed rate  

6.4.1. Delayed payments  

We saw in section 5.1 that the final value of an annuity on the basis of a given 
law can be considered as the final result of a funding operation on a saving account 
with such a law. Let us develop here in detail such an operation considering how it 
is done in the most important cases, starting from that of delayed payments. 

Let us consider a generic operation of funding in n periods (years) of a capital S 
by means of accumulation on a saving account at the per period rate i of the set of 
payments of amount Rh at the end of the hth period (h = 1,...,n). Then in such an 
account a sinking fund is increasing.  

The following constraint 

 S Rh (1 i)n h
h 1
n  (6.34)      

must then be satisfied. It implies the financial equivalence between the set of 
supplies (h,Rh) of the investor and the dated amount (n,S) that is the result of the 
investment operation. 

Different from the discrete amortization schemes described previously, the 
principal amount Ch is the increase of the fund at time h and then is obtained 

                                                 
27 In the continuous case the considerations in footnote 23 also hold if at time z the technical 
bases { ,l(x)} different from those initially assumed for the continuous life amortization are 
adopted. 
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adding, and not subtracting, to the installment Rh  the interest amounts Ih earned by 
the investor on the sinking fund in the period (h-1,h) and proportional to the amount 
accumulated in h-1. Indicating with Gh the level of the sinking fund at the integer 
time h on the saving account due to the operation (then G0 = 0) and having fixed in 
advance the principal amount Ch non-negative and satisfactory, as for the 
amortization, the constraint of the 1st of (6.3), the following recursive relations hold:  

 
Gh Gh 1 Ch

Ih i Gh 1

Rh Ch Ih

(h 1,...,n)  (6.35) 

Starting from the initial condition G0 = 0, all the values {Ih},{Rh},{Gh} are 
obtained and in particular, due to the 1st part of (6.3): Gn = S, i.e. the requested 
funding. In the dynamics of the operation, the fundamental recursive relation holds 

   Gh Gh 1(1 i) Rh  ,  (h = 1,...,n) (6.36) 

and can be written as 

   Rh (Gh Gh 1) i Gh 1  ,  (h = 1,...,n)  (6.36') 

The retro-reserve M(h;i) and the pro-reserve W(h;i) (at credit for the investor) of 
the operation, at time h and at rate i (the rate chosen at the beginning or adjusted in 
h) are given by the expression  

 M (h;i) Rss 1
h (1 i)h s  

W (h;i) S(1 i) (n h ) Rs(1 i) (s h )
s h 1
n               (6.37) 

and, if i is the rate of the law initially adopted for the funding, the result is 

 M(h;i)  =  W(h;i)  =  Gh  28 (6.38) 

As in gradual amortization, if the CCI regime is adopted, the reserves in each 
intermediate time between consecutive payments can be defined  (for example to 
calculate exactly the assignment value of the credit) at each time t=k+s (where k = 
integer part of t; s = decimal part of t). We find 

 M(t;i)  =  M(k;i) (1+i)s   ;   W(t;i)  =  W(k;i) (1+i)s (6.39)  

                                                 
28 Also for the funding, the considerations for retro-reserve and pro-reserve found in footnote 
16 are extended if at time k different rates are adopted from the one initially chosen. 



246     Mathematical Finance 

By varying t in the real numbers between 0 and n, in [0,n] we obtain two 
functions, M and W, coincident if the funding operation between 0 and n is fair, 
discontinuous (right-continuous) at integer time k.     

 

 
Figure 6.3. Plot of delayed funding 

If the funding is made with constant delayed payments Rh = R29, all the relations 
are adopted with this position. In particular, the equivalence constraint between S 
and R  is given by 

 S  = R sn |i     or    R  = S n |i (6.40) 

By adopting (6.36), and using it for consecutive values of h and subtracting, it is 
verified that, as in French amortization, the principal amount changes in geometric 
progression with ratio (1+i), resulting in 

  Ch R(1 i)h 1  ;  Gh Rsh |i S
sh |i

sn |i
 (6.41) 

The retro-reserve and the pro-reserve in h at rate i are expressed by 

  M (h;i) R sh |i   ;   V (h;i) S(1 i) (n h ) R sn-h |i  (6.37') 

                                                 
29 An example of term funding by means of delayed constant periodic payments has been 
encountered in the American amortization considered in section 6.2.5. 
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Exercise 6.8 

We have to form a capital at maturity of €25,500 in 5 years on a saving account 
at the annual delayed rate of 5.25%, with annual delayed payments corresponding to 
the following sequence of principal repayments, the sum of which is 25,500:  

C1 = 4,500 ;  C2 = 5,300 ;  C3 = 5,600 ;  C4 = 6,000 ;  C5 = 4,100. 

Calculate the funding schedule. 

A. Applying (6.35) on an Excel spreadsheet, from the given value {Ch} in the 2nd 
column are found the end of year balances {Gh}; from here we find the earned 
interest {Ih} and the installments {Rh} to be paid by the investor. The following 
schedule is obtained.   
 
              DELAYED FUNDING WITH GIVEN PRINCIPAL AMOUNTS 

Capital = 25,500 Rate = 0.0525  

     

h     Ch Gh Ih Rh 
     

1 4,500.00 4,500.00 0.00 4,500.00 

2 5,300.00 9,800.00 236.25 5,063.75 

3 5,600.00 15,400.00 514.50 5,085.50 

4 6,000.00 21,400.00 808,50 5,191.50 

5 4,100.00 25,500.00 1123,50 2,976.50 

Table 6.11. Example of delayed funding 

The Excel instructions are as follows: the 1st, 2nd and 4th rows are for data and 
titles: B2: 25500; D2: 0.0525; the 3rd and 5th rows are empty. Starting from the 6th 
row:   

column A (year):  A6: 1; A7:= A6+1; copy A7, then paste on A8 to 
A10; 
column B (principal amount):  insert data on B6 to B10;  sum in: B2); 
column C (accumulated amount): C6:= C5+B6; copy C6, then paste on C7 to C10;  
column D (interest amount):  D6:= C5*D$2; copy D6, then paste on D7 to D10;  
column E (installment):  E6:= B6-D6; copy E6, then paste on E7 to E10.   

Exercise 6.9  

With the same data as exercise 6.8 for the amount at maturity, for the length and 
the rate, calculate the funding schedule imposing the installments invariance.  
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A. By applying (6.35) and the 2nd part of (6.40), and by using an Excel 
spreadsheet the following schedule is found. 

DELAYED FUNDING WITH CONSTANT INSTALLMENT  
Capital = 25,500 Rate = 0.0525 

Years  = 5 Installment = 4,591.87 

    
 h        Ch Ih Gh 

    

1 4,591.87 0.00 4,591.87 

2 4,832.94 241.07 9,424.81 

3 5,086.67 494.80 14,511.48 

4 5,353.72 761.85 19,865.21 

5 5,634.79 1,042.92 25,500.00 

Table 6.12. Example of delayed funding 

The Excel instructions are as follows. Rows 1, 2, 3 and 5 are for data, titles and 
one calculation: B2: 25,500; D2: 0.0525; B3: 5; D3:= B2*D2/((1+D2)^B3-1); rows 
4 and 6 are empty. From row 7: 

column A (year):  A7:= A6+1; copy A7, then paste on A8-A11; 
column B (principal amounts):  B7:= D$3*(1+D$2)^A6; copy B7, then paste on 

B8 to B11; 
column C (interest amounts):  C7:= B7-D$3; copy C7, then paste on C8 to C11; 
column D (sinking fund):  D7:= D6+B7; copy D7, then paste on D8 to D11. 

6.4.2. Advance payments    

Let us consider briefly the variations in relation to section 6.4.1 when the 
payments, indicated using hR , are made at integer time h referring to the period 
(h,h+1), (h = 0, 1,..., n-1), and therefore are called advance payments. The closure 
constraint with the amount S to be formed at time n becomes 

 1
0 (1 )n n h

hhS R i  (6.42) 

The recursive relations regarding the accumulated capitals Gh at time h, the 
principal amounts hC  subject, as for the amortization, to the 2nd of (6.3), the interest 
amounts hI  and the installments hR , starting from the initial condition G0 = 0, are:    
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1

1 ( 0,..., 1)
h h h

h h

h h h

G G C
I d G h n
R C I

 (6.43) 

where d=i/(1+i) (obtaining, in particular, Gn = S) and the recursive relation on the 
accumulated amount is found to be 

 1 ( )(1 )  ,   ( 0 1)h h hG G R i h = ,...,n -  (6.44) 

and the decomposition is found to be 

  1 1( )    ,  ( =0,..., -1)h h h hR G G d G h n  (6.44') 

For the retro-reserve M(h;i) and the pro-reserve W(h;i) at time h the following 
expressions hold: 

  1
0( ; ) (1 )h h s

ssM h i R i  

 1( ) ( )( ; ) (1 ) (1 )nn h s h
ss hW h i S i R i  (6.45) 

which are equal to each other and to Gh if i is the rate initially adopted for the 
funding.  

If the CCI regime is adopted, in the advance case we can also define the reserves 
in whichever non-integer time t=k+s (where k = integer part of t; s = decimal part of 
t), resulting in 

 M(t;i)  =  M(k+1;i) (1+i)-(1-s)  ;  W(t;i)  =  W(k+1;i) (1+i)-(1-s) (6.39') 

By varying t in the real numbers between 0 and n we obtain in (0,n) two 
functions, M and W, coincident if the funding operation between 0 and n is fair, 
discontinuous (continuous to left) at the integer time k. 
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Figure 6.4. Plot of advance funding 

In the case of constant advance payments it is enough to put hR R  constant in 
the previous formulation. The following is then obtained: 

 n is  S R      or     n|iS R  (6.40') 

and, with G0= 0: 

  1 ( )(1 )  ,  (h=0,...,n-1)h hG G R i  (6.46) 
from which 

 1 1( )  ,  ( =0,..., -1)h h hR G G d G h n  (6.46') 

Also in this case the principal amount varies in geometric progression with ratio 
(1+i), resulting in: 

 h|i1
h|i

n|i
(1 )   ;   G  h

h h
s

C R i R s S
s

 (6.47) 

The retro-reserve and pro-reserve in h are 

 
( )

n|i n-h|i( ; )    ;  ( ; ) (1 )  n hM h i R s W h i S i R s  (6.45') 

which are equal to each other and to Gh if i is the initially adopted rate for the 
funding. 
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Exercise 6.10 

With the same data as in Exercise 6.8 for the capital at maturity, for the length 
and the rate, calculate the advance funding schedule imposing the invariance of 
installments. 

A. Applying (6.43) and the 2nd of (6.40') we obtain on an Excel spreadsheet the 
following schedule. 

ADVANCE FUNDING WITH CONSTANT INSTALLMENT 

Capital = 25,500 Delayed rate = 0.0525 

Years  = 5 Installment  = 4,362.82 

    

 h         Ch          Ih        Gh 
0 4,591.87 229.05 0.00 

1 4,832.94 470.12 4,591.87 

2 5,086.67 723.85 9,424.81 

3 5,353.72 990.90 14,511.48 

4 5,634.79 1,271.97 19,865.21 

5 0.00 0.00 25,500.00 

Table 6.13. Example of advance funding 

The Excel instructions are as follows: the first 3 row and the 5th row are for data, 
titles and one calculation:  
B2: 25500; D2: 0.0525; B3: 5; D3:= B2*D2/(1+D2)/((1+D2)^B3-1);  
the 4th row is empty; from the 6th  row: 
column A (year): A6: 0; A7:= A6+1; copy A7, then paste on A8 to 
A11; 
column B (principal amount): B6:= D$3*(1+D$2)^A7; copy B6, then paste on B to 
 B10; B11: 0; 
column C (interest amount): C6:= B6-D$3; copy C6, then paste on C7 to C10 C11: 
0; 
column D (sinking fund): D6: 0; D7:= D6+B6; copy D7, then paste on D8 to 
D11.  

6.4.3. Continuous payments 

Analogous to the continuous amortization scheme (see section 6.2.6) is that of 
the certain funding30 of a capital S by means of an continuous annuity with flow (t) 
in the time interval I(t1) from 0 to t1 . 
                                                 
30 Together with the classification of amortizations and for reasons of completeness we 
should briefly mention the funding by means of payments that are conditioned to an investor’s 
survival, i.e. by a life annuity. However, it is evident such a scheme coincides with that of life 
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This issue has been already discussed in general terms in Chapter 4, where the 
value of the accumulated amount in (4.14') has been found as the solution of the 
differential equation (4.13) in which the flow that leads to the variation of the 
accumulated amount is the sum of the interest flow and of the increasing flow for 
the net payment - (t) (negative from the viewpoint of the cash) to the fund to be 
formed. It will be enough to mention it briefly in order to highlight conditions by 
which a payment flow (t) = - (t) is used to form in t1 a capital S. Let us assume for 
simplicity S=1 and a financial low strongly decomposable with intensity (t) ( (t) = 

 constant if the low is exponential). Using: 

 (t) = (z)dz
t
t1   , t I (t

1
) (6.48) 

to form the unitary capital at time t1 the flow (t) varying in I(t1) must satisfy the 
constraint of financial closure: 

  ( z)e ( z )dz0
t1  = 1                                      (6.49) 

If (t) = constant and (t) =   constant, due to (5.16) and (6.49), 

 1/  
st 1|i

( ) (6.49') 

must hold, extending the meaning of the symbol  
st 1|i

( ) if t1 is not an integer. 
Using: 

G(t) = sinking fund formed in t; 
c(t)  = flow in t of variation of the sinking fund; 
j(t)   = flow in t of interest (received for the investor); 

the following recursive relations hold, starting from G(0)=0  

 
j(t) (t)G(t)

c(t) j(t) (t)

c(z)dz G(t)
0
t

 t I (t
1
)  (6.50) 

In the further hypothesis of constant payment flows, it is possible to extend (5.9) 
to the continuous scheme. Considering (6.20') and (6.49') and also the relation 

 
1/ st 1|i

( ) 1/ at 1|i
( )  , that can be immediately verified, we find: 

  +  = (6.51) 

                                                                                                                   
insurances with endowment (temporary or perpetual) policies. Then for life funding it is 
enough to refer to a treatise on life insurances.  
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This relationship links the constant flows of unitary amortization and funding 
(then intensities from the dimensional point of view, having divided the flows by the 
amount S) in operations of the same length in an exponential regime. 

6.5. Amortizations with adjustment of rates and values 

6.5.1. Amortizations with adjustable rate  

For the reasons explained in Chapter 1, the quantifications discussed so far 
consider monetary amounts. This is not only for homogenization of values, but it 
can be used to settle obligations because money is the legal measure of wealth. 

The phenomenon of monetary inflation or other causes that lead to variations 
(more often a decrement) of the purchasing power of money, which is now no 
longer linked to gold or any other assets with stable and intrinsic value, is more and 
more widespread in the presence of macroeconomic imbalances. 

Due to this phenomenon, loan operations and the following amortization, fair in 
monetary terms at a given rate, are not fair in real terms, i.e. considering the 
purchasing power of the traded sums. Then the receiver of the sums with future 
maturity is substantially damaged if the variation of the purchasing power is a 
decrement. Therefore, in recent times, which are characterized by permanent 
inflation, financial schemes for amortization have been developed which are used to 
correct its distorting effects by means of opportune variations in the aforementioned 
methods. Such schemes are not only useful to neutralize these negative effects for 
the investor, of monetary depreciation, but more generally are used to reduce the 
risk of oscillation of the financial market in both directions. 

The first variation consists of making the rate fluctuate up and down, adjusting it 
to the current rate for new operations in the financial market, without changing the 
outstanding loan balance. With this procedure the interest amount of one period is 
calculated by multiplying per period the updated rate by the outstanding balance at 
the beginning of the period. 

Limiting ourselves to the delayed installment case, let us consider two forms of 
amortization with adjustable rate, highlighting that the rate variations are not known 
at the beginning but are fixed in the hth period in relation with the aforementioned 
phenomena, regarding the inflation and the following depreciation of money. 
Therefore, it is not possible to fix at the inception date of the loan the effective 
amortization plan that will be adopted. 
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a) French amortization with adjustable rate 

In this form, we proceed initially with the progressive method described in 
section 6.2.2, calculating the installments by means of (6.8). The installments remain 
unchanged for the following periods if the rate is not adjusted, but, in the case of 
variations, new installments are calculated, using the adjusted rate, the outstanding 
loan balance and the remaining time, on the basis of (6.8). 

In formulae, indicating with i(1),..., i(n)  the rates (not necessarily different) that 
will be applied in the subsequent periods 1,..., n, the installments and the outstanding 
balances of each period are obtained recursively from the following equation system 
(where D0=S) 

 (h 1,...,n)
Rh Dh 1 n h 1¯|i ( h )

Dh Rh an h ¯|i ( h )

 (6.52) 

Obviously the interest payments and the principal repayments are calculated  
using  

 Ih  = Dh-1 i(h)  ;  Ch  =  Rh - Ih  =  Dh-1 – Dh  (6.52') 

From (6.52) it follows that the installments remain unchanged between two 
subsequent rate variations; furthermore the installment variations are concordant to 
the rate variation, if it changes. To prove this statement, we can observe that the 
recursive relation 

 Rh 1 Rh
an h ¯|i ( h )

an h ¯|i ( h 1)

 ,  h = 1,....,n-1 (6.52") 

on the installments follows from (6.52), and that am |i  is a decreasing function o rate 
i. In addition, the principal repaid in h+1 is 

  Ch 1 Dh n h |i( h 1) Rh 1(1 i (h 1)) (n h ) (6.53) 

and | n |i decreases with the rate. Therefore, the variation of the principal repayment 
due to the rate variation is discordant to it; the result is that a rate increment slows 
down the amortization, giving rise to higher outstanding balances and higher 
installments than those in the absence of adjustments, even if the “closure” remains 
unchanged, i.e. the debt becomes zero at the end of the loan. 

b) Amortizations with adjustable rate and prefixed principal amount 

In the previous form of amortization, a) in the case of rate adjustments there is a 
novation of the contract on the outstanding loan balance and remaining length, such 
that with respect to the progressive scheme at fixed rate not only are the sequences 
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of interest payments subject to variations, but also those of principal repayments and 
then of the outstanding balances. 

Or it can be agreed that the principal repaid remains unchanged in case of 
adjustment of the contractual rate, so as to eliminate the uncertainty of the principal 
repayments and to reduce that of the interest payments, obtained multiplying the 
rate, varying with h in a way not previously foreseen, for the prefixed outstanding 
loan balances. Thus we lead back to the recursive system (6.4'), modified to take 
into account  the rate variability in the period h, i.e.     

 (h 1,...,n)

Dh Dh 1 Ch

Ih i (h )Dh 1

Rh Ch Ih

 (6.4''') 

which, using D0=S, enables the calculation of the interest payments, the installments 
and the outstanding loan balances in the following periods.     

Example 6.3 

This example clarifies the comparison, set out in the following table, between the 
amortizations in 5 years of the amount S = €100,000 in the three different forms: 

1) “French” at rate i = 0.05 that gives the delayed constant installment R = 
23,097.48; 

2)  form a) with rates i(h) specified in the table;  
3)  form b) with the same i(h) and constant principal amount Ch = 20,000.00. 

 

    French                               form a)            form b) 
h          Dh                     i(h)            Rh                 Dh                       Ih                  Rh                        Dh 
1 81,902.52 0.05 23,097.48 81,902.52   5,000.00   25,000.00   80,000.00 
2 62,900.16 0.07 24,179.93 63,455.77 5,600.00   25,600.00   60,000.00 
3 42,947.69 0.07 24,179.93 43,717.75 4,200.00    24,200.00    40,000.00 
4 21,997.60 0.05 23,511.62 22,392.02    2,000.00   22,000.00    20,000.00 
5          0.00 0.05 23,511.62          0.00  1000.00 21,000.00          0.00 

  

Table 6.14. Comparison of different amortization rules 

It can be seen that in form a) the installment of the 1st year coincides with the 
installment R of the French amortization at rate 5% but in the 4th year, after two 
years of increasing rates, even if the rate returned back to the initial level, due to the 
higher outstanding balance, R4 > R  results. Thus, with i(5) = i(4) we have R5 = R4. 
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6.5.2. Amortizations with adjustment of the outstanding loan balance 

The rate adjustment considered in section 6.5.1 solves, in an approximated 
manner, the problem of money depreciation (or, more generally, of the variation of 
purchasing power of money) because it acts only by an additive variation of rate 
which does not exactly reflects Fisher’s equation. A procedure to fully solve this 
problem is that of indexation of the prefixed outstanding loan balances, obtained by 
multiplying such balances by coefficients derived from a series of statistical indices 
measuring the mean prices varying  with the same periodicity as the redemption 
payments. 

In such a way, the installments and their components for interest and 
amortization, that are proportional to the outstanding balances, will be modified 
multiplicatively according to the same coefficients, where the constraint of 
elementary closure, which assumes the non-modifiability of the principal payments 
and thus of the outstanding balances, is not satisfied.    

Let us formalize the procedure, limiting ourselves to the adjustment of the 
French amortization31 of the landed amount S = Db at time b in n periods at the per 
period rate i by means of installments that, if the index remains constant, would all 
assume the value R = S i/(1-(1+i)-n). 

Let {Zh}, (h = b, b+1,...,b+n-1) be, the series of statistical indices needed for the 
adjustment in n periods, with the same periodicity of payments. The updating 
coefficient between time h and h+1 is Kh+1 = Zh+1/Zh = 1+ph+1, where ph+1 is the 
corresponding per period updating rate; therefore 

b = 1  ;  h K jj b 1

h
Zh Zb ;  (h = b+1,...,b+n-1) (6.54) 

are the global updating factors for h-b periods to be used in the calculations. In the 
absence of adjustments the outstanding loan balances at time r would be 

 Dh = R ab+n-h |i  (6.55) 

while, due to what has been said, the updating modifies the sequence {Dh} in {D'h} 
defined by 

  D’h = Dh h  (6.56) 

                                                 
31 The same conclusions hold with different amortization schemes that give rise to any 
development of the outstanding balances before the updating. 
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It is clear that b+n-h delayed payments of constant amount R’h+1 (= updated 
installment of the period h+1) would amortize D’h in the absence of further 
updating. Thus D’h = R’h+1 ab+n-h |i  and then due to (6.22): D’h/Dh = R’h+1/R = h , 
which can be written 

 R’h+1 = R h (6.56') 

Proceeding analogously, the updated interest paid is 

 I’h+1 = i D’h = i Dh h = Ih+1 h  (6.57)  

and subtracting (6.24) from (6.23') it is obtained for the updated principal repaid 

 C’h+1 = (R - Ih) h = Ch+1 h  (6.57')  

Briefly, the outstanding loan balance after h-b periods from the inception and 
also the installment paid at the end of the period, i.e. at time h+1, and its principal 
and interest components are updated by means of the factor h given by (6.21). 

Exercise 6.11  

Amortize in 5 years the amount €80,000 loaned at time 6 at the annual rate of 
4.5% with value adjustments according to the index {Zh}, (h = 6, 7, 8, 9, 10), of the 
“cost of life” on the basis of the observed values, specified in Table 6.15. 

A. On the basis of the data and using: Dh = Dh-1-Ch, the following amortization 
schedule is obtained, that compares the non-updated values of the French 
amortization and the updated values in the outstanding loan balances on the basis of 
{Zh}. By using S=€80,000; n=5; i=0.045; R=€18,223.33, the following data is 
obtained (rounding off  €amounts to no decimal-digit). 

S = 80000 Start = 6  Length = 5 Rate = 0.045 Payment = 18223 
h Zh h Ih I'h Ch C'h R'h Dh D'h 
6 120.0 1.0000 80,000 80,000 
7 122.5 1.0208 3,600 3,600 14,623 14,623 18,223 65,377 66,739 
8 125.7 1.0475 2,942 3,003 15,281 15,600 18,603 50,095 52,475 
9 129.6 1.0800 2,254 2,361 15,969 16,728 19,089 34,126 36,856 

10 133.2 1.1100 1,536 1,659 16,688 18,023 19,681 17,439 19,357 
11   785 871 17,439 19,357 20,228 0 0 

Table 6.15. Amortizations with adjustment of the outstanding loan balance 
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The Excel instructions are as follows. The first 2 rows are for data, titles and one 
calculation: B1: 80000; D1: 6;  F1: 5; H1: 0.045; J1:= (B1*H1)/(1-(1+H1)^-F1). 
From the 3rd row:  

column A (time):  A3:= D1; A4:= A3+1; copy A4, then paste on A5 to A(3+F1); 
column B (Zh):  from B3 to B7 insert periodic index numbers for F1 periods; 
column C ( h):   C3: 1; C4:= B4/B$3; copy C4, then paste on C5 to C7; 
column D (Ih):   D4:= I3*H$1; copy D4, then paste on D5 to D8; 
column E (I'h):   E4:= D4*C3; copy E4, then paste on E5 to E8; 
column F (Ch):   F4:= J$1-D4; copy F4, then paste on F5 to F8;  
column G (C'h):  G4:= F4*C3; copy G4, then paste on G5 to G8; 
column H (R'h):  H4:= E4+G4 (or := J$1*C3); copy H4, then paste on H5 to H8; 
column I (Dh):   I3:= B1; I4:= I3-F4; copy I4, then paste on I5 to I8; 
column J (D'h):   J3:= I3*C3; copy J3-paste on J4 to J8. 

6.6. Valuation of reserves in unshared loans   

6.6.1. General aspects 

The valuation of the pro-reserve W(t,i*) at a given time t of a financial operation, 
obtained by discounting the supplies after t on the basis of a prefixed law, in 
particular the exponential one at a valuation rate i* generally different from the 
contractual rate i originally agreed for the calculation of interest (because can be 
different the valuation time, the evaluating subject, the aims and the market 
conditions), is often interesting. We have such valuations when a company balance 
is prepared for internal or external/official use, or for the assignment of credits or for 
the carrying of debts regarding the operation. 

We will consider the calculation of the pro-reserve and its components in 
relation to the gradual amortization of a debt during its development (or sometimes 
at the inception date). Using periodic then discrete payments, we can assume the 
conjugate of a DCI. law. We will complete this consideration with the development 
of the so-called Makeham’s formula and the calculation of the usufruct in the 
discrete scheme, using any valuation rate i*,  for the most important amortization 
methods. 

In a gradual amortization with n periodic installments Rk delayed and varying, of 
the type seen in section 6.2.1 (with simple variations for the advance case) assuming 
a unitary period, the pro-reserve W(t,i*) is the current value in t of the installments 
Rk with due dates k t; it is equal to the outstanding loan balance  

Dh Rk (1 i) (k h)
k h 1
n  if i* = i and t = h. If there is a need to distinguish 
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between the value of the principal repayments Ck and that of the interest payments Ik 
(e.g. because the creditor of interest is different from that of the principal), we will 
have to evaluate separately at the rate i*, the usufruct U(t,i*) and the bare ownership 
P(t,i*), the sum of which is W(t,i*)32.  

Let us consider the position t = h evaluating at integer time h the pro-reserve and 
its components usufruct and bare ownership in the discrete, then the present value 
of the interest payments and the principal repayments, at an evaluation rate i*33.  

 In formulae with already defined symbols, 

 (h 1,...,n)

Wh
* W (h,i*) Rk (1 i*) (k h )

k h 1

n

Uh
* U(h,i*) Ik (1 i*) (k h )

k h 1

n

Ph
* P(h,i*) Ck (1 i*) (k h )

k h 1

n

   34 (6.58) 

obtaining Wh = Dh , Uh , Ph  as particular values when i*=i.  

6.6.2. Makeham’s formula 

The additivity expressed by 

   Wh
* Uh

* Ph
*  ;  Wh Uh Ph  ;  (h = 1,...,n) (6.59) 

is obvious (and it has already been found). 

The following Makeham’s formula, which links values at rate i* to those at the 
contractual rate i, also holds: 

 Wh
* Ph

* i

i *
(Dh Ph

*)  (6.60) 

                                                 
32 The examined valuation is apparently an operation with two rates, i and i*, but looking at it 
more closely, the only rate i* is used as a variable with the meaning of discount rate of the 
amounts – principal repayments, interest payments, installments, etc. – that at the valuation 
time are already fixed as a function of the original data, between which there is the repayment 
rate i. 
33 They will be initial values if h= 0, residual values if h = 1,…,n. 
34 The values for non-integer time t in exponential regime, using t=h+s (0<s<1), are obtained 
from those in (6.25) multiplying by (1+i)s. 
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and from which, due to (6.59), the following expression to evaluate Uh
*   as a 

function of  Ph
* is found:35  

  Uh
* i

i *
(Dh Ph

*)  (6.60') 

Proofs of Makeham’s formula 

1) A brief proof of Makeham’s formula based on the equivalence at the rate i* 
can be given. It is enough to observe that at the rate i the debt Dh is amortized with 
installments Rs = Cs + Is  (s = h+1, ...,n), i.e. it is fair to exchange Dh with the 
installments Rs, while at rate i*, if the principal amounts Cs and then the outstanding 
loan balances Ds remain unchanged, to preserve the equivalence the interest 
payments must be: Is

* i * Ds 1 Is i * /i , i.e. at rate i* it is fair to exchange Dh with 
the installments Rs

* Cs (i * / i)Is . It then follows that: 

Dh Rs
*

s h 1

n

(1 i*)
(s h) Cs

s h 1

n

(1 i*
)

(s h ) i*

i
Is

s h 1

n

(1 i*)
(s h )

 

or, due to (6.58), 

 Dh Ph
* i *

i
Uh

*  (6.61) 

from which we obtain (6.60') and (6.60).       

2) Due to the closure equation, it follows that Dh Ch kk 1
n h , i.e. the 

outstanding loan balance Dh at time h is decomposed in subsequent principal 
repayments Ch+k, (k =1,..,n-h), each of which leads to its refund after k years and the 
payment of interest iCh+k for k years. The overall valuation in h of these obligations 
at rate i* is Wh

*. Therefore, using v*
k (1 i*) k  the following is obtained 

 

                                                 
35 By adding and subtracting Dh in the 2nd part of (6.27), Makeham’s formula becomes: 
Wh

* Ph
* i

i *
(Dh Ph

* ) , which highlights the decreasing of Wh
* with respect to i* (then the 

convenience for the debtor, that assigns the debt during the amortization, to evaluate it at the 
highest possible rate) and gives a measure of the spread between the valuation at rate i* and 
that at rate i of the future obligation of the debtor, as (Wh

* Dh ) has the sign of (i-i*). If , in 

particular, h=0, it is sufficient to put in the formulae Dh= S = landed capital, to evaluate the 
obligations at any rate since from inception. Given the biunivocity of the relations, we can 
exchange the role between i* and Wh

*, assuming the value Wh
* fixed by the market and 

obtaining i* that takes the meaning of internal rate of return (IRR). 
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* * *
* ¯| * * *1 1 * *

(  ) (1 ) ( )
n h n hk k k

h h k k i h k h h hk k

i i
W C v i a C v v P D P

i i
 

i.e. (6.61), from which we obtain (6.60') and (6.60). 

3) A purely analytical proof of Makeham’s formula is obtained by applying 
Dirichlet’s formula, i.e. summing by columns instead of by rows the elements 
ms,k Ck (1 i*) (s h)  of a triangular matrix. It follows that 

( ) ( )
11 1

* * *(1 ) (1 )
n ns h s h

s ss h s hhU I i i D i  

( ) ( )
1 1 1

* *(1 ) (1 )
n n n ns h s h

k ks h k s k h s h
i C i i C i  

( )
1

**
* *

1 (1 ) ( )
n k h

k h hk h

i iC i D P
i i

 

i.e. we obtain (6.60') and (6.60).       

Observations 

1) By adding and subtracting Dh on the right side of (6.60) Makeham’s formula 
becomes: 

 Wh
* Dh

i * i

i *
(Dh Ph

*)  (6.60") 

which, as Ph
* Dh

, highlights the increasing of Wh
*  with respect to i*. Thus, Wh

*  is 
the assignment value of the residual credit of the lender at the integer time h (then 
the debtor that assigns the debt during the amortization has the convenience of 
evaluating at the highest possible rate) and gives a measure of the spread between 
the valuation Wh

*  of the outstanding loan balance and its nominal value Dh if i* i , 
because we obtain Wh

* Dh
 or Wh

* Dh
 if i* i  or i* i  respectively.  If h=0, it 

is sufficient to use Dh = S in (6.60"). 

2) Given the biunivocity of the relations, we can exchange in (6.60) or in its 
transforms the roles of i* and Wh

*, assuming the latter as the value given 
exogenously by the market laws and obtaining i* that assumes the meaning of return 
rate for the investor lender or cost rate for the financed borrower (see section 4.4.1).  

3) A recurrent relation analogous to (6.6) also holds for Wh
*. In fact, as it is 

easily verifiable, it results in: 

 Wh
* Wh 1

* (1 i*) Rh
 (6.62) 
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4) New expressions of Uh
*  and Ph

* are obtained by considering the variation of 
Wh

* due to that of the rate i* and finding Uh
*  and Ph

* from the system of equations 
(6.59) and (6.60') with Wh = Dh . This results in:    

 Uh
* i 

Wh
*  Wh

i * i
    ,     Ph

* i *Wh
* i Wh

i * i
 (6.63) 

and therefore Uh
*  is the partial difference quotient of Wh

* in the variation from i to 

i* multiplied by –i , while Ph
* is the partial difference quotient of i*Wh

* in the same 

variation. Taking the limit for i* i  on the differentiable functions Wh
* and i*Wh

*, 
we obtain the following result 

 Uh lim
i* i

Uh
* i

Wh
*

i*
i* i

    ,     Ph lim
i* i

 Ph
* (i*Wh

*)

i*
i* i

 (6.64)  

6.6.3. Usufructs and bare ownership valuation for some amortization  forms 

In the concrete case of amortization, we are also interested in the valuation of the 
residual installments and their components for interest and for amortization at any 
rate i* and at any time t=h+s , with 0<s<1, to which the additivity, espressed by 
(6.59), is extended. Let us note that, given the delayed or advance payments at 
integer times h, we obtain (see footnote 34): 

 
s

(1 )

* * *

* * *

( , ) ( , )(1 ) ,              with delayed payments  
( , ) ( 1, )(1 ) ,    with advance payments   s

W t i W h i i
W t i W h i i

 (6.65) 

using analogous formulae for U (t,i*)  and P(t,i*) . 

  We can then limit ourselves to the calculation for integer time h, making 
explicit the valuations of usufruct and bare ownership (from which summing we find 
the pro-reserves) in the following usual forms of amortization. As a function of 
parameters S, n. i, and evaluating at the rate i* we easily obtain, using (6.63):   

a) Amortization with one final lump-sum refund and periodic delayed interest  

 U(h,i*) S i an h ¯|i* ;  P(h,i*) S(1 i*) (n h )  (6.66) 
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b) Delayed amortization with constant principal repayments  

 
¯|

¯| *

**
¯| *

*

 ( , ) ( 1)
n

( , )

(I )n h i

n h i

n h i
S i

U h i n h a

S
P h i a

n

a
 (6.67) 

c) Amortization with constant delayed  installments 

 
¯|¯|

( ) ( )

**
*

* *
*

 ( , )
i-i

 ( , ) (1 ) (1 )
i-i

n h in h i

n h n h

R i
U h i a a

RP h i i i
 (6.68) 

where R = S n |i  . 

Example 6.4: application of Makeham’s formula and comparisons  

Let us apply in this example Makeham’s formula for the calculation of usufruct, 
starting from that of bare ownership and using any valuation rate, in the customary 
amortization forms for unshared loans, comparing the results with those obtainable 
using the closed formulae (6.29), (6.30) and (6.31): 

a) Amortization with one final lump-sum refund and annual delayed interest. 

 Let us use:  
 S =  €2,000 (debt); n = 10 year;  i = 5.5% (annual contractual rate); 
 i* = 6.2%  (annual valuation rate). 

With formula (6.29), the initial valuation (h=0) is obtained: 
   U0

* 110 a10 |0.062
 ; P0

* 2,000 (1.062) 10 1,095.94 ;W0
* 1,897.93 

at time h=5 the result is: 
U5

* 110 a5 |0.062
 ; P5

* 2,000(1.062) 5 1,095.94 ; *
5 1,941.35W  

By applying Makeham’s formula in h=0 and h=5, with the values for bare 
ownership previously found, we obtain the same values for the usufruct: 

U0
* 0.055

0.062
(2000.00 1095.94) 801.99; 

U5
* 0.055

0.062
(2000.00 1480.50) 460.85. 

b) Annual amortization with constant principal repayments 
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Let us use:  
 S =  €1,500 (debt); n = 4 years;  i = 6% (annual contractual rate); 
 i* = 5.2%  (annual valuation rate). 

We then obtain the following amortization schedule. 

Year Principal repaid Interest paid Installment Balance 
1 375.00 90.00 465.00 1,125.00 
2 375.00 67.50 442.50  750.00 
3 375.00 45.00 420.00  375.00 
4 375.00 22.50 397.50      0.00 

Table 6.16. Example of amortization with constant principal repayments 

For the initial valuation (h=0) with a direct calculus for U0
*  and using formula  

(6.30) for P0
* we obtain:  

     U0
* 90.00 1.052-1 67.50 1.052-2 45.00 1.052-3 22.50 1.052-4

 =  203.57 

   P0
* 375 a4 |0.052 1,323.58 ; W0

* 1,527.15 

For h=2 we find 

      U2
* 45.00 1.052-1 22.50 1.052-2 63.11 ;  *

2 375 695.31P a2|5.2% ; 

    W2
* 758.42 

Applying Makeham’s formula for h=0 and h=2, with the values for bare 
ownership previously found, we obtain the same values for the usufruct: 

U0
* 0.06

0.052
(1500.00 1323.58) 203.57 ; U5

* 0.06
0.052

(750.00 695.31) 63.11 

c) Annual amortization with constant installments 

Let us use, as in b):  

 S =   €1,500  (debt);  n = 4 years;  i = 6% (annual contractual rate); 
 i* = 5.2%  (annual valuation rate); then R = 432.89. 
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We obtain the following amortization schedule. 

Year Principal repaid Interest paid Outstanding balance 
1 342.89 90.00 1,157.11 
2 363.46 69.43   793.65 
3 385.27 47.62   408.38 
4 408.38 24.51       0.00 

Table 6.17. Example of amortization with constant installments 

Using (6.31), for the initial valuation (h=0) we obtain 
 * 432.89 0.06

0 0.008 209.193.529538 3.465106U ;    

 * 4 443289
0 0.08 1.052 1.06 1,318.71P ; W0

* 1,530.80 

For h=2 we find  

 * 25.9734
2 0.008 67.411.854154 1.833393U ;  

* 2 2432.89
2 0.08 1.052 1.06 735.23P ; W2

* 802.64. 

By applying Makeham’s formula for h=0 and h=2, with the values for bare 
ownership previously found, we obtain the same values for the usufruct: 

U0
* 0.06

0.052
(1500.00 1318.71) 209.19 ;  U2

* 0.06
0.052

(793.65 735.24) 67.41 

6.7. Leasing operation    

6.7.1. Ordinary leasing 

It is appropriate, for completeness, to mention briefly an operation which can be 
a convenient investment for a financial company and at the same time a form of 
financing, often preferred by firms to other forms considered in this chapter. 

Let us summarize this operation as follows. A company working in leasing is a 
broker between the owner of an asset or real estate and the lessee firm, in the sense 
that it gives the financial means for the purchase and, maintaining the property of 
the asset, grants its use against payment. For this company the costs are those related 
to the purchase of the asset, while the returns are the payments for the leasing, which 
are called rent and form a periodic annuity. 
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On the opposite side, the lessee company, against the use of the asset, pays a 
periodic rent for the whole length of the contract and also pays an earnest payment, 
usually a multiple of the rent; furthermore the possibility of redemption, i.e. the 
purchase by the lessee of the leased asset, usually at a price strongly reduced and 
prefixed at the beginning of the lease, it is often provided at expiry36.  

There is then the issue of comparing it with the loan operation for purchasing the 
asset. From this comparison follows a problem of choosing between alternative 
loans. In fact, we have to compare, on one side, the purchase of the property of the 
asset using his own means and loaned capital, with the resulting lost profit for the 
self-financing part that was invested at a return rate i1 and the emerging cost for the 
loaned part, at a cost rate i2; and on the other side, the leasing operation that implies 
the payment of advance, periodic rents and the possible final redemption. The 
maintenance expenses, in both cases, are paid by the company that uses the asset. 

The leasing rent cannot be limited only to remuneration, at the contractual per 
period rate i, of the amount S used by the lessor for the purchase, at net for the 
advance and the discounted redemption, because being assets with a limited 
economic life (due to wear, obsolescence, etc), it must take into account an amount 
for the funding of the used capital for the renewal. There is then a situation 
analogous to the American amortization with two coincident rates, where on the 
basis of (5.9) the rent C is given by S(i+ n |i) = S n |i , where S is the net amount 
already specified. Therefore, the rent, if constant and not indexed, is calculated as 
the progressive amortization installment of a loaned principal equal to the 
aforementioned net amount. 

In formulae, if the operation, with a length of n periods, is not indexed and it is 
provided for a value F, an advance A and also a redemption at expiry R, the delayed 
per period rent C if constant37 is obtained from the following relation, justified on 
the basis of the equivalence principle: 

 F = A + C an |i+ R (1+i)-n (6.69) 

                                                 
36  It is suitable to mention briefly the “real estate leasing”. The length is usually long and the 
redemption value has to take into account that the real estate is not subject to the same 
depreciation that other assets or industrial equipment are subject to. In addition, there are the 
taxation problems particular  to such leasing arrangements. 
37 A financial calculator with the keys (n), (i), (pv), (pmt) and (fv) allows for the immediate 
automatic calculation of one of the quantities n, i, (F-A), C, R, given the others, because 
(6.27) can be written: -(F-A) +C an | i +R (1+i)-n = 0. In addition, if  is known, we obtain: F 
= (F-A)/(1- ) ; A = F-(F-A). 
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Using  = A/F (= advance quota) and  = R/F (= redemption quota), from (6.69) 
we find the expression for the periodic rent C38 

 C = F [1 -  -  (1+i)-n] / an |i (6.69') 

If the first m rents are paid at the beginning, they form the advance, then C is 
found from (6.69) using A = mC  and an-m |i   instead of an |i . Therefore 

 
1  (1 ) nF i

C
m an-m|i

 (6.69") 

Exercise 6.12 

1)  The lessor gives a plant, the total cost of which is €24,000, for leasing with 
delayed monthly rents for 5 years and with a redemption equal to the 5% of the cost 
and 

a)  an advance of 8% of the cost; or 
b)  an advance equal to 3 rents. 

Calculate the rent for the two cases in the hypothesis that an annual remuneration 
rate 12-convertible of 9.5% is applied.  

A. In case a) used in (6.28'): F=24000, n=60, =0.08, =0.05 and using months 
as the unit measure for time, the monthly rate is i1/12 = 0.007917 and the rent C  
(that can be found with a financial calculator as in footnote 37) is 

C = 24,000 (1 - 0.08 - 0.05.1.007917-60)/ a60 |0.007917  = 448.02 

In case b), used in (6.27") the previous data and m=3, we obtain39  

C =  24000 (1 - 0.05.1.007917-60)/(3 + a57 |0.007917)  = 477.16 

2) The lessor gives a plant for 3 years, with advance monthly rent, without 
earnest, providing the redemption as 2% of the price and with a clause for a 
decrement of 40% of the rent after 20 month. Calculate the corresponding rents, 
considering that the price of the plant is €16,500 and the nominal rate 12-convertible 
is 11.20%. 

 A. The equivalent monthly rate is 0.009333, the equation to find the rent C 
for the first 20 months is given by 

                                                 
38  Footnote 37 also holds for (6.69'). 
39 It has been agreed that the redemption is paid in the month of the last rent; the length is 
then reduced to 57 months. In this case the rent is: 

C =  24,000 (1 - 0.05.1.007917-57)/(3 + a57 |0.007917) = 476.80 
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-16,500.00 + C ( 36|0.009333a - 0.40 20 / 16|0.009333a  ) + 330.00.1.009333-36 = 0 

from which: C = 610.95. Therefore, the first 20 rents are €610.95 and the following 
16 are €366.57. 

6.7.2. The monetary adjustment in leasing 

In section 6.5, which was dedicated to the adjustment and indexation in the 
amortization of an unshared loan, we considered the remedies to cover the creditor 
from monetary depreciation in a long-term operation. As the leasing can also be 
considered as a pluriennial loan, for this problem the same remedies can be applied, 
then we refer to those, limiting ourselves here to a brief discussion. 

For the phenomenon of the purchase power variation, and in particular of 
depreciation, two remedies are used: 

1) line interest compensation, through a procedure of varying rates that are the 
sum of a fixed real remuneration share ih and a varying share ih of compensation 
nature if it is adjusted to the level of the monetary depreciation rate; 

2) line value compensation, if the same plant value (which is under a real 
financial amortization given the criteria for the calculation of the rent) is indexed 
proportionally to a statistical series of prices representing the interested 
phenomenon.  

6.8. Amortizations of loans shared in securities 

6.8.1. An introduction on the securities 

In the previous chapter we examined methods to manage the remuneration and 
repayments of loans with two contractual parts: lender and borrower. However, 
loans of a large amount to relevant companies frequently occur. Then it is practically 
impossible to realize such operations by only one lender, and therefore many lenders 
will share the debt. 

Such operations are then realized in the following ways: 
1) many private lenders, which give the money against an obligation of 

repayment and a credit security; 
2) brokerage by third party, in the sense that a bank or a group of banks 

formalize the obligations and securities, collect the money in the “stock market” of 
the subscribers of the credit securities (using its own organization through a Stock 
Exchange and its own branches), and give the debt sum in one or more “slices”; 
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3) public guarantees, in the case of loans for public enterprise. 

The stock market offers many possibilities for financial investments, typical or 
not. We will consider here only credit securities for which the principal to be paid 
back is well determined (even if interest can be paid according to varying rates). We 
will then not consider: 

– equity shares, that from the juridical viewpoint are joint ownership stocks; 
– “investment funds” which are prevailingly formed by mixtures of shares and 

bonds, that have risky elements and are sometimes linked to an insurance 
component; 

– values due to rights linked to share exchanges, that have their own specificity 
and autonomy and are traded in the “derivative market”.  

The description of most of these financial products can be found in the second 
part of this book. However, for further information the interested reader can refer to 
specific books. 

A fundamental distinction between credit instruments placed against a shared 
loan between many creditors is that between: 

a) Treasury Bonds (placed by the State) with one maturity; 
b) bonds, which can have different type of redemption. For these, we must make 

a further distinction: 
 b1) bonds with redemption at only one maturity for all creditors; and 
 b2) bonds with redemption at different maturities amongst the creditors. 

If the length of the operation is not longer than one year, the return for the 
investor is obtained through a purchase cost discounted with respect to the 
redemption amount. This cost can depend on the dynamics of the negotiation during 
the “auction” in which the bonds are placed. The financial regime that follows is that 
of the rational discount40 (see Chapter 3).  

If the length of the operation is pluriennial, and n is the number of years, the 
interest (through coupons) with delayed semiannual or annual due date on the basis 
of nominal rate – also termed coupon rate, constant or varying according to a 
prefixed rule – is usually paid. In this case the interest is a form of “detached 
return” of the security. We must distinguish for each security between the issue 
value p and the redemption value c, which we assume coincident with the nominal 

                                                 
40 If 100 is the redemption value of the bond, not considering taxes, the purchase price A is 
linked to the annual rate i and to the days of investment g by the relation: A = 100/(1+ig/360).  
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value on the security (if the last two are different, for financial purposes, only the 
redemption value must be considered):        

– if p<c, we talk about issue at a discount or below par;  

– if p=c, we talk about issue at par;  

– if p>c, we talk about issue at a premium or above par. 

6.8.2. Amortization from the viewpoint of the debtor 

The debtor (issuer) must plan an amortization schedule for the whole debt with 
one of the methods considered before for the unshared loan. The presence of many 
creditors is irrelevant from a financial point of view; there are only the practical 
complications of dividing amongst them the payments for redemptions and interest, 
called coupons. Let us assume 0 as the issue time of the loan and suppose the 
absence of adjustment. Furthermore, let N be the number of issued bonds, each with 
an issue value p and redemption value c, and j the annual coupon rate for the 
computation of delayed interest, that is nominal 2-convertible if the coupons are 
semiannual. 

Given that, in case b1 we can apply the scheme, seen in section 6.1, of one final 
lump-sum at maturity n and periodic payment of interest, dividing both of them 
amongst the issued bonds. Therefore, in this case we can immediately verify that for 
the issuer against the income supply (0,+Np), the amortization consists of the 
outflow supplies: 

– (1,-Ncj) (2,-Ncj) … (n-1,-Ncj) (n,-Nc(1+j)), for annual coupons; 

– (1/2,-Ncj/2) (1,-Ncj/2)  … (n-1/2,-Ncj/2) (n,-Nc(1+j/2)), for semiannual 
coupons. 

In case b2) we can apply, for the issuer, the general scheme of gradual delayed 
amortization seen in section 6.2, fixing the redemption plan, i.e. the number Nh of 
securities to redeem completely at the end of each year h, with the obvious 

constraint: N N hh 1

n
. In fact, a gradual amortization for each bond is 

inconvenient. We can then calculate the numbers  

 Lh N Nkk 1

h  ;  h = 1,....,n (6.70) 
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which identify the numbers of bonds “alive” soon after the hth gradual redemption, 
i.e. not redeemed at times k  h. For Lh the recursive relation holds 

  Lh  =  Lh-1  - Nh    ;  L0 = N ;  then  Ln = 0 (6.70') 

It is clear that the issuer must also pay the annual interest cj or semiannual cj/2 
on each of the alive bond. Therefore, against the income supply (0,+Np) the 
amortization consists of the outflow supplies: 

– 11( ,    )n
h hh h N c L c j , (annual coupons); 

–  1 11 1( ,   / 2) ( 1 2,   / 2)n n
h h hh hh N c L c j h L c j , 

(semiannual coupons). 

To summarize, with annual coupons the installment to be paid by the issuer is  

 Rh Nh c Lh 1 c j   ,   (h = 1....,n) (6.71) 

while for semiannual coupons,  the interest is divided into two equal amounts. 

The one lump-sum redemption of all securities implies a large financial need for 
the issuer at time n, that – if not covered by a previous new bonds issue – can be 
very difficult to realize for a private company without adequate means and 
guarantees, which can also be used to become trusted by the creditor; therefore form 
b1 is more adequate for Treasury Bonds or public securities. On the contrary, form 
b2 allows for a gradual repayment, by choosing in a suitable way the sequence {Nh} 
in relation to the incomes following the investments financed by such loan, and it is 
suitable for loans to companies with private structure.  

6.8.3. Amortization from the point of view of the bondholder 

Referring to the bondholders-creditors, we need to distinguish case b1 from case 
b2 and the following considerations hold. 

In case b1 the number of creditors does not change the amortization procedure, in 
the sense that for the bondholder of each of the N bonds the amortization is with one 
final lump-sum at maturity n, the same for all bondholders, with periodic payment of 
interest on the basis of the same parameters. The financial operation is obtained 
from the one described in section 6.6.2 for the issuer dividing it into N equal parts 
(with administrative complications due to the large number of counterparts41) and 
                                                 
41 Such complications disappear when the bond loan is entirely subscribed by a large 
company, public or private. In such cases, the operation is equivalent to an unshared loan, 
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changing the sign, i.e. dividing by -N. Then each bond at the issue date42, against the 
payment of the amount p, must receive the supplies:  

– (1,cj) (2,cj) … (n-1,cj) (n,c(1+j)), for annual coupon;   
– (1/2,cj/2) (1,cj/2) … (n-1/2,cj/2) (n,c(1+j/2)), from semiannual coupon. 

The case b2, usual for pluriennial bonds of large amount, which are sold at the 
inception to a great number of private investors, implies for the bondholder of each 
of the N bonds an amortization with one final lump-sum redemption, but with 
staggered redemption dates. The rate evolution on the stock market is the cause of a 
continuous and varying spread between the current rate, for reinvestment after 
redemption, and the nominal one on the current loan. Therefore, at time h, according 
to the sign of the spread, all (if the spread is positive) or none (if the spread is 
negative) of the Lh-1 residual bondholder are interested to be included amongst the 
Nh redeemed. To avoid complications and to obtain the fairness among the creditors 
with a symmetric situation between the residual bondholders, the system of 
amortization by drawing is common, in the sense that the repayment schedule 
becomes a drawing schedule to concretely find at time h the Nh bonds (simple, i.e. 
not considering possible grouping in multiple bonds). The bonds subject to this type 
of management are termed drawing bonds. 

In this form, while from the viewpoint of the issuer the financial operation is 
certain, from the point of view of the bondholder for each security we have a 
stochastic maturity, then the amortization cash-flow is stochastic in length, with one 
lump-sum redemption and periodic (annual or semiannual) inflow of interest. 

6.8.4. Drawing probability and mean life  

Proceeding with the consideration of hypothesis b2 that implies for the 
bondholder the randomness due to the drawable bond system for redemptions, it is 
appropriate to find the drawing probability at a given integer time h  n. For reasons 
of symmetry the probability, valuated at issue date, of drawing a bond at time h (i.e. 
of a life of h years from the issue) can be assumed equal to Nh/N, ratio of bonds 
issued that are redeemed after h years, while the probability that a bond still not 

                                                                                                                   
where bonds are only used for tax advantages and the possibility of placing the bonds in the 
exchange market. Another form that simplifies the loan amortization is that, which is widely 
applied in mature economies, of the purchase of their own bonds on the exchange market, 
which is convenient when the current cost rate is lower than the loan rate. 
42 If the bondholder is incoming, buying the security at integer time r (simplifying hypothesis 
which ignores here the “day-by-day interest”) at price pr and if the bondholder waits for the 
maturity without selling, the inflow operation is for him:  

– (r+1, cj) (r+2, cj) … (n-1, cj) (n, c(1+j)), with annual coupons; 
– (r+1/2, cj/2) (r+1, cj/2) … (n-1/2, cj/2) (n, c(1+j/2)), with semiannual coupons. 
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drawn at time r has a residual life of h years can be assumed equal to Nr+h/Lr, the 
ratio of residual bonds at time r that are redeemed after other h years. 

It is also interesting to consider, in order to summarize with just one number the 
length of the investment for the bondholder as it occurs in the case of certain 
maturity, the mean life for the generic bond of a given loan43. 

We can calculate the mean life at issue date as a weighted arithmetic average of 
the lengths, expressed by the formula 

  e0 h
Nh

Nh 1

n  (6.72) 

It is also useful to evaluate, in the case of purchase or assignment r years after 
the issue date, the variation of residual mean life of a bond still not drawn at time r, 
expressed by 

 er h
Nr h

Lr
h 1

n r  (6.72') 

Example 6.5 

Let us consider an amortization for a bond loan, gradual for the issuer and then 
with a drawing plan for the bondholder, issued at a discount. Let us take, with 
amounts in €: 
– p  = 1,760   = issue value; 
– c  = 2,000   = nominal and redemption value; 
– j  =  6.2%   = annual coupon rate; 
– N = 10,000   = number of issued bonds; 
– n =  5  = length of the loan; 
– {Nh} = {1,500, 1,800, 2,500, 1,600, 2,600} = draws plan. 

It follows that the number of residual bonds after each draw is: L1 = 8,500, L2 = 
6,700, L3 = 4,200, L4 = 2,600 and L5 = 0. The inflow for the issuer at 0 is 
17,600,000 gross of inflow costs, while the whole debt is €20million, not 
considering the management costs.  

With an annual coupon, their value is €124.00 and the annual installments for the 
payment to the creditor are: 

                                                 
43 The bond mean life is a concept analogous to the mean life of a person, valuated at his 
birthday, for which mortality is measured by means of a demographic table. In probabilistic 
terms, the bond mean life is the expected value of its random length. In fact, (6.72) expresses 
it as the ratio between the whole life length of all bonds, according to the redemption 
schedule, and the numbers of issued bonds. 
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 R1 = 2,000 (1,500 + 0.062.10000) = 4,240,000.00; 
 R2 = 2,000 (1,800 + 0.062. 8,500) = 4,654,000.00; 
 R3 = 2,000 (2,500 + 0.062. 6,700) = 5,830,000.00; 
 R4 = 2,000 (1,600 + 0.062. 4,200) = 3,720,000.00; 
 R5 = 2,000 (2,600 + 0.062. 2,600) = 4,240,000.00. 

With a semiannual coupon, their value is €62.00 and the semiannual installments 
for the payment to the creditor are: 

 R1/2  = 2,000 (0.031.10,000)  =   620,000.00; 
 R1  = 2,000 (0.031.10,000 + 1,500)  =  3,620,000.00;  

 R3/2  = 2,000 (0.031. 8,500)  =   527,000.00; 
 R2  = 2,000 (0.031. 8,500 + 1,800)  =   4,127,000.00;  
 R5/2  = 2,000 (0.031.6,700)  =    415,400.00; 
 R3 = 2,000 (0.031.6,700 + 2,500)  =   5,015,400.00; 
 R7/2  = 2,000 (0.031.4,200)  =    260,400.00; 
  R4 = 2,000 (0.031.4,200 + 1,600)  =   3,460,400.00; 
 R9/2  = 2,000 (0.031.2,600)  =    161,200.00; 
 R5 = 2,000 (0.031.2,600 + 2,600)  =    5,361,200.00 

The mean life at the issue date, due to (6.72), is 3.2 years = 2y+2m+12d, while 
the residual mean life at time 3, due to (6.72'), is 1.619 years = 1y+7m+13d.  

6.8.5. Adjustable rate bonds, indexed bonds and convertible bonds  

Introduction 

Modern capitalistic economies are characterized by a strong dynamism, by a 
wide variety of technical schemes for investments also by monetary systems, which 
are subject to variations of the purchasing power from which the investors must 
protect himself. Thus, even the management of shared loans, as that of unshared 
loans, considered in sections 6.2 and 6.3, is subject to adjustments and variations 
that make them more interesting for investors. 

The listing and description of such investments would be too long if we wanted  
to consider all the modalities that sometimes have a very short life, because due to 
needs which are not valid any more. 
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It is then sufficient to briefly consider a few types, general and consolidated, 
which are widely applied. 

Bonds with adjustable rate 

As for the unshared loans, the issue of bonds can provide, as safeguard against 
inflation or better adjustment of the investment to the evolving market conditions, 
for an adjustable nominal rate, according to an appropriate linking rule to external 
parameters that allow not only the recovering of inflation and/or the adjustment due 
to the market measured at the issue date, but also during the time towards maturity. 

We can then provide in the previous formulae for the substitution of the fixed 
rate i with a varying rate i(h) with current year h, and then adapt all the results. 

Indexed bonds 

Due to the requirement of protection against inflation, we can prefer, for a better 
recovery both on interest and principal, to leave the bond rate to a real return level 
and make the nominal value c varying and adjustable substituting it in the previous 
developments, both for redemption and for the calculation of semiannual or annual 
interest, with an amount c(h) varying with the current year h, indexed proportionally 
to an appropriate statistical series, for example to the consumer price index. 

A more detailed formulation on the valuation of updated rates and indexed bonds 
will be given in section 6.9.4. 

Convertible bonds 

Convertible bonds are more complex and require a more in-depth discussion. 

We can limit ourselves, here, by saying that a firm that wants to increase its 
capital, can initially collect money in the loan market as credit capital leaving the 
possibility to the subscribers – with appropriate limits and according to prefixed 
exchange ratios – to convert, in a given temporal interval, the credit capital into 
risky capital. In this way they become shareholders, then co-owners and partners in 
the enterprise. This is due to a number of reasons of convenience, also tax reasons, 
that allows the redemption of the debt by means of compensation with capital 
increasing. 

6.8.6. Rule variations in bond loans 

Bond loans often provide for variations that modify the cost and return 
parameters and that must then be taken into account. Leaving to the reader the easy 
calculation of the financial effect of such variations, we limit ourselves here to 
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listing the most frequently used variations, warning that it is almost impossible to 
give a complete view of this topic. 

1) Redemption value higher than nominal value 
This is an additional premium and higher cost for the debtor. To calculate it, it is 

enough to take into account this redemption price, no longer the nominal value.  

2) “All inclusive” bonds with premium  
For such bonds, there is  no payment of interest in the drawn year. Our formulae 

are adapted to this case decreasing the redemption value by the amount of the 
coupon. 

3) Bonds with premium 
A total premium amount P(h) can be provided for bonds drawn at year h. The 

debtor must take them into account adding C to Nhc while for the bondholder the 
redemption value c is on average increased by P(h)/Nh. 

4) Bonds with incorporated interest (= full accumulation) 
The loan can provide for the absence of coupons and a redemption value 

increasing with time, together with interest. It is obvious that the return for the 
different length h is found by considering the redemption value as an accumulated 
value after h years of the purchase price. 

5) Bonds with pre-amortization 
It can happen that there are no redemptions for the first h years, i.e. N1 = N2 = ... 

= Nh = 0. In this case, not having redemptions, the cost of interest for the debtor 
concerns all the issued bonds for the whole length of the pre-amortization. 

6.9. Valuation in shared loans 

6.9.1. Introduction 

In section 6.8 we examined, from an objective point of view, the problem of 
management and amortization of loans shared in bonds. In this section 6.9 we will 
consider the problem of subjective valuation, made at inception or during the loan 
life, of the residual rights connected to owning the bonds, from the point of view of 
the creditor bondholder, the debtor (issuer) and a potential buyer. The logic is then 
that behind Makeham’s formula and the more convenient choice between alternative 
investments on the basis of comparison rates fixed by the decision-maker. 

We limit ourselves to the case of gradual amortization of a bond loan that, as we 
have seen, implies a pluriennial repayment plan by means of draws and randomness 
for the bondholder (but not for the issuer) of the values, and also of the usufructs and 
bare ownerships. Also for the valuation this is the more interesting case that gives 
rise to higher complexity. 
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Indeed, if the issue is not at par, only ex-post, after the draw, it is possible for the 
investor to calculate the effective return exactly44. In fact, the difference (positive or 
negative) c-p between return at redemption and purchasing cost is a “capital gain” or 
“capital loss”, i.e. an “incorporated” return component that, from a previous point of 
view, is gained (or lost) in a random number of years T, where (c p) /(pT ) , i.e. the 
intensity, is also random. It follows that the IRR of the given bond investment is 
random. We will consider, for valuations and choices, an appropriate functional 
average, called the ex-ante mean rate of return for the bond, coinciding with j for at 
par issue.  

In the not at par issues we can highlight the immediate rate of return or current 
yield, given by cj/p, that measures the return of the investment p given by the 
coupon, but not considering the capital gain or loss45.  

Everything will be clarified in what follows, starting from the case of a bond 
with a given maturity. 

6.9.2. Valuation of bonds with given maturity 

Let us consider first the model that follows from the hypothesis of certainty of 
the length, i.e. assuming that the bond has a given maturity. This can occur: 

a) if all the bonds have a common maturity. This is case b1 of amortization with 
one lump-sum redemption, where for both parties length and returns are certain; 

b) only for the bonds that will be redeemed at a given maturity, in the drawing 
bond case.  

Valuing from the bondholder point of view, let us consider the bonds that will be 
called after s years from the issue date, i.e. all in case a) with common maturity s, or 
only the Ns , (1 s n), defined in case b). 

With the usual symbols, in the case of annual coupons, with i being the effective 
delayed annual evaluation rate (subjectively chosen according to the market 
                                                 
44 We highlight that if the issue is at par, the randomness of the length does not imply the 
randomness of the IRR, that coincides with the coupon rate, as it is obvious for the financial 
equivalence principle. Analytically we can deduce that the issue at par is a necessary and 
sufficient condition such that IRR = j. Proof: necessity: if IRR = j, let T be the random length, 
b the issue price and c j being the coupon, must be: - b  + c j [1 - (1+j)-T]/j + c (1+j)-T  = 0  

T, then b = c . Proof: sufficiency. If the issue is at par, - c + c j[1-(1+x) -T]/x + c(1+x)-T  = 0, 
where x = IRR, then: cj[1-(1+x)-T]/x  =  c[1- (1+x)-T] ; j/x = 1, i.e.  x= j.   
45 In the not at par issues the immediate rate is obviously always between the coupon rate and 
the mean rate (or certain rate) of effective return. In at par issues, all the aforesaid rates  
coincide. 
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behavior and to the returns of alternative investments), indicating with W0(i) the 
valuation at issue date (in r=0) on the basis of the expected encashment of the 
bondholder, dependent on the return rate i, results in    

 W0(i)  =   c j as |i+ c (1 + i)-s (6.73)  

(independent of the issue date because we adopted a uniform financial law). The 
symbol W means that this value coincides with the pro-reserve evaluated just after 
the purchase. 

Assuming a market logic (a topic which will be more fully developed in Chapter 
7), we indicate with z(s) the purchase price of the bond at issue date (z(s)<c if at a 
discount, z(s)=c if at par, z(s)>c  if at a premium). Thus, solution x, existing and 
unique, of the equation in i 

  c j as |i  + c (1 + i)-s  =  z(s) (6.74) 

(that, due to (6.73), expresses the equality between the value V0(i) and the price z(s) 
at time 0) is the IRR, the rate to which the mean return rate is taken back, given that 
in the bond investment with certain length the return rate is not random but certain, 
even with not at par issues. 

Given that W0(i) is a decreasing function of i and that i=j if the bond is issued at 
par, it is obvious that in the at discount case the solution for i in (6.74) is x > j, while 
in the at premium case the solution for i in (6.74) is x < j. 

Constraint (6.74) between price z(s) and IRR in case of a given maturity acts 
biunivocally: given the wanted IRR, we obtain the corresponding issue price; and 
conversely, given the price z(s), we find the IRR as rate x that makes fair the 
operation to pay z(s) and to cash s annual coupon  cj and the redemption c after s 
years. Clearly, at fixed c and j, the IRR is a decreasing function of z(s). 

In (6.74), using the solution value x instead of i, then z(s) is obviously also the 
value W0(x) of the bond at rate x, while the two addenda at the left side form, 
respectively, the usufruct and bare ownership of the bond at rate x. 

If, instead, at issue date the valuation is made at an intermediate time (integer) 
r>0, then z(s), to be written z(s-r), becomes the “forward” in r of the security on the 
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exchange market and it is enough to substitute the residual life s-r instead of 
maturity s46. 

With a  semiannual coupon, it is enough to consider in (6.74) the fractional 
annuity as |x

(2) and make the appropriate changes. 

Example 6.6 

For valuations connected to the return, it is enough to consider a single bond, 
even better a virtual share, putting the nominal value (that we suppose equal to the 
redemption value) equal to 100. Let us consider a security with certain maturity, 
which pays semiannual coupons at the nominal rate 7% (semiannual convertible) 
and is redeemed after 8 years. Let us assume the time unit is a half-year and let us 
put the time origin 0 at purchase (at issue date or a following one in the market of 
issued securities) of this share; then put in 16 the redemption time. 

The purchase price P that assures an annual effective return of 6% (being i2 = 
1.06  - 1 = 0.029563 the semiannual rate equivalent to 6% annually) is given by 

P = 3.5 (1 - 1.029563-16)/0.029563 + 100 .1.029563-16  = 106.85 

then the purchase is  “at premium”, given that the annual effective return rate of 6% 
below the coupon annual effective rate, equal to 7.1225% corresponding to a 
nominal rate of 7%. The usufruct is the first addend of the right side, whose value is 
44.11. The bare ownership is the second addend, whose value is 62.74. 

Example 6.7 

Let us consider a bond with certain maturity and the following data: nominal 
value and also redemption value at 9 years after the purchase = 100; annual coupons 
at rate of 6%; purchase price  = 94.65, then the bond is “at discount”. The current 
yield is by definition: 6/94.65 = 6.3391%. The IRR, that measures the effective 
return with the “capital gain”, is solution x of the equation in i 

    94.65 +  6 [1- (1 + i)-9 ] /i +  100 (1 + i)-9  =  0  

                                                 
46 Precisely the pro-reserve Wr in r > 0, dependent on i, is obtained from the right side of 
(6.73), using s-r instead of s. A simple calculation shows that the following recursive between 
subsequent values of Wr , dependent on the IRR of the security: Wr  = (1+i)-1(cj+Wr+1 ) with 
Ws= C (thus putting the redemption soon after time s). In fact, in r < s the bond with value Wr  
gives right after one year, accumulating at rate i, to the coupon cj and to further rights 
valuated Wr+1 at time r+1. Such a simple formula is useful to calculate, using Excel, the 
sequence of residual values at integer times between 0 and s. From another point of view Wr  
is  in r = 0 the spot price at issue date and in r > 0 the forward price, which are found from 
the right side of (6.73), in biunivocal correspondence with the value I = x = IRR. 
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It is found with appropriate methods (it is sufficient a financial calculator) to be: 
IRR  = 6.8147% >  6.3391% (= current yield) >  6% (= coupon rate) 

6.9.3. Valuation of drawing bonds 

inlet us consider case b2 with repayments in n years randomly, according to a 
draw of N1,.., Nn drawing bonds in the years 1,…, n.  Thus after the hth draw the 
number of bonds Lh is given by (6.70). Therefore, extending the considerations of 
section 6.9.2, given the symmetry between the securities, the issue price z is found to 
equal the price N z of the whole of the bond issue to the sum of the present values, 
calculated according to the prefixed IRR x, of the number of bonds which have to 
redeem at different maturities s, the number of which Ns is previously known.  

Thus, the following relation holds 

   N z  Ns c j as |xs 1
n

Ns c (1 x) s
s 1
n  (6.75) 

i.e. 

 z Ns z(s) / Ns 1
n

 (6.75')  

that expresses z as the weighted mean of z(s) with weights Ns/N, which express the 
probabilities, valued at issue date, of draw after s years. 

In (6.75) the 1st addendum of the right side expresses the usufruct and the 2nd 
addendum the bare ownership, referred to the whole of the N bond issue. Therefore, 
we find, dividing by N, the mean usufruct u0 and the mean bare ownership np0 of a 
single bond at time 0. 

Equation (6.75), with given z and unknown x, is also the equation that gives 
(univocally for the algebraic properties of (6.75)) the IRR as the mean effective yield 
rate47 of the investment at price z. Instead, the ex-post yield rate, in the case of a 
draw after s years, is found by solving (6.75) with respect to the unknown rate x, 
with the value of s corresponding to the verified time of draw.  

                                                 
47 We must highlight that the mean effective yield rate is not the real profit rate for the 
investor in a bond, taking into account incorporated revenues and costs; this is the ex-post 
rate, valuable only after the bond call. In fact, the mean effective yield rate is a suitable 
functional mean of feasible ex-post rates owing to drawing. 
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If the valuation is performed at time h  0, in (6.75') it is enough to add from 1 to 
n-h and substitute Nh+s/Lh to Ns/N. In this way the mean values zh, the mean 
usufructs uh and the bare ownerships nph for each bond still alive at time h are 
obtained, resulting in 
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1 1

1
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 (6.76) 

Example 6.8  

Let us value the prices, the mean usufructs and bare ownerships, at issue and 
after 2 years, of the drawing bonds loan, the data of which are: 

n = 5; N = 1,000; c = €5,000; j = 5.60%; x = 6.14%; 
N1 = 150; N2 = 170; N3 = 200; N4 = 230; N5 = 250. 

To apply the resolving formulae we build the following table. 

s as |x  (1 x) s  z(s)  N s / N  Ls  
 (1) (2) (3) (4) (5) 
1 0.942152 0.942152 4,974.56 0.15 850 
2 1.829802 0.887650 4,950.59 0.17 680 
3 2.666103 0.836301 4,928.01 0,20 480 
4 3.454026 0.787923 4,906.74 0.23 250 
5 4.196369 0.742343 4,886.70 0.25    0 

Table 6.18. Elements for calculating values, usufructs and bare-ownerships 

– The price z0 at issue, corresponding to IRR 6.14%, is the arithmetic weighted 
mean of values   z(s), obtainable as a scalar product of vectors (= component product 
sum) given by columns 3 and 4: z0  = €4,923.61;  

– We obtain the mean usufruct at issue by scalar product of column vectors 1 and 
(4), then multiplying by  c j = 280: u0  = €792.16; 

– We obtain the mean bare ownership at issue by the scalar product of column 
vectors 2 and 4, then multiplying by  c = 5,000: np0  = €4,131.45. 

u0 + np0 =  €4,923.61 gives the value z0 in another way. 

Valuing after 2nd refund (r=2), with residual time length of the loan = 3, we have 
to repeat the procedures of calculation already shown, but limit ourselves to the 
averages of the first three elements of columns 1 and 2, taking as weights the 
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redemption percentages N3/L2 = 200/680 = 0.294118; N4/L2 = 230/680 = 0.338235; 
N5/L2 = 250/680 = 0.367647. We obtain:  

u2 = 525.33 ; np2 = 4,424.01 ; z2 = u2+np2 = 4,949.34. 

Particular case: constant principal repayments 

If N is a multiple of n, we can choose Nr = const. = N/n. By introducing this 
value in the 3rd equation into (6.76), we find  

 
  
zh

c

an-h |x

n - h
(1

an-h |x

n - h
)

j

x
     48 (6.76') 

Exercise 6.13 

Let us consider a bond loan of €750,000 shared into 750 bonds redeemable at 
nominal value according to draw, with constant principal repayments and annual 
coupons, with the following parameters: 

– length in years  n = 10 
– coupon rate    j  =  5.5% 
– mean effective yield rate x =  6% 

calculate for one bond the issue price and the forward price after the 3rd draw, which 
realize the assigned yield at 6%. 

A. The unitary result does not depend on the number of issued bonds. Applying 
(6.76'), the following is obtained: 

at issue date (h=0):      z0

1000
    

7.3600871

10
1

7.3600871

10

5.5

6.0
  

       z0  = 1000 (0.7360087 + 0.2639913. 0.9166667) = 978.0007 

after 3 years (h=3):      z3

1000
    

5.5823814

7
1

5.5823814

7

5.5

6.0
  

       z3  = 1000 (0.7974831 + 0.2025169. 0.9166667) = 983.1236 

 

                                                 
48 Equation (6.76') shows that zh/c  is a weighted mean between 1 and j/x with weights 
varying with h. Therefore zh<c  iff  j<x (at discount) while zh>c iff  j>x (at premium). 
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Particular case: debtor installments (almost) constant 

The redemption of a bond loan can also be made with constant annual delayed 
payments for the issuer on the model of the French amortization. Therefore a 
constant installment for the loan of the type R = Nc/ an |j  is to be valued. Then, the 
value of redemption of each security being constant c, both the total redemption 
amount at time r and the numbers Nr of redeemed bonds have to increase in 
geometric progression with ratio (1+j). Thus, it must be Nr = k(1+j)r and from  

Nr N
r 1

n
follows: 

k = N n| j       ;       Nr =  N n| j  (1+j)r   

to substitute in (6.76) for h=0. An easy calculation leads to the formula 

 z0

c

j

x
(1

j

x
)np0  (6.76")  

where in this case the total redemption shares discounted are constant and then: np0 
= nc n| j , highlighting that z0/c is a weighted mean between 1 and np0. The changes 
to make the calculation for zh with h>0 are obvious.  

In addition, we have to observe that the values Nr previously obtained are always 
integer. Therefore, this scheme must be corrected by approximating for each year 
the theoretical number Nr, by its floor and transferring to the following year in 
acc/repayments the accumulated value of the not amount used, then valuing the new 
number of bonds to redeem, always rounding off at integer, and carrying on this way 
till the term.49  

Exercise 6.14 

Let us consider the bond loan with data of Exercise 6.13 but ruled by constant 
installments. Not considering the rounding off to obtain integer numbers, calculate 
such theoretically drawn numbers and also the issue price of one bond. 

 A. Using the formulae discussed above, as 10|0.055  = 0.073619, we find: 

N1 = 750.0.073619.1.055 = 58.250827;  N2 = 1.055.N1 = 61.454622; 
N3 = 1.055 N2 = 64.834626;  N4 = 1.055 N3 = 68.400531; 
N5 = 1.055 N4 = 72.162560;  N6 = 1.055 N5 = 76.131501; 
N7 = 1.055.N6 = 80.318733;  N8 = 1.055.N7 = 84.736263; 
N9 = 1.055.N8 = 89.396758;  N10 = 1.055.N9 = 94.313580. 

                                                 
49 It is obvious that this rounding operation changes the mean yield rate and the ex-post rates 
very little with respect to the calculated ones according to the theoretical redemption with 
exactly constant installments. 
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To check, adding the numbers above, we obtain 750.    

As 0 10|0.055np nc  = 10.1000.0.073619 = 736.19, the issue value is 

z0  = 1000 (0.916667 + 0.083333.0.73619) = 978.02. 

The approach for management years 

Equation (6.76) is obtained using a total direct valuation but it is also possible to 
use the management years approach, that offers the advantage of analyzing the 
temporal development and easily enables a generalization for the hypothesis of 
varying rate and adjustment of the values. 

Proceeding for management years, we find for the year h+s the total amount for 
the paid coupon by the debtor as interest and for redemptions as principal. This 
amount originates from the Lh bonds circulating at time h (or from the N bonds 
issued, if h=0). If it is divided by Lh we obtain for symmetry reasons the mean 
amount s years after h for the generic purchased bond. Then, the value zh assigned to 
each bond, on the basis of an appropriate valuation rate x, is given by  

 
    
zh =  

1
Lh

(Lh s 1ci Nh sc)(1 x) s
s 1

n h  (6.77) 

It is easy to show algebraically the equivalence between the last equation in 
(6.76) and (6.77). Furthermore in (6.77) Lh+s-1/Lh and Nh+s/Lh are respectively the 
probabilities to be drawn for bonds not drawn till h, of no drawing for another s-1 
years and to be drawn in the following year. Given that Lh+s-1 =  Lh+s + Nh+s, the 
total amount of year s can be written as Lh+s-1ci + Nh+sc(1+i), distinguishing for the 
circulating bonds at the beginning of the year h+s the amount for interest for the 
bonds not drawn in the year and the amount for interest and redemptions for the 
drawn bonds50. 

                                                 
50 Let us find here a relevant property for zh. Indicating with c* = ci/x the capital that 
reproduces the annual coupon given at rate x and resulting for equivalence 

 (Lh s 1c * x N h sc*)(1 x) s
s 1
n h

c* Lh
,  

(6.77) can be written as 
zh c * (c c*) Nh s (1 x) s /Lhs 1

n h , 

where, with an obvious financial interpretation, the result of  is: 0< <1. Therefore, zh is 
always between c* and c.  
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If we use the delayed semiannual interest coupon, the same correction factor 
x / 2( 1 x 1) , that transforms the value of the delayed constant annual annuity in 
to that of the semiannual fractional annuity (see Chapter 5), must be introduced in 
the valuation. 

By introducing a direct argument, if we are using a semiannual coupon we have 
to replace ci by the accumulated value at the year’s end at rate x of the two 
semiannual coupon ci/2,  i.e. the value cix[ 1 x 1] /2 .         

In practice, with a semiannual coupon it is enough to substitute in (6.77) the 
annual coupon rate i for its transformed one i' ix / 2( 1 x 1) .  

Recursive relation of a bond value at fixed coupon rate 

In addition, for the valuation of bond loans with drawing redemption at any rate 
x* we can consider the dynamic aspect on the basis of the management years 
approach. Using the symbols already defined, the relation51 between subsequent 
values zh valued at rate x is as follows: 

   Lhzh (1 x) 1(cNh 1 cjLh zh 1Lh 1) ,   (h = 0,...,n -1) (6.78) 

Equation (6.78) extends, to the loans shared in bonds, the recursive relation 
examined in section 6.2 for the unshared loan and is based on a principle of 
preserving the value in equilibrium conditions, expressing the equality between the 
valuation of residual securities at time h, and the sum of the differently used amount 
of such securities in h+1, soon after the (h+1)th draw, valued in h. In fact, 
considering that Nh+1+Lh+1 = Lh, at the right side of (6.78) are added for the total 
loan: 1) the payment in principal for the redemption of drawing bonds in h+1; 2) the 
payments of interest for the living bonds between h and h+1; 3) the valuation of 
residual bonds in h+1. 

Mathematical life and Achard’s formula 

Let us define mathematical life at time r and rate x the exponential mean of the 
possible residual life length of a bond still not drawn in r, on the basis of the 
repayment plan; this indicated by emr , is implicitly defined by 

 (1 x) emr  r sN

rL
(1 x) s

s 1

n r
 (6.79)  

                                                 
51 The considered recursive relation, concerning random values due to the call, shows an 
analogy with the known Fouret’s equation about life insurance theory.  
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Defining as |x = (1 - (1+x)-s)/x as well for non-integer times, the mean value zr 
taken from (6.76), given (6.77), can be transformed in 

 zr =  c j aem r |x  + c (1 + x) –emr (6.80)  

The right side of (6.80) can be split into mean usufruct and mean bare 
ownership, i.e.  ur = c j aem r |x  ; npr = c (1 + x) -emr. Therefore, the mean valuation 
of usufruct and bare ownership, in uncertainty conditions following the repayment 
plan, are equivalent to the certain ones with length emr. In other words, the mean 
financial valuation for random maturity is equivalent to the one that would be 
obtained with a maturity certain at time r+emr, i.e. after a time equal to the 
mathematical life. 

For the expression of ur and npr taken from (6.76), the mean usufruct of a bond 
with nominal and redemption value c can be expressed according to the mean bare 
ownership in the form: 

 r
 j c- p
xru n  (6.81) 

that is Achard’s formula52. It particularizes the Maheham’s formula on a single 
bond, given that, as the amortization with one lump-sum redemption at maturity, the 
intermediate outstanding balances remains always equal to the redemption value c. 

6.9.4. Bond loan with varying rate or values adjusted in time  

It is known that, to face monetary variations or to adjust pluriennial operations to 
the changing of market conditions, it is possible to adopt in the management of 
loans, varying coupon interest rates or indexed outstanding loan balance. 

Sometimes such schemes are also adopted in bond loans. In particular, for the 
valuation considered in this chapter, it is possible to formalize such a scheme if we 
use the approach for management years described in section 6.9.3. 

Let us refer to formula (6.77) and observe that if, due to the varying rates and/or 
to indexing of values, we assume a sequence of coupon interest rates i(s) and/or a 

                                                 
52 The proof follows from: 
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sequence of redemption values c(s) corresponding to years s = 1,..., n–h starting 
from year h 0, then it is enough to replace in (6.77) for each time h+s the coupon 
constant rate i by the varying rate i(s)  and/or the constant unitary debt c by the 
indexed debt c(s) . Considering that usually the indexing of debt is used as an 
alternative to the variation of coupon rate, the following formulae, that at an 
appropriate valuation rate x give the pro-reserve of the total outstanding balance at 
time h 0, hold. In the case of varying coupon rate the pro-reserve is   

 Wh =  (Lh s 1ci (s) Nh sc)(1 x) s
s 1

n h  (6.77') 

while in the case of indexing of the outstanding balance the pro-reserve is 

Wh =  (Lh s 1c
(s)i Nh sc

(s))(1 x) s
s 1

n h

                (6.77'') 
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Chapter 7 

Exchanges and Prices  
on the Financial Market 

7.1. A reinterpretation of the financial quantities in a market and price logic: 
the perfect market 

7.1.1. The perfect market    

The relations examined in Chapter 2, which follow from indifference financial 
laws, give rise to models summarizing preferences in simple or complex exchange 
operations. Such models enable the measurement of the value given to the 
temporary availability of financial capital, by means of calculation of the interest on 
the landed principal or, more generally, of the return of a financial investment. 

Many of these concepts can be reformulated more concretely, putting them in a 
market logic, in particular, of the exchange market, establishing the relations that 
link prices of assets, obtained by the meeting of global demand and supply in this 
market. Therefore, we consider now a different, but analogous, formulation of the 
theory of financial equivalence, which is helpful in understanding the exchanges 
taking place in the financial market. Exchange factors in the presence of effective 
transactions and the indifference relation (in particular, of equivalence if the right 
conditions, which realize the strong decomposability, exist) that links financial 
values of market referred to different times are considered in this formulation. 

The point of view introduced here is therefore an inversion with respect to the 
settings of Chapter 2 and to the particular cases of Chapter 3, which gave rise to the 
results of Chapter 4, 5 and 6. In fact, in the previous chapters, on the basis of a 
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theoretical approach, first a financial law is introduced; from there the value at a 
given time of the activities linked to an operation O net of the losses is obtained; 
finally the price is adapted to the found value. In this chapter we use an empirical 
approach in the sense that the initial input is the price of the activities in O net of the 
losses (price obtainable from “market surveys” in broad sense) and from it – on the 
basis of constraints and relations analogous to those that gave rise to the value – is 
found the coherent structure of return dynamics that links by equivalence the given 
price to O. From this last point of view, we can see, as a particular case of fixed 
rates, the calculation of the internal rate of return (IRR) of a project O (see 
section 4.4). 

To fully understand the approach that we called empiric, it is convenient, for 
simplicity, to refer to the case of bonds, public or private, and to the specific market 
where they are traded. The management of loans shared in stocks and the connected 
financial valuation has already been discussed in Chapter 6, where, amongst other 
things, we considered drawing bonds. In addition, we analyze the properties of 
securities prices that come from a special hypothesis on the financial market, which 
enables us to speak about a perfect capital market.   

We talk about a perfect market when it has the following features: 

– no friction, i.e.: 

- no transaction cost and taxes;  
- the possibility of short selling, i.e. sale of securities not owned by the seller 

with delivery at sale date; 
- no risk of default (thus certainty of results); 
- homogenity of information; 

– continuity,  i.e.: 

- securities are infinitively divisible and can be increased; there is no limitation 
in the trading quantities;  

– competitiveness, i.e. each market operator: 

- maximizing his profit – he prefers, all things being equal, to own higher 
quantities (see rule c of economic behavior in Chapter 1); 

- is a price taker, i.e. he is a passive subject, not active, with respect to price, in 
the sense that his operation does not influence the stock price; 

– coherence, i.e.:  
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– no-arbitrage opportunities1.  

We will call a market satisfying the coherence hypothesis coherent. 

It is clear that the perfect market comes from ideal and theoretical conditions; 
such a market is a model for study. It will be interesting to analyze the properties 
that are valid for transactions in such markets, properties analogous to those 
considered for financial laws in a different content. Note that in a real market some 
of the hypotheses may not be true, as well as some of the properties. 

7.1.2. Bonds 

We will not consider in this chapter random operations, but only bonds with 
certain maturity, concentrating on the following basics types. 

a) Zero-coupon bond 

In such a security the investor returns are completely incorporated; from the 
financial viewpoint, the debtor, who is the issuer of N bonds with maturity t, issue 
value P and nominal (and redemption) value C, makes the pure exchange operation 

 (0, NP) (t, NC)U   (7.1) 

whereas each creditor, subscriber or purchaser of a bond, makes the operation 

 (0, -P) (t,C)U  (7.2) 

Usually the zero-coupon bonds have maturities that are not too long. Referring to 
operation (7.2), the return rate for the length t is given by it = (C-P)/P. With 
reference to a regime of simple accumulation (being t 1) and then to the intensity j 
= it/t, given on the basis of market considerations, we obtain 

 P  = C/(1+jt) (7.3) 

                                                           
1 To clarify this context, an operation O, defined in (4.1) or (4.1'), is called arbitrage (non-
risk) if the amounts Sh, not all zero, have the same sign. Therefore, O is not fair with any 
financial law. There are two types of arbitrage: 

a)  purchase of non-negative amounts, with at least a positive one, at a non-positive price 
(for free or with an encashment); 

b) purchase of non-negative amounts at a negative price (with an encashment). The 
market coherence is equivalent to the principle of “no arbitrage”. 
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i.e. the issue value is the discounted value of C in regime of rational discount 
(conjugated to the simple accumulation). 

Example 7.1 

In the issue of a semiannual zero-coupon bond for 181 days, let the purchase 
price for 100 nominal be 95.18. Not considering taxes, it follows that the per period 
return rate is (100-95.18)/95.18 = 5.0641% and has an intensity equal to 10.0722 
years

-1
. 

Considering a taxation of 12.5%, the purchaser pays effectively 
95.18+0.125 (100-95.18) = 95.7825, to which corresponds a net per period rate of 
4.4032% and an intensity equal to 8.7578 years-1. 

b) Coupon bond 

In such a security, described in Chapter 6 as a shared loan with certain maturity, 
the investor return has a component of return paid periodically, i.e. interest 
payments (coupon payment), to which can be added a component of incorporated 
return, positive or negative (the capital gain or capital loss, with issues or purchases 
respectively at discount or at premium). The investor lends to the issuer the amount 
P (issue price), or buys from the previous investor on the exchange market paying 
the price P (purchase price). In both cases he periodically receives, for the residual 
life, the payment I = C’j of the coupons, with j being the coupon rate and C’ the 
nominal value redeemed at maturity. If the redemption value C is different from the 
nominal value, one considers C in the financial valuation. Here, we consider fixed 
coupon bonds, deferring to the following section 8.5 for a brief introduction to 
bonds with varying coupons. 

Therefore, indicating with n the maturity of the loan, the financial operation for 
the bondholder is given by 

 T&S =  (t, t+1, .... , n-1, n)&(-P, I, ...., I, C+I)  (7.4) 

where we assume t = 0 in the case of subscription at the issue date, t   in case of 
later purchase. In all cases n-t is the length of the investment, equal to the bond 
maturity, if t = 0.  

Fixed coupon bonds are widely used for long-term investments. 

Example 7.2 

Let us consider a 5-year coupon bond with semiannual coupon and nominal 
annual rate 2-convertible of 6%, issue price 96.2 for 100 nominal. Not considering 
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taxes, this results in T&S = (0; 0.5;1; 1.5; 2; 2.5; 3; 3.5; 4; 4.5; 5) & (-96.2; 3; 3; 3; 
3; 3; 3; 3; 3; 3; 103). 

The rates are: coupon rate = 3 %, current semiannual rate = 3/96.2 = 3.1185% 
i.e. annual rate of 6.3343%, effective semiannual rate (with the capital gain), i.e. the 
semiannual IRR of the operation, which is solution x of the following equation: 

 -96.2 + 3 a10 |x + 100 (1+x)-10 = 0  

This results in x = IRR semiannual = 3.4559%, annual IRR 7.0312%. 

Let us also consider a 5-year coupon bond at the annual nominal rate of 6%. It is 
issued at September 1, 2001, then with a maturity date of September 1, 2006, at the 
price of 95.35.  The semiannual coupons are paid on March 1 and September 1 of 
each year until maturity. In t = January 14, 2003 the ex-interest price  (EIP), which 
assigns to the buyer a share of the current coupon after purchase is 95.75.   

Calculation of residual life in t: 3 years+230 days. 

Calculation of net coupon: with taxes at 12.5%, we have: 3 (1-0.125) = 2.625. 

Calculation of net redemption value: with taxes at 12.5%, we have: 100-
0.125 (100-95.35) = 99.419. 

Calculation at time t of the price, called the flat price (FP), which assigns to the 
buyer the whole current coupon, so it is given by the ex-interest price (EIP) plus the 
“before day-by-day interests” (b.dbdi) from the last coupon payment (September 1, 
2002) until t, then for 135 days; we have: FP = EIP + b.dbdi = 95.75 + 
2.625 135/181 = 97.708. 

Calculation of “ex-coupon price” at time t: paying the ex-coupon price ECP the 
buyer obtains the bond without current coupon; so ECP is given by EIP minus 
“after- day by day interests” (a.dbdi) from t until the next coupon payment (March 1, 
2003), then for 46 days; we have: ECP = EIP - a.dbdi = 95.75 - 2.625  46/181 = 
95.08.  Obviously it then also results: ECP = FP - (net) coupon = FP - 2.625. 

Other types of bonds can depend on the variability or randomness of the coupon. 
In fact, we can have: 

– a coupon with varying rate according to a previous agreed rule; 
– a coupon with indexed rate, linked to the future evolution of market or 

macroeconomic indices. 
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7.2. Spot contracts, price and rates. Yield rate 

Using the theory of financial contract, we will develop a parallel discussion to 
that in Chapter 2 that will consider the price formation, in a perfect market or at least 
under the coherence hypothesis, in conditions of certainty. To better clarify the 
analogy, we will use the same symbols, but with a different meaning. 

Referring initially to a unitary zero-coupon bond (UZCB) as a fundamental 
element (given that more complex transactions can be obtained as linear 
combinations of UZCB with increasing lengths), we indicate with small letters the 
times, i.e. the distances from the chosen origin 0. If  

 v(y,z)  ,   y  z (7.5) 

is the market price paid in y to purchase the unitary amount in z on the basis of a 
contract entered into at time y, then such a contract is called a spot contract and 
v(y,z) is the spot price (SP); note that the supply (y;v(y,z)) can be exchanged with 
the supply (z;1). The interval (y,z) is called the exchange horizon (e.h.). 

The analogy of v(y,z) with the discount factor a(z,y) defined in Chapter 2, going 
from values, following subjective valuations, to prices, following market laws, is 
obvious. The position of the variables, (y,z) instead of (z,y) for v, being y<z, is due to 
the prevalent use of operators that prefer a chronological order.  

On the basis of the money return principle it follows that: 

v(y,z) < 1  ,  y<z) (7.6) 

Although prices are formed in light of complex causes, the introduction of 
market hypothesis imposes conditions and constraints. Thus, from market coherence 
it follows that: 

 v(y,z) > 0    (y < z)  ,   v(y,y) = 1  (7.7)  

In the same way, from coherence follows the decreasing of prices with time to 
maturity of the bond (that is the final time of the e.h), i.e.: 

              v(y,z') > v(y,z") ,   (y  z'  z"  2                  (7.7') 

                                                           
2 The proof follows ab absurdo, observing that if it were v(y,z')  v(y,z"), the composition of 
the three operations: 

1) purchase in y of UZCB with maturity z';   
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The return inherent in the exchange between [y,v(y,z)] and (z,1) can be measured 
by the rate, which is defined by: 

 i(y,z)    =    [v(y,z)]-1/(z - y) -1 (7.8) 

Equation (7.8) shows that in this context the rate is not per period but is per unit 
of time, i.e. on unitary base, i.e. on a unitary basis, in particular on an annual basis 
if the unit is a year. 

By inversion of (7.8) the following is obtained: 

 v(y,z)  =  [1 + i(y,z) ]-(z - y) (7.8') 

Observation    

When the price v is a function of return variables, as in (7.8'), and such variables 
are expressed by the market, then v changes its nature, assuming that of value 
following a calculation.    

We define intensity of return at maturity (intensity r.m.), referring to a spot 
contract, by the function: 

(y,z)     =   - ln v(y,z)/(z - y) (7.9) 

By inverting (7.9) f(y,z) satisfies: 

 v(y,z)  =  e- (y, z)(z - y) (7.10) 

that is – recalling the definition of instantaneous intensity given in Chapter 2 for a 
discount law with two time-variables, to which those for the price formation are 
analogous – the intensity (y,z) coincides with the constant instantaneous intensity 
of the exponential law equivalent, in return terms, to the one obtainable from v(y,z) 
on the e.h. (y,z). In addition, due to (7.9), being: ln v(y,z) = - (y,u)duy

z , the 
formula (y,z) = ( (y,u)duy

z )/(z-y) follows. Then the intensity r.m. (y,z) is the 
mean of the instantaneous intensities (y,u) agreed in y and varying with u in the 
interval (y,z). 

                                                                                                                                        
2) short sell in y of UZCB with maturity z"; 
3) purchase in z' of UZCB with maturity z"; 

is equivalent to the union of the supplies [y, v(y,z") - v(y,z')], [z’,1-v(z',z")]. Taking into 
account (7.6), in the hypothesis to verify the amount of the former supply is non-negative and 
that of the second one is positive, in contrast with the no arbitrage principle. 
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It follows that in the continuous time approach the return structure of the spot 
market can be fully found from the assumption of the financial law d(y,u) because 
from it we find for all intervals (y,z) the intensity r.m. and then the spot rates and 
prices according to the other constraints. In fact, taking into account (7.9) and (7.10) 
and the comparison between  (7.8) and (7.9), we find the relation between rate and 
intensity r.m., expressed by:  

(y,z)  =  ln[1+i(y,z)] (7.11) 

or, by inversion, 

 i(y,z)  =  e (y,z) -1 (7.11') 

From what has been said above, the analogy of (7.11) with that regarding the 
constant intensity of the exponential law as a function of the rate:  d = ln(1+i) (i.e. 
flat structure) is obvious. Furthermore, due to (7.11), recalling the logarithmic 
series, it follows that: 

 
(y,z) ( 1)k 1 [i(y,z)] k

kk 1
 

where the quadratic approximation of (y,z) is: i (y,z) [i (y,z)]2 
 i (y,z) . It 

follows that the exact value of (y,z) is between its quadratic approximation and 
i(y,z). 

Example 7.3 

Assuming a (bank) year as the time unit, if 0.95 is the price paid on February 15, 
2003 to purchase a UZCB with maturity June 30, 2003, the annual return rate of the 
operation is 14.6578% , while the intensity at maturity is 0.136782 per year.  

In fact, we have: 

 

  

v(y,z) 0.95

y (February 15,  2003)

z (June 30,  2003)
 z y

135
360

 years
 

from which, due to (7.8), it follows that: 

i (y,z) v(y,z)

1
z y 1 (0.95)

360
135 1 0.1465783

h(y,z) ln  v(y,z) /(z y) ( ln  0.95)
360
135

0.1367821
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Example 7.4 

The SP of a quarterly UZCB with annual intensity of intensity r.m. at level of 
0.03 is equal to 0.99252805. The annual return rate is 3.0454%. 

In fact, we have: 
( , ) 0.03

1 0.25 years
4

y z

z y
 

from which, for (7.10), it follows that: 

v(y,z) e (y,z)(z y ) e 0.03 0.25 0.99252805 

i (y,z) e (y,z) 1 (0.99252805) 4 1 0.03045453  

If the zero-coupon bond is not of unitary type, having a redemption value S at 
maturity z, for the perfect market property (continuity and price-taker) it follows 
that the price of the security in y, indicated with V(y,z;S), is equivalent to that of S  
UZCB, the price of which is v(y,z), which then must be: 

 V(y,z;S)    =    S  v(y,z)  3   (7.12) 

Example 7.5 

Using data of Example 7.3, on February 15, 2003 the SP of a zero-coupon bond 
with redemption value 100 and maturing on June 30, 2003 is 95. 

In fact, we have: 

V (y,z;100) 100 v(y,z) 100 0.95 95 

Example 7.6 

If the SP of a two-yearly zero-coupon bond with redemption value 200 is 150, 
the SP of a corresponding two-yearly UZCB is 0.75. 

                                                           
3 We can prove (7.12) ab absurdo, on the basis of the no arbitrage principle, showing that the 
hypothesis of inequality of prices between the non-unitary zero-coupon bond, whose value is 
V(y,z;S), and the S UZCB allows an arbitrage, obtained with the short selling of stocks with 
higher price. So that if, in (7.12),  the results are V(y,z;S) < S v(y,z), the arbitrage is obtained 
by buying in y the bond that gives (z,S) and short selling in y the S  UZCB with maturity z. 
We obtain an analogous conclusion if V(y,z;S) > S v(y,z). 
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In fact, we have: 

v(y,z)
V (y,z; 200)

200
150
200

0.75
 

We have highlighted the analogy of v(y,z) with the discount factor a(z,y) of a 
financial law with two time variables. However, we can also work in a market logic 
with the analogy of the accumulation factor m(y,z) resulting from the conjugated law 
a(z,y), then given by its reciprocal.  We can precisely define: m(y,z) = 1/v(y,z) as the 
ratio between the encashment K due to owning the bond at maturity z and the price 
Kv(y,z) paid for its purchase at a time y<z. It follows that m(y,z)-1 is the 
incorporated per period return rate, which refers to e.h. and is obtained by such 
investment. 

Considering complex securities that regard inflow vectors {Sk} of subsequent 
amounts according to the maturities {zk}, i.e. operations that regard m the supplies: 

 {(z1, S1), (z2, S2), ..... , (zn, Sn)} (7.13) 

it is obvious that, given the infinite divisibility of securities in a perfect market, such 
amounts can also be obtained forming a portfolio S (= set of distinct securities) of 

kSk 1
n  UZCB, divided amongst n maturities in order to have Sk UZCB with 

maturity zk (k=1,2,...,n). If the operation is carried out at time y, the price of one 
UZCB that matures in zk is given by v(y,zk), thus the price in y of the whole portfolio 
is: 

 Skk 1
n

 v(y,zk )  (7.14) 

From the market coherence follows the property of price linearity: the price 
V(y,S) of the portfolio S, i.e. of the complex security, must coincide with the value 
(7.14). In formula:  

 V(y,S)   =  V
k 1
n (y,zk;Sk )   =  Skk 1

n
 v(y,zk ) 4  (7.15) 

                                                           
4 For proof, it is enough to repeat for each maturity the argument in footnote 3: if (7.15) is not 
satisfied, there is arbitrage with the buying (selling) in t of the complex security and the 
selling (buying) in t of  Sk  UZCB with maturity  zk . 
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The supplies of the bonds with fixed coupon (coupon bonds or bullet bonds) or 
also bonds with varying coupon (for instance, if the coupon rate varies due to 
indexing or other reasons) are included in (7.13). Indicating with C the redemption 
value of the security at time zn and with Ih the varying coupon at time zh  (I if 
constant), for such a security (7.13) becomes 

 {(z1, I1), (z2, I2), ..... , (zn-1, In-1), (zn, Cn + In )} (7.13') 

and the supplies can also be referred to the residual time after the buying on the 
market, not necessarily at the issue date. Therefore the value at time y, on the basis 
of (7.15), is given by 

 V(y,S)   =   Ikk 1
n

 v(y,zk )  + C v(y,zn ) (7.15') 

Until now we have considered prices and rates referred to a given maturity, to 
apply to securities already in the market. Let us now consider a change of the 
intensity r.m. regarding one security, or a set of homogenous securities, during its, 
or their, economic life. This is the return rate (or yield rate), defined as that rate, 
which, used to discount the cash flow produced by the security after its purchase and 
to its maturity, makes the result equal to its purchase tel quel price. Using, referring 
to the security purchased in 0:  

– P    =  purchase tel quel price; 
– n    =  residual length; 
– Y    =  yield rate; 
– Sk   =  net encashment at time zk  > 0  (k = 1,...,n). 

The rate Y is the solution of the equation: 

 P
Sk

(1 Y )zkk 1
n  (7.15") 

It is immediately verified that the yield rate is the IRR on a time interval to 
maturity and is reduced to the spot rate i(0,n) if the security is a zero-coupon bond 
with life n. 

Observing a given number of almost homogenous bonds and calculating for each 
length the yield rate corresponding to the market price according to (7.15"), on a 
Cartesian diagram we obtain a set of points with the same number of points as the 
observed bonds. By means of an appropriate interpolation we find the yield curve, 
putting on the abscissa the residual length and on the ordinate the interpolated yield. 
Such a curve is a model that gives information on the behavior of the observed bond 
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market if a representative sample is used. Obviously the obtained yields for each 
length can be different from those effectively obtainable from each security on the 
market. 

We can usually say that if for the security its measured point is above (below) 
the yield curve, it is overestimated (underestimated) by the market, with the 
following input to sell (buy) if there is assumed a tendency for equilibrium. 

In conclusion, the indication obtainable from the yield curve dot does not have 
the same coherence as the spot rates. However, theoretically we can say that the 
yield rate Y of a single bond is a functional mean (according to Chisini 1929) of the 
spot rate applied for the valuation of such a bond. In a formula, indicating with Sk  
the expected inflow due to the bond at time zk , by definition this constraint:  

Sk

1 i(0,zk ) zkk 1
n Sk

(1 Y )zkk 1
n

 
follows. 

Example 7.7 

A bond issued on January 1, 2003 gives the right to the encashment sequence: 4; 
2; 101, and according to the time schedule July 1, 2003, October 1, 2003, and 
November 15, 2003. If, at the issue date and according to the same time schedule, 
the spot prices structure of the UZCB is (0.96; 0.94; 0.93), the price of the bond is 
99.65.    

In fact, indicating with: 

1 2 1 3 2;   

1 2 3 1 2 3

1 2 3
3 1.56

    ;  
12 12 12

, , )                                    = 4 , = 2 , = 101
1.1.2003 ; 1.7.2003 ;  1.10.2003 ; 15.11.2003

(

             z y year z z year z z year

S = (S S S S S S
y z z z

     v y, 1 2 3) 0.96    ;     ( ) 0.94     ;     ( ) 0.93  z v y,z v y,z

 

we have: 

V (y;S) V (y,z1;S1) V (y,z2;S2) V (y,z3;S3)

S1v(y,z1) S2v(y,z2) S3v(y,z3)

4 0.96 2 0.94 101 0.93 99.65
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Example 7.8 

If the price of the complex security in Example 7.7 is 100 on January 1, 2003, 
keeping all the other conditions the same, we would realize a secure profit of 0.35 
using the following arbitrage strategy: 

– short selling the complex bond, with a return of 100; 
– buying 4 UZCB maturing on July 1, 2003, with a cost of 4.0.96 = 3.84; 
– buying 2 UZCB maturing on October 1, 2003, with a cost of 2.0.94=1.88; 
– buying 101 UZCB maturing 15.11.2003, with a cost of 101.0.93= 93.93.  

As the result, we would have: 100 -3.84 -1.88 -93.93 = 0.35 > 0. 

Example 7.9 

Given the function 
1

, 1 1.06 1.06z yv y z  that defines the SP of a 

UZCB, where time is measured in years, the intensity r.m. of the spot contract, 
expressed in  years-1 is given, due to (7.9), by: 

ln  1 1.06 1.06
,

yz
y z

z y  

If z-y is small, 1.06z 1.06y<<1 results, then a good approximation is 
MacLaurin’s formula: 

1.06 1.06,     
yz

y z
z y

(incremental ratio of 1.06 x) 

Using y =3 , z = 5.5, v(y,z) = 0.842622 results and we obtain:  

y,z
0.171237

2.5
0.068495 

 

Instead, using y=3 ; z=3+1/12 = 3.083333, we obtain: v(y,z) = 0.994236 , (y,z) 

= 0.069367 , approximated (y,z) = 1.196813 1.191016

0.083333
0.069568 . 
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7.3. Forward contracts, prices and rates 

We can now consider operations that include an exchange between two dates, 
both of which are after the time of the contract. Comparing with spot contracts, there 
is no more coincidence between the time of contract (in which the conditions are 
fixed) and the time of payment. In such a case, we talk about forward contracts, 
which give rise to delayed sales, agreed with time x and taking place in y > x. If, as 
we suppose, the sold asset, delivered and paid in y, is a security that gives right to an 
encashment at maturity z  y (or many encashments at times zk  y), then for each 
trade we consider three times, x, y, z. In addition, we can underline that in x (= 
contracting time) there is no money or asset transfer and that the price of the asset 
(in particular, of the security), agreed with x, is a forward price (f.p.). 

The elementary contract that we consider here is the forward purchase, with 
conditions agreed at time x but with delivery and payment at time y > x, of a UZCB 
redeemed at time z  y. Let us indicate with:  

 s(x;y,z) ,    x < y  z 5  (7.16) 

the f.p., fixed in x, of the UZCB delivered in y and with maturity in z.  

Also here is obvious the analogy of s(x;y,z) with the continuing discount factor 
with the meaning specified in Chapter 2. Furthermore, for continuity reasons 
implied in  the perfect market hypothesis for x y, it results in: 

 s(y;y,z)  =  v(y,z)  (7.17) 

then the spot contract can be seen as a limit case of the forward one. 

Example 7.10 

It is agreed today to buy, after two months, at the price of 0.80, a UZCB with a 
residual life of four months at the time of purchase. 

In symbols, expressing time in months, the agreed forward price is: s(0;2,6) = 
0.80. The financial operation can be written as  (0,2,6)&(0,-0.80,+1) or 
(0,0) (2, 0.80)U (6, 1)U . 

                                                           
5 In general, we can put:  x  y  z , meaning that if x = y  z , the contract is a spot contract. 
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Analogously to what was seen for the spot contracts, the return in the exchange 
between [y, s(x;y,z)] and (z,1) can be measured by the rate referred to a time unit, 
i.e. on unitary base, in particular annual, defined by: 

 i(x;y,z)    =    [s(x;y,z)]-1/(z - y) - 1 (7.8") 

where, by inversion, 

 s(x;y,z)  =  [1 + i(x;y,z)-(z - y)  (7.8"') 

In addition we define intensity r.m., referring to a forward contract, by the 
function: 

(x;y,z)  =   - ln [s(x;y,z)]/(z-y)  (7.9') 

By inversion: 

 s(x;y,z)  =  e - (x;y,z)(z - y)  (7.10') 

therefore (x;y,z) coincides with the constant instantaneous intensity of the 
exponential equivalent law in terms of a return to the one obtainable from s(x;y,z) on 
the e.h. (y,z). Furthermore, due to (7.9'), owing to  

ln s(x;y,z) = - ( , )
z

y
x u du , 

we have (x;y,z) = ( (x,u)duy
z )/(z-y). Thus, the intensity r.m. (x;y,z) in forward 

contracts is the mean of the instantaneous interest intensity (x,u) fixed in x and 
varying with u in the interval (y,z). Also in the forward market with a continuous 
time approach, the return structure is given starting from an instantaneous intensity 
function (x,u). In fact, from { (x,u)} we find (x;y,z) on the basis of the 
aforementioned formula. From the comparison of (7.8") and (7.9') we find the 
relation between (x;y,z) and rate, expressed by:  

(x;y,z)    =  ln [1 + i(x;y,z)]  (7.11") 



304     Mathematical Finance 

or, by inversion: 

 i(x;y,z)  =   e (x;y,z)  - 1 (7.11"') 
On the analogy of the conclusions obtained about the spot contracts and the 

(7.11), for (x;y,z), due to (7.11"), the quadratic approximation of the logarithmic 
series holds; therefore (x;y,z) is included from its quadratic approximation 

2( ; , ) [ ( ; , )]i x y z i x y z  to i(x;y,z). 

Furthermore, for forward contracts, as well as for the spot contracts, we can 
work in a market logic in terms of accumulation and accumulation factors on the 
basis of conjugated law. Therefore, we can define, analogously to the continuing 
accumulation factor defined in Chapter 2, the factor r(x;y,z) = 1/s(x;y,z) defined as 
the ratio between the encashment K, due to the ownership of the bond at maturity z, 
and the price Ks(x;y,z) paid for its purchase at time y<z in a forward contract with 
conditions agreed in x. It follows that r(x;y,z)-1 is the per period incorporated return 
rate, referred to the e.h., obtained from such an investment. 

Example 7.11 

Considering with the same spot price function defined in Example 7.10  the 
forward contract with x = 1; y = 3; z = 5.5, the intensity r.m. is given by   

, ln  0.852869; , ln 0.063660  
, 2.5

v x z
x y z z y

v x y  

The corresponding annual interest rate i(x;y,z), given in the forward contract, 
satisfies relation (7.11"), i.e.: 0.063660 ln  1 ; ,i x y z , from which: i(x;y,z) = 

0.065730 = 6.5730   

7.4. The implicit structure of prices, rates and intensities 

It is fundamental that the following property of the implicit structure, if the 
market coherence holds true, links the parameters of forward contracts to those of 
spot contracts, propriety that can be summarized regarding prices with the formula: 

 s(x;y,z)  =  v(x,z)/v(x,y)   ,    (x  y  z)  (7.18) 

Equation (7.18) expresses briefly the fact that forward prices are obtained 
implicitly from the spot ones on the basis of the constraint 
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 v(x,z) = v(x,y) s(x;y,z)   ,   (x  y  z)  (7.18') 

equivalent to (7.18) and analogous to that valid for continuing factors.  

Thus, we speak about the theorem of implicit prices, observing that (7.18) 
follows from the coherence hypothesis6. This hypothesis leads us to assert that the 
applied forward rates are those implicit in the spot structure.  

Following from (7.18) and (7.7'), the relations that summarize the main 
properties of f.p. implicit in SP are as follows:  

(x  y  z):   s(x;y,z) > 0     (positive f.p.) 

(x  y): 
( ; , ) 1,      

( ) = 1
s x y z if y < z

s x; y, y
 (f.p. not greater than the profit at maturity) 

(x  y'< y"  z):  s(x; y', z)  <   s(x; y", z) (increasing of f.p. with initial time of e.h.)  

(x  y  z'< z"): s(x; y, z')  >   s(x; y, z")  (decreasing of f.p. with final time of e.h.)  

Furthermore, the perfect market hypothesis in conditions of certainty implies  the 
property, analogous to decomposability (for which, as specified in Chapter 2, the 
initial discount factor is equal to the continuing one), thus called: independency from 
contractual time, on the basis of which 

 s(x;y,z) =  s(y;y,z) = v(y,z) ,  (x y z)  (7.19) 

follows. Due to this equation, the f.p. s(x;y,z) in x to pay in y the UZCB redeemed in 
z, must coincide with the SP v(y,z) of such UZCB; this is according to the principle 
of price uniqueness of exchange on the horizon (y,z), i.e. of its invariance with 
respect to x. 

                                                           
6 Also in this case the proof holds ab absurdo, observing that the lack of (7.18) effectiveness 
leads to certain profit. Indeed, if v(x,z) > v(x,y) s(x;y,z), we would obtain a certain profit from 
the composition of the following three operations at time x:  

1)  short selling of UZCB redeemed in z;  
2)  spot purchase of s(x;y,z) unit of UZCB redeemed in y; 
3)  forward purchase, with delivery in y, of the UZCB redeemed in z. 

The result of this composition is a certain profit of the amount v(x,z) - v(x,y).s(x;y,z) in x, 
owing to the set-off among other supplies. We obtain a certain loss in the hypothesis v(x,z) < 
v(x,y) s(x;y,z), because there is a certain profit inverting the sign of each price. (7.18) is also 
justified by the fact that it must be equivalent to pay in x the spot price v(x,z) to purchase a 
unitary amount in z or investing it in x to purchase in y  z at forward price s(x;y,z), but to 
obtain the required amount s(x;y,z) in y we have to pay in x the spot price v(x,y).s(x;y,z). 
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In other words, in light of the hypothesis of independence from contractual time, 
(7.18) becomes 

 v(x,z)  =  v(x,y) v(y,z)  (7.20) 

Then the financial law induced by the spot structure is decomposable. 

Note that in practice the following can happen: 
– at time x<y the “future” price v(y,z) has to be considered random, then (7.19) 

does not hold; 
– we can find, a posteriori, SP and f.p. not satisfying (7.18); 
– the f.p. are not implicit by SP, then there are arbitrage possibilities. 

In this case, the ideal situation of a perfect market does not hold.  

Example 7.12 

Referring to data from Example 7.7, the structure of forward prices, implicit in 
that of the given spot prices, is: 

 

s(y; y,z1)
v(y,z1)
v(y, y)

v(y,z1) 0.96    (being v(y, y) = 1)

s(y; z1,z2)
v(y,z2)
v(y,z1)

0.94
0.96

0.97916666

s(y; z2,z3)
v(y,z3)
v(y,z2)

0.93
0.94

0.98936170

 

Obviously the price on January 1, 2003 of the complex examined security is 
always 99.65. In fact, we have: 

1 1 2 1 2 1 3 2 3 1 2 1( ; )  ( ; , )  ( ; , ) ( ; , )  ( ; , ) ( ; , ) ( ; , )
3.84000000 1.88000000 93.92999992 99.64999992  99.65

V y S S s y y z S s y z z s y y z S s y z z s y z z s y y z

 

In light of forward prices s(x;y,z) given by the market, we can define the implicit 
forward rates, considered as (mean) rates on unitary basis (in particular, annual), 
that express the return given by the market, and that are obviously linked to s(x.y,z) 
by (7.8") and (7.8"'). 
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If market returns are defined by means of spot rates (7.8), the implicit forward 
structure can be expressed in terms of rates using the following fundamental relation 
that follows from (7.18), applying (7.8) and (7.8"): 

 

z-x
z-y

y-x
[1  i(x,z)1 ( ; , )     
[1  i(x,y)

i x y z ]=
]

  (7.21) 

As already mentioned, we can also define the rate structure as a function of the 
intensities r.m. defined in forward contracts, adopting suitable symbols and 
changing the definitions (7.9) and (7.9'). Thus, due to (7.11) and using natural 
logarithms in (7.21) we find 

(x; y, z) (z - y)   =   (x, z)(z - x)  -  (x, y) (y - x)  (7.22) 

from which 

(x,z)  =  (x,y) (y - x)
(z - x)

 + (x;y,z) (z - y)
(z - x)

 (7.23) 

where the spot intensity r.m. in the total interval (x,z) is the weighted mean of the 
intensities r.m. (where the former is a spot intensity and the latter is a forward 
intensity) for the partial intervals (x,y) and (y,z) by which the total interval can be 
decomposed. 

Example 7.13 

Referring to the data from Example 7.7, the spot rate structure is: 

i (y,z1) v(y,z1)

1

z1 y 1 (0.96)
12

6 1 0.085069444  

i (y,z2) v(y,z2)

1

z2 y 1 (0.94)
12

9 1 0.085999258 

i (y,z3) v(y,z3)

1

z3 y 1 (0.93)

12

10,5 1 0.086474374 

 

Obviously, rates increase with decreasing prices. The corresponding structure of 
implicit forward rates is: 
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i (y; y,z1)
1 i (y,z1)

z1 y

z1 y

1 i (y, y)
y y

z1 y

1 i (y,z1) 0.08506944 

i (y; z1,z2)
1 i (y,z2)

z2 y

z2 z1

1 i (y,z1)
z1 y

z2 z1

1 0.08786128 

i (y; z2,z3)
1 i(y,z3)

z3 y

z3 z2

1 i (y,z2)
z2 y

z3 z2

1 0.089329438 

 

or, equivalently, using the results from Example 7.12: 

i (y; y,z1) s(y, y,z1)

1
z1 y 1 i (y,z1) 0.085069444 

i (y; z1,z2) s(y,z1,z2)

1
z2 z1 1 0.087861277 

i (y; z2,z3) s(y,z2,z3)

1
z3 z2 1 0.089329438 

 

Recalling that in the hypothesis of deterministic perfect market we have:    
s(y, y,z1) v(y,z1)

s(y,z1,z2) v(z1,z2)

s(y,z2,z3) v(z2,z3)

 

it follows that: 

  

i(y,z1) i(y, y,z1) 0.08506944  
i(z1, z2 ) i(y,z1, z2 ) 0.08786128   
i(z2 , z3 ) i(y,z2 , z3 ) 0.08932944  
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This means that borrowing, at market conditions, the amount 99.65, which is 
needed to purchase the security, and paying back at due dates the amounts to which 
it is entitled, at the security’s maturity, the debt will all be paid back in full without 
adding any cost or profit. 

In fact, we have: 

Time  Outstanding balance 
January 1, 2003   99.65 
July 1, 2003 99.65 1 i (y,z1)

z1 y
4   99.80208327  

October 1, 2003 
  99.80208327  1 i( z1, z2 ) z2 z1 2  99.92553188  

November 15, 2003 
 99.92553188 1 i(z2 , z3 ) z3 z2 101  0  

In practice, the spot rates, that are realized on the market on the subsequent due 
dates, can be different from the foreseen ones on the basis of the  above-mentioned 
hypothesis.  

If, for example, the observed spot prices are higher than the foreseen rates and 
are equal to: 

ieff (y,z1) i (y,z1) 0.085069444

ieff (z1,z2) 0.088865467

ieff (z2,z3) 0.089432222

 

then the described operation would imply, for the debtor, a loss of 0.02495764 
which is equal to the outstanding balance at maturity. In fact we have: 

   Time       Outstanding balance 
January 1, 2003   99.65 

July 1, 2003 99.65 1 i (y,z1) z1 y 4  99.80208327  

October 1, 2003 
    99.80208327  1 i( z1, z2 ) z2 z1 2  99.92553188  

November 15, 2003       99.94904525 1 ieff (z2,z3)
 z3 z2 101 0.02495764   

If the observed spot prices were lower than the foreseen ones, then the operation 
described above would imply a profit for the debtor. 
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7.5. Term structures 

7.5.1. Structures with “discrete” payments       

The previous formulae gave prices, rates and intensities for spot or forward 
contracts, related to payment dates in . 

According to market practice, without loss of generality, we now suppose for the 
payment dates a discrete “lattice” type distribution,  i.e. such that the payments are 
made at the beginning (or the end) of periods of the same length, that we assume to 
be unitary7. Then, referring to a contract time t  , let us consider a complex 
security with n equi-staggered maturities, that we assume as positive integers, 
starting from t; then we use a payment schedule (t, t+1,..., t+n). It follows that for 
financial valuations made in the previous section, we are interested in spot prices 
v(t,t+k) and forward prices s(t;t+h,t+k), spot rates i(t,t+k) and forward rates 
i(t;t+h,t+k) (referred to the year or, as a general case, to any unit of time), spot  
intensities r.m. (t,t+k) and forward intensities r.m. (t;t+h,t+k), where: 

  h   ,  k  ; 1  h  k  n .  (7.24) 

In this case the definitions and coherence relations seen for the general case are 
valid. In particular, if h=k  the forward prices have value 1 and the forward rates 0.   

If the referring time t (i.e. of contract or valuation) is only one, in the sense that 
no other date is simultaneously considered, it is convenient to put t=0. Such a choice 

                                                           
7 No necessarily annual. As an example, with semiannual, quarterly, etc., due dates in the 
market, it is enough to assume semester, quarter, etc., as the unit of measure adjusting times 
and equivalent rates and assuming a semiannual, quarterly etc., structure of prices and rates. 
We will develop this in section 7.5.2 in more details. The only restriction to such measure 
variation is that the due dates are rational numbers. In such a case, written in the form mi/di , 
(i  =1....n) and indicating by lcm the least common multiple of the denominators d1,...,dn  
(obtained, as known, decomposing them into factors and taking the product of common and 
non-common factors, each with the highest exponent), it is enough to reduce the unit of 
measure according to the ratio lcm, where – using ki = lcm /di – the new maturities are the 
integers miki . By filling the tickler with all other integers in the interval where we put 
payments equal to zero, we obtain the wanted tickler with a unitary period. For example, 
assuming the maturities December 7, August 13, May 22,  the lcm of denominators is 3.5.23 = 
120. Therefore, reducing by 120 the unit of measure, we have: k1 = 10, k2 = 15 , k3 = 24 and 
the new maturities are 70, 195, 528. By completing with natural numbers the interval (70, 
528) (in which, except for the three given times, we put no payments), we obtain the wanted 
distribution. In addition, we have to observe that more often the market gives returns by 
means of annual rates (or intensities) where in such cases we have to find the equivalent rates 
between year and the period here used as unitary, if it is subdivision of a year. 
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is not restrictive, if we consider the arbitrary time origin,8 and it allows the reduction 
of the symbols, where the first variable is implicit and the other time variables are 
written by bottom indexes. It is then enough, with the aforesaid meaning of the 
symbols, to use9:  

 v(t,t+k) = vk ;  s(t;t+h,t+k) = sh,k  
 i(t,t+k) = ik ;  i(t;t+h,t+k) = ih,k   (7.25) 
  (t,t+k) = k ;  (t;t+h,t+k) = h,k 

Then we assume, unless stated otherwise, the symbols in (7.25) and the 
hypothesis that encashment on securities can occur only on the dates 

 T  =   (1,...,k,...,n)  (7.26) 

It follows that we measure e.h. with natural numbers. Let us also assume a 
market complete and perfect (or, at least, coherent) in the sense that there is the 
possibility of having a zero-coupon bond at each time in (7.26) and the known 
properties hold true, amongst which is the property of independence from the 
amount and coherence.  

We can then outline the term structures for prices and rate in case of discrete 
dates, deducing the formulas that, referring to prices, rates and intensities express 
each of them as function of the others. They are obtained from those seen in 
section 7.2 and 7.3 considered for the discrete case, i.e. using x=0 and y,z  . For 
simplicity, from now on we will assume in the application the annual unit of 
measure, but it is easy to also consider multiples or submultiples periods, as we will 
see in section 7.5.2.  

Spot structures  

The symbols in (7.12) and (7.15) give the spot prices (SP) V(0,k;Sk)  in t=0 of 
the zero-coupon bonds that pay the amount Sk in k. It follows that  

 vk  =  V(0,k;Sk) / Sk (7.27) 

                                                           
8 The position t=0 does not imply uniformity in time of the financial law underlying the rates 
term structure. However, if we assume uniformity of time, the financial results do not depend 
on the choice of the time origin. In more general cases, for instance, if we have to compare or 
take into account in the same context different structures with different transaction times t1, t2, 
..., we have to refer to the general case defined above.  
9  The single time subscript of the spot rate are not to be confused with those used in Chapter 
3 and 5, which have a different meaning. In the same way the double subscript in the forward 
parameters with integer time are not to be confused with the pairs of variables of the spot 
parameters with real times seen in section 7.2. 
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is the SP of the corresponding UZCB. For the linearity property of price it is not 
restrictive to refer only to UZCB with SP vk. Thus, it is clear that for a portfolio of n 
zero-coupon bonds with amounts Sk payable in k, (k = 1,...,n) – where the security 
that is entitled to the supply (k,Sk) is equivalent to a given number of zero-coupon 
bonds with amount payable in k the sum of which is Sk – the SP is:   

 V(0,S)  =  Skk 1
n

 vk  (7.27') 

From the sequence {vk} we find the rate structure (on annual bases) of spot 
interest {ik} in t=0 by means of the following formula that describes equivalently 
the scenario of the SP: 

 ik  =   vk-1/k - 1  ,  (k = 1, ... ,n)  (7.28) 

If the spot rates are ik in t=0, we find the unitary price, inverting (7.28): 

 vk  =  [1 +  ik]-k ,  (k = 1, ... , n)  (7.28') 

From the sequence {vk} or the sequence {ik} we find the instantaneous 
intensities r.m. structure k  in t=0 for spot contracts. It is enough to modify (7.28) 
or (7.28') and consider the natural logarithm, resulting in: 

k  =   - ln vk/k  =   ln [1 + ik]  (7.29) 

Inverting (7.29) we find: 

 vk  =  e -k 
k  ;   ik   =  e k - 1 (7.29') 

Example 7.14 

In the market of zero-coupon bond with redemption value 100, are fixed today 
(t=0) the following SP dependent on annual payments dates,  which, divided by 100, 
define vk: 

 96.28  with maturity 1;   93.71  with maturity 2;   
 90.08  with maturity 3;   87.88  with maturity 4. 

The corresponding spot rates structure in 0 is as follows: 

 i1 = v1-1 -1    =  0.038637  = 3.8637%;   
 i2 = v2-0.5 -1 =  0.033016  = 3.3016% 
 i3 = v3-0.333-1 =  0.035437  = 3.5437%   
 i4 = v4-0.25 -1 =  0.032827  = 3.2827% 
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The intensities r.m. structure is as follows: 

 1 = -ln v1       =  ln (1+i1) = 0.037910 
 2 = -ln v2/2     =  ln (1+i2) = 0.032483 
 3 = -ln v3/3    =  ln (1+i3) = 0.033424 
 4 = -ln v4/4     =  ln (1+i4) = 0.032299 . 

From the sequence {vk} we find the spot discount (or advance interests) rate (on 
an annual basis) structure {dk} in t = 0 on the interval (0,k) by means of the 
following formula: 

 dk  =   1 - vk1/k ,      (k = 1, ... , n)  (7.28") 

which is obtained by inverting: vk  =  (1 - dk)k .  

By comparing (7.28') and (7.28") we find 

 dk  =  ik / (1+ik ) ,     (k = 1, ... , n)  (7.28'")  

that generalize a well known formula valid for flat structure, obtainable form (3.53). 

Example 7.15 

With the same value vk  as in Example 7.14, the annual spot discount rates are, 
according to (7.28"): 

d1  = 1 - v11.000  =  0.037200  ;  d2 = 1 - v20.500  =  0.031961; 

d3  = 1 - v30.333 =  0.034225  ;  d4 = 1 - v40.250  =  0.031783. 

The results for the spot structure obtained in Examples 7.14 and 7.15 can be 
easily found using an Excel spreadsheet as shown below. 

           

Maturit
y 

Spot price % Delayed spot rate Spot intensity 
r.m.  

Advance spot 
rate 

1 96.28 0.0386373 0.0379096 0.0372000 

2 93.71 0.0330160 0.0324826 0.0319607 

3 90.08 0.0354375 0.0348240 0.0342246 

4 87.88 0.0328268 0.0322995 0.0317834 

Table 7.1. Spot structure 



314     Mathematical Finance 

The Excel instructions are as follows. 2nd row: titles; from the  3rd row: 
column A A3: 1; A4:= A3+1; copy A4, then paste on A5 to A6; 
column B  insert data (spot prices %) on B3-B6; 
column C C3:= (B3/100)^-(1/A3)-1; copy C3, then paste on C4 to C6; 
column D  D3:= ln (1+C3); copy D3, then paste on D4 to D6; 
column E  E3:= 1-(B3/100)^(1/A3); copy E3, then paste on E4 to E6. 

Forward structures 

The market fixes the structure of prices, rates and intensities for forward 
contracts. In a coherent market the implicit forward structure is assumed, i.e. derived 
from the spot structures on the basis of formulae that adapt (7.18) to (7.24).  

Always using the contract time in t=0, we obtain the following basic relation that 
expresses the forward price (f.p.) structure sk-1,k of UZCB according to the spot 
structure vk for annual e.h. (or uniperiod): 

 sk--1,k   =  
 

vk

vk-1
  ,        (k = 1,...,n)  (7.30) 

which, for k=1, simply expresses the known relation for the SP: s0,1 = v1.  

The corresponding structure of forward (implicit) interest rates for annual e.h. is 
given by 

 ik--1,k  =  sk--1,k -1 - 1 =  
 

vk-1
vk

 - 1 ,   (k = 1,...,n)  (7.31) 

By inversion we find 

 sk--1,k   =  (1 + ik-1,k)-1 (7.31') 

From (7.31), and recalling (7.28), the implicit rates theorem, which is expressed 
by the following equation, is obtained: 

 1 + ik--1,k   =  1

1

k

k-1
k

k - 1

+i

+i
 ,        (k = 1,...,n) (7.32) 

which gives the implicit forward structure according to the spot structure.  
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The forward market structure can be expressed according to the spot structure 
also using the intensity r.m. k-1,k , obtainable from ik-1,k and sk-1,k  using 

k-1,k  =  ln (1+ik-1,k)  =  -ln sk-1,k ,  (k = 1,..., n)  (7.29") 

In fact it is possible to show the validity of the formula:   

k-1,k = k k - (k-1) k-1 ,    (k = 1,...,n)  (7.22') 

which particularizes (7.22). Applying this formula recursively with varying k, by 
adapting (7.23) to discrete times, the following is obtained: 

k  =   r 1,r / kr 1
k  ,  (k = 1,..., n)  (7.23') 

i.e. the spot intensity for k periods is the arithmetic mean of the forward intensities 
in the unitary periods of such horizon (spot in the first of them). 

By applying (7.32) recursively, we finally find that 

  (1 + ik )k  =  (1 ir 1,r )
r 1
k

 ,  (k = 1,...n)  (7.33) 

i.e. the spot accumulation factor 1+ik , with reference to the horizon of k unitary 
consecutive periods, is the geometric mean of k forward accumulation factors 
relative to the single periods. In this sense the rate ik on the e.h. (0,k) in a coherent 
market is a functional mean, according to Chisini, of the forward rates ir-1,r.  

If, instead, the rates varying for unitary horizons are given as ik--1,k, we implicitly 
find the spot prices, expressed by  

 vk = (1 + ik) -k   =   (
r 1
k 1+ir-1,r )-1 ;  (k = 1,...,n)  (7.30') 

Sometimes it is convenient to highlight the corresponding forward discount (or 
advance interest) rate (implicit) structure for annual e.h., expressed by 

 dk--1,k  =  1 - sk--1,k  =  1 - 
 

vk

vk-1
 ,   (k = 1,...,n)  (7.31") 

from which, recalling (7.28"), we find 
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 1 - dk--1,k   =   

 

 k
1-dk

 k-1
1-dk - 1

  ,       (k = 1,...,n)  (7.32') 

which links forward discount rate structure as a function of the spot ones. Applying 
recursively (7.32'), we finally find 

  [1 - dk]k  =   [
r 1
k 1- dr-1,r ] ,     (k = 1,...,n)  (7.33') 

analogous to (7.33), i.e. the spot discount factor (1-dk) referred to the horizon of k 
unitary consecutive periods is the geometric mean of the k forward discount factors 
of each period. 

Example 7.16 

In a coherent market the discount factors vk , (k = 1,...,4), obtained from the spot 
prices for annual horizons up to 4 years, given in Example 7.14, are fixed. The 
forward price structure sk-1,,k for unitary securities for annual horizons is as follows: 

s0,1  =  0.9628/1.0000  =  0.962800 
s1,2  =  0.9371/0.9628  =  0.973307 
s2,3  =  0.9008/0.9371  =  0.961263 
s3,4  =  0.8788/0.9008  =  0.975577 

The corresponding implicit forward interest rate structure is 

       
  
 ik -1,k [sk 1,k ] 1 1

[1 ik ]k

[1 ik 1]k 1
1 

and recalling the results of Example 7.14, the structure assumes the values:  

i0,1  =  0.962800-1 -1  =  0.038637  =  1.038637
1

 1 

i1,2  =  0.973307-1 -1  =  0.027425  =  
 
1.033016 2

1.038637
1  

i2,3  =  0.961263-1 -1  =  0.040298  =  
 

1.035437 3

1.033016 2
1 

i3,4  =  0.975537-1 -1  =  0.025434  =  
 

1.032827 4

1.035437 3 1  
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Let us verify (7.33) for the values obtained here: 

 k=1:  1.038637 =  1.038637 
 k=2:  1.0330162 =  1.038637 . 1.027425 
 k=3:  1.0354373 =  1.038637 . 1.027425 . 1.040298 
 k=4:  1.0328274 =  1.038637 . 1.027425 . 1.040298 . 1.025034 

The corresponding implicit forward discount rate structure (which is seldom 
used)   

dk-1,k = 1 - sk-1,k  assumes the following values: 
d0,1 = 0.037200;    d1,2 = 0.026693; 
d2,3 = 0.038737;    d3,4 = 0.024423. 

It is left as an exercise for the reader to verify (7.32') and (7.33'), recalling the 
results of Example 7.15.  

The developments of the results obtained in Example 7.16, can be easily 
obtained using an Excel spreadsheet as follows, as can a comparison of the spot rates 
given by (7.28) and reported in Example 7.16. 

Maturity Spot price% Fwd price  Spot rate Fwd delayed 
rate 

 Fwd 
intensity 

Fwd advance 
rate 

1 96.28 0.962800 0.038637 0.038637 0.037910 0.037200 

2 93.71 0.973307 0.033016 0.027425 0.027056 0.026693 

3 90.08 0.961263 0.035437 0.040298 0.039507 0.038737 

4 87.88 0.975577 0.032827 0.025034 0.024726 0.024423 

Table 7.2. Spot and uniperiod forward structure 

The Excel instructions are as follows: 2nd row: titles; from the 3rd row: 

column A: A3: 1; A4:= A3+1; copy A4-paste on A5 to A6; 
column B:  insert date (spot price %) on B3 to B6; 
column C:  C3:= B3/100; C4:= B4/B3; copy C4, then paste on C5 to C6; 
column D:  D3:= (B3/100)^-(1/A3)-1; copy D3, then paste on D4 to D6; 
column E:  E3:= (1/C3)-1; copy E3, then paste on E4 to E6; 
column F:  F3:= ln (1+E3); copy F3, then paste on F4 to F6; 
column G:  G3:= 1-C3; copy G3, then paste on G4 to G6. 
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The description of a forward structure can be completed with the extension to 
prices and interest rates for e.h. not only unitary but of integer positive length (then 
uni- and multi-period). The market gives at contract time t=0 the forward prices sh,k 
of the UZCBs paid in h and entitle us to the unitary amount in k, with h,k specified 
in (7.24).  

Such prices sh,k  can be expressed as elements of an n n  upper triangular 
matrix (if h is the row index and k the column index), i.e. 

 

    

 

1,1s 1,2s 1,3s .. 1,ns
2,2s 2,3s .. 2,ns

3,3s .. 3,ns
.. ..

n,ns

  (7.34) 

where: 

 ,
 =  1  ,   

 
<  1  , h k

if   h= k
s

if   h < k
  ,      1  h  k  n (7.34') 

The number of elements in (7.34) is n/(n+1)/2, but the meaningful prices ( 1)  
are those for which h<k, the number of which is n(n-1)/2.  

In the coherent market hypothesis, due to (7.18), for the dates (7.24) the general 
formula holds, that is the basis of a forward structure for a transaction made in t=0: 

 
    
sh,k

vk
vh

  ,    (1  h < k  n)  (7.35) 

Owing to: 

  

vk
vh

 = 
  

vk
vk-1

 
  

vk -1
vk-2

 .... 
  

vh+1
vh

 

we find, adapting the indices in  (7.30), that: 

 sh,k   =      sr-1,rr h 1
k  =   (1+ ir-1,r ) 1

r h 1
k

 (7.36) 
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If we want to express the constraint of the forward structure working on the 
rates, then indicating with ih,k the agreed interest rate in 0 on the e.h. (h,k), using 
(7.31) we obtain:  

 [1+ih,k]k-h = vh

vk

= 
  

vk

vk-1
 

vk-1
vk-2

...
vh+1
vh

1

=    [1 +  ir-1,rr=h+1
k ]  (7.37) 

Equation (7.37) expresses the annual forward accumulation factor, averaged on 
e.h., as a geometric mean of the forward accumulation factors for each period and 
links it to the f.p. of the UZCB. In the last term of (7.37), we can read the varying 
per period rates applicable in the market; the comparison with the left side shows 
that ih,k is equivalent to the mean forward rate on the horizon (h,k) in the flat 
structure that follows from the exponential regime. 

From (7.37) we find the delayed forward interest rate (annual base) on the e.h. 
(h,k): 

 ih,k  = sh,k -1/(k-h) – 1 (7.38)  

or advance  

 dh,k  = 1 - sh,k1/(k-h)  (7.39) 

(obtaining this last formula using a generalization of (7.28")).  

For a comparison between (7.38) and (7.39), we find the relation between rates, 
analogous to (7.28'") 

 dh,k  =  ih,k /(1+ih,k)  (7.39') 

Example 7.17 

Still using the structure of the SP given in Example 7.14, let us find the 
corresponding structure of the f.p. in a coherent market, leaving out the restriction of 
annual horizons. In this case, the upper triangular matrix sh,k (1  h  k  4), with h = 
row index and k = column index, is of order 4 and assumes the values given below, 
found through (7.35).  

Using v1 = 0.9628; v2 = 0.9371; v3 = 0.9008; v4 = 0.8788, let us find the prices 
matrix sh,k  and forward rates ih,k by means of an Excel spreadsheet that has the 
following form. 
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Prices structure sh,k  

H Price sp 
% 

k=1 k=2 k=3 k=4 

1 96.28 1.00000
0 

0.973307 0.935604 0.912754 

2 93.71  1.000000 0.961263 0.937787 
3 90.08   1.000000 0.975577 
4 87.88    1.000000 
    

Rates structure  ih,k  

H  k=1 k=2 k=3 k=4 
1   0.027425 0.033841 0.030897 
2    0.040298 0.032638 
3     0.025034 
4    

Table 7.3. Uni- and multi-period forward structure 

The Excel instructions are as follows: 1st and 2nd  row: empty; then: 

price structure: from 3rd to 8th row. 3rd and 4th row: titles; rows 5-8: 
column A  A5: 1; A6:= A5+1; copy A6, then paste on A7 to A8; 
column B insert data (spot prices %) on B5 to B8; 
diagonal (k=h) C5:1; D6:1; E7:1; F8:1;  
1° supradiagonal (k=h+1):  D5:= $B6/$B5; copy D5, then paste on E6, F7; 
2° supradiagonal (k=h+2) E5:= $B7/$B5; copy E5, then paste on F6; 
3° supradiagonal (h+2=k) F5:= B8/B5; 

rate structure: from 10th to 15th row. 10th and 11th row: titles; rows 12-15: 
column A A12: 1; A13:= A12+1; copy A13, then paste on A14 to 
 A15; 
1° supradiagonal (k=h+1) D12:= D5^-(1/($A6-$A5))-1; copy D12, then 

paste on E13, F14; 
2° supradiagonal (k=h+2) E12:= E5^-(1/($A7-$A5))-1; copy E12, then  

paste on F13; 
3° supradiagonal (h+2=k) F12:= F5^-(1/(A8-A5))-1; 
oher cells: empty. 
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In the price matrix the values on the first supradiagonal are obviously the prices 
sk-1,k obtained in Example 7.16. The corresponding implicit rates (excluding those 
that are reduced to spot rates) are found by means of (7.37). 

Let us verify the properties of (7.37). With the numbers obtained by the previous 
matrix ih,k we find: 

 e.h. 1-3:  1.033841 2    =     1.027425 . 1.040298 
 e.h. 2-4:  1.032638 2     =     1.040298 . 1.025034  
 e.h. 1-4:  1.030897 3    =     1.027425 . 1.040298 . 1.025034 

If we complete the matrix ih,k  using ih,k = 0 if h k , and add 1 to each element 
of the square matrix ih,k  thus obtained, then in each square submatrix, extracted 
from the new matrix and such that its main diagonal has elements ih,k  satisfying 
h<k, the number written in the NE vertex is the geometric mean of those which 
appear on the main diagonal of the submatrix.  

The previous considerations show how the gathering of market prices implicitly 
leads us to formalize on the given time horizon (h,k) a financial exchange law, 
defined only on integer time variables, that can be expressed by means of discount 
factors sh,k (<1 if h<k) defined in (7.5) or analogously by means of accumulation 
factors rh,k  = 1/sh,k  or interest rates ih,k  or discount rates dh,k. 

On the contrary, we can think – as was already observed at the beginning of this 
chapter – that the term structure valid in a market follows the definition of an 
empirical financial law that in a given time interval holds on the market for simple 
operations. Such a formulation can be extended to complex operations, in particular 
to annuities and amortizations. This will be considered in Chapter 8. 

Observation 

From the previous formulations, in particular from (7.33), it is obvious that the 
term structure maintains the principle of compound accumulation, even if in a more 
general way that leads to varying rates. 

Building up the term structure of spot and forward rates. 

Referring to the bond market, the use of spot rates implies that the financial 
flows generated by different securities are assumed to be discounted at the same 
rate. It is then essential to deduce from the available data the so-called term 
structure of spot rates applicable to all securities of the market as a function of the 
different evaluation time interval. 
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It is possible to find this structure, expressed by spot rates for the same interval 
terms, starting from an observation taken from the market on the issues prices of 
bonds with maturities increasing in arithmetic progression (according to natural 
numbers, on the basis of an appropriate choice of the unit time). We can then find a 
sequence of spot rates applicable to the examined market. 

The calculation procedure can be described as follows: decide the time unit and 
change the rates accordingly; carry out a statistical observation of the issue prices 
(i.e. at time 0) of the securities in a bond market with different financial profiles; 
obtain a price for each of the maturities h = 1,...,n. If we refer to a coupon bond with 
maturity h, knowing the price V(h) and the coupon amounts {Ik}, k = 1,...,h, and the 
redemption Ch for the bond with maturity h 10 we can write the solving system, 
where the price V(h) of the bonds maturing after h periods is made equal to the 
present value according to the unknown rate structure. This system is given by: 

  
V(h ) Hh 1

Ih Ch

(1 ih )h
  ,   h = 1,...,n

  (7.40) 

where: 

H0 0  ,  Hh
Ik

(1 ik )k
 , h =1,...,n -1

k 1
h

 (7.41) 

In (7.40), the unknowns ih  appear in a triangular way, in the sense that in the 1st  
equation (h=1) we have only i1  which is then found directly, in the 2nd equation 
(h=2) we have i1 and i2 which are again found directly knowing i1 in H1; then, in 
the hth equation the first term is found using (7.41) and in the second term the only 
unknown is ih  which is found immediately.  

This procedure assumes the existence of a sequence of securities with maturities 
distributed at regular intervals and quoted at equilibrium prices. Note that, different 
from the yield rates, there exists for each time interval a biunivocal correspondence 
between spot rates and prices.  

Example 7.18 

Let us apply the procedure to build up the spot rate structure, starting from the 
price sequence, referring to five bond types (which are not all zero-coupon bonds), 

                                                           
10 For the ZCB it is enough to set all the values {Ik} at zero.  
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with equally spaced maturities. Data are summarized in the first four columns of the 
following tables; each row is referred to one bond; the first three are zero-coupon 
bonds and the other two have fixed coupons. The last column gives the results, 
obtained as specified below, i.e. the spot rates referred to the length of the bond 
specified in the here 2nd column (but valid in the market of the bonds considered). 

Nominal value Residual length 
(in years) 

Semiannual 
coupon 

Market price Spot rate  (%) 
on given length 

100 0.25             0% 98.90 4.524 
100 0.50             0% 97.64 4.893 
100     1.00             0% 95.11 5.141 
100 1.50             3%       100.84 5.495 
100 2.00             2.50% 98.80 5.741 

 Table 7.4. Computation of spot rate structure 

For each of the zero-coupon bonds, the price is given by 100.vk where k=0.25; 
0.50; 1.00 and the spot rate is found applying (7.8), i.e. 

0.9890 1/ 0.25 0.04524 ; 0.9764  1/ 0.50 0.04893 ; 0.9511 1 0.05141  

The first three spot rates are then obtained in the last column. The 4th bond, with 
fixed coupon, is entitled supplies: (0.5,3), (1,3), (1.5,103), and the price is the sum 
of the present values of each amount using the spot rate referred to its time. The first 
two rates (in 2nd and 3rd row) are already known: their values are i0.50 = 4.893% and 
i1.00 = 5.141%. The third, i.e. i1.50, is obviously the solution to the following 
equation: 

3

1.04893 0.50
3

1.05141
103

(1 i1.50)1.50
100.84

 

from which  i1.50 = 0.05495. The 5th bond, with fixed coupon, is entitled to the 
following supplies: (0.5; 2.5), (1; 2.5), (1.5; 2.5), (2; 102.5), and here the price is the 
sum of the discounted values with four spot rates referred to the intervals which are 
multiples of a half-year. The first three, indicated with i0.50, i1.00 and  i1.50, are 
already known. The fourth, i.e. i2.00, is obtained analogously as the solution of the 
following equation: 

2.5

1.04893 0.5
2.5

1.05141
2.5

1.05495 1.5
102.5

(1 i2.00)2
98.80 
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from which  i2.00 = 0.05741. In this way, substituting the results found in the 
subsequent equations for fixed coupon bonds, we find the whole term structure of 
spot rates corresponding to the price gathered on the market for the examined 
securities.  

Also for a forward contract, we can build up a term structure of forward rates. It 
is enough to refer to the building up of a sequence of spot rates seen before and 
obtaining from them the implicit forward rates, on the basis of market coherence.    

7.5.2. Structures with fractional periods      

As already shown at the beginning of section 7.5.1, we clarified that the time 
structure in “discrete” scheme is referred to unitary periods, but the unit of times is 
not necessarily a year. In financial practice, there are market structures with a period 
which is not annual, but fractional, in which spot and forward prices, rates, 
intensities r.m have as a basis a fraction of a year (semester, quarter, month, etc.), 
while pluriennial periods are not used. In such a case, the e.h. and the bond 
maturities will be multiples of such fractional periods. Let us give a brief insight into 
this argument. 

We must observe that the definition and transformation formulae given in section 
7.5.1 are still valid, without any modification, with fractional periods, except for the 
time measure that is no longer a year, but a fraction of a year. Then the prices 
concern assets with fractional maturities and the rates refer to periods that are 
fractions of a year.  

It is unnecessary to repeat here the formulae to adapt them to this case: it is 
enough to declare the different time unit. The argument will then be clarified 
developing, using Excel, Examples 7.19, 7.20 and 7.21, which closely follow 
Examples 7.15, 7.16 and 7.17, which refer to annual bases. 

Example 7.19 

On the UZCB market there is fixed today (t=0) the following SP as a function of 
the quarterly maturities, which define vk , assuming the quarter as the unit to 
measure time:  

– 0.9866  with maturity after one quarter;  0.9788  with maturity after two 
quarters; 

– 0.9654  with maturity after three quarters;  0.9521  with maturity after four 
quarters. 
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In the following Excel table, with formulations analogous to those see in 
Example 7.15, the corresponding structures of spot delayed and advance rate and 
also of the intensity r.m. are set out. 

Maturity Spot price Delayed spot rate Spot intensity r.m.  Advance spot 
rate 

1 0.9866 0.0135820 0.0134906 0.0134000 
2 0.9788 0.0107716 0.0107140 0.0106568 
3 0.9654 0.0118067 0.0117376 0.0116690 
4 0.9521 0.0123469 0.0122713 0.0121963 

Table 7.5. Quarterly basis spot structure 

Comparing with the Excel instruction of Example 7.15, to go from the 2nd column to 
3rd and 5

th
  column we do not have to divide by 100, because they are prices of 

UZCB.  

Example 7.20 

Using the data on prices given in Example 7.19, in the following Excel table are 
fixed starting form the spot structure, with formulations analogous to what was seen 
in Example 7.16, the corresponding one period structure of forward prices and rates, 
delayed and advance, and also the intensity r.m. 

Maturity Spot price Fwd price  Spot rate Fwd delayed 
rate 

Fwd intensity Fwd advance 
rate 

1 0.9866 0.986600 0.013582 0.013582 0.013491 0.013400 

2 0.9788 0.992094 0.010772 0.007969 0.007937 0.007906 

3 0.9654 0.986310 0.011807 0.013880 0.013785 0.013690 

4 0.9521 0.986223 0.012347 0.013969 0.013872 0.013777 

Table 7.6. Quarterly basis spot and uni-period  forward structure 

 Comparing with the Excel instruction of Example 7.16 to go from the 2nd 
column to 3rd and 4th column we do not have to divide by 100, given that one 
considers prices of UZCB.  

Example 7.21 

Using the data on prices given in Example 7.19, in the following Excel table with 
formulations analogous to what seen in Example 7.17, the corresponding 
multiperiod structure of forward prices and rates is set out. 
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 Prices structure s0;h,k   

h Spot price k=1 k=2 k=3 k=4 
1 0.9866 1.000000 0.992094 0.978512 0.965031 
2 0.9788  1.000000 0.986310 0.972722 
3 0.9654   1.000000 0.986223 
4 0.9521    1.000000 
     

 Rates structure i0;h,k   

H  k=1 k=2 k=3 k=4 
1   0.007969 0.010920 0.011936 
2    0.013880 0.013925 
3     0.013969 
4      

Table 7.7. Quarterly basis uni- and multi-period forward structure 

The Excel instructions are those in Example 7.17. 

Observations 

In banks and Stock Exchange markets it is used to consider nominal annual 
return rates even in case of fractional structures. In the considered case, with 
quarterly structure and data from Example 7.20 (with structures of any frequency, it 
is enough to use m instead of 4), given the uniperiod forward rates in the 5th column 
of the following Excel table, it is enough to multiply by four to have (in the 6th  
column) the nominal annual return in the current quarters. 

However, these values show on an annual basis the return of each quarter, but do 
not give the effective return rate obtained on an annual e.h. To obtain this, starting 
from an investment in 0 with a given structure, we proceed as follows. The return 
rate rk on an e.h. of k periods is found from   

 1+rk  = (1 + ik )k  =  (1 ir 1,r )
r 1
k  (7.33") 

which extends (7.33) referring to fractional structures. For k=1,2,3,4, the values of ik 
are the quarterly spot rates shown in the 4th column of the table, while the values of 
rk are shown in the 7th column and are the return rates on the e.h. of the first k 
quarters, which is also the basis. In particular, for k=4 we obtain (with the data of 
Example 7.20 to which the table is referred) the rate 0.050310, which is the effective 
return rate for one year and on an annual basis,  better than the nominal rate. 
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k Spot price Fwd price  Spot rate Fwd rate  Nominal 
annual rate

Return rate 
0-k 

1 0.9866 0.986600 0.013582 0.013582 0.054328 0.013582 
2 0.9788 0.992094 0.010772 0.007969 0.031876 0.021659 
3 0.9654 0.986310 0.011807 0.013880 0.055521 0.035840 
4 0.9521 0.986223 0.012347 0.013969 0.055876 0.050310 

Table 7.8. Nominal annual rates in the current quarters 

The Excel instructions for this table are as follows. After 2nd row for titles, the 
first 5 columns are the same as those in Example 7.20; in addition: 
6th column:  (nominal annual rates) F3:= 4*E3; copy F3, then paste on F4 to F6; 
7th column:  (return rates e.h. 0-k) G3:= (1+D3)^A3-1; copy G3, then paste 
 on G4 to G6.  

7.5.3. Structures with flows “in continuum” 

Let us consider the case in which the flows are continuous (for instance a 
continuous trading market). Let us first observe that, assuming continuous time, the 
formulae (7.8) and (7.8") are enough to define the spot rate i(x,y) and the spot 
intensity (x,y) according to the SP v(x,y).  

In addition, with continuous payment flows, the implicit structure, corresponding 
to the spot structure, we have to consider infinitesimal e.h. (y, y+dy) where the 
forward prices s(x;y,y+dy) go to 1 and the implicit forward rates i(x;y,y+dy) go to 0, 
losing any meaning. It is then appropriate to refer directly to the instantaneous 
discount intensity time structure. The spot structure is found from formulae of the 
type of (2.23) (or inversely (2.24)) reinterpreted in market terms. The term structure 
is found from the spot structure based on the known constraints. The functions 
    (x, y )  are then the starting point of the term structure in continuous time.  

With discrete schedules we can build up a term structure starting from an 
instantaneous intensity     (x, y )  that gives, always in symmetric hypothesis, an 
exchange law in continuum, from which are found spot and forward prices, rates and 
intensities r.m.. We show here the following formulae that are immediately 
justifiable (referring to a transaction time that is not to restrictive too put in t = 0): 

 vk =  e
(0,u )du0

k

 (7.42) 

 sh,k  =  e
(0,u )duh

k

 (7.43) 
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  ik  =  e
( (0,u )du ) / k

0
k

-  1 (7.44) 

   ih,k  =  e
( (0,u )du ) /(k h )

h

k

 -  1 (7.45) 

 
 k

 =  1
k

(0,u)du0
k  (7.46) 

 
    

h,k
 =  1

(k - h)
(0,u)duh

k  (7.47) 

Example 7.22 

For investment on the horizon (0;5), the return financial law is ruled by the 
instantaneous intensity (0,u), according to current time u, (0  u  5), for operations 
agreed in 0, defined by (0,u) = 0.04 + 0.00564 u - 0.00033 u2 , where, for example: 
(0;0) = 0.04; (0;2) = 0.05; (0;5) = 0.06. 

On the horizon (0;5), by means of (7.47), we obtain the intensities r.m.  

k-1,k for annual intervals, that we will indicate with Hk . We obtain: 
Hk  (0,u)du const.  0.04   u 0.00282  u2 0.00011  u3

k 1
k

k 1

k
 

   0.04 +  0.000282 (2k -1) -  0.00011 (3k2 3k 1)  

Thus: 

H1 = 0.042710 ; H2 = 0.047690 ; H3 = 0.052010 ; H4 = 0.055670 ; H5 = 
0.058670 

from which, due to (7.43), the values: 

31 20,1 1,2 2,30.958189 ;   0.953429 ;   0.949319 ;  HH Hs e s e s e

  s3,4 e H 4 0.945851 ;   s4,5 e H 5 0.943018  

follow. From the intensities k-1,k = Hk for annual intervals we find, due to (7.45), 
the corresponding implicit forward rates ik-1,k = e H k 1, obtaining:   
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  i1,2 0.048845 ;    i2,3 0.053386 ;   i3,4 0.057249 ;  i4,5 0.060425 .  

The spot intensities r.m.  for k years are written: 

k
1
k

Hrr 1
k

  

and it follows that:  

  1 0.042710 ;    2 0.045200 ;   3 0.047470 ;   4 0.049520 ;  5 0.051350 .  

In addition, the forward intensities r.m. are given by:  

h,k
1

k h
Hrr h 1

k

With the given instantaneous intensity we obtain, for example:  

2;4 = (0.05201+0.05567)/2 = 0.05384. 

The spot rates ik on an horizon of k years, expressed by (7.44), but which can 
also be written in the form e (k) 1, are: 

  i1 0.043635 ;       i2 0.046237 ;    i3 0.048615 ;    i4 0.050767 ;   
i5 0.052691 .    
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Chapter 8 

Annuities, Amortizations and Funding 
in the Case of Term Structures 

8.1. Capital value of annuities in the case of term structures       

In Chapter 5 the annuity evaluation, defined as a financial operation for which 
the amounts do not show any sign inversion, has been made in the case of a flat 
structure. Only in Chapter 6, regarding annuities formed by loan amortization 
installments and the management of bond loans, did we consider briefly the case of 
varying rates. 

It is appropriate here to extend the scenario, assuming that such supplies are 
made in a perfect market, featured by a given term rate structure and then spot prices 
for goods with delayed delivery, obtained applying discount factors to the forward 
values of such goods. In a wider context than that of the security market and with 
the symbols introduced in Chapter 7, if v(y,z) defined in (7.5) is used as a discount 
factor to apply to the value Sz an asset with purchase in y and delivery at time z>y to 
have the spot price Py,z , then 

 Py,z   =   v(y,z) Sz (8.1) 

while for a transaction at time x<y<z, fixing the value defined in (7.16), the forward 
price Px;y,z in y of an asset of value Sz  at delivery z is given by 

 Px;y,z   =   s(x:y,z) Sz (8.1') 
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If the market is perfect (then the property of independence from the transaction 
time holds true, given by (7.19)), we have x: s(x;y,z) = v(y,z),  where  Px;y,z  =  
Py,z. However, the market coherence property, defined in Chapter 7, is enough for 
the developments of this chapter.  

Let us consider a complex operation O whose amounts have the same sign and 
are payable according to a tickler with n dates in a given interval; we have seen 
already that it is not reductive to assume this tickler is equally spaced1.  The rates are 
per period in the case of a given term structure. For simplicity we will refer mainly 
to annual rate structures and to annual periods, unless otherwise stated, for which 
what has been said in section 7.5.2 holds. 

Then O has a tickler on a time horizon of n years, that can be written: 
(T,T+1,....,T+n); let us indicate the corresponding amounts with R0, R1,...,Rn, 
assuming them to be all negative and at least one positive. It is known that this 
operation O is called annuity, temporary for n years2 (Rh are the installments of the 
annuity) and it can never be fair. In an annuity with delayed payments it is with 
certainty R0 = 0; if the payments are advance, it definitely is Rn = 0. 

Generalizing the formulation seen in Chapter 5, where we assumed a flat rate 
structure, we can here evaluate the annuity O at any time on the basis of a discrete 
term according to what was specified in section 7.5.1. It is clear that the results that 
will be obtained in this chapter – where we generalize those obtained in Chapters 5 
and 6 considering annuities, amortizations of shared and unshared loans and 
funding, evaluated on the basis of varying rates according to term structures – are 
meaningful only if we can assume that the rate structure, introduced at the starting 
time, remains valid for the whole time horizon of the considered operation. On the 
contrary a periodic adjustment of the structure is necessary to evaluate the pro-
reserves. 

It is convenient here to reinterpret the spot and forward prices defined in 
Chapter 7 also in terms of discount factors for the evaluation. In addition, recalling 
an observation introduced in section 7.5.3, it is convenient, also with discrete 
ticklers, to obtain the term structure following from a function (integrable) of 
instantaneous intensity (x,y). We suppose that this intensity on the considered time 
horizon (assuming the reflexivity and symmetry, with the meaning specified in 
Chapter 2, and in particular cases also the strong decomposability) holds. 

                                                 
1 This topic has been discussed in section 7.5.1. 
2 We could consider the case of perpetuities as the limit case for n , but it is hard to 
introduce a term structure on an infinite interval. 
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For known results, generalizing the formulae from (7.42) to (7.47) we find the 
following spot and forward elements of the structure in the discrete scheme, i.e. with 
the constraints (7.24): 

 the spot present value 

v(T,T+k) = a (T+k,T) = 1/m(T,T+k) = e
(T, )d

T

T k

 (8.2) 

 the delayed interest spot rate (on the unitary base) 

 i(T,T+k) = m(T,T+k)1/k -1 =  v(T,T+k)-1/k -1 = e
(T, )d

T

T k 1 k

-1 (8.3) 

 the spot return at maturity 

(T,T+k) = ( (T , )d
T
T k ) / k (8.4) 

 the advance interest spot rate (on the unitary base) 

d(T,T+k)   =  1 -  v(T,T+k)1/k   =  1 - e
(T, )d

T

T k 1 k

    (8.5) 3  

 the forward present value 

s(T;T+h,T+k) = v(T,T+k)/ v(T,T+h) = e
(T, )d

T h

T k

    (8.2') 

  the delayed interest forward rate (on the unitary base) 

i(T;T+h,T+k) = s(T,T+h,T+k)-1/(k-h)-1 = e
(T, )d

T h

T k 1 (k h )

-1 (8.3') 

 the forward return at maturity 

(T;T+h,T+k) = 
    
( (T , )d

T h
T k

) / (k h) (8.4') 

 the advance interest forward rate (on unitary base)  

 d(T;T+h,T+k) = 1 - s(T;T+h,T+k)1/(k-h) = 1 - e
(T, )d

T h

T k 1 (k h )

 (8.5') 

Generalizing what was seen in Chapter 4, where a flat rate structure is 
considered, the value in T * of O is called capital value of the annuity; or, more 

                                                 
3 From (8.3) and (8.5) it follows that i(T,T+h) and d(T,T+h) are (mean) annual rates in the 
interval from T to T+h. 
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precisely: initial value or present value of prompt annuity if T * = T; present value 
of deferred annuity if T *< T; final value if T *= T+n. The present value (then with 
T *  T) is expressed by  

  Va( T*) =  hRh 0
n

 v(T*,T h) = hRh 0
n

 [1- d(T *,T h)]T+h-T*
 (8.6)  

The final value is expressed by  

 Vf ( T *) =   Rhh 0
n

 m(T h,T *) =  Rhh 0
n

 [1+  i(T h,T + n)]n h  (8.7) 

Relations (8.6) and (8.7) take into account the spot rates that are valid on the 
respective payment time. 

On the basis of considerations discussed for financial operations (see Chapter 4), 
the operations O" Wa(T *),T *) with T *  T and O" Wf (T *),T *) with T * = 
T+n  are fair according to the adopted financial laws. 

Clearly if T * and T are integers we can give an integer term structure of rates 
and values for n unitary periods. Let us assume such a position, adopting the 
formulations (7.25) and the positions from (7.26) to (7.39) and indicating the times 
(that are also the distances with sign from the origin 0, that we choose as the 
reference time for the rates structure) with lower case letters. 

Given the above, the initial value of the prompt annuity on the horizon [0,n], 
obtainable from (8.6) with T * = 0, is given by 

 Va(0)  =     Rkk 0
n

vk  =   Rkk 0
n

 (1+ik )-k  (8.6') 

or, according of the forward rates  in the term structure4,  

 Va(0)  =  Rkk 0
n  1/(r 1

k 1+ir-1,r )  (8.6") 

Example 8.1 

Using n=5, let us assign on the market at time 0 the structured system of interest 
rates on annual periods: 

i0,1 = 0.0418 ;  i1,2 = 0.0461;  i2,3 = 0.0524 ; i3,4 = 0.0485 ;  i4,5 = 0.0432 

                                                 
4 In (8.6") when k=0, the product is put equal to 1. The same observation is valid for some 
other following formula. 
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Let us consider an annual annuity-immediate on the horizon (0,5), formed by the 
monetary amounts 

R1 = 1,250 ;    R2  = 1,389 ;    R3 =1,450 ;    R4 = 1,310 ;   R5  = 1,100 

By using such data applied directly by (8.6") we obtain the present value of the 
prompt annuity 

Va(0) = R1(1.0418)-1 + R2(1.0418.1.0461)-1 + R3(1.0418.1.0461.1.0524)-1 +  

+ R4(1.0418 1.0461 1.0524 1.0485)-1 + R5(1.0418 1.0461 1.0524.1.0485.1.0432)-1 = 
= 5,704.78. 

If the spot rates ik , that we find by coherence with the previous ones, were given 
directly, resulting in 

i1 = 0.0418;  i2 = 0.0439;  i3 = 0.0468;  i4 = 0.0472;  i5= 0.0464 
(from which the prices would be 

v1 = 0.59877 ;  v2 = 0.917577 ;  v3 = 0.871890;  v4 = 0.831559 ;  v5= 0.797123 ) 
we could apply (8.6') still obtaining 5704.78. 

To obtain the initial value of annuities-deferred of m years, assuming a rate 
structure for m+n years, it is enough to multiply Va(0) by a discount factor relative 
to the deferment. Such a discount factor is given by vm and therefore the present 
value in 0 of the annuity-deferred  by m years with installments Rk at times m+k, (k 
= 0,....,n), is expressed, according to the rate structure, by 

 m/Va(0) =   (r 1
m 1+ir 1,r )-1 Rkk 0

n  (r 1
k 1+im r 1,m r )-1 (8.8) 

Example 8.2  

Let us consider at 0 the annual annuity-due, deferred by 3 years, consisting of 3 
payments:  

R3 = 10,500 ;  R4 =11,600 ;  R5 = 40,300 

The varying rates structure 
i0,1 = 0.030 ;     i1,2 = 0.035 ;    i2,3 = 0.040;     i3,4 = 0.037 ;     i4,5 = 0.034 

The present value of the deferred annuity is then 

  m/Va(0) = (1.030.1.035.1.040)-1 [10500 + 11600 (1.037)-1 +  
             + 40300 (1.037.1.034)-1] = 53459.71 
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Using the same hypothesis, the final value of the annuity at time n is expressed 
as a function of the accumulation forward factor rk,n = r(0;k,n) by 

 Vf (n)  =    Rk 
k 0
n

rk,n  =   Rkk 0
n

 (1+ik,n )n k  (8.7') 

or, as a function of the forward rates in the term structure 

 Vf (n)  =   Rkk 0
n

(r k 1
n 1+ir 1,r )  (8.7") 

Relations (8.6"), (8.8) and (8.7") directly use the varying rates that come from 
the market conditions. 

Example 8.3  

On a three year interval, assuming the semester as a time unit, let us assign the 
(spot and forward) interest rates structure on a semiannual base as well as the 
semiannual  annuity-immediate, whose payments are 

R1 = 8,500 ;  R2 = 9,250 ;  R3 = 8,620 ;  R4 = 12,628 ;  R5 = 4,644 ;  R6 = 6,240 

Let us find the final value, extracting from the structure the following uniperiod 
forward rates: 

i1,6 = 0.0490 ; i2,6 = 0.0475 ; i3,6 = 0.0465;  i4,6 = 0.0450 ; i5,6 = 0.0445  

The final value of the annuity is then 

    Vf (6) =  8500 1.04905 + 9250 1.04754 + 8620.1.04653 + 12628.1.04502  + 

+ 4644 1.0445 + 6240 = 56693.59 

8.2. Amortizations in the case of term structures 

Extending what has been said in Chapter 6, with the positions and symbols 
defined above, we can develop the theory of amortizations assuming a financial law 
obtained according to a term structure. To remain closer to the financial market 
behavior, we will not assume the independence of the structure from the referring 
time.  

The amortization with varying rates has been considered in section 6.5 only for 
the case of uniperiod spot rates. It is appropriate to refer to this scheme when it is 
not realistic to assume the validity of the structure for the whole length of the 
amortization. For the opposite assumption, we assume then the variability of the 
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rates according to a more general rate structure scheme fixed at time 0 of the loan 
inception, where the amortization flow is, technically, an “annuity” for which the 
initial value calculated on the basis of such structure is equal to the debt to be 
amortized. The amortization installments are mostly periodic, thus annual, 
semiannual, etc.  

We will refer to cases of the annual period; for a period of a different length it is 
sufficient to change the unit of measure. In the presence of pre-amortization, it is 
sufficient to refer to the true amortization interval, in which the principal repayments 
are paid, following the one in which only interest is paid. 

However, in the case of varying installments (as far as the outstanding loan 
balance will not increase with time) it is obvious that, if the initial debt, the length of 
the amortization and the rate structure valid in the same interval are given, infinite 
solutions exist for the installments vector used to amortize the debt. This means that, 
from the lender point of view5, the payment of the lent amount and the encashment 
of such installments form altogether a fair operation in relation to the given rate 
structure. Instead, if the installment invariance is postulated, then the financial 
equilibrium equation gives the constant installment as the only unknown.  

We will limit our analysis to the following cases of amortization: 
 the general case of varying installments; 
 the particular case of constant installments; 
 the particular case of constant principal repayments; 
 the case of life amortization. 

8.2.1. Amortization with varying installments 

Let there be the initial debt S to be amortized in n unitary periods (in particular 
annual), according to a term structure given at initial time 0, for which formulations 
(7.25) and relations (7.26) and (7.39) hold true. The equivalence between debt and 
vector {Rk}, (k=0,1,....,n), of the installments paid at the assigned dates gives the 
constraint that defines a solution {Rk} for the amortization. This is found from (8.6') 
or (8.6") putting Va(0) = S. We then obtain the following relation, that is the 
constraint of financial closure between debt and amortization installments: 

                                                 
5 We highlight the lender point of view that is usually the “stronger party” in the contract. It is 
clear that the borrower adapts himself to the conditions fixed by the lender and accepts the 
contract if, on the basis of his utility and his alternative possibilities on the market, he 
considers convenient the conditions offered by the lender. 
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 S  =  Rkk 0
n

 vk = Rkk 0
n

 (1+ik )-k  =  Rkk 0
n (r 1

k 1+ir 1,r )-1 (8.9) 

where vk and ik correspond to the given ih,k on the basis of the known relations. 
Therefore, given S, n and the term structure, a vector of components Rk, 
(k=0,1,....,n), that satisfies (8.9) gives a solution to the amortization6. As already 
mentioned, some restrictions on the arbitrariness of {Rk} follow from the eventual 
constraint of the outstanding loan balance not increasing in time. In addition, we talk 
about amortizations 

  with delayed installments, if R0 = 0; 
  with advance installments, if Rn = 0. 

Due to (8.9) it is obvious that {ir-1,r} gives a rate structure of cost for the 
borrower, i.e. a generalized internal rate of return (GIRR) in the sense set out in 
section 4.4.2.  

As happens for a constant rate, each installment is divided into principal repaid 
and interest paid, and can, by convention, be paid by the debtor in a delayed or 
advance way: if both are paid delayed or advance, one has amortization with delayed 
or, respectively, advance installments.7 
  

Amortization with delayed installments 

The development of the delayed amortization schedule includes the interest 
amounts Ik , the principal repayments Ck and the outstanding balances Dk at time k, 
that follows from the following equations system  

  (k = 1, ... ,n)  

  

Ik  Dk 1 ik 1,k

Dk Dk 1 Ck

Rk Ik Ck

  (8.10) 

                                                 
6 It is obvious that independence from the transaction time, an assumption that in fact is not 
very realistic, could lead to the equality between forward and spot rates, i.e.: {i(0;h;k)} = 
{i(h,k)}, �h,k, from which it would follow that the outstanding amounts and outstanding 
loan balances expressed by (8.11) or (8.11') would coincide. However, if the amortization is 
agreed with indexed interests on the basis of the resulting market rates (where the agreed 
schedule in 0 on the basis of the term structure at this time is only an estimated calculatation), 
if the market does not behave as a “perfect market”, the inequality i(r-1,r)  i(0; r-1.r) can 
follow at the rth year with possible differences between estimated and final balance. In such a 
case some adjustments are needed. 
7 We do not consider here the case of advance interest payments and delayed principal 
repayments  sometimes used in the past in the particular case of German amortization (see 
Chapter 6)  because this scheme is not used often. 
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with the initial condition D0 = S. From here follows: 

Theorem. For a delayed amortization in the case of a term structure, from the 
recursive relations (8.10) for the outstanding loan balances we obtain 

 Dh = Rkk h 1
n

 sh,k   =  Rkk h 1
n ([r h 1

k 1+ir 1,r ) 1
 (8.11) 

that extends to the case h>0 the relation of financial closure (8.9) with R0 = 0 (case 
h=0, S=D0). Therefore, k the exchange of the outstanding balance in k with the 
outstanding installment flow at their respective due dates is fair, i.e. on the basis of 
the given structure the outstanding balance coincides with the pro-reserve. 
Proof. Proceeding by induction, let us verify (8.11) for h=1. Since D0 is given by 
(8.9) with  R0 = 0 and taking into account (7.28'"), we obtain: 
I1 = i1 D0 = d1(R1 + Rkk 2

n   r 1,rsr 2
k ) ;  

C1 = R1  - I1 = R1 v1 - d1 kRk 2
n  r 1,rsr 2

k  

D1 = D0 - C1  =  (R1 v1 + Rk sr 1,rr 2
k

k 2
n ) - (R1 v1  -d1 kRk 2

n  r 1,r sr 2
k ] =  

=  kRk 2
n  (  r 1,rsr 1

k  +  1d   r 1,rsr 2
k )  = Rk sr 1,rr 2

k
k 2
n , 

because v1+d1 = 1. 

Let us then verify that if (8.11) is true for h 1, it is also true for h+1. Recalling  

(7.39'), if Dh = 
k Rk h 1

n   r 1,rsr h 1
k  then Ih+1= ih,h+1Dh = dh,h+1(Rh+1 

+
     kRk h 2

n   r 1, rsr h 2
k ); 

Ch+1 = Rh+1 - Ih+1 =  Rh+1 sh,h+1 - dh,h+1 kRk h 2
n  r 1,rsr h 2

k ;  then    Dh+1 = 

Dh - Ch+1 = (Rh+1sh,h+1 + Rkk h 2
n  sr 1,rr h 1

k ) - (Rh+1 sh,h+1 - 

dh,h+1 kRk h 2
n  r 1,r sr h 2

k ) =  
k Rk 2

n   r 1,rsr 2
k  ,  

because  sh,h+1 + dh,h+1 = 1.         

Example 8.4 

Let there be underwritten at time 0 a loan contract for €86000 to be amortized with 
delayed varying annual installments over 10 years, on the basis of a term structure 
expressed by spot factors vk (k=1,...,10) fixed at 0, from which by means of (7.31) 
we find the forward rates to apply annually. These rates are indicated in the 2nd 
column of the following Excel amortization schedule, the quantities of which follow 
from recursive relations (8.10) starting from a given principal repaid Ck indicated in 
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the 3rd column, according to a choice that gives higher payments in the central years. 
On the contrary, if we assigns the installments, satisfying (8.9) as in column 5, are 
used, obtaining the outstanding balance by (8.11), we find the interest paid (4th 
column) and then the principal repaid (3rd column). 

Debt  = 86000 Length  = 10 

Year  Forward rate Principal repaid Interest 
amount 

Installment Outstanding 
balance 

K      Ik-1,k    Ck   Ik   Rk   Dk 
0     86000.00

1 0.050 5000.00 4300.00 9300.00 81000.00

2 0.048 6000.00 3888.00 9888.00 75000.00

3 0.046 7000.00 3450.00 10450.00 68000.00

4 0.044 8000.00 2992.00 10992.00 60000.00

5 0.042 12000.00 2520.00 14520.00 48000.00

6 0.040 15000.00 1920.00 16920.00 33000.00

7 0.043 12000.00 1419.00 13419.00 21000.00

8 0.046 8000.00 966.00 8966.00 13000.00

9 0.049 7000.00 637.00 7637.00 6000.00

10 0.052 6000.00 312.00 6312.00 0.00

 86000.00   

Table 8.1. Example of delayed amortization 

The Excel instructions are as follows. The first three rows are for data and titles; 
C1: 86000; E1: 10. 4th row: A4: 0; F4:= C1; other cells: empty. 5th to 14th rows: 

column A (years):  A5:= A4+1; copy A5, then paste on A6 to A14; 
column B (forward rates):  from B5 to B14: insert data; 
column C (principal repayments): from C5 to C14: insert data with constraint: 
 "SUM(C5:C14)"= C1 in C15 (to control); 
column D (interest payments):   D5:= F4*B5; copy D5, then paste on D6 to D14; 
column E (installments): E5:= C5+D5; copy E5, then paste on E6 to E14; 
column F (outstanding balances):   F5:= F4-C5; copy F5, then paste on F6 to F14. 

Amortization with advance installments  

The development of the advance amortization schedule includes the installments 
kR made by the interest payments kI  and by the principal repayments kC , payable 

for the (k+1)th period soon after the integer time k, and also the outstanding balances 
Dk at time k, that results from the following equation system 
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1

1

(0; , 1)
( 0,..., 1)

k k

k k k

k k k

I D d k k
k n D D C

R I C

 (8.10') 

using the initial constraint D0 = S. Owing to (8.10') we can deduce the following 
theorem. 

Theorem. For an advance amortization in the case of a rates term structure, from 
the recursive relations (8.10') we obtain for the outstanding balances the expression  

 Dh  = 1
,

n
k h kk h R s   = 1

1,1 1 )(n
k r rk h

k
r hR d  (8.11') 

This formula extends to the case h>0 the relation of financial closure (8.9) with 
Rn=0 (case h=0, S=D0). Therefore, h the exchange of the outstanding balance in h 
with the flow of outstanding installments at their due dates is fair, i.e. in the case of 
this structure the outstanding balances coincide with the pro-reserve. 

The proof of this theorem, that gives rise to (8.11'), proceeds by induction 
analogously to the one that leads to (8.11), taking into account the identities 

1 - dr-1,r = sr-1,r = (1 + ir-1,r)-1  

which give a value equal to vr/vr-1 in the perfect market hypothesis. Although for 
sake of brevity it is omitted, we would say that in the induction it is convenient to 
proceed backwards, i.e. verifying (8.11') for h=n-1 and proving that if it holds true 
for an index h (with 1 h n-1), it is also true for h-1. 

Example 8.5  

Let us consider again Example. 8.4 assuming a loan for the same amounts, 
length and distribution of principal repayments, but advance installments and then 
advance forward rates dk-1,k, choosing those equivalent to the delayed rates in 
Example 8.4. By working in Excel we easily obtain the following table. 
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 Debt  = 86000.00 Length  = 10   

Year Delayed 
forward rate 

Advance 
forward rate 

Outstanding 
balance 

Principal 
Repaid 

Interest 
paid 

Installment 

k  ik-1,k  dk-1,k  Dk   ant. Ck   ant. Ik    ant. Rk 
0   86000.00 5000.00 3857.14 8857.14 

1 0.050 0.047619 81000.00 6000.00 3435.11 9435.11 

2 0.048 0.045802 75000.00 7000.00 2990.44 9990.44 

3 0.046 0.043977 68000.00 8000.00 2528.74 10528.74 

4 0.044 0.042146 60000.00 12000.00 1934.74 13934.74 

5 0.042 0.040307 48000.00 15000.00 1269.23 16269.23 

6 0.040 0.038462 33000.00 12000.00 865.77 12865.77 

7 0.043 0.041227 21000.00 8000.00 571.70 8571.70 

8 0.046 0.043977 13000.00 7000.00 280.27 7280.27 

9 0.049 0.046711 6000.00 6000.00 0.00 6000.00 

10 0.052 0.049430 0.00    

    86000.00   

Table 8.2. Example of advance amortization 

The Excel instructions are as follows. The first three rows are for data and titles; 
C1: 86000; E1: 10. 4th to 14th rows: 

column A (year)       A5:= A4+1; copy A5, then paste on A6 to A14; 
column B (delayed forward rate)      B4 empty; from B5 to B14 insert date; 
column C (advance forward rate)    C4:= 1-(1+B5)^-1; copy C4, then paste on C5 
      to C13;  
column D (outstanding loan balance) D4:= C1; D5:= D4-E4; copy D5, then paste on 
        D6 to D14; 
column E (advance principal      E4 to E13 insert data with the constraint  

    “SUM(E4:E14)”=C1 in E15 (check); 
column F  (advance interest paid)  F4:= D5*C5; copy F4, then paste on F5 to F13; 
column G (installment)  G4:= E4+F4; copy G4, then paste on G5 to G13.  

Observation 
In the delayed amortizations, from system (8.10) the following corollary 

holds. 
Corollary. If we have fairness, each vector {Rk} of delayed amortization 
installments  satisfies, for k=1,...,n, 

 Rk  =    Dk-1 ik-1,k  + (Dk-1 - Dk)  (8.12) 

i.e. the following recursive relation holds 

 Dk  = Dk-1(1 +  ik-1,k)  - Rk (8.13) 
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Analogously in advance amortizations from system (8.10') we can deduce the 
following corollary: 

Corollary. If we have fairness, each vector { kR } of advance amortization 
installments, satisfies, for k=0,...,n-1 

 kR = Dk+1 dk,k+1 + (Dk  - Dk+1)  (8.12') 

i.e. the following recursive relation  

 Dk  = Dk+1(1 - dk,k+1) + kR  (8.13') 

holds. 

Proof. Since, owing to the fairness of this operation, Dn = 0 holds true, if in the 
delayed case we write (8.13) for k=1,...,n, with subsequent substitutions we obtain 
the relation of financial closure and, writing such relation for  k=h+1,....,n, we easily 
obtain (8.11). Analogously if in the advance case we write (8.13') for k=0,...,n-1,  
with subsequent substitutions we obtain the relation of financial closure and, writing 
it for k=h,....,n-1 we easily obtain (8.11'). 

8.2.2. Amortization with constant installments 

The conclusions for this major case of refund techniques are obtained from the 
results in section 8.2.1 using Rk or kR  = constant = R. Therefore, given the initial 
debt S to be amortized in n periods, according to a given (or assumed) term structure 
at initial time 0, for which formulations (7.25) and the relations from (7.26) to (7.39) 
hold true, the installment solution is deduced introducing constraint (8.9). Therefore 
we obtain the following relation: 

Delayed case  

Using R0 = 0, Rk = R, (k=1,...,n), in the financial closure relation (8.9), the 
installment R is given by 

 R  =  S / (r 1
k 1+ir 1,r )-1

k 1
n  (8.14) 

Recursive relations (8.10) hold, where the outstanding balances Dh are expressed 
by 

 D =  R (r h 1
k 1+ir 1,r )-1

k h 1
n  (8.15) 
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Exercise 8.1  

 Considering again the loan in Example 8.4 with the data given there, find the 
amortization schedule under the constraint that the delayed installment is constant.  

 A. Finding the installment by means of (8.9) we obtain R=10916.95; from 
here, applying recursively (8.10) with Rk = R , we obtain, using Excel for the 
following schedule. 
 

debt  = 86000 length  = 10 installment= 10916.95 

Year Forward rate Discount factor Interest paid Principal repaid Outstanding 
balance 

K ik-1.k by (8.14) Ik Ck Dk 
0  1  86000.00 

1 0.050 0.952381 4300.00 6616.95 79383.05 

2 0.048 0.908760 3810.39 7106.56 72276.48 

3 0.046 0.868796 3324.72 7592.23 64684.25 

4 0.044 0.832180 2846.11 8070.84 56613.41 

5 0.042 0.798637 2377.76 8539.19 48074.22 

6 0.040 0.767920 1922.97 8993.98 39080.24 

7 0.043 0.736261 1680.45 9236.50 29843.74 

8 0.046 0.703883 1372.81 9544.14 20299.60 

9 0.049 0.671003 994.68 9922.27 10377.33 

10 0.052 0.637836 539.62 10377.33 0.00 

  7.877658   

Table 8.3. Example of amortization with constant delayed installments 

The Excel instructions are as follows. The first three rows are for data, columns 
titles and one calculation: B1: 86000; D1: 10; F1:= B1/C15. 4th row: A4: 0; C4: 1; 
G4:= B1; 5th to 15th  rows: 

column A (years):  A5: = A4+1; copy A5, then paste on A6 to A14; 
column B (forward rates): insert forward rates (see Example 8.4); 
column C (discount factors): C5:= C4*(1+B5)^-1; copy C5, then paste on C6 

to C14; C15:= SUM(C5:C14).  
column D (interest payments): D5: = F4*B5; copy D5, then paste on D6 to B14. 
column E (principal repayments):   E5: = $F$1-D5;  copy E5, then paste on E6 to 

E14. 
column F (outstanding balances): F5: = F4-E5; copy F5, then paste on F6 to F14.  
other cells    empty.  
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Observation 

An amortization that keeps constant installments in a varying rate regime is 
possible only in the case that the rate structure is agreed in 0 (or that the perfect 
market assumption hold true), as assumed in the previous examples. If these 
assumptions fail and the amortization proceeds in time in a flexible form on the 
basis of annual varying spot rates ik 1,k  (with complete notation) not predictable in 
0 and that will be different from i0;k 1,k , then the schedule cannot be fixed in 
advance and we have to proceed as discussed in section 6.5, point a. We adopted in 
this section the complete formulation of the rate structure because many contracting 
times are here considered here.  

In particular, we can proceed for subsequent renovations of the contract, 
calculating the installment and its elements each year that the rate changes (using 
(6.52) and (6.52')) on the basis of the new rate, the outstanding balance, and the 
remaining length. This procedure is consistent with the constant installment scheme, 
because if after the renovation the rate no longer changes, the new installment will 
remain constant, as can be seen from equation Dh = R an-h |i .  

Example 8.6 

Let us give an example of the second procedure, that uses the spot rates i(k-1;k-
1,k). For an easy comparison, let us use the input data of Example 8.4, obtaining the 
following Excel table. 

 

Table 8.4. Example of delayed amortization with spot rates 

 Debt  = 86000 Length  = 10 

Year spot rate  installment interest paid principal repaid outstanding 
balance 

K I(k-1; k-1, k)   Rk   Ik   Ck   Dk 
0    86000.00

1 0.050 11137.39 4300.00 6837.39 79162.61

2 0.048 11038.42 3799.81 7238.61 71924.00

3 0.046 10948.97 3308.50 7640.46 64283.53

4 0.044 10869.12 2828.48 8040.65 56242.89

5 0.042 10798.96 2362.20 8436.76 47806.13

6 0.040 10738.55 1912.25 8826.31 38979.82

7 0.043 10814.58 1676.13 9138.45 29841.37

8 0.046 10875.97 1372.70 9503.27 20338.10

9 0.049 10922.44 996.57 9925.87 10412.24

10 0.052 10953.67 541.44 10412.24 0.00
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The Excel instructions are as follows. The first three rows are for data and 
columns titles; C1: 86000; E1: 10. 4th row: A4: 0; F4:= C1; other cells: empty; 5th to 
15th  rows: 

column A (years): A5:= A4+1; copy A5, then paste on A6 to A14; 
column B (forward rates): insert data from B5 to B14; 
column C (installments): C5:= F4*B5/(1-(1+B5)^-($E$1+1-A5)); copy 
 C5, then paste on C6 to C14; 
column D (interest payments): D5:= F4*B5; copy D5, then paste on D6 to D14; 
column E (principal repayments): E5:= C5-D5; copy E5, then paste on E6 to E14; 
column F (outstanding balances): F5:= F4-E5; copy F5, then paste on F6 to F14. 

Advance case  

Using Rn = 0,  Rk = R , (k=0,...,n-1), in the relation of financial closure (8.9), the 
installment R  is given by 

 1
1,1 1/ 1 1- )(n

r rk
k
rR S d  (8.14') 

Recursive relations (8.10') hold true, where the outstanding balances Dh are 
expressed by 

 Dh  = 1
1,1 11 (1 )n

r rk h
k
r hR = d  (8.15') 

Exercise 8.2 

Let us consider a loan of €45,000 with varying rates, a length of 5 years and 
forward rates, fixed when the contract is signed. Calculate the amortization 
schedule, where the rates are specified and where the advance installments are 
constant.  

A. To calculate the installment, apply relation (8.14') and for the principal and 
interest payments (that cannot be calculated starting form the initial debt) we first 
have to calculate the outstanding balances at the intermediate integer times by means 
of (8.15') using the identity:  

 (
r h 1
k

1 dr 1,r ) =  (
r 1
k

1 dr 1,r )/ (r 1
h

1 dr 1,r )  

We then take into account the 2nd of (8.10') for the principal repayments and the 
1st and 3rd of (8.10') for the interest paid. Proceeding with Excel, we obtain the 
following schedule with two sections, where the second is an instrument to calculate 
on single columns the outstanding balances.  
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 Debt  = 45000.00 Length  = 6 Installment= 9865.56 

Year Delayed 
forward rate 

Advance 
forward rate

Spot discount 
factor 

Outstanding 
balance 

Principal  
repaid 

  Interest 
paid 

k ik-1.k dk-1.k by(8.14') Dk Ant Ck  Ant Ik 
0  1 45000.00 8108.84 1756.72 

1 0.050 0.047619 0.952381 36891.16 8568.33 1297.23 

2 0.048 0.045802 0.908760 28322.82 9016.53 849.03 

3 0.046 0.043977 0.868796 19306.29 9440.73 424.83 

4 0.045 0.043062 0.831384 9865.56 9865.56 0.00 

5 0.047 0.044890 0.00  

   4.561321 45000.00  

    

    

Year Outstanding 
balance 1 

Outstanding 
balance. 2 

Outstanding 
balance 3 

Outstanding 
balance.4 

Outstanding 
balance 5  

 

k D1 D2 D3 D4 D5  

1 1.000000  

2 0.954198 1.000000  

3 0.912236 0.956023 1.000000  

4 0.872953 0.914854 0.956938 1.000000  

 36891.16 28322.82 19306.29 9865.56 0.00  

Table 8.5. Example of amortization with constant advance installments 

The Excel instructions are as follows. 

1st sector. C1: 45000; E1: 6; G1:= C1/D10; other cells: empty; 2nd and 3rd rows for 
titles; 4th to 10th rows: 

column A (year): A4: 0; A5:= A4+1; copy A5, then paste on 
A6 to A9; 

column B (delayed forward rate): B4 empty; insert data from B5 to B9; 
column C (advance. forward rate): C4 empty; C5:= 1-(1+B5)^-1; copy C5, then 

paste on C6 to C9; 
column D (discount factor 0-k): D4: 1; D5:= D4(*(1-C5); copy D5, then paste 

on 
 D6 to D8; D9 empty; D10:= SUM(D4:D9); 
column E (outstanding debt):   E4:= C1; E5:= B19; E6:= C19; E7:= D19; 
 E8:= E19; E9:= F19 
column F (principal repaid): F4: E4-E5; copy F4, then paste on F5 to F8; 
column G (interest paid):              G4:= $G$1-F4; copy G4, then paste on G5 to 

G8. 
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2nd sector. 13th and 14th rows for titles; 15th to 19th rows: 

column A (year): A15: 1; A16:= A15+1; copy A16, then paste on 
 A17 to A18; A19 empty; 
column B (outstanding balance 1): B15:= D5/D$5; copy B15, then paste on B16 to 
  B18; B19:= $G$1*SUM($B$15:$B$18);   
column C (outstanding balance 2): C15 empty; C16:= D6/D$6; copy C16, then 

 paste on C17 to C18; C19:= 
$G$1*SUM($C$16:$C$18);   

column D (outstanding balance 3): D15,D16 empty; D17:= D7/D$7; copy D17, then 
 paste on D18; D19:= 
$G$1*SUM($D$17:$D$18); 

column E (outstanding balance 4) E15,E16,E17 empty; E18:= E8/E$8; copy E18, 
  then paste on E18; E19:= $G$1*$E$18; 
column F (outstanding balance 5) F15,F16,F17,F18 empty; F19:= $G$1-F8 . 

8.2.3. Amortization with constant principal repayments 

In this case, if the structure of the per period forward rates {ih,k} is given, 
according to the installment due dates on the time interval from 0 to n for the debt S 
to be amortized, the calculation of such installments gives a unique solution, in the 
following way. 

First of all, the constant principal repaid of the n installments is calculated, which 
is simply S/n. This implies that the outstanding balances decrease in arithmetic 
progression with ratio S/n; then after h payments we have an outstanding balance of  
S(n-h)/n. 

For each period the interest rate is found from the vector {ik-1,k}, (k=1....,n) and 
then the installments Rk are 

  in the delayed case: 

 
  
R0 0 ;  Rk

S

n
 [1+ (n - k +1) ik-1,k ]  ,(k 1,...,n)  (8.16) 

  in the advance case: 

 11 1 0 1 0k k,k+ n
SR =  [ +(n - k - ) d ]  , (k = ,...,n - ) ;  R =
n

 (8.16') 

Exercise 8.3 

Let us consider again the problem of amortization and the data used in Example 
8.4, but now applying the method with constant principal repayments. Using (8.16) 
we obtain the following Excel table. 
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 Debt  = 86000 Length  = 10  

Year Forward rate  Principal repaid Interest paid Installment Outstanding 
balance 

k ik-1.k Ck Ik Rk Dk 
0  86000.00 

1 0.050 8600.00 4300.00 12900.00 77400.00 

2 0.048 8600.00 3715.20 12315.20 68800.00 

3 0.046 8600.00 3164.80 11764.80 60200.00 

4 0.044 8600.00 2648.80 11248.80 51600.00 

5 0.042 8600.00 2167.20 10767.20 43000.00 

6 0.040 8600.00 1720.00 10320.00 34400.00 

7 0.043 8600.00 1479.20 10079.20 25800.00 

8 0.046 8600.00 1186.80 9786.80 17200.00 

9 0.049 8600.00 842.80 9442.80 8600.00 

10 0.052 8600.00 447.20 9047.20 0.00 

Table 8.6. Example of amortization with constant principal repayments 

The Excel instructions are as follows. The first three rows are for data and titles.  
C1: 86000; E1: 10. 4th row: A4: 0; F4:= C1; other cells: empty. 5th to 14th rows: 

column A (years):  A5:= A4+1; copy A5, then paste on A6 to A14; 
column B (forward rate):  B5 to B14: insert data; 
column C (principal repaid): C5:= C$1/E$1; copy C, then paste on C6 to C14; 
column D (interest paid):  D5:= F4*B5; copy D5, then paste on D6 to D14; 
column E (installment): E5:= C5+D5; copy E5, then paste on E6 to E14; 
column F (outstanding balance):  F5:= F4-C5; copy E5, then paste on F6 to F14. 

8.2.4. Life amortization 

Having fully described this actuarial operation in section 6.3, we limit ourselves 
here to briefly considering the variations linked to the introduction into a scheme of 
advance life amortization of a discrete term structure that can be identified by a 
uniperiod forward rates {ir-1,r} agreed at time 0, indicating with * the quantities that 
depend on it. 

Let S be the debt of the annual loan; n the length in years; {ir-1,r} the structure of 
the adopted rates, that gives rise to a law that generalizes the IRR of the lender-
insurer; x the integer age of the borrower at the drawing up of the contract. In 
addition, let us indicate the actuarial discount factor on the interval (z,z+1) for the 
borrower with 
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 1Ex
* lx z 1

lx z
(1 iz,z 1) 1 (8.17) 

The actuarial discount factor on the interval (0,z) is given by 

 z Ex
* lx r 1

lx r

(1 ir,r 1) 1
r 0

z 1  (8.18) 

Then 1* *
10

z
z x x rrE E  holds true. Let us now take into account now that the 

uniperiod discount forward rates dr-1,r  are linked to the interest forward rates by the 
relation 

 1 dr 1,r (1 ir 1,r ) 1 sr 1,r  (8.19) 

Thus, the constraint of financial closure on the advance installments *
z  that 

generalizes (6.28) is written as (considering (8.18)): 

 1 * *
0

n
z z xz E S  (8.20) 

Proceeding analogously to section 6.3.1, if the principal repayments zc  are 
given under the constraint (6.29) we find the outstanding balances Dz  on the basis 
of the 1st part of (6.32), from which the advance actuarial interest payments 

*
zj comes, is given by 

    *
, 1 , 1 1 1 1(1 ) (1  )*

z z z z z x z z x+z zj d d q D E D , z = 0,...,n-1   (8.21) 

and using (8.21) we obtain the advance installments  

 * * *
1 1     z z z z x z zc j D E D  ,   z = 0,...,n-1 (8.22) 

If, instead, the installments *
z  are given subject to (8.20), as far as the 

outstanding balances the formula 

 1 * *n
z k k xk zD E ,   z = 0,...,n-1 (8.23) 

that generalizes (6.31) holds true. The values (8.23) thus allow us to calculate zc  
using the 1st of (6.32) and *

zj  using (8.21).  

If in z the technical bases, fixed in 0, are not changed, (8.23) also gives the 
prospective reserves Wz  while the retrospective reserves are expressed by  
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1 *
0

z *
k k xk

z *
z x

S E
M

E
  ,    z = 1,...,n-1 (8.24)   

 Exercise 8.4 

Using the financial data in Example 8.4, calculate the advance life amortization 
schedule with the demographic data in Exercise 6.6. 

A. On the basis of the advance uniperiod forward rates deducible from the 
delayed ones, assigned in the following 3rd column, we obtain the required schedule. 
 

  Debt = 86000    Length =  10  

Year Survival 
table 

Forward 
rate 

Actuarial 
discount factor

Principal 
repaid 

Outstanding 
balance 

Interest 
paid 

Installment 

Z l42+z iz-1.z E*42+z cz Dz Jz z 
0 96400  0.950682 5000 86000 3994.78 8994.78 

1 96228 0.050 0.952394 6000 81000 3570.47 9570.47 

2 96046 0.048 0.954062 7000 75000 3123.78 10123.78 

3 95849 0.046 0.955676 8000 68000 2659.45 10659.45 

4 95631 0.044 0.957234 12000 60000 2052.76 14052.76 

5 95386 0.042 0.958776 15000 48000 1360.38 16360.38 

6 95112 0.040 0.955708 12000 33000 930.13 12930.13 

7 94808 0.043 0.952736 8000 21000 614.44 8614.44 

8 94482 0.046 0.949667 7000 13000 302.00 7302.00 

9 94123 0.049 0.946763 6000 6000 0.00 6000.00 

10 93746 0.052  86000 0  

total   86000  

Table 8.7. Example of life amortization 

The Excel instructions are as follows. The first three rows are for titles and data.  
C1: 86000; G1: 10. 4th to 14th rows: 

column A (year): A4: 0; A5:= A4+1; copy A5, then paste on A6 
to A14; 

column B (survival table): insert data from B4 to B14; 
column C (forward rate): insert data from C5 to C14; 
column D (actuarial discount factors): D4:= B5*(1/(1+C5))/B4;  copy D4, then  

paste on D5 to D13; D14 empty; 
column E (principal repaid):     insert data from E4 to E13 with the 

constraint: “SUM (E4:E13)” = C1, in E15; 
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column F (outstanding balance):    F4:= C1; F5:= F4-E4; copy F5, then paste on 
F6 to F14; 

column G (interest paid):   G4:= (1-D4)*F5; copy G4, then paste on G5 
to G13; G14 empty; 

column H (installment): H4:= E4+G4; copy H4,then paste on H5 to 
H13; H14 empty. 

8.3. Updating of valuations during amortization 

We can generalize to the case of varying rates, according to a term structure, the 
considerations developed in section 6.6 about residual valuations (pro-reserves) of 
financial operations with rates changed to the initial rates. Such observations were 
useful about calculations regarding assignments of a credit, firm valuations, etc. with 
the application of rates used on the market at the time of calculation. If we are 
talking about residual valuations regarding gradual amortizations, we use 
Makeham’s formula (see section 6.6.2).  

With reference to the general amortization of a loan drawing up in 0, shown in 
section 8.2.1, we can calculate at time  t   the loan pro-reserve Wt , usufruct Ut 
and bare ownership Pt. However it is important that such valuations often have to be 
made according to the term structure given by the market at time t,  summarized   
using the complete notation, because of plurality of reference times  by 
{i(t;h,k)},(t h<k) that, under the hypothesis of dependence on valuation time, differs 
from that valid at the loan issue, summarized by {i(0;h,k)}, according to which the 
installments, interest and principal payments have been calculated. 

Let us refer to a delayed amortization (but the changes for the case of advance 
amortization are easy) and assigning the payments Rk satisfying (8.9) as well as the 
interest paid Ik and the principal repaid Ck , satisfying the recurrent system (8.10) 
and then coherent with the structure {i(0;h,k)}. Then the pro-reserve Wt at time 
t , valued according to forward rate structure {i(t;h,k)} equivalent to that of spot 
prices v(t,k), is given by 

 Wt   =  Rkk t 1

n
 v(t,k) = Rkk t 1

n 1
1 1+ ( ; -1, )[ ]k

r t i t r r
 (8.25) 

having considered the constraints between prices and rates, effective in a coherent 
market. The pro-reserve Wt  is the sum of usufruct Ut, the present value of residual 
interest payments Ik, and bare ownership Pt, present value of residual principal 
payments Ck , valued according  to the updated structure {i(t;h,k)}. Then we have: 

 Ut Ikk t 1

n
 v(t,k)   ;   Pt Ckk t 1

n
 v(t,k)  (8.26) 
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where Ik  and Ck  are obtained using (8.10).  

If the payments subject to constraint (8.9) and the forward rates’ structure are 
agreed in advance, owing to (7.36) 

 Ut v(t,k)
k t 1

n
 i(0;k 1,k) Ruu k

n
 s(0;k 1,u)  (8.27) 

holds for the usufruct; 

       1
( , ) (0; 1, )  (0; 1, )

n n
t t t uk t u k

P W U v t k i k k R s k ukR  (8.27') 

holds for the bare ownership.  

Example 8.7 

Let us apply the previous formulae on a delayed amortization with the given 
principal repaid on a debt of €100.000 and time length 5 years, for valuing pro-
reserves, split into usufruct and bare ownership components, in the rate structure 
hypothesis changing at each end of year.  

Using an Excel table, in the first part we calculate the delayed amortization 
schedule plan of € 100.000 in 5 years, having assigned the principals repaid and rate 
structure.  In the second  part, recalling relation (8.25) between unit spot prices and 
forward rates, we obtain pro-reserves as well as usufructs and bare ownerships 
according to modified rates, using (8.25) and (8.26) under the hypothesis that in 
each year all the varying rates after the first increase of 0.2%. The obtained pro-
reserves can be compared with outstanding loan balances, reminding us that if the 
rate change does not occur, in each period we should have equality. Carrying out the 
calculations we obtain the following table.  
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Table 8.8. Calculation of pro-reserves, usufructs and bare-ownerships 

The Excel instructions for the first part are analogous to that specified in 
Example 8.4 which works out this type of amortization kind. The instructions for the 
second part are as follows.  

12th to 15th rows:    titles  
16th to 20th rows:    calculation of unit prices (as discount factors): 
column  A (year): A16: 1; A17:= A16+1; copy A17, then paste on 

A18 to A20; 
column  B (updated fwd rate): B16 empty; input of data from B17 to B20; 

            PART 1  

 Debt  = 100000 Length = 5  

Year Forward rate Principal repaid Interest paid Installment Outstanding 
balance 

K ik-1,k Ck Ik Rk Dk 
0  100000.00 

1 0.040 10000.00 4000.00 14000.00 90000.00 

2 0.043 20000.00 3870.00 23870.00 70000.00 

3 0.046 30000.00 3220.00 33220.00 40000.00 

4 0.044 30000.00 1760.00 31760.00 10000.00 

5 0.042 10000.00 420.00 10420.00 0.00 

   

          PART 2  

  Calculus of spot rates  

Year Modified 
forward rate 

Spot price Spot price Spot price Spot price 

K  V1,k v2,k v3,k v4,k 

1  1.000000  

2 0.045 0.956938 1.000000  

3 0.048 0.913109 0.954198 1.000000  

4 0.046 0.872953 0.912236 0.956023 1.000000 

5 0.044 0.836162 0.873789 0.915731 0.957854 

   

                          Calculation of pro-reserves, usufructs and bare ownerships  

 Year Pro-reserve Usufruct Bare ownership

 k Wk Uk Pk 

 1 89613.36 8531.14 81082.21

 2 69775.96 5045.05 64730.91

 3 39905.20 2067.21 37838.00

 4 9980.84 402.30 9578.54
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column  C (v(1,k)): C16: 1; C17:= C16*(1+$B17)^-1; copy C17, 
then paste on C18 to C20; 

column  D (v(2,k)): D16 empty; D17: 1; copy C17, then paste on 
D18 to D20;  

column  E (v(3,k)): E16, E17 empty; E18: 1; copy C17, then paste on 
E19 to E20;    

column  F (v(4,k)): F16, F17, F18 empty; F19: 1; copy C17, then 
paste on F20. 

21th row: empty; 22th to 24th rows: titles. 
25th to 28th rows: calculation of pro-reserves, usufructs and bare ownerships: 
column B (year): B25: 1; B26:= B25+1; copy B26, then paste on 

B27 to B28; 
in the following right-side columns we calculate “scalar products between vectors” 
using Excel function “MATR-SUM-PRODUCT”  here abreviated as MSP: 
column C (pro-reserve = scalar product between installments and prices) 
  C25 := MSP(E7:E10;C17:C20);  C26 := MSP(E8:E10;D18:D20);  
  C27 := MSP(E9:E10;E19:E20);  C28 := MSP(E10;F20);  
column D (usufruct = scalar product between interest paid and prices) 
  D25 := MSP(D7:D10;C17:C20);  D26 := MSP(D8:D10;D18:D20);  
  D27 := MSP(D9:D10;E19:E20);  D28 := MSP(D10;F20);  
column E (bare ownership = scalar product between principal repaid and prices) 
  E25 := MSP(C7:C10;C17:C20);  E26 := MSP(C8:C10;D18:D20);  
  E27 := MSP(C9:C10;E19:E20);  E28 := MSP(C10;F20). 

8.4. Funding in term structure environments 

We can generalize the problem already considered in section 6.4, by assigning 
the equivalence relation between: 

 a monetary amount that has to be set up at a given maturity t;  
 a concordant payments set, then an annuity, with tickler before t and 

embedded into a financial structure giving accrued interest, fit to give such an 
amount at t. 

For the sake of simplicity we assume periodic payments as in section 8.1 and for 
the annuity a horizon of n periods (in particular, n years). Moreover, let us settle the 
term structure giving the uniperiod forward immediate rates {ir-1,r)}. Then the 
funding problem is solved if, having fixed the capital Gn at maturity n, in (8.7") we 
put Vf (n) = Gn.  

If this funding is made by payments at the end of the period (delayed payments), 
it is enough to put R0 = 0. Then the constraint between Gn that is to be set up in n 
and a vector {Rk} of payments suitable for the funding is 
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 Gn   =     kRk 1
n 1 (r k 1

n 1+ ir 1,r ) +  Rn  (8.28) 

Similarly if the sinking fund is accumulated with payments at the beginning of 
the period (advance payments), it is enough to put Rn = 0. Then the constraint by Gn 
in n and a vector kR of suitable payments is 

 11
, 10 (1 )nn

n k r rk r kG R i  (8.28') 

The accumulated capital sum at time h<n with delayed payments is  

                       Mh  =  Gh  =      kRk 1
h 1 (r k 1

h 1+ ir 1,r ) + Rh  (8.28") 

and, by advance payments, it is 

 Mh  =  Gh  =  11
, 10 (1 )hn

k r rk r kR i  (8.28"') 

For distinguishing the principal shares from interest shares, as G0 = 0, in the  
delayed case such shares, denoted by Ch and Ih , are constrained by the system 

 

    

(h 1,... ,n)
Ch Gh Gh 1

Ih Gh 1 ih 1,h

Ch Rh Ih

 (8.29) 

which implies the recursive equation 

 Gh-1(1+ih-1,h) + Rh  =  Gh    (8.30) 

that allows us to find (8.28) and (8.28") again. In the advance case, denoting the 
principal repaid and interest paid with hC  and hI  and recalling (8.19), they are 
constrained by the system  

 
1

1 , 1( 0,..., 1)  
h h h

h h h h

h h h

C G G
h n I G d

C R I
 (8.29') 

which implies the recursive equation 

  Gh  + Rh = Gh+1 (1-dh,,h+1) (8.30') 

for which it is possible to find (8.28') and (8.28"') again.  
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If we consider constant delayed payments R, given as Gn and according to 
(8.28), they are obtained by  

 1
1,111 (1+ ) /{ }n n

n r rr kkG iR  (8.31) 

If we consider constant advance payments, denoting them by R  and according 
to (8.28'), the result is 

 1 1
, 10/ 1+ )(n n

n r rk r kR G i   (8.31') 

Exercise 8.5 

Mr. John wishes to obtain €100.000 by annual constant payments in advance 
during 5 years, on a savings account yielding according to given forward rates. Let 
us calculate the constant payment and the sequence of  balances. 

A. The given rates are written in the 2nd column of the following Excel table to 
carry out the calculations. According to (8.31') the 3rd column allows us to calculate 
the constant payment R , which results in €17595.14. The 4th column gives the 
balances (i.e. the retro-reserves) at the end of each year. 

 
FUNDING IN ADVANCE DURING 5 YEARS  

Capital = 100000  Installment = 17595,14  

   

Year Delayed 
forward rate 

Accumulation 
factor 

Retro-reserve Interest paid Principal repaid 

k ik,k+1 k,4 Gk Ik Ck 
 0 0.040 1.233106 0.00 703.81 18298.95 
1 0.043 1.185679 18298.95 1543.45 19138.59 
2 0.046 1.136797 37437.54 2531.50 20126.65 
3 0.044 1.086804 57564.18 3307.01 20902.15 
4 0.041 1.041000 78466.34 3938.52 21533.66 
5  1.000000 100000.00   

 5.683387  12024.29 100000.00 

Table 8.9. Example of funding in advance 

The Excel instructions are as follows. The first 5 rows devoted to data, titles and 
calculus of constant installments. D1: 5; B2: 100000; E2:= B2/C12; 6th to 11th rows: 

column A (year): A6: 0; A7:= A6+1; copy A7, then paste on A8-A11; 
column B (delayed forward rate):  data input from B6 to B10; 
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column C (accum. fact. (k,4)): C11: 1; C10:= C11*(1+B10); copy C10, then paste 
  on C9 to C6;  
column D (retro-reserve):    D6: 0; D7:= (D6+E$2)*(1+B6); copy D7, then paste 

on D8 to D10;  
column E (interest paid):   E6:= (1-1/(1+B6))*D7; copy E6, then paste on E7 

tE10;  
column F (principal repaid):  F6:= E$2+E6; copy F6, then paste on F7 to F10. 
row 12 (totals):                 C12:= SUM(C6:C10); copy C12, then paste  

on E12 to F12.  
Other cells: empty. 

8.5. Valuations referred to shared loans in the term structure environment 

In sections 6.8 and 6.9, all questions concerning the issue and management of 
bonds have been considered, from the point of view of the organization of the 
operation and of the valuation of reserves, usufructs and bare ownerships, with 
special reference to relations between bond prices and rates of return.  

The previous investigation has been carried out assuming constant rates, both 
coupon rate and return rate. In this section we ought to complete this investigation in 
the term structure environment, supposing the structure to be assigned at an 
evaluation time put in 0, i.e. at bonds issue. For such structures, and assuming a 
coherent market, we shall use (7.25) and relations (7.26) to (7.39). As occurs for 
unshared loans amortization, when the change of rates can be performed over 
current time, the current uniperiods spot rates must be used by rules shown in 
section 6.9.4. 

The treatment of the previous topics can be restricted in few words if we observe 
that a lot of schemes regarding bond management, shown in sections 6.8 and 6.9, is 
still valid in the new context. Indeed it is enough to replace the constant coupon rate 
j with uniperiod forward coupon rates, varying over the time interval, the structure 
of which we will denote by jr 1,r . In addition, we will introduce, instead of only a 
valuation (or return) rate, an uniperiod forward return rate’s structure, that we apply 
to give the value in 0 by discounting the cash-inflow subsequent to 08, or otherwise 
the price in 0 that assures the yield given by the given structure, that we denote 

1,r ri . 

Unless stated otherwise the bonds have coupons, the period and payment times 
are annual and so are the rates. In case of semiannual coupons, it is sufficient to 
halve the coupon each year. 
                                                 
8  The inverse problem, of calculating a balanced return structure according to purchase price, 
gives infinite solutions. Then it has a theoretic importance, linkable with Generalized 
Discounted Cash Flow (GDCF) questions seen in section  4.4.2. 
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8.5.1. Financial flows by the issuer’s and investor’s point of view.  

Generalizing what was shown in section 6.8, we must distinguish the case of 
only one maturity for all bonds from that of different maturities with refunds 
according to a drawing plan: 
a)  Assumption of bonds with only one maturity 

Let us recall some symbols specified in section 6.8, using: 
 s  =  maturity (or life) of bonds, all issued in 0; 
 c =  redemption value of each bond (usually equal to par value); 
 N  =  number of issued bonds; 
 p0 =  purchase price of a bond at issue; 
 pr =  purchase price of a bond at time r>0. 

In addition, we use coupon jr 1,r  and yield ir 1,r  rate structure. 

On the basis of such assumptions the parties make the following operations: 

i) issuer:  (0,Np0) (1, Ncj0,1) ... (n 1, Ncjn 2,n 1) (n, Nc(1 jn 1,n ))  
ii) buyer in 0: (0, p0) (1,cj0,1) ... (n 1,cjn 2,n 1) (n,c(1 jn 1,n ))  
iii) buyer in r: (r, pr ) (r 1,cjr,r 1) ... (n 1,cjn 2,n 1) (n,c(1 jn 1,n ))  

Such results hold under annual coupons. In the case of semiannual coupons, at 
kth year for each bond we obtain two equal coupons whose amount is cjk-1,k /2; 

  b) Assumption of different bonds maturities with refunds according to draw 

Let n be the given loan time length with gradual refunds according to the 
following drawing plan 

 
s=1

,   sub 
n

s sN N N  (8.32) 

In such a assumption the issuer is the debtor on a gradual amortization whereas 
the investors  are creditors on an amortization with random time length and only one 
final refund after the payment of periodical interest. In detail, using (6.70) the 
operations are the following: 

i) issuer: 
0 1 1 1,(0, ) ( , )n

s s s s sNp s N c L cj  

ii) buyer in 0 with drawing and refund in s>0: 
 (0, p0) (1,cj0,1) ... (s 1,cjs 2,s 1) (s,c(1 js 1,s))  
iii) buyer in r with drawing and refund in s>r:  

 (r, pr ) (r 1,cjr,r 1) ... (s 1,cjs 2,s 1) (s,c(1 js 1,s))  



360      Mathematical Finance 
 

8.5.2. Valuations of price and yield 

In section 6.9 valuations of bonds as a function of a given rate were performed; 
furthermore we have seen the correspondence between prices and discount rates 
that, given the prices, signify yield rates of the consequent investment operation.  

We have to recall that, in a constant rate context, the correspondence between 
present values (or initial prices) and rates is biunique. On the other hand, in a 
varying rate context according to term structures the correspondence is only 
univocal, in the way that “term structure price”, as soon as the bond loan 
parameters are assigned (see footnote 8). Then let us restrict ourselves, in this 
section devoted to valuations, to the calculation of the formula giving the balanced 
purchase price in the two schemes of  loan management.  
a) Assumption of bonds with only one maturity  

 Generalizing the results in section 6.9.2 and in (6.74) under coupon jk 1,k  
and return  ik 1,k  rates structures, with the symbols used in section 8.5.1 under a), 
the purchase price in 0 of bonds with life s is given by9  

 ( ) 1 1
0 1, 1, 1,1 11

  (1 ) (1 )
s h ss

h h k k k kk kh
z c j i i  (8.33) 

Furthermore, the bond purchase price in r (0<r<s), with unchanged term 
structures in (0,s) interval, is given by  

           ( ) 1 1
1, 1, 1,1 11

 (1 ) (1 )
s h ss

r h h k k k kk r k rh r
z c j i i  (8.33') 

b) Assumption of drawing bonds  

Generalizing the results of section 6.9.3 and (6.75') under coupon jk 1,k  and 
yield  ik 1,k  rates structures, with the  symbols used in section 8.5.1 under b) the 
bond purchase price in 0 is  now the arithmetic mean, weighed by Ns , of bonds’ 
prices having life s. Therefore it is worth  

( )
1 1

0 1, 1, 1,1 11 1 1

 
(1 ) (1 )

s
n n s h ss s

h h k k k kk ks s h

N z N c
z j i i

N N
 

(8.34) 

                                                 
9  Equation (8.33) shows that the inverse problem “price structure ik 1,k

” gives infinite 

solutions of a difficult calculation in the generalized IRR environment.  
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Furthermore, the bond purchase price in r (0<r<s), with unchanged term 
structures in (0,s) interval, is given by  

 1 1
1, 1, 1,1 11 1

 
 (1 ) (1 )

n s h ss
r h h k k k kk r k rs r h r

r

N c
z j i i

L
 (8.34') 
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Chapter 9 

Time and Variability Indicators,  
 Classical Immunization       

9.1. Main time indicators 

Knowledge about the indicators of the time structure in the operation  

 O  =  {th}&{Sh} (9.1) 

consisting of receipt (or payment) of amounts S1,...,Sn to times t1,...,tn is important in 
the management of securities. Thus we preserve the assumption of the same sign 
into {Sh} which are not all zero.1 Therefore, O results are not fair  (see Chapter 4).  

Concerning the particular case of a bond, the amounts {Sh} are the receipts owed 
to its owner, both as interest by coupon and as principal by refunds. The payment for 
the bond purchase is not considered; thus O is a generalized annuity, because the 
payment schedules can be not periodic.  

We will now give a description of time indicators useful in financial 
management. They are in the time dimension, so are measured in the unit chosen in 
the tickler (usually a year). In addition, they are invariant under proportional 

                                                 
1 As we will see immediately, the time indicators represent “mean times” because they are  
means of the interval length between the reference instant (in particular, the purchase or 
evaluation instant) and the maturity of each receipt. Therefore, these time indicators have the 
feature of “internal means”, i.e. are intermediate numbers between the lowest and the highest 
length of such intervals. 
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variations of Sh. Then if O is an annuity with constant payments, the indicators for O 
can be estimated on the corresponding unitary annuity.  

9.1.1. Maturity and time to maturity 

Maturity and time to maturity are the simplest time indicators of O. Using the 
previous symbols and denoting by t the reference instant (e.g. the purchase or 
valuation date) the maturity of O is tn, and its time to maturity is tn-t. It is evident 
that this is an indicator on complete information about the structure of time only on 
zero-coupon bonds, because it neglects the coupon distribution. 

With regard to the following indicators, using (7.25), for the sake of simplicity 
we put at t=0 the reference instant, assuming th 0, h, and at least one th>0; thus the 
time horizon of O is subsequent to 0. Therefore, if t=0 is the purchase or valuation 
instant of a bond m time units after the issue, this instant is -m and only the 
payments subsequent to the reference instant are considered. With such an input, the 
maturity and the time to maturity coincide. It is evident with any t that it is sufficient 
to use (th-t) instead th in what follows. 

9.1.2. Arithmetic mean maturity  

This is defined as the arithmetic mean of the maturities th, weighted by the 
amounts Sh of O defined in (9.1), then calculable by the formula  

 t h t hSh 1
n

hSh 1
n

 (9.2) 

The meaning of   t  in terms of mechanics is evident, as the center of mass about 
the system of Sh  put in the points th of time axis. Obviously in (9.2) we can assume, 
instead of Sh, the standardized weights Sh / Skk 1

n  , that represent the cash-inflow 
shares at th. Then   t is a synthetic indicator of the cash-flow timing.  

9.1.3. Average maturity 

We define average maturity z as the solution of the following equation, referred 
to (9.1): 

 1 1(1 ) (1 ) hn n tz
h hh hi S S i  (9.3) 
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depending on a given flat-rate i. From (9.3) we deduce the explicit form: 

 z
ln Sh (1 x) th / Shhh

ln(1 x)
 (9.3') 

z is an exponential mean of th, obtained with the transformation of an arithmetic 
mean by the monotonic function f(x)=(1+ i)-x. Therefore, it is associative and (9.3) 
gives i its only solution z =z(i). As f(x) is a discount factor, the average maturity is 
the time, that, concentrating all payments in this time, we obtain the same present 
value obtainable according to the given tickler {th). 

More generally, if we consider a financial discount law related to the structure of 
spot prices  v(0,t), the average maturity z, depending on v(0,t), is the solution of 

   v(0,z) Shh 1
n

  =   Shh=1
n

 v(0,th )  (9.3'') 

The average maturity enables a thorough analysis of the feature and the return of 
a financial plan made by an operation O* with amounts of any sign. Sharing the n 
supplies of O* according to the amount sign, we obtain the outlays (usually called 
the costs of the plan) and the receipts (also called the revenues). Then, for every 
fixed h, 

 if Sh < 0, we use Ch = |Sh Sh > 0  (cost) and th  = t'r ; 

 if Sh > 0, we use Rh = Sh > 0  (revenue) and th  = t"s . 

Then we obtain the sub-operations O*' of the n' costs and O*" of the n" revenues 
of O* (being  n'+n" = n) in their respective maturities. The value of O* is the sum of 
the O*' and O*" values. Then, using C = r Cr , R = s Rs, and denoting  with zC 
and zR the mean maturities of  O*' and O*", and selecting a uniform discount law 
v(t) (depending only on time t), the O* value, using the new symbols, is  

V0   Cr v(t 'rr 1
n' ) +  Rs s 1

n" v(t"s ) =   C v(zC ) +  R v(zR )  

Therefore, with the purpose of the valuation, the O* plan is equivalent to the 
point input, point output (PIPO) plan {zC ,zR}&{-C,R} obtained by concentrating all 
costs in zC  and all revenues in zR . Using  = zR -zC , if  zC < zR  so >0, the plan O* 
has the investment feature, since the costs on average occur before the revenues; but 
if  zC >zR  i.e. <0, instead, the costs on average occur after the revenues, then the 
plan O*  has the loan feature.  

In the case of zC < zR  if we select v(t) subject to strong decomposability, which 
implies symmetry, then the accumulation factor from  zC  to zR is v(zC )/v(zR). 
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However, in this case, as known, the exchange law is exponential: v(t) = (1+i)-t , 
where i  is the interest rate. Then we obtain:  

  V0 =  C (1+i)-zC  +  R (1+i)-zR  
where zC , zR and  depend on i.  If i=i*= IRR of O*, we obtain:      

 V0 (i*)  (1+i*)-zR [-C(1+i*) +R] 0,   so :  C(1+i*) = R   

This formula clarifies, with reference to the PIPO plan equivalent to O*,  the 
meaning of the internal rate of return IRR and of the average time length . 

9.1.4. Mean financial time length or “duration”  

Given a term structure, defined by spot prices v(0,th) in the valuation time 0 and 
an operation O set as (9.1), we define duration, denoted by D (see Macaulay, 1938) 
in a reference time put in 0, the arithmetic mean of times th weighted by the present 
values Sh.v(0,th) of amounts Sh, that is by the prices at 0 of the zero coupon bonds 
(ZCB) that enable the buyer of the bonds to receive Sh at the times th, (h=1,...,n). 
Then the duration is univocally obtained by  

 

    

D =   
thh 1

n
Shv(0, th )

Shv(0, th )
h 1
n

   (9.4) 

If the tickler has integer times th = h, then in (9.4) the unit price v(0,h) can be 
expressed according to the implicit forward annual rates by (7.30'). 

Definition (9.4) shows that the duration is a mean of the times on the basis of the 
economic scenario valued in the reference instant. The hth weight Sh.v(0,th) of the 
mean is the share of present value, or price, at 0 due to supply (th,Sh). It is also 
evident that D as the meaning of the first moment. Thus, it is the abscissa of the 
center of mass regarding the system {Shv(0,th)}  of mass put on the time axis in the 
abscissas th.  

If we assume, in order to obtain valuations, that the flat-yield structure will 
always be at level i, the duration, in this case named flat yield curve duration (FYC 
duration), depending on i or  = ln(1+i), becomes: 

 

    
D  =   

thSh (1 i) th
h=1
n

Sh (1 i) th
h=1
n   =   

thSh e  th
h=1
n

Sh e  th
h=1
n

 (9.5) 
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It is easy to prove the following theorem: 
Theorem: For any operation O having an annuity  feature, i >0  

 D    z     t  (9.6) 

results, holding the equalities only if O has only one amount at maturity tn. The 
inequalities are reversed if i<02 .  

Example 9.1  

Let us consider the operation O given by the cash-inflows Sh: {10450, 12500, 
8820, 56600} in the times: {1, 2.5, 3.75, 5 }, which are valued using the annual flat-
rate i = 4.75%. 

Recalling formulae (9.2), (9.3), (9.5), O has the time parameters  t , z , D, defined 
above. We obtain 

1) 
10, 450 12,500 2.5 8,820 3.75 56,600 5 357, 775

4,049
10,450 12,500 8,820 56,600 88,370

t ; 

                                                 
2 This theorem, formulated by E. Levi (1964), is proved here in the case of flat-yield structure 
taking into account known inequalities among means. Proof: with only one cash-inflow in tn , 
(9.6) is trivial when it gives equalities. With many cash-inflows we firstly prove the strong 
inequality between   t  and z. Put: v = 1/(1+i), we obtain  

hh h h

1/
t / tt

h
v  = v  = v

hhhh h
SSS S   

Therefore, v t  is the geometric mean of the discount factors v th  with weights Sh , then it is 

smaller than their arithmetic mean with the same weights, which by (9.3) equals vz . Owing to 
v t < vz , we obtain  z< t  if i>0 (that is v<1); on the contrary we obtain z> t  if i<0 (that is v>1). 
Moreover we prove the strong inequality between z and D: using u=1+i, we obtain  

D
u  =  ht hS thv / hS thvhhu  =  ht(u ) hS thv

h

1/ hS thv

 
Therefore, u D  is the geometric mean of the accumulation factors u th  with weights Sh , then 
less than their arithmetic mean with the same weights, which equals uz , considering the 
reciprocal in (9.3). Owing to  uD < u z , we obtain  D<z if  i>0 (that is u>1); on the contrary 
we obtain  D>z  if i<0  (that is u<1). Finally, by the transitivity of  “<” and “>”, D> t  follows 
if i>0,  D< t  follows if i<0      .  
We can deduce these relations between D and t  observing that if i>0 the discounting of Sh , 
made on D and not on t , cause a reduction which is greater for the amounts Sh  payable at  
times nearer to the last maturity, so the weighted arithmetic mean decreases. The opposite 
conclusion results if i<0; in this case we obtain a greater reduction for the payments closer to 
0. 
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2) z  is given by: 
   88,370.1.0475 -z  = 10,450.1.0475 -1 + 12,500.1.0475 -2.5 +  
 + 8,820.1.0475 -3.75  + 56,600.1.0475 -5 
  that is:   1.0475 -z  =  73397.46 / 88370  = 0.830570 
 log  0.830570 4,000 

log  1.0475
z  

3) the FYC duration D is given by 

 

1 2.5 3.75 5

1 2.5 3.75 5
10,450 1.0475 2.5 125,00 1.0475 3.75 8,820 1.0475 5 56,600 1.0475

10,450 1.0475 12,500 1.0475 8,820 1.0475 56,600 1.0475
D  

 

   
289, 991.80

73, 397.46
 3.951  

We can verify: t Z D , according to i > 0. 

Exercise  9.1 

With the same cash-inflows virtue as in Example 9.1, let us consider a spot-

prices structure 
v 0,z

30
z 30   and calculate z and D. 

A. We obtain:  v(0,1) = 0.967742    ;  v(0,2.5) = 0.923077; 
    v(0,3.75) = 0.888889;  v(0,5)    = 0.857143 

By virtue of (9.3), z is solution to 
30

z 30

10, 450 0.967742 12, 500 0.923077 8, 820 0.888889 56, 600 0.857143

10, 450 12, 500 8, 820 56, 600

  
78, 005.66

88, 370
  0.882717  ;  then   z = 3.986 

By virtue of (9.4), D is given by  

 
10,450 0.967742 2.5 12,500 0.923077 3.75 8,820 0.888889 5 56,600 0.857143

10,450 0.967742 12,500 0.923077 8,820 0.888889 56,600 0.857143D  

 
 

310, 930.53

78, 005.66
 3.986  

The denominator is the value in 0 of this inflow operation.   
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For the duration D the following property is valid, and is very useful in the 
subsequent applications: 

Let us consider two investments at 0 in order to obtain the operations O1 and O2 
made up respectively of cash-inflows {ah} at the maturities { t'h } and {bk} at { t"k }. 

Let us also denote by A =     ahh
v(0,t'h ) and B =   

bkk
v(0, t"k )  the values at 0 of 

O1 and O2, according to the spot prices structure v(0,t), or the corresponding rates 
i(0,t). Then the duration Da+b  of the operation O1 O2, which includes together the 
cash-inflows of O1 and O2 in the respective maturities, is the arithmetic mean of the 
duration Da  of O1 and Db of O2 , weighted by the values A and B3 . 

Then the following mixing property holds: 
Suppose that it is possible to vary continuously and in a proportional way the 

amounts {ah} and {bk} of two investments which give rise to the operations O1 and 
O2, so that the values A and B change, but not the durations of O1 and O2. Under 
this assumption we can continuously vary the shares A/(A+B) and B/(A+B) of two 
investments so as to obtain a duration of O1 O2 however chosen in the interval 
between the durations of O1 and O2.  

The classical case concerns the assignment of the total amount A+B to buy two 
kinds of securities. A and B are changed as written with A+B  = const., so as to 
obtain the desired duration Da+b. This property can be extended to more than two 
operations.  

In the applications the calculation of the FYC duration is useful for basic 
operations which are components of a complex portfolio management, when we 
assume a flat-yield structure and therefore a FYC duration. We use this calculation 
for the following operations. 

O = temporary annuity-immediate with constant payments   

In order to calculate the FYC duration, because of its invariance with respect to 
proportional variations of amounts, it is not restrictive to consider O as unit annuity. 
Moreover we assume unit periods and annually delayed payments. By virtue of (9.5) 
and the symbols in Chapter 5, we obtain 

                                                 
3 The proof follows the associative feature of the arithmetic mean. Analytically, concerning 
the duration of O1  O2  we  can be written:  

Da+b  =  
t'h ahv(0,t'h ) t"k bkv(0,t"k )

kh

A  B
 = Da A

A B
 + Db B

A B
 .      
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 n|i1

n|i1

(I )(1 )

(1 )

n h
h
n h
h

ah i
D

ai
 (9.7) 

where the denominator is the present value an |i = v
1 vn

1 v
 of the annuity and the 

numerator is the present value (Ia)n |i = v

1 v
[
1 vn

1 v
nvn ] of the increasing 

annuity.4 We easily obtain the expression of D  by i: 

  
  
D =  

1+i

i
 -  

n

(1 i)n 1
 (9.7') 

It is easy to verify that the duration given by (9.7') is a decreasing function of the 
annuity valuation’s rate. Moreover, the value n/[(1+i)n-1] vanishes with diverging n 
and then the curve D(n) is strictly increasing5 and bounded by the asymptote i/(1+i) 
= 1/d. This level then gives the FYC duration of a perpetuity. 

Example 9.2 

Let us consider a semiannual annuity-immediate over 6 years, using the rate of 
6.20%. With regard to the duration’s calculation, it is equivalent to assume unit 
payments. Taking the half-year as the unit, we use (9.7') and n=12 half-years and i = 
0.030534 (= six-month equivalent rate). The result is 

D 
1.030534
0.030534

  
12

1.030534 12 1
  6.142  

i.e., FYC duration = 3.071 years = 3y+0m+26d. 

O =  cash-inflows by zero-coupon bonds (ZCB) 

Since the duration is a mean of the cash-inflows times and the ZCB gives only 
one encashment at maturity n, D=n results. This number is the greatest value 
obtainable with respect to the durations of bonds with cash-inflows of any amount 
and period before maturity. 

 

                                                 
4 See. formulae (5.2) and (5.26) of Chapter 5.  
5 To prove the increase of D with n, it is enough to verify that the subtrahend in (9.7') 
decreases. Indeed, since (1+i)-x>1-xln(1+i) (= its linear approximation), x>0, results, the 
derivative of  y = x/[(1+i)-x - 1] here is negative. 
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The bonds have a redemption value C and coupon I for the unit period. Then 

 th = h, (h=1,...,n) ; Sh = I  (if h=1,...,n-1), Sh = C+I  (if h=n)  (9.8) 

results, and the FYC duration is obtained  taking into account the effect of (9.8) on 
(9.5). Then we obtain 

 n|i

n|i

(I )  (1 )

 (1 )

n

n

I a n C i
D

I a C i
 (9.9) 

Equation (9.9) can be meaningfully obtained by the mixing property, pointing 
out that the operation here considered is the union of O' (= cash-inflows of coupons) 
and O" (= cash-inflow of redemption principal). The value in 0 of O' is A=I. an |i ; 
that of O" is B=C(1+i)-n; the FYC durations are respectively (Ia)n |i/ an |i and n. 
Calculating their arithmetic mean with weights A and B we obtains (9.9), which is a 
function decreasing with respect to both the coupon rate I/C and the yield rate i.  

 In Figure 9.1 the curve of D, as a function of the time, tends to the asymptote 
(1+i)/i. It is strictly increasing only if I/C  i (purchase at par or above par); 
otherwise (purchase below par) it increases up to local maximum     ̂D  > (1+i)/i and 
then decreases towards the asymptote. However, it is to say that with the customary 
rates we obtain the local maximum point after a long time, then  in the numerical 
interval of the usual maturities the duration D, as a function of the time t, increases. 

 
 

 
Figure 9.1. Plot of D, function of the time t 
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Example 9.3  

Let us consider at t=0 a bond with redemption value 100 in t=5 and annual 
coupons whose amount is 6.50 payable in 1, 2, 3, 4 and 5. Let us assume the 
valuation rate = 7%.  

The duration’s calculation proceeds as follows: 
 v = 1.07-1  = 0.934579 ; n=5 ; C = 100 ; I = 6.50 

 (Ia)n |i  = 0.934579
0.065421

 
0.287014
0.065421

3.564931   11.746862   

 an |i = 0.287014
0.07

  4.100197  

hence by virtue of (9.9) 

 
  
D  

6.50 11.746862 5 100 1.07 5

6.50 4.100197 100 1.07 5
  4.419 =  4y + 5m + 8d 

O =  cash-inflows by bond portfolio  

The previous calculation for the duration can be extended to the vectorial case, 
i.e. to a portfolio of m types of bonds whose purchase transfers the rights on m 
encashment operations, that we assume on the same tickler, e.g. on n years. These 
cash-inflows in such a tickler can be collected in a matrix  S = {Skh}. Therefore, O = 
O1 ... Om  where at any operation 

Ok = {Sk1,...,Skn}&{t1,...,tn}, k=1,...,m, 
which concerns a unit of the kth  bond, we join the initial value (or purchase price at 
0)   

 1 (1 ) ;   ( 1,..., )htn
k khhP S i k m  (9.10) 

Let us now consider a portfolio obtained by k units of the kth bond. It is evident 
the cash-inflows due to the given portfolio set up the operation O = 

1O1 ... mOm. Then the value (or price) P of O at 0 is the linear combination of 
the values (or prices) Pk of Ok with weights k . In addition, at 0 the FYC duration D 
of O is the arithmetic mean of Dk, FYC durations of Ok , weighted by the values 

kPk at 0 of the kth bond’s shares in the portfolio6. Such conclusions remain valid if, 

                                                 
6 Then it is possible to extend the mixing property for m>2 bonds. For the proof it is sufficient 
to use the linear algebra. Indeed, the cash-inflows of O in th are Ph = k k

Skh . Then    

1) using (9.10) it follows A = Phh 1
n (1 i) th = kk 1

m
Skhh 1

n (1 i) th = kk 1
m

Ak  
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instead of a flat-yield curve, we use any discount law (or unit prices structure) v(0, 
t). 

Example 9.4 

Let us consider three kinds of bonds, and use 100 as the unit redemption value 
and 5.50% as valuation flat-rate: 

 1st  bond: with constant coupon; maturity 4 years; annual coupon 5; 
 2nd bond: with zero-coupon; maturity 2 years; 
 3rd bond: with variable coupon; maturity 3 years; annual coupons with 

amounts: 5.40; 5.80; 5.60. 

Denoting by k the quantities of the bonds in the portfolio, let us consider two  
portfolio mix assumptions: 
assumption )  1 = 25;  2 =  3;  3 = 10; 
assumption )  1 = 2;  2 = 28;  3 =  8. 

Then, assuming a unit times tickler, the cash-inflows tickler per bond unit and 
the possible mixing are the following: 

 th = 1 2 3 4   
1st  bond 5 5 5 105 25 2 
2nd bond 0 100 0 0 3 28 
3rd bond 5.4 5.8 105.6 0 10 8 
Total 38 38 

We could calculate the FYC duration portfolio by working on the total cash-
flows, that in the two given hypotheses are written here below. 

 th =    1 2 3 4 
 179.0  483.0 1,181.0 2,625.0 
              53.2           2,856.4              854.8               210.0 

We obtain 

D   
12530.61630
3728.320452

  3.36093 
       

D   
8045.04565
3514.24090

  2.28927 
 

                                                                                                                   

2) using (9.4') and (9.10),  
  
Dk =  

thSkh
th(1 i)h

Ak
  ;   D =  

th Ph
ht(1 i)h

A
 =    

= 
th k k

Skh
th(1 i)h

A
 =  k

Ak

A

th h
Skh

th(1 i)
Ak

k  =  
kAkDkk

kAkk

   � 
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However, it is important to calculate the bond unit duration and make the linear 
combination for each mixing assumption. Denoting by Ds the FYC duration of the 
sth bond, we easily obtain: 

D1  
365.52882
98.24742

  3.72049    ;
   

D2  
179.6904
89.8452

  2
  

  
D3  

285.33174
100.25991

  2.84592 
 

where in the denominators the values Pk of unit bonds appear. Since the portfolio 
duration is the arithmetic mean of unit bond durations weighted by the total values 
of each bond in the portfolio, we obtain 

 D
25 98.247424 3.720493 3 89.8452 2 10 100.259910 2.845921

25 98.247424 3 89.8452 10 100.259910
   

 
  

 
12530.61036
3728.32030

  3.36093   

 D   
2 98.247424 3.720493 28 89.8452 2 8 100.259910 2.845921

2 98.247424 28 89.8452 8 100.259910
 

  
8045.04317
3514.23973

  2.28927  

i.e. we obtain the previous results. At the denominator of D  and D  we have the 
values of the two portfolios  and , i.e. 

      P kk Pk 3728.32    ;       P kk Ak 3514.24  

9.2. Variability and dispersion indicators 

9.2.1. 2nd order duration  

In the portfolio management it is useful to take into account the dispersion. To 
satisfy this need, we define the 2nd order duration at 0 

 

      
D(2) =   

th
2

h 1
n

Shv(0, th )

Shv(0, th )
h 1
n

    (9.11) 

which has the dimension of  (time2) and depends on the term structure of spot prices 
v(0,th). Equation (9.11) shows that 

  
D(2) is the second moment of the mass system 

whose D is the first moment. 
    
D(2)  (tn)2 always results.  



Time and Variability Indicators, Classical Immunization     375      

In particular, in the case of a flat-yield structure the 2nd order FYC duration takes 
the form of 

 

      
 D(2)  =  

th
2

h 1
n She th

She th
h 1
n

 =
th

2
h 1
n Sh (1 i ) th

Sh (1 i ) th
h 1
n

     (9.11')7 

In addition, it is suitable to look over the consequences of interest rate 
variability, particularly in the case of investment rate of return (see the 
immunization theory in section 9.3). By working under a flat-rate, it is known that 
initial value V(i) of a cash-inflow set due to an investment (or the price which allows 
a rate of return i) is a function that decreases and is a downward concave of i.  

The reference to initial value (or price) V( ) and to its derivatives depending on 
intensity =ln(1+i) simplifies the following formulae. We obtain 

V ( ) She  th
h 1
n ; V ' ( ) thh 1

n
She  th ; V"( ) th

2
h 1
n

She  th  (9.12) 

resulting in:  V( ) > 0; V'( ) < 0; V"( ) > 0. 8  

Example 9.5 

Let us again use the cash-flow given in Exercise 9.1, i.e. the cash-inflows 
{10,450; 12,500; 8,820; 56,600} over the tickler {1; 2.5; 3; 3.75; 5}, valued by the 
law v(0,z)=30/(z+30). We have seen that the value at 0 of the given cash-flow is 
78,005.66 and its duration is 3.986 years. 

Using some results of that exercise, we verify that the 2nd order FYC duration by 
virtue of  (9.11') is given by 

 D(2) 10,450 0.967742 2.52 12,500 0.923077 3.752 8820 0.888889 52 56,600 0.857143
10,450 0.967742 12,500 0.923077 8,820 0.888889 56,600 0.857143  

                                                 
7 From a physical point of view, also with a flat-yield structure the duration D, given in this 
case by (9.5), is the first moment, thus the center of mass, of the distribution of the 
mass Sh e  th  put in th , whereas D(2) given by (9.11') is the second moment, that is the 
moment of inertia in a rotation around the origin. Moreover 2 = D(2) -D2 is the variance, i.e. 
the central second moment (or central moment of inertia), which is a dispersion indicator. In 
a more general approach with any term structure, the mass Shv(0,t) are taken, D is given by 
(9.4) and D(2) is given by (9.11) being valid analogous conclusions. 
8 It is well known that the sign of second derivative measures, if this sign is positive, the 
punctual degree of upward concavity (or downward convexity) of a f(x) and, if this sign is 
negative, that of downward concavity (or upward convexity). The concavity and the 
convexity imply “downward”. 
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1, 405, 335.65

78,005.66
18.0158 years2  

9.2.2. Relative variation      

Let us carry out a survey of variability indicators under the flat-yield structure. 
With reference to the function V( ) and its first derivative (see (9.12)), we can define  
an index of relative variation by 

  
 

V ' ( )
V ( )

d

d
ln V ( ) 0 (9.13)

Recalling (9.5), which gives the FYC duration D, the basic formula  

 V'( )/V( )  =  - D (9.13') 

that identifies in absolute value the quickness of relative variation of V with respect 
to ,  with the FYC duration, holds.9    

Note 

Among the consequences of rate fluctuations there is also that of the same 
duration change, which in previous approximations is neglected. Under a flat-yield 
structure the quickness and the direction of such a variation are measured by the 
derivative of D. Using (9.12) this results in: 

D
 =  h

th S e  th
h 1
n

She  th
h 1
n

 =  
th
2She  th .V ( ) (

h
th S e  th )2

h 1
n

h 1
n

V 2 ( )
 =

  

[D(2) D2 ] = - 2 < 0         (9.14) 

Therefore D  is a meaningful volatility indicator of times with respect to 
mean time D. By virtue of (9.14) it follows that D decreases when intensity or rate 
increases. We obtain the following equation 

 D

i
 =  

D d

di
 =  - v 2 < 0 (9.14') 

                                                 
9 A type of duality holds between duration and interest instantaneous intensity: intensity 
(=time-1) is the derivative of value’s logarithm (pure number because it is an exponent) with 
respect to time; duration (=time) is the derivative of value’s logarithm (pure number because 
it is an exponent) with respect to intensity (time-1). 
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To conclude: distribution variance  quickness of D(  variation  quickness 
of D(i) variation. 

9.2.3. Elasticity 

In the flat-yield structure assumption, we define elasticity of a bond value (or 
price) at 0 with respect to 10 the limit ratio on vanishing  between the relative 
variations V/V and / . The result is 

=  
0

lim  V /V
/

  
V ( )
V ( )

   - D  (9.15) 

Denoting by i the elasticity with respect to i = e the result is:

i =  
i 0
lim  V /V

i / i
  i

V (i)
V (i)

   -
i

1 i
D  (9.15') 

9.2.4. Convexity and volatility convexity 

Under the flat-yield structure assumption, let us introduce two further indicators 
linked to second derivative (>0) of value (or price) V. The former indicator, called 
convexity, is the level of convexity per unit of value. The convexity can be expressed 
as a function of the intensity , called -convexity and denoted by , as well as by a 
function of rate i, called i-convexity and denoted by 

i
. Due to (9.11'), the -

convexity coincides with the 2nd order FYC duration. Using symbols, the two 
indicators valued at 0 are:

  

th
2 Sh  e  th

h 1
n

Sh e  th
h 1
n

 =  D(2) V"( )
V ( )

 (9.16) 

 
i

th  (th 1) Sh (1 i) th
h 1
n

Sh (1 i) th
h 1
n

V"(i)
V (i)

(1 i)2  (9.16') 

                                                 
10 In general, given two variables x, y functionally linked by y=f(x) (continuous and 
derivable), we define elasticity of y with respect to x , here denoted by , the punctual relative 
increment of y with respect to x, that is the limit ratio between their relative variations. Using 
symbols

 

x 0
lim

f (x x) f (x) / f (x)

x / x

x

f (x)
 

x 0
lim

f (x x) f (x)
x

x
f (x)

f (x)

d ln f (x)

d(ln x)  
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The latter indicator, called volatility-convexity, means the convexity per unit of 
value variation. The volatility-convexity can be expressed according to the intensity 
, called  -volatility-convexity and denoted by * , or dependent on rate i, called  i-

volatility-convexity and denoted by i
*. Using symbols:  

 

  

* -
th

2She  th
h 1
n

thShe  th
h 1
n

 =  -
D(2)

D

V"( )
V ' ( )

  (9.17) 

 

 
 i

* -
th (th 1)Sh (1 i) th

h 1
n

thSh (1 i) th
h 1
n

= * 1
V"(i)
V '(i)

(1+i)  (9.17) 

Comparing (9.5) with (9.16) and (9.16') we obtain the important simple formula: 

i D , which enables us to easily calculate one of the quantities having been 
given the others. In addition, such indicators are applied in the theory of classical 
immunization, which we address in section 9.3. 

Exercise 9.2 

Given the inflows operation J with amounts [8,520; 11,400; 6,450; 61,800] and 
tickler [0.5; 2; 3.5; 5.25], due to a previous investment with amount calculable by 
(5.23), let us calculate the duration, the convexity and the volatility-convexity at 0, 
with respect to  and i, valuing by i = 4.75% or by the corresponding . 

A. Using an Excel spreadsheet, we draw up the following table which gives the 
asked solutions by working on the data of J. The constraints among i-convexity, -
convexity and FYC duration are verified. 
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        CALCULUS OF  DURATION, CONVEXITY AND VOLATILITY-CONVEXITY 

      

          Depending on   = 0.046406  

th Sh vh=exp(- th) Shvh thShvh th2Shvh 

0.50 8,520 0.977064 8,324.58 4,162.29 2,081.15 

2.00 11,400 0.911364 10,389.55 20,779.10 41,558.20 

3.50 6,450 0.850082 5,483.03 19,190.60 67,167.11 

5.25 61,800 0.783775 48,437.29 254,295.76 1,335,052.72 

  72,634.45 298,427.76 1,445,859.19 

     

 V = 72634.45  D = 4.1086 

  = 19.9060   = -4.8449 

     
            

  Depending on  i: i = e -1 = 0.047500  

th Sh vh = (1+i)-t
h Shvh thShvh th(th+1)Shvh 

0.50 8,520 0.977064 8,324.58 4,162.29 6243.44 

2.00 11,400 0.911364 10,389.55 20,779.10 62337.31 

3.50 6,450 0.850082 5,483.03 19,190.60 86357.72 

5.25 61,800 0.783775 48,437.29 298,427.76 1589348.48 

   72,634.45 298,427.76 1,744,286.94 

      

 V = 72634.45  D  = 4.1086 

 i = 24.0146  *I = -5.8449 
      

  The constraint  i =  + D is verified 

Table 9.1. Example of calculus of duration, convexity and volatility-convexity 

The Excel instructions are the following. With regard to non-empty cells, we 
have:   
E14: input of annual rate; E3:= ln(1+E4). 
 Depending on : 
   from row 5 to 8:  
column A:  maturity: input from A5 to A8; 
column B:  flow: input from B5 to B8; 
column C: unit spot price: C5:= EXP(-$E$3*A5); copy C5, then paste on C6 to C8 
column D: present value: D5:= B5*C5); copy D5, then paste on D6 to D8; 
column E:  present value . maturity: E5:= A5*D5); copy E5, then paste on E6 to E8; 
column F: present value . maturity2: F5:= A5*E5); copy F5, then paste on F6 to F8; 
  row 9:  sums: D9:= SUM(D5:D8); copy D9, then paste on E9 to F9; 
  row 11:  value, duration:   C11:= D9 ;  F11:= E9/D9; 
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  row 12:  -convexity, -volatility-convexity: C12:= F9/D9 ;  F12:= -F9/E9; 
   Depending on  i: 
   from row 16 to 19:  
column A:  maturity: copy from A5 to A8, then paste on A16 to A19; 
column B:  flow: copy from B5 to B8, then paste on B16 to B19; 
column C:  unit spot price: C16:= (1+E$14)^-A16; copy C16, then paste on C17 to 

C19; 
column D:  present value: D16:= B16*C16); copy D16, then paste on D17 to D19; 
column E:  present value . maturity: E16:= A16*D16); copy E16, then paste on E17 

to E19; 
column F: present values . maturity . (maturity+1): F16:= E16*(A16+1);  
 copyF16, then paste on F17 to F19; 
    row 20:  sums: D20:= SUM(D16:D19); copy D20, then paste on E20 to F20; 
    row 22:  value, duration: C22:= D20 ;  F22:= E20/D20; 
    row 23:  i-convexity, i-volatility-convexity: C23:= F20/D20 ;  F23:= -F20/E20. 

9.2.5. Approximated estimations of price fluctuation 

Let us explain, using the assumption of a flat-yield structure, an alternative  
interpretation of FYC duration and convexity. Multiplying by a small enough spread 
d  we obtain the approximate formula: 

 V ( )
V ( )

   V ' ( )
V ( )

d   = D d (9.18) 

which gives a significant sense of FYC duration. Indeed, since V( )/V( ) gives the 
rate of V( ) variation, by multiplying D by a small increase (or small decrease) of , 
we obtain in an approximate way the corresponding relative decrease (or relative 
increase) of V( ).11 For this reason D is a 1st order sensitivity indicator of price with 
respect to rate changes. By virtue of (9.18), we deduce the simple formula  

 V ( 0 d )  V ( 0)(1 D d )  (9.18') 

obtained by the Taylor expansion, restricted to the 1st order, over V( ). It allows an 
approximate estimate of new price consequent to a market rate change in regard to 
bond, whose price and duration are given according to a previous rate.  

In addition, let us observe that the convexity is a 2nd order sensitiveness indicator 
of price with respect to rate changes. Along with duration, it enables us to improve 
the rough valuation of variation of values (or prices) depending on the variation of 
                                                 
11 Therefore, with the same change of , in a bond having high (or low) duration, we obtain a 
high (or low) relative change of price, having an opposite sign with respect to that of d . 
Thus, this rule follows: it is better to invest in bonds with low duration in case of expectation 
of increasing rates; on the contrary, to invest in bonds with high duration in case of 
expectation of decreasing rates. 
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market intensity, expanding the Taylor formula V( ) up to 2nd order. Then we obtain 
the following improved estimate: 

 V ( 0 d ) V ( 0) V ' ( 0)d V"( 0)(d )2 /2  

 V ( 0)(1 D d (d )2 /2)  (9.19) 

and then the consequent relative variation 

 2( ) ( ) / 2
( )

V D d d
V

 (9.19') 

Example 9.6 

Let us consider at 0 a bond that gives rise to the distribution of J specified in 
Exercise 9.2. Under the annual rate i0 = 4.75% or the corresponding intensity 0 = 
0.049406, the values D = 4.1086;  = 19.9060 have been obtained. Let us calculate 
by an Excel spreadsheet, given below, the value (or price) at 0 corresponding to 0 
and the values (or prices) at 0 corresponding to spreads d = +0.003 and                 
d = -0.004. 

 CALCULUS  OF  BOND  PRICES  BY DURATION (given ) 

     

 Duration = 4.1086  -convexity = 19.9060 

 Intensity = 0.046406 0.049406 0.042406 

     
Amounts Maturities Values at 0 Values at 0 Values at 0 

8.520.00 0.50 8,324.59 8,312.11 8,341.25 

11.400.00 2.00 10,389.56 10,327.41 10,473.01 

6.450.00 3.50 5,483.04 5,425.77 5,560.34 

61.800.00 5.25 48,437.38 47,680.47 49,465.32 

     

True initial price              = 72,634.56 71,745.75 73,839.92 

Initial price using  (9.18') = 72,634.56 71,739.28 73,828.27 

Initial price using (9.19)   = 72,634.56 71,745.79 73,839.84 

     

True V/V = 0.000000 -0.012237 0.016595 

Approximate V/V using (9.18) = 0.000000 -0.012326 0.016434 

Approximate V/V using (9.19') = 0.000000 -0.012236 0.016594 

Table 9.2. Example of calculus of bond prices 
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In this table, after data inputs (duration and three intensities) the subsequent four 
rows give by column the amounts, the maturities and the inflow present value 
depending on the three intensities. Then in the following rows the prices at 0 are 
calculated by adding up, by column, and, for each intensity, are compared with their 
estimates according to (9.18') and (9.19). The subsequent three rows give 
comparisons among the relative variations of true prices and those deduced by 
(9.18) and (9.19'). 

The Excel instructions for non-empty cells are as follows: duration in B3 and 
three intensities in C4, C5, C6. Rows from 7 to 10:  
column A:  inflow data;  
column B: time data;  
columns C,D,E (cash-inflows present values): C7:= $A7*EXP(-C$4*$B7); copy  
 C7, then paste on C8-C10, on D7-D10, on E7-E10; 
row 12:  C12:= SUM(C7:C11); copy C12, then paste on D12-E12; 
row 13:  C13:= $C12*(1-$B3*(C4-$C4)); copy C13, then paste on  
 D13-E13;  
row 14:  C14:= $C12*(1-$B3*(C4-$C4)+$E3*(C4-$C4)^2/2); copy C14,  
 then paste on D14-E14; 
row 16:  C16:= C12/$C12-1; copy C16, then paste on D16-E16; 
row 17:  C17:= -$B3*(C4-$C4); copy C17, then paste on D17-E17; 
row 18:  C18:= -$B3*(C4-$C4)+$E3*(C4-$C4)^2/2; copyC18, then paste  
 on D18-E18. 

Let us now reconsider the previous expansions, assuming the rate i to be a  
variable of yield (let us recall (9.16') and (9.17')). In this case, taking into account 
the formulae  

V(i) = Sh (1 i)-th
h 1
n ,   V'(i)= -

hth S (1 i)-th 1
h 1
n   

we immediately obtain: 

 
  

V ' (i)
V (i)

 =  
-D

1+i
 =  - D v  (9.20)  

that also follows from (9.13') by observing that 
 
d

di
=

d ln(1+i)
di

v  and then 

1 1 -D= =
1+i

dV dV d
V di V d di

. Therefore, to make the previous approximations with use 

of the annual rate, the same expansions can be repeated using D*=D/(1+i) (called 
modified duration or volatility) instead of D. In particular, (9.18) becomes  

 V (i)
V (i)

V ' (i)
V (i)

di  = d lnV(i) = D

1 i
di (9.20') 
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and (9.18') becomes 

 
V (i0 di) V (i0) 1

D

1 i0
 di

 (9.20") 

Also, for V(i) we can find a better approximation of its change estimate by also 
considering (9.16') and Taylor expansion up to 2nd order. Thus, we obtain a better 
estimate by 

 V (i0 di) V (i0) V ' (i0)di V"(i0)(di)2 /2  

 
V (i0) 1

D

1 i0
 di

2(1 i0)2
(di)2

 (9.21) 

and by (9.21) the consequent relative variation depending on i: 

V (i)
V (i)

D

1 i
 di i

2(1 i)2
(di)2 (9.21') 

Example 9.7 

Let us again take Example 9.6 with the same cash-inflow distribution, but 
considering rate variations. Under the annual rate i0 = 4.75% we obtained in 
Exercise 9.2 the following values: D = 4.1086; i  = 24,0146. Let us now calculate, 
using Excel table below, the value (or price) at 0 corresponding to i0 and the values 
(or prices) at 0 corresponding to rate variations di = 0.004 and di = -0,004 as well as 
the relative variations. 
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     CALCULUS OF BOND PRICES  BY DURATION (given i) 

     

Duration =  4.1086  i-convexity= 24.0146 

 Rate  i = 0.0475 0.0515 0.0435 

     
Amounts Maturities Values at 0 Values at 0 Values at 0 

8,520.00 0.50 8,324.58 8,308.74 8,340.52 

11,400.00 2.00 10,389.55 10,310.66 10,469.36 

6,450.00 3.50 5,483.03 5,410.37 5,556.95 

61,800.00 5.25 48,437.29 47,477.71 49,420.04 

     

True initial price = 72,634.45 71,507.48 73,786.87 

Initial price using (9.20") = 72,634.45 71,494.88 73,774.03 

Initial price using  (9.21) = 72,634.45 71,507.60 73,786.74 

     

True V/V = 0.000000 -0.015516 0.015866 

Approximate V/V using (9.20') = 0.000000 -0.015689 0.015689 

Approximate V/V using (9.21') = 0.000000 -0.015514   0.015864 

Table 9.3. Example of calculus of bond prices 

The Excel instructions are as follows. Duration in B3 and the three rates in C4, 
C5, C6. Rows 7 to 10:  

column A:  inflow data;  
column B: time data;  
columns C,D,E (inflows present values): C7:= $A7*(1+C$4)^-$B7; copy C7, then  
 paste on C8-C10, on D7-D10, on E7-E10; 
row 12:  C12:= SUM(C7:C11); copy C12, then paste on D12-E12; 
row 13:  C13:= $C12*(1-$B3*(C4-$C4)/(1+$C4)); copy C15, then paste on  
 D15-E15; 
row 14:  C14:=$C12*(1-$B3*(C4- 
 -$C4)/(1+$C4)++$E3*(C4$C4)^2/(2*(1+$C4)^2)); copy C14, then 

paste on D14-E14; 
row 16:  C16:= C12/$C12-1; copy C16, then paste on D16-E16; 
row 17:  C17:= -$B3*(C4-$C4)/(1+$C4); copy C17, then paste on D17-E17; 
row 18:  C18:=-$B3*(C4-$C4)/(1+$C4)+$E3*(C4- 
 -$C4)^2/(2*(1+$C4)^2); copy C18, then paste on D18-E18.  
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A generalization 

We can analyze the change of value (or price) in more general assumptions, 
using the symbols in (7.28) and assuming a spot-price structure  

{v(0,h)} = {[1+ih]-h}. 

For the sake of simplicity we consider a bond implying cash-inflow due to 
varying coupons Ih and  redemption in C. The price (or value) at 0 of such a bond is 
given by 

 V Ih (1 ih ) h
h 1

n
C(1 in ) n   (9.22)  

The duration D  at 0 on the basis of this structure by virtue of (9.4) is      

 
1

(1 )  (1 ) /
n h n

h h nh
D h I i n C i V . (9.23) 

V can be considered a function of spot-rates i1,i2,...,in. Its total differential, 
corresponding to increments of spot-rates all equal to , is  

 1 1
1

* (1 )  (1 )  
n h n

h h nh
dV h I i n C i D V  (9.24) 

depending on a modified duration D*, that here is equal to  

 1 1
1

* (1 )  (1 ) /
n h n

h h nh
D h I i n C i V . (9.23') 

By dividing the sides of (9.24) by V, we obtain the relative variation    

 dV

V
D*  (9.25) 

that generalizes (9.13') and highlights that D* is a sensitivity index. From (9.25) we 
find that 

 V (i1 ,...,in ) V (i1,...,in )(1 D* )  (9.25') 

which generalizes (9.20") and easily gives the new price corresponding to a uniform 
variation of rate structure.  
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9.3. Rate risk and classical immunization 

9.3.1. An introduction to financial risk 

Among the more frequently discussed problems concerning risk theory in 
finance are those of interest rate risk. Such a risk also appears in operations agreed 
under certainty and considered safe from risks, such as the investments in bonds. To 
clarify the problems of the risk theory we refer only to investments in bonds, bearing 
in mind that the application’s field is much wider.  

As shown in sections 6.9 and 6.10, in a bond loan where all the securities have 
the same maturity (and we talk about only one maturity) the rate of return (IRR) is 
defined as that rate at which is zero the present value, calculated at the issue, of the 
algebraic sum of the cash-flow owing to the buyer of the bonds. In case of 
differentiated maturities, e.g. by a draw rule, the ex-ante yield is a mean value in 
relation to the redemption maturities of the bonds. We define the bond ex-post rate 
the as the real rate achieved according to the date of refund and then to the realized 
length of life. We saw that the ex-post rates always coincide with the coupon rate for 
the bonds whose purchase value coincides with the par and redemption value (i.e., 
par bonds).   

Examining this more closely, because in a financial operation’s valuation it is 
necessary to take into account all the payments made in the time horizon of such an 
operation, then referring to only the coupon bond (or more than one coupon bond, 
but where all the bonds have the same maturity) it is necessary to distinguish three 
types of yield:  

a) the initial yield, i.e. the IRR, also called the ex-ante rate and denoted by ri , 
which is the rate that makes the present value (at the moment issue or purchase) of 
both receipts and payments equal. Then ri is obtained not considering the 
reinvestment of coupons cashed during the bond’s lifetime, or else considering 
them, but – as it will soon be proved – supposing that the reinvestments are 
profitable according to a rate equal to IRR (then supposing that the curve of the 
market rates is flat-yield curve throughout the bond’s lifetime). Moreover, this rate 
coincides with the yield rate defined in section 7.2 in the case of bonds with a 
certain return and constant coupon or ZCB;  

b) the yield at maturity, here denoted by rm , i.e. an ex-post rate realized on a 
bond at its maturity, taking into account the reinvestment rates obtained on the 
cashed coupons;  

c) the yield in advance12, here denoted by ra , which is analogous to rm  but 
referred to a sale and realization before the maturity. 
                                                 
12 Obviously the yield in advance has not to mistake for the discount rate (or advance interest 
rate) defined in Chapter   3. 
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Let us prove the equivalence stated in a) and summarized as the following: 
 
Theorem A. Let us suppose that issue (or purchase) price at 0, nominal value and 
redemption value of a bond are equal to C, so that ri =i (= coupon rate). If in bond 
management we also consider the reinvestments of coupons as cashed up to maturity 
and their yield is ri , then rm = ri holds true. On the contrary, without reinvestments, 
rm<ri holds true.  
 
Proof. The latter point is evident after proving the former one. For this purpose we 
observe that each of n coupons is equal to R = Ci . Let F(n) be the accumulated 
value of cash-inflows. Using the given assumptions and with C as the redemption 
value, we obtain 

 
F (n) C R R(1 ri ) ... R(1 ri )

n 1 C R
(1 ri )

n 1

ri  

In addition, with C as the purchase price and ri  as the coupon rate, then R = Cri, 

 (1 ) 1 / (1 ) 1
(1 ) 1 (1 )

n n
i in ni

m i i
i

C R r r r
r r r

C r
 

results. Thus rm = ri .        

In light of the previous reasoning, it is evident that the bondholder must have to 
consider as random the return of reinvestment revenue due to future cashed coupons 
as well as the bond price in the case of future sale before the fixed maturity, which is 
calculated by discounting, at the time of sale, the future flows due to the buyer as 
coupons and redemption. Hence the financial rate risk, which is of two types: 

1) reinvestment risk, which is the due to the future random fluctuation of market 
rate  on the reinvestment of cashed coupons; 

2) realization risk, which is the due to the future random fluctuation of the same 
market rate on the bond price in case of sale in advance.  

The effects of two risks are not in accordance with each other; then we obtain a 
partial compensation, whose degree depends on sale time t" [0,n], where [0,n] is the 
time interval of investment.  

Let us explain the problem with reference to an investment operation O in [0,n]  
with the only outcome being -P at 0 and receipts being Rh>0 at time th [0,n] where 
tn= n. Such quantities enable the valuation, at 0, of the rate of return ri. Let r(t) be 
the rate of return, generally varying with respect to the time. It is evident that r(0) = 
ri.   
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In the ideal assumption that the market rate be invariant in the whole  interval 
[0,n], the yield of O retains the level of the rate r(0), since at such a rate we can 
reinvest the intermediate revenues Rh13. In case of selling in advance, the 
transferor’s and transferee’s returns depend on the transfer price. However, if at this 
price the seller retains the rate of return x, such a rate is also valid for the buyer14. 

However, if  0t  such that ( ) ir t r , then owing to market rate variation 
regarding reinvestments and price of realization in advance, the performances 
change and a decrease is possible, and the expectations, which were valued at 
purchase time, fail. Then the problem of immunizing arises, i.e. of neutralizing the 
effects of risk due to rate r(t) fluctuations.  

Limiting ourselves to operation J  = ht & hR  of inflows, regarding its value 
V(t,r) at t, subject   to (tk  t  tk+1) under rate r, the result is: V(t,r)= F(t,r) + P(t,r), 
where   

 F(t,r)  =  Rh (1 r) t th
h 1
k  (9.26) 

is the accumulated amount at t, on reinvesting under rate r the cash-inflows before t, 
and  

 P(t,r)  =  Rh (1 r) ( th t)
h k 1
n     (9.26')  

is the present value at t under rate r of cash-inflows after t, then the price of 
realization in advance at t. Obviously this results in 

                                                 
13 Let us use as an example a bond as specified in section 6.10, bought in 0 at the price z (so 
generalizing the previous theorem) with c as the redemption at time n and annual coupons 
according to the rate i. By the defining equation, whose solution is the (initial) yield rate x, 
then written as: -z+ci an |x +c(1+x)-n = 0, we obtain, multiplying by (1+x)n: ci sn |x +c = 
z(1+x)n. The left side is the economic outcome in n of z invested in 0, with reinvestments 
according to the rate x of coupons as cashed. Since it equals the right side z(1+x)n, the ex-post  
yield is x. The opposite is also true.  
14 Referring to the bond in footnote 13, in case of a sale after only m years with price p, and 
of coupon reinvestment at rate x both by the seller and by the buyer, the fairness equation of O 
on x, quoted in footnote 13, can be written (multiplying by (1+x)m and considering that, if 
n>m, an |x = am |x +(1+x)-m an -m |x ), as: 

[-z(1+x)m + ci sm |x +p] +{-p + ci an -m |x + c(1+x)-(n-m)} 
The F quantity in square brackets is the value in m of the transferor’s O' operation, whereas 
the P quantity in curly parentheses is the value in m of the transferee’s O" operation. If p is 
such that F=0, i.e. it is the retrospective reserve in m, O' is fair under rate x; then x is the 
transferor’s rate of return. However, because of the O fairness the price p is also the 
prospective reserve in m, then P=0 and then O" is fair under rate x; then x is also the 
transferee’s rate of return.  
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 V(t,r)= F(t,r) + P(t,r) = Rh (1 r)t th
h 1
n

  (9.27) 

Given t, it is evident (and immediately verified, using the derivative with respect 
to r) that F(t,r), obtained by accumulating, is an increasing function of r, whereas 
P(t,r), obtained by discounting, is a decreasing function of r. 

Let us assume, for the sake of simplicity, that in [0,n] the function r(t) is subject 
to only one variation in t'  t1 , changing from r(0) to r* = r(0)+ r (where r>0 or 

r<0). Under such a change, assuming t1  t  tn, if t is close to t1 , the variation of 
F is small whereas that, opposite in sign, of P is large. Then by virtue of (9.27) the V 
variation has the sign of the P variation. On the contrary, if t is close to tn , the 
variation of F is large whereas that, opposite in sign, of P is small. Then due to 
(9.27) the V variation has the sign of the F variation. Owing to the continuity of such 
functions, this result implies the existence of a critical time ˆ t  regarding the sale in 
advance, which produces opposite values of F and P variations. Then V remains 
unchanged. Using symbols we have:  V ( ˆ t ,r*) V ( ˆ t ,r(0)) . Thus, we obtain a 
thorough neutralization of r(t) variation’s effects on such values, then on ra rate, 
which would agree with ri = rm without following the variations of the initial market 
rate r(0). The calculation of such a critical time is based on classic immunization 
theory, which will be addressed in section 9.3.2. 

The following examples, which recall an exercise given in Devolder (1993), 
refer to different settings of realization time t" from that of market rate change 
(assumed to be only one) t’  and the maturity n of a bond with annual coupons; for 
simplicity they all refer to the purchase of a security at issue (at 0) with purchase 
price = par value = redemption value = 100, then  ri  = r(0) = coupon rate.  

Example 9.8. Sale in advance at time t"=t'=2 of a bond with maturity n=10. 

Let us put r(0) = ri = 0.05 = 5% and assume that the set  of “states”, 
concerning the dynamics of the market rate r(t) into the interval [0,10], is given only 
by the following events: 

0= (no change of r(t) at [0,10]t ); 
1= (only one change of r(t) at t0 = 2, given by  = +0.01 = +1%); 
2= (only one change of r(t) at t0 = 2, given by  = -0.01 = -1%); 

Clearly, if 0 is true, it results in ra = rm = ri = 0.05. Let us consider two other 
events 1and 2, denoting by ( )  the dependence on the  state.  

The sum F (2) , accrued by an investor owing to cashed coupons at periodic 
maturities and reinvested up to sale at  t"=2, do not depend on the  state, because 
changes of r(t) into [0,2) do not occur. The sum is given by  
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 F (2)  =  5 (1.05) + 5 = 10.25 

The sale price P (2)  follows by rates r(t) in [2,10], thus depends on the  state: 
P (2) 5a8 |r( ) 100[1 r( )] 8  

  if 1:  r ( 1)  = 0.06,  P
1

(2)  = 31.05 + 62.74 =   93.79 

 if 2:  r ( 2)  = 0.04, P
2

(2)  = 33.66 + 73.07 = 106.73 
The seller’s total revenue at t" = 2 is S (2)  = F (2)  + P (2) . Then  

 if 1:  r ( 1)= 0,06, S
1

(2)  = 104.04 

 if 2:  r ( 2)= 0,04, S
2

(2) = 116.98 

 The yield in advance ra ( )  depends on  state, as it is solution of   

100 [1 ra ( )]2 S (2)  

If 1, we obtain:  ra ( 1)  = 0.020000 ; if 2:  ra ( 2)  = 0.081573, then 
ra ( 1)< ra ( 2)  with a large difference among them and ri which is in the middle. 
As t" = t', a reinvestment risk does not exist, because the coupons are reinvested in 
[0,2] under certain rate r(0) = 0.05 whereas the risk of realization exists with a large 
decrease (increase) of the sale price and of the yield in advance when the market rate 
increases (decreases). 

Example 9.9. Sale in advance of a bond with maturity n=10 at time t"=6                   
in the middle from t'  and n.  

On the basis of the data and events set out in Example 9.8, except for t"=6, we 
obtain the following results. 

The sum F (6) , accrued by the investor due to cashed coupons at periodic 
maturities and reinvested up to sale at t" = 6, depends on the  state and is given by 

 F (6) 5 {1.05 [1 r( )]4 s5 |r( )}  

  if 1:  r ( 1)  = 0.06, F
1

(6)   = 5 (1.325601+5.637093) = 34.81; 
 if 2:  r ( 2) = 0.04, F

2
(6)  = 5 (1.228351+5.416323) = 33.22. 

The sale price P (6)  depends on the  state and is given by 

P (6) 5 a4 |r( ) +100 [1 r( )]4
 

 if 1:  r ( 1) = 0.06,  P
1

(6)  = 17.32 + 79.21 =   96.53; 
 if 2:  r(  2 ) = 0.04, P

2
(6)  = 18.15 + 85.48 = 103.63. 

The seller's total revenue at t" = 6  is S (6)  = F (6)  + P (6) . Then     
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 if 1:  r(  1 ) = 0.06,  S
1

(6)  =  131.34; 
 if 2:  r(  2 ) = 0.04, S

2
(6)  =  136.85. 

 The yield in advance ra ( )  depends on  the  state, as it is the solution of  

100 [1 + ra ( )]6 S (6)  

If 1, we obtain: ra ( 1)  = 0.046485 ; if 2:  ra ( 2)= 0.053677. 

Compared to the results of Example 9.8, the difference between ra ( 1)  and 
ra ( 2)  is much reduced, since these rates are approaching  the value of the initial 
market rate, 0.05. As t'<t"<n, both the reinvestment risk on cashed coupons from  
time 2 to 6, and the realization risk exist, owing to the advance of the sale in respect 
to the maturity, which implies a discount from time 10 to 6 under a random market 
rate. 

Example 9.10. Realization of a bond at maturity n=10 

On the basis of the data and events set out in Example 9.8, except for t" =10, we 
obtain the following results. 

The sum F (10) , accrued by the investor due to cashed coupons at periodic 
maturities and reinvested up to realization at time 10, depends on the  state and is 
given by  

F (10) 5 {(1.05)[1+ r( )]8 s9 |r( )}   

 if 1:  r ( 1)  = 0.06, F
1

(10)   = 5 (1.673540+11.491316) = 65.82; 
 if 2:  r ( 2)  = 0.04, F

2
(10)  = 5 (1.368569+10.582795) = 59.76. 

 The realization value is certainly P (10) =100; it does not depend on the  state, as 
it lacks a discount under a random rate. 

 The seller’s total revenue at t" =10 is S (10)  = F (10)  + P (10) . Then 
 if 1:  r ( 1)  = 0.06,  S

1
(10)  = 165.82; 

 if 2:  r ( 2)  = 0.04, S
2

(10)  = 159.76. 

The yield in advance ra ( )   becomes yield to maturity rm ( ) because the 
realization occurs at fixed maturity; it depends on  state, as it is the solution of   

100 [1 + rm ( )]10 S (10)  
If 1, we obtain: rm ( 1)  = 0.051874 ; if 2:  rm ( 2)  = 0.047965 then 

rm ( 1)  > rm ( 2)  with a small difference between them and ri  which is in the 
middle. As t" = n , a realization risk does not exists but the reinvestment risk exists 
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with an increase (decrease) of total revenue and yield at maturity when the market 
rate increases (decreases).  

Note 

In Examples 9.8 to 9.10 when 2=t'  t"<n=10, the rates of return in the middle, 
between those achieved for t"=2 and t"=10, have been obtained. By varying t" 
continuously from the time 2 to 10, the rate ra ( 1)  increases from 0.0200 to 0.0519, 
whereas the rate ra ( 2)  decreases from 0.0816 to 0.0480. Then it is plausible that, 
as ra ( 1)  and ra ( 2)  are continuous functions of t", we can settle on a critical time 
ˆ t  of investment (2< ˆ t <10) for which ra ( 1) = ra ( 2) , so that two opposite effects 

of a market rate's change exactly compensate one another. Then, for this critical time 
ˆ t  we obtains:  

ra ( 1)  = ra ( 2)  = ra ( 0)= 0.05 = ri   (certain rate). 

In such a way the risk rate is removed. 

9.3.2. Preliminaries to classic immunization 

In section 9.3.1 we dealt with rate risk and critical time ˆ t of investment, which 
allows the removal of such a risk by suitable methods. Now we address processes, 
called classic immunization, that we also call semi-deterministic because all 
elements of involved operations are fixed except for the market interest rate, which 
is exposed to random changes.  

We will begin with the critical time calculation which removes risk rate in a  
particular context. We will give some theorems concerning semi-deterministic 
immunization, distinguishing between problem of cover of single liability and cover 
of multiple liabilities problems15. 

The market term structure, if not flat-yield, will be identified by temporal 
changes of intensity (x,u) as defined in Chapter 2, where x is the time of agreement 
or valuation and u is the current time (see section 7.5.3 for other characteristic 
quantities of term structure).  

In classic immunization we usually take the hypothesis of additive shifts of rates, 
i.e. of random changes Yk, from x to t, of the instantaneous intensities corresponding 
to them, whose result is Z (x, t) Ykk . Therefore, with x<t<y 

                                                 
15 For a thorough analysis on such subjects, see Devolder (1993) and De Felice Moriconi 
(1991). 
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(t,y) = (x,y) + Z(x,t)     (9.28)16 

However, for simplicity we will proceed under the assumption of only additive 
shifts in the considered time interval.  

9.3.3. The optimal time of realization     

In section 9.3.1 we have seen that, in the case of only random additive shifts, for 
continuity in the interval of financial cash-inflows operation J a critical time ˆ t  
exists, such that the random change of value (and thus of the fulfilled rate of return) 
due to additive shifts, vanishes. Now we look for the calculation of  this ˆ t .  

It is not restrictive, and it simplifies symbols, to put the time origin in the instant 
of J valuation and of rate (or intensity (0, )u ) agreement. Moreover, let us assume 
that in the J interval only one additive shift on (0, )u  of random size Y occurs in the 
market at time t', before times {tk} (k=1,...,n), set in chronological order, where the 
inflows of J, components of vector a ={ak}, are cashed. Thus, the intensity  (0, )u  
from 0 to t' and ( ', )t u  from t' to tn are in force in the market, linked by 

(t’,u) = (0,u) +Y   ,  0 < t’< t1<...< tk <...< tn  ; u >t’ (9.29) 

Let us denote by V(T,a;Y) (where the 3rd variable represents the size of a possible 
shift) the value in T  tn of total revenue due to a, obtained adding reinvestment 
revenue and realization revenue. Thus, this value depends on random shift size. 
Lacking shift, it results in 

     V (T ,a;0) = akk=1
n

e
(0,u )du

T

tk

 (9.30) 

On the other hand, if the additive shift Y occurs at t' < t1 , according to (9.29) the 
total revenue due to a at T is given (by distinguishing reinvestment and realization 
components) by 

    
V (T ,a;Y ) = akk:tk T

e
( t',u )du

tk

T

akk:tk T
e

( t',u )du
T

tk

 

= akk 1
n

e
( t',u )du

T

tk

akk 1
n

e
(0,u )du

T

tk

e Y ( tk T ) 

 

                                                 
16 In the case of flat-yield structure, unless additive shifts, (9.28) becomes: t = x+Z(x,t), 
where u is the intensity agreed at u. 
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Thus 

 
    
V (T ,a;Y ) = 1

v(0,T )
akk 1

n
v(0,tk )e Y ( tk T )  (9.30') 

where v(0, t) e
(0,u)du0

t

 is the price at 0 of an unitary zero coupon bond (UZCB) 
having maturity at t, valued according to (0,u) (see (7.42)). 

Since the second derivative with respect to Y of   V (T ,a;Y ) for every Y is 
positive, the function f(Y) =    V (T ,a;Y ) has the absolute minimum point at Y=0 (then 
    V (T ,a;Y ) V (T ,a;0)  for every Y if the first derivative of f(Y) vanishes at 0. Then 
we obtain the immunization. However, this sentence is true if T is chosen equal to 
the duration of J. In fact, due to 

    Y
V (T ,a;Y )

Y 0

1
v(0,T )

akk 1
n

v(0,tk ) 0  

it follows that  

T
tkakv(0,tk )

k 1
n

akv(0,tk )
k 1
n

DJ (0)  

Then we conclude: ˆ t DJ (0) , i.e., the critical time for immunizing against 
interest rate risk is the duration of J valued at 0. Moreover, ˆ t is the only solution to 
the problem. 

Example 9.11 

Carrying out Examples 9.8, 9.9 and 9.10, on the basis of data and events 
specified in Example 9.8, except for t", let us verify that, putting the investment time 
equal to duration, we obtain immunization. 

Let us buy the bond at 0 and redeem it at par in a maturity of 10 years, par value 
100, rate r(0) = ri = 0.05 = 5%. The duration at 0, according to (9.9), is worth D = 
8.107822. Let us calculate the economic results obtainable under the various states 
of .  
 F (8.107822)  = 5 {(1.05)[1+ r( )]6 + s7 |r( )}[1+r( )]0.107822 

 if 1:  Y = +0.01,  r ( 1) = 0.06, F
1

(8.107822)  49.73; 

 if 2:  Y = -0.01,  r ( 2) = 0.04, F
2

(8.107822)  46.33; 
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 (8.107822)P  = {5 a2 |r( )+ 100 [1+ r( )]-2}[1+ r( )]0.107822 

 if 1:  Y = +0.01,  r( ( 1) = 0.06,  P
1

(8.107822)  = 98.79 

 if 2:  Y = -0.01,  r( ( 2) = 0.04, P
2

(8.107822)  = 102.32; 
The seller's total revenue at t1 = 8.107822 is 
 S (8.107822)  = F (8.107822)  + P (8.107822) . Then 

 if 1:  Y = +0.01,  r( ( 1) = 0.06,  1
(8.107822)S  =  148.52; 

 if 2 :  Y = -0.01,  r( ( 2) = 0.04,  2
(8.107822)S  =  148.65. 

The yield in advance ra ( )  depends on state, as it is the solution of  

100 [1+ra ( )]8.107822  = S (8.107822)  

If 1, we obtain:  ra ( 1) = 0.0500 ; if  2 :  ra ( 2) = 0.0501 

To conclude: S
1

(8.107822)  S
2

(8.107822)  and ra ( 1)  ra 2( ) 0.05. 
Therefore, we obtain immunization against rate risk using an investment the time 
length of which is its duration = 8.107822. 

9.3.4. The meaning of classical immunization  

Let us proceed, step by step, to analyze in depth the immunization with respect 
to yield shifts under increasing generalization, summarizing the characteristic 
features of a theory which would need a wider treatment. 

For the sake of simplicity, let us use 0 for the valuation time where the intensity 
(0,u) identifying the structure is agreed. We refer to operation O giving a vector a = 

(a1,..., an) of cash-inflows (also called assets) and a vector b = (b1,..., bn) of cash-
outflows (also called liabilities). It is not restrictive to assume that a and b have the 
same tickler t = (t1,..., tn), under the constraints {ah 0},{bh 0}, because t can be 
obtained by the union of {ah > 0} and {bh > 0} ticklers17. Denoting by V(0,a;0) the 
value at 0 of assets and by V(0,b;0) that of liabilities, if V(0,a;0) = V(0,b;0) results, 
we can tell that the flows a and b are in equilibrium. This equality is also called a 
budget constraint. Moreover, by definition flows a and b are immunized if, with 
only one additive shift Y (positive or negative, and with small size) at the time 
t'<t1<...<tn , V(0,a;Y)  V(0,b;Y) holds. This weak inequality assures the cover by a 

                                                 
17 In such a case, if compensations between assets and liabilities are allowed, then at each 
maturity th we cannot have net receipts ah-bh and net outlays bh-ah both positive. 
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of the liabilities b18. Denoting by s = (s1,..., sn), where sh = ah -bh, the net flows 
vector and by V(0,s;0) its value at 0, the equilibrium implies: V(0,s;0) = 0 and we 
have immunization if furthermore V(0,s;Y)  0. In other words, immunization 
implies that the function f(Y) = V(0,s;Y) has a local minimum point at Y = 0. 

9.3.5. Single liability cover 

We have immunization against random additive shift following the Fisher-Weil 
theorem (1971) if the revenue due to a “portfolio” at the end of the period of its 
management is, in case of an additive shift, not lower than that obtainable without a 
shift. It is easy to prove that to keep the bond up to maturity, on reinvesting the 
encashments, generally does not give immunization (see Example 9.10).  

Let us state the version of the Fisher-Weil theorem that works on present values 
and gives the immunization conditions in asset portfolio management to cover only 
one liability (or, which is the same, a financial target which implies future outlays) 
under any term structure. 

Theorem B (Fisher-Weil). Given the intensity (0,u) summarizing the structure at 0, 
let b be the amount of a payment scheduled at time T>0 and a = (a1,..., an) be an 
asset flow at positive times t1<...<tn . Assume the value at 0 of a is equal to that of  b 
according to (0,u), i.e., the following budget constraint is valid: 

 V(0,a;0) = V(0,b;0)  (9.31) 

If at t', where 0<t'<t1, a random additive shift Y according to (9.29) occurs, then 
for the values calculated under the new intensity 

 V(t’,a;Y)  V(t’,b;Y)  (9.32) 
results, if and only if the duration of a calculated at 0 equals maturity T of the 
liability.  

Proof.  Using  

(a,b;0) = V(0,a;0)/V(0,b;0)  =   

                                                 
18 It would be more convenient to use t' = 0 for an immediate comparison with the 
equilibrium case. However, this is not needed. We can observe that  

V (0,a;Y ) e
(0,u)du0

t '

V (t' ,a;Y ) , V (0,b;Y ) e
(0,u)du0

t '

V (t' ,b;Y ) ; 
then V (t' ,a;Y ) V (t' ,b;Y )  implies V (0,a;Y ) V (0,b;Y ) , and vice versa. It must be 
highlighted that in the times following t' the discounts have carried out using the intensity 
(t',u). 
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 = 
ake

(0,u )du
0

tk

k 1
n

b e
(0,u )du

0

T

1
b

ake
(0,u )du

tk

T

k 1
n  (9.33) 

because of (9.31) (a,b;0) =1 results. After shift Y at t', (a,b;0) is modified in 

g(Y) = (a,b;t’,Y) = V(t’,a;Y)/V(t’,b;Y) = 
ake

(0,u )du
0

t '

e
( t',u )du

t '

tk

k 1
n

b e
(0,u )du

0

t '

e
( t',u )du

t '

T
 

 (9.34)  
thus, due to (9.29) 

 g(Y) = (a,b;t’,Y) = 1
b

ake
(0,u )du

tk

T

eY (T tk )
k 1
n  (9.34') 

By calculating the first and second derivative of g(Y) we obtain    

  g'(Y) = 
(0, ) ( )

1
1 ( ) k

T
t k

u dun Y T t
k kk T t a e e

b
   (9.35)

  

 g"(Y) = 
(0, ) ( )2

1
1 ( ) k

T
t k

u dun Y T t
k kk T t a e e

b
 (9.36) 

We obtain: g"(Y) >0, Y, then (9.34') is a convex function. If and only if g'(0)=0, 
g(Y) holds the minimum point at Y=0 where its value is 1. Therefore, around Y=0 it 
results in g(Y) = (a,b;t’,Y)  1, i.e. (9.32) holds. However, owing to (7.42) and 
(9.35), g'(0)=0 is equivalent to 

    

(T tk )akv(0,tk )
k 1
n

b v(0,T )
0 

Taking into account the budget constraint in (9.31), written as 

    akv(0, tk )k 1
n b v(0,T ) , the equation g'(0)=0 is also equivalent to 

 D:= 
tkakv(0,tk )

k 1
n

akv(0,tk )
k 1
n

T   

Summarizing the reasoning, the budget constraint in (9.31) between a and b 
signifies, if the term rates structure remains unchanged, the suitability of receipts a 
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under the tickler t = {t1, ...,tn), 0<t1<...<tn , for covering outlay (or target) b at time 
T, accumulating or discounting by law v(0,t). Under a random additive shift, the 
cover is still assured provided that T equals D0(a), i.e. the duration of a at 019. 
Immunization gives a guarantee of yield at the minimum assured 
rate b /V (0,a; 0) 1 . Theorem B can be applied to the selection of immune 
portfolios  in order to obtain a single liability cover.  

The operational meaning of Theorem B is as follows. To obtain immunization, 
we should build a portfolio of assets, the duration of which in 0 equals T. This is 
always possible, because of the duration’s mixing property (see section 9.1.4) and 
the associative property of the averages considered here (see section 2.5.2).  

In fact, let us assume that in 0 the market gives two bond packages (that without 
loss of generality we can assume to be of the ZCB type). Let each bond of such 
packages be the redemption values U1 and U2 at maturities t1 and t2, (t1<T<t2), 
respectively. If T=t1 or T=t2 occurs, the immunization problem would be trivially 
solved, choosing only one of the packages. The market financial law should be 
identified by spot prices {v(0,u)},  (0 u t2). We can settle the portfolio a = (a1, a2) 
with tickler t = (t1, t2) to cover the liability b (or to assure the target b) in T, by 
calculating the shares (i.e. the numbers 1, 2 of the bonds of two packages) to 
make up a so as to satisfy the budget constraint on values at 0 and the constraints on 
a duration at 0. Using V(0,b) = b v(0,T), is sufficient to solve the linear system  

 1U1v(0,t1) 2U2v(0,t2) V (0,b;0)

t1 1U1v(0,t1) t2 2U2v(0,t2) T V (0,b;0)
 (9.37) 

If linear independence between such equations holds, we obtain the following 
only solution  

 1
V (0,b;0)(t2 T )
U1v(0,t1)(t2 t1)

 , 2
V (0,b;0)(T t1)

U2v(0,t2)(t2 t1)
 (9.38) 

If N types of ZCB subject to law {v(0,u)} are available in the market, having par 
values  U1, U2 , ..., Un , is sufficient to put them into two subgroups and, owing to 
the mixing property, to obtain two portfolios having face value amounts U1

*, U2
*  and 

durations t1, t2 to substitute into (9.37)20. 

                                                 
19 This condition can also be written as equality between T-t’ and the duration Dt’(a) valued 
at t’. In fact, the duration is a mean of the times and, denoting by Dt’ and D0 the durations 
calculated in t' and in 0, we obtain: Dt’ = D0 - t’. 
20 If bonds are not ZCB, we consider that each coupon bond is equivalent to a group of ZCB, 
the  face value of which equals the coupons or the redemption value. 
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Exercise 9.3 

Let us use two types of ZCB, called  and :   has redemption values $1,000 
at maturity 6;   has redemption value $500 at maturity 9. Let us calculate the 
numerical shares of  and  to obtain the cover of $98,000 at time 7.25 (=7y+3m) 
if the financial market law is settled by intensity (0.u)=0.06-0.002u. Let us verify 
the immunization by examples. 

A.  According to given data, we obtain:  

 U1 = 1000 ; U2 = 500 ; t1 = 6 ;  t2 = 9 ; T = 7.25 ;  v(0,u) =   e
 0.06 0.002z

0

u
dz  and 

then v(0,6) = e-0.324  = 0.723250 ; v(0,9) = e-0.459  = 0.631915 ;  v(0,7.25) = e-0.382  
= 0.682197. 

Applying (9.38) we obtain  

1
98000 0.682197 1.75

1000 0.723250 3
 =  53.921726   54 

2
98000 0.682197 1.25

500 0.631915 3
  =  88.164856  88

Let us verify the budget constraint in terms of present values at 0. 

On 1st bond: 53.921716.1000.0.723250 = 38,998.89 
On 2nd bond: 88.164856.500.0.631915  = 27,956.36 
Asset present value  = 66,855.25 

Liability present value 98,000.0.682197 = 66,855.25 

Let us assume that at time 5 a random additive shift occurs with the following 
possible events  
  = +0.01  i.e. +(5,u) = 0.07 - 0.002 u  
  = -0,01  i.e. -(5,u) = 0.05 - 0.002 u 

Thus, the new spot prices at 0 are: 

if   = +0.01: 

v+(0,6) = e
 0.06 0.002z

0

5
dz

e
 0.07 0.002z

5

6
dz

0.759572 0.942707 0.716054  

v+(0,9)  = e
 0.06 0.002z

0

5
dz

e
 0.07 0.002z

5

9
dz

0.759572 0.799315 0.607137  
v+(0,7.25) =  

=

5 7.25

0 5
 0.06 0.002  0.07 0.002

0.759572 0.878150 0.667018;
z dz z dz

e e  
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if  = -0.01: 

v-(0,6) =   e
 0.06 0.002z

0

5
dz

e
 0.05 0.002z

5

6
dz

0.759572 0.961751= 0.730519 

v-(0,9) = e
 0.06 0.002z

0

5
dz

e
 0.05 0.002z

5

9
dz

0.759572 0.865888 0.657704  
v-(0,7.25) = 

= e
 0,06 0,002z

0

5
dz

e
 0,05 0,002z

5

7,25
dz

0.759572 0.918569 0.697719  

Let us verify immunization with respect to given additive shifts: 

if   = +0.01: 
on 1st bond: 53,921716.1000.0,716054 = 38,610.86 
on 2nd bond: 88,164856.500.0,607137  = 26,764.07 
present value of assets  = 65,374.93 

present value of liabilities 98000.0,667018 = 65,367.76 

If   = -0,01: 
on 1st bond: 53,921716.1000.0,730519 = 39,390.84 
on 2nd bond: 88,164856.500.0,657704  = 28,993.19 
present value of assets  = 68,384.03 

present value of liabilities 98,000.0.697719 = 68,376.46 

If both  = +0,01 and  = -0,01: asset present value  liability present value. 

9.3.6. Multiple liability cover   

The immunization problem with regard to single liability cover can be 
generalized into that of multiple liabilities cover, i.e. with reference to many outlays 
(or financial obligations). Then we assumes that the operator must deal to pay many 
debts b (liabilities), spread over time, by means of many receipts due to credits a 
(assets). Such a process is called: Asset-Liability Management (ALM). 

Let us consider an initial balance statement in terms of the present value of assets 
a = (a1,..., an), ah  0, and of liabilities b = (b1,..., bn), bh  0, according to the 
market rate in force at time 0. t = (t1,..., tn) (0<t1< ...<tn ) is the common21 tickler of 
a and b. However, under what conditions does the initial equilibrium not change into 
unfavorable imbalance under a subsequent change of the market rates’ structure?  

                                                 
21 As already seen, this coincidence is not restrictive if we refer to the union of a>0 and b>0 
ticklers.  
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It is evident that an easy solution is obtained using an asset portfolio “devoted” 
to a given liabilities vector, that is: ah =bh , th . In such a case each receipt 
corresponds to an outlay with the same amount and maturity. Then the former 
exactly covers the latter without residual debts or credits. However, such a situation, 
i.e. a sufficient condition of immunization, is quite unusual.  

For situations when equality does not occur between distributions of cash 
inflows and outflows, a rule, with regard to the rate risk of insurance companies 
under flat-yield-curve hypothesis for the market rates, was first given by Redington 
(1952). Bearing in mind Redington’s rule, let us assume a balance statement at 0 
between assets and liabilities, without shift, given by a budget constraint  

 V (0,a;0) ake tk
k 1
n

bke tk
k 1
n

 V (0,b;0)  (9.39) 

where V (0,a; 0)  and V (0,b; 0)  are the values of a and b at 0 without shift and  is 
the intensity in force at time 0. Still denoting by s = (s1,..., sn),  where sh = ah - bh, 
the vector of net flows, (9.39) is equivalent to V (0,s; 0)=0, which means the fairness 
of the whole operation the valued according . If an additive shift occurs, the 
following theorem holds 

Theorem C (Redington). Let us assume that at 0 the constant intensity  and (9.39) 
holds in the market and that an additive shift from  to +Y, with random |Y| 
sufficiently small occurs just after 022. Thus, according to previous definitions about 
a, b, t, a sufficient condition to realize immunization, i.e.   

 V (0,s;Y ) V (0,a;Y ) V (0,b;Y ) 0  (9.40) 

– where the values at 0 are calculated in the hypothesis of shift Y – is that both   

 tkake tk
k 1
n

tkbke tk
k 1
n  (9.41) 

and 

 tk
2ake tk

k 1
n

 tk
2bke tk

k 1
n  (9.42) 

hold. 

Proof. Equation (9.41) signifies equality between the first derivatives of a and b in 
Y=0, i.e. V ' (0,a; 0) V ' (0,b; 0) . Equation (9.42) signifies inequality between their 
second derivatives in Y=0, i.e. V" (0,a; 0) V" (0,b; 0) . This implies that  

 V ' (0,s;0) 0 ;   V"(0,s;0) 0.  (9.43) 

                                                 
22 This specification, given for the sake of simplicity, is not basic: these results also hold with 
a shift in some time after 0 but  before t1.  
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The truth of the system in (9.43) is, as well known, a sufficient condition in order 

that V (0,s;Y ) ske ( Y )tk
k 1
n

 has a relative minimum into Y=0, so with |Y| 
sufficiently small,  (9.40) holds23.  

Recalling (9.13') and (9.16) and taking into account the budget constraint in 
(9.39), we can observe that (9.41) leads to equality  

 D(a) D(b)   (9.41') 

which is the well known necessary Redington condition for immunization with 
regard to ALM. Moreover, still owing to the budget constraint, (9.42) leads to 
inequality  

 (a) (b)  (9.42') 

Therefore, the immunization condition for multiple liability cover can 
meaningfully be formulated requiring that at time 0 the duration of assets are equal 
to that of liabilities and the convexity of assets are larger than that of liabilities 
(inequality satisfied, of course, in case of single liability cover and in the Fisher-
Weil theorem). 

Under the two hypotheses of budget constraint and equality of durations, the 
inequality condition in (9.42') between asset and liabiliy convexities implies the 
following meaning of immunization: a market rate decrease (a market rate increase) 
leads to an increase (a decrease) of the value of the assets  which is larger (smaller) 
than that of the liabilities. Then in both shift cases we obtain a net margin increase. 

We must still observe that (9.42') implies 

 2(a) 2(b)  (9.42") 

where 2 (a)  and 2 (b)  are the variances of a and b, i.e. the central second 
moments of distributions (t&a) and (t&b). To prove this statement, it is sufficient to 
recall the equalities 2 D2 D(2)  and equation (9.41'). 

Both observations can be generalized to the case of variable rates under a term 
structure and possible additive shifts. In relation to this argument let us now give a 
theorem generalizing the Redington condition under financial law following (x,u) 
intensity.   

                                                 
23 It is evident proof of Theorem C can be obtained by the Taylor expansion up to 2nd order of 

(0, ; )V s Y  with starting point Y=0. 
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Theorem D (generalization of Redington theorem).  Let (0,u) be the intensity  
current at time 0 on the market. Given two cash-flows, the former with assets a = 
(a1,..., an), (ah 0), the latter with liabilities b = (b1,..., bn), (bh 0), both with tickler t 
= (t1,..., tn), 0<t1< ...<tn . Let us assume that a and b are balanced under (0,u), or 
that the budget constraint  

 V (0,a;0) ake
(0,u )du

0

tk

k 1
n

bke
(0,u )du

0

tk

k 1
n

 V (0,b;0)  (9.44) 

holds. In addition, we suppose that (0,u) has at t' just after 024 an additive 
infinitesimal shift Y according to (9.29) with t' = 0+ for simplicity. Then  

 V (t' ,a;Y ) V (t' ,b;Y )  (9.45) 

(equivalent to V (0,a;Y ) V (0,b;Y ) and implying immunization against shift Y) 
holds, if, valuing with the use of (0,u), equality (9.41') between a and b durations at 
0, i.e.     

    tkake
(0,u )du

0

tk

/V (0,a;0)
k 1
n

tkbke
(0,u )du

0

tk

/V (0,b;0)
k 1
n ,

  

 is verified, as well as the inequality  

 D(2)(a) D(2)(b)  (9.46) 

between a and b  2nd order durations in 0, i.e. 

tk
2ake

(0,u )du
0

tk

/V (0,a;0)
k 1
n

tk
2bke

(0,u )du
0

tk

/V (0,a;0)
k 1
n

 

is valid. 

Proof.  With reference to net amounts s = a – b , let us denote by  

D(s) tkske
(0,u )du

0

tk

/V (0,s;0)
k 1
n

 
the s duration in 0. We obtain: 

D(s) D(a) D(b)
Y

V (0,s;Y )
Y 0

.  

In addition, let us denote by  

D(2)(s) t
k
2ske

(0,u )du
0

tk

/V (0,s;0)
k 1
n   

 
                                                 
24 See also footnote 22. 
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the  s  2nd  order duration, resulting in:  

D(2)(s) D(2)(a) D(2)(b)
2

Y 2
V (0,s;Y )

Y 0  

 

Let us consider the Taylor expansion of V(0, s; Y), starting by Y=0, up to 1st order 
and using the 2nd order remainder. We obtain, with  included between 0 and Y,  

   V (0,s;Y ) V (0,s;0)
Y

V (0,s;Y )
Y 0

Y
1

2

2

Y 2
V (0,s;Y )

Y

Y 2  (9.47) 

Thus condition (9.41') is equivalent to 
Y

V (0,s;Y )
Y 0

0; moreover, the 

condition in (9.46) is equivalent to 
2

Y 2
V (0,s;Y )

Y

Y 2  > 0 provided that |Y| is 

sufficiently small. Therefore, (9.47) implies the sufficiency of given conditions in 
order that (9.45) holds.          

Owing to the budget constraint and (9.41'), inequality (9.46) is equivalent to 
inequality (9.42") between the central second moments. 

The operative meaning of Theorem D consists of portfolio selection of assets a 
to cover liabilities b, immunized with respect to rate risk related to the chance of 
additive shift. For the stated reasons regarding Theorem B, it is not restrictive, for 
the sake of simplicity to limit ourselves to the case of two assets and two liabilities. 
Let the assets be ZCB having unit value U1 at maturity t1  and U2 at maturity t2 > t1; 
the liabilities are b1 at maturity T1 and  b2 at maturity T2 >T1. We have to calculate 
the shares, i.e. the numbers 1 and 2 of the asset bond in order to satisfy the budget 
constraint and the 1st order condition on the durations that are necessary for 

immunization. Let us agree the unit price v(0,u) = e
(0,z)dz

0
u

 depending on 
intensity (0,u) and then calculate the value V (0,b; 0) bkv(0,Tk )k 1

2 , depending 

on rates at 0, and the duration D(b) Tkbkv(0,Tk )k 1
2 / bkv(0,Tk )k 1

2  of  
liabilities. Then the asset bonds shares are obtained resolving the linear system     
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 (0, ) (0, ) (0, ;0)1 1 1 2 2 2
(0, ) (0, ) ( ) (0, ;0)1 1 1 1 2 2 2 2

U v t U v t V b
t U v t t U v t D b V b

 (9.48) 

which generalizes system (9.37), as well as its solution 

 1
V (0,b;0)(t2 D(b))

U1v(0,t1)(t2 t1)
 , 2

V (0,b;0)(D(b) t1)
U2v(0,t2)(t2 t1)

   25  (9.49) 

generalizes solution (9.38). In particular, b duration takes the place of maturity T of 
the only b in system (9.37). 

In the case of N = N1+N2 asset bonds, it is sufficient to consider two subgroups  
N1 , N2 substituting their durations for t1 and t2.  

Exercise 9.4 

Let us consider a portfolio, having liabilities of 50,000 at time 5 and 40,000 at 
time 7, to cover by shares of two packages of ZCB, the former with U1=1,000 at 
maturity 3, the latter with U2= 800 at maturity 9. We assume that in the market the 
intensity is (0,u)=0,06-0,001u. Let us carry out the immunization and check that it 
is obtained, applying the Theorem D rules with a check of condition (9.46) on 2nd 
order durations. 

 A. According to cash-flow distribution and given intensity, we obtain: 

 discount factor from u to 0:  v(0,u) = e
(0.060

u 0.001z)dz
e (0.06u 0.001u 2 / 2); 

 liability value:   V (0,b; 0) 50000 e 0.2875 40000 e-0.3955 64440.56  ;  

 liability duration:   D(b) 5 50000 e 0.2875 7 40000 e-0.3955 5.8359 . 

The unknowns of the resulting system (9.48) are the real numbers 1 and 2 of 
ZCB shares, which make up the assets. Since 

 t1 = 3     ;     U1 = 1000 ;      v(0, t1) e (0.06 3 0.001 4.5) 0.839037  
 t2 = 9     ;     U2 =   800 ;      v(0, t2) e (0.06 9 0.001 40.5) 0.606834  

the matrix of the coefficients and the constant terms  of system (9.48) is given by 

839.037 485.467 64,440.56

25,17.111 4,369.203 376,068.66
 

                                                 
25 We can observe that: ( 1>0) ( 2>0)  (t1<D(b)<t2). 
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Therefore, owing to (9.49), the shares are 

 
1

64,440.56 (9 5.8359)
839.037 (9 3)

40.50206 ; 2

64, 440.56 (5.8359 3)
485.467 (9 3)

62.73995         

The total par value to obtain for the two assets is: 
par value (1) = 40,502.06   ;  par value (2) = 50,191.96 

With such amounts the budget constraint is verified, because 
 V (0,a; 0) 1U1v(0, t1) 2U2v(0, t2) 40.50206 839.037 62.73995 485.467  

  64440.55 V (0,b; 0)  

The equality between durations is also verified. Thus, 
( ) (40.50206 2517.111 62.73995 4369.203) / 64440.56 5.8359 ( )D a D b  

We must now evaluate the 2nd order durations to verify if the immunization 
sufficient condition is satisfied. We obtain: 

(2) 2 2( ) (3 40.50206 839.037 9 62.73995 485.467) / 64440.56 43.031249 D a
(2) 2 0.2875 2 0.3955( ) (5 50000 7 40000 ) / 64440.56 35.031098 D b e e  

Regarding the central second moments, i.e. the variances, of (t'&a) and (t"&b) 
we obtain:   

2 22 (2) 2 (2)( ) ( ) ( ) 8.973520   ;    ( ) ( ) ( ) 0.973369a D a D a b D b D b  

Therefore, the immunization condition is satisfied. We can verify that the value 
of s is 0 with a relative minimum if the intensity is the given (0,u) = 0.06-0.001u, 
valuing under shift |Y| = 0.005. For the sake of simplicity, we assume that the shift 
occurs in 0+ only after valuation but this hypothesis is not restrictive: the 
conclusions also hold with any shift before 3. Valuing after shift, we obtain: 

(0+,z)=0.06-0.001z    ;   v(0 ,u) e
(0.06 Y0

u 0.001z)dz
  

The statements are: 1 (Y = +0.005) ;  2  (Y = -0.005). 

 if   1 :  v(0 ,u) e
(0.0650

u 0.001z)dz
 e (0.065u 0.001u 2 / 2)  

 if   2 :  v(0 ,u) e
(0.0550

u 0.001z)dz
 e (0.055u 0.001u 2 / 2)  
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The values at 0 under shift in 0+ are: 

 if 1:  
V (0,a; 0.005)  

40.50206 1000 e (0.065 3 0.001 4.5) 62.73995 800 e (0.065 9 0.001 40.5)  

 40502.06 e 0.1905 50191.96 e-0.5445 62594.76;   

V (0,b; 0.005) 50000 e (0.065 5 0.001 12.5) 40000 e (0.065 7 0.001 24.5)  

 50000 e 0.3125 40000 e-0.4305 62588.14;   
V (0, s; 0.005) 62594.76 62588.14 6.62;  

 if 2:  
V (0,a; 0.005)  

 40502.06 e 0.1605 50191.96 e-0.4545 66356.44;   
 V (0,b; 0.005) 50000 e (0.055 5 0.001 12.5) 40000 e (0.055 7 0.001 24.5)  

 50000 e 0.2625 40000 e-0.3605 66349.42;   
V (0, s; 0.005) 66356.44 66349.42 7.02.  

Thus the immunization is checked. Let us verify the different changes of asset 
and liability values depending on a shift, implying immunization:  

 if   1  (  increases):  
(assets)     V (0,a; 0.005) V (0,a;0) 62594.76 64440.56 1845.80 
(liabilities)   V (0,b; 0.005) V (0,b;0) 62588.14 64440.56 1852.42 

The decrease of the value of the assets is less than the decrease of the value of 
the liabilities:  

 if    2  (  decreases):  
(assets)     V (0,a; 0.005) V (0,a;0) 66356.44 64440.56 1915.88 
(liabilities)   V (0,b; 0.005) V (0,b;0) 66349.42 64440.56 1908.86 

The increase in the value of the assets is greater than the increase in the value of 
the liabilities. 

We gave the conditions for semi-deterministic immunization of rate risk in 
several hypotheses, but always with reference to one additive random shift. In the 
case of several additive shifts, we can carry out subsequent immunizations.  
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Shiu (1990) generalized the Redington scheme, not only referring to a non-flat 
rate structure but to non-additive shifts Y(u) with u>0 as well.  With regards to this 
extension, we can prove that to obtain immunization the conditions in (9.45) and 
(9.46) are needed jointly with other inequality constraints.  

However, we do not dwell here on these generalizations and stochastic 
extensions of the immunization, leaving such questions to be discussed in 
specialized papers.    
 



Part II 

Stochastic Models 
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Chapter 10 

Basic Probabilistic Tools for Finance 

In this chapter, the reader will find a short summary of the basic probability tools 
useful for understanding of the following chapters. A more detailed version 
including proofs can be found in Janssen and Manca (2006). 

 
We will focus our attention on stochastic processes in discrete time and 

continuous time defined by sequences of random variables. 

10.1. The sample space 

In order to model finance problems, the basic concrete notion in probability 
theory is that of the random experiment, that is to say an experiment for which we 
cannot predict in advance the outcome. With each random experiment, we can 
associate the elementary events , which often represent the time evolution of the 
values of an asset on a stock exchange on a time interval 0,T . The set of all these 
events  is called the sample space. Some other subsets of  will represent 
possible events. 
 

Let us consider the following examples. 
 
Example 10.1 A bank is to invest in some shares, so the bank looks at the history of 
the value of different shares. In this case, the sample space is the set of all non-
negative real numbers . 
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To be useful, the set of all possible events must have some properties of stability 
so that we can generate new events such as: 

(i) the complement cA : :cA A ; (10.1) 

(ii) the union A B : :  or  A B A B ; (10.2) 

(iii) the intersection A B : : ,A B A B . (10.3) 
 

More generally, if ( , 1)nA n  represents a sequence of events, we can also 
consider the following events: 

1 1

,n n
n n

A A  (10.4) 

representing respectively the union and the intersection of all the events of the given 
sequence. The first of these two events occurs if and only if at least one of these 
events occurs and the second if and only if all the events of the given sequence 
occur. The set  is called the certain event and the set  the empty event. Two 
events A and B are said to be disjoint or mutually exclusive if and only if  

 A B . (10.5) 

Event A implies event B if and only if 

 A B . (10.6) 

In Example 10.1, the event “the value of the share is between $50 and $80” is 
given by the set [50,80]. 

10.2. Probability space 

Given a sample space , the set of all possible events will be noted by , 
assumed to have the structure of an -field or an -algebra. 
 
Definition 10.2 The family  of subsets of  is called a -field or a -algebra 
if and only if the following conditions are satisfied: 

(i) ,  belong to ; 

(ii)  is stable under a denumerable intersection: 

 
1

, 1 ,n n
n

A n A  (10.7) 
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(iii)  is stable for the complement set operation: 

 ,cA A  (10.8) 

(with cA A ). 
 

Using the well-known de Morgan’s laws of set theory, it is easy to prove that a 
-algebra  is also stable under a denumerable union: 

 
1

, 1 .n n
n

A n A  (10.9) 

Any couple ( , )  where  is an -algebra is called a measurable space. 
 
The next definition concerning the concept of probability measure or simply 

probability is an idealization of the concept of the frequency of an event. 
 
Let us consider a random experiment called E with which the couple ( , )  is 

associated; if set A belongs to  and if we can repeat experiment E n times under 
the same environmental conditions, we can count how many times A occurs. If n(A) 
represents the number of occurrences, the frequency of the event A is defined as  

 
( )( ) .n Af A
n

 (10.10) 

In general, this number tends to become stable for large values of n. 
 

The notion of frequency satisfies the following elementary properties: 

(i) , , ( ) ( ) ( ),A B A B f A B f A f B  (10.11) 

(ii) ( ) 1f , (10.12) 

(iii) , , ( ) ( ) ( ) ( ),A B f A B f A f B f A B  (10.13) 

(iv) ( ) 1 ( ).cA f A f A  (10.14) 
 
In order to have a useful mathematical model for the theoretical idealization of 

the notion of frequency, we now introduce the following definition. 
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Definition 10.3 

a) The triplet ( , , )P  is called a probability space if  is a non-void set of 
elements,  a -algebra of subsets of  and P an application from  to [0,1] 
such that: 

(i) 

11

( , 1), , 1:

( ) ( ),

n n i j

n n
nn

A n A n i j A A

P A P A - additivity of P
 (10.15) 

(ii) ( ) 1.P  (10.16) 

b) The application P satisfying conditions (10.15) and (10.16) is called a 
probability measure or simply probability. 

Remark 10.1 

Relation (10.17) assigns the value 1 for the probability of the entire sample space 
. There may exist events 'A  which are strictly subsets of  such that 

 ' 1P A . (10.17) 

In this case, we say that A is almost sure or that the statement defining A is true 
almost surely (in short a.s.) or holds for almost all .  
 

From axioms (10.15) and (10.16), we can deduce the following properties. 

Property 10.1 

(i) If , ,A B then 

 ( ) ( ) ( ) ( ).P A B P A P B P A B  (10.18) 

(ii) If ,A then 

 ( ) 1 ( ).cP A P A  (10.19) 

(iii) ( ) 0.P  (10.20) 
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(iv) If ( , 1)nB n  is a sequence of disjoint elements of forming a partition of 
, then for all A belonging to , 

 
1

( ) ( )n
n

P A P A B . (10.21) 

(v) Continuity property of P: if ( , 1)nA n  is an increasing (decreasing) 
sequence of elements of , then 

 
1

lim ( )n nn
n

P A P A ; 
1

lim ( )n nn
n

P A P A . (10.22) 

(vi) Boole’s inequality asserts that if ( , 1)nA n  is a sequence of events, then 

 
11

( ).n n
nn

P A P A  (10.23)  

Example 10.2 

a) The discrete case 

When the sample space  is finite or denumerable, we can set 

 1,..., ,...j  (10.24) 

and select for  the set of all the subsets of , represented by 2 . 
 

Any probability measure P can be defined with the following sequence: 

 
1

( , 1),  0, 1,  1j j j
j

p j p j p  (10.25) 

so that  

 , 1.j jP w p j  (10.26) 
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On the probability space ( ,2 , )P , the probability assigned for an arbitrary 

event A = 
1
,..., , 1, 1,..., ,  if 

lk k j i jk j l k k i j  is given by 

 
1

( ) .
j

l

k
j

P A p  (10.27) 

b) The continuous case 

Let  be the real set ; it can be proven (Halmos (1974)) that there exists a 
minimal -algebra generated by the set of  intervals: 

 , , , , , , , , , ,a b a b a b a b a b a b . (10.28) 

It is called the Borel -algebra represented by  and the elements of  are 
called Borel sets. 
 

Given a probability measure P on ( , ) , we can define the real function F, 
called the distribution function related to P, as follows. 
 
Definition 10.4 The function F from  to 0,1  defined by: 

 , ( ),P x F x x  (10.29) 

is called the distribution function related to the probability measure P. 
 

From this definition and the basic properties of P, we easily deduce that: 

 
, ( ) ( ),  , ( ) ( ),

, ( ) ( ),  , ( ) ( ).

P a b F b F a P a b F b F a

P a b F b F a P a b F b F a
 (10.30) 

Moreover, from (10.29), any function F from  to 0,1  is a distribution 
function (in short d.f.) if and only if it is a non-decreasing function satisfying the 
following conditions: 

– F is right continuous at every point x0, 

 
0

0lim ( ) ( ),
x x

F x F x  (10.31) 
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– and moreover 

 lim ( ) 1, lim ( ) 0
x x

F x F x . (10.32) 

If function F is derivable on with f as the derivative, we have 

 ( ) ( ) , .
x

F x f y dy x  (10.33) 

Function f is called the density function associated with the d.f. F and in the case 
of the existence of such a Lebesgue integrable function on , F is said to be 
absolutely continuous. 

 
From the definition of the concept of integral, we can give the intuitive 

interpretation of f as follows; given the small positive real number x , we have: 

 , ( )P x x x f x x . (10.34) 

Using the Lebesgue Stieltjes integral, it can be seen that it is possible to define a 
probability measure P on ( , )  starting from a d.f. F on  by the following 
definition of P: 

 ( ) ( ), .
A

P A dF x A  (10.35) 

In the absolutely continuous case, we obtain 

 ( ) ( ) .
A

P A f y dy  (10.36) 

10.3. Random variables  

Let us suppose the probability space ( , , )P  and the measurable space 
( , )E  are given. 
 
Definition 10.5 A random variable (in short r.v.) with values in E is an application 
X from  to E such that 

 1: ( )B X B , (10.37) 
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where X-1(B) is called the inverse image of the set B defined by 

 1 1( ) : ( ) , ( )X B X B X B . (10.38) 

Particular cases 

a) If ( , )E = ( , ) , X is called a real random variable. 

b) If ( , ) ( , )E , where  is the extended real line defined by 

 and  the extended Borel -field of , that is, the minimal 
-field containing all the elements of  and the extended intervals 

 
, , , , , , , ,

, , , , , , , ,  ,

a a a a

a a a a a
 (10.39) 

X is called a real extended value random variable. 

c) If ( 1)nE n  with the product -field ( )n  of , X is called an n-
dimensional real random variable. 

d) If ( )nE (n>1) with the product -field ( )n  of , X is called an 
extended n-dimensional real random variable. 
 

A r.v. X is called discrete or continuous according to the fact that X takes a value 
in a set at most denumerable or non-denumerable. 
 
Remark 10.2 In measure theory, the only difference is that condition (10.17) is no 
longer required and in this case the definition of a r.v. given above gives the notion 
of a measurable function. In particular, a measurable function from ( , )  to 
( , )  is called a Borel function.  
 

Let X be a real r.v. and let us consider, for any real x, the following subset of : 
: ( )X x . 
 
Given that, from relation (10.38), 

 1: ( ) ( , ),X x X x  (10.40) 

it is clear from relation (10.37) that this set belongs to the -algebra . 
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Conversely, it can be proved that the condition 

 : ( )X x , (10.41) 

valid for every x belonging to a dense subset of , is sufficient for X being a real 
r.v. defined on . 
 

The probability measure P on ( , )  induces a probability measure  on 
( , )  defined as 

 : ( ) : ( ) .B B P X B  (10.42) 

We say that  is the induced probability measure on ( , ) , called the 
probability distribution of the r.v. X. 

 
Introducing the distribution function related to , we obtain the next definition. 

 
Definition 10.6 The distribution function of the r.v. X, represented by XF , is the 
function from 0,1  defined by 

 ( ) , : ( ) .XF x x P X x  (10.43) 

In short, we write 

 ( )XF x P X x . (10.44) 

This last definition can be extended to the multi-dimensional case with r.v. X 
being an n-dimensional real vector: 1( ,..., )nX X X , a measurable application 
from ( , , )P  to ( , )n n . 
 
Definition 10.7 The distribution function of the r.v. 1( ,..., )nX X X , represented 
by XF , is the function from n to 0,1  defined by  

 1 1 1( ,..., ) : ( ) ,..., ( )X n n nF x x P X x X x . (10.45) 

In short, we write 

 1 1 1( ,..., ) ( ,..., )X n n nF x x P X x X x . (10.46) 
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Each component Xi (i=1,…,n) is itself a one-dimensional real r.v. whose d.f., 
called the marginal d.f., is given by 

 ( ) ( ,..., , , ,..., )
iX i X iF x F x . (10.47) 

The concept of random variable is stable under many mathematical operations; 
thus, any Borel function of a r.v. X is also an r.v. 

 
Moreover, if X and Y are two r.v., so are 

 inf , ,sup , , , , , XX Y X Y X Y X Y X Y
Y

, (10.48) 

provided, in the last case, that Y does not vanish. 
 
Concerning the convergence properties, we must mention the property that, if 

( , 1)nX n  is a convergent sequence of r.v. – that is, for all , the sequence 
( ( ))nX  converges to ( )X  – then the limit X is also a r.v. on . This 
convergence, which may be called the sure convergence, can be weakened to give 
the concept of an a.s. convergence of the given sequence. 
 
Definition 10.8 The sequence ( ( ))nX converges a.s. to ( )X  if 

 : lim ( ) ( ) 1nP X X . (10.49) 

This last notion means that the possible set where the given sequence does not 
converge is a null set, that is, a set N belonging to  such that  

 ( ) 0P N . (10.50) 

In general, let us note that, given a null set, it is not true that every subset of it 
belongs to  but of course if it belongs to , it is clearly a null set (see relation 
(10.26)). 

 
To avoid unnecessary complications, we will assume from now on that any 

considered probability space is complete, This means that all the subsets of a null set 
also belong to  and thus that their probability is zero. 
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10.4. Expectation and independence  

Let us consider a complete measurable space ( , , )  and a real measurable 
variable X defined on . Using the concept of an integral, it is possible to define 
the expectation of X represented by 

 ( )E X XdP XdP , (10.51) 

provided that this integral exists. The calculation of the integral 

 XdP XdP  (10.52) 

can be done using the induced measure  on ( , ) , defined by relation (10.42) 
and then using the d.f. F of X. 

 
Indeed, we can write 

 ( )
R

E X XdP Xd , (10.53) 

and if FX is the d.f. of X, it can be shown that 

 ( ) ( )X
R

E X xdF x , (10.54) 

this last integral being a Lebesgue Stieltjes integral. 
 
Moreover, if FX is absolutely continuous with fX as the density, we obtain 

 ( ) ( ) .xE X xf x dx  (10.55) 

If g is a Borel function, we also have (see for example Chung (2000), Royden 
(1963), Loeve (1963)) 

 ( ( )) ( ) XE g X g x dF  (10.56) 
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and with a density for X 

 ( ( )) ( ) ( )XE g X g x f x dx . (10.57) 

The most important properties of the expectation are given in the next 
proposition. 
 
Proposition 10.1 

(i) Linearity property of the expectation: if X and Y are two integrable r.v. and a, 
b two real numbers, then the r.v. aX+bY is also integrable and  

 ( ) ( ) ( ).E aX bY aE X bE Y  (10.58) 

(ii) If ( , 1)nA n is a partition of , then 

 
1

( )
n

n A

E X XdP . (10.59) 

(iii) The expectation of a non-negative r.v. is non-negative. 

(iv) If X and Y are integrable r.v., then 

 ( ) ( ).X Y E X E Y  (10.60) 

(v) If X is integrable, then so is X  and 

 ( )E X E X . (10.61) 

(vi) Dominated convergence theorem (Lebesgue): if ( , 1)nX n  is a sequence of 
r.v. converging a.s. to the integrable r.v. X, then all r.v. Xn are integrable and 
moreover 

 lim ( ) (lim ) ( ( ))n nE X E X E X . (10.62) 

(vii) Monotone convergence theorem (Lebesgue): if ( , 1)nX n  is a non-
decreasing sequence of non-negative r.v, then relation (10.62) is still true provided 
that  is a possible value for each member. 
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(viii) If the sequence of integrable r.v. ( , 1)nX n  is such that 

 
1

n
n

E X , (10.63) 

then the random series 
1

n
n

X  converges absolutely a.s. and moreover 

 
1 1

( )  ( ( ))n n
n n

E X E X E X , (10.64) 

where the r.v. is defined as the sum of the convergent series. 
 

Given a r.v. X, moments are special cases of expectation. 
 
Definition 10.8 If a is a real number and r a positive real number, then the 
expectation 

 
rE X a  (10.65) 

is called the absolute moment of X of order r, centered on a. 
 

The moments are said to be centered moments of order r if a=E(X). In particular, 
for r=2, we obtain the variance of X represented by 2 (var( ))X , 

 
22 E X m . (10.66) 

Remark 10.3 From the linearity of the expectation (see relation (10.58)), it is easy 
to prove that 

 2 2 2( ) ( ( ))E X E X , (10.67) 

and so 

 2 2( )E X , (10.68) 

and more generally, it can be proven that the variance is the smallest moment of 
order 2 regardless of what a is. 
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The last fundamental concept we will now introduce in this section is that of 
stochastic independence or, more simply, independence. 
 
Definition 10.9 The events 1,..., ,( 1)nA A n  are stochastically independent or 
independent if and only if 

 1 2
11

2,..., , 1,..., : : ( )
k k

m m

k k n n
kk

m n n n n n n P A P A .(10.69) 

For n=2, relation (10.69) reduces to 

 1 2 1 2( ) ( ) ( )P A A P A P A . (10.70) 

Let us note that piecewise independence of the events 1,..., ,( 1)nA A n  does not 
necessarily imply the independence of these sets and thus does not imply the 
stochastic independence of these n events. 
 
Definition 10.10 

(i) The n real r.vs. X1,X2,…,Xn defined on the probability space , , P  are 
said to be stochastically independent, or simply independent, if and only if for any 
Borel sets B1,B2,…,Bn, we have 

 
11

: ( ) : ( )
n n

k k k k
kk

P X B P X B . (10.71) 

(ii) For an infinite family of r.vs., independence means that the members of every 
finite subfamily are independent. It is clear that if X1,X2,…,Xn are independent, so 
are the r.vs. 

1
,...,

ki iX X  with  

 1 ,  1,..., , 2,...,k ki i i n k n . 

From relation (10.71), we find that 

 1 1 1 1 1( ,..., ) ( ) ( ), ( ,..., ) n
n n n n nP X x X x P X x P X x x x . (10.72) 

If the functions 
1

, ,...,
nX X XF F F  are the distribution functions of r.v. 

1 1( ,..., ), ,...,n nX X X X X , we can write the preceding relation under the form  

 
11 1 1( ,...., ) ( ) ( ), ( ,..., )

n

n
X n X X n nF x x F x F x x x . (10.73) 
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It can be shown that this last condition is also sufficient for the independence 
of 1 1( ,..., ), ,...,n nX X X X X . If these d.f. have densities 

1
, ,...,

nX X Xf f f , relation 
(10.73) is equivalent to 

 
11 1 1( , , ) ( ) ( ), ( ,..., )

n

n
X n X X n nf x x f x f x x x . (10.74) 

In case of the integrability of n real r.vs. X1,X2,…,Xn, a direct consequence of 
relation (10.72) is that we have a very important property for the expectation of the 
product of n independent r.vs.: 

 
1 1

( )
n n

k k
k k

E X E X . (10.75) 

The notion of independence gives the possibility to prove the result called the 
strong law of large numbers which says that if ( , 1)nX n is a sequence of 
integrable independent and identically distributed r.vs., then 

 . .

1

1 ( )
n

a s
k

k

X E X
n

. (10.76) 

The next section will present the most useful distribution functions for stochastic 
modeling. 

10.5. Main distribution probabilities 

Here we shall restrict ourselves to presenting the principal distribution 
probabilities related to real random variables. 

10.5.1. The binomial distribution 

Let us consider a random experiment E such that only two results are possible: a 
“success” (S) with probability p and a “failure” (F) with probability q=1-p. If n 
independent trials are made in exactly the same experimental environment, the total 
number of trials in which the event S occurs may be represented by a r.v. X whose 
distribution ( , 0,..., )ip i n  with  

 ( ), 1,...,ip P X i i n  (10.77) 

is called a binomial distribution with parameters (n,p). 
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From the basic axioms of probability theory previously stated, it is easy to prove 
that 

 , 0,...,i n i
i

n
p p q i n

i
, (10.78) 

a result from which we get 

 ( ) , var( ) .E X np X npq  (10.79) 

The characteristic function and the generating function, when they exist, of X 
respectively defined by 

 
( ) ( ),

( ) ( )

itX
X

tX
X

t E e

g t E e
 (10.80) 

are given by  

 
( ) ( ) ,

( ) ( ) .

it n
X

t n
X

t pe q

g t pe q
 (10.81) 

This distribution is currently used in the financial model of Cox, Ross and 
Rubinstein (1979), developed in Chapter 5. 

10.5.2. The Poisson distribution 

If X is an r.v. with values in  such that the probability distribution is given by 

 ( ) , 0,1,...
!

i

P X i e i
i

 (10.82) 

where  is a strictly positive constant, then X is called a Poisson variable with 
parameter . This is one of the most important distributions for all applications. 
For example, if we consider an insurance company looking at the total number of 
claims in one year, this variable may often be considered as a Poisson variable. 
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Basic parameters of this Poisson distribution are given here: 

 
( 1) ( 1)

( ) ,  var( ) ,

( ) ,  ( ) .
it te e

X X

E X X

t e g t e
 (10.83) 

A remarkable result is that the Poisson distribution is the limit of a binomial 
distribution of parameters (n,p) if n  tends to  and p to 0, so that np  converges 
to . 

 
The Poisson distribution is often used for the occurrence of rare events, for 

example, in credit risk presented in Chapter 19. 

10.5.3. The normal (or Laplace Gauss) distribution 

The real r.v. X has a normal (or Laplace Gauss) distribution of parameters 
2 2( , ), , 0 , if its density function is given by 

 
2

2
( )

21( ) ,
2

x

Xf x e x . (10.84) 

From now on, we will use the notation 2( , )X N . 
 
The main parameters of this distribution are 

 

2

2 2 2 2

( ) ,  var( ) ,

( ) exp ,  ( ) exp .
2 2X X

E X X

t tt i t g t t
 (10.85) 

If 20,  1, the distribution of X is called a reduced or standard normal 
distribution. In fact, if X has a normal distribution 2 2( , ), , 0R , then 
from (10.85), the reduced r.v. Y defined by  

 
XY   (10.86) 

has a standard normal distribution with mean 0 and variance 1. 
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Let  be the distribution function of the standard normal distribution; it is 
possible to express the distribution function of any normal r.v. X with parameters 

2 2( , ), , 0  as follows: 

 ( ) ( )X
X x x

F x P X x P . (10.87) 

Also, from the numerical point of view, it suffices to know numerical values for 
the standard distribution. 

 
From relation (10.87), we also deduce that 

 
1( ) 'X

x
f x , (10.88) 

where of course from (10.84) 

 
2

21'( )
2

x

x e . (10.89) 

From the definition of , we have 

 
2

21( ) ,
2

x y

x e dy x  (10.90) 

and so 

 ( ) 1 ( ), 0x x x , (10.91) 

and consequently, for X normally distributed with parameters (0,1), we obtain 

 ( ) ( ) 2 ( ) 1,  0P X x x x x x . (10.92) 
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In particular, let us mention the following numerical results: 

2 0.4972( 50%),
3

0.6826( 68%),

2 0.9544( 95%),

3 0.9974( 99%).

P X m

P X m

P X m

P X m

 (10.93) 

Remark 10.4 Numerical calculation of the d.f.  
 

For applications in finance, for example the Black-Scholes (1973) model for 
option pricing (see Chapter 5), we will need the following numerical approximation 
method for calculating  with seven decimal places instead of the four given by the 
standard statistical tables: 

 

2

52
1 5

1

2 3

4 5

1) 0 :

1( ) 1 ( ),
2

1 ,
1
0.2316419,  0.319381530,

0.356563782,  1.781477937,
1.821255978,  1.330274429,

2) 0 :
( ) 1 ( ).

x

x

x e b c b c

c
px

p b
b b
b b

x
x x

 (10.94) 

The normal distribution is one of the most commonly used distributions, by 
virtue of the central limit theorem which says that if ( , 1)nX n  is a sequence of 
independent identically distributed (in short IID) r.vs. with mean m and variance 

2 ,  then the sequence of r.vs. defined by 

 nS nm
n

 (10.95) 
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with 

 1 , 0n nS X X n  (10.96) 

converges in law to a standard normal distribution. 
 
This means that the sequence of the distribution functions of the variables 

defined by (10.93) converges to . 
 
This theorem was used by the Nobel Prize winner H. Markowitz (1959) to justify 

that the return of a diversified portfolio of assets has a normal distribution. As a 
particular case of the central limit theorem, let us mention de Moivre’s theorem, 
starting with 

 
1,  with prob. ,

0,  with prob. 1 ,n

p
X

p
 (10.97) 

so that, for each n, the r.v. defined by relation (10.94) has a binomial distribution 
with parameters (n,p). 
 

By applying the central limit theorem, we obtain the following result: 

 (0,1),
(1 )

lawn
n

S np
N

np p
 (10.98) 

called de Moivre’s result. 

10.5.4. The log-normal distribution 

Though the normal distribution is the most frequently used, it is nevertheless true 
that it could not be used for example to model the time evolution of a financial asset 
like a share or a bond, as the minimal value of these assets is 0 and so the support of 
their d.f. is half of the real line 0, . One possible solution is to consider the 
truncated normal distribution, defined by setting all the probability mass of the 
normal distribution on the negative half-real line on the positive one; however, then 
all the interesting properties of the normal distribution are lost. 

 
Also, in order to have a better approach to some financial market data, we have 

to introduce the log-normal distribution. The real non-negative r.v. X has a 
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lognormal distribution with parameters ,   which we will write as 
( , )X LN   if the r.v. logX has a normal distribution with parameters 2, . 

Consequently, the density function of X is given by 

 
2

2

log
2

0, 0,

1 , 0.
2

x
X

x

f x
e x

x

 (10.99) 

Indeed, we can write 

 log log ,P X x P X x  (10.100) 

and so 

 

2

2
log

21 log ,
2

tx

X
xF x e dt  (10.101) 

and after the change of variable t=logx, we obtain relation (10.99). 
 
Let us note that relation (10.101) is the most useful for the calculation of the d.f. 

of X with the help of the normal d.f.  
 
For the density function, we can also write 

 
1 log( )X

x
f x

x
. (10.102) 

The basic parameters of this distribution are given by 

2

2 2

2

2

2

2

( ) ,

var( ) 1 ,

.
r

r

E X e

X e e

E X e

 (10.103) 
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Let us mention that the lognormal distribution has no generating function and 
that the characteristic function has no explicit form. When 0.3 , some authors 
recommend a normal approximation with parameters 2( , ) . 

 
The normal distribution is stable under the addition of independent r.vs.; this 

property means that the sum of n independent normal r.vs. is still normal. That is no 
longer the case with the lognormal distribution which is stable under multiplication, 
which means that for two independent lognormal r.vs. X1,X2, we have 

 2 2
1 2 1 2 1 2( , ), 1,2 ,i i iX LN i X X LN . (10.104) 

10.5.5. The negative exponential distribution 

The non-negative r.v. X has a negative exponential distribution (or simply 
exponential distribution) of parameter  if its density function is given by 

 ( ) , 0x
Xf x e x , (10.105) 

where  is a strictly positive real number. 
 
By integration, we obtain the explicit form of the exponential distribution 

function 

 ( ) 1 , 0x
XF x e x . (10.106) 

Of course, FX is zero for negative values of x. 
 
The basic parameters are 

 

2

1 1( ) , var ,

1 1( ) , ( ) , .
1 1

X X

E X X

t g t t
t ti

 (10.107) 

In fact, this distribution is the first to be used in reliability theory. 



Basic Probabilistic Tools for Finance     433 

10.5.6. The multidimensional normal distribution 

Let us consider an n-dimensional real r.v. X represented as a column vector of its 
n components 1( ,..., ) 'nX X X . Its d.f. is given by: 

 1 1 1( ,..., ) ( ,..., )X n n nF x x P X x X x . (10.108) 

If the density function of X exists, the relations between the d.f. and the density 
function are: 

 
1

1 1
1

1 1 1

( ,..., ) ( ,..., ),
...

( ,..., ) ... ( ,..., ) ,..., .
n

n
X

X n n
n

xx

X n X n n

F
f x x x x

x x

F x x f d d
 (10.109) 

For the principal parameters we will use the following notation: 

 
2 2

2 2

( ) , 1,..., ,
(( )( )) , , 1,..., ,

(( )) , 1,..., ,

(( )( )) , , 1,..., .
(( ) ) (( ) )

k k

k k l l kl

k k k

k k l l kl
kl

k lk k k k

E X k n
E X X k l n

E X k n

E X X
k l n

E X E X

 (10.110) 

The parameters kl are called the covariances between the r.v. Xk and Xl, and the 
parameters kl , the correlation coefficients between the r.v. Xk and Xl. 

 
It is well known that the correlation coefficient kl  measures a certain linear 

dependence between the two r.v. Xk and Xl. More precisely, if it is equal to 0, there is 
no such dependence and the two variables are called uncorrelated; for the values +1 
and –1 this dependence is certain. 

 
With matrix notation, the following n n  matrix 

 X ij  (10.111) 

is called the variance-covariance matrix of X. 
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The characteristic function of X is defined as: 

 1 1 1( .. ) '
1( ,..., ) n ni t X t X i X

X nt t E e E e t . (10.112) 

Let ,  be an n-dimensional real vector and an n n  positive definite matrix, 
respectively. The n-dimensional real r.v. X has a non-degenerated n-dimensional 
normal distribution with parameters ,  if its density function is given by: 

 
11 ( ) ' ( )

2

2

1( ) , .
(2 ) det

n
X nf e

x x
x x  (10.113) 

Then, it can be shown by integration that parameters ,  are indeed 
respectively the mean vector and the variance-covariance matrix of X. 

 
As usual, we will use the notation: ( , )nX N . 
 
The characteristic function of X is given by: 

 
1' '
2( )

i

X e
t t t

t . (10.114) 

The main fundamental properties of the n-dimensional normal distribution are: 

– every subset of k r.vs. of the set {X1,…,Xn} also has a k-dimensional 
distribution which is also normal; 

– the multi-dimensional normal distribution is stable under linear 
transformations of X; 

– the multi-dimensional normal distribution is stable for addition of r.vs., which 
means that if ( , ), 1,...,k n k kX N k m  and if these m random vectors are 
independent, then  

 1 1 1( , )m n m mX X N . (10.115) 
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Particular case: the two-dimensional normal distribution 

In this case, we have: 

 

2
1 12 12

1 2 2
1 221 2

2
1 1 21 2

1 2

2
1 2 2

( , ) ', , ,

1

,det 1 .
1

 (10.116) 

From the first main fundamental properties of the n-dimensional normal 
distribution given above, we have:  

 2
1( , ), 1,2k k kX N k . (10.117) 

For the special degenerated case of 1, it can be proved that: 

 

2 2 1 1

2 1

2 2 1 1

2 1

1 : ,

1 : ,

X X

X X
 (10.118) 

meaning that in this case, all the probability mass in the plane lies on a straight line 
so the two r.vs. X1,X2 are perfectly dependent with probability 1. 

 
To conclude this section, let us recall the well-known property stating that two 

independent r.vs. are uncorrelated, but the converse is not true except for the normal 
distribution. 

10.6. Conditioning  

Let us begin to briefly recall the concept of conditional probability. Let 
( , , )P  be a probability space and let A, B be elements of , and let us observe 
the number of occurrences of event A whenever B has already been observed in a 
sequence of n trials of our experiment. We shall call this number n A B . 

In terms of the frequency of events defined by relation (10.11), we have: 
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( )

( )
n A Bn A B

n B
, (10.119) 

provided that n(B) is not 0. 
 
Dividing by n the two members of relation (10.119), we obtain: 

 

( )

( )

n A B
n A B n

n Bn
n

. (10.120) 

In terms of frequencies, we obtain: 

 
( )

( )
f A Bf A B

f B
. (10.121) 

From the experimental interpretation of the concept of probability of an event 
seen in section 10.2, we can now define the conditional probability of A given B as: 

 
( ) , ( ) 0

( )
P A BP A B P B

P B
. (10.122) 

If events A and B are independent, from relation (10.122), we obtain: 

 ( )P A B P A , (10.123) 

meaning that, in the case of independence, the conditional probability of set A does 
not depend on the given set B. 

 
As the independence of sets A and B is equivalent to the independence of sets A 

and Bc, we also have: 

 ( )cP A B P A . (10.124) 

The notion of conditional probability is very useful for calculating probabilities 
of a product of dependent events A and B not satisfying relation (4.39). Indeed, from 
relations (10.122) and (10.124), we can write: 
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 ( ) ( ) ( )P A B P A P A B P B P B A . (10.125) 

More generally, for n events A1,…,An, we obtain the “theorem of compound 
probability”: 

 1 2 1 1 2 1
1

( ) ...
n

k n n
k

P A P A P A A P A A A A , (10.126) 

a relation expanding relation (10.125). 

 1
1

( )... ( )
n

k n
k

P A P A P A  (10.127) 

is true in the case of the independence of the n considered events. 
 
If event B is fixed and of strictly positive probability, relation (10.122) provides 

the way of defining a new probability measure on ( , )  denoted PB as follows: 

 
( )( ) ,

( )B
P A BP A A

P B
. (10.128) 

PB is in fact a probability measure as it is easy to verify that it satisfies conditions 
(10.16) and (10.17), and so PB is called the conditional probability measure given B. 

 
The integral with respect to this measure is called the conditional expectation EB 

relative to PB. 
 
From relation (10.128) and since PB(B)=1, we thus obtain for any integrable r.v. 

Y: 

 
1( ) ( ) ( )
( )B B

B

E Y Y dP Y dP
P B

. (10.129) 

We can now extend this definition to arbitrary sub- -algebras instead of the 

simple case of , , ,cB B  using an extension of property (10.129) as a definition 

with the help of the Radon Nikodym theorem (Halmos (1974)). 
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Definition 10.11 If 1  is a sub- -algebra of , the conditional expectation of the 
integrable r.v. Y given 1 , denoted by 

1
( )E Y  or 1E Y , is any r.v. of the 

equivalence class such that: 

(i) 
1
( )E Y  is 1 -measurable, 

(ii) 
1 1( )( ) ( ) , . 

B B

E Y dP Y dP B  (10.130) 

 
In fact, the class of equivalence contains all the r.vs. a.s. equally satisfying 

relation (10.130). 
 
Remark 10.5 Taking B  in relation (10.130), we obtain: 

 )())(
1

YEYEE . (10.131) 

Particular cases 

(i) 1  is generated by r.v. X. 

This case means that 1  is the sub- -algebra of  generated by all the inverse 
images of X, and we will use as notation: 

 
1
( )E Y E Y X , (10.132) 

where this conditional expectation is called the conditional expectation of Y given X. 

(ii) 1  is generated by  n r.vs. 1,..., nX X . 

This case means that 1  is the sub- -algebra of generated by all the inverse 
images of 1,..., nX X  and we will use as notation: 

 
1 1( ) ( ,..., )nE Y E Y X X , (10.133) 

where this conditional expectation is called the conditional expectation of Y given 
1,..., nX X . 

 
In this latter case, it can be shown (Loeve (1977)) that there exists a version 

1( ,..., )nX X  of the conditional expectation so that  is a Borel function from 
n to , and as such it follows that 1( ,..., )nE Y X X  is constant on each set 

belonging to 1  for which 1 1( ) ,..., ( )n nX x X x , for instance. 
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This justifies the abuse of notation 

 1 1 1( ) ,..., ( ) ( ,..., )n n nE Y X x X x x x  (10.134) 

representing the value of this conditional expectation on all the s belonging to the 
set 1 1: ( ) ,..., ( )n nX x X x . 
 

Taking B  in relation (10.130), we obtain: 

 
1 1 1 1

( )

( ) ,..., ( ) ( ( ) ,..., ( ) )
n

n n n n
R

E Y

E Y X x X x dP X x X x   (10.135) 

a result often used in the sequel to evaluate the mean of an r.v. using its conditional 
expectation with respect to some given event. 

(iii) If 1 , , we obtain 1( ) ( )E Y E Y  and if 1 , , ,cB B , 
then 1( ) ( )E Y E Y B  on B and 1( ) ( )cE Y E Y B  on Bc. 

(iv) Taking r.v. Y as the indicator of the event A, that is to say: 

 ( )

1, ,
1

0, ,A

A
A

 (10.136) 

the conditional expectation becomes the conditional probability of A given 1  
denoted as follows: 

 1 1( ) (1 ( ) )AP A E  (10.137) 

and then relation (10.130) becomes: 

 1 1( ) ( ),
B

P A dP P A B B . (10.138) 

Letting B  in this final relation, we obtain: 

 1 ( ),E P A P A  (10.139) 

a property extending the theorem of total probability . 
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If, moreover, A is independent of 1 , that is to say, if for all B belonging to 1 : 

 ( ) ( ) ( )P A B P A P B , (10.140) 

then we see from relation (10.137) that: 

 1 ( ) ( ),P A P A . (10.141) 

Similarly, if r.v. Y is independent of 1 , that is to say if for each event B 
belonging to 1  and each set A belonging to the -algebra generated by the inverse 
images of Y, denoted by (Y), relation (10.140) is true, then from relation (10.130), 
we have: 

 1 ( )E Y E Y . (10.142) 

Indeed, from relation (10.140), we can write that: 

 

1 1( )( ) ( ) , ,

                         1 ,
                          ( ) ( ),

                         ( ) ,

B B

B

B

E Y dP Y dP B

E Y

E Y P B

E Y dP

 (10.143) 

and so, relation (10.142) is proved. 
 
In particular, if 1  is generated by the r.vs. X1,…,Xn, then the independence 

between Y and 1  implies that: 

 1 ,..., ( )nE Y X X E Y . (10.144) 

Relations (10.142) and (10.144) allow us to have a better understanding of the 
intuitive meaning of conditioning and its importance in finance. 

 
Under independence assumptions, conditioning has absolutely no impact, for 

example, on the expectation or the probability; on the contrary, dependence implies 
that the results with or without conditioning will be different, meaning that we can 
interpret conditioning as given additional information useful to obtain more precise 
results in the case of dependence of an asset. 
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The properties of expectation, stated in section 10.4, are also properties of 
conditional expectation, true a.s., but there are supplementary properties which are 
very important in stochastic modeling. They are given in the next proposition. 
 
Proposition 10.2 (Supplementary properties of conditional expectation) On the 
probability space ( , , )P , we have the following properties: 

(i) If r.v. X is 1 -measurable, then  

 1( ) , . .E X X a s . (10.145) 

(ii) If X is a r.v. and Y 1 -measurable, then  

 1 1( ) ( ), . .E XY YE X a s . (10.146) 

This property means that 1 -measurable r.vs. are like constants for the classical 
expectation. 

(iii) Since from relation (10.145) we have ( ) ,E Y Y  taking
1
( )Y E Y , we 

see that: 

 
1 1

( ( )) ( )E E Y E Y  (10.147) 

and of course since: 

 
1 1
( ( )) ( ),E E Y E Y  (10.148) 

combining these last two relations, we obtain: 

 
1 1 1

( ( )) (( )) ( )E E Y E E Y E Y . (10.149) 

This last result may be generalized as follows. 

Proposition 10.3 (Smoothing property of conditional expectation) Let 1 2,   be 
two sub- -algebras of  such that 1 2 ;  then it is true that: 

 
2 1 1 2 1
( ( )) ( ( )) ( )E E Y E E Y E Y , (10.150) 

a property called the smoothing property in Loeve (1977). 
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A particular case of relation (10.150) is for example: 

 1 1 1 1 1,..., ,...,n nE E Y X X X E E Y X X X E Y X . (10.151) 

This type of property is very useful for calculating probabilities using 
conditioning and will often be used in the following chapters. 

 
Here is an example illustrating sums of a random number of r.vs. with the Wald 

identities. 
 
Example 10.3 (Wald’s identities) Let ( , 1)nX n  be a sequence of IID real r.v.s 
and N a non-negative r.v. with integer values independent of the given sequence. 
The r.v. defined by: 

 
1

N

N n
n

S X  (10.152) 

is called a sum of a random number of random variables and the problem to be 
solved is the calculation of the mean and the variance of this sum assuming that the 
r.vs. Xn have a variance. 

 
From relation (10.150), we have: 

 ( )N NE S E E S N  (10.153) 

and as, from the independence assumptions: 

 ( )NE S N NE X , (10.154) 

we also have: 

 ( ) ( ) ( ),NE S E N E X  (10.155) 

called the first Wald’s identity. 
 

For the variance of SN, it is possible to show that (see for example Janssen and 
Manca (2007)) 

 2var( ) ( ) var( ) var( )( ( ))NS E N X N E X  (10.156) 
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called the second Wald’s identity. 

In the particular case of an n-dimensional real r.v. X=(X1,…,Xn), we can now 
introduce the very useful definition of the conditional distribution function of X 
given 1  defined as follows: 

 1 1 1 1 1

1 1

( ,..., , ) ,...,

                       ': ( ') ,..., ( ') , .
n n n

n n

F x x P X x X x

Q X x X x
 (10.157) 

Another useful definition concerns an extension of the concept of the 
independence of random variables for the definition of conditional independence of 
the n variables 1, , .nX X  For all (x1,…,xn) belonging to n , we have the 
following identity: 

 
1 1

1

( ,..., , ) ( , ),
n

n k
k

F x x F x  (10.158) 

where of course we have: 

 1( , )k k kF x P X x  (10.159) 

according to definition (10.157) with n=1. 
 
Example 10.4 On the probability space ( , , )P , let (X,Y) be a two-dimensional 
real r.v. whose d.f. is given by 

 ( , ) ( , ).F x y P X x Y y  (10.160) 

As 2  is a complete separable metric space, there exist regular conditional 
probabilities given the sub- -algebras ( )X  or ( )Y , and so the related 
conditional d.f. denoted by:  

 : ,  :X Y Y XF x Y y F y X x  (10.161) 

also exists. 
 

If, moreover, the d.f. F has a density f, we can also introduce the concept of 
conditional density for functions ,   and XX Y Y XF F F , giving at the same time an 
intuitive interpretation of conditioning in this special case. 
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We know that for every fixed (x,y): 

 ( , ) ( , , , ) ( , ),f x y x y x y x y P x X x x y Y y y  (10.162) 

where ( , , , ) 0x y x y  for ( , ) (0,0)x y , and similarly for the marginal 
density function of X: 

 ( ) ( , ) ( ),Xf x x x x P x X x x  (10.163) 

where ( , ) 0x x  for 0x  with of course: 

 ( ) ( , )X
R

f x f x y dy . (10.164) 

Using formula (10.122), we thus obtain: 

 
( , ) ( , , , )

( ) ( , )X

f x y x y x y x yP y Y y y x X x x
f x x x x

.(10.165) 

Letting x  tend to 0, we obtain: 

 
0

( , )lim
( )x

X

f x yP y Y y y x X x x y
f x

. (10.166) 

This relation shows that the function Y Xf  defined by: 

 
( , )

( )Y X
X

f x yf y x
f x

 (10.167) 

is the conditional density of Y, given X. Similarly, the conditional density of X, given 
Y is given by: 

 
( , )

( )X Y
Y

f x yf x y
f y

. (10.168) 
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Consequently, for any Borel subsets A and B of , we have: 

 

1( ) ( , ) ,
( )

(( , ) ) ( , ) ( ) .

X Y
YA A

YX Y
A B B A

P X A Y y f x y dx f x y dx
f y

P X Y A B f x y dxdy f x y dx f y dy
 (10.169) 

The last equalities show that the density of (X,Y) can also be characterized by 
one marginal d.f. and the associated conditional density, as from relations (10.166) 
and (10.169): 

 X YY X X Yf f f f f . (10.170) 

It is possible that conditional means exist; if so, they are given by the following 
relations: 

 ,  E X Y y f x y dx E Y X x f y x dy . (10.171) 

The conditional mean of X (respectively Y) given Y=y (respectively X=x) can be 
seen as a function of the real variable y (respectively x) called the regression curve 
of X (respectively Y) given Y (respectively X). 

 
The two regression curves will generally not coincide and not be straight lines 

except if the two r.vs. X and Y are independent because, in this case, we obtain from 
relations (10.166) and (10.168) that: 

 ,  X YX Y Y Xf f f f  (10.172) 

and so: 

 ( ), ( )E X Y E X E Y X E Y , (10.173) 

proving that the two regression curves are straight lines parallel to the axes passing 
through the “center of gravity” (E(X), E(Y)) of the probability mass in 2 . 
 

In the special case of a non-degenerated normal distribution for (X,Y) with vector 
mean (m1,m2) and variance covariance matrix: 
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2
1 12

2
21 2

, (10.174) 

it can be shown that the two conditional distributions are also normal with 
parameters: 

 

2 22
2 2 1 2

1

2 21
2 1 2 2

2

( ), (1 ) ,

1 ( ), (1 ) .

Y X N x

X Y N y

 (10.175) 

Thus, the two regression curves are linear. 

10.7. Stochastic processes 

In this section, we shall always consider a complete probability space , ,  
with a filtration F. 

 
Let us recall that a probability space , ,  is complete if every subset of an 

event of probability 0 is measurable, i.e. in the -algebra , and so also of 
probability 0. 

 
Definition 10.12 F is a filtration on the considered basic probability space if F is a 
family of ,t t T  of sub- -algebras of , the index set T being either the 
natural set 0,1,..., ,...n  or the positive half real line 0,  such that: 

 

0      0.

(i) ,

(ii) ,

(iii)  

s t

t u
u t

contains all subsets with probability

s t
 (10.176) 

Assumption (ii) is called the right continuity property of filtration F. 
 
Any filtration satisfying these three assumptions is called a filtration satisfying 

the usual assumptions. 
 
The concept of filtration can be interpreted as a family of amounts of information 

so that t  gives all the observable events at time t. 
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Definition 10.13 The quadruplet  , , , ,t t T  is called a filtered 
probability space. 

Definition 10.14 A r.v. : T  is a stopping time if: 

 :  : ( ) .tt T t  (10.177) 

The interpretation is the following: the available information at time t allows for 
the possibility to observe the event given in (10.177) and to decide for example if 
the future observations will be stopped after time t, or not. 

 
We have the following proposition: 

Proposition 10.4 The r.v.  is a stopping time if and only if 

 : ( ) ,  .tt t T  (10.178) 

Definition 10.5 A stochastic process (or simply process) with values in the 
measurable space ,E  is a family of r.vs.: 

 ,tX t T  (10.179) 

where for all t: 

 -measurable.: ,  ,tX E  

This means, in particular, that for every subset B of the -algebra , the set  

 1 : ( )t tX B X B  (10.180) 

belongs to the -algebra .  
 
Remark 10.6 If , ,E , the process is called a real stochastic process 
with values in ; if , ,n nE , it is called a real multidimensional 
process with values in n . 
 

If T is the natural set 0,1,..., ,...n , the process X is called a discrete time 
stochastic process or a random sequence; if T is the positive half of the real line 
0, , the process X is called a continuous time stochastic process.  
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Definition 10.16 The stochastic process x is adapted to the filtration f if, for all t, the 
r.v. X t  is t -measurable. This means that, for all t T : 

 1 : ( ) , .t t tX B X B B  (10.181) 

Definition 10.17 Two processes x and y are indistinguishable if a.s., for all t T : 

 .t tX Y  (10.182) 

This means that: 

 , 1.t tX Y t T  (10.183) 

Definition 10.18 The process X (or Y) is a modification of the process Y (or X) if 
a.s., for all t T : 

 ,t tX Y  a.s. (10.184) 

This means that: 

 ., 1t tX Y t T  (10.185) 

for all t T . 

Definition 10.19 For every stochastic process x, the function from t to e, 

 ( )tt X  (10.186) 

defined for each , is called a trajectory or sample path of the process. 
 

It must be clearly understood that the “modern” study of stochastic processes is 
concerned with the study of the properties of these trajectories. 

 
For example, we can affirm that if two processes X and Y are indistinguishable, 

then there exists a set N belonging to  of probability 0 such that: 

 : ( ) ( ), .t tN X Y t T  (10.187) 

In other words, for each  element of the set ,N  the two functions 
( ) and ( )t tt X t Y  are equal. 
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As the basic probability space is complete, the neglected set N belongs to t , for 
all t T . 

 
Definition 10.20 A real stochastic process x is càdlàg if a.s. the trajectories of x are 
right continuous and have left limits at every point t.  
 
Definition 10.21 If x is a real stochastic process and a set , then the r.v. 
defined by: 

 ( ) inf 0 : ( )tT t X  (10.188) 

is called the hitting time of  by process X. 
 

It is easily shown that the properties of stopping and hitting times are as follows 
(see Protter (1990)): 

(i) if X is càdlàg, adapted and , then the hitting time related to  is a 
stopping time; 

(ii) if S and T are two stopping times, then the following r.v.: 

 min , , max , , , ( 1)S T S T S T S T S T S  (10.189) 

are also stopping times. 
 
Definition 10.22 If T is a stopping time, the -algebra T  defined by: 

 : : ( ) , 0T tT t t  (10.190) 

is called the stopping time -algebra. 
 

In fact, the -algebra T  represents the information of all observable sets up to 
stopping time T. We can also say that T  is the smallest stopping time containing 
all the events related to the r.v. ( ) ( )TX  for all the adapted càdlàg processes X or 
generated by these r.v. 
 

We also have for two stopping times S and T: 

(i) a.s. ,S TS T  (10.191) 

(ii) , .S T S T  (10.192) 
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10.8. Martingales 

In this section, we shall briefly present some topics related to the most well-
known category of stochastic processes called martingales. 

 
Let X be a real stochastic process defined on the filtered complete probability 

space , , , ,tP t T . 
 
Definition 10.23 The process x is called a ( )t -martingale if: 

(i) 0, ,tt E X  (10.193) 

(ii) | ,a.s.t s ss t E X X  (10.194) 
 

The latter equality is called the martingale property or the martingale equality. 
 
Definition 10.24 The process X is called a super-martingale (respectively sub-
martingale) if: 

(i) 0, ,tt E X  (10.195) 

(ii) | ( ) ,a.s.t s ss t E X X  (10.196) 
 

The martingale concept is interesting; indeed, as the best estimator at time s (s>t) 
for the value of tX , as given by the conditional expectation appearing in relation 
(8.2), the martingale equality means that the best predicted value is simply the 
observed value of the process at the time of predicting s. 
 

In finance the martingale is frequently used (see Janssen and Skiadas (1995)) to 
model the concept of an efficient financial market. 
 
Definition 10.25 The martingale X is closed if: 

 

  :

(i) ,

(ii) 0, : ,a.s..t t

Y

Y

t Y X

 (10.197) 

It is possible to prove the following result (see for example Protter (1990)). 
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Proposition 10.5  

(i) If X is a supermartingale, then the function tt E X  is right continuous if 
and only if there exists a unique modification Y of X such that Y is càdlàg. 

(ii) If X is a martingale then, up to a modification, the function tt E X  is 
right continuous. 
 

It follows that every martingale, such that the function tt E X  is right 
continuous, is càdlàg. 

 
The two most important results about martingales are the martingale 

convergence theorem and the optional sampling (or Doob’s) theorem. 
 
Before giving these results, we still need a final technical definition. 

 
Definition 10.25 (Meyer (1966)) A family ,u Au  where A is an infinite index 
set is uniformly integrable if: 

 
: ( )

limsup ( ) ( ) 0
n

n

d .  (10.198) 

Proposition 10.6 Let x be a super-martingale in such a way that the function 
tt E X  is right continuous such that: 

 
0,

sup t
t

E X ; (10.199) 

then, there exists a r.v. Y such that: 

 
(i) ,

(ii) lim , a.s.
tt

E Y

Y X
 (10.200) 

Moreover, if X is a martingale closed by r.v. Z, then r.v. Y also closes X and: 

 ,Y E Z  (10.201) 

where  



452     Mathematical Finance 

 
0

.t
t

 (10.202) 

With the aid of the concept of uniform integrability, we can obtain the following 
corollary. 
 
Corollary 10.1 

(i) Let X be a right continuous martingale and uniformly integrable; then the 
following limit: 

 lim tt
Y X  (10.203) 

exists a.s.; moreover 1Y L and the r.v. Y closes the martingale X. 

(ii) Let X be a right continuous martingale; then ( , 0)tX X t  is uniformly 
integrable if and only if 

 lim tt
Y X  (10.204) 

exists a.s., 1Y L , and , 0,tX t  is a martingale with, a.s.: 

 .X Y  (10.205) 

Now, an interesting question is: what happens if we observe a martingale X at 
two stopping times S,T (S<T, a.s.)? The solution is given by the optional sampling 
theorem, also called Doob’s theorem. 
 
Proposition 10.7 (The optional sampling theorem or Doob’s theorem) Let X be a 
right continuous martingale closed by X  and let S and T be two stopping times so 
that a.s. S < T; then the r.v. 1,S TX X L  and: 

 ,  a.s.S T SX E X  (10.206) 

This important theorem means that if we restrict the random observation time set 
to S ,T , then the restriction of the martingale to this set is still a martingale 
provided that S and T are two stopping times with of course S<T, a.s. 

 
This result is interesting for the concept of stopped process. 
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Definition 10.26 Let X be a stochastic process and T a stopping time. The stopped 
stochastic process TX  is defined by: 

 , 0,T T
tX X t  (10.207) 

where: 

 
( ) ( ),

inf , .

T
t t TX X

with t T t T
 (10.208) 

From this definition, it follows that if process X is adapted and càdlàg, then so is 
the stopped process TX . This is due to the fact that t T  is also a stopping time 
and moreover: 

 
1 1 .T

t t Tt T t TX X X  (10.209) 

This leads to the last result we want to mention. 
 
Proposition 10.8 Let x be a right continuous uniformly integrable martingale; then 

the stopped process , 0,T
t TX X t  has the same properties with respect 

to the filtration , 0, .t t  

10.9. Brownian motion 

There are many types of stochastic process and some of them will be extensively 
studied in the following chapters, such as renewal processes, random walks, Markov 
chains, semi-Markov and Markov processes and their main extensions. 

 
Figure 10.1 shows a typical sample path for models in finance. 
 
To obtain such trajectories, it is necessary to introduce a specific stochastic 

process called the Brownian motion. 
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Figure 10.1. Sample of a Brownian motion 

We will work on a basic complete filtered probability space satisfying the usual 
assumptions and noted , , , , 0, .tP t  

 
Definition 10.27 The real stochastic process , 0,tB B t  will be called a 
Brownian motion or Brownian or Wiener process with trend  and variance 2  
provided that: 

(i) B is adapted to the basic filtration, 

(ii) B has independent increments, i.e. that: 

 

,  (0 ) :  ,

  ,
t s S t ss t s t P B B A P B B A

Borel set B
 (10.210) 

(iii) B has stationary increments, i.e.: 

 
2

,  (0 ) :      

 ( ( - ), ( - )),
t ss t s t B B has a normal distribution

N t s t s  (10.211) 

(iv)  0 1,  ( ).P B x x  (10.212) 
 

If, moreover, we have: 

 20,  1,  0,x  (10.213) 
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then the Brownian motion is said to be standard. 
 

Let us now give the most important properties of the standard Brownian motion. 
 
Property 10.2 If B is a Brownian motion, then there exists a modification of B, the 
process B*, such that B* has, a.s., continuous trajectories. 
 
Property10.3 If B is a standard Brownian motion, then B is a martingale. 
 
Property 10.4 If B is a standard Brownian motion, then the process Q where 

 
2 , 0,tQ B t t  (10.214) 

is a martingale. 
 
Remark 10.8 It can also be proved that both Properties 10.3 and 10.4 characterize a 
standard Brownian motion. 
 
Property 10.5 If B is a standard Brownian motion, then for almost all , the 
trajectory ( )tB  is not of bounded variation on every closed interval , .a b  
 

This explains why it is necessary for models in finance and in insurance to define 
a new type of integral, called the Itô or stochastic integral, if we want to integrate 
with respect to B (see for example Protter (1990)). This will be done in section 13.3. 
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Chapter 11 

Markov Chains 

This section briefly presents some fundamental results concerning the theory of 
Markov chains with a finite number of states. These results will be used in the 
following chapter. We will use the usual terminology introduced by Chung (1960) 
and Parzen (1962). 

11.1. Definitions 

Let us consider an economic or physical system S  with m  possible states, 
represented by the set I : 

 1, 2, ,I m . (11.1) 

Let the system S  evolve randomly in discrete time 0, 1, 2, , , ,t n  
and let nJ  be the r.v. representing the state of the system S  at time n . 
 
Definition 11.1 The random sequence ,nJ n  is a Markov chain if and 
only if for all 0 1, , , :nj j j I  

0 0 1 1 1 1 1 1| , , , |n n n n n n n nP J j J j J j J j P J j J j (11.2) 

(provided this probability has meaning). 
 
Definition 11.2 A Markov chain , 0nJ n  is homogenous if and only if 
probabilities (1.2) do not depend on n  and are non-homogenous in the other cases. 
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For the moment, we will only consider the homogenous case for which we write: 

 1| ,n n ijP J j J i p  (11.3) 

and we introduce matrix P defined as: 

 ijpP . (11.4) 

The elements of matrix P have the following properties: 

(i) 0,ijp for all , ,i j I  (11.5) 

(ii) 1,ij
j I

p  for all .i I  (11.6) 

A matrix P satisfying these two conditions is called a Markov matrix or a 
transition matrix. 

 
With every transition matrix, we can associate a transition graph where vertices 

represent states. There exists an arc between vertices i and j if and only if 0.ijp  
 
To fully define the evolution of a Markov chain, it is also necessary to fix an 

initial distribution for state 0J , i.e. a vector  

 1, , ,mp pp  (11.7) 

such that: 

 0, ,ip i I  (11.8) 

 1.i
i I

p  (11.9) 

For all , ii p  represents the initial probability of starting from i : 

 0 .ip P J i  (11.10) 

For the rest of this chapter we will consider homogenous Markov chains as being 
characterized by the couple ,p P . 
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If nJ i  a.s., that is, if the system starts with probability equal to 1 from state 
i , then the components of vector p will be: 

 j ijp . (11.11) 

We now introduce the transition probabilities of order ( )n
ijp , defined as: 

 ( ) |n
ij np P J j J i . (11.12) 

From the Markov property (11.2), it is clear that conditioning with respect to 
1J , and we obtain 

 (2) .ij ik kj
k

p p p  (11.13) 

Using the following matrix notation: 

 (2) (2)
ijpP , (11.14) 

we find that relation (11.13) is equivalent to 

 (2) 2P P . (11.15) 

Using induction, it is easy to prove that if 

 ( ) ( )n n
ijpP , (11.16) 

then we obtain for all 1n : 

 ( )n nP P . (11.17) 

Note that (11.17) implies that the transition probability matrix in n  steps is equal 
to the nth power of matrix P. 
 

For the marginal distributions related to ,nJ  we define for i I  and 0n : 

 ( ) .i np n P J i  (11.18) 
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These probabilities may be calculated as follows: 

 ( )( ) ,n
i j ji

j
p n p p i I . (11.19) 

If we write: 

 (0)
ji jip  or (0)P I , (11.20) 

then relation (11.19) is true for all 0n . 
 
If: 

 1( ) ( ), , ( ) ,mn p n p np  (11.21) 

then relation (11.19) can be expressed, using matrix notation, as: 

 ( ) .nnp pP  (11.22) 

Definition 11.3 A Markov matrix P is regular if there exists a positive integer k , 
such that all the elements of matrix ( )kP  are strictly positive. 
 

From relation (11.17), P is regular if and only if there exists an integer 0k  
such that all the elements of the kth power of P are strictly positive. 
 
Example 11.1 

(i) If: 

 
0.5 0.5
1 0

P  (11.23) 

we have: 

 2 0.75 0.25
0.5 0.5

P  (11.24) 

so that P is regular. 
 

The transition graph associated with P is given in Figure 11.1.  
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Figure 11.1. Transition graph of matrix (11.23) 

(ii) If: 

 
1 0

0.75 0.25
P , (11.25) 

P is not regular, because for any integer k, 

 ( )
12 0.kp  (11.26) 

 

Figure 11.2. Transition graph for matrix (11.25) 

The transition graph in this case is depicted in Figure 11.2. 
 

The same is true for the matrix: 

 
0 1
1 0

P . (11.27) 

(iii) Any matrix P whose elements are all strictly positive is regular. 
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For example: 

 

1 2 0.7 0.2 0.1
3 3 0.6 0.2 0.2
1 3

0.4 0.1 0.54 4

. (11.28) 

11.2. State classification 

Let i I , and let ( )d i  be the greatest common divisor of the set of integers n , 
such that  

 ( ) 0.n
iip  (11.29) 

Definition 11.4 If ( ) 1d i , the state i  is said to be periodic with period ( )d i . If 
( ) 1d i , then state i  is aperiodic. 

 
Clearly, if 0iip , then i  is aperiodic. However, the converse is not necessarily 

true. 
 
Remark 11.1 If P is regular, then all the states are aperiodic. 
 
Definition 11.5 A Markov chain whose states are all aperiodic is called an 
aperiodic Markov chain. 
 

From now on, we will have only Markov chains of this type. 
 
Definition 11.6 A state i  is said to lead to state j  (written i j ) if and only if 
there exists a positive integer n  such that 

 0.n
ijp  (11.30) 

i jC  means that i does not lead to j. 
 
Definition 11.7 States i  and j  are said to communicate if and only if i j  and 
j i , or if j i . We write i j . 

 
Definition 11.8 A state i  is said to be essential if and only if it communicates with 
every state it leads to; otherwise it is called inessential. 
 

Relation  defines an equivalence relation over the state space I  resulting in 
a partition of I . The equivalence class containing state i  is represented by ( )C i . 
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Definition 11.9 A Markov chain is said to be irreducible if and only if there exists 
only one equivalence class. 
 

Clearly, if P is regular, the Markov chain is both irreducible and aperiodic. Such 
a Markov chain is said to be ergodic. 

It is easy to show that if the state i  is essential (inessential), then all the elements 
of class ( )C i  are essential (inessential) (see Chung (1960)). 

 
We can thus speak of essential and inessential classes. 

 
Definition 11.10 A subset E  of the state space I  is said to be closed if and only if: 

 1ij
j E

p , for all i E . (11.31) 

It can be shown that every essential class is minimally closed; see Chung (1960). 
 
Definition 11.11 For given states i  and j , with 0 ,J i  we can define the r.v. ij  
called the first passage time to state j as follows: 

 
if , 0 , ,
if ,  for all 0.

n
ij

n J j n J j
J j

 (11.32) 

ij  is said to be the hitting time of the singleton j , starting from state i  at 
time 0. 

 
Assuming: 

 ( )
0 0| ,n

ij ijf P n J i n  (11.33) 

and 

 0| ,ij ijf P J i  (11.34) 

we can see that for 0n : 

 ( )
0, , 0 | ,n

ij nf P J j J j n J i  (11.35) 
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1

, ,

1

' 0
,

k k

n i j

n

S k
p  (11.36) 

where the summation set , ,'n i jS  is defined as: 

 , ,

0 1 0

'
, , , : , , , , 1, , 1 .

n i j

n n k k

S

i j I j k n
 (11.37) 

We also have: 

 ( )

1
,n

ij ij
n

f f  (11.38) 

 01 | .ij ijf P J i  (11.39) 

Elements ( )n
ijf  can readily be calculated by induction, using the following 

relations: 

 (1) ,ij ijp f  (11.40) 

 
1

( ) ( ) ( ) ( )

1
, 2

n
n n n

ij ij jj ijp f p f n . (11.41) 

Let: 

 0| ,ij ijm E J i  (11.42) 

with the possibility of an infinite mean. The value of ijm  is given by: 

 ( )

1
1 .n

ij ij ij
n

m nf f (*) (11.43) 

If i j , then ijm  is called the first passage time mean or the mean recurrence 
time of state i . 

 
For every j, we define the sequence of successive return times to state 

( ) ,j
nj r n a  as follows: 

                              
(*) Using the following conventions: , , , ( 0)a a a a , and in this 
particular case, 0 0 . 
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 ( )
0 0jr , (11.44) 

 ( ) ( )( )
0, 1 1sup , , , 0.j jj

n n n
k

r k k r J j r k n  (11.45) 

Using the Markov property and supposing 0 ,J j  the sequence of return times 
to state j  is a renewal sequence with the r.v. 

 ( )( )
1 , 1jj

n nr r n  (11.46) 

is a sequence of independent r.v. all distributed according to jj . 
 

If 0 , ,J i i j  then the first time of hitting  j is 

 ( )
1 ,j

ijr  (11.47) 

and 

 ( )( )
1 ~ , 1.jj

n n jjr r n  (11.48) 

Definition 11.12 A state i is 

 transient 1,iii f  (11.49) 

 recurrent 1.iii f  (11.50) 

A recurrent state i  is said to be zero (positive) if ii iim m . It can be 
shown that if iim , then we can only have positive recurrent states. 

 
This classification leads to the decomposition theorem (see Chung (1960)). 

 
Proposition 11.1 (Decomposition theorem) The state space I of any Markov chain 
can be decomposed into ( 1)r r  subsets 1, , rC C  forming a partition, such that 
each subset iC  is one and only one of the following types: 

(i) an essential recurrent positive closed set; 
(ii) an inessential transient non-closed set. 

 
Remark 11.2 

(1) If an inessential class reduces to a singleton i , there are two possibilities: 
a) there exists a positive integer N such that: 

 0 1N
iip . (11.51) 
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b) the N  in a) does not exist. In this case, state i  is said to be a non-return state. 
(2) If singleton i  forms an essential class, then  

 1iip  (11.52) 

and state i  is said to be an absorbing state. 
(3) If m , there may be two other types of classes in the decomposition 

theorems: 
a) essential transient closed; 
b) essential recurrent non-closed classes. 

Other works on Markov chains give the following necessary and sufficient 
conditions for recurrence and transience. 
 
Proposition 11.2 

(i) State i is transient if and only if 

 ( )

1
.n

ii
n

p  (11.53) 

In this case, for all :k I  

 ( )

1
,n

ki
n

p  (11.54) 

and in particular: 

 ( )lim 0, .n
kin

p k I  (11.55) 

(ii) State i is recurrent if and only if 

 ( )

1
.n

ii
n

p  (11.56) 

In this case:  

 ( )

1
,n

ki
n

k i p  (11.57) 
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and 

 ( )

1
0.n

ki
n

k i pC  (11.58) 

11.3. Occupation times 

For any state ,j  and for 0n , we define the r.v. ( )jN n  as the number of 
times state j  is occupied in the first n  transitions: 

 ( ) # 1, , : .j kN n k n J j  (11.59) 

By definition, the r.v. ( )jN n  is called the occupation time of state j in the first n 
transitions. 

 
The r.v. 

 ( ) lim ( )j jn
N N n   (11.60) 

is called the total occupation time of state j. 
 

For any state j  and 0n  let us define: 

 
1 if ,

( )
0 if .

n
j

n

J j
Z n

J j
 (11.61) 

We may write: 

 
1

( ) ( ).
n

j jN n Z  (11.62) 

We have from relation (11.34): 

 0P ( ) 0 | .j ijN J i f  (11.63) 

Let ijg  be the conditional probability of an infinite number of visits to state j , 
starting with 0J i ; that is: 
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 0( ) | .ij jg P N J i  (11.64) 

It can be shown that: 

 ( )lim n
ii iin

g f , (11.65) 

 ij ij jjg f g , (11.66) 

 1 1ii iig f i  is recurrent, (11.67) 
 0 1ii iig f i  is transient. (11.68) 

Results (11.67) and (11.68) can be interpreted as showing that system S  will 
visit a recurrent state an infinite number of times, and that it will visit a transient 
state a finite number of times. 

11.4. Absorption probabilities 

Proposition 11.3 
(i) If i is recurrent and if ( ),j C i  then 1.ijf  
(ii) If i is recurrent and if ( ),j C i  then 0ijf . 

 
Proposition 11.4 Let T be the set of all transient states of I, and let C be a recurrent 
class. 
 

For all ,j k C ,  

 .ij ikf f  (11.69) 

Labeling this common value as iCf , the probabilities , ,i Cf i T  satisfy the 
linear system: 

 , , , .i C ik k C ik
k T k C

f p f p i T  (11.70) 

Remark 11.3 Parzen (1962) proved that under the assumption of Proposition 11.4, 
the linear system (11.70) has a unique solution. This shows, in particular, that if 
there is only one irreducible class C , then for all i T : 

 , 1i Cf . (11.71) 
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Definition 11.13 The probability ,i Cf  introduced in Proposition 11.4 is called 
absorption probability in class C, starting from state i. 
 

If class C  is recurrent: 

 ,
if

if  is recurrent,

1  ,
0   .i C i

i C
f

i C
 (11.72) 

11.5. Asymptotic behavior 

Consider an irreducible aperiodic Markov chain which is positive recurrent. 
 
Suppose that the following limit exists: 

 lim ( ) ,j jn
p n j I  (11.73) 

starting with 0J i . 
 

The relation 

 ( 1) ( )j k kj
k I

p n p n p  (11.74) 

becomes: 

 ( )( 1) ,nn
ij kjik

k I
p p p  (11.75) 

because 

 ( )( ) .n
j ijp n p  (11.76) 

Since the state space I  is finite, we obtain from (11.73) and (11.75): 

 j k kj
k I

p , (11.77) 

and from (11.76): 

 1i
i I

. (11.78) 
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The result: 

 ( )lim n
ij jn

p  (11.79) 

is called an ergodic result, since the value of the limit in (11.79) is independent of 
the initial state i . 
 

From result (11.79) and (11.19), we see that for any initial distribution p: 

 ( )lim ( ) lim ,n
i j jin n j

p n p p  (11.80) 

 j i
j

p , (11.81) 

so that: 

 lim ( )i in
p n . (11.82) 

This shows that the asymptotic behavior of a Markov chain is given by the 
existence (or non-existence) of the limit of matrix nP . 

 
A standard result concerning the asymptotic behavior of nP  is given in the next 

proposition. The proof can be found in Chung (1960), Parzen (1962) or Feller (1957). 
 
Proposition 11.5 For any aperiodic Markov chain of transition matrix P and having 
a finite number of states, we have: 

a) if state j is recurrent (necessarily positive), then 

(i)    ( ) 1( ) lim ,n
ijn jj

i C j p
m

  (11.83) 

(ii)   i is recurrent and ( )( ) lim 0,n
ijn

C j p  (11.84) 

(iii)  i is transient and , ( )( )lim .i C jn
ijn jj

f
p

m
 (11.85) 

b) If j is transient, then for all :i I  

 ( )lim 0.n
ijn

p  (11.86) 
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Remark 11.4 Result (ii) of part a) is trivial since in this case: 

( ) 0n
ijp  for all positive n. 

From Proposition 11.5, the following corollaries can be deduced. 
 
Corollary 11.1 (Irreducible case) If the Markov chain of transition matrix P is 
irreducible, then for all ,i j I : 

 ( )lim ,n
ij jn

p  (11.87) 

with 

 
1

j
jjm

. (11.88) 

It follows that for all j : 

 0j . (11.89) 

If we use Remark 11.4 in the particular case where we have only one recurrent 
class and where the states are transient (the uni-reducible case), then we have the 
following corollary. 

 
Corollary 11.2 (Uni-reducible case) If the Markov chain of transition matrix P has 
one essential class C (necessarily recurrent positive) and T as transient set, then we 
have: 

(i) for all , :i j C  

( )lim ,n
ij jn

p  (11.90) 

with ,j j C  being the unique solution of the system: 

 ,j i ij
i C

p  (11.91) 

 1j
j C

; (11.92) 

(ii) for all j T : 

 ( )lim 0 for all n
ijn

p i I ; (11.93) 

(iii) for all :j C  
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 ( )lim  for all .n
ij jn

p i T  (11.94) 

Remark 11.5 Relations (11.91) and (11.92) are true because the set C  of recurrent 
states can be seen as a Markov sub-chain of the initial chain. 
 

If the  transient states belong to the set 1, , , using a permutation of the 
set I , if necessary, then matrix P takes the following form: 

 
11 12

22

1 1
1

1

m

m

P P
P

O P

. (11.95) 

This proves that the sub-matrix 22P  is itself a Markov transition matrix. 

Let us now consider a Markov chain of matrix P. The general case is given by a 
partition of I: 

 1 ,rI T C C   (11.96) 

where T  is the set of transient states and 1, , rC C  the r  positive recurrent 
classes. 
 

By reorganizing the order of the elements of I , we can always suppose that 

 1, ,T , (11.97) 
 1 11, ,C , (11.98) 
 2 1 1 21, ,C , (11.99) 

  

 
1

1
1, , ,

r

r j
j

C m  (11.100) 

where j  is the number of elements in , 1, ,jC j r  and  
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1

.
r

j
j

m  (11.101) 

This results from the following block partition of matrix P: 

 

1 2

1 1

2 2

r

r r

P P P P
0 P 0 0
0 0 P 0P

0 0 0 P

 (11.102) 

where, for 1, ,j r : 
– P  is the transition sub-matrix for T ; 

– 
j

P  is the transition sub-matrix from T  to jC ; 

– 
j j

P  is the transition sub-matrix for the class jC . 

From Proposition 11.1, we obtain the following corollary. 
 
Corollary 11.3 For a general Markov chain of matrix P, given by (11.102), we 
have: 

(i) for all i I  and all j T : ( )lim 0;n
ijn

p  (11.103) 

(ii) for all 1, , :j C r  

 ( )
'

,

if ,
lim 0 if ' ,

if ,

j
n

ijn

i C j

i C
p i C

f i T
 (11.104) 

moreover, for all  1, , r : 

 1.j
j C

 (11.105) 

This last result allows us to calculate the limit values quite simply. 
 

For , , 1, ,j j C r , it suffices to solve the linear systems for 
each fixed : 
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, ,

1.

j k kj
k C

i
i C

p j C
 (11.106) 

Indeed, since each C  is itself a space set of an irreducible Markov chain of 
matrix P , the above relations are none other than (11.77) and (11.78). 
 

For the absorption probabilities , , , 1, ,i Cf i T r , it suffices to 
solve the following linear system for each fixed . Using Proposition 11.4, we 
have: 

 , , , .i C ik i C ik
k T k C

f p f p i T  (5.35) 

An algorithm, given in De Dominicis and Manca (1984b) and very useful for the 
classification of the states of a Markov chain, is fully developed in Janssen and 
Manca (2006). 

11.6. Examples 

Markov chains appear in many practical problems in fields such as operations 
research, business, social sciences, etc. 
 

To give an idea of this potential, we will present some simple examples followed 
by a fully developed case study in the domain of social insurance. 

11.6.1. A management problem in an insurance company 

A car insurance company classifies its customers in three groups: 
– 0G : those having no accidents during the year; 
– 1G : those having one accident during the year; 
– 2G : those having more than one accident during the year. 

 
The statistics department of the company observes that the annual transition 

between the three groups can be represented by a Markov chain with state space 
0 1 2, ,G G G  and transition matrix P: 
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0.85 0.10 0.05

0 0.80 0.20
0 0 1

P . (11.108) 

We assume that the company produces 50,000 new contracts per year and wants 
to know the distribution of these contracts for the next four years. 
 

After one year, we have, on average: 
– in group 0 : 50,000 .85 42,500G ; 
– in group 1 : 50,000 .10 5,000G ; 
– in group 2 : 50,000 .05 2,500G . 

 
These results are simply the elements of the first row of P, multiplied by 50,000. 

After two years, multiplying the elements of the first row of (2)P  by 50,000, we 
obtain: 

– in group 0 : 36,125G ; 
– in group 1 : 8,250G ; 
– in group 2 : 5,625G . 

 
A similar calculation gives: 

 
 After three years After four years 

0G  30,706 26,100 

1G  10,213 11,241 

3G  9,081 12,659 

 
To find the type of the Markov chain with transition matrix (11.108), the simple 

graph of possible transitions given in Figure 11.3 shows that class 1, 2  is 
transient and class 3  is absorbing. Thus, using Corollary 11.2 we obtain the limit 
matrix 

 
0 0 1
0 0 1
0 0 1

A . (11.109) 
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The limit matrix can be interpreted as showing that regardless of the initial 
composition of the group the customers will finish by having at least two accidents. 
 

 
Figure 11.3. Transition graph of matrix (11.108) 

Remark 11.6 If we want to know the situation after one or two changes, we can use 
relation (1.19) with 1,2,3n  and with p given by: 

(0.26,0.60,0.14)p . (11.110) 

We obtain the following results: 

(1) (1) (1)
1 2 3
(2) (2) (2)
1 2 3
(3) (3) (3)
1 2 3

0.257 0.597 0.146
0.255 0.594 0.151
0.254 0.590 0.156.

p p p
p p p
p p p

 

These results show that the convergence of ( )np  to  is relatively fast. 

11.6.2. A case study in social insurance (Janssen (1966)) 

To calculate insurance or pension premiums for occupational diseases such as 
silicosis, we need to calculate the average (mean) degree of disability at pre-assigned 
time periods. Let us suppose we retain m  degrees of disability: 
 

1, , mS S , the last being 100% and including the pension paid out at death. 
 

Let us suppose, as Yntema (1962) did, that an insurance policy holder can go 
from degree iS  to degree jS  with a probability ijp . This strong assumption leads 
to the construction of a Markov chain model in which the m m  matrix: 
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 ijpP  (11.111) 

is the transition matrix related to the degree of disability. 
 

For individuals starting at time 0 with iS  as the degree of disability, the mean 
degree of disability after the nth transition is: 

 ( )

1
( ) .

m
n

i ij j
j

S n p S  (11.112) 

To study the financial equilibrium of the funds, we must calculate the limiting 
value of ( )iS n : 

 lim ( )i in
S S n , (11.113) 

or 

 ( )

1
lim .

m
n

i ij jn
j

S p S  (11.114) 

This value can be found by applying Corollary 11.3 for 1, ,i m . 

Numerical example 

Using real-life data for silicosis, Yntema (1962) began with the following 
intermediate degrees of disability: 

1

2

3

4

5

10%
30%
50%
70%

100%

S
S
S
S
S

  

Using real observations recorded in the Netherlands, he considered the following 
transition matrix P: 

 

0.90 0.10 0 0 0
0 0.95 0.05 0 0
0 0 0.90 0.05 0.05
0 0 0 0.90 0.10
0 0 0.05 0.05 0.90

P ; (11.115) 
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the transition graph associated with matrix (11.115) being given in Figure 11.4. This 
immediately shows that: 

(i) all states are aperiodic; 
(ii) the set 3 4 5, ,S S S  is an essential class (positive recurrent); 
(iii) the singletons 1  and 2  are two inessential transient classes. 

 
Thus a uni-reducible Markov chain can be associated with matrix P. We can thus 

apply Corollary 11.2. It follows from relation (11.114) that: 

 
5

3
limi j jn

j
S S , (11.116) 

where 3 4 5, ,  is the unique solution of the linear system: 

 

3 3 4 5

5 3 4 5

4 3 4 5

3 4 5

0.9 0 0.05 ,
0.05 0.9 0.05 ,
0.05 0.05 0.9 ,

1 .

 (11.117) 

The solution is: 

 3 4 5
2 3 4, ,
9 9 9

. (11.118) 

Therefore: 

 
2 3 450 70 100 %
9 9 9iS  (11.119) 

or 

 79%iS  (11.120) 

which is the result obtained by Yntema. 
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Figure 11.4. Transition graph of matrix (11.115) 

The last result proves that the mean degree of disability is, at the limit, 
independent of the initial state i. 
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Chapter 12 

Semi-Markov Processes 

12.1. Positive (J-X) processes 

Let us consider a physical or economic system called S with m possible states, m 
being a finite natural number. 
 

For simplicity, we will note by I the set of all possible states: 

1,...,I m   (12.1) 

as we did in Chapter 11. 
 
At time 0, system S starts from an initial state represented by the r.v. J0, stays a 

non-negative random length of time X1 in this state, and then goes into another state 
J1 for a non-negative length of time X2 before going into J2, etc. 

 
So we have a two-dimensional stochastic process in discrete time called a 

positive (J-X) process: 

( ) (( , ), 0)n nJ X J X n   (12.2) 

assuming  

0 0,  . .X a s   (12.3) 

where the sequence ( , 0)nJ n  gives the successive states of S in time and the 
sequence ( , 0)nX n  gives the successive sojourn times. 
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More precisely, Xn is the time spent by S in state Jn-1 (n>0).  
 

Times at which transitions occur are given by the sequence ( , 0)nT n  where: 

0 1 1
1

0,  ,...,
n

n r
r

T T X T X    (12.4) 

and so 

1,  1n n nX T T n .   (12.5) 

12.2. Semi-Markov and extended semi-Markov chains 

On the complete probability space ( , , )P , the stochastic dynamic evolution 
of the considered (J-X) process will be determined by the following assumptions: 

P(X0=0)=1, a.s., 

P(J0=i)=pi, i=1,…,m with 
1

1
m

i
i

p , (12.6) 

for all n>0, j=1,…,m, we have: 

1
( , ( , ), 0,..., 1) ( ),  . .

nn n k k J jP J j X x J X k n Q x a s   (12.7) 

where any function Qij (i,j=1,…,m) is a non-decreasing real function null on  
such that if 

lim ( ),  ,ij ijx
p Q x i j I ,   (12.8) 

then: 

1
1,  

m

ij
j

p i I .   (12.9) 

With matrix notation, we will write: 

1,  ( ( )),  ,..., )ij ij mQ p (p pQ P Q p .  (12.10) 

This leads to the following definitions. 
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Definition 12.1 Every matrix m m Q of non-decreasing functions null on  
satisfying properties (12.8) and (12.9) is called a semi-Markov matrix or a semi-
Markov kernel. 
 
Definition 12.2 Every couple (p,Q) where Q is a semi-Markov kernel and p a vector 
of initial probabilities defines a positive (J,X) process 

(J,X) =((Jn,Xn), 0n ) with I   

as state space, also called a semi-Markov chain (SMC). 
 

Sometimes, it is useful that the random variables , 0nX n  take their values in 
instead of , in which case, we need the next two definitions. 

 
Definition 12.3 Every matrix m m  Q of non-decreasing functions satisfying 
properties (12.8) and (12.9) is called an extended semi-Markov matrix or an 
extended semi-Markov kernel. 
 
Definition 12.4 Every couple (p,Q) where Q is an extended semi-Markov kernel and 
p a vector of initial probabilities defines a (J,X) process (J,X) = ((Jn,Xn), 0n ) with 
I  as state space, also called an extended semi-Markov chain (ESMC). 
 

Let us return to the main condition (12.7); its meaning is clear. For example if 
we assume that we observe for a certain fixed n that Jn-1 = i, then the basic relation 
(12.7) gives us the value of the following conditional probability: 

1( , ( , ), 0,..., 1, ) ( ).n n k k n ijP J j X x J X k n J i Q x   (12.11) 

That is, the knowledge of the value of Jn-1 suffices to give the conditional 
probabilistic evolution of the future of the process whatever the values the other past 
variables might be. 

 
According to Kingman (1972), the event 1: ( )nJ i  is regenerative in the 

sense that the observation of this event gives the complete evolution of the process 
in the future as it could evolve from n = 0 with i as the initial state. 

 
(J-X) processes will be fully developed in section 12.4. 

 
Remark 12.1 The second member of the semi-Markov characterization property 
(12.7) does not explicitly depend on n; also we can be precise that we are now 
studying homogenous semi-Markov chains in opposition with the non-homogenous 
case where this dependence with respect to n is valid.  
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12.3. Primary properties 

We will start by studying the marginal stochastic processes ( , 0),nJ n  
( , 0)nX n  called the J-process and the X-process respectively. 

The J-process 

From properties of the conditional expectation, the process ( , 0)nJ n  satisfies 
the following property: 

1
( ( , ), 0,..., 1) ( )

nn k k J jP J j J X k n Q .  (12.12) 

Using the smoothing property (see property (10.150)) of conditional expectation, 
we obtain  

1
( ( ), 0,..., 1) ( ( ) ( ), 0,..., 1),

nn k J j kP J j J k n E Q J k n   (12.13) 

and as the r.v. )(
1 jJ n

Q  is ( , 0,... 1)kJ k n ,k=0,…,n-1)-measurable, we finally 
obtain from relation (12.8) that: 

1
( ( ), 0,..., 1)

nn k J jP J j J k n p .  (12.14) 

Since relation (12.9) implies that matrix P is a Markov matrix, we have thus 
proved the following result. 
 
Proposition 12.1 The J-process is a homogenous Markov chain with P as its 
transition matrix. 
 

That is the reason why this J-process is called the embedded Markov chain of the 
considered SMC in which the r.v. Jn represents the state of the system S just after the 
nth transition. 

 
From results of Corollary 11.1, it follows that in the ergodic case there exists one 

and only one stationary distribution of probability 1( ,..., )m  satisfying: 

1

1

, 1,..., ,

1

m

i j ji
j

m

i
i

p j m
   (12.15) 
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such that 

( )
0lim ( )( lim ) , , ,n

n ij jn n
P J j J i p i j I   (12.16) 

where we know from relation (11.22) that 

( )n n
ijp P .   (12.17) 

The X-process 

Here, the situation is entirely different for the fact that the distribution of Xn 
depends on Jn-1. Nevertheless, we have an interesting property of conditional 
independence, but before giving this property we must introduce some definitions. 
 
Definition 12.5 The two following conditional probability distributions: 

1

1

1

1

( ) ( , ),

( ) ( )
n n

n

J J n n n

J n n

F x P X x J J

H x P X x J
  (12.18) 

are respectively called the conditional and unconditional distributions of the sojourn 
time Xn. 
 

From the general properties of conditioning recalled in section 10.2, we 
successively obtain  

1

-1

-1

-1

-1

1

1

( ) ( ( , ), 1, ) , ,

( )
               , ,

( )
               ,

n n

n n

n n

n n

n n

J J n k k n n n

J J
n n

J J

J J

J J

F x E P X x J X k n J J J

Q x
E J J

p

Q x
p

  (12.19) 

provided that 
1n nJ Jp  is strictly positive. If not, we can arbitrarily give to (12.19) for 

example the value U1(x) defined as 

1

0, 0,
( )

1, 0.
x

U x
x

   (12.20) 
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Moreover, from the smoothing property, we also have: 

1 1

1 1

1 1

1

( )( ( )) ( ( ) ),

                                          ( ).

n n n

n n n n

J n n J J n

m

J J J J
j

H x P X x J E F x J

p F x
  (12.21) 

We have thus proved the following proposition. 
 
Proposition 12.2 As a function of the semi-kernel Q, the conditional and 
unconditional distributions of the sojourn time Xn are given by: 

1

1

1
1

( )
, 0,

( )( ( , ))
( ), 0,

( )( ( )) ( ).

ij
ij

ijij n n n

ij

m

i n n ij ij
j

Q x
p

pF x P X x J i J j
U x p

H x P X x J i p F x

  (12.22) 

Remark 12.2 
(a) From relation (12.22), we can also express kernel Q as a function of  

Fij, i,j=1,…,m: 

( ) ( ), , ,i j ij ijQ x p F x i j I x .  (12.23) 

So, every SMC can also be characterized by the triple (p,P,F) instead of the 
couple (p,Q) where the m m  matrix F is defined as ijFF , and where the 

functions , , 1, ,ijF i j m  are distribution functions on support . 

(b) We can also introduce the means related to these conditional and 
unconditional distribution functions. 
 

When they exist we will note: 

( ), , 1,..., ,

( ), 1,...,

ij i j
R

i i
R

xdF x i j m

xdH x i m
  (12.24) 
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and relation (12.22) leads to the relation: 

1

m

i ij ij
j

p .   (12.25) 

The quantities ij , i,j = 1,…,m and i ,I = 1,…,m are respectively called the 
conditional and unconditional means of the sojourn times. 
 

We can now give the property of conditional independence. 
 
Proposition 12.3 For each integer k, if n1,n2,…,nk are k positive integers such that 
n1<n2< <nk  and 

1
,...,

kn nx x k are real numbers. We have: 

1 1 1 1

1 1 11 1

1 1,..., , ,..., ,

( )... ( ),
k k k k

n n n n kk k

n n n n n n n n

J J n J J n

P X x X x J J J J

F x F x
 (12.26) 

that is, k random variables 
1
,...,

kn nX X  are conditionally independent given 

1 11 1, ,..., ,
k kn n n nJ J J J . 

The T-process 

By relation (12.4), the sequence ( , 0)nT n  represents successive renewal 
epochs, that is, times at which transitions occur. 

 
By analogy with renewal theory, we have the following definition.  

 
Definition 12.6 The two-dimensional process (( , ), 0)n nJ T n  is called the Markov 
renewal process of kernel Q. 
 

Before giving the expression of the marginal distribution of the random vector 
(Jn,Tn) with values in I , given that J0=i, let us define the marginal distribution 
of the (J,T) process ((Jn,Tn), n 0 ): 

0( ) ( , ),  , ,  0,  0n
ij n nQ t P J j T t J i i j I n t .  (12.27) 

With ijAA  and ijBB , two m m  matrices of integrable functions, 

we associate a new matrix A B  whose general element ( A B )ij is the function 
of t defined by: 

1
( ) ( ) ( ) ( ).

m

ij kj ik
k

t A t y dB yA B  (12.28) 
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It can be easily seen that this type of product, called the convolution product for 
matrices, is associative but not always commutative. 
 

In the particular case of A=B, we set: 

(2) ( ) ( )

(0) (1)
0

,..., ,

( ), .

n n
ij

ij

A

U

A A A A A A

A A A
  (12.29) 

If all the functions , , , 1,..., ,ij ijA B i j m  vanish at , we can also use an 
integration by parts to express (12.28) as follows: 

1
( ) ( ) ( ) ( )

m

ij ik kj
k

t B t y dA yA B   (12.30) 

and moreover if A=B, we obtain: 

1
( ) ( ) ( ) ( )

m

ij ik kj
k

t A t y dA yA B .  (12.31) 

Proposition 12.4 For all 0n , we have: 

( )n n
ij ijQ Q .  (12.32) 

Moreover, we also have: 

( )lim ( )n n

t
Q t P .   (12.33) 

12.4. Examples 

Semi-Markov theory is one of the most productive subjects of stochastic 
processes to generate applications in real-life problems, particularly in the following 
fields: economics, manpower models, insurance, finance (more recently), reliability, 
simulation, queuing, branching processes, medicine (including survival data), social 
sciences, language modeling, seismic risk analysis, biology, computer science, 
chromatography and fluid mechanics. 

 
Important results in such fields may be found in Janssen (1986), Janssen and 

Limnios (1999), and Janssen and Manca (2006 and 2007). 
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Let us give three examples in the fields of insurance and reliability. 

Example 12.1 The claim process in insurance 

Let us consider an insurance company covering m types of risks or having m 
different types of customers for the same risk forming the set I={1,…,m}. 

 
For example, in automobile insurance, we can distinguish three types of drivers: 

good, average and bad and so I is a space consisting of three states: 1 for good, 2 for 
average and 3 for bad. 
 

Now, let ( , 1)nX n represent the sequence of successive observed claim 
amounts, ( , 1)nY n  the sequence of interarrivals between two successive claims 
and ( , 1)nJ n  successive types of observed risks. 

 
In the traditional model of risk theory called the Cramer Lundberg model (1909, 

1955), it is assumed with that there is only one type of risk and the claim arrival 
process is a Poisson process parameter ; later, Andersen (1967) extends this 
model to an arbitrary renewal process and moreover in these two traditional models, 
the process of claim amounts is a renewal process independent of the claim arrival 
process.  

 
The consideration of an SMC for the two-dimensional processes 

(( , ), 0)n nJ X n  and/or (( , ), 0)n nJ Y n  provides the possibility to introduce a 
certain dependence between the successive claim amounts. This model was first 
developed by Janssen (1969b, 1970, 1977) along the lines of Miller’s work (1962) 
and since then has led to many extensions; see for example Asmussen (2000). 

Example 12.2 Occupational illness insurance 

This problem is related to occupational illness insurance with the possibility of 
leading to partial or permanent disability. In this case, the amount of the incapacitation 
allowance depends on the degree of disability recognized in the policyholder by the 
occupational health doctor, in general on an annual basis, because this degree is a 
function of an occupational illness which can take its course. 

 
Considering as in the example in section 11.6.2 this invalidity degree as a 

stochastic process ( , 0)nJ n  where Jn represents the value of this degree when the 
illness really takes its course, and we must then introduce the r.v. Xn representing the 
time between two successive transitions from Jn-1 to Jn. 
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In practice, these transitions can be observed with periodic medical inspections. 

The assumption that the J-X process is an SMC extends the Markov model of 
Chapter 11 and is fully discussed in Janssen and Manca (2006). 

Example 12.3 Reliability 

There are many semi-Markov models in reliability theory; see for example Osaki 
(1985) and more recently Limnios and Oprisan (2001), (2003). 

 
Let us consider a reliability system S that can be at any time t in one of the m 

states of I={1,…,m}. 
 
The stochastic process of the successive states of S is represented by 

, 0 .tS S t  
 
The state space I is partitioned into two sets U and D so that 

, , , .I U D U D U D  (12.34) 

The interpretation of these two sets is the following: the subset U contains all 
“good” states, in which the system is working and the subset D of all “bad” states, in 
which the system is not working well or has failed. 

 
The indicators used in reliability theory are the following: 
(i) the reliability function R gives the probability that the system was always 

working from time 0 to time t: 

( ) , 0, ,uR t P S U u t   (12.35) 

(ii) the pointwise availability function A gives the probability that the system is 
working at time t whatever happens on (0,t): 

( ) ,tA t P S U   (12.36) 

(iii) the maintainability function M gives the probability that the system, being in 
D on [0,t), will leave set D at time t: 

( ) , 0, , .u tM t P S D u t S U  (12.37) 
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12.5. Markov renewal processes, semi-Markov and associated counting 
processes 

Let us consider an SMC of kernel Q; we then have the following definitions. 
 
Definition 12.7 The two-dimensional process (J,T)=((Jn,Tn),n 0 ) where Tn is given 
by relation (12.4) is called a Markov renewal sequence or Markov  renewal process. 

Cinlar (1969) also gives the term Markov additive process. It is justified by the 
fact that, using relation (12.5), we obtain: 

1 1

1 1

( , ( , ) , 0 , . . . , )

( , ( , ) , 0 , . . . , ) Q ( ) .
n

n n k k

n n n k k J j n

P J j T x J T k n

P J j X x T J T k n x T
 (12.38) 

This last equality shows that the (J,T) process is a Markov process with I  
as state space and having the “additive property”:  

1 1n n nT T X .   (12.39) 

Let us state that according to the main definitions of Chapter 11, Definition 11.4, 
and always in the case of positive (J,X) chains, the random variables , ( 0)nT n  are 
from now on called Markov renewal times or simply renewal times, the random 
variables , ( 1)nX n  interarrival or sojourn times and the random variables 

, ( 0)nJ n  the state variables. 
 
We will now define the counting processes associated with any Markov renewal 

process (MRP) as we did in the special case of renewal theory. 
 
For any fixed time t, the r.v. N(t) represents the total number of jumps or 

transitions of the (J,X) process on (0,t], including possible transitions from any state 
towards itself (virtual transitions), assuming transitions are observable. 

 
We have: 

( ) nN t t T t .   (12.40) 

However here, we can be more precise and only count the total number of 
passages in a fixed state I always in (0,t] represented by the r.v. Ni(t). 
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Clearly, we can write: 

1
( ) ( ), 0

m

i
i

N t N t t .   (12.41) 

Definition 12.8 With each Markov renewal process, the following m+1 stochastic 
processes are associated respectively with values in : 

(i) the N-process (N(t), t 0); 
(ii) the Ni-process (Ni(t), t 0 ), i=1,…,m, 

respectively called the associated total counting process and the associated partial 
counting processes with of course: 

N(0)=0, Ni(0)=0, i=1,…,m.   (12.42) 

It is now easy to introduce the notion of a semi-Markov process by considering 
at time t, the state entered at the last transition before or at t, that is, JN(t). 
 
Definition 12.9 With each Markov renewal process, we associate the following 
stochastic Z-process with values in I: 

Z=(Z(t), t 0 ),  (12.43) 

with: 

Z(t)=JN(t).  (12.44) 

This process will be called the associated semi-Markov process or simply the 
semi-Markov process (SMP) of kernel Q. 
 
Remark 12.3 

1) We will often use counting variables including the initial renewal, that is: 

0

'

'( ) ( ) 1,
( ) ( ) .i i iJ

N t N t

N t N t
 (12.45) 
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Figure 12.1. A trajectory of an SMP 

2) Figure 12.1 gives a typical trajectory of MRP and SMP. 
3) It is now clear that we can immediately consider an MRP defined by kernel Q 

without speaking explicitly of the basic (J,X) process with the same kernel Q, 
because the basic property (12.11) is equivalent to (12.38). 

12.6. Particular cases of MRP 

We will devote this section to particular cases of MRP having the advantage to 
lead to some explicit results. 

12.6.1. Renewal processes and Markov chains 

For the sake of completeness, let us first state that with m = 1, that is, that the 
observed system has only one possible state, the kernel Q has only one element, say 
the d.f. F, and the process (Xn,n > 0) is a renewal process. 

 
Secondly, to obtain Markov chains studied in Chapter 11, it suffices to choose 

for matrix F the following special degenerating case: 

1, ,ijF U i j I  (12.46) 

and of course an arbitrary Markov matrix P. 
 

This means that all r.v. Xn have a.s. the value 1, and so the single random 
component is the (Jn) process, which is, from relation (12.15), a homogenous MC of 
transition matrix P. 
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12.6.2. MRP of zero order (Pyke (1962)) 

There are two types of such processes. 

12.6.2.1. First type of zero order MRP 

This type is defined by the following semi-Markov kernel 

,i ip FQ  (12.47) 

so that: 

, , .ij i ij ip p F F j I  (12.48) 

Naturally, we assume that for every i belonging to I, pi is strictly positive. 
 
In this present case, we discover that the r.vs. , 0nJ n  are independent and 

identically distributed and moreover that the conditional interarrival distributions do 
not depend on the state to be reached, so that, by relation (12.22), 

, .i iH F i I  (12.49) 

Moreover, since: 

1
( ( , ), 1, ) ( ),

nn k k n JP X x J X k n J F x  (12.50) 

we obtain: 

1
( ( ), 1) ( ).

m

n k j j
j

P X x X k n p F x  (12.51) 

Introducing the d.f. F defined as 

1
,

m

j j
j

F p F  (12.52) 

the preceding equality shows that, for an MRP of zero order of the first type, the 
sequence ( , 1)nX n  is a renewal process characterized by the d.f. F. 

12.6.2.2. Second type of zero order MRP 

This type is defined by the following semi-Markov kernel 
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,i jp FQ  (12.53) 

so that: 

, , , .ij i ij jp p F F i j I  (12.54) 

Here too, we suppose that for every i belonging to I, pi is strictly positive. 
 
Once again, the r.v. , 0nJ n are independent and equi-distributed and moreover 

the conditional interarrival distributions do not depend on the state to be left, so that, 
by relation (12.22) 

1
( ), .

m

i j j
j

H p F F i I  (12.55) 

Moreover, since: 

( ( , ), 1, ) ( ),
nn k k n JP X x J X k n J F x  (12.56) 

we obtain 

1
( ( ), 1) ( ) ( ).

m

n k j j
j

P X x X k n p F x F x  (12.57) 

The preceding equality shows that, for an MRP of zero order of the second type, 
the sequence ( , 1)nX n  is a renewal process characterized by the d.f. F as in the 
first type. 

 
The basic reason for these similar results is that these two types of MRP are the 

reverses (timewise) of each other. 

12.6.3. Continuous Markov processes 

These processes are defined by the following particular semi-Markov kernel 

( ) 1 , 0,i x
ijx p e xQ  (12.58) 
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where ijpP  is a stochastic matrix and where parameters ,i i I are strictly 

positive. 
 

The standard case corresponds to that in which 0,iip i I (see Chung (1960)). 
From relation (12.58), we obtain: 

( ) 1 .i x
ijF x e  (12.59) 

Thus, the d.f. of sojourn time in state i has an exponential distribution depending 
uniquely upon the occupied state i, such that both the excess and age processes also 
have the same distribution. 
 

For m = 1, we obtain the usual Poisson process of parameter .  

12.7. Markov renewal functions 

Let us consider an MRP of kernel Q and to avoid trivialities, we will assume that: 

,
sup (0) 1,ij

i j
Q  (12.60) 

where the functions Qij are defined by relation (12.7). 
 

If the initial state J0 is i, let us define the r.v. nT i i , 1n , as the times 
(possibly infinite) of successive returns to state i, also called successive entrance 

times into i . 
 
From the regenerative property of MRP, whenever the process enters into state i, 

say at time t, the evolution of the process on ,t  is probabilistically the same as if 
we had started at time 0 in the same state i. 

 
It follows that the process , 0nT i i n  with: 

0 0T i i  (12.61) 

is a renewal process that could possibly be defective. 
 

From now on, the r.v. nT i i  will be called the nth return time to state i. 
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More generally, let us also fix state j, different from the state i already fixed; we 
can also define the nth return or entrance time to state j, but starting from i as the 
initial state. This time, possibly infinite as well, will be represented by 

, 0nT j i n , also using the convention that 

0 0T j i . (12.62) 

Now, the sequence , 0nT j i n  is a delayed renewal process with values in 
. 
 
It is thus defined by two d.fs.: Gij being that of 1T j i  and Gjj that of 

2 1T j i T j i , so that: 

1

1

( ) ,

( ) , 2.

ij

jj n n

G t P T j i t

G t P T j i T j i t n
 (12.63) 

Of course, the d.f. Gjj suffices to define the renewal process , 0nT j j n . 

Remark 12.4 From the preceding definitions, we can also write that: 

0

1

( ) ( ) 0 ; , ,

1 ( )

ij j

ij

G t P N t J i i j I

P T j i G
 (12.64) 

and for the mean of the nT i i , 1n , possibly infinite, we obtain: 

1
0

( ),ij ijE T j i tdG t  (12.65) 

with the usual convention that 

0 ( ) = 0. (12.66) 

The means , ,ij i j I  are called the first entrance or average return times. 
 

It is possible to show that the functions , ,ijG i j I  satisfy the following 
relationships: 

1
( ) ( ) (1 ) ( ), , , 0.

m

ij kj ik jj ij
k

G t G Q t G Q t i j I t  (12.67) 
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We will now define by Aij and Rij  the associated renewal functions 

0

'
0

( ) ( ( ) ),

( ) ( ( ) )
ij j

ij j

A t E N t J i

R t E N t J i
  (12.68) 

and by relations (12.45) we have: 

0( ) ( ) ( ).ij ij ijR t U t A t  (12.69) 

Using classical results of renewal theory (see Janssen and Manca (2006)) we 
obtain: 

( )

0
( ) ( ), ,

( ) ( ),

n
jj jj

n

ij ij jj

R t G t j I

R t G R t
 (12.70) 

or equivalently, we have: 

( )
0

0
( ) ( ) ( ), , .n

ij ij ij jj
n

R t U t G G t i j I  (12.71) 

Proposition 12.5 Assumption m  implies that: 
(i) at least one of the renewal processes , 0 ,nT j j n j I is not defective; 
(ii) for all i belonging to I, there exists a state s such that 

lim , a.s.;nn
T s i  (12.72) 

(iii) for the r.v. Tn defined by relation (12.4), given that J0=i whatever i is, we 
have a.s. that  

lim .nn
T  (12.73) 

The following relations will express the renewal functions , ,ijR i j I  in 
function of the kernel Q instead of the m2 functions Gij. 
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Proposition 12.6 For every i and j of I, we have: 

( )

0
( ) ( ).n

ij ij
n

R t Q t  (12.74) 

Using matrix notation with: 

ijRR , (12.75) 

relation (12.74) takes the form: 

( )

0
.n

n

R Q  (12.76) 

Let us now introduce the L-S transform of matrices. 
 

For any matrix of suitable functions Aij from to represented by 

ijAA  (12.77) 

we will represent its L-S transform by: 

ijAA  (12.78) 

with 

0

( ) ( ).st
ij ijA s e dA t  (12.79) 

Doing so for matrix R , we obtain the matrix form of relation (12.76), 

0
( ) ( )

n

n

s sR Q . (12.80) 

From this last relation, a simple algebraic argument shows that, for any s>0, 
relations 

( )( ( )) ( ( ) ( )s s s sR I Q I Q R I  (12.81) 
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hold and so we also have: 

1( ) ( ( )) .s sR I Q  (12.82) 

We have thus proved the following proposition. 
 
Proposition 12.7 The Markov renewal matrix R  is given by 

( )

0
,n

n

R Q  (12.83) 

the series being convergent in , and the inverse existing for all positive s. 
 

The knowledge of the Markov renewal matrix R  or its L-S transform R  leads 
to useful expressions for d.f. of the first entrance times. 

12.8. The Markov renewal equation 

This section will extend the basic results related to the renewal equation 
developed in section 11.4 to the Markov renewal case. 

 
Let us consider an MRP of kernel Q. 
 
From relation (12.74), we obtain: 

( )
0

1

0

( ) ( ) ( )

         ( ) ( ).

n
ij ij ij

n

ij ij

R t U t Q t

U t Q R t
 (12.84) 

Using matrix notation with: 

0( ) ( )ijt U tI , (12.85) 

relations (12.84) take the form: 

( ) ( ) ( ).t t tR I Q R  (12.86) 

This integral matrix equation is called the Markov renewal equation for R. 
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To obtain the corresponding matrix integral equation for the matrix  

,ijHH  (12.87) 

we know, from relation (12.76), that 

( ) ( ) ( ).t t tR I H  (12.88) 

Inserting this expression of R(t) in relation (12.86), we obtain: 

( ) ( ) ( )t t tH Q Q H  (12.89) 

which is the Markov renewal equation for H. 

For m=1, this last equation gives the traditional renewal equation. 
 

In fact, the Markov renewal equation (12.86) is a particular case of the matrix 
integral equation of the type: 

,f g Q f  (12.90) 

called an integral equation of Markov renewal type (MRT), where  

1 1,..., ', ,..., 'm mf f g gf g  (12.91) 

are two column vectors of functions having all their components in B, the set of 
single-variable measurable functions, bounded on finite intervals, or to B+ if all their 
components are non-negative. 
 
Proposition 12.7 The Markov integral equation of MRT, 

f g Q f  (12.92) 

with f, g belonging to B+, has the unique solution: 

f R g . (12.93) 
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12.9. Asymptotic behavior of an MRP 

We will give asymptotic results, first for the Markov renewal functions and then 
for solutions to integral equations of an MRT. To conclude, we will apply these 
results to transition probabilities of an SMP. 

 
We know that the renewal function Rij, i, j belonging to I, is associated with the 

delayed renewal process, possibly transient, characterized by the couple (Gij,Gjj) d.f. 
on . 

 
Let us recall that ij  represents the mean, possibly infinite, of the d.f. Gij. 

 
Proposition 12.8 For all i, j of I, we have: 

(i)
( ) 1lim ,ij

t
jj

R t
t

 (12.94) 

(ii)
( ) ( )

lim ij ij

t
jj

R t R t
, for every fixed . (12.95) 

The next proposition, due to Barlow (1962), is a useful complement to the last 
proposition as it gives a method for computing the values of the mean return times 

,jj j I , in the ergodic case. 
 
Proposition 12.9 For an ergodic MRP, the mean return times satisfy the following 
linear system: 

, 1,..., .ij ik kj i
k j

p i m  (12.96) 

In particular, for i=j, we have
1 , 1,..., ,jj k k

kj

j m  (12.97) 

where the ,i i I  are defined by relation (12.25), and where 1,..., m  is 
the unique stationary distribution of the imbedded Markov chain. 
 
Remark 12.5 In a similar manner, Barlow (1962) proved that if (2) , ,ij i j I  is the 
second order moment related to the d.f. Gij, then: 
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(2) (2) (2)( 2 )ij i ik ik ik kj
k j

p b
 (12.98) 

and in particular for i = j: 

(2) (2)1 ( 2 )jj k k l lk k kj
k k j lj

p b
 (12.99) 

with 

(2) 2

0,

( ), ,k kx dH x k I  (12.100) 

provided that these quantities are finite. 

12.10. Asymptotic behavior of SMP 

12.10.1. Irreducible case 

Let us consider the SMP (Z(t), t 0 ) associated with the MRP of kernel Q and 
defined by relation (12.43). 

 
Starting with (0)Z i , it is important for the applications to know the 

probability of being in state j at time t, that is: 

( ) ( ) (0) .ij t P Z t j Z i  (12.101) 

A simple probabilistic argument using the regenerative property of the MRP 
gives the system satisfied by these probabilities as a function of the kernel Q 

0

( ) (1 ( )) ( ) ( ), , .
t

ij ij i kj ik
k

t H t t y dQ y i j I  (12.102) 

It is also possible to express the transition probabilities of the SMP with the aid 
of the first passage time distributions , ,ijG i j I : 

( ) ( ) (1 ( )), , .ij jj ij ij it G t H t i j I  (12.103) 

If we fix the value j in relation (12.102), we see that the m relations for i=1,…,m 
form a Markov renewal type equation (MRE) of form (12.92). 
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Applying Proposition 12.7, we immediately obtain the following proposition. 
 
Proposition 12.10 The matrix of transition probabilities  

ij  (12.104) 

is given by 

( )R I H  (12.105) 

with 

.ij iHH  (12.106) 

So, instead of relation (12.103), we can now write: 

0,

( ) (1 ( )) ( ).ij j ij
t

t H t y dR y  (12.107) 

Remark 12.6 Probabilistic interpretation of relation (12.107). 
 

This interpretation is analogous to that of the renewal density given in Chapter 
11. 
 
Remark 12.7 The “infinitesimal” quantity dRij(y) (=rij(y)dy, if rij(y) is the density of 
function Rij, if it exists) represents the probability that there is a Markov renewal into 
state j in the time interval (y,y+dy), starting at time 0 in state i. 
 

Of course, the factor (1 Hj(t y)) represents the probability of not leaving state 
j before a time interval of length t y. 
 

The behavior of transition probabilities of matrix (12.104) will be given in the 
next proposition. 
 
Proposition 12.11 If ( ), 0Z Z t t  is the SMP associated with an ergodic MRP 
of kernel Q; then: 

lim ( ) , , .j j
ijt

k k
k

t i j I  (12.108) 
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Remark 12.8 
(i) As the limit in relation (12.108) does not depend on i, Proposition 12.11 

establishes an ergodic property stating that: 

lim ( ) ,

.

ij jt

j j
j

k k
k

t

 (12.109) 

(ii) As the number m of states is finite, it is clear that ,j j I is a probability 
distribution. Moreover, as 0j  for all j (see relation (11.89)), we also have 

0, .j j I  (12.110) 

So, asymptotically, every state is reachable with a strictly positive probability. 
(iii) In general, we have: 

( )lim lim ( )n
ij ijn t

p t  (12.111) 

since of course 

, .j j j I  (12.112) 

This shows that the limiting probabilities for the embedded Markov chain are 
not, in general, the same as taking limiting probabilities for the SMP. 
 

From Propositions 12.11 and 12.9, we immediately obtain the following 
corollary. 
 
Corollary 12.1 For an ergodic MRP, we have: 

.j
j

jj

 (12.113) 

This result states that the limiting probability of being in state j for the SMP is 
the ratio of the mean sojourn time in state j to the mean return time of j.  
 

This intuitive result also shows how the different return times and sojourn times 
have a crucial role in explaining why we have relation (12.113) as, indeed, for the 
imbedded MC, these times have no influence. 
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12.10.2. Non-irreducible case 

It is often the case that stochastic models used for applications need non-
irreducible MRP, as, for example, in the presence of an absorbing state, i.e. a state j 
such that 

1.jjp  (12.114) 

We will now see that the asymptotic behavior is easily deduced from the 
irreducible case studied above. 

12.10.2.1. Uni-reducible case 

As for Markov chains, this is simply the case in which the imbedded MC is uni-
reducible so that there exist l (l<m) transient states, and so that the other m-l states 
form a recurrent class C. 

We always suppose aperiodicity both for the imbedded MC and for the 
considered MRP. 

 
Let T= 1,..., l  be the set of transient states T I C . From Corollary 11.2 

we know that: 

lim ( ) 0, , .ijt
t i j T  (12.115) 

Moreover, from Proposition 12.11 and relation (12.103):  

1

lim ( ) ( ) , , ,j j
ij ij mt

k k
k l

t G i j C  (12.116) 

where 1,...,l m  represents the unique stationary probability distribution of the 
sub-Markov chain with C as state space. 
 

Since 

( ) ,ij ijG f  (12.117) 

we obtain 

,( ) ,ij i CG f  (12.118) 
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where fi,C is the probability that the system, starting in state i will be absorbing by 
the recurrent class C. 
 

As there is only one essential class, we know that for all states i of I: 

fi,C=1, (12.119) 

thus proving the following proposition. 
 
Proposition 12.12 For any periodic uni-reducible MRP, we have: 

'lim ( ) , ,ij jt
t j I

 (12.120) 

where 

'

1

0 ,   ,

, .j j
j m

k k
k l

j T

j C  (12.121) 

Here too, as the limit in (12.121) is independent of the initial state i, this result 
gives an ergodic property. 

12.10.2.2. General case 

For any aperiodical MRP, there exists a unique partition of the state space I: 

1 , ,rI T C C r m  (12.122) 

where T represents the set of transient states and , 1,...,C r  represents the th 
essential class necessarily formed of positive recurrent. 
 

From Chapter 11, we know that the system will finally enter one of the essential 
classes and will then stay in it forever. Thus, a slight modification of the last 
proposition leads to the next result. 
 
Proposition 12.13 For any aperiodic MRP, we have: 

'lim ( ) , , ,ij ijt
t i j I  (12.123) 

with, for any , 1,...,j C r : 
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'

'
'

'
,

, , 1,..., ,
0, , ', ' 1,..., ,

,

j

ij

i C j

i C r
i C v r

f i T
 (12.124) 

where '( , )j j C  is the only stationary distribution of the sub-SMP with C  as 
state space, that is: 

' ,j j
j

k k
k C

 (12.125) 

where ,k k C  is the unique stationary distribution of the sub-Markov chain 
with C  as the state space and , ,i Cf i T  is the unique solution of the linear 
system 

, .i ij j ij
j T j C

y p y p i T  (12.126) 

Note that, in this proposition, the ergodic property is lost; this is due to the 
presence of the quantities ,i Cf  in relation (12.124). 

12.11. Non-homogenous Markov and semi-Markov processes 

To finish this chapter, let us recall the basic definitions and results for the non-
homogenous case for which time itself has influence on the transition probabilities. 
Due to the importance of its applications, in particular within insurance, we carefully 
develop some special cases such as non-homogenous Markov processes. 

12.11.1. General definitions 

To begin, we present the general definition of non-homogenous semi-Markov 
processes (NHSMP) including, as particular cases, non-homogenous Markov 
processes (NHMP) in continuous time, non-homogenous Markov chains (NHMC) in 
discrete time and non-homogenous renewal processes (NHRP). 

 
We follow the original presentation given by Janssen and De Dominicis (1984). 
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12.11.1.1. Completely non-homogenous semi-Markov processes  

As usual, let us consider a system S having m possible states constituting the set 
I={1,…,m} defined on the probability space , , P . 

 
Definition 12.10 The two-dimensional process in discrete time ( , ), 0n nJ X n  
with values in I  such that: 

1

0 0

( 1)
1 1

0
0

, 0, . ., ,

( , ( , ), 1) ( , ),

, ,

0, , . .

n

n
n n k k J j n n

n

n k
k

J i X a s i I

P J j X x J X k n Q T T x

j I x

T T X a s

 (12.127) 

is called a completely non-homogenous semi-Markov chain (CNHSMC) of kernel 
Q(s,t)= ( 1) ( , ), 1n s t nQ . 
 

Consequently, the past influences the evolution of the process by the presence of 
1nT  and n in (12.127). 

 
Definition 12.11 The sequence Q= ( 1) ( , ), 1n s t nQ  of m m  matrices of 

measurable functions of 0 0,1  where: 

( 1) ( 1)( , ) ( , )n n
ijs t Q s tQ  (12.128) 

and satisfying the following conditions: 

( 1)

( 1)

1

( 1) ( 1)

(i) 0, , , , : ( , ) 0,

(ii)  0, , : ( , ) 1,

with ( , ) lim ( , ),

n
ij

n
n

ij
j

n n
ij ijt

n i j I t s t s Q s t

n i I s Q s

Q s Q s t

 (12.129) 

is called a completely non-homogenous semi-Markov (CNHSM) kernel. 
 

Clearly, for all fixed s, ( 1) ( ,.)n
ijQ s is a mass function, zero for t s . 
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Definition 12.12 For all 0, , , ,i j I n s t , functions ( 1) ( )n
ijp s , 

( 1) ( 1)( , ), ( , )n n
ij ijH s t F s t  are defined as follows: 

( 1) ( 1)

( 1) ( 1)

( 1)
1 1

( 1) ( 1)
( 1)

( 1)

( ) ( , ),

( , ) ( , ),

( ) ( ), ( ) 0,
( , ) ( , )

, ( ) 0.
( )

n n
ij ij

n n
ij ij

j

n
ij

n n
ij ij n

ijn
ij

p s Q s

H s t Q s t

U s U t p s
F s t Q s t

p s
p s

 (12.130) 

Working as in section 12.3, it is easy to prove that we still have the following 
probabilistic meaning: 

( 1)
1 1

( 1)
1 1 1 1

( 1)
1 1

1 1

( ) ( , ) ,

( , ) ( , )( ( , )),

( , ) ( , , )

( ( , , )).

n
ij n n n

n
i n n n n n n

n
ij n n n n

n n n n

p s P J j J i T s

H s t P X t s J i T s P T t J i T s

F s t P X t s J i J j T s

P T t J i J j T s

 (12.131) 

In matrix notation, using the element by element product (Scott product) defined 
as: 

,

, ,

ij ij

ij ij

a b

a b

A B

A B
 (12.132) 

we will write: 

( 1) ( 1)

( 1) ( 1)

( 1) ( 1) ( 1)

( , ) ( , ) ,

( ) ( ) ,

( , ) ( ) ( , ).

n n
ij

n n
ij

n n n

s t F s t

s p s

s t s s t

F

P

Q P F

 (12.133) 

We can now give the following definitions similar to the traditional or 
homogenous semi-Markov theory presented in section 12.5. 
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Definition 12.13 The counting process ( ( ), 0)N t t defined as 

( ) sup : n
n

N t n T t  (12.134) 

is called the associated counting process with the CNHSM kernel Q. 
 
Definition 12.14 The process ( , ), 0n nJ T n  is called a completely non-
homogenous Markov additive process or Markov renewal process (CNHMAP or 
CNHMRP). 
 
Definition 12.15 The process ( ( ), 0)Z Z t t  defined as 

( ) , ( ) ,
( )

, ( ) ,
N tJ N t

Z t
N t

 (12.135) 

where  is a new state added to I, is called the completely non-homogenous semi-
Markov process (CNHSMP) of kernel Q. 
 
Definition 12.16 The random variable L defined as 

inf : ( )L t Z t  (12.136) 

is called the lifetime of the CNHSMP Z. 
 
Definition 12.17 The associated counting process ( ( ), 0)N t t  or the CNHSMP 
Z= ( ( ), 0)Z t t  of kernel Q is explosive if and only if 

, . .L a s  (12.137) 

and non-explosive if and only if 

, . .L a s  (12.138) 

For very general counting processes, De Vylder and Haezendonck (1980) have 
given necessary and sufficient conditions for non-explosion. Here, in general, we 
always assume non-explosive processes. 
 

For the two-dimensional process (( , ), 0)n nJ T n , we have the following result: 
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(0) (1)
1 1 0 0

(1) (0) (2)
2 2 0 0 0

, , 0 (0, )( ( )),

, , 0 ( , ) (0, )( ( )),

ij ij

t

kj ij ij
k

P J j T t J i T Q t Q t

P J j T t J i T Q x t Q dx Q t
 (12.139) 

and in general 

( 1) (1)
0 0 0

( )

, , 0 ( , ) ( )

( ( )), 1).

t n
n n kj ij

k

n
ij

P J j T t J i T Q x t Q dx

Q t n
 (12.140) 

Using matrix notation, we may write for two m m  matrices of mass functions 
A(t), B(t): 

0 0
1

( ) ( ) ( ) ( ) ,
nt t

kj ik
k

t d t B z d A zA B  (12.141) 

and so relations (12.140) can be written in matrix form: 

( ) ( 1) (1)

0

( ) ( )

(1) (0)

( ) ( , ) ( ), 1,

with

( ) ( ) , 1,

( ) (0, ) .

tn n

n n
ij

ij

t z t d x n

t Q t n

t Q t

Q Q Q

Q

Q

 (12.142) 

In the particular class of traditional SMP, relation (12.142) gives the n-fold 
convolution of the SM kernel Q. 

 
Another very important distribution is the marginal distribution of the Z process 

as it gives the state occupied by the system S at time t. 
 
Let us introduce the following probabilities: 

( ) ( , ) ( ) (0) , ( ) ( ), ( ) , , , 0.n
ij s t P Z t j Z i N s N s N s n i j I n  (12.143) 

The conditioning means that nT s  and that there exists a transition at time s 
such that the new state occupied after the transition is i. 
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Clearly, these probabilities satisfy the following relations: 

( ) ( ) ( ) ( 1)( , ) (1 ( , )) ( , ) ( , ), , .
tn n n n

ij ij i kj iks
k I

s t H s t u t Q s du i j I  (12.144) 

From relation (12.127), it is clear that we have: 

1

( 1)
1( ( , ), 1) ( ), . .

n

n
n k k J j nP J j J T k n p T a s  (12.145) 

It follows that the process , 0nJ n  can be viewed as a conditional multiple 
Markov chain; this means that, given the sequence , 0nT n , each transition from 

1n nJ J  obeys a Markov chain of kernel ( 1)
1( )n

nP T . 
 
Definition 12.18 The conditional multiple Markov chain , 0nJ n  is called the 
embedded multiple MC. 

12.11.1.2. Special cases 

Let us point out that Definition 12.18 is quite general as indeed it is non-
homogenous both for the time s and for the number of transitions n, this last one 
giving the possibility to model epidemiological phenomena  such as AIDS (see in 
Janssen and Manca (2006) the example of Polya processes and semi-Markov 
extensions). 

 
This extreme generality gives importance to the following particular cases. 

(i) Non-homogenous Markov additive process and semi-Markov process 

Writing Q= ( 1) ( , ), 1n s t nQ , we have as first special case: 

( 1) ( , ) ( , ), 1, ,n s t s t n s tQ Q  (12.146) 

that is Q independent of n, then the kernel Q is called a non-homogenous semi-
Markov kernel (NHSMK) defining a non-homogenous Markov additive process 
(NHMAP) ( , ), 0n nJ T n  and a non-homogenous semi-Markov process 
(NHSMP) ( ( ), 0).Z Z t t  

 
This family was introduced in a different way by Hoem (1972). 
 
It is clear that relation (12.146) means that the sequences  
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( 1) ( 1)( , ) ( , ), ( ) ( ) 0n ns t s t s s nF F P P  (12.147) 

are independent of n or equivalently that 

( , ) ( ) ( , ).s t s s tQ P F  (12.148) 

Let us point out that, in this case, relation (12.144) becomes: 

( , ) (1 ( , )) ( , ) ( , ), , .
t

ij ij i ij iks
k

s t H s t u t Q s du i j I  (12.149) 

If moreover, we have  

( ) , 0,s sP P  (12.150) 

then the kernel Q is called a partially non-homogenous semi-Markov kernel 
(PNHSMK) defining a partially non-homogenous Markov additive process 
(PNHMAP) ( , ), 0n nJ T n  and a partially non-homogenous semi-Markov 
process (PNHSMP) ( ( ), 0).Z Z t t  
 

This family was introduced in a different way by Hoem (1972). 

(ii) Non-homogenous MC 

If the sequences ( 1) ( ), 0n s sP  are independent of s, then , 0nJ n  is a 
traditional NHMC. 

Homogenous Markov additive process 

A PNHSMK Q such that 

( , ) ( ), , 0, 0,F s t F t s s t t s  (12.151) 

is of course a traditional homogenous SM kernel as in section 12.2. 

(iii) Non-homogenous renewal process 

For m=1, the CNHMRP of kernel Q is given by 

( 1)( , ) ( ( , )), , 0, 0ns t s t s t t sQ F  (12.152) 

and characterizes the sequence ( , 0)nX n  with, as in (12.127), 
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0

( 1)
1 1

0
0

0, . .,

( , 1) ( , ), ,

0, , . .

n
n k n n

n

n k
k

X a s

P X x X k n F T T x x

T T X a s

 (12.153) 

In this case, the process ( , 0)nX n  is called a completely non-homogenous 
dependent renewal process (CNHDRP) of kernel Q. 

 
If, moreover, 

( 1) ( 1)( , ) ( ), , 0, 0, 1,n nF s t F t s s t t s n  (12.154) 

it follows that 

0

( 1)

0, . .,

( , 1) ( ), , 1n
n k

X a s

P X x X k n F x x n
 (12.155) 

and so the process ( , 0)nX n  is a sequence of independent t r.v. called a 
completely non-homogenous  renewal process (CNHRP) of kernel F. 
 
Remark 12.9 In the non-homogenous case, it is much more difficult to obtain 
asymptotic results (see, for example, Benevento (1986) and Thorisson (1986) for 
interesting theoretical results). That is not so dramatic as we can say that non-
homogenous models are used for modeling transient situations and not asymptotic 
ones, and that is why we personally think that all attention must be given to the 
construction of numerical methods, for example, to be able to solve the non-
homogenous integral equations system (12.149) (see Janssen and Manca (2007)). 
 

However, let us mention that, for the particular case of non-homogenous Markov 
chains, there exist more asymptotic results (see, for example, Isaacson and Madsen 
(1976)). 
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Chapter 13 

Stochastic or Itô Calculus 

This chapter presents the basic results concerning the Itô calculus also called 
stochastic calculus, one of the main tools used in stochastic finance particularly for 
building stochastic models used in option theory, developed in Chapter 14 and in 
bond evaluation, developed in Chapter 15.  

13.1. Problem of stochastic integration  

In traditional analysis, it is well known that the Riemann-Stieltjes integral noted 

b

a

fd  (13.1) 

is well defined if for example f is continuous and  of bounded variation on ,a b , 
or inversely if  is continuous and f of bounded variation on ,a b . From 
integration by parts, we obtain:  

( ) ( ) ( ) ( ) .
b b

a a

fd f b b f a a df  (13.2) 

Let us work now on a filtered probability space , , , 0 ,t t P  on which 
we define two adapted stochastic processes: 

( ), 0 , ( ), 0f f t t X X t t  (13.3) 
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where the process f  has its trajectories a.s. of bounded variation and the process X  
has its trajectories a.s. continuous on 0, t . 
 

For each trajectory , it is still possible to integrate “à la Riemann-Stieltjes” to 
obtain a new random variable Y 

0

( ) ( )
t

Y f s dX s  (13.4) 

or 

0

( ) ( , ) ( , )
t

Y w f s dX s . (13.5) 

The process f is called the integrand process and the process X the integrator 
process. 
 

So, if process f has its trajectories a.s. of bounded variation and process X has its 
trajectories a.s. continued on 0,T , the stochastic process ( ( ), 0, )Y Y t t T  is 

also represented by fdX  or: 

0

( , ) ( , ), 0,
t

fdX f s dX s t T  (13.6) 

Nevertheless, this approach of stochastic integration is completely unsatisfactory 
if, for example, we are considering a standard Brownian motion, as defined in 
Chapter 10, ( ( ), 0)W W t t  as indeed, we cannot define the following integral 

0

( , ) ( , )
t

W s dW s  (13.7) 

as these trajectories of a Brownian motion are p.s. not of bounded variation on any 
interval [0, t]. That is why it is necessary to construct a new theory of integration 
called the stochastic or Itô integration. 
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In particular, we will see that in this new theory, the “natural” result in 
traditional analysis:  

2

0

1( , ) ( , ) ( , )
2

t

W s dW s W t ; (13.8) 

is here false! 
 

More generally, the traditional formula of derivation and differentiation will no 
longer be systematically true. 

13.2. Stochastic integration of simple predictable processes and semi-
martingales  

Let  , , , 0 ,t Pt  be a filtered complete probability space, T a stopping 
time and T  the -algebra of all the events anterior to T and introduce the 
following definitions. 
 
Definition 13.1 A stochastic process 

, 0tH H t  (13.9) 

is predictable simple if , 0tH H t if: 

11 0 ,
0

0

(i) 1 ( ) 1 ,

(ii) 0, , 1,...,  is an increasing sequence of a.s. 
finite stopping times,
(iii) 1,..., :  , . .,  H .

i i

i

n

t i T T
i

i

i i t

H H t H

T T i n

i n H p s

 (13.10) 

Definition 13.2 On  , , , 0 ,t Pt , the set of all predictable simple stochastic 
processes is called S and uS  if it is topologized with the uniform convergence in 
( , )t .  
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The basic idea is to define, with a given integrator process X, the stochastic 

integral process noted 
0

HdX  of a simple predictable process H 

0 0

( ) ( )s sHdX H dX  (13.11) 

eventually with the completion of H for 1nt T as 

1( ) 0, . . >t nH p s t T   (13.12) 

as the operator 0:XI S L , this last set being the set of all r.v. with the 
convergence in probability, defined by relation (13.10) such that this operator has 
the following properties:  

(i) XI  is linear:  

1 2 1 2 1 2
0 0 0

, : ( ) ,H H S H H dX H dX H dX  (13.13) 

(ii) XI  is continuous: 

. .. .

0 0

c prc u
n nH H H dX HdX . (13.14) 

We see that the continuity property is well related to the two modes of 
convergence introduced before: the uniform convergence on S and the convergence 
in probability on 0L . 

 
To define now the operator XI  for simple predictable processes, we will follow 

the traditional definition as follows. 
 
Definition 13.3 The operator 0:XI S L , is defined as follows: 

11
0

( ) 1 0 ( )
i i

n

X i T T
i

I H H H X X . (13.15) 

The new problem now is to see what the “good” integrator processes are so that 
this definition has a meaning and satisfies properties (13.13) and (13.14). 
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As from Definition 13.3, it is clear that the linearity property is always fulfilled 
for simple predictable processes. To see for what classes of process it remains true, 
it suffices to obtain property (13.14), justifying the introduction of a large class of 
stochastic processes called semi-martingales. 
 
Definition 13.4 The stochastic process X is a total semi-martingale if: 

(i) X is càdlàg; 
(ii) X is adapted; 
(iii) operator 0:XI S L is continuous. 

 
For the restriction of the integration on the interval [0,t], we give the next 

definition. 
 
Definition 13.5 The stochastic process X is a total semi-martingale if for all 

0,t , the stopped process at t, tX defined by 

, ,
, .

st
s

t

X s t
X

X s t
 (13.16) 

is a total semi-martingale. 
 

It is now possible to prove that this class of stochastic processes is good enough 
for stochastic integration with the following theorem proved by Protter (1990). 
 
Proposition 13.1 

(i) Every adapted càdlàg process of bounded variation on all compacts is a semi-
martingale. 

(ii) Every càdlàg square integrable martingale g is a semi-martingale. 
(iii) Every standard Brownian motion is a semi-martingale. 

 
Proof Let us prove (ii) and (iii). 

(ii) From Definition 13.3 and relation (13.15), we obtain: 

1

2
2

0
( )

i i

n

X i T T
i

E I H E H X X . (13.17) 
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As the double products have a zero expectation, we obtain: 

1

22 2

0
( )

i i

n

X i T T
i

E I H E H X X  (13.18) 

and so 

1

22 2

0
( ) sup .

i i

n

X i T T
i i

E I H H E X X  (13.19) 

Using the smoothing property of conditional expectation and the stopping time 
theorem of Doob (see Chapter 10), we can successively write: 

1 1
,

i i i i iT T T T TE X X E E X X  (13.20) 

1 1
,

i i i i iT T T T TE X X E X E X  (13.21) 

1

2 ,
i i iT T TE X X E X  (13.22) 

and so from relation (13.15): 

1

2 2 2 2 2

0
( ) sup 2

i i i

n

X i T T T
i i

E I H H E X E X E X  (13.23) 

or: 

1

2 2 2 2

0
( ) sup

i i

n

X i T T
i i

E I H H E X E X . (13.24) 

This last result finally gives:  

1

2 2 2 2
0( ) sup

iX i T
i

E I H H E X E X  (13.25) 

which proves the continuity property of operator XI . 
(iii) This result is a direct consequence of the property that every standard 

Brownian motion is a square integrable and càdlàg martingale (see Chapter 10) with 
trajectories a.s. continuous.  
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13.3. General definition of the stochastic integral  

Let us now go to the last step of stochastic integration, that is, to define this 
concept for more general processes than the predictable simple processes. To do so, 
we must introduce a class of stochastic processes we can obtain using an adequate 
convergence using a technique similar to the construction of real numbers from the 
rational numbers or the construction of the integral of measurable functions starting 
from the integral of simple functions. 
 

The basic idea, fully developed in Protter (1990), is always the same one. Firstly, 
we define a larger class of integrable functions on which the initial class is dense. 
Secondly, we approach each element of the new class with a sequence of elements 
of the initial class using an adequate mode of convergence, i.e. the punctual 
convergence in number theory, the uniform convergence in traditional integration 
and here the uniform convergence in probability on every compact set. 
 
Definition 13.6 (The uniform convergence in probability on every compact set) A 

sequence of stochastic processes , 1nH n  where , 0n n
tH H t  converges 

uniformly in probability on the compacts towards the process , 0tH H t  if, 
for all t>0, we have: 

0
sup 0prs

n s
s t

H H .  (13.26) 

So, we now have four basic spaces of topologized stochastic processes: 
D: the space of càdlàg simple adapted processes; 
L: the space of adapted càdlàg processes; 

uS : the space of predictable simple processes with the uniform convergence; 
0L : the space of finite random variables with the convergence in probability.  

 
The spaces of stochastic processes D, L and S with the uniform convergence in 

probability on the compacts are noted respectively , , .ucp ucp ucpD L S  
 

We have now the following result. 
 
Proposition 13.2 (Protter (1990)) With the uniform convergence in probability on 
the compacts, space S of predictable simple processes is dense on L. 
 

This result leads to the extension of the definition of stochastic integral from S to L.  
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Firstly, let us recall that the application 

0:X uI S L  (13.27) 

defined from relation (13.10) is written in the following form: 

0

( )X s sI H H dX  (13.28) 

and with the stopped process tX :  

0

( )t

t

s sXI H H dX  (13.29) 

For a given stochastic process H, this last relation defines a new stochastic 
process XJ : 

( ) ( )tX t XJ H I H  (13.30) 

such that for each process , 0tH H t , the corresponding associated process is 

0

, 0
t

s sH dX t  and so 

( )) ( )tX t XJ H I H . (13.31) 

Protter (1990) proved the two following propositions. 
 
Proposition 13.3 If process X is a semi-martingale, then the application 

:X ucp ucpJ S D  (13.32) 

is continuous. 
 
Proposition 13.4 The continuous linear operator :X ucp ucpJ S D  can be 
extended to a continuous linear operator :X ucp ucpJ L D . 
 

This last proposition is a special case of the fundamental result that every linear 
operator on a sub-vector space can be extended in a unique way to the whole vector 
space.  
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Definition 13.7 If X is a semi-martingale, the continuous linear application: 

:X ucp ucpJ L D  (13.33) 

is called a stochastic integral.  
 

Of course, we will use the same notations as for simple processes:  

0

( )X s sI H H dX  (13.34) 

0

( ) ,t

t

s sXI H H dX  

( ( )) ( )tX t XJ H I H  (13.35) 

Thus, the main conclusion is that it is possible to define the stochastic integral on 
[0,t] for every adapted càdlàg process as integrand process and for every semi-
martingale integrator process. 
 
Example 13.1 Let us consider a standard Brownian motion 0tB B  on the 
filtered probability space , , , 0 ,t Pt . 
 

From Proposition 13.1, process B is a semi-martingale and moreover continuous 

(see Chapter 10); it follows that the following stochastic integral 
0

t

s sB dB  exists. 

 
To calculate its value, let us introduce the following sequence of nested partitions 

, 1n n  of [0,t] such that the sequence of these norms , 1n n  tends to 0. 
 

For every partition n , we introduce the following simple function nB  defined 
as follows: 

1

1

( , ]
0

1 ,
k k k

n
n
s t t t

k

B B  (13.36) 

with 

0 0( ,..., ,..., ), 0, .n k n nt t t t t t    (13.37) 
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From the definition of the stochastic integral of simple functions, we obtain:  

1

1

00

.
k k k

t n
n
s s t t t

k

B dB B B B   (13.38) 

Using the theorem of the approximation of every continuous function by a 
uniformly convergent sequence of step functions, we have on [0,t]: 

ucp
nB B  (13.39) 

and so: 

1

1

0 00

lim .
k k k

n

t n

s s t t t
k

B dB B B B   (13.40) 

As 

1 1 1 1

1 1 2

0 0

1
2k k k k k k k k k

n n

t t t t t t t t t
k k

B B B B B B B B B , (13.41) 

or even 

1 1

1 1 22

0 0

1 1
2 2k k k k k

n n

t
k k

B B B B B B , (13.42) 

we obtain: 

1

1
2 2

0 00

1 1 lim ( )
2 2 k k

n

t n

s s t t t
k

B dB B B B  (13.43) 

The final result comes from the application of the next proposition showing that 
the second term of this last relation tends towards t/2 and so:  

2

0

1 1 .
2 2

t

s s tB dB B t   (13.44) 

This last result illustrates well the fact that the traditional formula of differential 
analysis is, in general, no more true for the Itô calculus; here, in result (13.44), there 
is a supplementary term -t/2 with respect to the traditional formula, called the drift.  
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Let us now prove the previous result. 
 
Proposition 13.5 For any standard Brownian motion we have, with the convergence 
in probability: 

1 1

1
2

0 0
lim ( ) .

k k
n

n

t t
k

B B t  (13.45) 

Proof With 

0 0( ,..., ,..., ), 0, ,n k n nt t t t t t  

let us define: 

1

1
2

.
0

( )
k k

n

t t n
k

B B S . (13.46) 

From the identity 

1 1

1
2

1
0

( ) ( ) ,
k k

n

n t t k k
k

S t B B t t  (13.47) 

we obtain:  

1 1

21
2 2

1
0

[ ] ( ) ( ) ,
k k

n

n t t k k
k

E S t E B B t t  (13.48) 

using the property that a standard Brownian motion has independent increments (see 
Chapter 10):  

1 1

21
2 2

1
0

[( ) ] ( ) ( ) .
k k

n

n t t k k
k

E S t E B B t t  (13.49) 

Consequently, it follows that: 

1 1

221
2 2

1
10

[( ) ] 1 ( ) .k k
n

t t
n k k

k kk

B B
E S t E t t

t t
 (13.50) 
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Let us now introduce the r.v. 

1

1

k kt t
k

k k

B B
Y

t t
 (13.51) 

having a N(0,1) distribution (see Chapter 1) to write relation (13.50) in the form: 

21
2 2 2

1
0

21
2 2

1
0

[( ) ] 1 ( ) ,

                  1 ( ) .

n

n k k k
k

n

k k k
k

E S t E Y t t

E Y t t

 (13.52) 

As the r.v. kY have the same distribution, we also obtain: 

1
2 2 2 2

1 1
0

[( ) ] ( 1) ( ) .
n

n k k
k

E S t E Y t t  (13.53) 

From the following inequality: 

1
2

1
0

( )
n

k k n
k

t t b a  (13.54) 

we obtain: 

2 2 2
1[( ) ] ( 1) ( ) ,n nE S t E Y b a  (13.55) 

and so the result for 0.n    
 
Remark 13.1 The last proposition also shows that effectively the trajectories of a 
standard Brownian motion are not, a.s., of bounded variation on any compact of the 
real set.  
 

Indeed, from the a.s. continuity of the trajectories on [0,t], there is on this 
interval a subdivision 0 0,..., ,..., , 0,n k n nt t t t t t  of sufficiently small norm 
such that: 

1 1
1, 0,..., 1

k kt tB B k n  (13.56) 
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and so: 

1 1 1

1 1
2

0 0
( ) sup

k k k k k k

n n

t t t t t t
kk k

B B B B B B . (13.57) 

This last relation proves that if the trajectories of a standard Brownian motion 
were a.s. of bounded variation on [0,t], then the first member will tend to 0, which is 
in contradiction with Proposition 13.5.  

13.4. Itô’s formula 

The fact that the rules of traditional differential calculus are no longer true for 
stochastic calculus implies finding a new tool of differentiation and integration. This 
tool was created by Itô (1944) who proved a lemma called Itô’s lemma whose main 
result is called Itô’s formula. 

 
This formula became a very important basic tool for stochastic calculus and 

particularly in stochastic finance. 

13.4.1. Quadratic variation of a semi-martingale 

Let us recall that we use the following notations: 

0 0,

0 0,

,
t

s s s st

t
s s s st

H dX H dX

H dX H dX
 (13.58) 

and so: 

0 0
0 0

.
t t

s s s sH dX H X H dX  (13.59) 

Definition 13.8 If X and Y are two semi-martingales, then:  
(i) the quadratic variation of X or bracket of X noted: 

, , , 0tX X X X t  (13.60) 
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is the stochastic process 

2
0

0

, 2 ,

( 0),

t
t t stX X X X dX

X
 (13.61) 

(ii) the quadratic covariation process of X and Y or bracket of X and Y is the 
stochastic process noted  

, , , 0tX Y X Y t   (13.62) 

where 

0 0
, .

t t
t t s s s stX Y X Y X dY Y dX    (13.63) 

Protter (1990) proved some interesting properties of these new processes and the 
most important ones for us are presented in the next proposition. 
 
Proposition 13.6 

(i) The process [X,X] is càdlàg, non-decreasing and adapted. 
(ii) The process [X,Y] is càdlàg, t bilinear and symmetric and: 

1, , , , .
2t t t tX Y X Y X Y X X Y Y  (13.64) 

(iii) For every sequence of partitions of stopping times:  

0 10, ,..., ,..., ,n n n n
k nT T T T t  (13.65) 

if norm tends a.s. to 0, then: 

1

21
2
0

0
, .

n n
k k

n
T T

ucpk

X X X X X   (13.66) 

(iv) X and Y being two semi-martingale, so is the process [X, X]. 
(v) Integration by parts asserts that: 

0 0
, .

t t
t t s s s s tX Y X dY Y dX X Y  (13.67) 
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(vi) If it is a process of class D, then the jump process of Y, denoted 
( , 0)tY Y t , is defined as 

t t tY Y Y . (13.68) 

Then, for X=Y, we have: 

2, ttX X X , (13.69) 

it follows the non-decreasing property of [X,X] and its decomposition in 

2

0
, , ,c

st t
s t

X X X X X   

or  (13.70) 
 

22
0

0
, , ,c

st t
s t

X X X X X X  
 
the first term representing the “continuous” part of [X,X] . 
 
Remark 13.2 From (ii) and Proposition (13.5), it follows that for every standard 
Brownian motion: 

, .tB B t  (13.71) 

13.4.2. Itô’s formula 

In traditional differential calculus, it is well-known that the fundamental theorem 
asserts that for any integrable function f on [0,t], we have: 

0
0( ) ( ) '( ) .

x

x
f x f x f t dt  (13.72) 

From stochastic calculus, the problem is as follows: with a semi-martingale 
process X as integrator process, we seek the additional term, if it exists, such that we 
can extend the preceding result (13.72) to obtain the following extension: 

0 0
( ) ( ) '( ) ....

t
t s sf X f X f X dX  (13.73) 

For any function f of class 2C , the solution is given by the two next propositions. 
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Proposition 13.7 (general Itô formula) If X is a semi-martingale and f a function of 
class 2C , then the composed process ( ) ( ), 0tf X f X t  is also a semi-
martingale and moreover: 

0 0 0

0

1( ) ( ) '( ) '( ) ,
2

( ) ( ) '( ) .

t t c
t s s s s

s s s s
s t

f X f X f X dX f X d X X

f X f X f X X
 (13.74) 

Proposition 13.8 (Itô formula: continuous case) If X is a continuous semi-
martingale and f a function of class 2C , then the composed process 

( ) ( ), 0tf X f X t  is also a semi-martingale and moreover: 

0 0 0

1( ) ( ) '( ) '( ) , .
2

t t
t s s s sf X f X f X dX f X d X X  (13.75) 

Proof Relation (13.75) is a direct consequence of result (13.74) as the continuity 
assumption on X implies that: 

0 : , 0s s ss X X X  (13.76) 

Remark 13.3 It is possible to show that (see Protter (1990)) the first supplementary 
term in the general Itô’s formula is nothing other than: 

1 '( ),
2

c
tf X X  (13.77) 

and so we can put the Itô formula in the form: 

0 0

0

1( ) ( ) '( ) '( ),
2

( ) ( ) '( ) .

t c
t s s t

s s s s
s t

f X f X f X dX f X X

f X f X f X X
 (13.78) 

13.5. Stochastic integral with standard Brownian motion as integrator process 

Main applications in finance begin with stochastic integrals with a standard 
Brownian motion as integrator process; thus, we will now particularize the general 
preceding results to this special case to obtain results that are more precise. 



Stochastic or Itô Calculus     533 

13.5.1. Case of predictable simple processes  

On the probability space  , , , 0 ,t Pt , let us consider: 
– a simple predictable process defined on [0, t]: 

1, < ,k=0,...,n-1,s k k kH H t s t  (13.79) 

0 10, ,..., nt t t t  being a partition of [0,t]; 
– B, a standard Brownian motion. 

 
From the construction of the stochastic integral, we know that:  

1

1

0
0

( )
kk

nt
s s k t t

k

H dB H B B . (13.80) 

Consequently, the mean and variance of the stochastic integral are given by: 
(i) mean: 

1

1

00

)
k k

t n

s s k t t
k

E H dB E H B B , (13.81) 

and as the process H is adapted and B with independent increments, we obtain:  

1

1

00
k k

t n

s s k t t
k

E H dB E H E B B  (13.82) 

and finally: 

0

0.
t

s sE H dB  (13.83) 

(ii) variance 

As from result (13.83): 

1

21

0
0

var ( ) ,
k k

nt
s s k t t

k

H dB E H B B  (13.84) 



534     Mathematical Finance  

we obtain: 

1 1

1 1

0
0 0

var ( )( ) ,
k k l l

n nt
s s k l t t t t

k l

H dB E H H B B B B  (13.85) 

or: 

1

1 1

1
2 2

0
0

var ( )

2 ( )( ) ,

k k

k k l l

nt
s s k t t

k

k l t t t t
k l

H dB E H B B

E H H B B B B

 (13.86) 

using the “smoothing property” from Chapter 10, we obtain: 

1 1

2 2 2 2( ) ( ) ,
k k k k kk t t k t t tE H B B E H B B  (13.87)  

and so from the fact that H is adapted to the given filtration and B with independent 
increments such that: 

1 1 ,
k kt t k kE B B t t  (13.88) 

we obtain: 

1

2 2 2
1( ) ( ),  0,..., 1.

k kk t t k k kE H B B E H t t k n  (13.89) 

Using analog reasoning, we also have that all the double products in relation 
(13.86) have a zero expectation so that finally:  

1
2

10
0

var ( ).
nt

s s k k k
k

H dB E H t t  (13.90) 

To summarize, we have the following basic results: 

0 0

2
2 2

0 0 0 0

0,

var .

t t
s s s s

t t t t
s s s s s s

E H dB H dE B

H dB E H dB E H ds E H ds

 (13.91) 
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Similarly, we can prove the following proposition. 
 
Proposition 13.9 Under the above assumptions and if moreover the process H is 
square integrable, then the following process 

0
, 0

t
s sH dB t  (13.92) 

is a square integrable t -martingale with a.s. continuous trajectories and 
moreover the process 

2
2

0 0
, 0

tt
s s sH dB H ds t  (13.93) 

is a t -martingale with a.s. continuous trajectories.  
 

Let us also mention the following property: if X and Y are two simple predictable 
square integrable processes, then 

0 0 0 0
.

t t t t
s s s s s s s sE X dB Y dB E X Y ds E X Y ds  (13.94) 

13.5.2. Extension to general integrand processes  

As we know from the preceding section, we will use uniform convergence in 
probability to extend the preceding results to the class D of square integrable 
adapted càdlàg processes. 

 
For such a process X, there exists a sequence adapted simple square integrable 

processes , 0nH n  ucp converging to X such that in particular: 

20 0
lim .

t t n
s s s s

L
X dB H dB  (13.95) 

From this result, it follows that all the properties of section 13.5.1 remain valid in 
this general case.  
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13.6. Stochastic differentiation 

13.6.1. Definition  

On the probability space , , , 0 ,t Pt , let us consider an adapted 
standard Brownian motion B and two sufficiently smooth adapted processes a and b. 
 
Definition 13.9 The stochastic process  

( ), 0t t  (13.96) 

has as stochastic differential on [0, T] 

( ) ( ) ( ) ( )d t a t dt b t dB t  (13.97) 

if and only if: 

2 2

1 1

1 2 1 2

2 1

, : 0 :

( ) ( ) ( ) ( ) ( ).
t t

t t

t t t t T

t t a t dt b t dB t
 (13.98) 

13.6.2. Examples 

1) Result (13.44) gives: 

2

0

1 1 .
2 2

t

s s tB dB B t  (13.99)   

Consequently, we also have: 

2

2 1

1

2 2
2 1

1 1( ) ( )
2 2

t

s s t t
t

B dB B B t t  (13.100) 

and from our new definition, it follows that: 

2 2 .t t tdB dt B dB  (13.101) 

2) From the definition of the stochastic integral, we know that: 

2

, , 1 ,
1

1

1
lim

n k n k n k

nt
t t t tt n k

tdB B B , (13.102) 
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,1 1 , , 2,..., ,...,n n k n nt t t t t  being a subdivision of order n of the interval 1 2,t t . 

 
Moreover, from the definition of the traditional Lebesgue integral, we obtain:  

2

, 1
1

1

, 1 ,
0

lim ( ).
n k

nt
t t n k n kt n k

B dt B t t  (13.103) 

Adding member-to-member relations (13.102) and (13.103), we obtain: 

2 2

, 1 ,
1 1

1

, 1 ,
1

lim
n k n k

nt t
t t n k t n k tt t n k

B dt tdB t B t B  (13.104) 

and so: 

2 2

2 1
1 1

2 1
t t

t t t tt t
B dt tdB t B t B  (13.105) 

or in terms of stochastic differential: 

( ) ,t t td tB B dt tdB  (13.106) 

this formula also being different from the one of the traditional calculus. 

13.7. Back to Itô’s formula 

Using now the concept of stochastic differential, we will have a supplementary 
look to Itô’s formula. 

13.7.1. Stochastic differential of a product 

On the probability space , , , 0 ,t Pt , let us consider an adapted 
standard Brownian motion B and four càdlàg adapted processes 1 2 1 2, , ,a a b b  of class 
D and sufficiently smooth defining the two following stochastic differentials: 

( ) ( ) ( ) ( ), 1, 2.i i id t a t dt b t dB t i  (13.107) 

Then, we have as next result. 
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Proposition 13.10 (A. Friedman (1975)) The process 1 2  is differentiable (in 
Itô’s sense) and 

1 2 1 2 2 1 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .d t t t d t t d t b t b t dt  (13.108) 

Examples 
1) With 1 2( ) ( ) ( ),t t B t  we find back this known result (see relation 
(13.101)): 

2 ( ) 2 ( ) ( )d B t B t dB t dt . (13.109) 

2) Similarly, we can find result (13.106) concerning  

( ( )) ( ) ( ) ,d tB t tdB t B t dt  (13.110) 

with 

1 1 1

2 1 1

( ) ( ) 1, ( ) 0,
( ) ( ) ( ) 0, ( ) 1.
t t a t b t
t B t a t b t

  (13.111) 

13.7.2. Itô’s formula with time dependence 

For our applications, the main result is Itô’s lemma or the Itô formula, which is 
equivalent to the rule of derivatives for composed functions in traditional differential 
calculus, but now with a function f of two variables. 
 

Starting with 

( ) ( ) ( ) ( ),d t a t dt b t dB t  (13.112) 

let f  be a function of two non-negative real variables x, t such that 

0 0, , , .x xx tf C f f f C
 (13.113) 

Then the composed stochastic process 

f ( ( t), t), t 0  (13.114) 
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is also Itô differentiable and its stochastic differential is given by: 

2
2

2 2

( ( ), )

1( ( ), ) ( ) ( ( ), ) ( ( ), ) ( )
2

( ( ), ) ( ) ( ).

d f t t

f ft t a t t t f t t b t dt
x t x

f t t b t dB t
x

 (13.115) 

Remark 13.4 Compared with traditional differential calculus, we know that in this 
case, we should have: 

( ( ), ) ( ( ), ) ( ) ( ( ), )

( ( ), ) ( ) ( ).

f fd f t t t t a t t t dt
x t

f t t b t dB t
x  (13.116) 

Therefore, the difference between relations (13.115) and (13.116) is the 
supplementary term  

1
2

2

2 2x
f ( (t), t)b2 (t)

 (13.117) 

appearing in (13.115) and which is zero if and only if in two cases: 
1) f is a linear function of x, 
2) b is identically equal to 0. 

 
Example 13.1 

1) For  given by: 

d (t) dB( t),

(0) 0.  (13.118) 

Using notation (13.112), we obtain: 

a(t) = 0, b(t) = 1. (13.119) 
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With the aid of Itô’s formula, the value of ( )B tde  is thus given by 

( ) ( ) ( )1 ( ).
2

B t B t B tde e dt e dB t
 (13.120) 

As we can see, the first term is the supplementary term with respect to the 
traditional formula and is called the drift. 

13.7.3. Interpretation of Itô’s formula  

Itô’s formula simply means that the composed stochastic process 

( ( ( ), ) ( (0),0), 0f t t f t  (13.121) 

is stochastically equivalent to the following stochastic process: 

2
0

0

1( ( ), ) ( ( ), ) ( ) ( ( ), ) ( )
2

( ( ), ) ( ) ( ), 0).

t
t x xx

t

x

f s s ds f s s a s f s s b s ds

s s b s dB s tf
  (13.122) 

13.7.4. Other extensions of Itô’s formula 

13.7.4.1. First extension 

It is possible to extend Itô’s formula in the following way. Let ( ), 0t t  
be an m-dimensional stochastic process: 

1( ) ( ), , ( ) 'nt t t   (13.123) 

with every component having a stochastic differential given by: 

( ) ( ) ( ) ( ), 1,...,i i id t a t dt b t dB t i m . (13.124) 

Then, it can be shown that the stochastic differential of the one-dimensional 
process: 

( ), , 0f t t t , (13.125) 



Stochastic or Itô Calculus     541 

with f being a real function of m+1 variables: 

1( , ) ( , , , )nf t f x x tx  (13.126) 

satisfying the following assumptions: 

0 0, , 1,..., , , , 1,..., ,m mi i jx x x tf C f i m f i j m f C  (13.127) 

exists and is given by 

2

1 , 1

1

( ),

1( ), ( ) ( ), ( ), ( ) ( )
2

( ), ( ) ( )

n n

i i j
i i ji i j

n

i
i i

d f t t

f f
t t a t t t f t t b t b t dt

x t x x

f t t b t dB t
x

(13.128) 

Here, the supplementary time is given by 

2

, 1

1 ( ), ( ) ( )
2

n

i j
i j i j

f t t b t b t
x x

 (13.129) 

13.7.4.2. Second extension 

The second possible extension also starts with an m-dimensional stochastic 
process 1( ) ( ), , ( ) 'nt t t  such that its dynamics are governed by the 
following stochastic differential: 

( ) ( ) ( ) ( ), 1, ,d t t dt t d t i ma b B  (13.130) 

a being a m-dimensional random vector of class L or D and b a stochastic matrix 
mxn whose elements are stochastic processes of class  L and B a n-vector of n 
independent standard Brownian motions. 
 

As in the preceding section, we are interested in the stochastic differential of the 
one-dimensional process: 

( ), , 0f t t t , (13.131) 



542     Mathematical Finance  

with f being a real function of m+1 variables: 

1( , ) ( , , , )nf t f x x tx  (13.132) 

satisfying the following assumptions: 

0 0, , 1,..., , , , 1,..., ,m mi i jx x x tf C f i m f i j m f C . (13.133) 

Under these assumptions, it is still possible to show the composed stochastic 
process ( ), , 0f t t t  is Itô differentiable and that its stochastic differential is 
given by: 

2

1 , 1

, 1

( ),

1( ), ( ) ( ), ( ) ( ),
2

( ), ( ) ( )

1( ) '( )
2

n n

i ij
i i ji i j

n

ij j
i j i

ij ij

d f t t

f ft t a t t t t f t t dt
x t x x

f t t b t dB t
x

t bb t

 (13.134) 

Using matrix notation, we can rewrite this last expression in the form: 

2

1( ), ( ), grad ( ) ( ) tr( ')( ) ( ) ,
2

( ) ( ) .
i j

fd f t t t t dt f t d t t t dt
t

ft t
x x

xx

xx

bb f

f
 (13.135) 

Here, the supplementary time is given by 

1 tr( ')( ) ( )
2

t t dtxxbb f  (13.136) 

13.7.4.3. Third extension 

The last extension we will present now is related to the case of vector B whose 
components are n dependent standard Brownian motions. 
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This means that: 

, , , ( ) : ( ( ) ( ))( ( ) ( )) ( ).i i i i iji j s t s t E B t B s B t B s t s  (13.137) 

The matrix ijQ  is called the correlation matrix of the vector Brownian 
motion ( ), 0t tB B . 

 
If Q I  and (0) 0.B the vector Brownian motion ( ), 0t tB B  is called 

standard. 
 
In the case of a n-dimensional Brownian motion and with the same assumptions 

of the function f as above, Itô’s formula becomes: 

2

1( ), ( ), grad ( ) ( ) tr( ')( ) ( ) ,
2

( ) ( ) .
i j

fd f t t t t dt f t d t t t dt
t

ft t
x x

xx

xx

bQb f

f
(13.138) 

13.7.4.4. Exercises 

1) Prove the following results: 

1 2

( ) ( ) ( ) 2

1( ) ( ) ( ) ( 1) ( ) ,
2

1ln ln , 0.
2

n n n

B t B t B t

dB t nB t dB t n n B t dt

da a adB a adt a
 (13.139) 

2) (i) Prove that: 

0 0
( ) ( ) ( ) .

t t
sdB s tB t B s ds  (13.140) 

(ii) Generalize to the following case (partial validity of the traditional 
integration by parts formula)  

0 0

( ) ( ) ( ) ( ) ( ) ( ),
t t

f s dB s f t B t B s df s  (13.141) 

f being a deterministic function with bounded variation.  
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3) Let B an n-dimensional standard Brownian motion and consider the following 
one-dimensional process 

2

: 1

( ), 0 ,

( ) ( ).
n

k
k

R R t t

R t B t
 (13.142) 

called the Bessel process of order n. 
 

Prove that: 

1

1 1( ) ( ) .
2

n

i
i

ndR B t dB t dt
R R

 (13.143) 

4) Calculate ( )B tE e . 

Solution 

The integral form of the Itô‘s formula leads to 

( ) ( ) ( )

0 0

11 ( ) .
2

t t
B t B t B te e dB s e ds  (13.144) 

Then, if: 

( )( ) B tX t E e , (13.145) 

we get: 

0

1( ) 1 ( ) .
2

t

X t X s ds  (13.146) 

By derivation, we obtain: 

1( ) ( ).
2

X t X t  (13.147) 
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Moreover, as X(0)=1, the traditional differential equation has as unique solution: 

2( ) .
t

X t e  (13.148) 

5) a and b being two deterministic functions of bounded variation, calculate the 
mean and the variance of the process X defined by 

( ) ( ) ( ) ( ),dX t a t dt b t dB t  (13.149) 

B being a standard Brownian motion. 
 

6) If the stochastic process ( ), 0t t  has the following stochastic 
differential: 

( ) ( ) ( ) ( ),d t a t dt b t dB t  (13.150) 

calculate Itô’s differential of ( )te  
 
Answer 

( ) ( ) 21( ) ( ) ( ) ( ) .
2

t tde e a t b t dt b t dB t  (13.151) 

13.8. Stochastic differential equations  

13.8.1. Existence and unicity general theorem (Gikhman and Skorokhod (1969)) 

The problem is, in the deterministic case, as follows: given the following 
stochastic differential: 

0

( ) ( ( ), ) ( ( ), ) ( ),
(0) , . .

d t t t dt t t dB t
a s

  (13.152) 

( ), 0B B t t  being a standard Brownian motion on the complete filtered 
probability space  , , , 0 ,t t P , find, if possible, a stochastic process  

( ), 0,t t T  (13.153) 

satisfying in the interval [0, T] relations (13.152), under minimal assumptions on the 
two functions ,  from 0,T . 
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Relation (13.152) is called a stochastic differential equation (SDE). Gikhman 
and Skorokhod (1969) proved a general theorem of existence and unicity also given, 
in a more modern form, by Protter (1990). 

 
Under a relatively simple form, the main result is as follows. 

 
Proposition 13.11 (general theorem of existence and unicity) Let us consider the 
following SDE: 

0

( ) ( ( ), ) ( ( ), ) ( ),
(0) , . .

d t t t dt t t dB t
a s

 (13.154) 

under the following assumptions: 
(i) the functions ,  are measurable functions from 0,T  verifying a 

Lipschitz condition in the first variable: 

1 2

1 2 1 2

1 2 1 2

( , ), ( , ) 0, :

( , ) ( , ) ,

( , ) ( , ) ,

x t x t T

x t x t K x x

x t x t K x x

 (13.155) 

K  being a positve constant; 
(ii) on 0,T , the functions ,  are linearly bounded: 

( , ) (1 ), ( , ) (1 ),x t K x x t K x  (13.156) 

K being a positve constant; 
(iii) the r.v. 0 belongs to 2 , ,L P and is independent of the -algebra 

( ), 0, ,B t t T  then, there exists a solution belonging for all 0,t T , 
to 2 , ,L P , continuous and a.s. unique on 0,T . 
 
Remark 13.5 

1) The initial condition: 

0(0) ,x R  (13.157) 

naturally satisfies assumption (iii). 
2) This theorem can be extended in the case of a SDE on ,s s T , with as 

initial condition:  

( ) ss , (13.158) 
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the r.v. now independent of the -algebra ( ) ( ), 0,B s B s T and 
belonging to 2 , ,L P . 

3) It is also possible to prove that:  

2 2
0

0,
sup ( ) 1 ,

T
E t C E  (13.159) 

C being a constant depending only on K and T. 
 

In Proposition 8.1, the coefficients ,  are deterministic functions but it is 
possible to extend it in the stochastic case. Then, formally, we have: 

( , ) ( , , ), ( , ) ( , , ), , 0,x t x t x t x t x t T . (13.160) 

The initial condition (13.157) becomes: 

(0) (0),  (13.161) 

where 

( ), 0,t t T  (13.162) 

is the given initial process.  
 
The extension of Proposition 8.1 is now given. 

 
Proposition 13.12 (case of random coefficients) For the SDE: 

( ) ( ) ( ( ), ) ( ( ), ) ( ),
(0) (0),

d t d t t t dt t t dB t
 (13.163) 

where: 
(i) the processes ,  are measurable as functions from 0,T , 

adapted and lipschitzian in the first variable, i.e. with probability 1: 

1 2

1 2 1 2

1 2 1 2

( , ), ( , ) 0, :

( , ) ( , ) ,

( , ) ( , ) ,

x t x t R T

x t x t K x x

x t x t K x x

 (13.164) 
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K  being a positive constant; 
(ii) the processes ,  are measurable as functions from 0,T , 

satisfy a.s. the following condition:  

2 2 2 2( , ) ( , ) (1 ),x t x t K x  (13.165) 

K being a positive constant; 
(iii) the process ( ), 0,t t T  is of bounded variation, adapted and such 

that  

2

0,
sup ( )

T
E t  (13.166) 

then, there is a solution belonging for 0,t T , to 2 , , ;L P moreover, if 1 2,  
are two solutions, then they are stochastically equivalent, i.e.: 

1 2( ) ( ) 1, 0, .P t t t T  (13.167) 

Finally, if the process  is continuous a.s. on 0,T , then there exists a.s. 
unicity on 0,T : 

1 2
0,
sup : ( ) ( ) 0 0.

T
P t t t  (13.168) 

Remark 13.6 This theorem can be extended in the case of a SDE on ,s s T .  
 

The proofs of these two fundamental propositions use the method of successive 
approximations used in the deterministic case under the name of Piccard method: on 
0,T , we begin to use the following very rough approximation:  

0 0( )t  (13.169) 

and, by induction, on constructs on 0,T , the following sequence of stochastic 
processes ( ), 0n n t n  is defined by 

1 0
0 0

( ) ( ), ( ), ( ).
t t

n n nt s s ds s s dB s  (13.170) 
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Then, it is possible to show (see, for example, Friedman (1975)) that the 
sequence ( ), 0n n t n  converges uniformly a.s. on 0,T  towards the 
stochastic process ( ),0t t T , which is a solution of the considered SDE 
(13.163). Using assumption (13.164), Friedman (1975) also proved the a.s. unicity. 

13.8.2. Solution of stochastic differential equations 

Let us consider the following general SDE 

( ) ( ) ( ( ), ) ( ( ), ) ( ),
(0) (0),

d t d t t t dt t t dB t
 (13.171) 

where ( ), 0B B t t  is a standard Brownian motion on , , , 0 ,t Pt . 
 
The general procedure to find the process ( ), 0,t t T solution of this 

SDE under the assumptions of Proposition 13.12 is to try to put this SDE in its 
canonical form, that is to say 

0

( ) ( ) ( ) ( ),
(0) ,

d t a t dt b t dB t
 (13.172) 

with known a and b functions or stochastic processes. If so, the unique solution of 
the considered SDE takes the form: 

0
0 0

( ) ( ) ( ) ( ).
t t

t a s ds b s dB s  (13.173) 

More generally, we can look for a transformation f in two variables x and t, 
monotone in t satisfying the assumptions of Itô’s lemma and such that: 

( ), ( ) ( ) ( )df t t A t dt B t dB t  (13.174) 

In this case, we obtain:  

0 0

( ), (0),0 ( ) ( ) ( )
t t

f t t f A s ds B s dB s  (13.175) 

where we find by inverse transformation in variable x the form of ( ), 0, .t t T   
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13.9. Diffusion processes 

Let us consider the SDE: 

0

( ) ( ( ), ) ( ( ), ) ( ),
(0) ,

d t t t dt t t dB t
  (13.176) 

under the assumptions of Proposition 13.12.  
 
The solution ( ), 0,t t T  of this SDE is called a diffusion process or Itô 

process. 
 
Let s and t be such that: 0 s t T  and suppose that ( )s x . 
 
From the theorem of existence and unicity, we know that on the interval ,s T  

there exists only one process solution, noted ,x s , of the SDE (13.176) such that  

, ( )x s s x . (13.177) 

So it is clear that, setting ( )x t , we have the Markov property for the -
process in continuous time, which is of course generally non-homogenous. 

 
More precisely, we have the following propositions. 

 
Proposition 13.13 Under the assumptions of Proposition 13.12 and if, for each t, 

t  represents the -algebra generated by 0  and the set ( ), )B s s t , then the 
a.s. unique stochastic process  solution of (13.176), satisfies a.s.: 

( ) ( ) ( ) ( ( , ( ), , ))sP t A P t A s p s s t A  (13.178) 

for all t>s and for all Borel set A. 
 
Proposition 13.14 The function of 0,1  defined by relation 
(13.178) satisfies the following properties: 

(i) for all fixed s, x, t, p(s, x, t) is a probability measure on ; 
(ii) for all fixed s, t, A, p(s, t, A) is Borel-measurable; 
(iii) the function p satisfies the Chapman-Kolmogorov equations: 

0 , , :

( , , , ) ( , , , ) ( , , , ).
R

s t x R A

p s x t dy p t y A p s x A  (13.179) 
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(iv) the process solution ( ), 0s s  is a Feller process; i.e. for all 
continuous bounded function of , the application  

( , ) ( ) ( , , , )s x f y p s x s t dy  (13.180) 

is continuous. 
(v) the process solution ( ), 0s s  satisfies the strong Markov property, 

i.e. condition (13.178) but where s and t are replaced by stopping times.  
 
Remark 13.7 

a) If the drift and the diffusion coefficient are continuous functions, it can be 
shown that: 

(i) 

0

0, 0, :
1lim ( , , , ) 0,

h
y x

t x R

p t x t h dy
h

 (13.181) 

(ii) 

0

2 2
0

0, 0, :
1) lim ( ) ( , , , ) ( , ),

1) lim ( ) ( , , , ) ( , ),

h
y x

h
y x

t x R

a y x p t x t h dy x t
h

b y x p t x t h dy x t
h

 (13.182) 

For the applications of such processes in finance, it is interesting to give the 
interpretations of these last properties: 

1) the probability for the process ( ), 0s s  to have a jump of amplitude 
more then between t and t+h is ( ).o h  Consequently, the process ( ), 0s s  
is continuous in probability; 

2) properties a and b can be rewritten as follows: 

2 2

) ( ) ( ) ( ) ( , ) ( ),

) ( ) ( ) ( ) ( , ) ( ).

a E t h t t x x t h o h

b E t h t t x x t h o h
 (13.183) 
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Consequently, drift  gives the rate of the conditional mean of the increment of 
the diffusion process on the infinitesimal time (t,t+h) interval and the square of the 
diffusion coefficient of diffusion , the conditional variance of this increment as 
the square of the mean is of order ( ).o h  
 

b) If the function p has a density p', then it is a solution of the partial differential 
equation of Fokker-Planck: 

2

2
' 1( ( , ) ') ( ( , ) ') 0.

2
p

x t p x t p
t x x

 (13.184) 

Example 13.2 For the Ornstein-Uhlenbeck-Vasicek process defined by the SDE 
(see later in section 15.3.1) 

0

( ) ( ( )) ( ),
(0) .

d t a b t dt dB t

 (13.185) 

it can be shown that: 

21 ( )
21'( , , , ) ,

2

t
t

x M
V

t
p s x t y e

V
 (13.186) 

,t tM V  representing respectively the mean and variance of ( )t  whose explicit 
forms will be given in Chapter 15. 



Chapter 14 

Option Theory 

14.1. Introduction 

During the last 30 years, financial innovation has generalized the systematic use 
of new financial instruments called derivative instruments such as options and 
swaps, mainly used for hedging but also, sometimes, used as speculative tools. This 
matter is now essential in mathematical finance and will be fully developed here 
following the presentation of Janssen and Manca (2007). 
 

However, we will also develop some main results concerning exotic options and 
foreign currency options with the presentation of the Garman-Kohlagen formula and 
some important results on American options. 

 
The first basic derivative instruments are now called plain vanilla options: the 

two types of such options are now defined. 
 
Definition 14.1 A call option (respectively put option) is a contract giving the right 
to buy (respectively to sell) a financial asset, called an underlying asset, for a fixed 
price, called an exercise price, at the end of the contract time, called maturity time, 
also laid down in the contract. 
 

If we can exercise the option at any time before maturity, this type of option is 
said to be of an American type; if we can exercise it only at maturity, the option is 
said to be of a European type. 

 
We will use the following notation: K for the exercise price, T for the maturity 

time and S for the value of the underlying asset at maturity. 
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The “gain” of the holder of a European option at maturity time T is represented 
by the following graph. 
 

0 K S

S-K

 
Figure 14.1. Call option: holder’s gain at maturity 

For the holder of a put, this graph becomes the following. 

K

K

S

   K-S

 
Figure 14.2. Put option: holder’s gain at maturity 

Of course, to obtain the “net gain”, we must estimate the cost of the option, often 
called option premium, and furthermore transaction costs and taxes. 

 
Let us represent respectively by C and P the premiums of call and put options. 
 
So, we obtain, without taking into account transaction costs and taxes, the 

following two graphical representations. 
 

-C

K K+C

CALL

       
-P

K-P K

PUT

 
Figure 14.3. Call and put options: net gains at maturity for the holder 
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We will now cover the main problem for plain vanilla options, that is, the pricing 
of such optional products. We have to give within an economic-financial theory 
framework, the values of premiums C and P as a function of the maturity T and the 
value S of the asset at time 0. 

 
More generally, as the holder of an option can sell his option on the option 

market at any time t, 0<t<T, it is also necessary to give the “fair” value of the option 
at this time t knowing that the underlying asset has, at this time, the value S = S(t), 
the fair market value represented by  

( , )C S   (14.1) 

where 

T t   (14.2) 

represents the maturity calculated at time t. 
 
Sometimes, it is also useful to represent the call value as a function of the time 

C(S, t). 
 
To discuss this pricing problem, it is absolutely necessary to give assumptions 

about the stochastic process 

.0),( TttSS   (14.3) 

Concerning the economic-financial theory framework, we adopt the assumption 
of efficient market, meaning that all the information available at time t is reflected in 
the values of the assets and so, transactions having an abnormal high profitability are 
not possible. 
 

More precisely, an efficient market satisfies the following assumptions: 
1) absence of transaction costs; 
2) possibility of short sales; 
3) availability of all information to all the economic agents;  
4) perfect divisibility of assets; 
5) continuous time financial market.  

 
Furthermore, the market is complete, meaning that there exists zero-coupon 

bonds without risk for all possible maturities. 
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A zero-coupon bond is merely an asset giving the right to receive €1 and time 
t  for the payment of the sum B at time t. 

 
Let us note that the word “information” used in point 3 can have different 

interpretations: weak, semi-strong or strong, depending on if it is based on past 
prices, on all public information or finally on all possible information that the agent 
can find. 

 
According to Fama (1965), the efficient assumption justifies the “random walk” 

model in discrete time, saying that if ( )iR s  represents the increment of an asset i 
between s and s+1, we have: 

( ) ( )i i iR s s ,  (14.4) 

i being a constant and ( ( ))i s  a sequence of uncorrelated r.v. of mean 0, 
sometimes called errors. 
 

If we add the assumptions of equality of variances and of normality of the 
sequence ( ( ))i s , we obtain a special case of the traditional random walk. 

 
Even if the efficiency assumption seems to be natural, some empirical studies 

show that this is not always the case, particularly, since some agents can have access 
to preferential information in principle forbidden by the legal authority control. 

 
Nevertheless, should such agents use the pertinent information, it will be quickly 

noticed by those markets and balance between agents will be restored. 
 
This possibility, also called the case of asymmetric information, was studied by 

Spencer, Akerlof and Stiglitz, who were awarded the Nobel Prize in Economics in 
2001. 

 
We feel that the efficiency assumption seems quite normal for the long term, i.e. 

with a large enough time unit, as it does not always seem to be true locally, i.e. with 
a short time unit. Indeed, deregulation of markets where investors want to secure 
very small benefits in a short time but in a lot of transactions plainly explains the 
intense activity of, for example, the currency markets receiving very small benefits.  

 
That is why models for asymmetric information should always be short term 

models rejecting the Absence Of Arbitrage (AOA) assumption, that is, making 
money without any investment otherwise known as a “free lunch”. 

 
To be complete, let us note that it is now possible to construct models without 

the AOA assumption but with assumptions on the time asset evolution and a 
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selection of different possible scenarios, so that the investor can predict what will 
happen if such scenarios occur (see Janssen, Manca and Di Biase (1997) and 
Jousseaume (1995)). 

 
In this chapter, we will give the two most commonly used traditional models in 

option theory: the Cox, Ross, Rubinstein model in discrete time and the Black-
Scholes model in continuous time. 

14.2. The Cox, Ross, Rubinstein (CRR) or binomial model 

The model we will present here has the advantage of being quite simple in a 
financial world not always open to the use of sophisticated mathematical tools such 
as those used by Black and Scholes in 1973 to obtain their famous formula. Thus, 
the CRR model, though coming later, was very good for the use of the Black-
Scholes formula since, in the limit, the CRR model provides this formula again. 

 
Moreover, the CRR model has still its own utility for financial institutions using 

discrete time models even with a short time period. 

14.2.1. One-period model 

To begin with, let us consider a model with only one time period, from time 0 to 
time 1; the time unit can be chosen as the user wishes: a quarter, a month, a week, a 
day, an hour, etc. 

 
The basic assumption concerning the stochastic evolution of the underlying asset 

is that, starting from value 0(0)S S  at time 0, it can only obtain two values at the 
end of the time period: 0 ( 1)uS u  if there is an up movement or 0 (0 1)dS d  in 
the case of a down movement, parameter u and d assumed to be known for the 
moment. 

 
The probability measure is thus defined by the probability q of an up movement 

and to avoid trivialities, we will assume that: 

0 1.q   (14.5) 

The next figure shows the two possible trajectories with of course  

1 .p q   (14.6) 
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0 1

S(0)

S(1)=uS(0)

S(1)=dS(0)

u

d

q

p

 
Figure 14.4. One-period binomial model 

If we prefer to work with the percentages x and y respectively of gain and loss, 
we can express u and d as follows: 

1 , 1 .
100 100

x y
u d

  (14.7) 

We also suppose that there is no dividend repartition during the period. 
 

Let us now consider an investor wishing to buy a European call at time 0 with 
maturity 1 and with K as exercise price. 

 
The problem is thus to fix the premium of this call, which the investor has to pay 

at time 0 to buy this call, knowing the value S0 of the underlying asset at time 0. 

14.2.1.1. The arbitrage model 

If the investor wants to buy a call, it is clear that he anticipates an up movement 
of the call so that exercising the call at the end of the period will be advantageous 
for him, and of course for the seller of the call the reverse will happen. 

 
Nevertheless, the investor would take as little risk as possible knowing that he 

has always the possibility to invest on the non-risky market giving a fixed interest 
rate i per period. 

 
In order to build a theory taking into account the apparently contradictory points 

of view, modern financial theory is based on the AOA principle meaning that there 
is no possibility to gain money without any investment, that is, there is no possibility 
of getting a free lunch. 
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This principle implies that the parameters d, u and i of the model must satisfy the 
following inequalities: 

1d i u .  (14.8) 

Indeed, let us suppose for example that the first inequality is wrong. In this case 
the investment in the asset is always better than that on the non-risky market. If at 
time 0 we borrow the sum 0S  from the bank to by a share, at the end of the period 
obtaining the investment on assets, a free lunch of at least the amount 

0(1 )d i S  always exists. 
 
Similarly, if the right inequality is false, we can sell the asset at time 0 to get it to 

the seller at time 1 and so, the minimum value of the free lunch is, in this case, 
0(1 )i u S , so that in both cases the AOA principle is not satisfied. 

 
The seller of a call option, for example, has the obligation to sell the shares if the 

holder of the call exercises his right, he must be able to do it whatever the value of 
the considered share is; that is why we have to introduce the important concept of 
hedging. 

 
To do so, let us consider a portfolio in which at time 0 we have shares and an 

amount B of money invested at the non-risky rate i per period. 
 
B may be negative in case of a loan given by the bank. 
 
Under the AOA assumption, the investment in the call must follow the same 

random evolution as the considered portfolio so that we have the following relations 
for t = 1: 

0 0

0 0

(1) (1 ) ,
(1) (1 ) ,

u

d

C uS i B
C dS i B

  (14.9) 

where 

0

0

(1) max{0, },
(1) max{0, }.

u

d

C uS K
C dS K

  (14.10) 

System (14.9) is a linear system with two unknown values , .B  
 
The unique solution is given by: 
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0

(1) (1) ,
( )

(1) (1) .
( )(1 )

u d

d u

C C
u d S

uC dC
B

u d i

  (14.11) 

Now, as stated above, from the AOA assumption, the value of the call at 0t , 
denoted for the moment by 0 ,0C S , is equal to the initial value of the portfolio so 
that: 

0 0 0

0 0
0

( ,1) ,
(1) (1) (1) (1)( ,1) .

( ) ( )(1 )
u d d u

C S S B
C C uC dC

C S S
u d S u d i

 (14.12) 

We can also write this value in the following form: 

0
1( ,0) (1) (1 ) (1) ,

1
1 .

u dC S qC q C
i

i dq
u d

 (14.13) 

This last expression shows that the value of the call at the beginning of the 
period can be seen as the present value of the expected value of the “gain” at the 
end of the period. However, this expectation is calculated under a new probability 
measure defined by q , called risk neutral measure in opposition to the initial 
measure defined by q, and called the historical or physical measure. 

 
From assumption (14.8), this risk neutral measure is unique and moreover 

independent of q, that is, on the historical measure. 
 
This shows that whatever the investor has as anticipation about the price of the 

considered underlying asset, using this model, he will always get the same result as 
another investor. 

 
However, it must be clear that this risk neutral measure only gives an easy way 

to calculate the “fair” value of the call, but if we want to calculate probabilities of 
events, such as for example the probability of exercising the call at the end of the 
period, then it is the historical measure that must be used. 

14.2.1.2. Numerical example 

Let us consider the following data: 
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0 80, 80, 1.5, 0.5, 3%.S K u d i  (14.14) 

It follows from the model that: 

(1) max 0.80 1.5 80 40,

(1) max 0.80 0.5 80 0.
u

d

C

C  (14.15) 

The value of q is obtained, i.e.  

1.03 0.5 0.53
1.5 0.5

q   (14.16) 

and so we obtain the option value 

1(80,0) 40 (1 ) 0 20.5825.
1.03finC q q  (14.17) 

14.2.2. Multi-period model 

14.2.2.1. Case of two periods  

The two following figures show how the model with two periods works. 
 
Here we have to evaluate not only the value of the call at the origin but also at 

the intermediary time t = 1. 

0 1 2

S

uS

uuS

dS

udS

ddS

 
Figure 14.5. Two-period model: scenarios for the underlying asset 

Using the notation ( , ), 0,1,2C S t t  in which the second variable represents 
the time, here 0, 1 or 2, the first variable is the value of the underlying asset at this 
considered time. 
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Here too, as in the case of only one period, the call values will be assessed with 
the risk neutral measure as the present values at time t of the “gains” at maturity  
t = 2, i.e.: 

( ,2) .qE C S   (14.18) 

0 1 2

C

Cu

Cuu

Cd

Cud

Cdd

 
Figure.14.6. Two-period model: values of the call 

For example, we obtain for t = 0: 

2 2
0

0 2 2 2
0 0

max 0, 2 (1 )1( ,0) .
(1 ) max 0, (1- ) max 0,

q u S K q q
C S

i udS K q d S K
 (14.19) 

Remark 14.1 Using a backward reasoning from t = 2 to t = 1 and from t = 1 to t = 
0, it is also possible to obtain this last result: 

2
0 0 0

2
0 0 0

0 0 0

1( ,1) ( ,2) (1 ) ( ,2) ,
1

1( ,1) ( ,2) (1 ) ( ,2) ,
1
1( ,0) ( ,1) (1 ) ( ,1) .

1

C uS qC u S q C udS
i

C dS qC udS q C d S
i

C S qC uS q C dS
i

 (14.20) 

Substituting the first two values in the last equality given above, we rediscover 
relation (14.19). 

14.2.2.2. Case of n periods 

0( , )j n ju d
C S n  represents the call value at t = n if the underlying asset has had j 

up movements and n-j down movements and with an initial value of the underlying 
asset of (0)S , that is: 
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0 0( , ) max 0, , 0,1,..., .j n j
j n j

u d
C S n u d S K j n  (14.21) 

A straightforward extension of the case of two periods gives the following result: 

0
0

1( ,0) (1 ) ( )
(1 ) j n j

n
j n j

n u d
j

n
C S q q C n

ji
 (14.22) 

and similar results for intermediary time values. 
 
From the calculational point of view, Cox and Rubinstein introduce the 

minimum number of up movements a so that the call will be “in the money”, which 
will mean that the holder has the advantage to exercise his option; clearly, this 
integer is given by: 

0min : .j n ja j N u d S K   (14.23) 

Of course, if a is strictly larger than n, the call will always finish “out of the 
money” so that the call value at t = n is zero. 

 
From relation (14.23), we obtain: 

1
0

0 1

log 1,
log

n
j n j KS d

u d S K a
ud

 (14.24) 

x  representing the larger integer smaller than or equal to the real x. 
 
From section 10.1, we know that if X is an r.v. having a binomial distribution 

with parameters (n, q), we have: 

1 (1 ) ( ( , ; )).
n

j n j

j a

n
P X a q q B n q a

j
 (14.25) 

As we have (see Cox, Rubinstein (1985)): 

1 1,iq
u

  (14.26) 

it follows that the quantity 'q  defined here below is such that 0 ' 1q  and so the 
call value can be written in the form: 
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0 0( ,0) ( , '; ) ( , ; ),
(1 )

1 , ' .
1

fin n

KC S S B n q a B n q a
i

i d uq q q
u d i

 (14.27) 

In conclusion, the binomial distribution is sufficient to calculate the call values. 

14.2.2.3. Numerical example 

Coming back to the preceding example for which 

0 80, 80, 1.5, 0.5, 3%,S K u d i  (14.28) 

and 0.53q  but now for n=2, we obtain: 

1.5' 0.6 0.7718
1.03

q   (14.29) 

and consequently  

(80,0) 26.4775.C   (14.30) 

14.3. The Black-Scholes formula as the limit of the binomial model  

14.3.1. The log-normality of the underlying asset 

Since nowadays financial markets operate in continuous time, we will study the 
asymptotical behavior of CRR formula (14.27) to obtain the value of a call at time 0 
and of maturity T. 

 
To begin with, we will work with a discrete time scale on [0,T] with a unit time 

period h defined by n = T/h or more precisely /n T h . 
 
Moreover, if i represents the annual interest rate, the rate for a period of length h 

called î is defined by the relation: 

(1 ) (1 )n Tî i ,  (14.31) 

so that 

(1 ) 1.
T

nî i   (14.32) 
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If nJ  represents the r.v. giving the number of ascending movements of the 
underlying asset, we know that: 

( , )nJ B n q   (14.33) 

and so, starting from 0 ,S the value of the underlying asset at the end of period n is 
given by 

, ,
0( ) .n nJ n JS n u d S   (14.34) 

It follows that  

0

( )log log log .n
S n uJ n d
S d  

 (14.35) 

The results of the binomial distribution (see section 10.5.1) imply that 

0

2

0

2

2
2

( ) ˆlog ,

( ) ˆvar log ,

ˆ ˆ log ,

ˆ (1 ) log .

S nE n
S

S n n
S

q d

uq q
d

  (14.36) 

To obtain a limit behavior, for every fixed n, we must introduce a dependence of 
u, d and q with respect to /n T h  so that  

2 2

ˆlim ( ) ,

ˆlim ( ) ,
n

n

n n T

n n T
 

 (14.37) 

,   being constant values as parameters of the limit model. As an example, Cox 
and Rubinstein (1985) select the values  
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/ /1, ( ),

1 1 / .
2 2

T n T nu e d e
u

q T n
 

 (14.38) 

This choice leads to the values: 

2 2 2

ˆ ( ) ,

ˆ ( ) .

n n T

Tn n T
n  

 (14.39) 

Using a version of the central limit theorem for independent but non-identically 
distributed r.vs., the authors show that 0( ) /S n S  converges in law to a lognormal 
distribution for n . More precisely, we have: 

0

( ) ˆlog ( )
( ),

ˆ

S n n n
S

P x x
n

 (14.40) 

, being as defined in section 10.3, is the distribution function of the reduced 
normal distribution provided that the following condition is satisfied: 

3 3

3

ˆ ˆlog (1 ) log
0.

ˆ n

q u q u

n
 (14.41) 

This condition is equivalent to 

2 2(1 ) 0
(1 )

q q
nq q

  (14.42) 

which is true from assumption (14.38). 
 
This result and the definition given in section 10.4, gives the next proposition. 
 

Proposition 14.1 (Cox and Rubinstein (1985)) Under assumption (14.38), the limit 
law of the underlying asset is a lognormal law with parameters 2( , )T T  or 
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0

( )log
( ).

S T T
SP x x

T
  (14.43) 

In particular, it follows that: 

2

2 2

2

0

2

0

( ) ,

( )var ( 1).

T T

T T T

S TE e
S

S T e e
S

  (14.44) 

14.3.2. The Black-Scholes formula 

Starting from result (14.25) and using Proposition 14.1 under the risk neutral 
measure, Cox and Rubinstein (1985) proved that the asymptotical value of the call is 
given by the famous Black and Scholes (1973) formula: 

( , ) ( ) (1 ) ( ),

ln / (1 ) 1 .
2

T

T

C S T S x K i x T

S K i
x T

T

 (14.45) 

Here, we note the call using the maturity as a second variable and S representing 
the value of the underlying asset at time 0. 

 
The interpretation of the Black and Scholes formula can be given in the concept 

of a hedging portfolio. 
 
Indeed, we already know that in the CRR model, the value of the call takes the 

form: 

C S B ,  (14.46) 

 representing the proportion of assets in the portfolio and B the quantity invested 
on the non-risky rate at t = 0. 
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From result (14.46), at the limit, we obtain: 

( ),

(1 ) ( ).T

x

B K i x T  
  (14.47) 

So, under the assumption of an efficient market, the hedging portfolio is also 
known in continuous time. 
 
Remark 14.2 This hedging portfolio must of course, at least theoretically, be 
rebalanced at every time s on [0, T]. Rewriting the Black and Scholes formula in 
order to calculate the call at time s, the underlying asset having the value S, we 
obtain: 

( )

( )

( ), (1 ) ,

ln / (1 ) 1 .
2

T s

T s

x B K i x T s

S K i
x T s

T s

 (14.48) 

Of course, a continuous rebalancing and even a portfolio with frequent time 
changes are not possible due to the costs of transaction. 

14.4. The Black-Scholes continuous time model 

14.4.1. The model 

In fact, Black and Scholes used a continuous time model for the underlying asset 
introduced by Samuelson (1965). 

 
On a complete filtered probability space Ptt ,0,,,  (see Definition 

10.13) the stochastic process  

( ), 0S S t t   (14.49) 

will now represent the time evolution of the underlying asset. 
 
The basic assumption is that the stochastic dynamic of the S-process is given by 

0

( ) ( ) ( ) ( ),
(0) ,

dS t S t dt S t dB t
S S  

  (14.50) 
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where the process ( ( ), 0, )B B t t T  is a standard Brownian process (see  
section 10.9 which is adapted to the considered filtration). 

14.4.2. The solution of the Black-Scholes-Samuelson model 

Let us go back to model (14.50). Using the Itô formula of Chapter 13 for lnS(t), 
we obtain: 

2

ln ( ) ( )
2

d S t dt dB t   (14.51) 

and so by integration: 

2

0ln ( ) ln ( ).
2

S t S t B t  (14.52) 

As, for every fixed t, B(t) has a normal distribution with parameters (0, t) – t for 
the variance – (see Chapter 13), this last result shows that the r.v. S(t)/S0 has a 

lognormal distribution with parameters 
2

2,
2

t t  and so: 

2

0

2

0

( )log ,
2

( )var log .

S tE t
S

S t t
S

  (14.53) 

Of course, from result (14.52), we obtain the explicit form of the trajectories of 
the S-process: 

2

2 ( )
0( ) .

t
B tS t S e e   (14.54) 

This process is called a geometric Brownian motion. 
 
The fact of having the lognormality confirms the CRR process at the limit as, 

indeed, a lot of empirical studies show that, for an efficient market, stock prices are 
well adjusted with such a distribution. 
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From properties of the lognormal distribution, we obtain: 

2

0

2

0

( ) ,

( )var ( 1).

t

t t

S t
E e

S

S t e e
S

  (14.55) 

So, we see that the mean value of the asset at time t is given as if the initial 
amount S0 was invested at the non-risky instantaneous interest rate  and that its 
value is above or below S0 following the “hazard” variations modeled with the 
Brownian motion. 

 
From the second result of (14.55), it is also clear that the expectations of large 

gains – and losses! – are better for large values of ; that is why  is called the 
volatility of the considered asset. 

 
It follows that a market with high volatility will attract risk lover investors and 

not risk adverse investors. 
 
From the explicit form, it is not difficult to simulate trajectories of the S-process. 

The next figure shows a typical form. 
 

 
Figure 14.7. A typical trajectory 

14.4.3. Pricing the call with the Black-Scholes-Samuelson model 

14.4.3.1. The hedging portfolio 

The problem consists of pricing the value of a European call of maturity T and 
exercise price K at every time t belonging to [0, T] as a function of t or the maturity 
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at time t, T t , and of the value of the asset at time t, S = S(t), knowing that the 
non-risky instantaneous interest rate is r, so that if i is the non-risky annual rate, we 
have: 

1re i .  (14.56) 

We will use the notations C(S, t) or, more frequently, ( , )C S . 
 
As in the CRR model, we introduce a portfolio P containing, at every time t of a 

call and a proportion , which may be negative, of shares of the underlying asset. 
 
The stochastic differential of P(t) is given by: 

( ) ( , ) ( )dP t dC S t dS t   (14.57) 

or, from relation (14.50): 

( ) ( , ) ( ) ( ) ( ).dP t dC S t S t dt S t dB t  (14.58) 

Using Itô’s formula, in a correct form as proved by Bartels (1995) of the first 
initial form given by Black and Scholes (1973), we obtain: 

2
2 2

2 2

1) ( , ) ( , ) ( , ) ( )
2

( ) ( , ) ( ).

C C CdP t S t S S t S t S S t dt
S t S

CS t S t S dB t
S

 (14.59) 

Now, using the principle of AOA, this variation must be identical to that of the 
same amount invested at the non-risky interest, that is: 

.),()( dtStSCrdttrP   (14.60) 

So, we obtain the following relation: 

( ) ( ),rP t dt dP t   (14.61) 

2
2 2

2 2

( , )

1( , ) ( , ) ( , ) ( )
2

( ) ( , ) ( ).

r C S t S dt

C C CS t S S t S t S S t dt
S t S

CS t S t S dB t
S

 (14.62) 
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By identification, we obtain: 

2
2 2

2 2

( , )

1( , ) ( , ) ( , ) ( ) 0,
2

( ) ( , ) 0.

r C S t S dt

C C CS t S S t S t S S t dt
S t S

CS t S t S
S

 (14.63) 

From the last equality, we obtain: 

( , ).C S t
S

  (14.64) 

Substituting this value in the first equality of (14.63), we obtain after 
simplification: 

2
2 2

2 2

1( , ) ( , ) ( , ) ( , ) 0,
2

C C Cr C S t S t S S t S t S
S t S

 (14.65) 

or finally 
2

2 2
2 2

1( , ) ( , ) ( , ) ( , ) 0,
2

C C CrC S t r S t S S t S t S
S t S

 (14.66) 

a linear partial differential equation of order 2 for the unknown function C(S, t) 
with as initial condition  

0, 0, ,
( , )

max 0, ,
t T

C S t
S K t T . (14.67) 

Using results from the heat equation in physics, for which an explicit solution is 
given in terms of a Green function, Black and Scholes (1973) obtained the following 
explicit form for the call value: 
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( )
1 2

2

1

2 1

( , ) ( ) ( ),

1 log ( )( ) ,
2

,
( ).

r T tC S t S d Ke d

S
d r T t

KT t

d d T t
S S t

 (14.68) 

Remark 14.3 

(i) Using relation (14.61), we obtain relation (14.45) for t = 0 or T . The 
interpretation is, of course, already given in section 14.3.2. 

(ii) The differentiation in relation (14.57) is correct only if we assume that the 
supplementary terms produced by Itô’s calculus (see relation (13.108)) are zero. In 
fact, this assumption is equivalent to assuming that the used portfolio strategy is self 
financing; this means that each rebalancing of the portfolio has no cost. 

14.4.3.2. The risk neutral measure and the martingale property 

As for the CRR model, it is possible to construct another probability measure Q 
on , ,( )t , called the risk neutral measure, such that the value of the call given 
by formula (14.68) is simply the expectation value of the present value of the “gain” 
at maturity time T. 

 
Using a change of probability measure for going from P to Q, with the famous 

Girsanov theorem (see for example Gihman and Skorohod (1975) and Chapter 15) it 
can be shown that the new measure Q, which moreover is unique, can be defined by 
replacing in the stochastic differential equation (14.50) the trend  by r. 

 
Doing so, the explicit form of S(t) given by relation (14.54) becomes: 

2

2 '( )
0( )

r t
B tS t S e e   (14.69) 

where process 'B  is an adapted standard Brownian motion and the value of C can 
be calculated as the present value of the expectation of the final “gain” of the call at 
time T: 

( )( , ) sup ( ) ,0 .r T t
QC S t e E S T K  (14.70) 

The risk neutral measure gives another important property for the process of 
present values of the asset values on [0, T]: 
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( ), 0,rte S t t T    (14.71) 

Indeed, under Q, this process is a martingale, so that (see section 10.8) for all s 
and t such that :s t  

( )  ( ) ( ).rt
sE e S t s t S s   (14.72) 

This means that at every time s, the best statistical estimation of S(t) is given by the 
observed value at time s, a result consistent with the assumption of an efficient market. 

 
From relation (14.72), we obtain in particular: 

0( ) .rtE e S t S   (14.73) 

So, on average, the present value of the asset at any time t equals its value at time 0. 
 
To conclude, we see that the knowledge of the risk neutral measure avoids the 

resolution of the partial differential equation and replaces it by the calculation of an 
expectation, which is in general easier, as it only uses the marginal distribution of S(T). 

 
However, we must add that, for more complicated derivative products, it may be 

more interesting, from the numerical point of view, to solve this partial differential 
equation with the finite difference method, and particularly in the case of American 
options.  

14.4.3.3. The call put parity relation  

From section 14.1, we know that the value of a put at maturity time T and 
exercise price K is given by: 

( ), max 0, ( ) .P S T K K S T  (14.74) 

As for the call, we have: 

( ), max 0, ( ) ,C S T K S T K  (14.75) 

and so, we obtain: 

( ), ( ), ( ) .C S T K P S T K S T K  (14.76) 

And so, for the expectations: 
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( ), ( ), ( ) .E C S T K E P S T K E S T K  (14.77) 

Using the principle of mathematical expectation for pricing the call and put, we obtain: 

0 0( ,0) ( ,0) ( ) .rT rTe C S e P S E S T K  (14.78) 

We call this relation the general call put parity relation as it gives the value of 
the put knowing the value of the call and vice versa. 

Now, under the assumption of an efficient market, we can use property (14.73) 
to get  

KeSSPeSCe rTrTrT
000 )0,()0,(  (14.79) 

and so the put value is given by: 

0 0 0( ,0) ( ,0) .rTP S C S S e K  (14.80) 

Remark 14.4 We can interpret this relation as follows: assume a portfolio having at 
time 0 a share of value S0, a put on the same asset with maturity T and an exercise 
price K, and a sold call with the same maturity and exercise price; the value of the 
portfolio at time T is always K, whatever the value of S(T) is. 
 

From the call put parity relation, we easily obtain the value of a put having the 
same maturity time T and exercise price K as for the call: 

( )( , ) ( , ) ,r T tP S t C S t S e K   (14.81) 

and using the Black and Scholes result, we obtain: 

( )
2 1

2

1

2 1

( , ) ( ) ( ),

1 log ( ) ,
2

,
( ).

r T tP S t Ke d S d

Sd r T t
KT t

d d T t
S S t

 (14.82) 
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14.5. Exercises on option pricing 

Exercise 14.1 Let us consider a portfolio with  shares of unit price €1,000 and an 
amount b invested at the non-risky interest rate of 4% per period. 

1) What is the price C of a European call having €1,050 as the exercise price, of 
maturity two periods if, per period, the share increases by a quarter of its value with 
probability 0.75 and decreases by a third of its value with probability 0.25? What are 
the intermediate values of the call? 

2) What is the composition of the hedging portfolio at time 0?  
3) If the maturity has a value of 2 weeks and the period is the day, give an 

estimation of the volatility and the trend of the considered asset. 
Solution: 
1) 

512.5, 0,
315.38, 0,

194.08.

uu ud dd

u d

C C C
C C
C  

2)  

u

d

 where:
C

= 54.07% (part of the asset),
( )

uC
346.57  (loan at the non-risky rate from the bank).

( )

d

u

C S B
C

S u d
dC

B F
u d

 

3) We know that: 



Option Theory     577 

14 14

14 14

51,000 1,000 ,
4
21,000 1,000 ,
3

or:
14 ,
1 ,

so:
5 514 14 ln ,
4 4
2 514 14 ln .
3 4
Finally,we obtain:

1 0.2231436 0.0079694,
28

360 0.0079694 2.868994,

1
2 14

t t
n n

t t
n n

year

e

e

t days
n day

e

e

0.2231436 0.0298188,

360 0.0298188 0.565772.year  

14.6. The Greek parameters 

14.6.1. Introduction 

The technical management of the trader of options, particularly by the brokers, 
uses the Greek parameters to measure the impacts of small variations of parameters 
involved in formulas (4.20) and (4.34) for the pricing of options:  

, , , ,S r K . 

The delta coefficient 

This is an indicator concerning the influence of small variations S of the asset 
price defined as follows: 
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( , ) ( , ) ( ),

( , ).

C S S t C S t S
C S t
S

  (14.83) 

This parameter is often used to cancel the variations of the asset value in the 
hedging portfolio. 

The gamma coefficient 

This is defined as:  

2

2 ( , )C S t
S

  (14.84) 

and so it may be seen as the delta of the delta. 
 
It gives a measure of the acceleration of the variation of the call and a refinement 

of the measure of the variation of the call using the Taylor formula of order 2: 

21( , ) ( , ) .
2

C S S t C S t t t  (14.85) 

The theta coefficient 

It gives the dependence of C with respect to the maturity ( )T t , and so also 
from time t: 

.C C
t

  (14.86)
 

It follows the first order approximation: 

( , ) ( , ) .C S t t C S t t    (14.87) 

For the maturity variations T t , we obtain: 

( , ) ( , ) .C S C S   (14.88) 

The elasticity coefficient 

Recall the economic definition of this coefficient which gives: 
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( , ) ( , )
( , )

C S
e S t S t

S C S t
  (14.89) 

and so: 

( , ) ( , ) ( , ) .
( , )

C C S S t C S t Se S t
C C S t S

 (14.90) 

The vega coefficient 

This is the indicator concerning the measure of small variations of the volatility 
 and so: 

( , )C S t .  (14.91) 

Thus, we have approximately for small variations ,  

( , ) ( , ) .C S S t C S t   (14.92) 

The rho coefficient 

This concerns the non-risky instantaneous rate r and so: 

( , ).C
S t

r    (14.93) 

14.6.2. Values of the Greek parameters 

The following table gives the values of the Greek parameters first for the call and 
then for the put. 
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1

1

1

-r
2

-r
2 1

2

I. For the calls:

C1) delta = = ( ) 0
S

'( )2) gamma = 0
S

C3) vega = = '( ) 0

C4) rho = = e ( ) 0
r
C S5) theta(= )=rKe ( )+ '( ) 0

2

6) ( ) 0

II. F

r

d

d
S

S d

K d

d d

C e d
K

1 1

1

1

2 2

or the puts:

P1) delta = =( ( ) 1) ( )( 1) 0
S

'( )2) gamma = ( ) 0
S

P3) vega = = '( )( ) 0

P4) rho = =- K ( ) K ( ) 1 ( K ) 0
r

5) t

C

C

C

r r r
C

d d

d
gamma

S

S d véga

e d e d rhô e

-r
1 2

2 2

Pheta = = '( ) Ke 1 ( ) ( )
2

6) ( ( ) 1) ( ) 0

r
C

r r r

C

S d r d rKe

P P
e d e d e

K K

 

These values give interesting results concerning the influence of the considered 
parameters of the call and put values. 

 
For example, we deduce that the call and put values are increasing functions of the 

volatility, and the call increases as S increases but the put decreases as S increases. 



Option Theory     581 

14.6.3. Exercises 

Exercise 14.2 Let us consider an asset of value €1,700 and having a weekly variance 
of 0.000433. 

(i) What is the value of a call of exercise price €1,750 with maturity 30 weeks 
under a non-risky rate of 6%? 

(ii) Under the anticipation of a rise of €100 of the underlying asset and of a rise 
of 0.000018 of the weekly variance, what will be the consequences of the call and 
put values? 
 
Solutions 

(i) The values of the parameters necessary to calculate the call value using the 
Black and Scholes formula are: 

2 20.00043 52 0.00043 0.2236,  0.47286,

30 0.576923 ,  1750, 1700,
6% ln(1 ) 0.05827.

week year year

weeks year K S
i r i

 

It follows that: 

2

1 1

1

2 1 2

1

1 ln 0.09760272,
2

( ) 0.5388762,

0.01637096, ( ) 0.4934692,

( , ) ( ) 81.07 .r

Sd r d
K

d

d d d

C S S d Ke Euro

 

Using call put parity relation; we obtain for the put value  

73.07 .rP Ke C S P Euro  

(ii) Rise of the underlying asset. We know that: 

1

( , ) ( , ) ( , ) ,  

 ( , ) ( ),

so :
(1700 100, ) 81.07 100 0.5388762 135.95 .

CC S S C S S S
S

C S d
S

C Euro
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For the put, we obtain: 

( , ) ( ) ( ) 27.1 .rP S S Ke C S S S S Euro  

(iii) Rise of the volatility. The value of the new weekly variance is now given by: 

0.000433 0.00018 0.000613  

and, so the new yearly variance and volatility are given by 

,1785385.0031876.0  

and consequently, the variation of the yearly volatility is given by: 

0.1785385 0.1500533 0.284852.  

As the increase in volatility comes after that of the asset value, we have  

1

( , , ) ( , , ) ,

with:

( ).

CC S S C S S

C d

 

However: 

,39704658.0
2
1)( 2

1

2
1d

ed  

and so: 

542.84.C
 

Finally, we obtain: 

.41.150),,(),,( F
C

SSCSSC  
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For the variation for the put, we use the call put parity relation and so: 

( , , ) ( , , ) ( ) 42.56 .rP S S C S S Ke S S F  

Exercise 14.3 For the following data, calculate the values of the call, the put and the 
Greek parameters 

100, 98, 30 days, 0,01664, 8%.weekS K i  

Solution 

Yearly vol. 0.12  
Maturity 0.08219  

R=ln(1+i) 0.076962  
   

Results Call Put 
   

Price 3.04721 0.42926 
Delta 0.7847 –0.2153 
Vega 8.3826 8.3826 
Theta 11.924 4.334 

Gamma 0.08499 0.08499 
Rho 6.199 –1.805 

Table 14.1. Example option calculation 

14.7. The impact of dividend repartition  

If, between t and T, the asset distributes N dividends of amounts 1,..., ND D  at times: 

1 2(0 ) ( )Nt t t t T ,  (14.94) 

the impact of the value of a European call is the following: as the buyer of the call 
cannot receive these dividends, it suffices to calculate the present value at time t of 
these dividends and to subtract the sum from the asset value at time t so that the call 
value is now: 

1
1

( , ; ,..., ) , ,

, 1,..., .

r j
N

N j
j

j j

C S D D C S D e

t t j N

 (14.95) 
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Of course, the most usual case is N=1. 
 
If we assume that the distribution of dividends is given with a continuous payout 

at rate D per unit of time, 

0 t Tt' t'+dt'

Ddt'

 
Figure 14.8. Continuous “payout” 

the capitalized value is De  and so the value of the call is given by: 

( , ; ) ( , ).DtC S D C Se   (14.96) 

14.8. Estimation of the volatility 

14.8.1 Historic method 

This method is based on the data of the underlying asset evolution in the past, for 
example the n daily values 

0 1 nS ,S ,...,S .  (14.97) 

Let us consider the following sample of the consecutive ratios: 

1
1

0 1

,..., ,..., .n
n

n

SS
R R

S S
  (14.98) 

From the lognormal distribution property, we have: 

2

1

ln
2

(0,1),

with , 1,..., .

t

t
t

t

R
N

SR t n
S

  (14.99) 
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It follows that the random sample nRR ln,...,ln 1  can be seen as extracted 
from a normal population 2',  with: 

2

' .
2

  (14.100) 

The traditional results of mathematical statistics give as best estimators: 

1 1

2
2

1 1

1ˆ ' ln ,

1ˆ ˆln ' .

n
k

k k

n
k

k k

R
n R

R
n R

  (14.101) 

To obtain an unbiased estimator of the variance, we have to use: 

2 2ˆ̂ ˆ
1

n
n

  (14.102) 

or: 

.)'ˆ(
1

ln
1

1ˆ 2
2

1 1

2

n
n

R
R

n

n

k k

k  (14.103) 

Example 14.1 On the basis of a sample of 27 weekly values of an asset starting 
from the initial value of €26.375, the following weekly estimations are found: 

2

ˆ 0.016732
ˆ 0.005216.

 

Consequently, as the parameters of the Black and Scholes model must be 
evaluated on a yearly basis, we obtain  

2

ˆ 52 0.016732 0.870064 0.87,

ˆ 52 0.005216 0.271232,

ˆ 0.271232 0.520799 0.52.

year

year

year
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14.8.2. Implicit volatility method 

This method assumes that the Black and Scholes calibrates the market values of 
the observed calls well. 

 
Theoretically, an inversion of the Black and Scholes formula gives the value of 

the volatility . 
 
On the basis of several observations of the calls for the same underlying asset, 

we can use the least square statistical method to refine the estimation. 
 
Example 14.2 Using the data of Exercise 14.3, we assume that we have an observed 
value of the call 3.04715, but without knowing the volatility. 
 

The next table gives the results using a step by step approximation method. 
 

Weekly vol. Annual vol. Call value 

0.02 0.144 3.26 

0.015 0.1081 2.95 

0.017 0.1225 3.069 

0.016 0.1153 3.008 

0.0165 0.1189 3.038 

0.01664 0.1199 3.04713 

Table 14.2. Volatility calculation 

So, we find the correct volatility value to be 0.12. 
 
Remark 14.5 The main difficulty is to select the historical data. 
 

The set must not be too long or too short in order to avoid disrupted periods 
introducing strong biases in the results. 
 

Moreover, we always work with the assumption of a constant volatility that we 
will overtake in section 14.10. 
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14.9. Black-Scholes on the market 

14.9.1. Empirical studies 

Since the opening of the CBOT in Chicago in 1972, numerous studies have been 
carried out for testing the results of the Black and Scholes formula. 

 
In the case of efficient markets, the conclusions are as follows: 
(i) the non-risky interest rate has little influence on the option values; 
(ii) the Black and Scholes formula underestimates the market values for calls 

with short maturity times, for calls “deep out of the money” (S/K<0.75) and for calls 
with weak volatility; 

(iii) the Black and Scholes formula overestimates the market values for calls 
“deep in the money” (S/K<1.25) and for calls with high volatility. The put values are 
often underestimated particularly in the out of the money (S>>K) case; 

(iv) the puts are often underestimated particularly when they are out of money 
(S<<K). 

14.9.2. Smile effect 

If we calculate the volatility values with the implicit method in different times, in 
general, the results show that the volatility is not constant, thus invalidating one of 
the basic assumptions of the considered Black and Scholes model. 

 
The graph of the volatility as a function of the exercise price often gives a graph 

with a convex curve, a result commonly called the “smile effect”. 
 
However, sometimes, concave functions are also observed. 
 
Although, theoretically, volatilities for the pricing of calls and puts are identical, 

in practice, some differences are observed; they are assigned to differences of “bid-
offer spread” and to the methodology of the implicit method used at different times. 

 
The fact that it is important to consider option pricing models with non-constant 

volatility is one of the approaches of the next model.  
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14.10. Exotic options 

14.10.1. Introduction 

The derivative products of first generation concern the traditional calls and puts 
also called plain vanilla options and furthermore the anticipation of the investor 
leads to the construction of strategies for hedging or eventually for speculation.  

 
However, these traditional options and the derived strategies generally have high 

costs and their exercise prices only depend of the value of the underlying assets at 
maturity. In particular, they do not work for some markets such as foreign currency 
and commodities markets. 

 
That is why the market of derivative products has been enlarged with the second 

generation options or exotic options. 
 
Their main characteristics are as follows: 
a) a prime reduction, essentially for barrier, binary mean and compound options 

defined after; 
b) introduction of a diversification with the use of options of the types out 

performance, best of, worst of; 
c) use of options of the types lookback, option on the mean, etc.; 
d) use of options linked to the exchange market like a quanto option. 

 
All these options are in fact two types following the way on which the exercise 

price is defined: 
(i) “non-path dependent” options: the exercise price is defined at the time of the 

conclusion of the option contract; 
(ii) “path dependent” options: the exercise price is not known at the time of the 

conclusion of the option contract but the way to calculate it at the maturity time is 
given in the contract. 
 

In practice, the market of such options is less liquid than the traditional market 
and also has a lack of organization due to the lack of standardized contracts. 

 
However, the foreign currency options are available on organized markets as the 

PHLX (Philadelphia Options Exchange) created in 1983 with a clearing room, yet 
approximately 80% of the transactions are over the counter and in this last case, 
intermediaries are big banks supporting the counterpart for bid and ask for their 
customers. 
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14.10.2. Garman-Kohlhagen formula 

For foreign currency options, we use the Black and Scholes model: 

0

( ) ( ) ( ) ( ),
(0) .

dS t S t dt S t dB t
S S

  (14.104) 

with the usual assumptions, but here S(t) is the value of the spot exchange rate at 
time t. The domestic and foreign instantaneous interest rates, respectively noted 
rd ,rf , are constant over the life of the considered option. 
 

Under these assumptions, it is possible to calculate the value of a call with the 
following formula: 

( ) ( )
1 2

2

1

2 1

( , ) ( ) ( ),

1 log ( ) ,
2

,
( ).

f dr T t r T t

d f

C S t Se d Ke d

Sd r r T t
KT t

d d T t
S S t

 (14.105) 

The calculation of the put value is done with the following call put parity 
relation: 

0 0 0

( ) ( )

( ,0) ( ,0)

or

( , ) ( , ) ,

f d

f d

r T r T
fin fin

r T t r T t
fin fin

P S C S e S e K

P S t C S t e S e K

 (14.106) 

so that: 

( )( )
2 1

2

1

2 1

( , ) ( ) ( ),

1 log ( )( ) ,
2

,
( ).

fd r T tr T t

d f

P S t Ke d Se d

Sd r r T t
KT t

d d T t
S S t

 (14.107) 

Remark 14.6 Some empirical studies show that the G-K formula overestimates the 
observed market values.  



590     Mathematical Finance 

14.10.3. Greek parameters 

The values of the Greek parameters for calls and puts obtained by calculation as 
for the traditional Black and Scholes model are given below. 

I. For the call:
C -r*1) delta = =e ( ) 01S

'( )-r* 12) gamma = e 0
S

C -r3) vega = =e '( ) 01

C -r4) rho = = e ( ) 02r
C -r¨*4 ') rho' = =- e ( ) 01r*
C5) theta =

d

d

S

K d

K d

K d

-r* -r=-r*e S (d )+rKe ( )+ '( ) 01 2 22

6) ( ) 02

II. For the put:
P -r* -r*1) delta = =e ( ( ) 1) e ( ) 01 1S

'( )-r* 12) gamma = e ( ) 0
S

P *3) vega = =

K
d d

C re d
K

d d

d
gammaPS

rKe '( )( ) 01

P4) rho(= )= K ( ) K 1 ( ) 02 2r
P -r* -r5) theta = =-r*Se ( ) '( ) Ke ( )1 2 2

d vegaC

r re d e d

rKe
d d r d

 

14.10.4. Theoretical models  

We know that there exist two ways for pricing derivative products:  

(i) the resolution of a partial differential equation (PDE) with eventually a 
numerical solution of the risk neutral measure method; 

(ii) the calculation of the present value of gain at maturity under the risk neutral 
measure. 

 
Let us recall that the first gives a PDE for the call value using Itô’s calculus and 

the assumption of absence of opportunity arbitrage (AOA). For non-plain vanilla 
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options, the only way to work is to use numerical methods to obtain an approximate 
solution with, for example, the finite differences method. 

It is also possible to use a discrete time model as the Cox-Rubinstein method, 
particularly useful for the American type. 

 
The risk neutral measure method uses the Girsanov theorem to obtain a new 

probability measure Q instead of the historical probability measure P so that the call 
value is given with the present value of the “gain” at maturity. 

 
Here, the new measure Q is obtained with a new trend in the SDE (14.104) given 

by d fr r . 

In this case, on [0, T], we obtain: 

2
( ) ( ) ( ( ) ( ))

2( ) ( ) ,
d fr r T t B T B t

S T S t e  (14.108) 

( ( ),0 )B B s s T  being a new standard  Brownian motion standard on the 
filtered probability space ( , ,( ), )t Q . 
 

If h represents the “gain” at maturity for the considered derivative product, the 
value V(t) of this product at time t is given by: 

( )( ) .dr T t
Q tV t E e h   (14.109) 

For example, for a plain vanilla call of exercise price K, we obtain 

( ( ) ) ,h S T K   (14.110) 

and so: 

2
( ) ( ) ( ( ) ( ))

2( )( ) ( ( ) ) .
d f

d
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tV t E e S t e K  (14.111) 

The process S being adapted to the basic filtration, we finally obtain:  

2 2( ) ( ) )
2( ) 2

( ) ( ( ), )

1 ( ( ) ) )
2

d f
d

zr r T t z T t
r T t

R

V t C S t t

e S t e K e dz
, (14.112) 
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An expression resulting in, after the change of variable ,y x
T t

 the Garman-

Kohlhagen formula. 

Similarly, for the put, we obtain: 

2
( ) ( ) ( ) ( )

2( )( ) ( ) .
d f

d

r r T t B T B t
r T t

tV t E e K S t e  (14.113) 

Remark 14.7 (options on shares and options on foreign currency options) 
Formally, the Garman-Kohlhagen formula is an simple extension of the Black and 
Scholes formula; indeed, setting 0fr  in the first formula, we obtain the second. 
 

In particular, this means that all the results on exotic foreign currency options 
contain similar results for share options. 

14.10.5. Binary or digital options 

14.10.5.1. Definition 

We will present the “cash or nothing” and “asset or nothing” options. In this 
case, the gain at maturity depends on the fact that, at maturity time, the underlying 
asset goes beyond a barrier called the exercise price and if so, the exercise of the 
option gives as gain a fixed amount mentioned in the contract signed at time of 
purchase of the considered option and independent of S(T). 
 

In other words, the purchaser of the option receives a coupon if the underlying 
asset is above the barrier and nothing in the other case. 
 
Example 14.3: a standard cash or nothing call 

– option type: all or nothing call; 
– underlying asset:  CAC 40 index; 
– nominal: 100,000; 
– device: €; 
– index value at the issuing of the option: 3,000 points; 
– exercise price: 3,100 points; 
– coupon: 10%; 
– issuing date: 5/1/07; 
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– maturity date: 5/1/08; 
– premium option: 2.9%. 

So, if the CAC 40 index is larger than 3,100 points at maturity time, the counter 
part will pay an amount of €10,000. 

The initial premium is €2,900, and the net return, excluding transaction costs, is 
245%. On the other hand, if the CAC 40 index is smaller than 3,100 points at 
maturity time, the premium is lost. 

14.10.5.2. Pricing of a call cash or nothing 

Let N be the coupon of the option and K the exercise price. From the definition 
of the type of this option, we have, under the risk neutral measure Q: 

2
( ) ( ) ( ( ) ( ))

2

( )
( )

( )

( )

( )

( ( ), , , ) .1 ,
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Ne E
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 (14.114) 

and so: 

( )
2( ( ), , , ) ,dr T t

cnC S t N K t Ne d  (14.115) 

where, as for the Garman-Kohlhagen model: 

2 1

2

1

,

1 ( )log ( ) .
2d f

d d T t

S td r r T t
KT t

 (14.116) 

14.10.5.3. Case of the put cash or nothing 

For the put, we have: 

N.1 S(T ) K N N .1 K S(T ) ,   (14.117) 

and so: 
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Pcn (S(t), N,K,t) Ne rd (T t ) d2 .  (14.118) 

14.10.5.4. Main Greek parameters for call and put cash or nothing 

We just consider the case of the delta, gamma and vega. 

14.10.5.4.1. Case of the call 

a) The delta 
 

By definition, we have 

,C
C
S

  (14.119) 

so, by relation (14.115): 

( ) 2
2 ,dr T t

C
dNe d
S

  (14.120) 

and by relation (14.116): 

( )
2 .

.
dr T t

C
N e d

T t S
 (14.121) 

Delta being always positive, it follows that the call is an increasing function of S, 
the value of the underlying asset at time t. Furthermore, it is maximum for S=K and 
becomes infinite at maturity. 

b) The gamma 
 

We know that: 

2

2 .c
C

C
S S

  (14.122) 

so, by relation (14.115): 

( )
2

2 22

1 1 .
dr T t

C
Ne dd d

S S ST t
 (14.123) 

and finally: 
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( )
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or 
( )

2
22

1 .
dr T t

C
Ne dd

S T t T t
 (14.125) 

This gamma is quasi-zero for large maturities, it changes its sign, from positive 
to negative values, at K, and at maturity, it becomes infinite. 

14.10.5.4.2. Put case 

From relation (14.117), we know that 

Pcn N Ccn,  (14.126) 

and so, we immediately obtain the following values: 

Pcn Ccn
,

Pcn Ccn
,

Pcn Ccn
.

  (14.127) 

14.10.6. “Asset or nothing” options 

14.10.6.1. Definition 

This type of option differs from the preceding one as it arrives at maturity at the 
money, the coupon paid is not a fixed amount N but a multiple of the underlying asset. 
 
Example 14.4: a standard asset or nothing 

– option type: call asset or nothing; 
– underlying asset: share X; 
– nominal: €800,000 (1,000 shares); 
– devise: €; 
– share value at the issuing of the option: €800; 
– exercise price: €850; 
– percentage: 10%; 
– payment: in asset value at maturity; 
– issuing date: 5/1/07; 
– maturity date: 5/1/08; 
– option premium: 4.25%. 
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So, if the asset value at maturity is above €850, for example €900, the 
counterpart has to pay, per share, an amount of 0.1  900 = 90, that is, a total 
amount of €90,000. 

In this case, for an initial investment of €34,000, the net return, without 
transaction costs, is given by: 

90,000 34,000 164.71%.
340

 

Of course, if the asset value at maturity is less than €850, the holder of the call 
loses the premium of €34,000. 

14.10.6.2. Pricing a call asset or nothing 

Let M be the percentage of share to be paid in cash and K the exercise price. 
 
Proceeding as before, under the risk neutral measure Q, we successively obtain: 

2
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 (14.128) 

The final result is: 

( )
1( ( ), , , ) ( ) .fr T t

anC S t M K t MS t e d  (14.129) 

For a call asset or nothing on a share market, setting rf 0 , we obtain: 

1( ( ), , , ) ( ) .anC S t M K t MS t d  (14.130) 

14.10.6.3. Premium of the put asset or nothing 

From the relation: 

( ) ( )( ).1 ( ) ( ).1 ,S T K K S TS T S T S T  (14.131) 
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we obtain: 

( )( ( ), , , ) ( ) ( ( ), , , ).dr T t
an Q cnP S t M K t e E MS T P S t M K t  (14.132) 

As under Q, the drift of S is given by rd rf , we can write that:  

( )( ( ), , , ) ( ) ( ( ), , , ).dr T t
an Q cnP S t M K t e E MS T P S t M K t  (14.133) 

Thus, 

( )
1( ( ), , , ) ( ) .fr T t

anP S t M K t Me S t d  (14.134) 

On a share market, we obtain in this case rf 0 : 

1( ( ), , , ) ( ) .anP S t N K t MS t d  (14.135) 

14.10.6.4. Greek parameters for call and put asset or nothing 

Here too, we just consider the case of the delta, gamma and vega. 

14.10.6.4.1. Case of the call 

a) The delta 
As 

,C
C
S

  (14.136) 

we obtain from relation (14.129): 
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or 
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 (14.138) 

The delta being always positive, it follows that the call is an increasing function 
of S, the value of the underlying asset at time t. Furthermore, it is maximum for 
S = K and, at maturity, it has the value M in the case of being in the money and 0 
out of the money. At maturity and at the money, the delta becomes infinite. 
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b) The gamma 
As 

2
c

C 2
C ,

S S   (14.139) 

we obtain: 
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and 
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or finally 
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This gamma changes sign, from positive to negative values, at K, and at 
maturity, it becomes infinite. 

14.10.6.4.2. Case of the put 

As 

Pan Me
rf (T t )

S Can ,    (14.143) 

we immediately have: 
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14.10.7. The barrier options 

14.10.7.1. Definitions 

Let us assume that a French enterprise has to pay one of its American furnishers 
in dollars and in three months. 

 
If the exchange rate $/€ is 1.27, this enterprise e can be hedged against an 

increase of the exchange rate with a call in $ or a put in € in the money. However, if 
this enterprise anticipates that the rate will not be higher than 1.31, for example, it is 
possible to add a supplementary condition to the standard option contract as follows: 
if on [0, T], the rate goes beyond this value, then the option disappears and arrives 
at maturity without any value. 
 

This means that we introduce the concept of a barrier, here at a value of 1.31, 
and so this new type of option has a final value which depends on all the paths of the 
underlying asset and not only on its final value. 

 
It is clear that this new type of options, called barrier options, will find a liquid 

enough market as their premiums are lower than the plain vanilla options. So, we 
have the following definition. 
 
Definition 14.2 A barrier option is a path-dependent option, the payoff of which 
depends on the payoff of a traditional option and whether a pre-specified barrier 
has been crossed. 
 

Most popular types are: down-and-in options, down-and-out options, up-and-in 
options and up-and-down options. 
 

The definitions are as follows: 
(i) down-and-out options: a lower barrier (i.e. smaller than S(0)) is specified. If 

the spot exchange rate falls below this barrier during the life of the option, that is on 
[0, T], the option ceases to exist and if not, the option remains traditional; 

(ii) down-and-in options: the option becomes active only if the spot exchange 
rate goes below a given barrier; otherwise, the contract gives no right; 

(iii) up-and-out-options: with a given specified upper barrier, if the spot 
exchange rate goes above the barrier on [0, T], the option ceases to exist; otherwise, 
it remains a traditional option; 

(iv) up-and-it-options: with a given specified upper barrier, if the spot exchange 
rate does not go above the barrier on [0, T], the option is worthless; otherwise, it 
remains a traditional option. 
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14.10.7.2. Examples of pricing 

Let us consider the case of a down-and-in call. It is clear that the value of the call 
is given by 

( )( , ) ( ( ) ) 1d

H

r T t
di Q tT TC S t e E S T K , 

TH being the hitting time of the barrier H for the process S: 

HsSsTH )(:0inf  

Thus, we have: 
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In these results, we have: 
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 (14.145) 
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14.10.8. Lookback options 

These are also called “no regrets options” and are path-dependent options 
favorable to the holder as they are generally expansive. 

 
The two main types are: 
– the “standard lookback” option: in the case of a call, the payoff is given by: 

)(inf)(
0

tSTS
Tt

; 

– the “option on extrema” with a given exercise price K has as payoff for a call 
on maximum: 

0,
sup ( )

T
S s K .  (14.146) 

They are only interesting if the underlying asset is highly increasing or 
decreasing on [0,T] and with a high volatility.  

14.10.9. Asiatic (or average) options 

Such an option has as final payoff determined by the average price of the asset 
during a specified period, say [a,b], included in [0, T]. 

 
For a fixed strike average option, the payoff depends on the difference of the 

average and a fixed striking price; for a floating strike average option, the payoff at 
maturity depends on the difference of the spot price and the average. 

 
Sometimes, the geometric mean is used instead of the arithmetic mean. The 

evaluation of such options is complicated and, in general, there is no explicit 
formula for the pricing except in the last case for which Vorst (1990) proved that it 
suffices to use the Garman-Kohlhagen formula with  

21' , '
2 63 f d fr r r . 

The “arithmetic mean” case was studied by Geman and Yor who gave the 
explicit form of the Laplace transform of the premium. 
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14.10.10. Rainbow options 

They depend on at least two underlying assets in the same device and have 
generally lower prices; this is due to the correlation between the considered assets. 

 
As example, let us present the outperformance or “Margrabe option” giving the 

right to the holder to receive the difference of returns between two assets if it is 
positive. 

 
This means that the holder receives the outperformance of asset A on asset B at 

maturity time T, that is, 2 1( ) ( )S T S T where S1 and S2 are two foreign currency 
rates expressed in the same device. 

 
The model to be considered is the following one: 

1 2

( ) ( ) ( ) ,  1, 2,

( ) ( ) .
i i i i idS t S t dt dW t i

E dW t dW t dt
 (14.147) 

so that 
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It is possible to prove the following result 
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which is in fact the Garman-Kohlhagen formula with: 1 2,K S S S ,rd=r1,rf=r2  
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14.11. The formula of Barone-Adesi and Whaley (1987): formula for American 
options 

Using the PDE approach for pricing American options giving a continuous 
dividend at rate y and an approximation by solving an ordinary differential equation, 
Barone-Adesi and Whaley (1987) obtained the following good approximations for 
the American call and put: 

1) For the call 

2
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where 2A  and 1( )d S  are given by: 
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S* being the solution of the following algebraic equation to be solved by iteration: 
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2) For the put 
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where 
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S** being the solution of the following algebraic equation to be solved by iteration: 
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In these formulae, quantities S* and S** represent the thresholds to exercise 
respectively the call and put, i.e.: 

* ( *, , )( ** ( **, , ).am amS K C S T K K S P S T K  (14.155) 

These values are good for 0T  orT  but not so good for mean maturity 
values.  
 
Remark 14.8 Interpolation method for American puts (Johnson (1983), Broadie and 
Detemple (1996)) 
 

Johnson showed the following double inequality: 

( )( , , ) ( , , ) ( , , ).r T t
eur am eurP S T t K P S T t K P S T t Ke  (14.156) 

Then, he gave the following result: 

( )( , , ) ( , , ) (1 ) ( , , ).r T t
am eur eurP S T t K P S T t K P S T t Ke  (14.157) 

where the value of parameter  depends on the values of 2/ , ( ), ( ).S K r T t T t  
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Geske and Johnson model 

Discretizing [0, T] with the subdivision 1( ,..., )nt t , it is possible to approach the 
put value with a type of Cox-Rubinstein model. 

Parity relation  

Without dividend repartition, the traditional parity relation is replaced by the 
following double inequality: 

( , , ) ( , , ) .rT
am amS K C S T K P S T K S Ke  (14.158) 

Furthermore, without dividend repartition, we can use the traditional parity 
relation for European options to obtain: 

0 ( , , ) ( , , ) (1 ).rT
am eurP S T K P S T K K e  (14.159) 

Relation of symmetry  

Chesney and Gibson (1995) proved the following important result: 

( , , , , , ) ( , , , , , )am amC S T K r y P K T S y r  (14.160) 

so that, for the American options, every result on the call (respectively put) gives a 
result on the put (res. call) with the permutation of S and K and r and y. 
 
Example 14.5 Let us suppose that we have to know the value of an American put 
with parameters: 

100, 95, 1, 35%, 2.75%, 3%S K T r y ,  

we can solve the problem of an American call with parameters: 

95, 100, 1, 35%, 3%, 2.75%.S K T r y  

Example 14.6 Let us consider an asset with a value of €100 at t = 0 and suppose 
that the European call of maturity is three months and an exercise price of €102 has 
the value of €5.43. The European put with the same parameters has the value of 
€6.22. 
 

Knowing that the asset gives no dividend on the considered period provides: 
(i) the value of the American call with the same parameters; 
(ii) a double inequality for the American put of same parameters; 
(iii) the value of the risky instantaneous rate. 
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Answers 
(i) Knowing that the asset gives no dividend on the considered period, we know 

that the American call has the same value as the European call: €5.43.amC  
(ii) The American is always larger than the European put so that: € 6.22 amP . 
 
From the double inequality (14.156), we obtain: 

( , , ) ( , , ) ( , , )rT
am am amC S T K S Ke P S T K C S T K S K ,  (14.161) 

and from result (i) and the traditional parity relation, we obtain: 

( , , ) ( , , ) ( , , ) ,
and

( , , ) ( , , ) ( , , ) .

rT
eur am am

eur am eur

C S T K S Ke P S T K C S T K S K

P S T K P S T K C S T K S K
 (14.162) 

From the second inequality, we obtain here: 

( , , ) ( , , ) 5.43 100 102 €7.43.am eurP S T K C S T K S K  

The final reply is: 

6.22 7.43 .amEuro P Euro   (14.163) 

(i) From the traditional parity relation for European options, we have: 

( , , ) ( , , ),rT
eur eurC S T K S Ke P S T K  (14.164) 

and so: 

( , , ) ( , , )

and
( , , ) ( , , )1 ln .

rT eur eur

eur eur

P S T K C S T K S
e

K

P S T K C S T K S
r

T K

 (14.165) 

We finally obtain: 

6.22 5, 43 1004ln ,
102

0.04773.

r

r
  (14.166) 



Chapter 15 

Markov and Semi-Markov Option Models 

15.1. The Janssen-Manca model  

In this section, we present a new extension of the fundamental Black and Scholes 
(1973) formula in stochastic finance with the introduction of a random economic 
and financial environment using Markov processes, which we owe to Janssen and 
Manca (1999). 

 
In preceding papers (Janssen, Manca and De Medici (1995), Janssen, Manca and 

Di Biase (1997), Janssen, Manca and Di Biase (1998), Janssen and Manca (2000)), 
these authors already show how it is useful to introduce Markov and semi-Markov 
theory to finance, with the assumption that the evolution of the asset follows a semi-
Markov process, homogenous or non-homogenous, and how to price options in such 
new models. The main idea of this approach is to insert a strong dependence of the 
asset evolution as a function of the preceding value. 

 
The construction of this new model starts from the traditional CRR model with 

one period to obtain a new continuous time model satisfying the absence of arbitrage 
assumption. 

 
One of the main potential applications of our model concerns the possibility of 

obtaining a new way of using the Black and Scholes formula with information 
related to the economic and financial environment, particularly concerning the 
volatility of the underlying asset. 

 
This new model also provides the possibility to take into account anticipations of 

investors in such a way as to incorporate them in their own option pricing. 
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In the same philosophy, the model can be used to construct scenarios, 
particularly in the case of stress in a VaR approach. 

15.1.1. The Markov extension of the one-period CRR model 

15.1.1.1. The model 

Starting on a complete probability space , , P , let us consider a one-period 
model for the evolution of one asset having the known value 0(0)S S  at time 0 and 
random value S(1) at time 1. 

 
The economic and financial environment is defined with random variables 

0 1,J J  representing the environment states respectively at time 0 and time 1. These 
random variables take their values in the state space 1,...,E m  and are defined 
on the probability space by: 

0

1 0

, 1,..., ;

, , 1,..., ,
i

ij

P J i a i m

P J J i p i j m
  (15.1) 

where: 

1

1

0, 1,..., ;

1,

0, , 1,..., ,

1,  1,..., .

i

m

i
i

ij

m

ij
j

a i m

a

p i j m

p i m

  (15.2) 

Furthermore, let us introduce the following function of 0 1,J J : 
0 1J Ju ,

0 1J Jd , 

0 1J Jq such that, a.s.: 

0 1 0 1 0 1

0 1 0 1

0 ,

1,  1 ,
J J J J J J

J J J J

d r u

d r
  (15.3) 

0 1
0 1.J Jq   (15.4) 

The one-period model, related to the process (0), (1)S S , is the following: 
given 0 1,J J  and that 0(0)S S , the asset has the following evolution: it goes up 
from 0S  to 

0 1 0J Ju S  with the conditional probability 
0 1J Jq  or goes down from 0S  to 
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0 1 0J Jd S  with the conditional probability 
0 1

1 J Jq ; moreover, the non-risky interest 
rate of this period has the value 

0 1J J  defined by:  

0 1 0 1
1.J J J Jr   (15.5) 

Given 0 1,J J , we have: 

0 1 0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 0 0 0 0

0 0 1 0

0 0 1 0

0 1 0 0 0

0 0 0 0
1

0 0
1 1

(1) , , ,

(1) , , 1 ,

(1) , , (1 ) ,

(1) , ( (1 ) ),

(1) ( (1 ) )

J J J J

J J J J

J J J J J J J J

m

J j J j J j J j J j
j

m m

ij ij ij ij ij
i j

P S u S J J S q

P S d S J J S q

E S J J S q u S q d S

E S J S p q u S q d S

E S S P J i p q u q d S0.

 (15.6) 

One of the basic concepts of stochastic finance is the absence of arbitrage 
possibility. In fact, it is equivalent to state that the process (0), (1)rS S  is a 
martingale where 1r  and  is an adequate non-risky interest rate for 
calculating the present value of S(1) at time 0. 

 
Here, we must take into account the possible information of the investor 

concerning the environment; at time 0, in addition to the knowledge of 0S , different 
information sets may be available. Three cases are possible: 

1) Knowledge of 0 1,J J  

In this case, the martingale condition: 

0 10 1 0 0(1) , , J JE S J J S r S   (15.7) 

becomes: 

0 1 0 1 0 1 0 1 0 10 0 0(1 )J J J J J J J J J Jr S q u S q d S  (15.8) 

or 

0 1 0 1 0 1 0 1 0 1
(1 ) .J J J J J J J J J Jr q u q d   (15.9) 
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This last condition is exactly the same as the CRR model; this means that the new 
conditional probability for which the martingale condition is satisfied is given by: 

0 1 0 1

0 1

0 1 0 1

J J J J
J J

J J J J

r d
q

u d
.  (15.10) 

This value defines the risk neutral conditional probability measure. 
 
As an example of its application in option pricing, let us consider that we want to 

study a European call option of maturity T = 1 and exercise price K bought at time 0. 
 
It follows that at time 1 or at the end of the maturity, the value of the option will 

be given by the random variable: 

( (1),0) max 0, (1) .C S S K   (15.11) 

We calculate the price of the option at time 0 with a maturity period of value 1 as 
the conditional expectation under the risk neutral conditional probability measure, 
denoted 

0 1, 0( ,1)J JC S , of the present value of the gain at time 1:  

0 1 0 1

0 1 0 1 0 1 0 1 0 1

1
, 0 0 1

1
0 0

( ,1) max 0, (1) ,

max 0, (1 )max 0, .

J J J J

J J J J J J J J J J

C S E r S K J J

r q u S K q d S K
 (15.12) 

2) Knowledge of 0J  

Let us begin to see what the martingale condition becomes. 
 
We have: 

0 0 0 1 0 0 0(1) , (1) , , , .E S J S E E S J J S J S  (15.13) 

As the assumption of AOA is now satisfied for the conditioning with 0J  and 1J , 
we can write that 

0 10 0 0 0 0(1) , , ,J JE S J S E r S J S   (15.14) 

and so: 

0 10, 0 0 0 0(1) , , ,J JE S J S S E r J S  (15.15) 
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and finally: 

00, 0 0(1) , JE S J S S   (15.16) 

where: 

0 0 0
1

m

J J j J j
j

p r .  (15.17) 

These last two formulae show that, given, at time 0, the initial environment state, 
the AOA is still valid with risk neutral interest 

0 0
1 ,J J   (15.18) 

or 

0 0 0
1

,
m

J J j J j
j

p   (15.19) 

with 
0J jr  given by relation (15.5) which is perfectly coherent as relation (15.19) 

represents the conditional mean of the non-risky interest rate given 0J . 
3) No environment knowledge 

In this last case, the investor merely observes the initial value of the stock 0S  as 
in the CRR or the Black and Scholes models. As above, we can calculate the 
expectation of S(1) as follows: 

0 0 0(1) (1) ,E S S E E S J S  (15.20) 

and from relation (15.16): 

00 0 0(1) .JE S S S E S   (15.21) 

As, from relation (15.17), we obtain: 

0 0
1 1

.
m m

J i ij ij
i j

E S a p r ,  (15.22) 
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it follows that the AOA is still true in this case with a non-risky interest rate 
defined by: 

1 1
1 .

m m

i ij ij
i j

a p r   (15.23) 

From this last relation and relation (15.19), we obtain 

i
1 1 1

1 1

1

(1 )

    

    .

m m m

i ij ij
i i j

m m

i ij ij
i j

m

i i
i

a a p

a p

a

  (15.24) 

Once more, these last two relations show the perfect coherence concerning the 
non-risky interest rates to be used with regard to the three environment information 
sets we can have. 

15.1.1.2. Calculational option pricing formula for the one-period model 

In the preceding section, relation (15.12) gives the value of a call option at time 0 
given the initial and final environment states 0J  and 1J . We now calculate the price 
of the option, firstly with only the knowledge at time 0 of the initial environment 
state 0J , then with only the knowledge of the final state 1J  and finally with no 
knowledge of the initial and final states: 

1) with the knowledge of 0J  

This value, denoted by 
0 0( ,1)JC S , is nothing other than the conditional 

expectation of 
0 1 0( ,1)J JC S  given 0J : 

0 0 10 0 0 0( ,1) ( ,1) , ,J J JC S E C S J S  (15.25) 

or 

0 0 00 0
1

( ,1) ( ,1).
m

J J j J j
j

C S p C S   (15.26) 
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2) with the knowledge of 1J  

Let 0( ,1)jC S  represent the value of the call, in this case when 1J j ; we have: 

0 0 1 0
1

( ,1) ( ,1)
m

j
ij

i

C S P J i J j C S . (15.27) 

From the Bayes formula, we obtain: 

0 1
0 1

1

1

,

                         i ij
m

k kj
k

P J i J j
P J i J j

P J j

a p

a p

 (15.28) 

and so, from relation (15.27): 

0 0
1

1

( ,1) ( ,1).
m

i ijj
ijm

i
k kj

k

a p
C S C S

a p
  (15.29) 

Let us note that this case is useful if the investor wants to anticipate the final 
value of the environment state at time 0. 

3) with no knowledge of 0J  and 1J  

In this case, with the help of relation (15.26), we can write that the call value 
represented by 0( ,1)C S  is given by: 

0 0
1

( ,1) ( ,1),
m

i i
i

C S a C S   (15.30) 

or with the help of relation (15.29) by: 

0 0
1 1

( ,1) ( ,0).
m m

j
k kj

j k

C S a p C S   (15.31) 

15.1.1.3. Examples 

The application of our one-period model is already useful with only two or three 
states. Indeed, it is quite natural to consider one state, for example, state 0 to model 
the normal economic and financial environment; then we can add a supplementary 
state –1 to represent an abnormal situation like a crash or a doped situation. 
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With three states, we can separate the crash possibility represented by state –1 
from the doped situation represented by state 1, state 0 always being the normal 
case. 

Example 15.1 A two-state model 

As stated just above, let the state set be: 

0,1I   (15.32) 

with state 0 as the normal economic and financial situation environment and state 1 
as the exceptional in the sense of, for example, a crash or doped situation. 

 
Numerical data are the following: 

(0.95,0.05),
0.98 0.02 1.03 1.05

, ,
0.60 0.4 1.05 1.03

1.3 1.1. 0.7 0.5
, .

1.06 1.2 0.4 0.6

a

P

U D

 (15.33) 

Example 15.2 A three-state model 

Here, let the state set be: 

1,0,1 .I   (15.34) 

State 0 represents the normal economic and financial situation environment, state 
–1 the exceptionally bad situation in the sense of, for example, a crash situation and 
state 1 as exceptionally good as a doped effect of the Stock Exchange, for example. 

 
Numerical data are the following: 

(0.05,0.90,0.05),
0.6 0.3 0.1 1.05 1.03 10.2

0.02 0.96 0.02 , 1.05 1.03 10.2 ,
0.6 0.35 0.05 1.06 1.04 10.3

1.07 1.10 1.20 0.5 0.7 0.8
1.07 1.10 1.20 , 0.6 0.7 0.8
1.07 1.09 1.15 0.65 0.7 0.8

a

P

U D .

 (15.35) 
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For both examples, we will consider a European call option with 
0S 100 and K 80 and 95.  

 
Results are given in Table 15.1. 
 

S 100           
K 95           
            

Example 1            
            

transition A1 a2 a3 p(ij) r(ij) u(ij) d(ij) q(ij) Cij(100,1) Ci(100,1) C(100,1) 
            

0 to 0 0.95 0.05  0.98 1.03 1.3 0.7 0.55 2.6699 2.7038  
0 to 1    0.02 1.05 1.1 0.5 0.9167 4.3651   

            
1 to 0    0.6 1.05 1.06 0.4 0.9848 4.6898 4.2054  
1 to 1    0.4 1.03 1.2 0.6 0.7167 3.4790   

           2.7789 
Example 2            

            
 0.05 0.9 0.05         
            

bad to bad    0.6 1.05 1.07 0.5 0.9649 4.5948 4.2280  
bad to normal    0.3 1.03 1.1 0.7 0.825 4.0049   
bad to good    0.1 1.02 1.2 0.8 0.55 2.6961   

            
normal to bad    0.02 1.05 1.07 0.6 0.9574 4.5594 4.3275  

normal to 
normal    0.96 1.03 1.07 0.7 0.8919 4.3296   

normal to good    0.02 1.02 1.07 0.8 0.8148 3.9942   
            

good to bad    0.6 1.02 1.2 0.65 0.6727 3.2977 3.2361  
good to normal    0.35 1.02 1.2 0.7 0.64 3.1373   
good to good    0.05 1.03 1.15 0.8 0.6571 3.1900   

           4.2679 

Table 15.1. European call option examples 
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15.1.2. The multi-period discrete Markov chain model 

Let us now consider a multi-period model over the time interval 0, n , n being 
an integer larger than 1, always under the assumption of absence of arbitrage. 

 
To obtain useful results, we will still follow the fundamental presentation of the 

CRR model (Cox, Rubinstein (1985)) but adapted for our Markov environment in 
such a way that tractable results may be found: 

1) result with knowledge of 0 ,..., nJ J  

Let us begin with a discrete time model with n periods and suppose that given 
0 0,..., , (0)nJ J S S  with 0 , ,nJ i J j  the up and down parameters, the non-

risky interest rate and the probabilities of an up movement for each period are the 
same for all periods and given respectively by , ,ij ij iju d r  and ijq . 

 
Then, the asset value S(n) at time n is given by: 

0 1 1 0( )
n nj j j jS n V V S   (15.36) 

where the conditional distributions of the random variables V are defined as: 

1

with probability

with probability

   ,
, .

   1- ,n n

ij ij
J J

ij ij

u q
V i j I

d q
 (15.37) 

Moreover, we suppose that, for each n, the random variables 
0 1 1

,...,
n nJ J J JV V  are 

conditionally independent given 0 ,..., nJ J . 
 
If the random variable nM  represents the total number of up movements on 

0,n , the asset value at time n is given by: 

0( ) ( ) ( )n nM n M
ij ijS n u d S   (15.38) 

and consequently: 

0

( )ln ln ( )ln .n ij n ij
S n

M u n M d
S

 (15.39) 
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Given 0 0 0,..., , (0)n nJ j J j S S , the conditional distribution of nM  is a 
binomial distribution with parameters ( , )ijn q . It follows that: 

0 0 0
0

( )ln ,..., , (0) ( ln (1 )ln )n n ij ij ij ij
S nE J j J j S S n q u q d
S

. (15.40) 

Concerning the conditional variance, we obtain: 

2

0 0 0
0

( )var ln ,..., , (0) (1 ) ln .ij
n n ij ij

ij

uS n J j J j S S n q q
S d

 (15.41) 

Choosing now for the up probability on the n periods, the risk neutral probability 
given by relation (15.10): 

1 1

1

1 1

ij ij
ij

ij ij

r d
q

u d
,  (15.42) 

it is clear that, under our assumptions, for each n, given 0 0,..., , (0)nJ J S S  with 
0 , ,nJ i J j  we have a CRR model, so that their results recalled in the beginning  

of this chapter concerning the European call are valid. Consequently, we obtain the 
value of the European call with exercise price and maturity n as the present value of 
the expectation of the “gain” at time n under the risk neutral measure, that is: 

0 0 1

0
0

( ,0 , ,..., )

1 (1 ) max .

n

n
k n k k n k
ij ij ij ijn

kij

C S J i J J j

n
q q u d S K

k
 (15.43) 

After some calculation, we can obtain the following expression (see Cox and 
Rubinstein (1985)): 

0 0 1

0

( , , ,..., )

( ; , ' ) ( ; , ),  if ,

0                                                 if ,

n

ij ij ij ij ijn
ij

ij

C S n J i J J j

KS B a n q B a n q a n

a n

 (15.44) 
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where ( ; , )B x m  is the value of the complementary binomial distribution function 
complementary with parameters ,m at point x  and 

0ln( / )
1 ,

ln( / )

' .

n
ij

ij
ij ij

ij
ij ij

ij

K d S
a

u d

u
q q

r

  (15.45) 

Result (15.44) can be seen as the discrete time extension of the Black and 
Scholes formula given the environment: 

0 0,..., , (0)nJ i J j S S .  (15.46) 

2) result with knowledge of 0J i  

If we only know the initial state of the environment 0J i , it is clear that the 
value of the call is given by 

( )
0 0

1
( , ) ( , )

m
n

i ij ij
j

C S n p C S n   (15.47) 

where, of course: 

( ) .n n
ijp P   (15.48) 

3) result with knowledge of nJ j  

Proceeding as in the previous section, the use of the Bayes formula provides the 
following result, now on n periods instead of one: 

0
0

( )

( )

0

,

                          

n
n

n

n
i ij

m
n

k kj
k

P J i J j
P J i J j

P J j

a p

a p

 (15.49) 
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and so the value of the call given nJ =j, represented by 0( , )jC S n , is given by: 

( )

0 0
( )1

0

( , ) ( , ).
nm

i ijj
ijm

ni
k kj

k

a p
C S n C S n

a p
 (15.50) 

4) result with no environment knowledge 

Finally, if we have no knowledge on the initial environment state but know its 
probability distribution given by (15.1), the value of the call denoted 0( , )C S n is 
given by 

0 0
1

( , ) ( , )
m

i i
i

C S n a C S n   (15.51) 

or by 

( )
0 0

1 1
( , ) ( , ).

m m
n j

k kj
j k

C S n a p C S n  (15.52) 

15.1.3. The multi-period discrete Markov chain limit model 

To construct our continuous time model on the time interval [0,t], let us begin to 
consider a multi-period discrete Markov chain model with n periods, where each 
period has length h so that we have equidistant observations at time 0,h,2h,...,nh 
with /n t h . 

 
We also assume that in the approximated discrete time model, the environment 

process is a homogenous ergodic Markov chain defined by relations (15.1) and 
(15.2) and that (see Cox and Rubinstein (1985)), for each n, given 

0 0,..., , (0)nJ J S S  with 0 , ,nJ i J j  we select, in each subinterval 
,( 1)kh k h , the following up and down parameters: 

1 1

1

, ,

1 1 ,
2 2

ij ij

k k k k

k k

t t
n n

j j j j

ij
j j

ij

u e d e

t
q

n

  (15.53) 
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thus depending on the two m m  non-negative matrices: 

,ij ij .  (15.54) 

From relations (15.40) and (15.41), it follows that, for all n: 

0 0 0
0

( )ln ,..., , (0) ,n n ij
S nE J j J j S S t
S

 (15.55) 

2
0 0 0

0

( )var ln ,..., , (0) .n n ij
S n J j J j S S t
S

 (15.56) 

As our conditioning implies that we can follow the reasoning of Cox and 
Rubinstein (1985), we know that, for n : 

2

0

( )ln ( , ),ij ij
S t

N t t
S

   (15.57) 

where j0 = i as the initial environment state observed at t = 0 and j the environment 
state at time t. 
 

Concerning the non-risky interest rates, we also suppose that, for all i and j, there 
exists 1ij  such that the new return rate for all the periods ,( 1) )kh k h , 

denoted îjr , for n , satisfies the following condition: 

ˆ(1 ) (1 )n t
ij ijr r .  (15.58) 

Now let 0( , )ijC S n represent the value at time 0 of a European call option with 
maturity n and exercise price K. 

 
Using the proof of the Black and Scholes formula given by Cox and Rubinstein 

(1985)) but with our parameters depending on all on the environment states i and j, 
we obtain under conditions (15.53) and (15.58), for fixed t: 

0 0( , ) ( , )ij ijC S n C S t   (15.59) 
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where: 

0 0 1 ,2

0
1

,1

,2 ,1

( , ) ( ) ( ),

ln
1 ,
2

.

t t

t

t

t
ij ij ij ij

ij
ij ij

ij

ij ij ij

C S t S d Kr d

S
Kr

d t
t

d d t

 (15.60) 

This result gives the value of the call at time 0 with i as the initial environment 
state and j as the environment state observed at time t, represented from now by tJ . 

 
If we want to use the traditional notation in the Black and Scholes (1973) 

framework, we can define the instantaneous interest rate intensity ij  such that: 

ij
ijr e   (15.61) 

so that the preceding formula (15.60) now becomes: 

0 0 1 ,2

2

,1

,2 ,1

( , ) ( ) ( ),

1 ln ,
2

.

ij

t t t

t

t

t
ij ij ij

ij
ij ij

ij

ij ij ij

C S t S d Ke d

Sd t
Kt

d d t

 (15.62) 

15.1.4. The extension of the Black-Scholes pricing formula with Markov 
environment: the Janssen-Manca formula  

The last result (15.62) gives a first extension of the Black and Scholes formula in 
continuous time from the knowledge of the initial and final environment states, 
respectively 0J  and tJ  where tJ  represents, as stated above, the state of the 
environment at time t. 

 
Now, always with the assumption that the Markov chain with matrix P is 

ergodic, we can extend results (15.44), (15.50) and (15.52) valid for our discrete 
multi-period model to our continuous time model, thus giving the following main 
result. 
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Proposition 15.1 (Janssen and Manca (1999)) 

Under the assumption that the Markov chain of matrix P of the environment 
process is ergodic and given that the initial environment state i I  and the 
environment state at time t is j I , the non-risky rate is given by ij  and the 
annual volatility by ij , then we have the following results concerning the 
European call price at time 0 with exercise price K and maturity t: 

(1) with knowledge of state 0 , tJ i J j , the call value is given by result 
(15.62), 

(2) with knowledge of state 0J i , the call value represented by 0( , )iC S t  is 
given by: 

0 0
1

( , ) ( , ),
m

i j ij
j

C S t C S t   (15.63) 

(3) with knowledge of state tJ j , the call value represented by 0( , )jC S t  is 
given by: 

0 0
1

( , ) ( , ),
m

j
i ij

i

C S t a C S t   (15.64) 

(4) without any environment knowledge, the call value represented by 0( , )C S t  
is given by: 

0 0
1

( , ) ( , )
m

i i
i

C S t a C S t   (15.65) 

or 

0 0
1

( , ) ( , )
m

j
j

j

C S t C S t .  (15.66) 

Proof Result (1) is proved in the previous section. 
 

Result (2) follows from relation (15.47), letting n go to  and then using 
result (1) and the assumption of ergodicity on the environment matrix chain P. 

 
Result (3) can easily be deduced from result (2) and relation (15.50). 
 
Finally, result (4) follows immediately from relations (15.51) or (15.52) and 

results (2) and (3).   
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Example  

Examples 15.1 and 15.2 of the preceding section are covered in Table 15.2 
where “?” means “unknown”. 

 
Example 1     

K 80  K 80 
S 100  S 100 

0 to 0   0 to 0  
 t Cij(100,t) t Cij(100,t) 
 0.25 22.18 0.25 11.84 
 0.5 24.87 0.5 15.69 
 0.75 27.24 0.75 18.7 
 1 29.35 1 21.26 
     

1 to 0 0.25 22.01 0.25 11.18 
 0.5 24.54 0.5 14.86 
 0.75 26.83 0.75 17.8 
 1 28.91 1 20.32 
     

? to 1 0.25 21.57 0.25 10.17 
 0.5 23.64 0.5 13.42 
 0.75 25.61 0.75 16.03 
 1 27.43 1 18.29 
     

? to ? 0.25 22.11 0.25 11.31 
 0.5 24.35 0.5 14.54 
 0.75 26.58 0.75 17.43 
 1 28.62 1 19.93 

Table 15.2. Janssen Manca option model results 

In conclusion, the Janssen-Manca approach gives for the first time a new family 
of Black and Scholes formulae taking into account the economic and social 
environment showing that: 

– a “good” extension of the traditional Cox Rubinstein model is possible; 
– the model also extends the Black and Scholes model; 
– numerical results are possible. 
 
Moreover, as the Janssen-Manca formulae are linear combinations of the 

traditional Black-Scholes results, the Greek parameters can also be calculated and 
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will be linear combinations of the Greek parameters given in section 14.6 and 
similarly for hedging coefficients. 

We also add that, from our point of view, one of the main potential applications of 
our new model concerns the possibility of obtaining a new way of using the Black and 
Scholes formula with information related to the economic, financial and even political 
environment, provided it can be modeled by an ergodic homogenous Markov chain. 

 
This model also provides the possibility of taking into account anticipations 

made by the investors in such a way as to incorporate them in their own option 
pricing and can also be used for models with financial crashes as well as to construct 
scenarios, and particularly in the case of stress in a VaR type approach. 

15.2. The extension of the Black-Scholes pricing formula with a semi-Markov 
environment: the Janssen-Manca-Volpe formula (Janssen and Manca (2007)) 

15.2.1. Introduction 

In this section, we present the semi-Markov (SM) extension of the Black and 
Scholes formula to the Janssen-Manca-Volpe model to eliminate one of the 
restrictions of the Black and Scholes model, that is, the assumption of constant 
volatility over time. 

 
There have been many attempts to slacken this condition, as for example in the 

model of Hull and White (1985) where the concept of stochastic volatility is 
introduced, but to our knowledge, in practice, no generalized model really supplants 
the traditional Black and Scholes model. 

 
Whilst comparing the Markovian Janssen-Manca model of the preceding section, 

we developed another type of model. More precisely, we present new semi-Markov 
models for the evolution of the volatility of the underlying asset. 

 
In fact, the SM model presented here assumes a type of SM evolution for the 

volatility of an initial Black-Scholes model presented at the ETH Zurich (1995) by 
Janssen, and in a different approach by E. Çinlar at the First Euro-Japanese meeting 
on Insurance, Finance and Reliability held in Brussels in 1998 which led to a 
generalization of the traditional Black and Scholes formula for the pricing of 
European calls with easy numerical applications. 
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15.2.2. The Janssen-Manca-Çinlar model 

The semi-Markov extension of the Black and Scholes model assumes a type of 
SM evolution for the volatility of an initial Black and Scholes model presented by 
Janssen (1995) and, more recently, in a different approach by Çinlar (1998). 

Hereby, we present Janssen’s initial model which is similar to the presentation of 
Çinlar, however he provides the formula for the pricing of a call option using the 
Markov renewal theory. 

15.2.2.1. The JMC (Janssen-Manca-Çinlar) semi-Markov model (1995, 1998) 

Let us consider a two-dimensional positive (J-X) process of kernel Q with state 
space: 

1,..., .I m   (15.67) 

This means that on the probability space , ,P , we define the three-
dimensional process 

, ( , ) , 0n n nJ X n   (15.68) 

with: 

,( , ) ,n n nJ I X   (15.69) 

such that: 

1

, , , ( , ) , 0.1..... 1

( , ), . .
n

n n n k k k

J j

P X x J j J X k n

Q x p s
 (15.70) 

We know that the , ,ijQ i j I  can be written in the following form: 

( , ) ( , )ij ij ijQ x p F x   (15.71) 

where: 

1, 1,ij n k np P J j J k n J i , (15.72) 

1( , ) , ( ,( , )), 1, .ij n n k k k nF x P X x J X k n J i  (15.73) 
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We also introduce the following r.v.: 

1

( )

, 0,
( ) sup : , 0,
( ) , 0.

n n

n

N t

T X X n

N t n T t t

Z t J t

  (15.74) 

As usual, the transition probability for the process ( ), 0Z Z t T  is designed 
by: 

( ) ( ) ( )ij t P Z t j Z t i   (15.75) 

and the stochastic processes ( ( ), ),( ( ), )N t t Z t t  are respectively the 
Markov renewal counting and the semi-Markov processes. 

 
To give the financial interpretation of our model, let us define on the probability 

space , , P , the following filtration ( , )t t , 

(( , ( , )), ( )).t n n nJ X n N t   (15.76) 

Given t , let us consider the random time interval ( ) ( ) 1,N t N tT T  on which we 
define the new stochastic process ( ( ), )S t t , representing the value of the 
considered financial asset, as the solution of the stochastic differential equation: 

( ) ( ) 1 ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) ( ) 1

( ) ( )

' ( ' ), ' , , 
( ')
(  )  ( -),

N t N t N t N t J JN t N tJ J J J N t N t N t

N t N t

dS dt dW t T t T T
S t
S T S T

(15.77) 

where process 
( ) ( ) 1

( ( '), ' 0)
J JN t N t

W t t  is a standard Brownian motion on 

( ) ( ) 1,N t N tT T  defined on the basic probability space stochastically independent on 

( ) ( ),N t N tJ X . 

 
This model has the following financial interpretation: at t = 0, the asset starts 

from the known initial value 0S , with the known initial j-state 0J  representing the 
state of the initial economic and financial environment. On the time interval 1X , the 
asset has the random volatility 1  and has as stochastic dynamics the SDE (15.77) 
with t = 0; at time 1X , the J process has a transition to state 1J and on the time 
interval 1 2,T T , the asset has the random volatility 2  and has as stochastic 
dynamics the SDE (15.77) with N(t) = 1, etc. 
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We always define 0 0,  a.s.X  
 
So, it is now clear that we have in fact a disrupted Black and Scholes model due 

to this random change of volatility; note that this model is quite general as, in fact, 
we have a random volatility on each time interval ( ) ( ) 1,N t N tT T . 

 
Of course, for m = 1, we recover the traditional Black-Scholes-Samuelson model 

for the description of an asset. 

15.2.2.2. The explicit expression of S(t) 

Given ( ) ( ) 1,N t N tJ J , the Itô calculus gives the solution of the SDE (15.77): 

2
( ) ( ) 1

( ) ( ) 1
( )( ) ( ) 1

'
2 ( ' )

( )

( ) ( ) 1

 ( ') ,

' , .

J JN t N t
J JN t N t

J J N tN t N t

t
W t T

N t

N t N t

S t S e e

t T T

 (15.78) 

Starting from state 0S  at time 0 and given a scenario for the economic and 
financial environment 0 1( , , ..., , ...)nJ J J , this expression gives the explicit form of 
the trajectories of the process ( ( ), 0).S t t  

 
Now, given ( 0 0 1 1 ( ) ( ) ( ) 1 ( ) 1, , , , ..., , , ,N t N t N t N tJ X J X J X J X ), from relation 

(15.78), we obtain: 

( ) ( ) 1

( ) ( ) 1 ( ) ( ) 1

2

( )
( )

( ) ( ) 1

( ') ln = ) ' ' ,
2

' , ,

J JN t N t

N t N t N t N tJ J J J N t
N t

N t N t

S t t W t T
S

t T T

 (15.79) 

so that for ( ) ( ) 1' ,N t N tt T T : 

( ) ( ) 1

( ) ( ) 1

( ) ( ) 1

2

( )
( )

2
( )

( ') ln ( ' ),  
2

( ' ).

J JN t N t

N t N t

N t N t

J J N t
N t

J J N t

S t N t T
S

t T

 (15.80) 

, ( )( ) ( ) 1 ( ' )
( ) 1

( )

( ) , ,J J N tN t N t t T
t N t

N t

S tE J e
S

 (15.81) 
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2
, ( ) ( )( ) ( ) 1 ( ) ( ) 12 ( ' )  ( ' )

( ) 1
( )

( )var , 1J J N t J J N tN t N t N t N tt T t T
t N t

N t

S t J e e
S

. (15.82) 

Let us suppose that the random variables  

0 0 1 1 ( ) ( ) 1 ( ) 1, , , , ..., , ,N t N t N tS J X J J X J  

are given; it follows that the conditional distribution function of 
0

( )S t
S

 is a 

lognormal distribution, i.e.: 

0 1 ( ) ( ) 1 ( ) ( ) 10 1

0

2 2
1 ( ) 1 ( )

( )ln

( ), ( ) .
N t N t J J N t N tJ J J J N t J J N t

S t
S

N X t T X t T

 (15.83) 

15.2.3. Call option pricing 

Now to obtain a useful model, let us proceed as in Janssen and Manca (1999); 
for a fixed t, we assume that all the parameters ,  only depend on 

0 ( ) ( ) 1, ,N t N tJ J J , and t is represented by  

0 ( ) ( ) 1 0 ( ) ( ) 1
,

N t N t N t N tJ J J J J J   (15.84) 

so that from relation (15.83): 

0 ( ) ( ) 1 0 ( ) ( ) 1 0 ( ) ( ) 1

2 2

0

( ) 1ln , .
2N t N t N t N t N t N tJ J J J J J J J J

S t N t t
S

 (15.85) 

Of course, we can always simplify our basic assumption by suppressing the 
dependence with respect to ( ) 1N tJ  and even to ( )N tJ . 

 
Nevertheless, we think that the dependence from the future environment state 
( ) 1N tJ  is quite important as it gives for the first time the possibility of modeling the 

stochastic asset evolution taking into account this anticipation of the next future 
state. 

 
Let us now consider a European call option with t as the maturity time, and K as 

the exercise price that we must price at time 0. 
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If we want to assume that there is no arbitrage possibility, we must impose that  

0 ( ) ( ) 1 0 ( ) ( ) 1N t N t N t N tJ J J J J J   (15.86) 

where 
0 ( ) ( ) 1N t N tJ J J  represents the equivalent instantaneous non-risky return on [0,t] 

given 0 ( ) ( ) 1, ,N t N tJ J J . Doing so, we will use the risk-neutral measure under which 

the forward value of the asset is a martingale, otherwise we work with the initial 
“physical” measure more appropriate for insurance than for finance. 
 

Knowing 0 ( ) ( ) 1, ,N t N tJ J J  and working with the risk neutral measure, we can 
calculate the value of the call at time 0 using the traditional Black and Scholes 
formula: 

0 ( ) ( ) 1 0 ( ) ( ) 1 0 ( ) ( ) 1 0 ( ) ( ) 1

0 ( ) ( ) 1

0 ( ) ( ) 1 0 ( ) ( ) 1

0 ( ) ( ) 1

0 ( ) ( ) 1 0 ( ) ( ) 1 0

0 0 ,1 ,2

0
1

,1

,2 ,1

( , ) ( ) ( ),

ln
1 ,
2

N t N t N t N t N t N t N t N t

N t N t

N t N t N t N t

N t N t

N t N t N t N t

t
J J J J J J J J J J J J

J J J
J J J J J J

J J J

J J J J J J J J

C S t S d Kr d

S
Kr

d t
t

d d
( ) ( ) 1

0 ( ) ( ) 1

0 ( ) ( ) 1

,

.

N t N t

J J JN t N t

N t N t

J

J J J

t

e

 (15.87) 

To obtain the formula of the call only knowing 0 0,S J , we must use the 
following formula: 

0 0 ( ) ( ) 1 0 0 0( ) ( , ) , .
N t N tJ J J JC t E C S t J S  (15.88) 

From the theory of semi-Markov processes, we obtain: 

0 0 ( ) ( ) 1

0 0 0

0 0 0

0

( ) ( , ) , ,

( ) ( ) ( , ).
N t N tJ J J J

J J j jk J jk
j I k I

C t E C S t J S

C t P t p C S t
 (15.89) 

If we have no information about the initial state 0J , we of course obtain the 
following formula: 
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0 0 ( ) ( ) 1 0 0 0( ) ( ) ( , ) , ,

( ) ( ).
N t N tJ J J J

i i
i I

C t E C t E E C S t J S

C t a C t
 (15.90) 

Remark 15.1 Numerical treatments are possible. 

15.2.4. Stationary option pricing formula 

In option pricing, it is nonsense to let t tend towards ; nevertheless, we can 
use the limit reasoning proposed by Janssen by supposing that on the time horizon 
[0,t], the semi-Markov environment has more and more transitions in this finite time 
period. 

 
We can model this situation under the assumption that the conditional sojourn 

time means that , ,ijb i j I  satisfy the conditions 

,

1

 0,

,
ij ij

ij n n n

b

b E X J i J j
  (15.91) 

so that: 

, ,

.

i ij ij ij ij i
j I j I

i ij ij
j I

p b p i I

p
 (15.92) 

From the asymptotic theory of semi-Markov processes, we know that: 

( ) ( ) 10

1

lim , , , ,i jk jk
N t N t m

l l
l

p
P J j J k i j I  (15.93) 

where the vector 1 ,..., m  is the unique stationary distribution of the embedded 
Markov chain of matrix P assumed to be ergodic. 
 

The new parameters ,  , ,jk i j k I  represent factors expressing the 
proportionality of the sojourn in each environment state. 

 
Now result (15.89) becomes: 
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0 0 0

1

( ) ( , ).j jk jk
J J jkm

j I
l l

l

p
C t C S t

k I
 (15.94) 

From (15.90), we obtain 

0

1

( ) ( , ).j jk jk
i ijkm

i I j I
l l

l

p
C t a C S t

k I
 (15.95) 

This last formula replaces the Black and Scholes formula without any a priori 
information at time 0 except of course the initial value of the asset 0S . 

 
In conclusion, the new model proposed here extends the traditional Black and 

Scholes formula in the case of the existence of an economic and financial 
environment modeled with a homogenous semi-Markov process taking into account 
this environment not only at the time of pricing but also before and after the 
maturity date. 

 
This new family of Black and Scholes formulae seems to be more adapted to the 

reality, particularly when taking into account the anticipations of the investor or the 
consideration of stress scenario in the philosophy of the VaR approach. 

15.3. Markov and semi-Markov option pricing models with arbitrage 
possibility  

The aim of this last part is the presentation of new models for option pricing, 
discrete in time and within the framework of Markov and semi-Markov processes as 
an alternative to the traditional Cox-Rubinstein model and giving arbitrage 
possibilities. Both cases of European and American options are considered and 
possible extensions are given. 

15.3.1. Introduction 

Let us consider an asset observed on a discrete time scale  

0,1,..., , ... ,t T T   (15.96) 

having S(t) as market value at time t. To model the basic stochastic process 
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(S(t), t = 0,1,...,T),  (15.97) 

we suppose that the asset has known minimal and maximal values so that the set of 
all possible values is the closed interval min max[ , ]S S  partitioned in a subset of m 
subclasses. 

For example, if S0 is the value of the asset at time 0, we can put: 

max min
0

0

0

max min

,
2

, 1,..., ,
, 1,..., ,

,
2

k

k

S S
S

S S k k
S S k k

S S

  (15.98) 

 being arbitrarily chosen. 
 
This implies that the total number of states is 2 1. In the following, we will 

order these states in the natural increasing order and use the following notation for 
the state space: 

{ , ( 1),...,0,1,..., }.I   (15.99) 

We can also introduce different step lengths following up or down movements 
and so consider respectively , '.  

 
It is also possible to let  

maxS   (15.100) 

and 

T   (15.101) 

particularly to obtain good approximation results. 
 
Let us suppose we want to study a call option of maturity T and exercise price 

K= 0k  in both European and American cases bought at time 0. 
 
So, in the European case, the intrinsic value of the option is given by: 

( ) max{0, ( ) }.C T S T K   (15.102) 
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For the American case, the optimal time for exercising is given by the random 
time  such that: 

1,...,
max max{0, } max{0, ).tt T

S K S K  (15.103) 

To obtain results, we must now introduce in the following section a stochastic 
model for the S-process. 

15.3.2. The homogenous Markov model for the underlying asset 

Let us suppose that we are working on the filtered probability space 
( , , ( ) )t P . 

 
In our first model, we will suppose that the underlying asset S is a homogenous 

Markov chain with matrix: 

ijpP   (15.104) 

on the state space I given by relation (15.99). 
 
It follows that, at time t, given the knowledge of the asset value ( ) tS t S , the 

market value of the option at time t, C(t), thus with a remaining maturity T-t and 
exercise price K given by 0 ,K k  has as the probability distribution: 

0

( )
0 , 0

( )
,

( ( ) ( ) ) , ,

( ( ) 0) .

T t
S j

T t
S j

l k

P C T j k p j k

P C T p
 (15.105) 

This result gives the possibility to calculate all interesting parameters concerning 
C. For example, the mean of C(t) has the value: 

0

( )
, 0( ( ) ( ) ) ( ) .T t

t S j
l k

E C T S t S p l k
 (15.106) 

Of course, we have to calculate the present value at time t with the non-risky unit 
period interest rate r so that the value of the call at time t is given by: 

0

( )
, 0( ) ( ( ) ( ) ) ( ) ,

1 .
1

T t T t T t
t S j

l k

C t v E C T S t S v p l k

v
r

 (15.107) 
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If matrix P is ergodic, then if T-t is large enough, results (15.105) and (15.106) 
can be well approximated by: 

0

0

0

0 0

0

0

0

( ( ) ( ) ) , ,

( ( ) 0) , ,

( ( ) ( ) ) ( ) ,

( ) ( ) .

j

l
l k

t j
l k

T t
j

l k

P C T j k j k

P C T j k

E C T S t S l k

C t v l k
 (15.108) 

Of course, the vector 

0( ,..., ,..., )   (15.109) 

is the steady-state vector related to the matrix P. 

15.3.3. Particular cases 

As we stated in our introduction, our homogenous Markov model contains as a 
very special case the famous CRR binomial model but with fixed minimal and 
maximal values. It suffices to select a Markov matrix P with the structure 

* * 0 0 0 0 0 0
* 0 * 0 0 0 0 0
0 * 0 * 0 0 0 0
0 0 * 0 0 0 0 0

0 0 0 0 0 * 0 0
0 0 0 0 * 0 * 0
0 0 0 0 0 * 0 *
0 0 0 0 0 0 * *

  (15.110) 

and as the Cox-Rubinstein model has a multiplicative form, we can consider that: 

0 0

0 0

( 1) , 1, ,
(1 ) , 1, .
u S u S S

d S d S S
  (15.111) 

Remark 15.2 Under (15.100), matrix P has an infinite number of rows and columns. 
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We can also obtain the trinomial model if we put in (15.110) a non-zero main 
diagonal, etc. 

15.3.4. Numerical example for the Markov model 

To numerically illustrate our first model, let us suppose that we are interested in 
an asset whose possible values are restricted to the following ones: 

– maximum value: state 3 = 1,650; 
– intermediary values: state 2 = 1,600, state 1 = 1,550, state 0 = 1,500; 
– state –1 = 1,450, state –2 = 1,400; 
– minimum value: state –3 = 1,350. 
 
With the used notation, this means that 0 1,500, 50.S  Moreover, we also 

suppose that the transition matrix P, with the week as unit step, is given by 

1 1 1 1 0 0 0
6 3 3 6
1 1 1 1 1 0 0
3 6 6 6 6
1 2 1 1 1 1 0
7 7 7 7 7 7

1 1 10 0 0 0
2 4 4
2 3 1 10 0 0
7 7 7 7
1 2 2 1 10 0
7 7 7 7 7

1 1 1 10 0 0
2 4 8 8

  (15.112) 

It is easily seen that matrix P is ergodic with as unique stationary distribution: 

(0.10002, 0.13336, 0.27228, 0.23737, 0.16927, 0.07539, 0.01231). 

Then, starting at time 0 in state 1,500 with a maturity time of 16 weeks, the 
asymptotic value of the European call option expectation with 1,500 as exercise 
price is 41.95 and the call value at time 0 is 41.328.  

Table 15.3 gives option expectations and option values with different exercise 
prices.  
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Exercise price Option expectation Option value 
1,350 174.106 171.512 
1,400 124.721 122.826 
1,450 79.1059 77.927 
1,500 41.9538 41.328 
1,550 16.6704 16.422 
1,600 5.00113 4.927 
1,650 0 0 

 
Table 15.3. Markov option calculation 

Let us now consider the transient behavior, meaning that we will consider the 
maturity as a parameter expressed in n weeks. Table 15.4, gives option expectations, 
Table 15.5 option values with as exercise price 1,500 and for different maturity 
times from 1 to 16 weeks.  

 

 STATE 
n -3 -2 -1 0 1 2 3 
1 75.00 75.00 57.14 25.00 14.29 7.14 0.00 
2 60.71 53.57 46.93 38.39 30.10 20.41 16.96 
3 50.02 48.40 43.39 40.60 37.08 31.61 31.39 
4 45.70 44.92 42.79 41.11 39.61 37.39 37.44 
5 43.70 43.30 42.35 41.57 40.84 39.87 39.81 
6 42.76 42.58 42.13 41.78 41.45 40.98 40.96 
7 42.33 42.24 42.04 41.87 41.72 41.50 41.50 
8 42.13 42.09 41.99 41.92 41.84 41.75 41.74 
9 42.03 42.02 41.97 41.94 41.90 41.86 41.86 
10 41.99 41.98 41.96 41.95 41.93 41.91 41.91 
11 41.97 41.97 41.96 41.95 41.94 41.93 41.93 
12 41.96 41.96 41.96 41.95 41.95 41.94 41.94 
13 41.96 41.96 41.95 41.95 41.95 41.95 41.95 
14 41.96 41.96 41.95 41.95 41.95 41.95 41.95 
15 41.95 41.95 41.95 41.95 41.95 41.95 41.95 
16 41.95 41.95 41.95 41.95 41.95 41.95 41.95 

Table 15.4. Option expectation 
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 STATE 
n –3 –2 –1 0 1 2 3 
1 70.93 74.93 57.09 24.98 14.27 7.14 0.00 
2 60.60 53.47 46.85 38.32 30.05 20.37 16.93 
3 49.88 48.27 43.26 40.48 36.98 31.53 31.31 
4 45.53 44.75 42.63 40.26 39.45 37.25 37.30 
5 43.50 43.10 42.15 41.38 40.65 39.68 39.63 
6 42.22 42.34 41.90 41.54 41.21 40.75 40.73 
7 42.05 41.97 41.76 41.60 41.45 41.23 41.22 
8 41.81 41.77 41.68 41.60 41.53 41.43 41.43 
9 41.68 41.66 41.62 41.58 41.55 41.51 41.50 

10 41.60 41.59 41.57 41.55 41.54 41.52 41.52 
11 41.54 41.54 41.53 41.52 41.51 41.50 41.50 
12 41.49 41.49 41.49 41.48 41.48 41.47 41.47 
13 41.45 41.45 41.45 41.44 41.44 41.44 41.44 
14 41.41 41.41 41.41 41.41 41.41 41.41 41.40 
15 41.37 41.37 41.37 41.37 41.37 41.37 41.37 
16 41.33 41.33 41.33 41.33 41.33 41.33 41.33 

Table 15.5. Option value 

15.3.5. The continuous time homogenous semi-Markov model for the underlying 
asset 

With the generalization of electronic trading systems, it seems more adaptive to 
construct a time continuous model for which the changes in the values of the 
underlying process may depend on the time it remained unchanged before a transition. 

 
Also, let  

(( , ) 0,1,...)n nS T n   (15.113) 

be the successive states and time changes of the considered asset. 
 
The Janssen-Manca semi-Markov continuous model without AOA starts from 

the basic assumption that process (15.113) is a semi-Markov process of kernel Q. 
 
It follows that, at time t in state S(t) = St, the market value of the considered 

European option with maturity T – t has as probability distribution at maturity time  
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0

0 0

0

( ( ) ( )) ( ), ,

( ( ) 0) ( ), .
t

t

S j

S j
l K

P C T j k T t j k

P C T T t j k  (15.114) 

Of course, matrix ( )t  represents the transition probabilities for the considered 
semi-Markov process (see  relation (12.101)). 

 
This result gives the possibility to calculate all interesting parameters concerning 

C. For example, the mean of C(T) has the value: 

0

0( ( ) ( ) ) ( )( ) .
tt S j

j k

E C T S t S T t j k  (15.115) 

The pricing of the option at time t is here given by the conditional market value C(t): 

0

0( , ) ( )( )
t

T t
t S j

j k

C S t v T t j k  (15.116) 

which is the Janssen-Manca-Di Biase formula for the considered semi-Markov model. 
 

If the semi-Markov process is ergodic, then, if (T – t) is large enough, results 
(15.114) can be well approximated by: 

0

0 0

0

( ( ) ( )) , ,

( ( ) 0) , .
j

l
l K

P C T j k j k

P C T j k   (15.117) 

The stationary version of the Janssen-Manca-Di Biase formula is thus given by 

0

0( , ) ( ) .
t

T t
t j S j

j k

C S t v j k  (15.118) 

Of course the vector 1( , ..., )m  is the asymptotic distribution of the embedded 
semi-Markov process given by relation (12.15) . 
 

Formally the evaluation of assets is continuous, but substantially is given in the 
discrete case; furthermore, the numerical solution of a continuous time semi-Markov 
process causes problems of numerical and stochastic convergence. For these 
reasons, it may be useful to deal with our problem with the discrete time 
homogenous semi-Markov process as introduced in Janssen and Manca (2007). 
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15.3.6. Numerical example for the semi-Markov model 

We will only provide a numerical example for the semi-Markov model in the 
asymptotic case, i.e. values of the option expectation and of the options for large 
maturities. 

We merely need as supplementary information, the conditional mean sojourn 
times given by relations (12.25). The used values are given by the following matrix 

: 

1 1 1 2 1 1 1
2 2

1 11 1 2 1 1
4 4

12 1 1 2 2 1
2
1 11 1 1 1 1
2 2

1 11 1 1 2 1
2 2

1 11 1 2 1 2
2 2
1 1 11 1 1 1
2 3 3

.  (15.119) 

In this case, the asymptotic distribution for the semi-Markov process is: 

(0.09487, 0.12650, 0.38238, 0.15352, 0.15013, 0.08358, 0.00902). 

Then, starting at time 0 in state 1,500, the asymptotic value of the call option 
expectation with 1,500 as the exercise price is 46 and the call value is 45.315. 

 
The following table gives option expectations and option values with different 

exercise prices. 
 

Exercise price Option expectation Option value 
1,350 178.78 176.119 
1,400 129.234 127.308 
1,450 83.8638 82.614 
1,500 46.0002 45.315 
1,550 15.8126 15.577 
1,600 4.74378 4.673 
1,650 0 0 

Table 15.6. Semi-Markov option calculation 
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15.3.7. Conclusion 

The JMD models presented here provide a semi-Markov approach for the pricing 
of option financial products working in discrete time and with a finite number of 
possible values for the imbedded asset, which is always the case from the numerical 
point of view. 

 
The main interest of these models is that they work even when there are 

possibilities of arbitrage, that is to say, for the most common cases. Of course, one 
of the main difficulties in applying this model is the fitting of the needed data and 
this is only of interest in the case of asymmetric information so that the economic 
agent can believe in his own information, knowing that he will always be in a risky 
situation to expect gain but still worried about the possibility of losing as in the case 
of a real life situation! 

 
It is also important to point out that the numerical examples are coherent; 

nevertheless, there are significant differences according to the model used, Markov 
or semi-Markov, so that it is very important to select the most concrete one.  



Chapter 16 

Interest Rate Stochastic Models – 
Application to the Bond Pricing Problem 

This chapter first presents some basic definitions on bond investments and 
interest rates. The second part is devoted to the two basic interest rate stochastic 
models: the Ornstein-Uhlenbeck-Vasicek (OUV) and the Cox-Ingersoll-Ross (CIR). 

 
In the third part, we use these two models to describe the stochastic dynamics of 

zero-bonds applied to the pricing problem of bonds. 

16.1. The bond investments 

16.1.1. Introduction 

A bond of nominal value P with coupons of value C and of maturity date s+S 
gives the right for the investor buying this bond at time s, to receive the coupon 
value C at times 1, 2, ,s s s S  and the nominal value P at time s+S. 

 
In the following, a will represent the cost of this investment at time s, in general 

fixed by the bond market of the Stock exchange. 
 
It follows that the successive cash flows of this investment are given by: 
– at times s,s+1,…, st+S-1: the coupon value C; 
– at time s+S: the amount P+C. 
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If A(t,T) ( )s t s S  represents at time t the value of the bond issuing at time 
t+T, the main problem is to evaluate its fair value in view of comparing it to the 
proposed market value at time t. 

 
A zero-bond, an investment made for example at time s and of maturity date 

s+S, is a very simple investment for which it is paid the sum P(s,S) at time s in view 
of receiving €1 at the maturity date s+S. 

 
Thus, we can calculate the value of the above bond A(t,T) with the following 

formula: 

( , ) ( ,1) ( ,2) ... ( , 1) ( , ) .A t T P t C P t C P t T C P t T C P  (16.1) 

16.1.2. Yield curve 

It is well known that the interest rate for a deposit at time t depends not only on 
this time t but also on its maturity T, so that this annual rate can be written as i(t,T).  

 
For a fixed time t, the graph of the function ( , )T i t T  represents the yield 

curve a time t and generally has the following form 

 

Given this curve, we obtain the following value for a zero-bond: 

( , ) (1 ( , )) TP t T i t T   (16.2) 

and using formula (16.1) for different bonds of different maturity times, we can 
calculate the values of the zero-bonds according to the market values of the observed 
bonds. 

 
Example 16.1 Let us consider the case of T=2 and let us suppose we have two bonds, 
the first with a coupon of 5.2%, with 100 as nominal value and with 1 as maturity, the 
second with a coupon of 5.6%, with 100 as nominal value and with 2 as maturity. The 
market values of these two bonds at time T are respectively of 100 and 102. 
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Using formula (16.1) twice, we obtain: 
– 100 = P(t,1)(5.2 + 100); 
– 102 = P(t,1)5.6 +P(t,2)(5.6 + 100). 
 
From the first equation, we obtain P(t,1) 

100( ,1) ( 0.950570)
105.2

P t   (16.3) 

and then from the second, the value of P(t,2): 

102 0.950570 5.6( , 2) ( 0.915228).
105.6

P t  (16.4) 

Consequently, the yield rates for one and two years are given by:  

1

1
2

( ,1) 0.950570 1 5.2%,

( ,2) 0.915228 1 4.53%.

i t

i t

 (16.5) 

Let us point out that, in this example, there is a phenomenon of inversion of the 
yield curve as the yield for a maturity of two years is smaller than the yield for a 
maturity of one year. 

 
Of course, in practice, this method needs a bond market liquid enough to have all 

the data available for all maturities, and moreover a statistical treatment with the 
least squares method can be used to improve the method. 

16.1.3. Yield to maturity for a financial investment and for a bond 

Let us consider a financial investment of present value C generating the 
following financial flow:  

, 1,..., .j jF F t j n   (16.6) 

The yield to maturity is the constant discount rate or actuarial rate, the i(F) 
solution of the polynomial equation: 

1
1 ( ) .j

n
t

j
j

C i F F   (16.7) 
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Using the traditional Newton interpolation with the nominal or coupon rate as 
initial value, this solution is easily given. 

 
For the particular case of a bond of subscription price A at time t and maturity 

time t+T, and with coupon value C and nominal value P, the corresponding financial 
flow is given by: 

– at times t+1,...,t+T-1: payment of the coupon C; 
– at time t+T: payment of the coupon C, and of the nominal value. 
 
Equation (16.1) or (16.7) becomes: 

1 2

( 1) ( )

( , ) 1 ( ) 1 ( ) ...

1 ( ) 1 ( ) .t T t T

A t T i F C i F C

i F C i F C P
 (16.8) 

It is clear that the yield to maturity i(F) is also a function of t and T. 

16.2. Dynamic deterministic continuous time model for instantaneous interest 
rate 

16.2.1. Instantaneous interest rate 

In this section, we recall briefly some basic concepts fully described in section 
3.7 using a discrete time model for the financial flows and the interest rates. 

 
Now, we will use the traditional deterministic continuous time model (DCTM) 

for an investment on [t,t+T] of amount C(t) at time t producing a continuous yield of 
rate r(s;t,T)  at time s. 

 
So, we see that this rate depends of t and T and on the “small” time 

interval , ,s s s t t T , one monetary unit at time t produces at the end of 
the interval a yield of value ( ; , )r s t T s . This rate is called the continuous time 
instantaneous rate or, in short, the instantaneous rate for an investment at time t and 
of maturity time t+T. 

 
Let C(s) be the capitalization value of C(t) at time ,s s t . 
 
From the definition of the instantaneous rate, it is clear that: 

( ) ( ) ( ; , ) ( )C s s C s r s t T C s s . (16.9) 
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With traditional limit reasoning, we obtain the following relation: 

( ) ( ; , )
( )

C s r s t T
C s

  (16.10) 

and by integration: 

( ; , )
( ) ( )

t s

t
r u t T du

C s C t e   (16.11) 

In particular, at maturity, we obtain: 

( ; , )
( ) ( )

t T

t
r u t T du

C t T C t e   (16.12) 

16.2.2. Particular cases 

As r is a function of three variables, it is useful to distinguish the four following 
cases: 

a) stationarity in time: r does not depend on t:  
r(s;t,T) = r(s;T), 

b) stationarity in maturity : r does not depend on T: 
r(s;t,T)=r(s;t), 

c) stationarity in time and in maturity: r does not depend both on t and T:  
r(s;t,T) = r(s), 

d) constant case: r is independent of the three considered variables:  
r(s;t,T) = . 

 
For the last case, we get back the well known result of section 3.7: 

TeCtC )0()( . 

16.2.3. Yield curve associated with instantaneous interest rate 

For the preceding section, we know that for an investment of €1 at time t and of 
maturity time t+T, the capitalization value at maturity is given by 

( ; , )
t T

t

r u t T du

e
  (16.13) 
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Using the yield curve ( , ), 0T i t T T , for a fixed t, corresponding to this 
investment for which i(t,T) represents the corresponding annual interest rate on 
[t,t+T] given the same capitalization values as (16.13), we obtain:  

( ; , )

1 ( , )

t T

t

r u t T du
Ti t T e   (16.14) 

and so: 

1 ( ; , )

( , ) 1

t T

t

r u t T du
Ti t T e   (16.15) 

The constant instantaneous rate ( , )t T on [t,t+T] corresponding to this yield 
curve is defined as follows: 

( , ) ( ; , )
t T t T

t t

t T du r u t T du

e e  

or 
( ; , )

( , )

t T

t

r u t T du
t T Te e  (16.16) 

i.e.:  

1( , ) ( ; , )
t T

t
t T r u t T du

T
   

16.2.4. Examples of theoretical models 

1) Constant case 

For r(s,t;T)= , relation (16.16) gives for the yield curve of the traditional case 
of deterministic traditional finance: 

1

( , ) 1
or
( , ) 1

t T

t

du
Ti t T e

i t T e

  (16.17) 
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From this last relation, we obtain:  

ln(1 )i   (16.18) 

2) Deterministic Ornstein-Uhlenbeck-Vasicek model (1973), (Janssen and Janssen 
(1996))  

Starting from the following relation: 

( ) ( ) ( ( )) , 0, 0r t t r t a b r t t t t  (16.19) 

we obtain for 0t the following differential equation: 

( ) ( ( ))dr t a b r t dt   (16.20) 

for which the general solution is given by:  

( ) atr t b Ke   (16.21) 

With the initial condition: 

0(0)r r  

where 0r  is the observed instantaneous rate or spot rate observed at t=0, the 
constant K can be calculated to find the following unique solution: 

0( ) atr t b r b e   (16.22) 

or 

0( ) 1at atr t r e b e   (16.23) 

So, the function r is a linear convex combination of 0r  and parameter b. 
 
To find the economic-financial significance of this last parameter, it suffices to 

let t  to see that: 

lim ( )
t

b r t   (16.24) 

which is the anticipated value of the long term spot rate. 
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To see what the other parameter represents, we obtain from relation (16.23): 

0( ) atr t ae r b   (16.25) 

and so the sign of the derivative function of r is those of a if 0r b  or of –a if 
0r b , and moreover: 

0(0)r a r b   (16.26) 

In conclusion, if 0r b , function r is strictly increasing, starting from 0r  at t=0 
and tending towards b for large t; on the other hand, if 0r b , function r is strictly 
decreasing, starting from 0r  at t=0 and tending towards b for large t. 

 
In the two cases the absolute value of the slope at t=0 is an increasing function 

of a; this means that the convergence is faster for large values of a than for small 
values. This is why parameter a is often called the convergence parameter. 

 
The frontier case 0r b  gives the very special case of a flat yield curve. 
 
To obtain the yield curve corresponding to the instantaneous rate given by 

relation (16.23), it suffices to substitute the value of r in relation (16.15); this 
calculation (see Janssen and Janssen (1996)) gives the following result: 

0 ( 1)
(0, ) 1

aTb r
b e

bTi T e   (16.27) 

More generally, starting from t with 0r  as in initial rate, this last formula 
becomes 

0 ( 1)
( , ) 1

aTb r
b e

bTi t T e   (16.28) 

So, we see that we have a stationary model, as on ,t t T  there is no influence 
of time t. 

16.3. Stochastic continuous time dynamic model for instantaneous interest rate 

In finance, it is well known that the future values of the rates are uncertain as 
there is a large influence from many financial and economic parameters, also 
depending on political factors.  
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It follows that deterministic models are unsatisfactory and so the new discipline 
of mathematical finance called “stochastic finance” was born from the results of 
Samuelson (1965), Black, Merton and Scholes (1973).  

 
In this section, we will present the three most important stochastic models used 

in practice: the Ornstein-Uhlenbeck-Vasicek (OUV) model, the Cox, Ingersoll and 
Ross (CIR) model and the Heath, Jarrow and Morton (HJM) model. 

 
The first two models are related to the instantaneous rate or spot rate, and the last 

starts from the yield curve at time 0 to model this entire yield curve at time t. 
 
Other models are possible; for example the Brennan and Schwartz model 

considers two rates: the spot and the long term rates both modeled with a system of 
two SDEs. 

16.3.1. The OUV stochastic model 

16.3.1.1. The model 

As usual, we consider a complete filtered probability space , , ,t P  on 
which all the defined stochastic processes will be adapted, in particular, the 
following standard Brownian motion. 

 
The considered OUV model starts with the following stochastic dynamic for the 

spot rate process ( ), 0r r t t   

0

( ) ( ( )) ( )
(0) .

dr t a b r t dt dB t
r r

  (16.29) 

This means that r is a special diffusion process extending the deterministic OUV 
case depending on four parameters: 0, , ,a b r , assumed to be constant and known. 

 
Using Itô’s calculus, it is possible to show (see Appendix to this chapter) that the 

unique solution of this SDE is given by: 

0
0

( ) ( )
t

at at asr t b r b e e e dB s  (16.30) 
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Indeed, if we differentiate this function, we obtain: 

0
0

( ) ( ) ( )
t

at at as at atdr t a r b e a e e dB s e e dB s
 

and as 

0
0

0 0

( ) ( )

( ) ( ) ( )

t
at at as

at at

r t b r b e e e dB s

dr t a r b e a r t b r b e dB t  

and so: 

( ) ( - ( )) ( )dr t a b r t dt dB t  

16.3.1.2. Model and parameters interpretation  

From result (16.30) and the traditional rules of Itô differentiation seen in Chapter 
4, we obtain the mean of r(t): 

0( ) ( ) atm t E r t b r b e   (16.31) 

So this mean is nothing other than the value of r in the deterministic OUV model 
and moreover m(t) tends towards b for t . 

 
Consequently, the interpretation of the parameter b is the same as in the 

deterministic case that is the anticipated spot rate for long term. 
 
Concerning the variance of r(t), we still use Itô differentiation: 

0

var ( ) var ( )
t

at asr t e e dB s   (16.32) 

So: 

2 2 2

0

var ( ) ( )
t

at asr t e e dB s   (16.33) 

and finally: 
2

2var ( ) 1
2

atr t e
a

  (16.34) 
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Results (16.31) and (16.34) show that the financial and economic interpretations 
of parameters a and b are identical as in the deterministic OUV model but also that 
the key parameter here is 

2

2a
  (16.35) 

as indeed, it represents the value of the asymptotic variance of r(t) as t tends to , 
and moreover this asymptotic variance is a linear function of . 
 

So, this variance is smaller for a weakly volatile market and larger for a market 
with large volatility, in conformity with n empirical studies. 

 
Parameter a has an opposite effect: large (small) values of a give smaller (larger) 

values of the variance of r(t). 
 
To conclude, we see that: 
(i) the variance of r(t) is increasing with time, confirming the fact that the 

uncertainty on the rate values increases with time; 
(ii) the larger parameter , called volatility, is, the greater the impact of 

randomness; 
(iii) the larger parameter a, called convergence parameter, is, greater the 

convergence of the spot rate towards b. 

16.3.1.3. Marginal distribution of r(t), fixed t 

To calculate the distribution of r(t), for all fixed t, it suffices from relation via 
relation (16.30) to calculate one of the r.v. of X(t) defined by: 

0

( ) ( )
t

asX t e dB s .  (16.36) 

Coming back to the definition of stochastic integral given in Chapter 13, let us 
consider a sequence of subdivisions of [0,t]: 

0 0 0,..., , 0, , .n n nt t t t t n
 

Then we know that 

1
00

( ) lim ( ) ( ) ,i

n

t n
atas

i i
i

e dB s e B t B t  (16.37) 
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n  being the norm of subdivision n  and using the uniform convergence in 
probability. 
 

However, from the properties of the standard Brownian motion (see Chapter 10), 
we know that for each such subdivision, the distribution of the sum 

1
0

( ) ( )i

n
at

i i
i

e B t B t   (16.38) 

is normal with zero mean and with variance 

1

1
0

( )i

n
at

i i
i

e t t .  (16.39) 

As 0 , this variance converges to 

2
2

0

1var( ( )) ( )
2

t at
as e

X t e ds .  (16.40) 

As 
2 1( ) (0, )

2

ateX t N , we obtain from results (16.30), (16.31) and (16.33) 

that  

2
2

0( ) , 1
2

at atr t N b r b e e
a

. (16.41) 

16.3.1.4. Confidence interval for r(t), fixed t. 

From result (16.41), we can easily give a confidence interval at level 1 , for 
example with 5% . Indeed, if  is a quantile of a r.v. (0,1)X N  such that: 

1P X ,  (16.42) 

we obtain 

0

2

( )
[ ] 1

1
2

at

at

r t b r b e
P

e
a

. (16.43) 
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Consequently, the confidence interval at level 1  is given by 

2
0

2
0

1 1 ,
2
1 1

2

at at

at at

b r b e e
a

b r b e e
a

 (16.44) 

From relation (16.15), we also find a confidence interval at level 1  for i(t,T) 
given by: 

2 2
0 0

0 0

1 1
1 1

2 21 ( , ) 1.
as asT T

T aTe eb r b rds dsb e b e
T a T aaT aTe e i t T e e  (16.45) 

As the length of the half interval for r(t) quickly tends 
2a

 for T , we 

obtain approximatively: 

0 00 0

1 11 1
2 21 ( , ) 1,

T Tas as as asr e e b ds r e e b ds
T Ta ae i t T e  (16.46) 

and finally: 

0 01 1
2 21 ( , ) 1.

aT aTb r b rb e b e
a aaT aTe e i t T e e  (16.47) 

In particular, if the basic coefficient 
2a

 is such that: 

1,
2a

  (16.48) 

we have with a probability near to 1   

0 1
1 ( , )

aTb rb e
aTe i t T   (16.49) 

and so with condition (16.48), we see that the deterministic OUV model is a good 
approximation of the stochastic model. 
 



654     Mathematical Finance 

More precisely, we have: 

0 01 1

2 2

1 ( , ) ,

, ( 1/ ).

aT aTb r b rb e b e
aT aT

a a

me i t T Me

m e M e m  

The following table gives some numerical values for m and M. 
 
1-    a coefficient  coefficient m M 

0.05 1.960 0.1 0.1 0.2236 0.01118 0.989 1.011 

0.025 2.241 0.2 1.1 0.1348 0.00337 0.997 1.003 

0.05 1.960 0.1 5 0.0316 0.00158 0.998 1.002 

0.025 2.241 0.2 5 0.0632 0.00158 0.998 1.002 

16.3.1.5. Monte Carlo simulation method 

From the result (16.30) and the definition of the stochastic integral, we obtain the 
following approximation 

0 1
0

( ) ( ) ( ) ,i

n
atat at

i i
i

r t b r b e e e B t B t   (16.50) 

corresponding to the following subdivision of the interval [0,t] 

0

0

,..., ,
0, .

n n

n

t t

t t t
  (16.51) 

To obtain a simulation of a sample path for the r-process on [0,T], it suffices to 
simulate a sample path  of the standard Brownian process ( ), 0B t t  giving 
the observed values 

0 0( , ), ,..., , 0,i i n nB t t t t t t T  (16.52) 

from which we deduce the observed values for the r-process given by: 

0 1
1

0 0

( , ) ( ) ( , ) ( , ) ,
.

,..., , 0,

i i i

n
at at at

i i i
i

i n n

r t b r b e e e B t B t

t t t t t T

 (16.53) 
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16.3.2. The CIR model (1985) 

16.3.2.1. The model 

In 1985, Cox, Ingersoll and Ross presented a new model for the temporal 
structure of interest rates for which the inconvenience of having negative values, as 
is the case for the OUV model, were dropped. 

 
To obtain the model, the authors introduced a factor ( )r t  in the coefficient of 

dB, which is why their model is also called the square root model. 
 
The stochastic differential equation governing this model is the following one: 

0

( ) ( ( )) ( ) ( ),
(0) .

dr t a b r t dt r t dB t
r r

 (16.54) 

with the same assumptions as in the OUV model. 

16.3.2.2. Model and parameters interpretation 

Now, we have a non-linear stochastic differential equation, but as the spirit of 
this model is the same for the OUV model as for 0 , we still obtain the 
deterministic OUV model. 

16.3.2.3. Marginal distribution of r(t), fixed t  

This non-linearity implies that there does not exist a simple “explicit” form of 
the solution of problem (3.26); nevertheless, the authors obtained the following 
explicit form of the conditional density function of r(t), giving r(s) (s<t):  

2
( )

2 ( )

( )

2

( , ( ) ) (2 ),

2 ,
(1 )

, ,
2 1.

q

K u v
q

a t s

a t s

vf y t r s x Ke I uv
u

aK
e

u Kxe v Ky
abq

 (16.55) 
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qI  being the modified Bessel function of second kind of order q defined as the 
following convergent series: 

2

0

2

0

2( ) ,
! ( 1)

2( )
! ( 1)

n k

n
k

n k

n
k

x

I x
k n k

x

I x
k n k

  (16.56) 

n being a positive natural number and  the usual Eulerian function of the second 
kind.  

 
From result (16.55), it is possible to obtain the following expressions for the 

conditional mean and variance of r(t):  

( ) ( )

2 2
( ) 2 ( ) ( ) 2

( ) ( ) (1 ),

var ( ) ( ) ( ) (1 ) .
2

a t s a t s

a t s a t s a t s

E r t r s x xe b e

r t r s x x e e b e
a a

 (16.57) 

Remark 16.1 These last results immediately give the asymptotic forms of the mean 
and the variances as follows: 

2

lim ( ) ( )

var ( ) ( ) .
2

t
E r t r s x b

r t r s x b
a

  (16.58) 

These results show that the interpretation of the two parameters a and b is the 
same as the OUV models, and we see that the conditional variance is inversely 
proportional to a. 

 
Let us also point out that for 0a , we obtain for fixed t: 

2

( ) ( ) ,

var ( ) ( ) ( ).

E r t r s x x

r t r s x x t s
 (16.59) 
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Remark 16.2 The authors show that:  
(i) if 22 ,ab  then the solution of the SDE (16.54) never becomes zero 

starting with a strictly positive value at time 0; 
(ii) if 22 ,ab  then it is possible that the spot rate takes on a 0 value but it will 

never take negative values as it could be for the OUV model.  

16.3.2.4. Confidence interval for r(t), fixed t 

As the conditional distribution of r(t) is given by result (16.55), it is possible to 
construct a confidence interval for this spot rate at time t. 

 
Moreover, asymptotically, the authors proved that: 

1

2 2

lim ( , ( ) ) ,
( )

2 2, .

y

t
f y t r s x y e

a ab
 (16.60) 

Of course, this last result gives results (16.58) for the asymptotic mean and 
variances. 
 

From the practical point of view, it is seen that the bounds of the confidence 
interval for fixed t, quickly converge to the bounds of the asymptotic one. 

16.3.2.5. Monte Carlo simulation method 

As for the preceding model, the simulation of trajectories of the r-process is done 
with time discretization of the stochastic differential equation (16.54) with a fixed 
partition of [0,t]: 

0

0

,..., ,
0, ,

n n

n

t t

t t t
  (16.61) 

often with equal subintervals of length t/n. 
 

This leads to the following non-linear system: 

1 1

1

0 0 0

( , ) ( , ) ( ( , )( )

( , ( , ) ( , ) ,

(0) , ,..., , 0, .

i i i i i

i i i

i n n

r t r t a b r t t t

r t B t B t

r r t t t t t T

. (16.62) 
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This system being recursive is easily solved and so we obtain the following 
simulated trajectory:  

0 1( , ( , ),..., ( , ),..., ( , )).i nr r t r t r t   (16.63) 

16.3.3. The HJM model (1992) 

16.3.3.1. Motivation 

This model starts from a quite different point of view than the two preceding 
models as the authors want to model the entire yield curve starting with the “actual” 
given yield curve, that is, at time 0. 

 
Their general result is overall theoretical, and it provides two particular models 

known as the Ho and Lee and the generalized Vasicek model. 

16.3.3.2. The forward rates 

Let f(t,s) (t<s) be the instantaneous forward rate at time t, which will be 
attributed at time s. 

 
This means that on the future interval ( , )s s s , the attributed yield will be 

approximatively ( , )f t s s . 
 
Under our AOA assumption, the investment of one monetary unit on [0,s] must 

produce the same yield as an investment of one monetary unit on [0,t] followed by 
the investment of the capitalized value at time t on the time interval [t,s]; so we must 
have the following relation: 

0 0
( ) ( , ) ( )t s s

t
r u du f t u du r u due e e ,  (16.64) 

or 

( , ) ( ) ( 1/ ( , ))
s s

t t
f t u du r u due e P t s , (16.65) 

P(t,s) being the value of a zero coupon at time t of time maturity s years and r the 
instantaneous continuous rate function. 
 

This last relation is equivalent to: 

( , ) ln ( , ),
s

t
f t u du P t s   (16.66) 



Interest Rate Stochastic Models     659 

or still by derivation: 

ln( , ) ( , ).P
f t s t s

s
  (16.67) 

Relation (16.67) also gives the forward value of a zero-coupon, as usual without 
default risk, calculated at t=0 

( , )
( , ) .

T

t

f t u du
P t T e   (16.68) 

The instantaneous continuous rate r(t) is given by 

( ) lim ( , ) ( , )
T t

r t f t T f t t   (16.69) 

assuming that function f is continuous. 
 

Let us also recall the following links with the yield curve i, i(t,s) being the 
equivalent annual interest rate for an investment of one monetary unit decided at 
time t up to time s. 

( )(1 ( , )) ( , )t si t s P t s .  (16.70) 

From relation (16.67), we also obtain: 

( )( , ) ln(1 ( , )) ,

( , ) ( ) ln(1 ( , )).

t sf t s i t s
s

f t s t s i t s
  (16.71) 

16.3.3.3. The HJM methodology 

As already pointed out in section 3.3.1, the main idea of the authors is to build a 
stochastic model for the forward instantaneous rate curve at time t, (0, ), 0f T T  
given at time 0, and the observable forward instantaneous rate curve (0, ), 0f T T . 

 
From the preceding section, we now know that: 

( , )
( , )

T

t

f t u du
P t T e   (16.72) 

and 

ln( , ) ( , ).P
f t s t s

s
  (16.73) 
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We assume that the stochastic dynamics of the zero-coupon is governed by the 
following SDE 

( , ) ( , ) ( , ) ( , ) ( , ) ( )dP t T t T P t T dt t T P t T dB t , (16.74) 

B being a standard Brownian motion in the considered complete filtered probability 
space. 

 
From Itô’s formula, we obtain: 

2 ( , )( , ) ( ( , )) ( ( , ) ( ),
2
t T

df t T t T dt t T dB t
T T

 (16.75) 

a relation representing the SDE for the stochastic dynamics of the process f(t,T),T>t. 
 

Remark 16.3 From relation (16.69), we know that 

*

( ) ( , ),
or

     ( *, ) ( , ), ( * ).
t

t

r t f t t

f t t df s t t t

  (16.76) 

assuming that at time t*, the values f(t*,t) are known for all *.t t  
 
Using relation (16.75), we obtain: 

* *

( ) ( *, ) [ ( , ) ( , ) ( , )] ( ( , ) ( ),
t t

t t

r t f t t s t s t t s ds t s dB s
t t T

 (16.77) 

The calculation of the Itô differential of r (see Wilmott (2000)) gives: 

2
2

2
*

2 2

2 2
*

( *, ) ( , )

( , ) ( , )[ ( , ) ( , ) ( ) ( )

( , ) ( , )) [ ( )

s t
t

s tt
t

t

f t t t s
t s

s t t sdr s t s t dt dB t
t st

s t s t
ds dB s

t t

. (16.78) 
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We give this result to observe that the last coefficient of dt depends on all the 
past processes from t* up to time t, and so dynamics no longer defines a Markov 
process. 

 
This is a serious complication for the HJM model as an infinite number of 

variables are needed to solve this equation. That is why we can only consider 
particular cases. 

 
Under the risk-neutral measure Q, we know that the volatility still remains 

identical and the trend is the riskless instantaneous interest rate m(t), so that: 

( , ) ( , ) ( , ) ( ),

( , ) ( , ),

(0, ) *(0, )

df t T m t T dt t T dB t

t T t T
T

f T f T

  (16.79) 

where f* is the forward rate curve at time 0 and from the Girsanov theorem B  is a 
new standard Brownian motion. 
 

To find the value of the trend under Q, let us start with the drift under the 
historical measure P given in relation (16.75): 

2 ( , )( ( , ))
2
t T

t T
T

  (16.80) 

and as under the risk-neutral measure Q, the drift  of the dynamics of the zero 
coupons is nothing other than r(t), we obtain from the second equality of (16.79) and 
taking into account that ( , ) 0t t , as P(t,t)=1: 

2 ( , )( ( , )) ( , ) ( , ) ( ),
2

                                  ( , ) ( , ) .

T

t
T

t

t T
t T t T t s ds r t

T T

t T t s ds

 (16.81) 

So, under the measure Q, the stochastic dynamics of the HJM model become: 

( , ) ( , ) ( , ) ( ),

( , ) ( , ) ( , ) ,

(0, ) *(0, ).

T

t

df t T t T dt t T dB t

t T t T s T ds

f T f T

  (16.82) 
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where, from the second equality of (16.79): 

( , ) ( , ).t T t T
T

  (16.83) 

Thus, we can now provide the way to obtain the pricing of the zero coupons 
without default risk:  

1) observe the forward instantaneous yield curve of the market at time t=0: 
f*(0,T); 

2) determine the volatility ( , )t T ; 
3) calculate drift ( , )t T  from (16.82); 
4) evaluate the forward instantaneous yield curve at time t under the risk-neutral 

measure:  

0 0

( , ) *(0, ) ( , ) ( , ) ( )
t t

f t T f T s T ds s T dB s  (16.84) 

5) evaluate the instantaneous short term or spot rate at time t under the risk-
neutral measure:  

0 0

( ) ( , ),

     *(0, ) ( , ) ( , ) ( )
t t

r t f t t

f t s t ds s t dB s
; (16.85) 

6) evaluate zero coupons at time t of several maturities T under the risk-neutral 
measure: 

0 0

( , )

  [ *(0, ) ( , ) ( , ) ( )]

( , )

           = .

T

t

T T u T u

t t t

f t s ds

f u du du s u ds du s u dB s

P t T e

e

 (16.86) 

16.3.3.4. Particular cases of the HJM model: the Ho and Lee and generalized 
Vasicek models 

16.3.3.4.1. The Ho and Lee model 

This is the simplest and the most useful model with the very particular 
assumption that the volatility is constant: ( , ) .t T  
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With this assumption, the methodology given above provides many 
simplifications and leads to the following one:  

1) observe the forward instantaneous yield curve of the market at time t=0: 
f*(0,T); 

2) determine the volatility ( , )t T ; 
3) calculate drift ( , )t T  from (3.54): 2( , ) ( )t T T t ; 
4) evaluate the forward instantaneous yield curve at time t under the risk-neutral 

measure:  

0 0

2

( , ) *(0, ) ( , ) ( , ) ( )

          *(0, ) ( )
2

t t

f t T f T s T ds s T dB s

tf T t T B t

; (16.87) 

5) evaluate the instantaneous short term or spot rate at time t under the risk-
neutral measure: 

0 0

2

0 0
2 2

( ) ( , ),

     *(0, ) ( , ) ( , ) ( )

     *(0, ) ( ) ( )

     *(0, ) ( )
2

t t

t t

r t f t t

f t s t ds s t dB s

f t t s ds dB s

t
f t B t

; (16.88) 

6) evaluate zero coupons at time t of several maturities T under the risk-neutral 
measure: 

2

2

( , )

  [ *(0, ) ( ) ]
2

( )*(0, ) ( )( )
2

( , )

           

          

T

t

T T T

t t t

T

t

f t s ds

tf s ds t s ds B t ds

Tt T tf s ds B t T t

P t T e

e

e

. (16.89) 
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From (16.87), we immediately obtain: 

(i)
2

2( , ) (0, ) ,
2 2

tf t T N f T t T t  (16.90) 

showing that, in the Vasicek model, negative values for f could be observed; 

(ii)
2 2

2(0, ) ,
2
tr N f t t   (16.91) 

showing that, in the Vasicek model, negative values for r could be observed; 

(iii) (distribution lognormality of the zero coupons) 

Relation (16.89) leads to: 

P(t,T)

2 ( )*( , ) ( )( )
2

T

t

Tt T tf o s ds B t T t
e , (16.92) 

and so 

2 ( )ln ( , ) *( , ) ( )( )
2

T

t

Tt T t
P t T f o s ds B t T t . (16.93) 

As 

2

2 2

2
2 2

( )ln ( , ) *(0, ) ( )( )
2

( ) ( )*(0, ) ( )( ) *(0, )
2 2

( )var *(0, ) ( )( ) ( ) ,
2

T

t
T T

t t

T

t

Tt T t
P t T f s ds B t T t

Tt T t Tt T t
E f s ds B t T t f s ds

Tt T tf s ds B t T t T t t

 (16.94) 

it follows that: 

2
2 2( )( , ) *(0, ) , ( )

2

T

t

Tt T tP t T LN f s ds T t t ; (16.95) 
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(iv) as 
0

(0, ) *(0, ) , 0,
u

P u f s ds u  we still have that: 

*(0, ) (0, )
(0, )

T

t

f s ds P T
e

P t
  (16.96) 

and thus from relation (3.61), we can write: 

2 ( ) ( )( )
2(0, )( , ) .

(0, )
   

Tt T t B t T tP T
P t T e

P t  (16.97) 

This last result gives the possibility to calculate the forward values of zero 
coupons without the forward instantaneous yield curve of the market at time t=0: 
f*(0,T), and to easily simulate these values. 

16.3.3.4.2. The generalized Vasicek model 

For this model, the volatility is given by: 

( )( , ) k T tt T e   (16.98) 

the volatility tending to 0 as .t T  
 

The general HJM methodology now becomes: 

2
( ) 2 ( )

2
( ) 2 ( ) ( )

2 2
( ) 2 2 ( )

2 2
0

2
2

2

( ) ( , ) ( )

( ) ( , ) [ ( )] ( )

( ) f(t,T)=f*(0,T)- (1 ) (1 ) ( )
2 2

( ) r(t)=f*(0,T) (1 )
2

k T t k T t

k T t k T t k T t

t
k T t kT k T s

kt k

i t T e e
k

ii df t T e e dt e dB t
k

iii e e e dB s
k k

iv e e
k

( )

0

( )
t

t s dB s
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2 ( , ) ( ) ( , )( (0, ) ( ))( , ) 2

( ) 2
2 2 ( ) 2 2

0
2 2 2

( ) 2 2 2
2 2

(0, )( ) ( , ) ,
(0, )

1 1( , ) , ( )
2

( ) f(t,T) N(f*(0,T)- (1 ) (1 )),
2 2

T

t

K t T L t K t T f t r tf t s ds

tk T t kt
k T s kT

k
k T t kT kT

P T
v P t T e e

P t

e e
K t T L t e ds e

t k

e
vi e e e

k k
2 2

2 2
2

1
2

1( ) r(t) (f*(0,T) (1 ) ),
22

( ) ( , ) has a lognormal distribution. 

t

kt
kt

k

e
vii N e

kk
viii P t T

 

Exercise 16.2 For this model, calculate the parameters of the distribution of P(t,T). 
 

Remark 16.4 There are many other rate models. For example, the discrete time Ho 
and Lee model (Ho and Lee (1986) uses a binomial tree and the Hull and White 
model (Hull-White (1996)), uses the following stochastic dynamics for the spot rate: 

( ( ) ) ,
( ) ( ),

( ) 0, ,
0,
0 (volatility),

( ) ( ),   MBS.

r t ar t B
r r t t r t
t t

a

B B t t B t B

  (16.99) 

Let us also mention the Black, Derman and Toy model (Black, Derman and Toy 
(1990)), starting with the following discrete time model for the spot rate: 

ln ( ) ( , ) ( ) ( ).r t r t t t B t   (16.100) 

16.4. Zero-coupon pricing under the assumption of no arbitrage 

In the HJM model, we have introduced the dynamics of the zero coupons; in this 
section, we will do the same in the general case and finally for our two basic models, 
the OUV and CIR models. 



Interest Rate Stochastic Models     667 

16.4.1. Stochastic dynamics of zero-coupons 

As before, let P(t,s)( t<s ) represent at time t the value of a zero-coupon of time 
maturity s, thus, of maturity T=t-s at time t. Let T=s-t so that with our preceding 
notation: 

P(t,s)=P(t,t+T)  (16.101) 

and so 

P(s,s)=1.  (16.102) 

The general problem of the evaluation of zero coupons consists of studying the 
stochastic process P defined on the filtered probability space , , ,t P  as 
follows: 

( , , ), 0, .P P t s t s   (16.103) 

To study this process is equivalent to the study of process R of the equivalent 
instantaneous yields: 

( , , ), 0, ,R R t s t s   (16.104) 

where: 

( ) ( , , )

( , , )

( , , ) ,

             .

s t R t s t

TR t T

P t s e

e
  (16.105) 

Let us repeat that ( , , )R t T  is the equivalent instantaneous rate constant on the 
time interval ,t t T  given by present value, the value of the zero coupon at time 
t, ( , , )P t T . 

 
From this last relation, we can provide the value of R: 

1( , , ) log ( , , ).R t T P t t T
T

 (16.106) 

For the spot rate r, we have: 

lim
T 0

R(t,T , ) r(t, ).   (16.107) 
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The equivalent annual rate is given by: 

( , , ) 1 ( , , ).R t Te i t T   (16.108) 

Let us now assume a general stochastic dynamics for the spot rate process r 
defined by the following SDE:  

( ) ( , ) ( , ) ( ).dr t f r t dt r t dB t   (16.109) 

Observing P also as a function of r, Itô’s formula provides the value of the 
stochastic differential ( , , )dP t s r : 

2
2

2
1( , , ) ( , ) ( , ) ( , ) ( ).
2

P P P P
dP t s r f r t r t dt r t dB t

t r rr
(16.110) 

With 

2
2

2
1 1( , , ) ( , , ),

( , , ) 2

1( , , ) ( , , ),
( , , )

t s r f P t s r
P t s r t r r

t s r P t s r
P t s r r

 (16.111) 

we obtain 

( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( ).dP t s r P t s r t s r dt P t s r t s r dB t  (16.112) 

16.4.2. Application of the no arbitrage principle and risk premium 

Let us study an investor issuing at time t, x zero coupon bonds expiring at time 
1s  and investing y in zero coupon bonds expiring at time 2.s  

 
The value W(t) of this portfolio at time t is given by 

1 2( ) ( , , ) ( , , ).W t xP t s r yP t s r   (16.113) 

From the linearity property of Itô’s formula and from relation (16.112), we 
obtain 

2 2 1 1

2 2 1 1

( ) ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , ) ( ).

dW t yP t s r t s r xP t s r t s r dt

yP t s r t s r xP t s r t s r dB t
 (16.114) 



Interest Rate Stochastic Models     669 

Now, the assumption of AOA has two consequences:  
(i) firstly, we have to cancel the risk component and so the coefficient of dB 

must have a 0 value; 
(ii) then, the instantaneous yield of this portfolio must be, in every time interval 

(t,t+dt), the same as a riskless investment at the spot rate r(t). 
 
Thus, from relation (16.114) we obtain: 

2 2 1 1

2 2 1 1

( , , ) ( , , ) ( , , ) ( , , ) 0,
( , , ) ( , , ) ( , , ) ( , , ) ( ).

yP t s r t s r xP t s r t s r
yP t s r t s r xP t s r t s r rW t

 (16.115) 

Moreover, as the value of W(t) is given by relation (16.113), we obtain the 
following linear system for the two unknown values x and y: 

2 2 1 1

2 2 1 1

( , , ) ( , , ) ( , , ) ( , , ) 0,
( , , ) ( , , ) ( , , ) ( , , ) 0.

yP t s r t s r xP t s r t s r

yP t s r t s r r xP t s r t s r r
 (16.116) 

As this system is homogenous, from Rouchè’s theorem, we know that there 
exists a non-trivial solution, i.e. a solution with at least one value different from 0, if 
and only if the determinant of the system is different from 0. 

 
Thus, the condition to have a financial market is  

1 2

1 2

( , , ) ( , , )
,

( , , ) ( , , )
t s r r t s r r

t s r t s r
  (16.117) 

for all 1,t s  and 2s . 
 

This condition means that the function ( , , )
( , , )

t s r r
t s r

 is independent of s or that 

the function  defined by 

( , , )( , )
( , , )

t s r r
t r

t s r
  (16.118) 

is independent of s. Function  represents the risk premium of the market as the 
difference between the instantaneous yield of the bond and the riskless rate r, 
normed by the volatility value .  
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16.4.3. Partial differential equation for the structure of zero coupons  

Substituting the values of ,  from relations (16.111) into relation (16.118), we 
obtain the following structural partial differential equation (PDE) of zero-coupon 
bonds: 

2
2

2

( , , ) ( , , ) ( ( , ) ( , ) ( , )) ( , , )

1 ( , , ),
2
( , , ) 1.

rP t s r P t s r f r t r t r t P t s r
t r

P t s r
r

P s s r

 (16.119) 

The next proposition gives its solution. 
 

Proposition 16.1 Under the traditional regularity conditions on the coefficients, the 
solution of the structural PDE (16.119) is given, for all t s by: 

21( ) ( , ( ) ( , ( ) ( )
2( , , ) ,

s s s

t t t
t

r d r d r dB
P t s r E e  (16.120) 

where ( ( ), ).t B u u t  
 

Proof If we introduce process V defined by 

21( ) ( , ( ) ( , ( ) ( )
2( ) ,

u u u

t t t

r d r d r dB
V u e  (16.121) 

we can also write: 

( )( ) ,g uV u e   (16.122) 

where 

21( ) ( ) ( , ( ) ( , ( ) ( ),
2

u u u

t t t
g u r d r d r dB  (16.123) 

and so 
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21( ) ( ) ( , ( )) ( , ( ) ( ).
2

dg u r u u r u du u r u dB u  (16.124) 

Using Itô’s calculus rules, we have  

2 21 1( ) ( ) ( ) ( , ( )) ( , ( )
2 2

( ) ( , ( ) ( ).

dV u V u r u u r u u r u du

V u u r u dB u
 (16.125) 

As 

2
2

2
1( , , ) ( , ) ( , ) ( , ) ( ),
2

P P P P
dP t s r f r t r t dt r t dB t

t r rr
(16.126) 

we obtain: 

( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , ( ) ( , ) .Pd P u V u P u dV u V u dP u V u u r u r u du
r

 (16.127) 

Substituting into this last equality dP(u) and dV(u), given by relations (16.125) 
and (16.126), we obtain, after some calculations that: 

2
2

2
1( ) ( )
2

.

P P P
d PV V f rP du

t r r
P

V dB PV dB
r

 (16.128) 

From PDE (16.119), this last equality becomes: 

( ) .P
d PV V dB PV dB

r
  (16.129) 

By integration from t to s (t < s), we obtain: 

( ) ( ) .
s

t

P
PV s PV t V PV dB

r
 (16.130) 

By conditional expectation with respect to t , we find:  
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( , , ) ( ) ( , , ) ( ) ,

                                ,

                                0,

t t

t t

s

t

s

t

P
E P s s r V s P t s r V t E V PV dB

r

P
E V PV dE B

r
 (16.131) 

as B is a SBM. 
 

As we know that P(s,s,r)=1, relation (16.131) gives: 

( ) ( , , ) ( )
t

E V s P t s r V t   (16.132) 

and finally, as V(t) =1: 

( ) ( , , ),
t

E V s P t s r   (16.133) 

that is, relation (16.120) is proved.   

16.4.4. Values of zero coupons without arbitrage opportunity for particular cases 

We will now make use of relation (16.120) to evaluate the risk-neutral value of a 
zero coupon. 

16.4.4.1. The risk premium is 0 

From (16.118), we obtain: 

( , ) ( ), ,t s r t t s   (16.134) 

and from the fundamental result (16.120), we obtain the traditional form of a zero-
coupon value: 

( )( , , ( )) .
s

t
t

r u duP t s r t E e   (16.135) 

If, moreover, the spot rate is deterministic, we obtain the traditional formula: 

( )( , , ( ))
s

t
r u duP t s r t e   (16.136) 

16.4.4.2. Constant premium rate 

Here result (16.120) becomes: 
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21( ) ( ) ( ) ( )
2( , , ) .

s

t
t

r d s t B s B t
P t s r E e  (16.137) 

To provide an interpretation of this result with the introduction of the risk-
neutral measure, let us now introduce Girsanov’s theorem. 

16.4.4.3. Girsanov’s theorem (Gikhman and Skorohod (1980)) 

On , , , 0 ,t t P , let us consider the adapted stochastic process 
( ), 0,f f t t T such that 

2
0

( )  a.s.
T

f s ds   (16.138) 

Then, Girsanov’s theorem introduces to the new stochastic process 
( ), 0,t t T  defined by: 

2
0 0

1( ) exp ( ) ( ) ( )
2

t t
t f s dB s f s ds . (16.139) 

Moreover, process B is a SBM on , , , 0 ,t t P . 
 
Girsanov introduces a new probability measure dependent on f and noted Q=Q(f) 

on , , , 0t t of density (T) with respect to the initial measure P, such 
that: 

( ) ( ).dQ f
T

dP
  (16.140) 

This means that the expectation with respect to the new measure is related to the 
old one with the following relation: 

( ) ( ) ( ) ( , )X dQ f X T dP   

or 

Q PE [ ( ))] E [ ( ) ( , )].X X T (16.141) 

Of course, we also have: 

1( ) ( ) ( , ) .P QE X E X T  (16.142) 
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The result of Girsanov’s theorem is if the following condition is fulfilled: 

( , ) 1,E T   (16.143) 

then the new process 

ˆ ˆ( ), 0,B B t t T   (16.144) 

defined by   

0
ˆ( ) ( ) ( )

t
B t B t f s ds   (16.145)) 

is still a SBM but now on , , , 0 ,t t Q . 
 
Under Novikov’s condition: 

2

0

1exp ( )
2

T
E f s ds   (16.146) 

process  defined by (16.135) satisfies condition (16.143) and so Girsanov’s 
theorem applies. 

16.4.4.4. Neutral risk measure  

Let us recall the stochastic dynamics of the zero coupons is defined by the SDE: 

( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( )dP t s r P t s r t s r dt P t s r t s r dB t  (16.147) 

where 

( , , ) ( ) ( ) ( , , ).t s r r t t t s r   (16.148) 

Let us now introduce the new probability measure Q on , , , 0t t  
defined by: 

2
0 0

1( ) ( ) ( )
2 ( ( )).

s su dB u u dudQ
e T

dP
 (16.149) 

Through Girsanov’s theorem, we know that process ( ), 0,B B u u T  
defined by 
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0

( ) ( ) ( )
u

B u B u v dv   (16.150) 

is also a SBM but now on , , , 0 ,t t Q  such that: 

ˆ ( ) ( ) ( )dB u dB u u du .  (16.151) 

Returning to relation (16.146), we now have: 

( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( ) ( )dP t s r P t s r t s r dt P t s r t s r dB t t dt  (16.152) 

or 

( , , ) ( , , ) ( , , ) ( ) ( , , ) ( )
( , , )

dP t s r
t s r t s r t dt t s r dB t

P t s r
. (16.153) 

From relation (16.148), we also have: 

( , , ) ( ) ( , , ) ( ).
( , , )

dP t s r
r t dt t s r dB t

P t s r
 (16.154) 

From result (16.120) stating that: 

2

0 0 0

1( ) ( , ( ) ( , ( ) ( )
2(0, , ) ,

s s s

t

r d r d r dB
P s r E e  (16.155) 

we obtain from relation (16.149): 

1 2 2( ) ( , ( ) ( , ( ) ( )
20 0 0

0 0

0

1 ( , ( ) ( , ( ) ( )
2

( )

(0, , ) . ,

             .

s ss s s
r d r d r dB

s

r d r dB

Q

r d

Q

P s r E e e

E e

(16.156) 

Thus, under Q, the value of a zero coupon is formally given, as in the particular 
case of 0 , which is why the new measure Q is called the risk-neutral measure. 
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From the Markov property, this last result gives, starting at time t with r(t)=r, as 
the spot rate: 

1 2 2( ) ( , ( ) ( , ( ) ( )
2 0 0

1 ( , ( ) ( , ( ) ( )
2

( )

( , , )

. ,

.

s ss s s
r d r d r dB

t
t t

s

t

t

r d r dB

Q t

r d

Q t

P t s r

E e e

E e

 (16.157) 

16.4.4.5. Examples 

Example 16.1 The OUV process as rate dynamics 

We know that the OUV model is governed by the following SDE:  

0

( ) ( ( )) ( ),
(0) .

tdr t a b r t dt dB t

r r
  (16.158) 

Assuming that the risk premium is constant with value  on [0,t], the risk-
neutral measure given by relation (16.149): 

2
0 0

1( ) ( ) ( )
2 ( ( )),

s su dB u u dudQ
e T

dP
 (16.159) 

becomes: 

21( )
2

B t t
dQ e dP   (16.160) 

and by relation (16.150) 

ˆ ( ) ( ) ( )B u B u u .  (16.161) 

Thus, under measure Q, the stochastic dynamics of process r are defined by the 
following SDE 

0

( ) ( ( )) ( ) ,

(0) ,

dr t a b r t dt dB t dt

r r
 (16.162) 
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or even: 

0

( ) ( ( )) ( ) ,

(0) ,

.

dr t a r t dt dB t dt

r r

b
a

 (16.163) 

On the time interval t, s , under Q, the basic results of section 16.3.1.1 take the 
form: 

2
2

( ) ( ),

( ) ,

var ( ) 1 .
2

s
at at au

t
t

as
Q t

as
Q

r s r e e e dB u

E r s r e

r s e
a

 (16.164) 

For the value of the zero coupon, we obtain from result (16.157):  

( )
( , , ) .

s

t

r d

Q tP t s r E e   (16.165) 

Let us now calculate the value of 0(0, , )P s r . 
 
With 

1( ) ,
aue

u
a

  (16.166) 

the first relation of relation (16.164) becomes: 

( )
0

0

( ) ( ) ( ).
u

au a u vr u r e a u e dB v  (16.167) 

For 

0
(0, ) ( ) ,

s
U s r u du   (16.168) 
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the Fubini theorem and result (16.167) lead to the following result: 

0
0

(0, ) ( ) ( ) ( ) ( ).
u

U s r s s s u dB u  (16.169) 

It follows that the distribution of U(0,s) is normal with parameters given by:  

0(0, ) ( ) ( ) ,E U s r s s   (16.170) 
2

0

2 2
0

var (0, ) ( )) ( ) ,

                   ( ) .

s

s

U s E s u dB u

s u du

 (16.171) 

As  is given by relation (16.166), we obtain: 

22
(

2 0
var (0, ) 1 ) .

s a s uU s e du
a

 (16.172) 

The calculation of this traditional integral leads to: 

2
2

3var (0, ) 2 4 3 .
2

as asU s as e e
a

 (16.173) 

Returning to result (16.165) with t=0, we find that:  

0

0

( )

0 0

( )

(0, )

(0, , ) ,

              ,

              .

s

s

r d

Q

r d

Q

U s
Q

P s r E e

E e

E e

  (16.174) 
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Consequently, the value of this zero coupon is given by the value of the 
generating function of U(0,s) at s=-1, that is, 

1(0, ) var (0, )
20(0, , ) .

Q QE U s U s
P s r e  (16.175) 

Starting from a t different from 0, we obtain: 

1( , ) var ( , )
2

0( , , ) .Q QE U t s U t s
P t s r e   (16.176) 

Using results (16.163), (16.170) and (16.171), we obtain: 

2
2

2

2

( , , ) exp ( ) ( )( ) ( ) ,
4

where

,
2

( ).

t t

t

P t s r s t R s t r R s t
a

R b
a a

r r t

  (16.177) 

Using result (16.105), we obtain the instantaneous term structure: 

2 2

2 2

2 2

( ) ( )( , ) ( ) ,
4

1( ) ,

( , ) ,

, .
4 2

t

au

s t s t
R s s t R r R

s t a s t
e

u
a

R t R

E R F R
a a

 (16.178) 

Example 16.2 The CIR process as rate dynamic 

We can also use the CIR model defined and studied in section 16.3.2 by:  

0

( ) ( ( )) ( ) ( ),
(0) .

dr t a b r t dt r t dB t
r r

 (16.179) 

We will express the premium risk in the form 

( , ) ( ).t r r t   (16.180) 
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It is clear that this premium risk is no longer constant as in the preceding 
example. 
 

Here the PDE (16.119) for the zero coupon value takes the form: 

2
2

2
1( 0,
2

( , , ) 1.

P P P
a b r r r rP

t r r
P r s s

 (16.181) 

Cox, Ingersoll and Ross obtained the solution under the form: 

2

( , )

2
( )( )

2

( )

( )

( )

2 2

( , , ) ( , ) ,
where

2( , ) ,
( )( 1) 2

2( 1)( , ) ,
( )( 1) 2

( ) 2 .

rD t s

ab
a s t

s t

s t

s t

P r t s A t s e

eA t s
a e

eD t s
a e

a

 (16.182) 

So, as  

( ) ( , , )( , , ) ,s t R r t sP r t s e   (16.183) 

we obtain from (16.182): 

( , ) ln ( , )( , , ) .
( )

rD t s A t s
R r t s

s t
  (16.184) 

The two limit cases give as results: 

( , , ) ( ( )),
2( , , ) .

s t R r t s r r t
ab

s R r t s
a

   (16.185) 
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Remark 16.5 If we assume that the spot rate satisfies the very simple model: 

0

( ),
(0) ,

dr dt dB t
r r

  (16.186) 

which is not incredibly adequate since it has a linear trend, it can be shown that the 
value of the zero-coupon is given by:  

2 2 3( ) ( )( , ) exp ( ) ,
2 6

s t s t
P t s r s t  (16.187) 

which is a very unsatisfactory solution since 

lim ( , ) !
s

P t s   (16.188) 

This is why such a simple model must be rejected in the case of interest rate 
modeling. 

16.4.5. Value of a call on zero-coupon 

16.4.5.1. General results 

Let us give at time 0, a zero coupon expiring at time s. On this asset, we consider 
a call of maturity T where s>T, with K as the exercise price and the value C(0,T)  
at t = 0. 

 
From relation (16.112) canceling the dependence with respect to r, the dynamics 

for the zero coupon is given by: 

( , ) ( , ) ( )dP
t T dt t T dB t

P
.  (16.189) 

It is possible to show (Musiela and Rutkowski (1997)) that the value under AOA 
is given by 

1 1
2

0

1

(0, ) (0, ) ( ) (0, ) ( ),

( , ) ( , ) ,

1 (0, )ln .
(0, ) 2

T

C T P s d KP T d H

H u s u T du

P s H
d

H KP T

 (16.190) 
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More generally, for the evaluation at time t instead of 0, the preceding result 
becomes: 

( , ) ( , ) ( ) ( , ) ( ),
1 ( , ) ( , )ln ,

( , ) ( , ) 2
1 ( , ) ( , )ln ,

( , ) ( , ) 2

C t T P t s h KP t T h
P t s V t Th

V s T KP t T
P t s V t Th

V s T KP t T

 (16.191) 

with 
2

2( , ) ( , ) ( , ) .
T

t
V t T u s u T du   

For the puts, we use the call parity formula: 

( , ) ( , ) ( , ) ( , ),Call t T Put t T P t s KP t T  (16.192) 

and after calculation, the final result is given by 

( , ) ( , ) ( ) ( , ) ( ).Put t T KP t T N h P t s N h  (16.193) 

16.4.5.2. Particular case of the OUV model 

Here, we have 

2 2
2 ( ) 2

2
1( )(1 ) .

2

aT
a s Te

H e
aa

 (16.194) 

16.4.6. Option on bond with coupons (Jamshidian (1989)) 

The exact value of an option on a bond with coupons was first given by 
Jamshidian as a linear combination of options on zero coupons. 

 
Before giving his result, it is necessary to introduce some notions. 
 
Let r*b be the yield rate at time T, where T is the maturity of the option such that 

the price of the considered bond is equal to the exercise price of the call option. 
 
Let js  represent the jth date of coupon maturity with j=1,…, n, should be after 

time T: ( , 1,..., )js T j n  and let  , 1, ,jc j n , be the value of the jth coupon. 
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Jamshidian also introduced the values , 1,...,jK j n  defined as: 

( *, , ), 1,...,j jK P r T s j n   (16.195)  

which is the value of a zero coupon at time T with r(T)=r* and of maturity s j . 
 
As the price of a bond is a decreasing function of the spot rate r, the investor will 

exercise the call if and only if r<r* and if a zero coupon of maturity s j  will be 
larger than j jc K , Jamshidian proved that the value C(t,T) of the European call on 
the bond is given by the following linear combination: 

1
( , ) ( , , , ),

n

j j
j

C t T C t T s K   (16.196) 

( , , , )j jC t T s K  being the value of an European call of maturity time T with jK  as 
exercise price on a zero coupon expiring at time js .  

 
It can also be proved that (El Karoui and Rochet (1989)): 

2
0

0
1

0

2
2

0
1
2

0
1

(0, ) (0, ) ( ) (0, ) ( ) ,

, 1,..., ,

( , ) ( , ) ,

: (0, ) (0, ).i i

n

j j j
j

j j

T

j j

n H d H

i i
i

C T c P s d KP T d

d d H j n

H u s u T du

d c P s e KP T

 (16.197) 

For the put, the relation of parity leads to the following result:  

0
1

(0, ) (0, ) ( ) (0, ) ( ).
n

j j j
j

Put T KP T d c P s d  (16.198) 

16.4.7. A numerical example 

The next table provides the result of zero coupon values with CIR models with 
four scenarios given by the five parameters, selected as given by lines 2 and 3. 
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scen. I II III IV 
par. 1-3.5%-3.5% 1-3.5%-3.5% 5-3.5%-3.5% 1-6%-3.5% 

 3%-1% 25%-1% 3%-1% 3%-1% 
mat. CIR CIR CIR CIR 
0.25 0.99128664 0.99127952 0.99128701 0.98863114 
0.5 0.98264681 0.98263459 0.98264889 0.97490507 
1 0.96558803 0.96561683 0.96559715 0.94644076 
3 0.90024357 0.90102057 0.90029773 0.8394155 
5 0.83931463 0.84105891 0.83941429 0.74446771 
7 0.78325086 0.78512914 0.78264807 0.66025964 

10 0.70442635 0.7081375 0.70461487 0.55146515 
20 0.49620034 0.5020042 0.49648109 0.30266638 

Table 16.1. Zero coupons values with CIR 
 

16.5. Appendix (solution of the OUV equation) 

To solve the OUV equation: 

0

( ) ( ( )) ( ),
(0) ,

dr t a b r t dt dB t
r r

  (16.199) 

let us start from the deterministic version 

0

( ) ( ( ))
(0) ,

dr t a b r t dt
r r

  (16.200) 

for which the general solution is given by 

( ) ,
 constant.

atr t b ce
c

  (16.201) 

Now let us suppose that c is also a function of t such that the function 

( ) ( ) atr t b c t e  

is the solution of the SDE (16.199). 
 

From Proposition 7.1 in Chapter 4, we know that: 
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( )at atdr e dc ae c t dt   (16.202) 

and from relation (16.201), we obtain:  

( ( )) .atdr e dc a b r t dt   (16.203) 

and comparing with relation (16.199), we obtain: 

( ( )) ( ( )) ( ),ate dc a b r t dt a b r t dt dB t  (16.204) 

and so 

( ).ate dc dB t   

It follows that: 

( ) ( )atdc t e dB t  

and by relation (A.3) 

0 0
( ) ( ( ),

tat asr t b e c e dB s   (16.205) 

with 

0 0r b c   

or 

0 0 .c r b   

Substituting this last value in the first equality of relation (16.205), we obtain the 
announced solution in section 16.3.1.1: 

0 0
( ) ( ) ( ).

tat at asr t b r b e e e dB s  
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Chapter 17 

Portfolio Theory 

17.1. Quantitative portfolio management 

Let us consider a financial market trading n risky assets called 1,..., ( 1).na a n  
We assume that the absolute returns 1,..., n  of these n assets on a fixed time 

period [0,T] are random variables with means 1,..., n  and variances 2 2
1 ,..., n , 

and moreover as these returns are in general dependent, we have to introduce the 
following covariances: 

,   , 1,...,E i j nij i i j j . (17.1) 

The problem of the choice of a portfolio consists of selecting a vector  

1( ,..., ) 'nx xx   (17.2) 

such that 

1
1,

0, 1,...,

n

i
i

i

x

x i n

  (17.3) 

under a certain criteria depending on the attitude of the investor against risk. In 
general, the investors are risk adverse and thus manage their portfolio with a 
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prudential attitude, but others may be risk lovers, attracted by the expectation of 
possible high returns. 

Mathematically, risk adverse investors having a choice between two portfolios 
will select the one having a mean turn with the smallest variance provided that the 
performance of the portfolio is measured with the mean return. 

17.2. Notion of efficiency 

To find such a portfolio, Markowitz (1959) introduced the concept of efficiency 
or of efficient, portfolio. 

 
Definition 17.1 A portfolio is efficient if for all the portfolios having the same 
expectation of return, it is of minimal variance.  

 
Following this definition, there corresponds an efficient portfolio to each fixed 

expectation of return and so with such a return as variable we obtain a new function 
which graphs in a plane mean-variance and is called the efficient frontier. 

 
The return of portfolio of vector x' at time T is given by: 

1
( )

n

i i
i

R xx   (17.4) 

Moreover, we have: 

1
2

2

( ( )) ( )

var ( ) ,
1 1

           ( )
1 1

n

i i
i

E r T x

n n
r T E x xi ii i

i i

n n
x xij i j

i j

 (17.5) 

where 

2, 1,..., .j njj j  
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The search for an efficient portfolio corresponding to a mean return of value m 
leads to the following mathematical optimization: 

1
1

2( ,..., ) ,min  
,..., 1 1

n ij i j
n

n n
x x x x

x x i j
 (17.6) 

under the constraints: 

1

1

( ) ,

( ) 1,

( ) 0, 1,..., ,

n

i i
i

n

i
i

i

i x

ii x

iii x i n

 

 now being a mean return selected by the investor. 
 

Remark 17.1 
a) Condition (iii) excludes short sales. 
b) The variables ; 1,...,ix i n  represent the percentages of the n shares in the 

portfolio. 
 
To solve this mathematical programming problem with constraints, we must 

introduce the Lagrangian function L of n+2 variables defined by  

1( , , , , )

2 2 1 .
1 1 1 1

nL x x

n n n n
x x x xij i j i ii

i j i i

 (17.7) 

Taking the n partial differentials with respect to , 1,...,ix i n , we obtain the 
following linear system: 

1
0, 1, ,

n

kj j k
j

x v k n  

or 

1( )x vV 1  (17.8) 
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where the square matrix V represents the variance covariance matrix of the vector of 
returns 1,... 'n : 

ijV   (17.9) 

and with the following notations: 

1( , , ) ', (1, ,1) 'n 1 .  (17.10) 

It is possible to show that the unique solution of this algebraic system (see, for 
example, Poncet, Portait and Hayat (1996)) is given by 

x g h   (17.11) 

where 

1 1

1 1

1

1

b a
d

c a
d

g V 1 V

h V V 1
  (17.12) 

with 

2

1

1

1

'
'
'

d bc a

a

b

c

1 V
V

1 V 1

  (17.13) 

The two Lagrange parameters are given by: 

,

.

c a
d

b a
d

  (17.14) 

As it is also possible to prove that the second conditions order to obtain a 
maximum are satisfied, we now have the following proposition. 
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Proposition 17.1 In the plane , , the efficient frontier of the considered 
portfolio is represented by a hyperbola of equation 

22
1,

2 2
C

A B
 

where:   

12 2, , .A 2
d a

CB
c cc

   (17.15) 

coordinates of the vertex: 

1 , a
c c

; 

coordinates of the center: 

0, a
c

; 

asymptotes: 

a d
c c

. 

Proposition 17.2 In the plane 2 , , the equation of the efficient frontier takes 
the form of a parabola of equation: 

2 21 ( 2 )c a b
d

  (17.16) 

having as vertex (1/ , / )c a c . 
 

Proof If 2
min  represents the minimum value under constraints of the function 

defined by relation (17.6), we can write: 

2 '
min .x Vx   (17.17) 
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Replacing x from its value given by relation (17.8), we obtain: 

2 ' 1
min

'

' '

( )

( )

.

v

v

v
v

x VV 1
x 1

x x 1
 

2 1
min

'* ( 1),
'       * ( 1),

        =( * ) * 1),
        = + .

x VV

x

x x
  (17.18) 

From relations (17.14), we finally obtain: 

2
min

1 2 2 ,c a b
d

  (17.19) 

which is relation (17.16).   
 

Remark 17.2 It is clear that we must only use the upper branch of hyperbola (17.15). 
 
Let us now introduce a non-risky asset of unitary return r on the considered time 

period [0,T] so that the portfolio may also contain a proportion of this new asset. 
 
If y represents the proportion of this asset in the portfolio, (1-x) will represent the 

part of the risky efficient portfolio. The mean and standard deviation of this new 
portfolio are: 

(1 ) ,
(1 ) ,

P

P

xr x
x

  (17.20) 

By elimination of x between these two equations, we obtain: 

P P
r

r   (17.21) 
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In the plane ( , )P P , this equation represents the tangent from the point (0,r) 
to the Markowitz hyperbola of equation 

2 2
1.

2 2
PP C

A B
  (17.22) 

Thus, the introduction of a non-risky asset modifies the structure of the curve of 
optimal portfolios called the efficacious frontier, composed with the tangent up to 
the efficient frontier and after of the part of the efficient frontier for portfolios 
without a risky asset. 

 
When the tangent is above the efficient portfolio, the corresponding portfolio no 

longer satisfies result (17.6) condition (iii) as (1-x) is strictly greater than 1 or x<0. 
This means that the investor borrows from the bank at rate r to buy the risky asset 
part of his portfolio, increasing his mean return but also his risk! 

 
Such an investor is clearly a risk lover attracted by high return expectation. 

17.3. Exercises 

1) Prove that every linear convex combination of two efficient portfolios is still 
an efficient portfolio.  

2) Let us consider two efficient portfolios of mean returns 1 2 1 2, ( ) ; for 
a given mean return, show that the corresponding efficient portfolio can be given as 
a linear combination of the two given portfolios. 

Answer 

The following reasoning solves the two exercises. 
 
Let us consider three efficient portfolios having different mean returns 

1 2 3, ,  respectively. 
 
From result (17.11), we obtain for the constitution of these three portfolios: 

(1)
1

(2)
2

(3)
3

,

,

.

x g h
x g h
x g h

  (17.23) 
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Let k be the real number such that: 

3 1 2(1 ) .k k   (17.24) 

Let us now form a portfolio as follows:  

(1) (2)(1 )k kx x x .  (17.25) 

By unicity of linear convex combinations, we have: 

(3)x x .  (17.26) 

17.4. Markowitz theory for two assets 

Here, x will represent the proportion invested in asset A and of course (1-x) that 
invested in asset B always with 0 1x ; moreover, without loss of generality, we 
assume that: 

1 2

1 2

,
.
  (17.27) 

In this case, the general results of section 17.2 become:  
1) for the return on [0,T]: 

1 2( ) (1 ) ,R x x x   (17.28) 

2) for the mean return on [0,T]: 

1 2

2 1 1

( ( )) (1 ) ,
              ( ) ,
E R x x x

x
  (17.29) 

3) for the variance to be minimized: 

2 2 2 2 2
1 2 1 2(1 ) 2 (1 )x x x x  (17.30) 

where  is the correlation coefficient between the two assets. 
 
We will now discuss the different possibilities with respect to the value of . 
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Case 1: 1  

Intuitively, this means that the two assets vary in the same sense and so we will 
not have a portfolio of risk less than that of asset A.  

 
Indeed, from relation (17.30), we obtain: 

2 2 2 2 2
1 2 1 2

2
2 1

(1 ) 2 (1 ) ,

     ( (1 ) ) ,

x x x x

x x
 (17.31) 

so, from assumption (17.27): 

2 1 1( ) .x   (17.32) 

With relation (17.29), we obtain: 

2 1 1

2 1 1

( ) ,
( )

x
x

  (17.33) 

representing the parametric equations of a straight line in the Markowitz plane 
,  having Cartesian equation: 

1 1

2 1 2 1
  (17.34) 

or: 

1
2 1 1

2 1
( ) .   (17.35) 

The efficient frontier is given by the part of this straight line between the two 
points 1 1 2 2, , , .  

 
It follows that the portfolio of minimum risk consists of investing all in asset A 

and that of maximum risk and also with maximum mean return all in asset B.  
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Case 2: 1  

Here, we have: 

2 2 2 2 2
1 2 1 2

2
2 1

(1 ) 2 (1 ) ,

     ( (1 ) ) ,

x x x x

x x
: (17.36) 

or 

2 1 1( ) .x   (17.37) 

In this case, it is possible to select a non-risky portfolio taking for x* the value 
such that equals 0:  

1

1 2
* .x   (17.38) 

The parametric equations of the efficient frontier are:  

2 1 1

1
2 1 1

2 1

1
2 1 1

2 1

( ) ,

( ) , ,

( ) , .

x

x x

x x

 (17.39) 

Thus, it is formed by two straight line segments, the first one between the 
representative point of asset A 1 1( , )  to the point representative of the portfolio 
without any risk, and the second from this last point and the point representative of 
asset B 2 2( , ) . 

 
Figures 17.1 and 17.2 show the corresponding graphs. 
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Figure 17.1. Case 2 

Case 3: 1 1  

In this case, the variance of the portfolio is given by: 

2 2 2 2 2
1 2 1 2(1 ) 2 (1 ) .x x x x  (17.40)  

So, the parametric equations of the efficient frontier are: 

1 2,
2 2 2 2 2

1 2 1 2

(1 )

(1 ) 2 (1 ) .
  

x x

x x x x  (17.41) 

To find the portfolio of minimum risk or minimum variance, we must find x* 
such that (17.40) is minimum. After some basic calculations, we obtain:  

2
1 1 2

2 2
1 2 1 2

2 2 2
2 1 2
min 2 2

1 2 1 2

* ,
2

(1 ) .
2

x

  (17.42) 

It is easy to show that this variance is smaller than the minimum of the two 
variances of the assets, here 2

1 .  
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This portfolio gives for a minimum risk a return larger than the minimum of the 
two asset returns, but it cannot exceed the value 2 . To do that, we know that we 
must allow values of x>1. 

 

Figure 17.2. Case 3 

17.5. Case of one risky asset and one non-risky asset  

Let us consider a risky asset, which may be a portfolio having, on [0,T], a mean 
return and standard deviation a  and a  respectively. The non-risky asset will 
have a return r on the time period. 

 
Here too, let x represent the proportion of the risky asset in the global portfolio; 

it follows that the mean return on [0,T] is given by 

( ) (1 ) ,R x xX x r   (17.43) 

x being the random variable of the return of the risky asset on [0,T]. 
 

The mean and variances of the return of the global portfolio are given by: 

(1 ) ,

.
a

a

x x r

x
  (17.44) 
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By eliminating x, we obtain: 

.a a

a

r
r   (17.45) 

This equation represents a straight line containing the point representative of the 
risky asset ,a a  with a slope of 

a

a

r
.  (17.46) 

This slope represents the risk premium for the investment in the risky asset and is 
in principle strictly positive except on very disturbed financial markets.  

Remark 17.3 
(i) If we introduce a second risky asset, we know the efficient frontier is a branch 

of a hyperbola and that we must consider the tangent with the maximum slope 
issuing from the point (0,r). 

 
The optimal portfolios are now on this half tangent and after on the part of the 

efficient frontier for two risky assets (see Figure 17.3 on case 4). 

 

Figure 17.3. Case 4 
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Numerical example: 

The following table gives data, exact results and simulation results for the efficient 
frontier in the case of two assets. 

resolution   simulation      

data         

   proportion in the 
portfolio     

probability active 1 active 2 active 
1 

active 
2 

average 
rend. variance standard 

deviation  

   1 0 0.125 0.026875 0.16393596  

0.25 0.1 0.8 0.9 0.1 0.1375 0.01741875 0.13198011  

0.5 0 0.2 0.8 0.2 0.15 0.0123 0.11090537  

0.25 0.4 -0.2 0.7 0.3 0.1625 0.01151875 0.10732544 opt. 
approched 

   0.6 0.4 0.175 0.015075 0.12278029  

   0.5 0.5 0.1875 0.02296875 0.15155445  

mean 0.125 0.25 0.4 0.6 0.2 0.0352 0.18761663  

   0.3 0.7 0.2125 0.05176875 0.22752747  

 0.0425 0.19 0.2 0.8 0.225 0.072675 0.26958301  

   0.1 0.9 0.2375 0.09791875 0.31291972  

variance 0.026875 0.1275 0 1 0.25 0.1275 0.35707142  

         

standard 
deviation 0.16393596 0.35707142       

         

covariance -0.03125        

         

correlation -0.53385178        

         

         

xopt(ac2) 0.26801153        

1-xopt(ac1) 0.73198847        

sig2min 0.01129683        

sigmin 0.10628655        

value opt. 0.15850144        
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(ii) A numerical example with simulation is given as an exercise. 

Exercise 

An investor wants to invest a sum of €100,000 in a portfolio formed from two 
risky assets A and B.  

 
The two-dimensional discrete distribution of the “returns” is given by the 

following table. 
 

Probability Possible values for A Possible values for B 

.1 –.05 0 

.2 0 .05 

.4 .1125 .0875 

.2 .15 .10 

.1 .20 .15 

 
a) Show that the mean and variance covariance are given by: 

.09 .00571 .00267
,  .

.08 .00267 .000141
V  

b) Give the graph of the efficient frontier.  
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Chapter 18 

Value at Risk (VaR) Methods and Simulation 

18.1. VaR of one asset 

18.1.1. Introduction 

The VaR technique, due to J.P. Morgan and Company in 1994 in the follow up 
of Basel I prudential rules related to the quantification of credit and market risks, 
was distributed under the name of Riskmetrics as a way to measure the protection 
against the shortfall risk, that is, the critical risk of not having enough equity against 
facing a bad situation. 

 
The aim of the VaR theory is to find, for a given risk, an amount of equity such 

that the probability of having a loss larger than this value is very small, for example 
1%, and thus compatible with the attitude of the management against risk. 

 
Of course, this determination always depends on the time horizon on which we 

are working: a day, a week, a month, etc. 
 
This new tool achieved great success and its use is now reinforced not only in the 

recommendations of Basel II but also in Solvency II. 
 
In fact, for actuaries, this approach is in the spirit of risk theory and ruin theory 

for insurance companies, but here defined more concretely in view of its real-life 
applications in finance and in insurance. 
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It is clear that the calculation of VaR values depends on the considered financial 
products: linear products (shares or bonds) or non-linear products (in fact, the 
optional products). 

18.1.2. Definition of VaR for one asset 

Let us consider an asset for which the stochastic time evolution on the time 
interval 0, , 0T T  is given by a stochastic process S, 

( ),0S S t t T   (18.1) 

defined on the complete filtered probability space , , ( ),t P . 
 
At t=0, we can observe the value of this asset on the market thus  

0(0) ,S S   (18.2) 

0S  being known. 
 
On the time horizon T, for example 10 days, the eventual loss is given by the 

random variable: 

0 ( )S S T   (18.3) 

where the value of the random variable S(T) is unknown at time T at which we have 
to calculate the VaR value. 

 
It is also clear that there is a real loss if and only if the value of (18.3) is strictly 

positive.  
 
As it is in general impossible to obtain a certain upper bound for the loss, except 

for the trivial one 0S , the only possibility is to construct a half confidence interval 
for (18.3) such that the probability of being outside of this interval is very small, let 
us say of value . 

 
Of course, the fixation of this value has a crucial value and is done by the 

supervisor. 
 
The problem of calculating the VaR value at level , noted VaR , is now 

formalized as follows: 

(0) ( ) .P S S T VaR   (18.4)  
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Let us point out that VaR  not only depends on but also on the time interval 
[0, T] considered and of course on the distribution function of 0 ( )S S T . This is 
why we will now specify the choice of this distribution function. 

18.1.3. Case of the normal distribution 

18.1.3.1. The VaR value 

Let us suppose that the d.f. of 0 ( )S S T  is normal with known parameters: 

2
0 ( ) ( , )T TS S T N m   (18.5) 

Thus, we have: 

0 ( ) T

T

S S T m
P z  

or 

0 ( ) T TP S S T z m   (18.6) 

and so that 

.T TVaR z m  

The following table gives some values of the z-quantile in function of the 
probability level . 
 

alpha 0.95 0.99 0.999 0.9999 
     
z 1.6449 2.3263 3.1 3.7 

Table 18.1. z-quantile of the reduced normal distribution 

From this, we see the price of security: from level 0.95 to 0.99, the surplus with 
respect to the mean loss is multiplied by 1.41, by 1.89 to get to level 0.99, and 
finally by 2.24 to get to 0.9999! From 0.99 to 0.999, there is an increase of 33%. 

18.1.3.2. Numerical example I 

Let us suppose that a financial institution has 10,000 shares with individual value 
of €700. 
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On the basis of historical data, the global return on a time period of one year, for 
example, is estimated as having the following normal distribution: 

0(1) (60,1600).S S N  

It follows that the loss on the period has a normal distribution of mean –60 and 
standard deviation 40. 

 
Using result (18.6) we obtain the VaR values given in Table 18.2 according to 

different security or probability levels. 
 

 0.95 0.99 0.999 0.9999 
     

VaR 5.796 33.052 64 88 

Table 18.2. VaR values for one asset with the normal distribution 

The interpretation of these results uses the frequency interpretation of probability 
stating that the probability of an event can be seen as the ratio of the “favorable” 
cases, i.e. the realization of the considered event, over the total number of 
realizations, this last one assumed to be large so that this interpretation is confirmed 
by the law of large numbers. 

 
So, with a level of 0.999, after one year there is one chance in 1,000 that the 

observed loss is over €64 per action. 
 
If level 0.9999 is imposed, with one chance in 10,000, the loss per action is 

larger than €88, which is 40% larger than with the preceding level. 
 
For the total of the investment, we obtain the following results. 
 

 0.95 0.99 0.999 0.9999 
     

VaR 57,960 330,520 640,000 880,000 

Table 18.3. VaR values for the total investment with the normal distribution 

In percentage of the global investment, the part of the VaR is given by Table 
18.4. 

 
 0.95 0.99 0.999 0.9999 

     
VaR 0.00828 0.04722 0.09142 0.1257 

Table 18.4. VaR values in percentage of the global investment  
with the normal distribution 
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So, to pass from the minimum level 0.95 up to the maximum level 0.9999, the 
amount of the VaR is multiplied by 15.18! 

Conclusion for example I 

This example shows both the interest of the concept of VaR and its difficulties to 
apply it due to the following: 

– the selection a security level : it is fixed by the supervisor;  
– the estimation of the parameters from a good database on historical data of the 

considered asset and on the considered period; 
– the use of normal distribution for the return is called the standard method in 

Basel I and II and thus there is no problem of authorization for the institution using 
except the justification of the parameter estimation; 

– the risk of obtaining values too high for the VaR. In this case high amounts of 
equities could not be used for new investments. 

18.1.4. Example II: an internal model in case of the lognormal distribution 

One way for the financial institution to outline the last point is to build its own 
model, called an internal model, from which a VaR value can be calculated. If this 
internal model is approved by the supervisor, then the institution can use it instead 
of the standard method. 

 
As an example, let us start with the assumption that the given asset has a 

stochastic dynamics governed by the Black and Scholes model seen in Chapter 14 in 
which we have seen that for such a model for stochastic process (18.1) with trend 

and volatility , the distribution of 0( ) /S t S  is a lognormal distribution with 
parameters  

2
2,

2
t t   

or 

2
2

0

( )ln ,
2

S t N t t
S

  (18.7) 
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so that: 

2

0
2 2
0

( ) ,

var ( ) ( 1).

t

t t

E S t S e

S t S e e
  (18.8) 

To calculate VaR values at the time horizon T, we have to study the loss given by: 

0 0
0

( )( ) 1 ,S TS S T S
S

  (18.9) 

and so, we successively obtain: 

0 0
0

( )( ) 1 ,S TS S T S
S

  (18.10) 

0
0

0 0

0 0

0 0

( )1 ,

( )1 ,

( )1 ,

( )ln 1 ln .

S TP S VaR
S

VaRS TP
S S

VaR S TP
S S

VaR S TP
S S

  (18.11) 

Using the reduced variable, we obtain:  

2 2

0 0

( )ln 1 ln
2 2

.

VaR S TT T
S S

P
T T

 (18.12) 

And so: 

2

0

ln 1
2

1

VaR
T

S

T
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or 

2

0

ln 1
2

1 ,

VaR T
S

T
 (18.13) 

from which 

2

0

ln 1
2

.

VaR T
S

z
T

 

To obtain the VaR value, we have to solve the following equation: 

2

0

ln 1
2

VaR T
S

z
T

 

or (18.14) 

2

0

ln 1 .
2

VaR
z T T

S
 

This last result gives the explicit form of the VaR for the lognormal case: 

2

2

0

1
T z TVaR

e
S

 

or (18.15) 

2

2
0 1 .

T z T

VaR S e  

Here, we see that the crucial problem in determining this VaR value is to 
calculate and then to estimate the two basic parameters: the trend and the volatility. 

 
To do this, let us recall the following results (see Chapter 10): 
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2

0
2 2
0

( ) ,

var ( ) ( 1).

T

T T

E S T S e

S T S e e
  (18.16) 

By inversion, we obtain the values of the two parameters ,  as a function of 
the mean and variance of S(T): 

0

2
2 2
0

( )1 ln ,

1 var ( )ln(1 ).
T

E S T
T S

S T
T S e

  (18.17) 

Let us consider the preceding example for the financial institution having at time 
0 10,000 shares, each of value €700 and knowing on the time period T, that the 
mean return is €60 and the standard deviation 40. 

 
Formula (18.17) gives as a result: 

2

0.0822,
0.0027665,

0.052597.
  (18.18) 

The second result of (18.15) gives Table 18.5. 
 

alpha 0.95 0.99 0.999 0.9998 
     

VaR 3.95 28.45359 55.232 74.39682 

Table 18.5. VaR values for the lognormal distribution 

The two next tables compare the results of the two models: standard (normal) 
and internal (lognormal), first for one asset (Table 18.6) and secondly (Table 18.7) 
for all the investment. 

 
alpha 0.95 0.99 0.999 0.9999 
VaR I 5.796 33.052 64 88 
VaR II 3.95 28.45359 55.232 74.39682 

Table 18.6. Comparisons of VaR values for one asset between models I and II 

For the portfolio, we obtain the following. 
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alpha 0.95 0.99 0.999 0.9999 
VaR I 57,960 330,520 640,000 880,000 
VaR II 39,500 284,536 552,320 743,968 

Table 18.7. Comparisons of VaR values for the global investment between models I and II  

Finally, the VaR values in percentage of the global investment are given by 
Table 18.8. 

 
alpha 0.95 0.99 0.999 0.9999 
VaR I 0.00828 0.04722 0.09142 0.1257 
VaR II 0.0056 0.04064 0.07890 0.1062 

Table 18.8. Comparisons of VaR values in percentage for the global investment  
between models I and II  

The last table, Table 18.9, gives the VaR I as a percentage of the VaR II. 
 

alpha 0.95 0.99 0.999 0.9999 
VaR I 1.479 1.1619 1.1587 1.1836 

Table 18.9. VaR I as a percentage of the VaR II  

We see that this percentage reduces when the security level increases.  

Conclusion for example II 

– Here, the internal model gives lower values than the standard model, and so the 
institution is lucky to use such a model! It will probably be accepted without any 
problem as the Black and Scholes model is well used for modeling share evolution. 

– These two examples well illustrate the modelization risk as indeed with two 
acceptable models, we obtain different values of the VaR indicators. This is why the 
control authorities often use supplementary guarantees; for example, in Basel I, they 
used the level 0.99 and took a final VaR value three times the value at this level! 

– Of course, if the internal model is favorable to the institution this model will be 
used to calculate VaR values provided this internal model will be validated by the 
control authorities.  

– In any cases, this new VaR value cannot go too low with respect to the 
standard one, for example a reduction no more than 80%. 
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18.1.5. Trajectory simulation  

When it is not possible to obtain explicit results of the VaR values or even when 
it is possible it may be useful to simulate N sample paths of the considered asset and 
observe for each of them the value of the loss at time T, that is, the values 

0 ( ), 1,...,iS S T i N .  (18.19) 

Then from the histogram of these values, it is possible to deduce an estimation of the 
VaR at different security levels: VaR ,  varying. 
 

Here we must mention that the control authorities always ask the financial 
institutions to periodically recalculate their VaR values VaR . 

 
So, for example, in case of a VaR  calculated daily for a time period of M days 

and with the day as time unit, the first simulation called S(1) will give the estimation 
( ;1)VaR M  valuable for the first day. For the second day, we must perform 

another simulation staring this time with 1(1) (1)S S  to obtain the estimation of 
estimation ( ;2)VaR M , etc. This means that for the jth day, we will start from 

( 1) ( 1), 2,...,iS j S j j M . 
 
Each sample path (i=1,…,N), will give the observed value 

( ( 1) ( ), 1,2,..., 1i iS j S j j M ) from which we deduce the observed VaR 
values. 

18.2. Coherence and VaR extensions  

18.2.1. Risk measures 

The notion of VaR represents well a risk measure or risk indicator for this 
investor. Generally, let us consider a given risk represented by the r.v. X, for 
example the loss at the end of a time period as before, and a risk measure defined as 
a functional  associated with the given risk a positive ( )X , which provides the 
level of danger in the economic and financial environment of this investor for the 
given risk with subjective choice, as before the fixation of the security level . In 
practice, ( )X  will always be an amount of money representing the capital needed 
to hedge the given risk, and of course we pose: 

(0) 0   (18.20) 
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Artzner, Delbaen, Eber and Heath (1999) introduced the concept of coherent risk 
measure imposing the following conditions: 

(i) invariance by translation: ( ) ( ) ,X c X c c ; 
(ii) sub-additivity: ( ) ( ) ( )X Y X Y , for all risks X,Y; (18.21) 
(iii) homogenity: ( ) ( ), 0cX c X c ; 
(iv) monotonicity: ( ) 1 ( ) ( ).P X Y X Y  
 
With Denuit and Charpentier (2004), the following condition, only useful for 

insurance, is added: 

(v) ( ) ( )X E X  (18.22) 

stating that the amount of hedging is always higher than or equal to the mean loss. 
 

From property (iii), it follows that if loss X is equal to a constant, then ( )c c , 
which is a very intuitive condition. 

 
Property (ii) of sub-additivity implies that every diversification leads to a risk 

reduction or at least does not increase the risk, in conformity with Markowitz’s 
theory developed in Chapter 17. 

 
Finally, in insurance management, property (v) explains that the ruin event is 

certain without introducing a load factor in the pure premium of value E(X). 

18.2.2. General form of the VaR 

In the preceding section we have seen that for a risk measured by the r.v. X 
having a normal distribution 

2( , )X XX N m ,  (18.23) 

the VaR value at level is given by the quantile of order (1 )  (  small!) of the 
d.f. of X, that is: 

X XVaR z m  

because (18.24) 

.X XP X z m  



714     Mathematical Finance  

Now, for a risk X having a general d.f. XF , the VaR level  satisfies the 
following equality: 

( )XF VaR   (18.25) 

and if function XF  is strictly increasing, we obtain: 

1( ) .XF VaR   (18.26) 

This relation gives the way to calculate the VaR value at a given level provided 
we know the d.f. of X. The knowledge of this function is in general not easy, and so 
we can proceed with a parametric model as in the Black and Scholes model in 
section 1 or use simulation methods. 

 
For such a definition of the VaR, it is possible to show that it defines a risk 

measure that is invariant under translation, homogenous and monotone but not 
always sub-additive for every d.f. XF . 

 
Denuit and Charpentier (2005) give the following counter-example: let X and Y 

be two independent risks having a Pareto distribution, that is, 

1 , 0,( ) ( )

0, 0.
X Y

xF x F x x
x

 (18.27) 

but with 1 so that: 

( ) ( ) , 0.
1

x
P X x P Y x x

x
 (18.28) 

From relation (18.25), we obtain at level : 

( )
( ( ))

1 ( )
VaR X

P X VaR X
VaR X

 (18.29) 

and so 

( ) .
1

VaR X   (18.30) 
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From the fact that X and Y have the same distribution, we also obtain: 

( ) .
1

VaR Y   (18.31) 

The d.f. of the sum X+Y is given by the following manipulation: 

(2)
0

( ) ( ) ( ) ( ).
z

X Y X Y XF z F z u dF z F z  (18.32) 

A little calculation gives the final result: 

2
2 ln(1 )( ) 1 2 , 0.

2 (2 )
X Y

zF z z
z z

 (18.33) 

If we replace  

( ) ( )z VaR X VaR Y ,  (18.34) 

we obtain: 

( ) ( ) 2 ( ) 2 ,
1

z VaR X VaR Y VaR X  (18.35) 

and so: 
2(1 ) 1(2 ( )) ln .

2 1X YF VaR X  (18.36) 

Now, if the property of sub-additivity was satisfied for this Pareto distribution, 
we must: 

( ) ( ) ( )VaR X Y VaR X VaR Y  (18.37) 

and by relation (18.35): 

( ( )) (2 ( ))X YF VaR X Y F VaR X  (18.38) 

or by relations (18.25) and (18.36): 

2(1 ) 1ln
2 1

  (18.39) 
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However, this is impossible as the second member of (18.39) is strictly less than .  
 
This contradiction proves well that, in general, VaR is not always a coherent risk 

measure. 
 

Remark 18.1 Of course, this contradiction does not imply that VaR is never a 
coherent risk measure whatever the d.f. XF  is, and particularly for the standard case 
of Basel rules, it is so. 

 
To prove this result, let us consider two risks X and Y such that: 

2 2( , ), ( , ),
( , ) .

X X Y YX N m Y N m
X Y

  (18.40) 

From relation (18.6), we know that: 

2 2

( ) ,
( ) ,

( ) 2 .

X X

Y Y

X Y X Y X Y

VaR X z m
VaR Y z m

VaR X Y z m m

 (18.41) 

As 1, we obtain: 

2 2

( )

2 ( )X Y X Y X Y X Y X Y

VaR X Y

z m m z m m
 (18.42) 

and so from the first two relations of (18.41), we obtain: 

( ) ( ) ( )VaR X Y VaR X VaR Y , (18.43) 

thus proving that for the standard case, the VaR is well sub-additive. As an 
additional result, this result also shows that using the optimal diversification 
principle of Markowitz, we also reduce the VaR of the optimal portfolio with respect 
to the sum of all individual VaR of each component. 

18.2.3. VaR extensions: TVaR and conditional VaR  

The search for new indicators having, if possible, better properties than the VaR 
begins with the consideration that the fixation of the security level is of course 
subjective and so, the idea is that we effectively fix this level in a reasonable way at 
value  but to take into account all the values larger than , we take the mean of 
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all the corresponding VaR values to obtain a new indicator called Tail-VaR, denoted 
( )TVaR X  and defined as: 

11( ) ( ) .
1

TVaR X VaR X d  (18.44) 

With the change of variable x , where ( )XF x , we obtain: 

( )

1( ) ( ).
1 XVaR X

TVaR X xdF x  (18.45) 

It follows that: 

( )

1( ) ( )
1 XVaR X

TVaR X xdF x  (18.46) 

or: 

( )

0

1( ) ( ) ( )
1

VaR X
XTVaR X E X xdF x  (18.47) 

and with the same change of variable as above, we obtain:  

0

1( ) ( ) ( ) .
1

TVaR X E X VaR X d  (18.48) 

As the VaR is a function of , it is also possible to show that the function TVaR 
of variable  is also decreasing and so, in particular: 

0( ) ( ) ( ).TVaR X TVaR X E X   (18.49) 

Of course, from relation (18.44), we also have: 

( ) ( ).TVaR X VaR X   (18.50) 

To continue, let us now consider the loss if this loss is effectively greater than 
the VaR, that is, what we call a scenario catastrophe. To measure this new risk of 
catastrophic loss, we introduce three new risk indicators: 

(i) the conditional tail expectation or CTE level : CTE ; 
(ii) the conditional VaR or CVaR at level : CVaR ; 
(iii) the expected shortfall or ES at level : ES . 
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Their definitions are as follows: 

(i) ( ) [ ( ))],

(ii) ( ) ( ) ( ) ,

(iii) ( ) max ( ),0 .

CTE X E X X VaR X

CVaR X E X VaR X X VaR X

ES X E X VaR X

 (18.51) 

Clearly, we have: 

( ) ( ) ( ).CTE X CVaR X VaR X  (18.52) 

Thus, CTE (X) represents the expectation value of the total loss given that this 
loss is larger than ( )VaR X  and CVaR (X), the expectation value of the excess of 
less beyond the ( )VaR X . 

 
ES (X) represents the mean loss leveled at ( )VaR X . 
 
It is possible to show the following results (Denuit and Charpentier (2004)): 

1( ) ( ) ( ),
1

1( ) ( ) ( ).
1 ( ( ))X

TVaR X VaR X ES X

CTE X VaR X ES X
F VaR X

 (18.53) 

Moreover, if the d.f. XF  is continuous, we know that in this case 
( ( ))XF VaR X  and so the two right members in (18.53) are equal giving the 

next result 

( ) ( ).CTE X TVaR X   (18.54) 

Finally, it is possible to show that the TVaR indicator is coherent. 
 

Example 18.1 The conditional tail expectation ( )CTE X  in the standard case. 
 

For X having a normal distribution of parameters 2 2,X Xm m , let us 
calculate 

( ) ( ( )).CTE X E X X VaR X   (18.55) 

As: 
(( ) ,
( )

P X y
P X y X x y x

P X x
, (18.56) 
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we have: 

( )

( )

( 1 )
( ) ( ( ))

( ( ))
( 1 )

                                                  = .
1

X VaR X

X VaR X

E X
CTE X E X X VaR X

P X VaR X
E X

 (18.57) 

The value of the denominator is given by 

(1 ) ,X
v

xf dx  

where  (18.58) 

2

2
( )

2

( ),

1( ) .
2

x m

X

v VaR X

f x e
 

With the following change of variable: x m
y , we obtain: 

2

2 2

2

2

2 2

1

21

1 ( ) ,
2

1 1             = ,
2 2

1             = 1 ,
2

.

y

X
v mv

y y

v m v m

y

v m

xf dx y m e dy

ye dy m e dy

v mI m

I ye dy

 (18.59) 
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For the calculation of 1I , we successively have: 

2 2

2

2
2 2

-

2
2

,
2

                 = ,

                 .
2

y y

z z

u

z

y
ye dy e d

e du

z
e

  (18.60) 

Thus, by the last relation of (18.59): 

2

2
( )

21

v m

I e .  (18.61) 

Now from the last equality of (18.59), we can write: 

2

2
( )

21= 1 ,
2

            = ( ) 1 ,

v m

X
v

v m
xf dx e m

v m v m
m

 

where (18.62) 

2

21( ) '( ) .
2

x

x x e  

Returning to relations (18.55), and (18.57), we finally obtain: 

( ) ( ( )),

(1 ) ( )

               = ,
1

X
VaR

CTE X E X X VaR X

VaR xf x dx  (18.63) 
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that is, 

1( ) ( ) [ ( ) (1 ( ))],
1

( )
                = ( ) .

1

X X

X
X

CTE X VaR X z m z

z
VaR X m

 (18.64) 

As the normal distribution is of continuous type, we also have: 

( ) ( ).CTE X TVaR X   (18.65) 

Finally, from relations (18.45) and (18.44), we obtain: 

( ) (1 )[ ( ) ( )],
( ) ( ) ( ).

ES X TVaR X VaR X
CVaR X TVaR X VaR X

 (18.66) 

Remark 18.2 

1) With the lognormal assumption, 2( , ),X LN  Besson and Partrat (2005) 
show that: 

2

2

ln ( )

( ) ( ),
ln ( )

1 .

VaR X

CVaR X e VaR X
VaR X  (18.67) 

2) Here, we are directly interested with the loss assumed to be positive without 
introducing a stochastic dynamic model of the considered asset as in example II.  

18.3. VaR of an asset portfolio 

As we mentioned in Chapter 17 related to the Markowitz theory, for a portfolio 
composed of several assets, the main difficulty for applying this theory is the 
estimation of the variance-covariance matrix of the vector of assets constituting this 
portfolio. 

 
Of course, this problem also exists when we have to calculate the VaR of such a 

portfolio of several assets. 
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Three basic methods can be used to calculate the VaR: 

– the method of variance-covariance matrix; 
– the simulation method; 
– the historic method. 

In the next sections, we will briefly describe them. 

18.3.1. VaR methodology 

Theoretically, it is not difficult to extend the VaR method for one asset to a 
portfolio composed of n assets. 

 
Let  

1( ),..., ( ) , 0,nS t S t t T   (18.68) 

be the stochastic process of the vector of the n considered assets; on [0,T], the 
relative returns are given by 

( ) (0)
, 1,...,

(0)
i i

i
i

S T S
i n

S
  (18.69) 

so that: 

( ) (0) (0), 1,..., .i i i iS T S S i n   (18.70) 

If 

1,..., 'nx x x  

with  (18.71) 

1

0, 1,..., ,

1,

i
n

i
i

x i n

x
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represents the vector of the percentages of repartition of the considered assets in the 
global portfolio, we have: 

1
( ) ( ), 0,

n

i
i

S t x S t t T   (18.72) 

and the return of the given global portfolio 

1 1

1

1

( ) (0) ( ) (0),

                  = ( ) (0) ,

                  = (0).

n n

i i i i
i i

n

i i i
i
n

i i i
i

S T S x S T x S

x S T S

x S

 (18.73) 

To continue, we need to introduce the mean vector and the variance covariance 
matrix of the vector 1,..., n : 

1,..., ,n

ij

E m m
  (18.74) 

so that for the global portfolio, we obtain from the last equality of (18.73): 

1

2

1 1

( ) (0) (0) ,

var ( ) (0) (0) (0) .

m

i i i
i

n n

ij i j i j
i j

m E S T S S x m

S T S S S x x

 (18.75) 

From these results, it follows that if the vector of returns  has a multi-normal 
distribution, then the loss of the global portfolio also has a normal distribution of 
parameters 2,N m . 

 
Thus, we reach the conclusion that in the standard case, the VaR calculation of 

the global portfolio of the n assets as similar to the case of the VaR for one asset 
developed in section 18.1.3, relation (18.6). 

 
In the next section, we will show how to implement this method for real applications. 
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18.3.2. General methods for VaR calculation 

18.3.2.1. The variance-covariance matrix method 

This method is also known as the Riskmetrics method developed by J.P. Morgan 
(1996) under the assumption of the multidimensional normality of the vector of returns. 

 
The three steps of the methods are as follows: 
(i) calculate the present value of the portfolio, on the time horizon T; 
(ii) estimate the mean return vector and of the variance-covariance matrix that 

must be actualized every day in principle; 
(iii) calculate the VaR at the fixed level .  

18.3.2.2. The simulation method 

As always in this case, this method is based on a simulation model for the 
evolution of the considered assets on the time horizon T, the model depending of 
course of a number of parameters that must be estimated, and to be useful it needs 
many simulations. 

 
The steps are as follows: 
(i) choose a distribution for the vector of returns on the time horizon T; 
(ii) simulate a large number of sample paths on [0,T]; 
(iii) estimate the VaR at the fixed level .  

18.3.2.3. The historic method (Chase Manhattan Bank 1996) 

The basic principle of this method is to assume that the distribution of the asset 
returns in the future is identical to the one in the past. 

 
Of course, this assumption may only be valid on a relatively short time interval 

and is very sensitive to the quality of the data. 
 
Its main interest is that no assumption is made on the distribution of the asset 

returns as we start from the observed data in the past to estimate this distribution. 
 
The main steps are as follows: 
(i) calculate the present value of the portfolio, on the time horizon T; 
(ii) estimate historical returns on the basis of the retained risk factors (asset 

values, bond values, exchange rates, options values, etc.); 
(iii) calculate the historical values of gains and losses of the considered portfolio; 
(iv) estimate the VaR at the fixed level .  
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Let us also mention that complementing these three methods, the method of 
scenarios is often used meaning that we can select stressing scenarios corresponding 
to catastrophic events, which of course are rare and of very small probability, to see 
how the VaR and TVaR indicators resist in the extreme situations. 

18.3.3. VaR implementation  

The use of VaR methods depends on the model retained for the time stochastic 
evolution of the considered n assets of the portfolio. 

 
From section 18.3.1, using the standard model means that vector 1,..., n  

has a multi-normal distribution with mean and variance covariance matrix given by 
(18.74): 

1,..., ,n

ij

E m m
  (18.76) 

so that for the global portfolio, from (18.73), we know that: 

1

2

1 1

( ) (0) (0) ,

var ( ) (0) (0) (0) .

m

i i i
i

n n

ij i j i j
i j

m E S T S S x m

S T S S S x x

 (18.77) 

As 

0 ( )S S T m
P z  

or  (18.78) 

0 ( ) ,P S S T z m  

from (18.73), we have for the VaR value at level : 

.VaR z m   (18.79) 
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The number of parameters to be estimated for the application of this last result is 
in general high as indeed, we have the n values of the means, the n values of the 
variance and the n(n-1)/2 covariance values (for two distinct assets), so that we have 
n(n+2)/2 parameters. 

 
For example, if n=50, which is not a large number of assets for a big bank, we 

have 1,300 parameters and for n=100, 5,100 parameters! 
 
In fact, as mentioned in Chapter 17, the situation is the same as for the 

calculation of the efficient frontier and so the crucial problem is to see how to reduce 
this high number of parameters to estimate, which is a curse in dimension 
reducibility. 

 
Two possibilities exist: the first possibility, as in Riskmetrics, is based on the 

evolution of the financial cash flows producing the returns of the portfolio, and the 
second on the use of econometric models for the asset market. 

18.3.3.1. The Riskmetrics method 

For the considered portfolio, let 

, , 1,...,k kF t k m   (18.80) 

be the future produced cash flows: at time kt , the asset will produce a return of 
value , 1,..., .kF k m  
 

For the given yield curve, the present value of the portfolio is: 

1
(1 ) ,k

k

m
t

t k
j

i F   (18.81) 

where 
kti  represents the equivalent annual rate for maturity , 1,..., .kt k m  

 
It is clear that each cash flow value is random and so must be treated carefully 

and a complete treatment requires the calculation of the correlations between all the 
components of the cash flow which, as we have seen above, is a problem with 
combinatory explosion! 

 
Moreover, there will surely be a lack of enough data. 
 
The proposed solution is called the mapping method in which we redistribute on 

a restricted number of standard maturities, for example: 1, 3, 6 months, 1, 2, 3, 5, 7, 
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10, 15, 20 and 30 years, all the maturities of cash flows necessary to analyze the 
different returns. 

 
This needs to solve the following problem: how to split a cash amount of present 

value M and maturity t between the two nearest standard maturities retained 
1 1, ( )k k k kt t t t  and with respective present values 1 2,M M . 

 
This problem is solved with the introduction of two conditions, the first one 

imposing the equality of the present values and the second the invariance of the 
duration (see Chapter 9): 

1 2

1 1 2

,
.k k

M M M
tM t M t M

  (18.82) 

This linear system in 1 2,M M  has the following unique solution: 

1
1

1

2
1

,

.

k

k k

k

k k

t t
M M

t t
t t

M M
t t

  (18.83) 

For variances 2 2 2
1, ,k k  of the corresponding returns 1, ,k k , we obtain: 

2 2 2 2 2
1 1 2 12 1 1 22k k k kM M M M M  (18.84) 

where, of course, 12  is the correlation coefficient between the two cash amounts. 
 
Without any information on it, we use the following two inequalities  

2 22 2
1 1 2 1 1 2k k k kM M M M M  (18.85) 

If we want retain an assumption of maximum volatility, we have to use the 
second inequality and so:  

1 1 2ˆ .k kM M
M

  (18.86) 

This will lead to an overestimation of the VaR and of course the use of the first 
inequality will lead to a sub-estimation. 
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These two problems of over and sub-estimation can be avoided using a linear 
interpolation: 

1 2

1 2

(1 ) ,

,1
M M
M M

  (18.87) 

and the two following conditions: 

1 2
2 2 2 2 2

1 1 2 12 1 1 2

,

2 .k k k k

M M M

M M M M M
 (18.88) 

Using the last equality of (18.87) for the substitution of 1 2,M M , we obtain the 
following equation for : 

2 2 2 2 2 2
1 1 12 1 12 1 1( 2 ) 2 ( ) ( ) 0.k k k k k k k k  (18.89) 

18.3.3.2. VaR for an asset portfolio with Sharpe model 

Another way for reducing the number of parameters of the covariance matrix is 
the use of some economic market models; we will see how this method works with 
two such models: the Sharpe and the MEDAF models. 

 
Let us consider a market with n assets. If , 1,...,jr j n  represents the return 

function of asset j, the Sharpe model assumes that the variations of these returns 
satisfy the following relations: 

, 1,...,j j j jr I j n   (18.90) 

where I  represents the variation of a reference market on the considered time 
horizon. 
 

The “slack” variables are assumed to be independent and 2(0, )
j

N . I  is 

assumed normal and moreover independent of the slack variables. 
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As the global variation of the portfolio on the considered period is given by 

1
,

n

j j
j

r n r   (18.91) 

with 

(0),

(1) (0)
,

(0)

j j j

j j
j

j

n x S

S S
r

S
  (18.92) 

we obtain: 

1

1 1

,

          = .

n

j j j I
j

n n

j j j j I
j j

E r n m

n n m

  (18.93) 

Furthermore, we also have: 

2
2 2 2

1 1
var .

j

n n

j j I j
j j

r n n  (18.94) 

Remark 18.3 Fortunately, the independence between the error variables does not 
imply the independence of the returns of the assets as indeed: 

2cov( , ) , .i j i j Ir r i j   (18.95) 

From this result, it follows that for a portfolio of n assets, the calculation of the 
n(n-1)/2 covariances reduces to the knowledge of the 2n  beta parameters and the 
volatility of the market index. 
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Such a calculation seems more realistic and so using the traditional approach of 
the VaR with the normal distribution, we obtain the following result: 

var ( ).VaR r z r E r   (18.96) 

Exercise 

Let us consider a portfolio with three assets with 1 2 33, 6, 1n n n  satisfying 
the following Sharpe model:  

1 1 1

2 1 1

3 3 3

0.014 0.60 , (0,0.006),
0.014 0.60 , (0,0.006),

0.200 1.32 , (0,0.012)

r I N
r I N
r I N

 (18.97) 

Moreover, the reference market index has a normal distribution  

N(0.0031,0.0468)  

and: 

1 2 3(0) 120, (0) 15, (0) 640.X X X  

Calculate the VaR value at confidence level 99%.  
 
Answer: 21.4421. 

18.3.3.3. VaR for an asset portfolio with the MEDAF model 

Let us consider a portfolio of value S(t) at time t constituted at time 0 with n 
assets such that in t, , 1,...,ix i n  and ( )iS t  represent successively the number and 
value of assets of type 1,...,i n . 

 
Thus, we have: 

1
( ) ( )

n

i i
i

S t x S t .  (18.98) 
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On time horizon T, we have T: 

( ) ( ) (0),
( ) (0)

( ) .
(0)

i i i

i i
i

i

S T S T S
S T S

r T
S

  (18.99) 

These relations lead to: 

1
( ) (0)(1 ( ))

n

i i i
i

S T x S r T .  (18.100) 

The MEDAF model assumes that: 

0 0( ) ( ( ) ) ( )
1,...,

i i m ir T r r T r T
i n

  (18.101) 

where 
– ( )mr T  is the return of the market portfolio mS  on 0,T ; 
– 0r  is the non-risky return on the same period; 
– r.vs. ( ), 1,...i T i n  are independent, with normal distribution and uncorrelated 

with the return of the market portfolio so that: 

( ) 0, ( ) 0, 1,...,i i mE E r i n ;  (18.102) 

– i  represents the coefficient of i, i=1,…,n.  
 
Using this model, we obtain: 

0 0

1 1

( ) (0) ( ( ) ) ( ) ,

(0) ( ) (0)

, ( ) .
(0) (0)

m

n n

i i i i i i
i i

S T S r r T r T

x S T x S

T
S S

 (18.103) 
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For the mean and variance of the portfolio return, we obtain: 

0 0

2 2 2 2

1

( ) (0) ( [ ( )] ) ,

(0)
var ( ) ( (0)) ( ) [ ] .

(0)

m

n
i

m i
i

E S T S r E r T r

S
S T S

S

 (18.104) 

Consequently, the VaR value at confidence level is given here by: 

var ( ) ( ( )).VaR r z S T E S T  (18.105) 

18.3.4. VaR for a bond portfolio 

Let us consider a portfolio of value S(t) at time t constituted at time 0 with n 
bonds such that in t, , 1,...,ix i n  and ( )i t represent successively the number and 
value of bonds of type 1,...,i n . 

 
So, we have: 

1
( ) ( )

n

i i
i

p t x t .  (18.106) 

Let 1,..., kX X  be the k risk factors such that: 

1 1( ) ( ) ... ( ), 1,..., .j j jk kt a X t a X t j n  (18.107) 

The portfolio value at time T is given by:  

1

1 1

( ) ( ),

       = ( ) ( ).

n

j j
j

k n

j
j j

p t x t

x a X t

  (18.108) 
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To simplify, let us work on a time horizon of length 1 on which: 

1 1

1 1

1 1

(1) (0),

     = [ (1) (0)],

(1) (0)     = (0) ,
(0)

     = (0) (0),

(1) (0)(0) , 1,... .
(0)

k n

j j
j

k n

j j
j

k n

j j
j

p p p

x a X X

X X
x a X

X

x a X r

X X
r k

X

 (18.109) 

To calculate VaR values, we must study the k random returns (0).r   
 
Using for example the historic method, we can obtain the following estimations: 

' '

ˆ(0) ,

cov (0), (0) .

E r m

r r
  (18.110) 

Now, from relations (18.109), we obtain: 

1 1

k

j=1

1

 = (0) (0),

 = y (0) (0),

(0) (0), 1,... .

k n

j j
j

n

j j
j

p x a X r

p r

y x a X k

  (18.111) 

For the mean and variance, we obtain: 

k

j=1
k k

' '
=1 '=1

ˆ[ ] = y (0) ,

ˆvar[ ] = y y (0) , , 1,... .

E p m

p k

 (18.112) 
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Once more, with the assumption of the normal distribution of the return, we 
obtain:  

var ( ).VaR r z p E p   (18.113) 

18.4. VaR for one plain vanilla option  

We know that the value of a plain vanilla option, for example, a call, depends on 
the following: 

– S: value of the underlying asset at the time t of evaluation; 
– T-t: maturity; 
– K: exercise price; 
– : volatility of the underlying asset; 
– r: the instantaneous non-risky interest rate. 
 
For small variations of these parameters in the short time interval ( , )t t t  

characterized by the vector , , , ,S K r , we know from Chapter 14 that 
the corresponding variation of the call is linearly approximated with the aid of the 
Greek parameters: 

21 ( ) .
2

CC S S K r
K

 (18.114) 

With: 

,Cu K r
K

  (18.115) 

we obtain: 

21 ( ) ,
2

C S S u   (18.116) 

so that: 

21( ) ( ( ) ).
2

P C c P S S c u  (18.117) 
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Now, let cF  be the d.f. of 21 ( )
2

S S . 

 
So, neglecting the small variation u , the determination of the VaR for the call 

is identical to the calculation of this distribution function as: 

( ) .CF VaR   (18.118) 

We will solve this problem for the two following cases: 
(i) linear approximation in S  and normal case; 
(ii) linear approximation in S  and lognormal case. 
 
This means that the small variation of the call value is well approximated by: 

.C S u   (18.119) 

(i) Normal case 

We are now working with the assumption that 2( ) ( , )S t N m  and so: 

( ) ( ) ( ).c u c
P C c P S P S  (18.120) 

From the normality assumption, we obtain: 

1 1( ) .c u cP C c m m  (18.121) 

(ii) Lognormal case 

Using the Black and Scholes model of Chapter 14, the distribution of the 
0( ) /S t S t is a lognormal distribution with parameters: 

2
2

0

( )ln , .
2

S t N t t
S

  (18.122) 

It follows that: 

2

0

2 2
0

( ) ,

var ( ) ( 1)

t

t t

E S t S e

S t S e e
  (18.123) 
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and 

0

2
2 2
0

( )1 ln ,

var ( )1 ln 1 .T

E S T
T S

S T
T S e

  (18.124) 

From result (18.120): 

0 0( ) ( ) ( ) ,c u cP C c P S T S P S T S  (18.125) 

we now obtain: 

0 0( ) ln ( ) ln ln ( ) ln ,c u cP C c P S T S P S T S  (18.126) 

or 

0 0 0 0

( ) ( )( ) ln ln 1 ln ln 1 .S T c u S T cP C c P P
S S S S

 (18.127) 

As  

2
2

0

( )ln , ,
2

S t N t t
S

 

this last result becomes: 

2 2

0 0
ln 1 ln 1

2 2
( ) .

c u cT T
S S

P C c
T T

 (18.128) 
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18.5. VaR and Monte Carlo simulation methods 

18.5.1. Introduction 

If we have no good reason to assume that the distribution of the asset return is 
normal or lognormal, the only way of proceeding is to use an historical database to 
approximate this distribution by the simulation of a histogram of these observed 
values. 

 
If we do not know the distribution but if we know its type depending of a 

number of parameter, the situation is easier as it suffices to estimate these unknown 
parameters by traditional statistical approaches. 

18.5.2. Case of one risk factor 

Let X be the risk factor, for example, the value itself of a share or the interest rate 
at a fixed maturity. 

 
At time 0, the relative return: 

(1) (0)
(0)

X X
X

  (18.129) 

follows a probability law that could be estimated with the historical method based 
on a good internal database with data up to time –T: 

( ) ( 1) , , 1,..., 1,0.
( 1)

X t X t t T
X t

 (18.130) 

However, this method must be used carefully as it is very sensitive to eventual 
irregularities of the market and to extreme values; so the choice of the time horizon 
T is important. 

 
This is why we prefer, when it is possible, to use a parametric method based on 

some models given in this chapter: normal or lognormal distributions or even 
another one like, for example, Weibull or gamma distributions, all depending on a 
small number of parameters. Sometimes, it is also good to use a leptokurtic 
distribution, that is, with a positive coefficient 2 . 
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The algorithmic method is based on the following steps: 
1) generate a random sample of N values of X: 1,..., Nx x ; 
2) repeat step 1 M times to obtain the following NM values: 

1 ,..., , 1,...,j Njx x j M ; 
3) on the simulated values, estimate 1 ,..., , 1,...,j Njx x j M , and estimate the 

unknown parameters; 
4) use the selected theoretical model to calculate the VaR on the given horizon at 

time T, value at confidence level ; 
5) observe the likelihood of the results; 
6) validate the obtained results.  
 
For example, for the mean estimation, for each j, we know that the estimator 

1 ...j Nj
Nj

x x
x

N
  (18.131) 

is unbiased and so the histogram of the values 1,..., Mx x  will give an approximation 

of the distribution of an estimator of the mean m with variance 
2

N
. 

18.5.3. Case of several risk factors  

Let us consider the case of two correlated factors 1 2, .X X  
 
If p is the given asset function of the two risk factors, as for one factor, we can 

consider the following relative returns: 

1 2

1 1 2 2
2 2

1 1 2 2 1 2 12

(1) ( , ),
(1) (0) , 1,2,

(0)
( ) , ( ) ,

var ,var ,cov( , ) .

i i
i

i

p f X X
X X

i
X

E E
 (18.132) 

With historical data, we construct the following random sample:  

111

221

,..., N

N

.  (18.133) 
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If 12  represents the covariance between the two factors, the correlation 
coefficient is given by: 

12

1 2

.  (18.134) 

In fact, it is possible to express the random vector 1

2

 with another vector 

1

2

, but with uncorrelated components, using the following transformation: 

1 1 1 1

2
2 2 1 2 2 2

,

1 ,
 (18.135) 

as indeed, it is possible to show that: 

1 2

( ) 0, 1,2,
var( ) 1, 1,2,cov( , ) 0.

i

i

E i
i

 (18.136) 

Introducing the Cholewsky lower-triangular matrix L:  

1

2
2 2

0
,

1
L   (18.137) 

transformation (18.135) can be written as the following matrix notation: 

1 1 1

2 2 2

L   (18.138) 

Moreover, we have: 

2
11 12

2
212 2

variance covariance matrix of 

' ,

 .

LL

 (18.139) 

This decomposition of the covariance matrix is called the Cholesky 
decomposition or Cholesky factorization and remains true for n dimensions (n>2). 
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From the numerical point of view, matrix L is found by identification. 

Exercise 

For the covariance matrix, with 

5 3 4
3 10 2
4 2 8

,  (18.140) 

show that the Cholesky matrix is given by: 

5 0 0

3 5 205 0 .
5 5

4 5 2 205 14 41
5 205 41

L   (18.141) 

With the Cholesky decomposition, it is now easy to generate sample (18.133) 
using the generated sample 

111

221

,..., N

N

.  (18.142) 

Let us point out that with the normality assumption, the two components 1 2,  
are furthermore independent. 
 

Using relation (18.129), we can reconstruct the risk factors: 

1 1 1(1) (0)(1 ), 1,...,j j jX X j N  (18.143) 

to finally obtain a sample of N values of the considered asset. For example at t=1: 

1 2(1) ( (1), (1)), 1,..., .j j jp f X X j N  (18.144) 

As we know the asset value at time 0:  

1 2(0) ( (0), (0)),p f X X   (18.145) 
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the simulated variations of the asset on [0,1] are: 

1 1(1) (0),..., (1) (0) .N Np p p p  (18.146) 

The VaR value is then estimated from the histogram of the corresponding 
estimated distribution. The observed distribution is reliable provided we can 
generate a large number of simulations. 

18.5.4. Monte Carlo simulation scheme for the VaR calculation of an asset 
portfolio 

As we know that the VaR is not necessarily sub-additive, we proceed carefully if 
we do not assume the normality assumption of the vector of returns. 

 
In this case, we cannot add the individual VaR but we have to calculate the VaR 

of the entire portfolio using the following algorithm: 
1) choice of a parametric model (that must be valid!) including different risk 

factors; 
2) with available databases, estimate the distribution of the risk; 
3) simulation of a big number N of vector risk factors: 

, 1,..., ; 1,...,ij i n j N   

so that at time 1, we have 

(1) (0)(1 ), 1,..., ; 1,...,ij ij ijX X i n j N ; 

4) from the known relations given the M asset values is a function of the risk 
factors, we obtain the simulated values of the future prices at t=1: 

1(1) ( ,..., ), 1,..., , 1,...,jk j k nkp f X X j M k N  

5) for each of the k simulations or scenarios, k=1,…,N, calculate the M values of 

the global portfolio at t=1: 
1

(1) (1)
M

k j jk
j

P n p , which is a function of the number 

of shares of each asset of type j: , 1,...,jn j M . 

6) with the known value of the portfolio at time 0 given by  
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1
1

(0), (0) ( (0),..., (0)), 1,...,
M

j j j j n
j

n p p f X X j M ,  

obtain the N variations of the global portfolio on [0,1]: 

(1) (0), 1,...,k kP P P k N  

7) based on the obtained ranked results, construct the histogram and the VaR 
value estimation given the confidence level . 

 
Remark 18.4 

(i) With the normality assumption, we can directly write:  

( ) var ( )VaR E S T S T  

and so simply estimate the mean and variance of the global portfolio using, if 
necessary, reduction of the number of covariances and the Cholesky decomposition. 

(ii) For the periodicity of the VaR calculation, the regulator asks for daily VaR 
values based on an account of 100 days minimum. 



Chapter 19 

Credit Risk or Default Risk  

19.1. Introduction 

As mentioned by Basel I and Basel II Committees, the credit risk problem is one 
of the most important contemporary problems for banks and insurance companies. 
Financial studies have been developed both from theoretical and practical points of 
views. They consist of calculating the default probability of a firm. 

 
There is a very wide range of research on credit risk models (see, for example, 

Bluhm et al. (2002), Crouhy et al. (2000), Lando (2004), etc.). 
 
In the 1990s, Markov models were introduced to study credit risk problems. 

Many important papers on these kinds of models were published (see Jarrow and 
Turnbull (1995), Jarrow et al. (1997), Nickell et al. (2000), Israel et al. (2001), and 
Hu et al. (2002)), mainly for solving the problem of the evaluation of the transition 
matrices. In Lando and Skodeberg (2002) some problems regarding the duration of 
the transition are expressed, but never, as far as the authors know, a model in which 
the randomness of time in the states transitions has been constructed. 

 
Semi-Markov models were introduced by Janssen, Manca and D’Amico (2005a) 

and Janssen and Manca (2007) firstly in the homogenous case. The non-
homogenous case was developed in Janssen, Manca and D’Amico (2004a) and 
Janssen and Manca (2007). With these new models, it is possible to generalize the 
Markov models introducing the randomness of time for transitions between the 
states. 
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19.2. The Merton model 

19.2.1. Evaluation model of a risky debt 

The Merton (1974) model or the firm model considers the case of a firm that 
borrows an amount M of money at time 0, for example in the form of a zero coupon 
bond with facial value F (interests included) representing the amount to reimburse at 
time T. 

 
As the borrower has the risk that the firm will be in default at time T, the debt is 

called a risky debt of value D(0) at time 0. This value of the risky debt must use a 
stochastic model, called here the Merton model. 

 
After the loan, we have: 

V(0)=A+M,  (19.1) 

V(0) representing the value of the firm at time 0. 
 
At the maturity of debt T, two situations are possible following this value V(0) 

with respect to F. They are given by the next table. 
 

At time T V(T)<F V(T)>F 

Borrowers V(T) F 

Shareholders 0 V(T)-F 

Table 19.1. Situation at maturity time 

Using the concept of plain vanilla options, it is clear that the values of A(T) and 
D(T) representing respectively the equities of the shareholders and the value of the 
risky debt are given by: 

( ) max 0, ( ) ,

( ) min ( ), ( max 0, ( ) ).

A T V T F

D T V T F F F V T
 (19.2) 
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Thus, at t=0, with the Black and Scholes approach for the evaluation of options, 
under the risk neutral measure Q and with F as exercise price, we obtain 

(0) [max 0, ( ) ] (value of the call),

(0) [max 0, ( ) ] (  put),

rT
Q

rT rT rT
Q

A e E V T F

D Fe e E F V T e F
 (19.3) 

r being, as usual, the instantaneous non-risky interest rate. 
 

From this last relation, we obtain: 

(0) [max 0, ( ) ],rT rT
QFe D e E F V T  (19.4) 

which shows that the difference between the non-risky debt and the risky debt is 
simply the value of the put in the hands of the shareholders taking account of the 
possibility of default. 
 

Let us recall that Merton uses the traditional Black and Scholes model given in 
Chapter 14. 

 
So, on the complete filtered space , , ( ),t Q , the process value of the firm 

( ), 0,V V t t T
 
satisfies: 

0

( ) ( ) ( ),
(0) ,

dV V t rdt V t dW t
V V

  (19.5) 

and we know that: 

( )
2 1

2

1

2 1

( , ) ( ) ( ),

1 log ( )( ) ,
2

,
( ).

r T tP S t Ke d S d

S
d r T t

KT t

d d T t
S S t

 (19.6)

 

We have: 

, (0), 0,K F S V t  
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and thus: 

2 1
2

1

2 1

( (0), ) [ ( ) (0) ( )],

1 (0)log ( ) ,
2

.

rT

rT

P V T Fe d V d

V
d r T

T Fe

d d T

 (19.7) 

From relation (19.4), the value of the risky debt is given by:  

2 1(0) [ ( ) (0) ( )],rT rTD Fe Fe d V d  

where (19.8) 

2

1

2 1

1 (0)log ( ) ,
2

.

rT
V

d r T
T Fe

d d T

 

19.2.2. Interpretation of Merton’s result 

From relation (19.8), we can write D(0) in the following form: 

1
2

2

2

1

2 1

( )
(0) ( )[ (0) ],

( )

1 (0)log ( ) ,
2

.

rT rT

rT

d
D Fe d Fe V

d

Vd r T
FeT

d d T

 (19.9) 

The first term is nothing other than the present value at time 0 of the non-risky 
debt of amount F; the second term is the product of the default probability at time 
T, ( ( ) )P V T F  and the present value of the expected loss amount 

1

2

( )
(0)

( )
rT d

Fe V
d

. 

Let us show for example that 2( )d  is the default probability ( ( ( ) )P V T F . 
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Indeed, from the lognormality property of V(T)/V(0), we successively obtain: 

0 0

0 0

2 2

0 0

2

0

( )( ( ) )

( )ln ln ,

( )ln ln
2 2

,

ln
2

.

V T FP V T F P
V V

V T FP
V V

V T Fr T r T
V V

P
t t

F r T
V

t

 (19.10) 

From the Black and Scholes result, we have: 

2
0

1

2
0

2 1

ln
2

ln ( )
2 ( ),

 .

V r T
K

d
T

V r T
Kd d T

T
K F

 (19.11) 

So, we obtain the desired result. 

19.2.3. Spreads 

The value of the risky debt D(0) may be seen as the present value of F using a 
rate 'r  defined by: 

'(0) ,r TD e F   (19.12) 
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so that 

'(0) ,
1' ln .

(0)

r TD e F
F

r
T D

  (19.13) 

The corresponding spread is thus given by: 

' .spread r r   (19.14) 

To compute the interest rate corresponding to the corresponding non-risky debt, 
we define the rate ''r  such that: 

''r TM e F   (19.15) 

and so: 

1'' ln .F
r

T M
  (19.16) 

This gives another spread as the difference of risky and non-risky rates called 
actuarial spread: 

actuarial spread '' .r r   (19.17) 

Example 19.1 (Farber et al., (2004)) A firm has an initial capital of €2,500,000 and 
for future investments it is necessary to receive a loan of €2,000,000 to be 
reimbursed in two years. 

 
The firm finds a bank agreeing this loan in the form of a zero coupon bond with 

facial value €3,000,000, interests included and of course of maturity 2 years. 
 
This gives a rate ''r  of 22.5%! 
 
The next table gives the result related to the value of the risky debt. 
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Data of the firm  
   
Initial capital A(0) 2,500,000 
Facial value F(T) 3,000,000 
Volatility  0.6931 
Maturity T 2 
Amount M  2,000,000 
Firm value at t=0:V(0) 4,500,000 
Non-risky rate  
Annual  0.02 
Instantaneous 0.01980263 
   
Results  
Present value of F 2,883,506.34 
d(1) 0.94416045  
d(2) –0.03603097  
phi(-d(1)) 0.172543815  
phi(-d(2)) 0.514371227  
   
Default probability 0.51437123 
Current value of recovering 1373998.96 
Value of the risky debt: D(0) 2176760.82 
   
Conclusions   
   
Instantaneous rate of the loan 0.20273255 
Annual rate of the loan ''r  0.22474487 
   
Instantaneous rate of risky debt 0.16038719 
Annual rate of risky debt 'r  0.17396533 
Spread 0.06435768 
   
Spread with the non-risky rate  
With ''r  0.20474487 
With 'r  0.15396533 
  
Actuarial spread 0.06435768 

Table 19.2. Merton model 
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19.3. The Longstaff and Schwartz model (1995) 

To improve the Merton model, Longstaff and Schwartz (1995) have introduced a 
threshold K such that the firm is in default if its value is below K. 

 
To compute the default risk PDF(T) before time T, from the Merton model: 

dV Vdt VdW t
V V

( ),
( ) ,0 0  

 (19.14) 

we know that 

2

0

( )ln ( ).
2

V t t W t
V

  (19.15) 

It follows that: 

PDF T P V T K( ) ( ( ) ),   (19.16) 

and so: 

0 0

( )( ) ln ln .V t KPDF T P
V V

  (19.17) 

As from relation (19.15), we obtain: 

2
2

0

( )ln ,
2

V t N t t
V

  (19.18) 

And we obtain from relation (19.17): 

2

0

ln
2

( ) .

K T
V

PDF T
T

 (19.19) 

This is the result of Longstaff and Schwartz (1995) in their model called the 
KMV Credit Monitor. 
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It must be clear that this model gives the possibility to be in default at time t and 
no more in default at time s, s>t. 

 
If we introduce, as in Janssen (1993), the concept of lifetime of the firm as the 

stopping time  defined as: 

inf : ( )t V t K   (19.20) 

or as: 

inf :ln ( ) lnt
V t
V

K
V0 0

.  (19.21) 

With result (19.15), we have: 

inf :( ) ( ) ln .t t W t K
V

2

02
 (19.22) 

It follows that: 

inf :ln ( ) ( ) .t
V
K

t W t0
2

2
0  (19.23) 

Finally, with: 

2
0ln , ' ,

2
Vu t
K

  (19.24) 

we can write: 

P t u t( , ) ,  (19.25) 

Using the fundamental results of Cox and Miller (1965) on diffusion processes, 
we finally obtain: 

( , ) ' '
'

u t
u t

t
e

u t
t

u

1
2

2
. (19.26) 
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This probability is called the ruin probability before t in the actuarial risk theory, 
and so the non-ruin probability before t is given by:  

( , ) 1 ( , ).u t u t   (19.27) 

For t , we obtain:  

( ) lim ( , )
, ' ,

, '
'u u t

et
u

1 0

0
2 2

 (19.28) 

and so: 

( ) lim ( , )
, ' ,

, ' .
'u u t

et
u

0 0

1 0
2 2

 (19.29) 

Remark 19.1 It is clear that the default probability of Longstaff and Schwartz is 
always smaller than the ruin probability computed by the Janssen model.  

19.4. Construction of a rating with Merton’s model for the firm 

19.4.1. Rating construction 

In this section, we will develop an elaboration of a rating model using the 
traditional Merton model for the firm (1974), which is used in Creditmetrics 
initialized by J.P. Morgan as a sequel of the Riskmetrics computer program 
dedicated to the VaR methods (see Janssen and Manca (2007)). 

 
In the Merton model (1974), value V of the firm is modeled with a Black and 

Scholes stochastic differential equation with trend  and instantaneous volatility  
(see Chapter 14) 

0

( ) ( ) ( ),
(0) ,

dV V t dt V t dW t
V V

  (19.30) 

so that its value time at t is given by 

2
( ) ( )

2
0( )

t W t
V t V e   (19.31) 



Credit Risk or Default Risk     753 

0V  being the value of the firm at time 0 and ( ), 0,W W t t T  a standard 
Brownian motion defined on the filtered probability space , ,( ), .t P  
 

If defV  is the threshold beyond which the firm defaults, called the threshold 
default, the probability defP  that the company defaults before time t is given by: 

2

0

2

0

, ( )

                 ( ) ln
2

1                 ( ) ln .
2

def def def

def

def

P V t P V t V

V
P t W t

V

V
P W t t

V

 (19.32) 

As, for all positive t, ( ) /W t t  has a normal distribution, we obtain: 

2

0

1, ln
2

def
def def

V
P V t t

Vt
. (19.33) 

So, if we fix value defV , we can compute the corresponding value of defP  using 
the quartiles of the normal distribution. 

 
Of course, the inverse is possible: first fix defP  and then compute the 

corresponding level defV . 
 
In the following, let us suppose that we fix the default probability defV  so that 

we compute the corresponding quantile CCCZ  given by 

2

0

, ,

1 ln .
2

def def CCC

def
CCC

P V t Z

V
Z t

Vt

 (19.34) 

This means that if Z is below or equal to CCCZ , with Z defined by: 

2

0

1 ln
2

VZ t
Vt

,  (19.35) 

the considered firm is supposed to be in default and theoretically has to stop all 
activities. 
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On the contrary, if the value of Z is larger than CCCZ , corresponding to the 
threshold value CCCV , but before the quartile BZ , corresponding to the threshold 
value BV , the rating given to the firm is noted CCC, etc. So, with a fixed scale of 
firm threshold values: 

def CCC B BB BBB A AA AAAV V V V V V V V  (19.36) 

we obtain a scale of increasing thresholds quartiles represented by: 

CCC B BB BBB A AA AAAZ Z Z Z Z Z Z , (19.37) 

assigning a credit rating or grade to firms as an estimate of their creditworthiness.  
 
If Z represents the observed value of Z for the considered firm, the scale used 

here is the rating used by the famous credit rating agencies Standard and Poor’s, and 
Moody’s given below. 

 
Zobs value notation 

  
Zobs<ZCCC default 

ZCCC<Zobs<ZB CCC 
ZB<Zobs<ZBB B 

ZBB<Zobs<ZBBB BB 
ZBBB<Zobs<ZA BBB 
ZA<Zobs<ZAA A 

ZAA<Zobs<ZAAA AA 
ZAAA<Zobs AAA 

Table 19.3. Rating agencies 

It is clear that the credit ratings depend on time t and also on the selection of the 
probabilities 

defP ( ), ( ), ( ), ( ), ( ), ( ), ( )CCC B BB BBB A AA AAAP Z P Z P Z P Z P Z P Z P Z  (19.38) 

or on the threshold scale of firm values 

CCC B BB BBB A AA AAAZ Z Z Z Z Z Z  (19.39) 

chosen by the credit rating agency.  
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We can also compute the following relations: 

( ),

( ),
( ),
( ),
( ),

( ),
( ),
( ),

déf obs CCC

CCC CCC obs B

B B obs BB

BB BB obs BBB

BBB BBB obs A

A A obs AA

AA AA obs AAA

AAA AAA obs

P P Z Z

P P Z Z Z
P P Z Z Z
P P Z Z Z
P P Z Z Z
P P Z Z Z
P P Z Z Z
P P Z Z

  (19.40) 

and so: 

,

1.
B def CCC

def CCC B AA AAA

P P P

P P P P P
 (19.41) 

Using relation (19.35), we obtain: 

 

2

0

2

0

2

0

2

0

1 ln ,
2

1 ln ,
2

1 ln ,
2

...

1 ln
2

CCC
def

B
def CCC

BB
def CCC B

AAA
def CCC B BB AA

V
P t

Vt

V
P P t

Vt

V
P P P t

Vt

V
P P P P P

Vt
;t

 (19.42) 
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and moreover: 

 

2

0

2 2

0 0

2 2

0 0

1 ln ,
2

1 1ln ln ,
2 2

1 1ln ln
2 2

CCC
déf

CCCB
CCC

BB B
B

V
P t

Vt

VZ
P V t t

V Vt t

V V
P t

V Vt t

2 2

0 0

2

0

,

...

1 1ln ln ,
2 2

11 ln .
2

AAA AA
AA

AAA
AAA

t

V V
P t t

V Vt t

V
P t

Vt

 (19.43) 

All these relations show how the grades are time dependent, which is why we 
will now study the dynamics of ratings. 

19.4.2. Time dynamic evolution of a rating  

19.4.2.1. Continuous time model  

In continuous time, the rating process is nothing other than the stochastic process 
defined by relation (19.33), 

Z Z t Tt ,0   (19.44) 

where r.v. Zt represents the credit rating at time t given by: 

( , ) ( ),def t tP V t Z  

or  (19.45) 

2

0

1 ln .
2

t
t

V
Z t

Vt
 

Here, grade Zt represents exactly the value inside one of the classes defined 
above and no longer only the class. 



Credit Risk or Default Risk     757 

Substituting the value of tV  from relation (19.30) in (19.45), we obtain: 

( ) , 0,t
W tZ t

t
  (19.46) 

so that 

 
( ) ( ) , 0, , .t t t CCC

W t t W tP Z j Z P j i t i j Z
t t t

(19.47) 

As the standard Brownian process has stationary and independent increments 
(see Definition 10.27), we also obtain: 

( ) ( )

( )( ) ( ) ( ) ,

W t t W tP j i
t t t

W tP W t t W t j t t W t i
t

 (19.48) 

or using relation (19.47): 

( ) ( )( )

                         ,

t t t t
W t t W t j t t i tP Z j Z P Z i

t t

j t t i t
t

 (19.49) 

the last equality coming from the normality of the increments of a standard 
Brownian motion. 
 

We can also write this last result in the form: 

P Z j Z i
j s i t

s ts t( ) .  (19.50) 

The corresponding density function is given by: 

d
dj

P Z j Z i s
s t

j s i t
s ts t( ) ' .  (19.51) 
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This last result is correct only for CCCi Z . On the other hand, for CCCi Z , the 
default state being considered as an absorbing state, we have necessarily for j i : 

( ) 1.s tP Z j Z i   (19.52) 

In conclusion, as the transition probability given by (4.21) depends on both s and 
t and not only on t – s, we proved that the Z process is a non-homogenous Markov 
process, introduced in Chapter 3. 

19.4.2.2. Discrete time model  

Let us define 1,...,m  as the set of the m credit ratings ranked in increasing 
order with Moody’s scale: 1= defD  (default), 2=ZCCC,..., m=ZAAA. 

 
Except for the extreme classes, the rating classes defined below will now be 

represented by their centers as follows: 

- ,1   :         1
31,2   :           
2

....
2 -11,   :     

2
...

2 -11,   : 
2

,       :      

i
i i

m
m m

m m

  (19.53) 

Let Z it , i being a class center different from 1; from result (19.50), we have: 

( 1 )

( 1) , .

s tP j Z j Z i

j s i t j s i t s t
s t s t

 (19.54) 

To obtain a discrete-time, let us suppose that we give notations at times 
0,u,2u,…,ku representing for example one year or a semester. Now transition 
probabilities become: 

1( 1 )

1 ( 1) 1 , 0,1,.....

ku kuP j Z j Z i

j ku i ku j ku i ku k
u u

 (19.55) 
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Of course, if Zku equals DefZ , we know from relation (19.52) that 

1

0, 1,
( 1 )

1, 1.ku ku D

j
P j Z j Z Z

j
 (19.56) 

Relations (19.54) and (19.55) define a sequence of probability transition matrices 
P(k), k=0,1,... with: 

( ) ( )ijk p kP   (19.57) 

and 

1( ) ( 1 ), , 1,..., , 0,1,...ij ku kup k P j Z j Z i i j m k  (19.58) 

It follows that the credit rating process Z in discrete-time Z=(Zku,k=0,1,...) is 
what we call a non-homogenous Markov chain defined in Chapter 12. 

 
Of course, in the very particular and unrealistic case where the probability 

transition matrices P(k), k=0,1,... are independent of t, the process in discrete-time 
Z=(Zku,k=0,1,...,) is then a homogenous Markov chain as defined in Chapter 11. 

19.4.2.3. Example 

In real-life economics, credit rating agencies play a crucial role; they compile 
data on individual companies or countries to estimate their probability of default, 
represented by their scale of credit ratings at a given time and also by the probability 
of transitions for successive credit ratings.  

 
A change in the rating is called a migration. Migration to a higher rating will of 

course increase the value of a company’s bond and decrease its yield, giving what 
we call a negative spread, as it has a lower probability of default, and the inverse is 
true with a migration towards a lower grade with consequently a positive spread. 

 
Here we have an example of a possible transition matrix for migration from one 

year to the next one. 
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 AAA AA A BBB BB B CCC D Total 
AAA 0.90829 0.08272 0.00736 0.00065 0.00066 0.00014 0.00006 0.00012 1 
AA 0.00665 0.9089 0.07692 0.00583 0.00064 0.00066 0.00029 0.00011 1 
A 0.00092 0.0242 0.91305 0.05228 0.00678 0.00227 0.00009 0.00041 1 

BBB 0.00042 0.0032 0.05878 0.87459 0.04964 0.01078 0.0011 0.00149 1 
BB 0.00039 0.00126 0.00644 0.0771 0.81159 0.08397 0.0097 0.00955 1 
B 0.00044 0.00211 0.00361 0.00718 0.07961 0.80767 0.04992 0.04946 1 

CCC 0.00127 0.00122 0.00423 0.01195 0.0269 0.11711 0.64479 0.19253 1 
D 0 0 0 0 0 0 0 1 1 

Table 19.4. Example of transition matrix of credit ratings 

We clearly see that the probabilities of no migration, given by the elements of 
the principal diagonal, are the highest elements of the matrix but that they decrease 
with the poor quality of the rating. 

 
Here, we see for example that a company with rank AA has more or less nine 

chances out of 10 to keep its rating next year but it will move to rank AAA with 
only six chances in 1,000. 

 
On the other hand, a company with a CCC as a rating will be in default next year 

with 20 chances out of 100. 
 
As a more concrete example, the next table gives the transition probability 

matrix of Standard and Poor’s credit ratings for 1998 (see ratings performance, 
Standard and Poor’s) for a sample of 4,014 companies. 

 
Let us point out the presence of a “new” state called NR (rating withdrawn) 

meaning that for a company in such a state, the rating has been withdrawn and that 
this event does not necessary lead to default the following year, thus explaining the 
last row of the above matrix. 

 
Effec.  AAA AA A BBB BB B CCC D NR Total 
165 AAA 90 6 0 0.61 0 0 0 0 3.03 100 
560 AA 0.18 89.8 5.61 0.18 0 0 0 0 4.23 100 

1,095 A 0.09 1.5 87.18 5.11 0.18 0 0 0 5.94 100 
896 BBB 0 0 2.79 84.93 4.46 0.67 0.22 0.34 6.59 100 
619 BB 0.32 0.2 0.16 5.33 75.4 5.98 2.75 0.65 9.21 100 
649 B 0 0 0.15 0.62 6.16 76.27 5.09 4.47 7.24 100 
30 CCC 0 0 3.33 0 0 20 33.31 36.69 6.67 100 
 NR 0 0 0 0 0 0 0 0 100 100 

4,014            

Table 19.5. Example with rating withdrawn 
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Here, we see for example that companies in state AA will not be in default the 
next year but that 5.61% of them will degrade to A and 0.18% to a BBB and 0.18% 
will upgrade to an AAA. 

 
Under the assumption of a homogenous Markov chain, we obtain the following 

results: 
(i) the probability that an AA company defaults after two years 

P(2)(D/AA)=0.0018 0.0034=0.0006%, 

which is still very low; 
(ii) the probability that a BBB company defaults in one of the next two years 

This probability is given by: 

( / ;2) ( / ) ( / ) ( / )
( / ) ( / ) ( / ) ( / ) ( / ) ( / )

                      0.34%+(84.93% 0.34%) +(4.46% 0.65%)+(0.67% 4.47%)+(0.22% 36.67%)
                       =

P D BBB P D BBB P BBB BBB P D BBB
P BB BBB P D BB P B BBB P D B P CCC BBB P D CCC

0.77%;

 

(iii) the probability for a company BBB to default between year 1 and year 2 

Using the standard definition of conditional probability (see Chapter 1) we 
obtain  

P(D at 2/non-def. at 1) = P(D at 2 and non-def. at 1)/ P(non-def. at 1) 
 =(0.77%-0.34%)/(1-0.34%) 
 =0.43%. 

Let us point out that these illustrative results are true under the homogenous 
Markov chain model and moreover give similar results for all the companies of the 
panel in the same credit rating. 

 
In fact, in real life applications, credit rating agencies also study each company 

on its own account so that specific information is also determined for giving the 
final grade. 

19.4.2.4. Ratings and spreads on zero bonds  

Let us first recall that a zero coupon bond is a contract paying a known fixed 
amount called the principal, at some given future date, called the maturity date. 
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So, if the principal is one monetary unit and T the maturity date, the value of this 
zero coupon at time 0 is given by: 

(0, ) TB T e   (19.59) 

if  is the considered constant instantaneous intensity of interest rate. 
 

Of course, the investor in zero coupons must take into account the risk of default 
of the issuer. To do so, we consider that, in a risk neutral framework, the investor 
has no preference between the following two investments: 

(i) to receive almost surely at time 1 the amount e  as counterpart of the 
investment at time 0 of one monetary unit; 

(ii) to receive at time 1 the amount ( ) ( 0)se s  with probability (1 – p) or 0 
with probability p, as counterpart of the investment at time 0 of one monetary unit, p 
being the default probability of the issuer. 

 
The positive quantity s is called the spread with respect to the non-risky 

instantaneous interest rate  as counterpart of this risky investment in zero coupon 
bonds. 

 
From the indifference given above, we obtain the following relation: 

( )(1 ) se p e   (19.60) 

or  

1 (1 ) ,sp e   (19.61) 
s pln( ).1   (19.62) 
s p

s p p

,

.1
2

2   (19.63) 

Let us now consider a more positive and realistic situation in which the investor 
can obtain an amount ,(0 1)  if the issuer defaults at maturity or before. 

 
In this case, the expectation equivalence principle relation (19.60) becomes: 

(1 ) ,se p e p e   (19.64) 

or 

1 (1 ) .sp e p   (19.65) 
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It follows that in this case the value of the spread satisfies the equation 

1
1

s pe
p

  (19.66) 

and so the spread value is 

1ln .
1

ps
p

  (19.67) 

As above, using the MacLaurin formula respectively of order 1 and 2, we obtain 
the two following approximations for the spread: 

2

(1 ),
1

1(1 ) (1 ) .
1 2 1

ps
p

p ps
p p

 (19.68) 

19.5. Discrete time semi-Markov processes 

19.5.1. Purpose 

In this section, we will present both discrete-time homogenous (DTHSMP) and 
non-homogenous (DTNHSMP) semi-Markov processes and how to apply semi-
Markov models to the credit risk environment. 

 
Although, in general, time in real-life problems is continuous, the real 

observation of the considered system is almost always made up of discrete-time 
even if the used time unit may in some cases be very small. 

 
The choice of this time unit depends on what we observe and what we wish to 

study. 
 
For example, if we are studying the random evolution of the earthquake activity 

in a tectonic fracture zone, then it could be observed with a unitary time scale of ten 
years. If we are studying the behavior of a disablement resulting from a job related 
illness, the unitary time could be one year, etc. 

 
Thus, it results that while the phenomenon of time evolution is continuous, 

usually, the observations are discrete in time.  
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Consequently, if we construct a model to be fitted with real data, in our opinion, 
it would be better to begin with discrete-time models. 

 
The rating changes can be followed by a Markov chain model. 
 
In some papers, the problem of the unfitting of Markov process in the credit risk 

environment was outlined (see Altman (1998), Nickell et al. (2000), Kavvathas 
(2001), Lando and Skodeberg (2002)). 

 
The principal problems of non-Markovianity that are highlighted are as follows: 
(i) the duration inside a state. The probability of changing rating depends on the 

time that a firm remains at the same rating; 
(ii) the dependence on time of the rating evaluation (ageing phenomenon). This 

means that, in general, the rating evaluation depends on the time at which it is done 
and, more importantly, on the business cycle. The rating evaluation done at time t is 
generally different from the one done at time s, if s t ; 

(iii) the dependence of the new rating on the previous ones, not only the last 
rating, but also the one before last. 

 
As the first approach, the first problem can be solved by means of semi-Markov 

processes (SMP). In fact, in SMP the transition probabilities are a function of the 
waiting time spent in a state of the system. Furthermore, in a semi-Markov 
backward recurrence time conditioning the problem is resolved successfully. 

 
As a general approach, the second problem can be faced by means of a non-

homogenous environment and, using a more particular approach, by means of 
different scenarios in the model. 

 
The third effect exists in the case of downward moving ratings but not in the case 

of upward moving ratings; see Kavvathas (2001). More precisely, if a firm obtains a 
lower rating, then there is a higher probability that the next rating will be lower than 
the preceding one. In the case of an upward movement, this phenomenon does not 
hold. 

 
The credit risk semi-Markov approach was developed in D’Amico et al. (2005a), 

D’Amico et al. (2004a), D’Amico et al. (2004b) and D’Amico et al. (2005b). In the 
last sections of this chapter we will present the models and their theoretical 
background. 

 
It should be mentioned that Koopman et al. (2005) and Vasileiou and Vassiliou 

(2006), in other environments, show how semi-Markov processes are more suitable 
than the Markov ones in the credit risk transition models. 
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19.5.2. DTSMP definition 

Though DTHSMP and DTNHSMP definitions are similar to the continuous ones 
given in Chapter 3, we will give these definitions for discrete-time using directly the 
terminology used for continuous time models. 

 
Let I={1, 2, …, m} be the state space and let , , P  be a probability space. 

Let us also define the following r.vs.:  

:nJ I ,       :nT .  (19.69) 

Definition 19.1 The process ( ,  )n nJ T  is a discrete-time homogenous Markov 
renewal process or a discrete-time non-homogenous Markov renewal process if the 
kernels Q associated with the process are defined respectively in the following way: 

1 1( ) ,  - | , ,ij n n n nQ t P J j T T t J i i j I tQ , (19.70) 

1 1( , ) ,  | , , , ,ij n n n nQ s t P J j T t J i T s i j I s tQ  (19.71) 

As in the continuous time case, it results that for the homogenous case, we define: 

lim ( ) ; , ,ij ijt
p Q t i j I tP . (19.72) 

For the non-homogenous case, we obtain: 

( ) lim ( , ) ; , , ,ij ijt
p s Q s t i j I s tP , (19.73) 

P being the transition matrix of the embedded Markov chain of the process. 
 

Furthermore it is necessary to introduce the probability that the process will 
leave state i before or at time t: 

1( ) - | ,i n n nH t P T T t J iH  (19.74) 

1( , )  | , .i n n nH s t P T t J i T sH  (19.75) 

From the results of Chapter 12, we know that: 

1 1
( ) ( ) and  ( , ) ( , )

m m

i ij i ij
j j

H t Q t H s t Q s t . (19.76) 
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Probability (19.77) only has sense in the discrete-time case and to be concise, we 
present first the definition for the homogenous case and then for the non-
homogenous case. 

 
Definition 19.2 Matrix B is defined as follows: 

1 1( ) ,  - | ,ij n n n nb t P J j T T t J iB  (19.77) 

1 1( , ) ,  | , .ij n n n nb s t P J j T t J i T sB  (19.78) 

From Definition 19.1 it results that: 

(0) 0 if 0,
1 if 1,2,...,

ij

ij

Q t
b (t) Q (t) Q (t ) tij ij

 (19.79) 

( , ) 0 if ,
( , ) ( , ) ( , 1) if .

ij

ij

Q s s t s
b s t Q s t Q s t t sij ij

 (19.80) 

Definition 19.3 The discrete-time conditional distribution functions of the waiting 
times given the present and the next states, are given by: 

1 1( ) - | , ,ij n n n nF t P T T t J i J jF  (19.81) 

1 1( , ) | , , .ij n n n nF s t P T t J i J j T sF  (19.82) 

Obviously, the related probabilities can be obtained by means of the following 
formulae: 

1

( ) if 0,
( )  

( )        if 0,
ij ij ij

ij

Q t  /  p p
F tij U t p

 (19.83) 

1

( , ) ( ) if ( ) 0,
( , )  

( , )             if ( ) 0,
ij ij ij

ij

Q s t  /  p s p s
F s tij U s t p s

 (19.84) 

where 1 1( ) ( , ) 1 ,U t U s t s t . 
 

Now, we can introduce the discrete-time semi-Markov process 
( ),Z Z t t  where ( )( ) , ( ) max :N t nZ t J N t n T t  represents the 

state occupied by the process at time t.  
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For i,j=1,…,m, the transition probabilities are defined in the following way: 

0( ) Pij t t   Z   j | Z   i   (19.85) 

for the homogenous case; for the non-homogenous case, we have: 

( , ) P , ( ) ( ) 1 .ij t s s t   Z   j | Z   i N s N s  (19.86) 

They are obtained by solving the following evolution equations: 

1 1
( ) (1 ( )) ( ) ( ),

m t

ij ij i i jt H t b t  (19.87) 

1 1
( , ) (1 ( , )) ( , ) ( , ),

m t

ij ij i i j
s

s t H s t b s t  (19.88) 

where, as usual, ij represents the Kronecker symbol. 
 

The first part of relations (19.87) and (19.88) 

(1 ( ))ij iH t   (19.89) 

(1 ( , ))ij iH s t   (19.90) 

give the probability that the system does not have transitions up to time t given that 
it was in state i at time 0 in the homogenous case and at time s in the non-
homogenous case. Relations (19.89) and (19.90) in the rating migration case 
represent the probability that the rating organization does not give any new rating 
evaluation in a time t in homogenous case and from the time s up to the time t in 
non-homogenous case. This part has sense if and only if i=j and this is the reason of 
Kronecker . 
 

In the second parts 

1 1

( ) ( )
m t

i jb t  

1 1

( , ) ( , )
m t

i j
s

b s t   (19.91) 

( )ib  and ( , )ib s
 
represent the probability that the system was at time s in the 

state I, remained in this state up to time  and that it went to the state  just at 
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time . After the transition, the system will go to state j following one of the 
possible trajectories that go from state  at time  to state j within time t . In the 
credit risk environment, this means that in a time t, in the homogenous case, and 
from time s up to time , in the non-homogenous, the rating company does not 
offer any other evaluation of the firm; at time  the rating company gave the new 
rating  for the evaluation firm. After this, the rating will arrive at state j within the 
time t following one of the possible rating trajectories. 

19.6. Semi-Markov credit risk models 

The rating process, generated by the rating agency, gives a reliability rating to a 
firm’s bond. 

 
For example, in Standard and Poor’s case, there are the eight different classes of 

rating which means having the following set of states: 

AAA, AA, A, BBB, BB, B, CCC, DI . 

The first seven states are good states and the last one is the only bad state that is 
also the only absorbing state. The two subsets are the following: 

AAA, AA, A, BBB, BB, B, CCC ,  DU D . 

Solving systems (19.88) and (19.89) we will obtain the following results: 
1) ( )ij t  and ( , )ij s t  represent the probabilities of being in state j starting in 

state i after time t in the homogenous case, or starting at time s in state i in the non-
homogenous one. Both the results take into account the different probabilities of 
changing state during the permanence of the system in the same state (duration 
problem). In the non-homogenous case, the problem of the different probabilities of 
changing state as a function of the different time of evaluation (aging problem) is 
also solved. 

2) ( ) ( )i ij
j U

A t t  and ( , ) ( , )i ij
j U

A s t s t  represent the probability that the 

system never goes in the default state in time t in homogenous case and from time s 
up to the time t in the non-homogenous one.  

3) 1 ( )iH t  and 1 ( , )iH s t  represent the probability that in time t or from 
time s up to the time t, no new rating evaluation was done for the firm. 

 
Before giving another result that can be obtained in an SMP environment, we 

have to introduce the concept of the first transition after time t. More precisely, we 
suppose that the system at time 0 or at time s was in state i, and we know that with 
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probability 1 ( )iH t  or 1 ( , )iH s t  the system does not move from state i. 
According to these hypotheses we would know the probability that the next 
transition will be to state j. This probability will be denoted by ( )ij t  in the 
homogenous case and by ( , )ij s t  in the non-homogenous case. These probabilities 
have the following meaning:  

1 1( ) | ,ij n n n nt P X j X i T T t  (19.92) 

1 1( , ) | , ,ij n n n ns t P X j X i T t T s . (19.93) 

These probabilities can be obtained by means of the following relations: 

( )
( )

1 ( )
ij ij

ij
i

p Q t
t

H t
  (19.94) 

( ) ( , )
( , )

1 ( , )
ij ij

ij
i

p s Q s t
s t

H s t
.  (19.95) 

After definitions (19.92) and (19.93) by means of SMP, it is possible to obtain 
the following results: 

4) ( )ij t  and ( , )ij s t  represent, respectively, the probabilities of obtaining rank 
j at the next rating if the previous state was i and no rating evaluation was done in 
time t in the homogenous case, or from time s up to time t in the non-homogenous 
one. In this way, for example, if the transition to the default state is possible and if 
the system does not move from time s up to time t from state i, we know the 
probability that in the next transition the system will go to the default state. 

 
The downward problem can be solved introducing six other states. The set of the 

states becomes the following: 

AAA, AA,AA-, A,A-, BBB,BBB-, BB,BB-, B,B-, CCC,CCC-, DI  

For example, state BBB is divided into BBB and BBB-. The system will be in 
state BBB if it arrived from a lower rating. On the other hand, it will be in state 
BBB- if it arrived in the state from a better rating (a downward transition). 

 
It is also possible to suppose that if there is a virtual transition, then if the system 

is in the BBB- state it will go to the BBB state, but in our models this assumption 
will not be made. 
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The first 13 states are good states and the last one is the only bad state. 
According to this hypothesis, the two subsets become the following: 

AAA, AA,AA-, A,A-, BBB,BBB-, BB,BB-, B,B-, CCC,CCC- ,

 D

U

D
. 

The homogenous and non-homogenous models do not change. The simple 
introduction of the states makes it possible to solve the downward problem. 

19.7. NHSMP with backward conditioning time 

Now we introduce non-homogenous backward semi-Markov process, that is, a 
generalization of the SMP. We state only the non-homogenous case. To explain the 
backward introduction in Figure 7.1 a trajectory of a SMP with backward recurrence 
time is shown. 

 
Figure 19.1. Backward time conditioning 

With non-homogenous semi-Markov processes we know that at time s the 
system entered into state I, then the probability of being in state j at time t is given 
by ( , )ij s t . Taking into account backward time, we consider that we entered into 
the state i at time u, and we remained in state i up to time s (backward recurrence 
time s-u). The transition probabilities are conditioned to the entrance time into state i 
and to the fact that the system does not have transitions up to time s. So, we 
introduce the new conditional probabilities 

( ) 1 ( ) ( ) ( ) 1( , , ) P | , , , ,i N s N s N s N sH u s t T t J i T u T s t s  

( ) 1 ( ) 1 ( ) ( ) ( ) 1( , , ) P , | , , ,i j N s N s N s N s N sQ u s t T t J j J i T u T s t s  
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It is clear that ( , , ), ( , , )i iH s s t Q s s t  and ( , , )ij s s t  are equal respectively to 
( , ), ( , ) and ( , )i i ijH s t Q s t s t  of the non-homogenous semi-Markov process. 

 
According to this hypothesis, relations (19.71), (19.91), (19.88) and (19.90) are 

rewritten in the following way: 

( , , )
( , , )

1 ( , , )
ij

ij
i

Q u u t
Q u s t

H u u s
  (19.96) 

( , , )
( , , )

1 ( , , )
ij

ij
i

b u u t
b u s t

H u u s
  (19.97) 

1

( , , ) ( , , ) ( , , ) ( , , )
t

ij ij j i
j I s

u s t D u s t t b u s  (19.98) 

where 

1 ( , , ) if
1 ( , , )( , , )

0 if

i

iij

H u u t i j
H u u sD u s t

i j
 (19.99) 

and ( , , )ij u s t  is the probability of being in state j at time t given that at time s the 
system was in state i and that it entered into this state at time u and has not moved 
from state i up to time s.  
 

With this generalization of the model it is possible to consider the complete time 
of duration into a state in the rating migration model. 

 
The results given in the previous section with backward conditioning recurrence 

time become the following: 
1) ( , , )ij u s t  represents the probability of being in state j at time t being in state 

i at time s and moreover given that the system arrived at state i at time u and that 
from u to s ( )u s  there was no transition. These results take into account the 
different probabilities of changing state during the permanence of the system in the 
same state (duration problem) considering the arrival time in the state and, in a 
complete way, the duration inside a state. Furthermore, it also considers the different 
probabilities of changing state as a function of the different time of evaluation 
(aging problem). The different probability values given for the two states that are 
obtained because of the downward problem solve the third Markovian model 
problem. 
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2) ( , , ) ( , , )i ij
j U

A u s t u s t  represents the probability that the system never 

goes in the default state from time s up to time t.  
3) ( , , )iiD u s t  represents the probability that from time s up to time t no one new 

rating evaluation was done for the firm, taking into account that there were no 
transitions from u to s either. 

 
In this case, ( , )ij s t  does not make sense because the backward gives no more 

information as regards the case without recurrence times. 

19.8. Examples 

In this section, we present examples for the homogenous case and for downward 
and backward non-homogenous models; for a simple non-homogenous case see 
Janssen and Manca (2007). The data were extracted from Standard and Poor’s 
Credit Review (1993), and Standard and Poor’s (2001). 

19.8.1. Homogenous SMP application 

The first example is given using the transition matrix given in Jarrow et al. 
(1997), who presented one the first applications of Markov processes to the problem 
of credit risk. 

 
Real data were not available and this matrix is used only in order to show how 

the model can work and the results that can be obtained by means of a homogenous 
semi-Markov process model. 

 
The matrix was constructed starting from the 1 year transition matrix given in 

Standard and Poor’s Credit Review (1993). The matrix is given in Table 19.6 for the 
sake of completeness. 

 
The d.f. of waiting times are not known and they were constructed by means of 

random number generators. 
 
The results at 5 years and at 10 years of the matrix are reported ( )ij t  

respectively in Tables 19.7 and 19.8.  
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 AAA AA A BBB BB B CCC D 
AAA 0.891 0.0963 0.0078 0.0019 0.003 0 0 0 
AA 0.0086 0.901 0.0747 0.0099 0.0029 0.0029 0 0 
A 0.0009 0.0291 0.8896 0.0649 0.0101 0.0045 0 0.0009 

BBB 0.0006 0.0043 0.0656 0.8428 0.0644 0.016 0.0018 0.0045 
BB 0.0004 0.0022 0.0079 0.0719 0.7765 0.1043 0.0127 0.0241 
B 0 0.0019 0.0031 0.0066 0.0517 0.8247 0.0435 0.0685 

CCC 0 0 0.0116 0.0116 0.0203 0.0754 0.6492 0.2319 
D 0 0 0 0 0 0 0 1 

Table 19.6. 1 year transition matrix 

For example, element 0.03046 in row A and in column BBB represents the 
probability that a firm that at time 0 has a rating A will have rating BBB at time 5. 

 
 AAA AA A BBB BB B CCC D 

AAA 0.94730 0.04462 0.00474 0.00142 0.00185 0.00007 0.00000 0.00001 
AA 0.00437 0.93638 0.04961 0.00616 0.00166 0.00176 0.00002 0.00005 
A 0.00049 0.01130 0.94901 0.03046 0.00516 0.00289 0.00005 0.00065 

BBB 0.00036 0.00232 0.03778 0.91369 0.03290 0.00886 0.00140 0.00268 
BB 0.00027 0.00123 0.00366 0.04166 0.89871 0.03611 0.00472 0.01363 
B 0.00000 0.00102 0.00219 0.00577 0.02916 0.90182 0.01727 0.04277 

CCC 0.00000 0.00004 0.00570 0.00497 0.00718 0.02673 0.86863 0.08675 
D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Table 19.7. Probabilities (5)ij  

 AAA AA A BBB BB B CCC D 
AAA 0.83816 0.13758 0.01566 0.00376 0.00437 0.00038 0.00003 0.00007 
AA 0.01099 0.85822 0.10525 0.01633 0.00460 0.00422 0.00012 0.00029 
A 0.00133 0.03697 0.85606 0.08135 0.01528 0.00688 0.00026 0.00185 

BBB 0.00087 0.00628 0.08211 0.79992 0.07740 0.02256 0.00292 0.00794 
BB 0.00051 0.00300 0.01241 0.08615 0.73333 0.11574 0.01495 0.03391 
B 0.00003 0.00282 0.00533 0.01253 0.06824 0.75073 0.05572 0.10460 

CCC 0.00001 0.00027 0.01325 0.01395 0.02199 0.08238 0.61142 0.25673 
D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Table 19.8. Probabilities (10)ij  

In Table 19.9, the ( )iA t  values are reported, the probabilities of not having a 
default in a time t (row index) starting in state i (column) at time 0.  
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 AAA AA A BBB BB B CCC D 
1 1.00000 1.00000 0.99995 0.99946 0.99826 0.98987 0.98989 0.0 
2 1.00000 1.00000 0.99982 0.99902 0.99379 0.98636 0.98264 0.0 
3 1.00000 0.99999 0.99969 0.99848 0.99296 0.98072 0.95688 0.0 
4 0.99999 0.99997 0.99954 0.99825 0.99081 0.97239 0.93484 0.0 
5 0.99999 0.99995 0.99935 0.99732 0.98637 0.95723 0.91325 0.0 
6 0.99998 0.99993 0.99924 0.99633 0.98303 0.95100 0.86029 0.0 
7 0.99998 0.99989 0.99900 0.99560 0.97817 0.93408 0.82584 0.0 
8 0.99997 0.99984 0.99882 0.99444 0.97353 0.91576 0.77271 0.0 
9 0.99995 0.99978 0.99850 0.99327 0.96946 0.90660 0.76244 0.0 
10 0.99993 0.99971 0.99815 0.99206 0.96609 0.89540 0.74327 0.0 

Table 19.9. Probabilities of not having a default 

 AAA AA A BBB BB B CCC D 
1 0.85082 0.92221 0.90662 0.90109 0.92033 0.85765 0.93533 1.0 
2 0.72879 0.85294 0.78671 0.81736 0.82019 0.65152 0.90909 1.0 
3 0.69140 0.77216 0.67244 0.78712 0.79283 0.61430 0.85917 1.0 
4 0.63930 0.65477 0.62791 0.62841 0.72874 0.58226 0.73706 1.0 
5 0.47396 0.50142 0.58289 0.56618 0.68413 0.54727 0.61716 1.0 
6 0.32902 0.37689 0.41751 0.51725 0.60283 0.32242 0.54618 1.0 
7 0.28210 0.32079 0.39316 0.40741 0.47414 0.27700 0.45527 1.0 
8 0.12558 0.24453 0.36959 0.25555 0.33608 0.21594 0.32597 1.0 
9 0.11273 0.15467 0.19339 0.15823 0.16723 0.20158 0.16877 1.0 
10 0.08805 0.02465 0.00905 0.04343 0.02941 0.03959 0.04901 1.0 

Table 19.10. Probability of remaining in the starting state 

As explained before, these results can assume great relevance in the computation 
of interest rates. 

 
In Table 19.10, the probabilities of remaining in the starting state without 

transitions are reported. 
 
In Tables 19.11 and 19.12, the probability ( )ij t  at 5 years and 10 years are 

reported. For example, 0.06644 represents the probability that the next transition of 
a firm that was at time 0 in the state A and that remained in this state up to time 5 
will go to state BBB in the next transition. 
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 AAA AA A BBB BB B CCC D 
AAA 0.85843 0.12677 0.00993 0.00182 0.00305 0.00000 0.00000 0.00000 
AA 0.00949 0.91387 0.06126 0.00951 0.00303 0.00283 0.00000 0.00000 
A 0.00084 0.03299 0.88487 0.06644 0.01045 0.00369 0.00000 0.00073 

BBB 0.00051 0.00417 0.05568 0.85789 0.06149 0.01481 0.00113 0.00432 
BB 0.00024 0.00166 0.00735 0.05012 0.80635 0.10368 0.01260 0.01801 
B 0.00000 0.00194 0.00278 0.00436 0.05011 0.82294 0.05565 0.06223 

CCC 0.00000 0.00000 0.01027 0.01145 0.02199 0.08057 0.63240 0.24333 
D 0.85843 0.12677 0.00993 0.00182 0.00305 0.00000 0.00000 0.00000 

Table 19.11. Probability (5)ij  

 AAA AA A BBB BB B CCC D 
AAA 0.98206 0.00684 0.00766 0.00164 0.00179 0.00000 0.00000 0.00000 
AA 0.03037 0.86667 0.07300 0.01369 0.00639 0.00988 0.00000 0.00000 
A 0.00342 0.14461 0.15548 0.64345 0.01673 0.03479 0.00000 0.00153 

BBB 0.00025 0.00631 0.10388 0.76402 0.09709 0.02065 0.00147 0.00634 
BB 0.00107 0.00242 0.00308 0.06613 0.63752 0.17163 0.04287 0.07528 
B 0.00000 0.00016 0.00765 0.00036 0.09770 0.69738 0.04657 0.15017 

CCC 0.00000 0.00000 0.01742 0.01122 0.03786 0.02115 0.50411 0.40823 
D 0.98206 0.00684 0.00766 0.00164 0.00179 0.00000 0.00000 0.00000 

Table 19.12. Probability (10)ij  

As was mentioned before, by means of this matrix it is possible, for example, to 
know the probability of going into the default state at the next transition. 

 
Finally, Tables 19.13 and 19.14 present the discrete-time distribution functions 

of the first time of default in a time horizon of 10 years. 
 

 1 2 3 4 5 
AAA 0.00000 0.000000 0.000002 0.000005 0.000010 
AA 0.00000 0.000004 0.000014 0.000029 0.000047 
A 0.00005 0.000181 0.000311 0.000462 0.000648 

BBB 0.00054 0.000980 0.001521 0.001749 0.002678 
BB 0.00174 0.006214 0.007042 0.009187 0.013634 
B 0.01013 0.013635 0.019281 0.027613 0.042766 

CCC 0.01011 0.017358 0.043122 0.065157 0.086749 
D 1.00000 1.00000 1.00000 1.00000 0.000010 

Table 19.13. Distribution function from 1 to 5 
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 6 7 8 9 10 
AAA 0.000015 0.000024 0.000033 0.000046 0.000066 
AA 0.000074 0.000112 0.000158 0.000218 0.000290 
A 0.000756 0.001005 0.001180 0.001503 0.001854 

BBB 0.003667 0.004402 0.005563 0.006727 0.007937 
BB 0.016971 0.021832 0.026472 0.030544 0.033914 
B 0.049002 0.065918 0.084239 0.093395 0.104603 

CCC 0.139715 0.174160 0.227294 0.237560 0.256734 
D 1.00000 1.00000 1.00000 1.00000 1.00000 

Table 19.14. Distribution function from 6 to 10 

19.8.2. Non-homogenous downward example 

To solve the downward problem we constructed the non-homogenous embedded 
Markov chain using the transition matrices given in Standard and Poor’s (2001) 
Table 15 as a basis. In these matrices, the state No Rating was present. Each element 

( )ijp s  of the embedded non-homogenous Markov chain should be constructed 
directly from the data. Constructing the MC, all the possible transitions from state i 
to state j starting from year s should be taken into account. Since we do not have the 
raw data, we used the one year transition matrices given in Standard and Poor’s 
publication. 

 
The publication reports a 20-year history (one year transition matrices from 1981 

to 2000). The example works from year 0, corresponding to 1981 to year 19 that 
corresponds to year 2000. The ( )sP  in the semi-Markov environment should give 
the transition probabilities that there are, theoretically, from time s up to . This 
fact means that if there is a transition from i to j at time ,t s t  then 

( ) 0,ijp k s k t . Standard and Poor’s transition matrix was rearranged taking 
into account this property. Furthermore, we rearranged the obtained matrix giving 
the transition probabilities of the downward states starting from the probability 
transitions constructed without the added states. 

 
In the new states, the transition probabilities of remaining in the state or of 

obtaining a better rating are lower than those of the corresponding non-downward 
state.  
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 AAA AA AA- A A- BBB BBB- 
AAA 0.906284 0 0.074012 0 0.016665 0 0.003039 
AA 0.019456 0.890148 0 0 0.068095 0 0.004009 
AA- 0.016895 0 0.851902 0 0.085766 0 0.016418 

A 0.006028 0.04704 0 0.87366 0 0 0.06546 
A- 0.00435 0.040023 0 0 0.818887 0 0.102706 

BBB 0.00324 0.006481 0 0.04782 0 0.886292 0 
BBB- 0.002331 0.005244 0 0.03467 0 0 0.847431 
BB 0 0.005712 0 0.008785 0 0.044019 0 
BB- 0 0.005106 0 0.0077 0 0.035284 0 
B 0 0.001342 0 0.011884 0 0.006518 0 
B- 0 0.001242 0 0.009932 0 0.004489 0 

CCC 0.012308 0 0 0.010443 0 0.011375 0 
CCC- 0.00027 0 0 0.007712 0 0.007495 0 

D 0 0 0 0 0 0 0 

Table 19.15. Embedded MC at time 0 - I 

 BB BB- B B- CCC CCC- D 
AAA 0 0 0 0 0 0 0 
AA 0 0.008809 0 0.007235 0 0.002249 0 
AA- 0 0.009641 0 0.013364 0 0.006014 0 

A 0 0.00208 0 0.00168 0 0 0.004052 
A- 0 0.005128 0 0.003674 0 0 0.025232 

BBB 0 0.04782 0 0.003044 0 0.002258 0.003044 
BBB- 0 0.089055 0 0.004953 0 0.007478 0.008838 
BB 0.598413 0 0 0.294862 0 0.004392 0.043817 
BB- 0 0.566994 0 0.316054 0 0.019595 0.049267 
B 0.047345 0 0.875595 0 0 0.023673 0.033643 
B- 0.042402 0 0 0.846713 0 0.056063 0.03916 

CCC 0.011096 0 0.084755 0 0.847646 0 0.022378 
CCC- 0.010123 0 0.064831 0 0 0.707889 0.20168 

D 0 0 0 0 0 0 1 

Table 19.16. Embedded MC at time 0 - II 

The probabilities of obtaining a lower rating are higher compared to that of the 
original state. 

 
In Tables 19.15, 19.16, 19.17 and 19.18, two years of the non-homogenous 

embedded MC are reported. 
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 AAA AA AA- A A- BBB BBB- 
AAA 0.899545 0 0.095701 0 0.004754 0 0 
AA 0 0.918598 0 0 0.081402 0 0 
AA- 0 0 0.87046 0 0.12954 0 0 

A 0.00172 0.005059 0 0.919263 0 0 0.070619 
A- 0.001502 0.004106 0 0 0.872126 0 0.100619 

BBB 0 0.008356 0 0.052747 0 0.858366 0 
BBB- 0 0.007356 0 0.043275 0 0 0.815366 
BB 0 0 0 0 0 0.080374 0 
BB- 0 0 0 0 0 0.072374 0 
B 0 0.003848 0 0 0 0.003848 0 
B- 0 0.003102 0 0 0 0.003483 0 

CCC 0 0 0 0 0 0.018525 0 
CCC- 0 0 0 0 0 0.014452 0 

D 0 0 0 0 0 0 0 

Table 19.17. Embedded M.C. at time 10 - I 

 BB BB- B B- CCC CCC- D 
AAA 0 0 0 0 0 0 0 
AA 0 0 0 0 0 0 0 
AA- 0 0 0 0 0 0 0 

A 0 0.003339 0 0 0 0 0 
A- 0 0.021647 0 0 0 0 0 

BBB 0 0.061103 0 0.008356 0 0.005536 0.005536 
BBB- 0 0.101103 0 0.010356 0 0.006536 0.016008 
BB 0.799118 0 0 0.075855 0 0.017861 0.026791 
BB- 0 0.754912 0 0.104586 0 0.027861 0.040267 
B 0.061352 0 0.747004 0 0 0.034524 0.149423 
B- 0.052135 0 0 0.7002 0 0.124524 0.116555 

CCC 0.03705 0 0.074099 0 0.518468 0 0.351858 
CCC- 0.034205 0 0.06741 0 0 0.483847 0.400086 

D 0 0 0 0 0 0 1 

Table 19.18. Embedded M.C. at time 10 - II  

To apply the model, it is also necessary to construct the d.f. of the waiting time 
in each state i, given that the state successively occupied is known. We do not have 
data and we constructed them by means of random number generators. 

 
In Tables 19.19 and 19.20, the probabilities 1 ( , )iH s t  of remaining in the 

state from s to t without any transition are given. 
 



Credit Risk or Default Risk     779 

Probabilities of no transition from year s to year t 
years AAA AA AA- A A- BBB BBB- 

0 1 0.872181 0.803709 0.86605 0.884755 0.859781 0.950899 0.925139 
0 2 0.77428 0.740025 0.84935 0.81325 0.807756 0.92007 0.774197 
0 3 0.699214 0.719164 0.68683 0.662296 0.792684 0.840488 0.721149 
0 4 0.579474 0.607234 0.604108 0.562696 0.748248 0.677993 0.712246 
0 5 0.496353 0.431912 0.44989 0.503661 0.676747 0.644425 0.652798 
0 6 0.375035 0.370249 0.33209 0.466088 0.624805 0.594064 0.477243 
0 7 0.302027 0.324532 0.266083 0.338748 0.505539 0.411709 0.314356 
0 8 0.206926 0.270204 0.179743 0.223977 0.354685 0.229692 0.292188 
0 9 0.12002 0.204777 0.139748 0.116117 0.17136 0.115246 0.121753 
0 10 0.048179 0.031125 0.056915 0.081423 0.036674 0.083032 0.07514 
6 7 0.814415 0.783328 0.899957 0.795045 0.764473 0.731597 0.814112 
6 8 0.514639 0.456258 0.78702 0.638951 0.570292 0.4426 0.573669 
6 9 0.312577 0.307947 0.187436 0.245597 0.266901 0.299585 0.281691 
6 10 0.042352 0.026528 0.085198 0.058273 0.037473 0.011313 0.04723 

Table 19.19. Probabilities 1 ( , )H s ti   

Probabilities of no transition from year s to year t 
years BB BB- B B- CCC CCC- 

0 1 0.985533 0.894593 0.83837 0.914242 0.883844 0.955493 
0 2 0.947469 0.848314 0.693836 0.743081 0.725237 0.840868 
0 3 0.858208 0.729037 0.618079 0.713725 0.682691 0.684999 
0 4 0.701267 0.636971 0.575733 0.681344 0.578327 0.56305 
0 5 0.577156 0.585617 0.537296 0.660163 0.502152 0.521922 
0 6 0.463875 0.471031 0.401942 0.492227 0.480255 0.439965 
0 7 0.359584 0.351512 0.302279 0.454226 0.344989 0.288244 
0 8 0.242471 0.212772 0.241288 0.292127 0.193908 0.219999 
0 9 0.136879 0.152736 0.185382 0.114899 0.14218 0.108098 
0 10 0.064375 0.043551 0.011903 0.084761 0.043851 0.088229 
6 7 0.644256 0.61234 0.682245 0.778307 0.692634 0.662672 
6 8 0.539284 0.505809 0.639596 0.460034 0.38039 0.473847 
6 9 0.265781 0.178203 0.260959 0.188567 0.158466 0.315536 
6 10 0.055535 0.078714 0.04885 0.072713 0.083376 0.021339 

Table 19.20. Probabilities 1 ( , )H s ti   

In Tables 19.21, 19.22, 19.23 and 19.24 the probabilities ( , )ij s t  are reported. 
These values give the probability that the next transition from the state i will be to 
the state j given that there was no transition from the time s to the time t. 
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For example, element 0.014583 gives the probability that next transition from 
rating AA- will be to rating AAA given that from time 0 up to time 4 there will be 
no real or virtual transitions.  

 
 AAA AA AA- A A- BBB BBB- 

AAA 0.899421 0 0.080348 0 0.017233 0 0.002998 
AA 0.019706 0.879427 0 0 0.078952 0 0.003367 
AA- 0.014583 0 0.837132 0 0.099825 0 0.01853 

A 0.008036 0.060021 0 0.833406 0 0 0.088538 
A- 0.0039 0.033986 0 0 0.839978 0 0.093764 

BBB 0.002525 0.005556 0 0.045356 0 0.886689 0 
BBB- 0.002212 0.004901 0 0.030534 0 0 0.865008 
BB 0 0.00567 0 0.010089 0 0.028391 0 
BB- 0 0.003461 0 0.007602 0 0.026574 0 
B 0 0.000756 0 0.011137 0 0.007193 0 
B- 0 0.001141 0 0.01029 0 0.003632 0 

CCC 0.010151 0 0 0.00688 0 0.01011 0 
CCC- 0.000246 0 0 0.00715 0 0.006269 0 

D 0 0 0 0 0 0 0 

Table 19.21. Probabilities of remaining in state i from years 0 to 4 and after to go in j-I  

 BB BB- B B- CCC CCC- D 
AAA 0 0 0 0 0 0 0 
AA 0 0.00794 0 0.008128 0 0.00248 0 
AA- 0 0.010174 0 0.015311 0 0.004445 0 

A 0 0.002865 0 0.001739 0 0 0.005395 
A- 0 0.004857 0 0.002694 0 0 0.020821 

BBB 0 0.051625 0 0.003346 0 0.001876 0.003027 
BBB- 0 0.07824 0 0.004769 0 0.006562 0.007773 

BB 0.677291 0 0 0.232917 0 0.004475 0.041167 
BB- 0 0.587472 0 0.309078 0 0.019533 0.04628 
B 0.047536 0 0.87162 0 0 0.025383 0.036375 
B- 0.028513 0 0 0.863333 0 0.049553 0.043538 

CCC 0.009922 0 0.079238 0 0.86236 0 0.021339 
CCC- 0.009463 0 0.083273 0 0 0.671109 0.22249 

D 0 0 0 0 0 0 1 

Table 19.22. Probabilities of remaining in state i from years 0 to 4 and after to go in j-II  
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 AAA AA AA- A A- BBB BBB- 
AAA 0.904587 0 0.086438 0 0.005801 0 0.003173 
AA 0.003638 0.935816 0 0 0.026268 0 0.008966 
AA- 0.001835 0 0.875386 0 0.059341 0 0.030207 

A 0.006464 0.044629 0 0.909804 0 0 0.030872 
A- 0.004883 0.053664 0 0 0.852282 0 0.074755 

BBB 0.002969 0.007921 0 0.066346 0 0.855137 0 
BBB- 0.002141 0.005289 0 0.019131 0 0 0.814275 
BB 0 0.005274 0 0.007533 0 0.029585 0 
BB- 0 0.003526 0 0.010214 0 0.018422 0 
B 0 0.001895 0 0.007703 0 0.005509 0 
B- 0 0.000877 0 0.005706 0 0.00593 0 

CCC 0.023288 0 0 0.021232 0 0.018959 0 
CCC- 0.0005 0 0 0.007729 0 0.007913 0 

D 0 0 0 0 0 0 0 

Table 19.23. Probabilities of remaining in state i from years 2 to 7 and after to go in j-I 

 BB BB- B B- CCC CCC- D 
AAA 0 0 0 0 0 0 0 
AA 0 0.015499 0 0.008795 0 0.001018 0 
AA- 0 0.007653 0 0.016357 0 0.009222 0 

A 0 0.004798 0 0.001643 0 0 0.00179 
A- 0 0.009357 0 0.003793 0 0 0.001266 

BBB 0 0.055705 0 0.007023 0 0.001336 0.003563 
BBB- 0 0.093151 0 0.049235 0 0.011567 0.005211 
BB 0.804949 0 0 0.123423 0 0.012818 0.016418 
BB- 0 0.789015 0 0.145932 0 0.011718 0.021173 
B 0.029954 0 0.892309 0 0 0.007011 0.05562 
B- 0.028292 0 0 0.872399 0 0.048835 0.03796 

CCC 0.013332 0 0.173902 0 0.56689 0 0.182397 
CCC- 0.016184 0 0.169612 0 0 0.741203 0.056858 

D 0 0 0 0 0 0 1 

Table 19.24. Probabilities of remaining in state i from years 2 to 7 and after to go in j-II 
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Tables 19.25, 19.26, 19.27 and 19.28 report ( , )ij s t  (the element of the 
evolution equation matrix). 

 
 AAA AA AA- A A- BBB BBB- 

AAA 0.973331 3.23E-05 0.019182 1.87E-06 0.006311 2.30E-08 0.001037 
AA 0.005264 0.964317 7.93E-05 8.58E-06 0.02358 6.34E-06 0.001527 
AA- 0.005071 0.000101 0.962186 2.13E-05 0.01918 9.75E-06 0.004675 

A 0.000823 0.014209 1.02E-05 0.976499 6.96E-05 7.74E-07 0.006184 
A- 0.00111 0.009958 1.95E-05 5.49E-05 0.95434 2.97E-06 0.023357 

BBB 0.000997 0.002635 1.08E-05 0.014953 3.16E-05 0.968121 6.51E-05 
BBB- 0.000774 0.001457 1.13E-05 0.009248 1.43E-05 4.19E-05 0.946116 
BB 6.72E-06 0.001589 1.39E-08 0.001036 1.66E-05 0.018562 6.41E-06 
BB- 7.57E-06 0.002329 3.96E-08 0.002624 1.84E-05 0.012877 1.75E-05 
B 4.30E-06 0.000761 4.08E-08 0.003514 4.35E-06 0.002204 2.02E-05 
B- 4.39E-06 0.000435 3.27E-08 0.002285 5.53E-06 0.001897 1.72E-05 

CCC 0.004433 3.51E-05 4.9E-05 0.004916 3.86E-06 0.005539 2.86E-05 
CCC- 0.000115 2.04E-05 1.24E-06 0.00339 2.59E-07 0.002993 1.85E-05 

D 0 0 0 0 0 0 0 

Table 19.25. Probabilities of being in j at time 3 given that at time 0 was in i-I 

 BB BB- B B- CCC CCC- D 
AAA 8.87E-08 3.78E-05 1.10E-08 4.01E-05 0 7.71E-06 1.91E-05 
AA 9.85E-06 0.003022 4.00E-06 0.001399 0 0.00074 4.21E-05 
AA- 1.1E-05 0.003049 2.19E-05 0.002839 0 0.002671 0.000164 

A 3.58E-06 0.000493 4.60E-08 0.000766 0 1.33E-05 0.000929 
A- 6.41E-06 0.001648 1.10E-07 0.00124 0 2.64E-05 0.008237 

BBB 2.36E-06 0.010917 6.47E-06 0.00062 0 0.000719 0.00092 
BBB- 8.89E-06 0.034942 1.9E-05 0.002013 0 0.002519 0.002836 
BB 0.888772 0.000174 3.50E-06 0.07717 0 0.000701 0.011961 
BB- 0.000454 0.853982 2.88E-05 0.106066 0 0.007009 0.014587 
B 0.015196 1.5E-05 0.961312 7.42E-05 0 0.006078 0.010816 
B- 0.021377 1.74E-05 0.000144 0.951864 0 0.015383 0.00657 

CCC 0.003701 4.63E-05 0.039577 2.31E-05 0.924516 0.000114 0.017018 
CCC- 0.00324 2.86E-05 0.016846 1.08E-05 0 0.902156 0.071179 

D 0 0 0 0 0 0 1 

Table 19.26. Probabilities of being in j at time 3 given that at time 0 was in i-II 
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 AAA AA AA- A A- BBB BBB- 
AAA 0.720751 0.000567 0.219784 0.000791 0.041623 0.00018 0.010661 
AA 0.024902 0.817118 0.001019 0.00115 0.114982 0.00059 0.017173 
AA- 0.021196 0.003109 0.724453 0.001831 0.168534 0.001272 0.030429 

A 0.00389 0.040986 0.00013 0.820117 0.003373 0.001402 0.091656 
A- 0.004086 0.039947 0.000146 0.008838 0.719879 0.002352 0.147647 

BBB 0.004809 0.024665 0.000241 0.171344 0.00158 0.606366 0.012126 
BBB- 0.003751 0.011209 0.000154 0.148196 0.000727 0.011129 0.540028 
BB 0.000229 0.003772 7.32E-06 0.029637 0.000174 0.158403 0.001726 
BB- 0.000156 0.003413 4.02E-06 0.021329 0.000162 0.107219 0.001524 
B 0.000107 0.008409 2.46E-06 0.019755 0.000388 0.022386 0.001531 
B- 0.000156 0.004512 3.57E-06 0.017595 0.000365 0.020248 0.001568 

CCC 0.013874 0.002387 0.000357 0.023905 0.000151 0.028082 0.001715 
CCC- 0.000702 0.002271 2.23E-05 0.019848 9.75E-05 0.022471 0.001308 

D 0 0 0 0 0 0 0 

Table 19.27. Probabilities of being in j at time 10 given that at time 3 was in i-I 

 BB BB- B B- CCC CCC- D 
AAA 0.000752 0.002525 1.92E-05 0.001931 0 0.000526 0.000567 
AA 0.000605 0.006092 0.000229 0.010242 0 0.002915 0.002983 
AA- 0.001153 0.01247 0.00063 0.021024 0 0.007958 0.005942 

A 0.00039 0.022088 4.57E-05 0.010469 0 0.002099 0.003356 
A- 0.000883 0.037623 9.19E-05 0.023517 0 0.00391 0.011079 

BBB 0.001973 0.091162 0.000496 0.0492 0 0.013299 0.02274 
BBB- 0.005375 0.114259 0.001431 0.092938 0 0.027454 0.043349 
BB 0.566792 0.008926 0.002051 0.136216 0 0.038457 0.05361 
BB- 0.008583 0.535043 0.002757 0.188448 0 0.054521 0.076843 
B 0.079673 0.001372 0.681411 0.009225 0 0.051393 0.124346 
B- 0.064503 0.001347 0.005869 0.635897 0 0.092434 0.155501 

CCC 0.035086 0.001532 0.21134 0.003613 0.341717 0.012572 0.323669 
CCC- 0.034429 0.001224 0.183819 0.00365 0 0.386965 0.343194 

D 0 0 0 0 0 0 1 

Table 19.28. Probabilities of being in j at time 10 given that at time 3 was in i-II 

For example, 0.000493 represents the probability of being in state BB- at time 3 
given that the rating evaluation was A at time 0. 

 
Finally, in Tables 19.29 and 19.30 the ( , )iA s t  probabilities are reported. These 

elements give the probability that a firm, that is, at a given rating at time s, will not 
have a default up to the time t. 
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( , )iA s t  
years AAA AA AA- A A- BBB BBB- 

0 1 1 1 1 0.999968 0.996925 0.999764 0.998961 
0 2 0.999991 0.999987 0.999936 0.999423 0.993572 0.999435 0.998299 
0 3 0.999981 0.999958 0.999836 0.999071 0.991763 0.99908 0.997164 
0 4 0.999968 0.999911 0.999709 0.998793 0.988904 0.998726 0.995916 
0 5 0.999956 0.999812 0.999476 0.998475 0.985322 0.998057 0.99488 
0 6 0.999933 0.999633 0.999143 0.997611 0.982541 0.997147 0.992688 
0 7 0.999894 0.999401 0.998674 0.996742 0.979183 0.99623 0.990739 
0 8 0.999835 0.998948 0.997753 0.995935 0.976017 0.994732 0.986505 
0 9 0.999749 0.998206 0.996333 0.994831 0.973398 0.992288 0.982006 
0 10 0.999314 0.995626 0.991587 0.990844 0.964015 0.981222 0.957506 
6 7 1 1 1 1 1 0.998896 0.995888 
6 8 0.999993 0.999954 0.999886 0.99988 0.999831 0.997163 0.994382 
6 9 0.999983 0.999888 0.999719 0.999635 0.999343 0.993383 0.991843 
6 10 0.999846 0.999329 0.998343 0.997602 0.99556 0.981921 0.9661 

Table 19.29. Probability of not going into default from years s to t  

( , )iA s t  
years BB BB- B B- CCC CCC- D 

0 1 0.996257 0.994695 0.996146 0.999959 0.996284 0.972282 0 
0 2 0.992331 0.991607 0.993892 0.996661 0.991224 0.953744 0 
0 3 0.988039 0.985413 0.989184 0.99343 0.982982 0.928821 0 
0 4 0.984554 0.977635 0.983544 0.986963 0.976653 0.917664 0 
0 5 0.976896 0.969593 0.976542 0.976842 0.96483 0.878435 0 
0 6 0.966982 0.959714 0.969033 0.968583 0.950608 0.84797 0 
0 7 0.959384 0.955638 0.95667 0.958528 0.937731 0.819395 0 
0 8 0.950314 0.939394 0.947369 0.947336 0.918583 0.775739 0 
0 9 0.938124 0.92374 0.929473 0.917325 0.819802 0.724016 0 
0 10 0.897052 0.873723 0.876134 0.844328 0.700216 0.581562 0 
6 7 0.99906 0.996682 0.987736 0.998923 0.960108 0.972323 0 
6 8 0.996519 0.987823 0.977231 0.990127 0.917491 0.86902 0 
6 9 0.989132 0.970269 0.960058 0.93397 0.798357 0.819678 0 
6 10 0.961048 0.917886 0.892609 0.861352 0.640223 0.670431 0 

Table 19.30. Probability not going into default from years s to t  

19.8.3. Non-homogenous downward backward example 

In this example, we use the same inputs as in the previous section and thus we 
will only report the results connected with the backward case. 

 
In Tables 19.31 and 19.32, the probabilities ( , , )iiD u s t  of remaining in the state 

from s to t without any transition given that the system arrived at time u in state i and 
remained in this state from u to s are reported (backward recurrence time s-u). 
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Probabilities of no transition 
u s t AAA AA AA- A A- BBB BBB- 
0 0 1 0.872181 0.803709 0.86605 0.884755 0.859781 0.950899 0.925139 
0 0 2 0.77428 0.740025 0.84935 0.81325 0.807756 0.92007 0.774197 
0 0 3 0.699214 0.719164 0.68683 0.662296 0.792684 0.840488 0.721149 
0 0 4 0.579474 0.607234 0.604108 0.562696 0.748248 0.677993 0.712246 
0 0 5 0.496353 0.431912 0.44989 0.503661 0.676747 0.644425 0.652798 
0 0 6 0.375035 0.370249 0.33209 0.466088 0.624805 0.594064 0.477243 
0 0 7 0.302027 0.324532 0.266083 0.338748 0.505539 0.411709 0.314356 
0 0 8 0.206926 0.270204 0.179743 0.223977 0.354685 0.229692 0.292188 
0 0 9 0.12002 0.204777 0.139748 0.116117 0.17136 0.115246 0.121753 
0 0 10 0.048179 0.031125 0.056915 0.081423 0.036674 0.083032 0.07514 
2 6 7 0.89922 0.813412 0.754061 0.806292 0.768666 0.805227 0.665298 
2 6 8 0.746307 0.542539 0.450393 0.56255 0.434755 0.682026 0.560027 
2 6 9 0.216419 0.44434 0.315451 0.281127 0.208424 0.585145 0.328494 
2 6 10 0.179681 0.022597 0.047193 0.049291 0.08731 0.02137 0.077891 
4 6 7 0.917817 0.770902 0.939876 0.677056 0.604429 0.729913 0.823655 
4 6 8 0.619728 0.552357 0.603088 0.386159 0.388559 0.620946 0.55475 
4 6 9 0.285654 0.343981 0.476964 0.26715 0.251663 0.557772 0.283716 
4 6 10 0.063009 0.042074 0.042642 0.129126 0.140237 0.041711 0.196981 

Table 19.31. Probabilities ( , , )iiD u s t - I 

Probabilities of no transition 
u s t BB BB- B B- CCC CCC- 
0 0 1 0.985533 0.894593 0.83837 0.914242 0.883844 0.955493 
0 0 2 0.947469 0.848314 0.693836 0.743081 0.725237 0.840868 
0 0 3 0.858208 0.729037 0.618079 0.713725 0.682691 0.684999 
0 0 4 0.701267 0.636971 0.575733 0.681344 0.578327 0.56305 
0 0 5 0.577156 0.585617 0.537296 0.660163 0.502152 0.521922 
0 0 6 0.463875 0.471031 0.401942 0.492227 0.480255 0.439965 
0 0 7 0.359584 0.351512 0.302279 0.454226 0.344989 0.288244 
0 0 8 0.242471 0.212772 0.241288 0.292127 0.193908 0.219999 
0 0 9 0.136879 0.152736 0.185382 0.114899 0.14218 0.108098 
0 0 10 0.064375 0.043551 0.011903 0.084761 0.043851 0.088229 
2 6 7 0.729997 0.925012 0.937741 0.920945 0.925065 0.716396 
2 6 8 0.396545 0.695417 0.558071 0.832468 0.672505 0.553408 
2 6 9 0.221682 0.459819 0.262421 0.396267 0.342161 0.283633 
2 6 10 0.129046 0.123599 0.110453 0.036925 0.02891 0.051503 
4 6 7 0.831486 0.872701 0.785129 0.91658 0.664807 0.865949 
4 6 8 0.68755 0.552467 0.501403 0.567741 0.428559 0.583168 
4 6 9 0.469288 0.303929 0.426686 0.248322 0.295415 0.321166 
4 6 10 0.040333 0.029382 0.049693 0.201695 0.163986 0.150543 

Table 19.32. Probabilities ( , , )iiD u s t - II 
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 AAA AA AA- A A- BBB BBB- 
AAA 0.87914 7.43E-05 0.109719 7.32E-05 0.006752 5.27E-06 0.003312 
AA 0.006296 0.934405 5E-05 0.000182 0.02957 0.000291 0.008368 
AA- 0.004272 0.000385 0.909481 0.00054 0.045075 0.000118 0.023819 

A 0.002963 0.041231 6.75E-05 0.912063 0.000969 0.000102 0.030523 
A- 0.004478 0.035515 7.56E-05 0.00142 0.871933 0.000163 0.063676 

BBB 0.002678 0.00514 5.46E-05 0.058214 0.000107 0.85594 0.001179 
BBB- 0.001799 0.003705 3.45E-05 0.024706 0.0001 0.001665 0.826728 
BB 6.51E-05 0.003005 3.21E-07 0.011852 8E-05 0.041455 0.000366 
BB- 4.31E-05 0.003697 2.71E-07 0.004487 8.75E-05 0.024516 0.000136 
B 2.56E-05 0.002082 1.07E-07 0.00639 3.82E-05 0.006298 0.000109 
B- 3.35E-05 0.002076 1.67E-07 0.005122 5.98E-05 0.004665 9.97E-05 

CCC 0.012057 0.000273 0.000163 0.014286 2.06E-05 0.010276 0.000285 
CCC- 0.000297 0.000207 3.61E-06 0.010776 3.04E-06 0.01226 0.000238 

D 0 0 0 0 0 0 0 

Table 19.33. Probabilities (2,4,8)ij - I 

 BB BB- B B- CCC CCC- D 
AAA 5.57E-07 0.000554 2.00E-07 0.000324 0 1.67E-05 2.95E-05 
AA 6.04E-05 0.01208 7.3E-05 0.00659 0 0.00156 0.000475 
AA- 4.05E-05 0.005448 0.000129 0.005271 0 0.004953 0.000469 

A 1.8E-05 0.006937 4.60E-06 0.003268 0 0.000261 0.001594 
A- 4.17E-05 0.010847 1.07E-05 0.008864 0 0.000479 0.002497 

BBB 9.45E-05 0.05323 0.000153 0.01481 0 0.004568 0.003831 
BBB- 0.000542 0.06678 0.000358 0.055484 0 0.010978 0.00712 
BB 0.807165 0.000809 0.000606 0.102833 0 0.020182 0.011582 
BB- 0.000537 0.816197 0.000448 0.111314 0 0.017023 0.021514 
B 0.029385 0.000196 0.891416 0.000712 0 0.017088 0.046261 
B- 0.013616 0.000117 0.00294 0.83323 0 0.065388 0.072652 

CCC 0.013842 0.000186 0.10049 0.000363 0.723444 0.003141 0.121172 
CCC- 0.013936 0.000276 0.09612 0.000494 0 0.75511 0.110281 

D 0 0 0 0 0 0 1 

Table 19.34. Probabilities (2,4,8)ij - II 

In Tables 19.33, 19.34, 19.35 and 19.36, some of the evolution equation sub-
matrices of the ( , , )ij u s t  are reported. 

 
For example, 0.006937 represents the probability of being in state BB- at time 8 

given that the rating evaluation was A at time 4 and the system entered into this state 
at time 2 (backward recurrence time 4-2). 
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 AAA AA AA- A A- BBB BBB- 
AAA 0.893323 0.000122 0.08903 9.24E-05 0.013534 4.33E-06 0.003405 
AA 0.006692 0.886695 0.000113 0.000456 0.074917 0.00097 0.008796 
AA- 0.004456 0.001082 0.821541 0.001036 0.105953 0.000486 0.031362 

A 0.007464 0.043065 0.000116 0.858171 0.003494 0.000777 0.06479 
A- 0.004565 0.051651 0.000171 0.002344 0.771791 0.001026 0.132614 

BBB 0.002391 0.013464 9.49E-05 0.057016 0.00083 0.854738 0.003984 
BBB- 0.002063 0.009745 5.01E-05 0.048088 0.000341 0.004701 0.70638 
BB 3.04E-05 0.005834 1.25E-07 0.008943 0.000311 0.049101 0.000341 
BB- 3.76E-05 0.003823 2.20E-07 0.014951 0.000228 0.059871 0.000431 
B 2.56E-05 0.004185 1.90E-07 0.007884 0.00018 0.010822 0.000403 
B- 2.74E-05 0.00255 1.73E-07 0.006393 5.64E-05 0.010861 0.000339 

CCC 0.026797 0.00159 0.000761 0.026286 0.000126 0.023591 0.001191 
CCC- 0.000717 0.001173 1.76E-05 0.012282 2.26E-05 0.013133 0.000242 

D 0 0 0 0 0 0 0 

Table 19.35. Probabilities (5,7,10)ij - I 

 BB BB- B B- CCC CCC- D 
AAA 2.15E-07 0.00033 5.33E-08 8.77E-05 0 1.81E-05 5.31E-05 
AA 0.000278 0.008518 1.39E-05 0.009602 0 0.001855 0.001094 
AA- 0.000531 0.009151 0.000274 0.013886 0 0.005551 0.004692 

A 4.03E-05 0.01449 3.74E-06 0.004256 0 0.000759 0.002575 
A- 0.000128 0.021767 7.39E-06 0.009632 0 0.001292 0.003012 

BBB 0.000347 0.046795 6.12E-05 0.010801 0 0.003264 0.006214 
BBB- 0.000414 0.123791 0.000338 0.063061 0 0.014662 0.026367 
BB 0.74951 0.001672 0.000397 0.126385 0 0.021406 0.03607 
BB- 0.006158 0.636701 0.000714 0.183819 0 0.041211 0.052055 
B 0.048595 0.000295 0.808251 0.003852 0 0.029791 0.085716 
B- 0.055889 0.000264 0.001062 0.734109 0 0.09917 0.089279 

CCC 0.019177 0.000997 0.164981 0.001588 0.43202 0.005078 0.295819 
CCC- 0.029484 0.00043 0.161747 0.001591 0 0.536183 0.242977 

D 0 0 0 0 0 0 1 

Table 19.36. Probabilities (5,7,10)ij - II  
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( , )iA s t  

u s t AAA AA AA- A A- BBB BBB- 

0 0 1 1 1 1 0.999968 0.996925 0.999764 0.998961 

0 0 2 0.999991 0.999987 0.999936 0.999423 0.993572 0.999435 0.998299 

0 0 3 0.999981 0.999958 0.999836 0.999071 0.991763 0.99908 0.997164 

0 0 4 0.999968 0.999911 0.999709 0.998793 0.988904 0.998726 0.995916 

0 0 5 0.999956 0.999812 0.999476 0.998475 0.985322 0.998057 0.99488 

0 0 6 0.999933 0.999633 0.999143 0.997611 0.982541 0.997147 0.992688 

0 0 7 0.999894 0.999401 0.998674 0.996742 0.979183 0.99623 0.990739 

0 0 8 0.999835 0.998948 0.997753 0.995935 0.976017 0.994732 0.986505 

0 0 9 0.999749 0.998206 0.996333 0.994831 0.973398 0.992288 0.982006 

0 0 10 0.999314 0.995626 0.991587 0.990844 0.964015 0.981222 0.957506 

2 6 7 1 1 1 0.999717 0.99652 0.998982 0.999799 

2 6 8 0.999993 0.999909 0.999681 0.998935 0.991975 0.997865 0.995446 

2 6 9 0.999986 0.999532 0.998959 0.998718 0.989737 0.995587 0.990746 

2 6 10 0.999891 0.997734 0.995524 0.996719 0.984762 0.985371 0.969673 

4 6 7 1 1 1 0.999957 0.999766 0.999656 0.998659 

4 6 8 0.999996 0.999844 0.999806 0.99937 0.999451 0.998292 0.995586 

4 6 9 0.99999 0.999614 0.998885 0.998971 0.999054 0.996909 0.991069 

4 6 10 0.999889 0.998192 0.994393 0.997174 0.996021 0.99036 0.966736 

Table 19.37. Probability of not defaulting from s to t with backward recurrence time s-u-I 

Finally, in Tables 19.37 and 19.38 the probabilities of never going into default 
are reported. These elements give the probability that a firm, that is, at a given rating 
at time s, will not have a default up to time t, given that it had the rating at time u 
(backward recurrence time s-u). 

 



Credit Risk or Default Risk     789 

( , )iA s t  

u s t BB BB- B B- CCC CCC- 
0 0 1 0.996257 0.994695 0.996146 0.999959 0.996284 0.972282 

0 0 2 0.992331 0.991607 0.993892 0.996661 0.991224 0.953744 

0 0 3 0.988039 0.985413 0.989184 0.99343 0.982982 0.928821 

0 0 4 0.984554 0.977635 0.983544 0.986963 0.976653 0.917664 

0 0 5 0.976896 0.969593 0.976542 0.976842 0.96483 0.878435 

0 0 6 0.966982 0.959714 0.969033 0.968583 0.950608 0.84797 

0 0 7 0.959384 0.955638 0.95667 0.958528 0.937731 0.819395 

0 0 8 0.950314 0.939394 0.947369 0.947336 0.918583 0.775739 

0 0 9 0.938124 0.92374 0.929473 0.917325 0.819802 0.724016 

0 0 10 0.897052 0.873723 0.876134 0.844328 0.700216 0.581562 

2 6 7 0.998572 0.978718 0.969794 0.977368 0.987032 0.979671 

2 6 8 0.996016 0.970403 0.954563 0.96299 0.97334 0.95212 

2 6 9 0.99033 0.962454 0.940606 0.946127 0.880292 0.891065 

2 6 10 0.956603 0.928904 0.89047 0.86583 0.756136 0.732838 

4 6 7 0.999171 0.998713 0.992329 0.984648 0.99576 0.963201 

4 6 8 0.992429 0.986815 0.980369 0.971697 0.955405 0.942493 

4 6 9 0.986339 0.980006 0.956142 0.947635 0.820178 0.88657 

4 6 10 0.958009 0.942448 0.905999 0.888396 0.684876 0.725764 

Table 19.38. Probability of not defaulting from s to t with backward recurrence time s-u-II 
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Chapter 20 

Markov and Semi-Markov Reward  
Processes and Stochastic Annuities  

20.1. Reward processes 

The association of a sum of money a state of the system and a state transition 
assumes great relevance in the study of financial events. This can be done by linking 
a reward structure to a stochastic process. This structure can be thought of as a 
random variable associated with the state occupancies and transitions (see Howard 
(1971)). 

 
The rewards can be of different kinds, but in the financial environment only 

amounts of money will be considered as rewards. These amounts can be positive if 
they are seen as a benefit for the system, and negative if they are considered as a 
cost. 

 
In this chapter, reward structures for discrete-time Markov and semi-Markov 

processes and how they can be considered a generalization of deterministic annuities 
will be described. Only the case of discrete-time reward structures and their relations 
to the discrete-time annuities will be presented. 

 
A simple classification scheme of the different kinds of Discrete-time Markov 

ReWard Processes (DTMRWP) and Semi-Markov ReWard Processes (DTSMRWP) 
given in Janssen and Manca (2006, 2007) will be reported. 
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Process classification 

Homogenous 
Non-homogenous 
 
Continuous time 
Discrete-time 
 
Not discounted 

Fixed interest rate 
Homogenous interest law Discounted Variable interest rate Non-homogenous interest law 

Reward classification 

Time fixed rewards 
Homogenous rewards Time variable rewards Non-homogenous rewards 

 
Transition (impulse) rewards 

Immediate 
Due 
 
Independent on next transition 

Permanence (rate) rewards 

Dependent on next transition 
 
Some clarifications as regards the homogenity concept are necessary. 
 
It is assumed that a phenomenon depends on time. We follow the phenomenon in 

the interval times 1 1,s t  and 2 2,s t  where 1 1 2 2t s t s . If the phenomenon 
behaves in the same way in the two time intervals and in each interval for the same 
time period, we say that it is homogenous. On the other hand, in the case in which 
the phenomenon changes not only for time duration but also because of the initial 
time, then the phenomenon is non-homogenous. 

 
In general, this distinction is made in the stochastic processes environment, but 

also, as described in previous chapters, an interest rate law can be homogenous or 
non-homogenous. It is homogenous if the discount factor is a function of only the 
length of the financial operation, and is non-homogenous if the discount factor also 
takes into account not only the duration but also the initial time of the operation. 

 
For the same reason, rewards can also be fixed in time, can depend only on the 

duration or can be non-homogenous in time. 
 
It should be stated that in finance and insurance problems reward processes 

without discount do not normally make sense, but in some reliability problems they 
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could have some meaning. Furthermore, the absence of interest rates simplifies the 
model. In this chapter, we will develop only discounted processes, the non-
discounted DTMRWP and DTSMRWP description can be found in Janssen and 
Manca (2007). A very short description of reward processes with the study of some 
properties can be found in Rolski et al. (1999). 

 
In a discrete-time process and as a first approach, the rewards that depend on 

permanence in the state could be considered as a generalization of discrete-time 
annuity. As for the annuities, there are immediate permanence rewards that are paid 
at the end of a period and due permanence rewards that are paid at beginning of a 
period. 

 
All the hypotheses imply different formulae of the system evolution equation. 

The general relations in both homogenous and non-homogenous environments will 
be given. 

Discounting factors 

As regards the financial notations, it is assumed that we are working in a general 
environment with variable interest rates. In the homogenous case, the following  

(1), (2), , ( ),r r r t  

will denote the interest rates and 

1

1

1 if 0,
( )

1 ( ) if 0,
t

h

t
t

r h t
 (20.1) 

the t-period discount factor, if it begins at time 0. In this case, we can also obtain: 

1

1

1 if ,
( , )

1 ( ) if .
t

h s

t s
s t

r h t s
 (20.2) 

In the non-homogenous interest rate case, the following notations will be used: 

( , 1), ( , 2), , ( , ),r s s r s s r s s t , 
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for the discrete-time non-homogenous interest rates and: 

1

1

1 if ,
( , )

1 ( , ) if ,
t

h s

t s
s t

r s h t s
 (20.3) 

for the non-homogenous discount factors. 

Reward notation 

(i) , ( ), ( , )i i it s t  denote the reward that is given for permanence in the ith 
state; it is also called rate reward (see Qureshi and Sanders (1994)); the first is paid 
in cases in which the period amount in state i is constant in time, the second when 
the payment is a function of the state and of the duration inside the state 
(homogenous payment) and the third when there is a non-homogenous period 
amount (the payment is a function of the state, the time of entrance into the state and 
the time of payment).  represents the vector of these rewards. 

(ii) , ( ), ( , )ij ij ijt s t  have the same meaning as given previously, the 
difference being that, in this case, the rewards depend on the future transition.  
represents the related matrix. It should be said that these kinds of permanence 
rewards are usually presented in the other works (see Papadopoulou and Tsaklidis 
(2006)) and can be seen as a generalization of case (i). In a financial environment, 
this kind of generalization will not make sense, so we will not present them; the 
interested reader can refer to Janssen and Manca (2006) and (2007).  

(iii) , ( ), ( , )ij ij ijt s t  denote the reward that is given for the transition from the 
ith state to the jth one (impulse reward); the difference between the three symbols is 
the same as in the previous cases. is the matrix of the transition rewards. 

 
The different kinds of  rewards represent an annuity that is paid due to 

remaining in a state. In the immediate case, the reward will be paid at the end of the 
period before the transition; in the due case the reward will be paid at the beginning 
of the period. On the other hand,  represents lump sums that, theoretically, are 
paid at the instant of transition. 

 
As far as the impulse reward  is concerned, in the case of discounting it is only 

necessary to calculate the present value of the lump sum paid at the moment of the 
related transition and that does not present any difficulties. 

 
Reward structure can be considered a very general structure linked to the problem 

being studied. The reward random variable evolves together with the evolution of the 
Markov or semi-Markov process with which it is linked. When the considered system, 
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which evolves dynamically in a random way, is in a state, then a reward of type  
can be paid; once there is a transition, an impulse reward of  type can be paid. 

 
This behavior is particularly efficient at constructing models which are useful for 

following, for example, the dynamic evolution of insurance problems. 
 
Usually, in fact, permanence in a state involves the periodic payment of a 

premium or the periodic receipt of a claim. Furthermore, the transition from one 
state to another can often give rise to some other cost or benefit. 

 
In the last part of this section, some matrix operation notation useful for 

describing the evolution equation of the reward processes will be given. 

Matrix operations 

Given the two matrices A, B with the notations 

and  A B A B  

respectively the usual row column and the element by element matrix multiplication 
are denoted. It is clear that in the first case the number of columns in A should be 
equal to the number of the rows in B and that in the second operation the two 
matrices should have the same order of rows and columns.   

 
Definition 20.1 Given two matrices ,A B  that have row order equal to m and 
column order equal to n, the following operation is defined: 

c A B   (20.4) 

where c is the m elements vector in which the ith component is obtained in the 
following way: 

1
( ) .

n

ij ij i i
j

c i a b a b   (20.5) 

20.2. Homogenous and non-homogenous DTMRWP 

In our opinion, Markov reward processes should be considered a class of 
stochastic processes, each having different evolution equations. The differences 
from the analytic point of view can be considered irrelevant but from the algorithmic 
point of view the differences are very significant and in the construction of the 
algorithm the differences must be taken into account. 
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andi iV V  represent the mean present value of the rewards (RMPV) paid in the 
investigated horizon time in the homogenous immediate and due cases respectively. 

 
For the sake of classification, first we present the simplest evolution equation 

case in immediate and due hypotheses and only in the homogenous case; 
subsequently, only the general relations in the discrete-time environment will be 
given. 

 
The immediate homogenous Markov evolution equation in the case of fixed 

permanence and without transition rewards is the first relation presented. The 
DTMRWP present value after one payment is:  

1 1(1) (1 ) (1 )i i iV r r , (20.6) 

after two payments, 

(1) (1)1 2 2

1 1
(2) (1 ) (1)

m m

i i ik k i ik k
k k

V r p V p , (20.7) 

and in general, taking into account the recursive nature of relations, at the nth period is: 

( 1)

1
( ) ( 1)

m
nn

i i ik k
k

V n V n p , (20.8) 

that in matrix form becomes: 

( 1)( ) n nnV P  (20.9) 

Now the related due case is given: 

(1)i iV , 

(1)1 1

1 1
(2) (1 ) (1) (1 )

m m

i i ik k i ik k
k k

V r p V r p , (20.10) 

( 1)1

1
( ) ( 1) (1 ) ,

m
nn

i i ik k
k

V n V n r p  (20.11) 

that in matrix form is: 

1 ( 1)( ) n nnV I P P  (20.12) 

Now the general case with variable permanence, transition rewards and interest 
rates is presented. The present value after one period is: 
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1
(1) (1) (1) (1) ,

m

i i ij ij
j

V p  (20.13) 

after two payments, 

1

1 1

1 1

(2) (1) (1) (1)

(2) (2) (2)

(1) (2) (2) (2) ,

m

i i ij ij
j

m m

ik k kj kj
k j

m m

i ik k kj kj
k j

V p

p p

V p p

 (20.14) 

and in general, taking into account the recursive nature of relations, at the nth period is: 

( 1)

1 1
( ) ( 1) ( ) ( ) ( ) .

m m
n

i i ik k kj kj
k j

V n V n n p n p n  (20.15) 

This relation can be written in matrix notation in the following way: 

( 1)

( 1)

( ) (1) (1) ( ) ( )

(1) (1) ( ) ( ) .

n

n

n n n

n n

V P

P P P
 (20.16) 

In the case of one period payment due, i.e. the permanence reward is paid at the 
beginning of the period and the transition reward at the end, we have: 

1
(1) (1) (1) (1),

m

i i ij ij
j

V p   (20.17) 

with two payments we obtain: 

1

1 1 1

1 1 1

(2) (1) (1) (1)

(1) (2) (2) (2)

(1) (1) (1) (2) (2).

m

i i ik ik
k

m m m

ij j ik kj kj
j k j

m m m

i ik k ik kj kj
k k j

V p

p p p

V p p p

 (20.18) 

At last, the general relation in the due homogenous Markov case is: 
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( 1) ( 1)

1 1 1
( ) ( 1) ( ) ( ) ( 1) ( ),

m m m
n n

i i kj kj kik ik
k j k

V n V n n p p n n p n  (20.19) 

which in matrix notation is: 

( 1)

( 1)

( ) (1) (1) (2) ( 1) ( )

(1) (1) ( ) ( ) .

n

n

n n n

n n

V I P P

P P P
 (20.20) 

Now the non-homogenous formulae with non-homogenous interest rates and 
rewards are reported. The first gives the immediate case, that is: 

( 1)

1 1
( , ) ( , 1) ( , ) ( ) ( , ) ( ) ( , ) ,

m m
n

i i ik k kj kj
k j

V s t V s t s t p s s t p t s t  (20.21) 

where t s n . 
 

In matrix form, (20.21) becomes: 

( 1) ( 1)

( , ) ( , 1) ( , 1) ( , 1) ( 1) ( , 1)
( , ) ( ) ( , ) ( , ) ( ) ( ) ( , ) ,n n

s t s s s s s s s s s

s t s s t s t s t s t

V P
P P P

 (20.22) 

where ( ) ( ) ( 1) ( 2) ( )n s s s tP P P P  and ( )sP  is the non-homogenous 
transition matrix at time s. 
 

The related due case has the following notation: 

( 1)

1

( 1)

1 1

( , ) ( , 1) ( , 1) ( ) ( , )

( , ) ( ) ( ) ( , ),

m
n

i i ik k
k

m m
n

ik kj kj
k j

V s t V s t s t p s s t

s t p s p t s t
 (20.23) 

which in matrix formula becomes: 

( 1)

( 1)

( , ) ( , 1) ( , 1) ( ) ( , 2)
( , 1) ( ) ( , ) ( , 1) ( 1) ( , 1)

( , ) ( ) ( ) ( , ) .

n

n

s t s s s s s s s

s t s s t s s s s s

s t s t s t

V P
P P

P P

 (20.24) 

Remark 20.1 In this section, general formulae were presented. In the construction 
of the algorithms the differences between the possible cases should be taken into 
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account and it is possible to construct a generalization. For example, in the non-
discounting case ( ) 1, 1, ,k k n  can be stated. 

20.3. Homogenous and non-homogenous DTSMRWP  

20.3.1. The immediate cases 

20.3.1.1. First model 

We assume that all the rewards are discounted at time 0 in the homogenous case 
and at time s in the non-homogenous case. Let us point out that these models, as we 
will see below, are very important for insurance applications. In the first formulation 
of this case we suppose that: 

a) rewards are fixed in time; 
b) rewards are given only for the permanence in the state; 
c) rewards are paid at the end of the period; 
d) interest rate r is fixed. 
 
In this case, ( )iV t  represents the mean present value of all the rewards (RMPV) 

paid or received in a time t, given that at time 0 the system is in state i. 
 
Under these hypotheses, a similar reasoning as before leads to the following 

result for the evolution equation, firstly for the homogenous case. Trivially it results 
in: 

(0) 0,iV  
1

1 1 1

1 1 1
1

(1) 1 (1) (1) ( ) (1 )

,

m m

i i i ik i ik k
k k

i

V H b b V  (20.25)
 

and in general: 

1 1 1 1
( ) (1 ( )) ( ) ( ) ( ) .

m t m t

i i i ik i ik kt r r
k k

V t H t a b a b V t  (20.26) 
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For the non-homogenous case, this last result becomes: 

1 1

1 1

( , ) (1 ( , )) ( , )

( , ) ( , ) .

m t

i i i ik it s r sr
k s

m t
s

ik k
k s

V s t H s t a b s a

b s V t
 (20.27) 

To explain these results, we divide the evolution equation into three parts. The 
meaning is the same as given in the previous cases but we use annuity formulae. 

 
Let us just give the following comments: 

– The term (1 ( , ))i i t s rH s t a  represents the present value of the rewards 
obtained without state changes. More precisely, (1 ( , ))iH s t  is the probability to 
remain in state i and i t s ra

 
is the present value of a constant annuity of t-s 

installments i . 

– The term 
1 1

( , )
m t

ik i sr
k s

b s a  gives the present value of the rewards 

obtained before the change of state. 

– The term 
1 1

( , ) ( , )
m t

s
ik k

k s
b s V t  gives the present value of the rewards 

paid or earned after the transitions and as the change of state happens at time , it 
is necessary to discount the reward values at time s. 

 
As for DTMRWP we will give the matrix equation of each given relation. 
 
To present the matrix form of the previous relations we have to define the 

following matrices: 

if if

if if

1 ( ) 1 ( , )
( ) , ( , )

0 0
i i

ij ij

H t i j H s t i j
D t D s t

i j i j
. 

Relations (20.26) and (20.27) respectively become in matrix form: 

1

1

( ) ( ) * ( ) *

( ) * ( ) ,

t

t r r

t

t t a a

t

V D 1 B 1

B V

 (20.28) 
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1

1

( , ) ( , ) * ( , ) *

( , ) * ( , ) ,

t

t s r sr
s

t
s

s t s t a s a

s t

V D 1 B 1

B V
 

where 1, as specified in previous chapters, represents the sum vector whose elements 
are all equal to 1. 

20.3.1.2. Second model 

Now we introduce the case of variable interest rates with as assumptions: 
a) rewards are fixed in time; 
b) rewards are given only for the permanence in the state; 
c) rewards are paid at the end of the period; 
d) interest rate r is variable. 
 
Under these hypotheses, it can be shown that we obtain the following formulae: 

1 1 1 1

1 1

( ) (1 ( )) ( ) ( ) ( )

( ) ( ) ( ),

t m t

i i i ik i
h k h

m t

ik k
k

V t H t h b h

b V t
 (20.29) 

 

1 1 1 1

1 1

( , ) (1 ( , )) ( , ) ( , ) ( , )

( , ) ( , ) ( , ).

t m t

i i i ik i
h s k s h s

m t

ik k
k s

V s t H s t s h b s s h

b s V t s

(20.30) 

The matrix forms related to (20.29) and (20.30) are: 

1

1

( ) ( ) * ( ) ( ) * ( )

( ) * ( ) ( ) ,

t

t

t t a t a

t

V D 1 B 1

B V

 (20.31) 

1

1

( , ) ( , ) * ( , ) ( , ) * ( , )

( ) * ( , ) ( , ) ,

t

s

t

s

s t s t a s t s a s

t s

V D 1 B 1

B V

 (20.32) 
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where respectively it holds: 

1 1
( ) ( ), ( , ) ( , ).

t t

h h s

a t h a s t s h  

20.3.1.3. Third model 

The next step is the introduction of the variability of rewards so we assume that:  
a) rewards are variable in time; 
b) rewards are given only for the permanence in the state; 
c) rewards are paid at the end of the period; 
d) interest rate r is fixed. 
 
In this case the following results hold: 

1 1 1 1

1 1

( ) (1 ( )) ( ) ( ) ( )

( ) ( ) ,

t m t
h h

i i i ik i
h k h

m t

ik k
k

V t H t h b h

b V t
 (20.33) 

1 1 1 1

1 1

( , ) (1 ( , )) ( ) ( , ) ( )

( , ) ( , ) .

t m t
h s h s

i i i ik i
h s k s h s

m t
s

ik k
k s

V s t H s t h b s h

b s V t
 (20.34) 

(20.33) and (20.34) in matrix form are: 

( ) ( )

1

1

( ) ( ) * ( ) ( ) * ( )

( ) * ( ) ,

t
t

t

t t t

t

V D 1 B 1

B V
 (20.35) 

( )

( )

1

1

( , ) ( , ) * ( , )

( , ) * ( , )

( , ) * ( , ) ,

t s

t
s

s

t
s

s

s t s t s t

s s

s t

V D 1

B 1

B V

 (20.36) 
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where 

1
1 1 1

2
2 2 2 ( )

(1) (2) ( )
(1) (2) ( )

( ) ,

(1) (2) ( )

h

h
m m m

t
t

t

t

 

and 

1 1 1

2 2 2

( 1) ( 2) ( )
( 1) ( 2) ( )

( , )

( 1) ( 2) ( )m m m

s s t
s s t

s t

s s t

. 

20.3.1.4. Fourth model 

For the case of variable interest rates with variable rewards, we assume that: 
a) rewards are variable in time; 
b) rewards are given only for the permanence in the state; 
c) rewards are paid at the end of the period; 
d) interest rates are variable in time. 
 
Here, the evolution equation takes the form: 

1 1 1 1

1 1

( ) (1 ( )) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),

t m t

i i i ik i
h k h

m t

ik k
k

V t H t h h b h h

b V t
  (20.37) 

1

1 1 1 1 1

( , ) (1 ( , )) ( ) ( , )

( , ) ( ) ( , ) ( , ) ( , ) ( , ).

t

i i i
h s

m t m t

ik i ik k
k s h s k s

V s t H s t h s h

b s h s h b s V t s  (20.38) 

Matrix forms of (20.37) and (20.38) respectively are: 

1

1

( ) ( ) * ( ) ( ) ( ) * ( ) ( )

( ) * ( ) ( ) ,

t

t

t t t t

t

V D 1 B 1

B V

 (20.39) 
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1

1

( , ) ( , ) * ( , ) ( , )

( , ) * ( , ) ( , )

( , ) * ( , ) ( , )

t

s

t

s

s t s t s t s t

s s s

s t s

V D 1

B 1

B V

 (20.40) 

where 

(1) ( 1)
(2) ( 2)

( ) , ( , ) .

( ) ( )

s
s

t s t

t t

 

20.3.1.5. Fifth model 

The next step will introduce the  rewards in the case of a fixed interest rate. 
 
We have the following assumptions: 
a) rewards are variable in time; 
b) rewards are given for the permanence in the state and at a given transition; 
c) rewards are paid at the end of the period; 
d) interest rate r is fixed. 
 
Under these hypotheses, the homogenous general formula is the following: 

1 1 1 1

1 1 1 1

( ) (1 ( )) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

t m t
h h

i i i ik i
h k h

m t m t

ik ik ik k
k k

V t H t h b h

b b V t

 (20.41) 

Here too, the meaning of relation (20.41) can be easily understood with a 
subdivision into four parts. 

 
Due to of the presence of lump sums in the RMPV, given or taken at change of 

state times, let us say that the sum of the last two terms 

1 1 1 1
( ) ( ) ( ) ( )

m t m t

ik ik ik k
k k

b b V t  (20.42)  
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concerning the rewards ( )ik  are paid or received at the transition moment and so 
must be discounted for a time of  periods as ( )kV t . 

 
The corresponding non-homogenous formula is the following: 

1 1 1 1

1 1 1 1

( , ) (1 ( , )) ( ) ( , ) ( )

( , ) ( ) ( , ) ( , ) .

t m t
h s h s

i i i ik i
h s k s h s

m t m t
s s

ik ik ik k
k s k s

V s t H s t h b s h

b s b s V t

 (20.43) 

Matrix forms of (20.41) and (20.43) are: 

( ) ( )

1

1 1

( ) ( ) * ( ) ( ) * ( )

( ) ( ) * ( ) * ( ) ,

t
t

t t

t t t

t

V D 1 B 1

B 1 B V
 (20.44) 

( )

1

( )

1 1

( , ) ( , ) * ( , ) ( , ) * ( , )

( , ) ( ) * ( , ) * ( , ) .

t
t s s

s

t t
s s

s s

s t s t s t s t

s s s

V D 1 B V

B 1 B 1
 (20.45) 

20.3.1.6. Sixth model 

The next model extends the preceding model with the variability of interest rates 
that is under the following assumptions: 

a) rewards are variable in time; 
b) rewards are given for the permanence in the state and at a given transition; 
c) rewards are paid at the end of the period; 
d) interest rates are variable in time. 
 
All these hypotheses lead us to the following relations: 

1 1 1 1

1 1 1 1

( ) (1 ( )) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

t m t

i i i ik i
h k h

m t m t

ik ik ik k
k k

V t H t h h b h h

b b V t
 (20.46) 
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1 1 1 1

1 1 1 1

( , ) (1 ( , )) ( ) ( , ) ( , ) ( ) ( , )

( , ) ( ) , ( , ) ( , ) , .

t m t

i i i ik i
h s k s h s

m t m t

ik ik ik k
k s k s

V s t H s t h s h b s h s h

b s s b s V t s
(20.47) 

(20.46) and (20.47) matrix forms are: 

1

1 1

( ) ( ) * ( ) ( ) ( ) * ( ) ( )

( ) ( ) ( ) * ( ) * ( ) ( ) ,

t

t t

t t t t

t

V D 1 B 1

B 1 B V
 (20.48) 

1 1

1

( , ) ( , ) * ( , ) ( , )

( , ) * ( , ) ( , ) ( , ) ( ) ( , ) *

( , ) * ( , ) ( , ) .

t t

s s

t

s

s t s t s t s t

s t s s s

s s s

V D 1

B V B 1

B 1

 (20.49) 

20.3.1.7. Seventh model 

For our last case, we consider non-homogenous rewards and interest rate. 
Therefore, the basic assumptions are: 

a) rewards are non-homogenous; 
b) rewards are also given at the transitions; 
c) rewards are paid at the end of the period; 
d) interest rate is non-homogenous. 
 
It can easily be verified that the evolution equation takes the form: 

1

1 1 1

1 1 1 1

( , ) (1 ( , )) ( , ) ( , )

( , ) ( , ) ( , )

( , ) , ( , ) ( , ) , ( , ).

t

i i i
s

m t

ik i
k s s

m t m t

ik ik ik k
k s k s

V s t H s t s s

b s s s

b s s s b s s V t

 (20.50) 
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(20.50) in matrix form becomes 

1

1 1

1 1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ) * ( , ) * ( , ) ( , )

t

s

t

s s

t t

s s

s t s t s s

s s s

s s s s t s

V D

B

B 1 B V

 (20.51) 

To conclude this section, we will present the most significant due cases. The 
reasoning is quite similar to the models for the immediate case but nevertheless, it is 
useful to classify the most interesting models. 

 
As above, we systematically treat the homogenous and non-homogenous cases. 

20.3.2. The due cases 

20.3.2.1. First model 

For the due case, our first model has the following assumptions 
a) rewards are fixed in time; 
b) rewards are given only for the permanence in the state; 
c) rewards are paid at the beginning of the period; 
d) interest rate r is fixed. 
 
Here, ( )iV t  ( ( , )iV s t ) represents the RMPV given that at time 0, (s) the system 

in state i and the rewards being paid at the beginning of the period. 
 
Under our hypotheses, the evolution equations take the form: 

1 1 1 1
( ) (1 ( )) ( ) ( ) ( ) ,

m t m t

i i i ik i ik kt r r
k k

V t H t a b a b V t (20.52) 

1 1

1 1

( , ) (1 ( , )) ( , )

( , ) ( , ) .

m t

i i i ik it s r sr
k s

m t
s

ik k
k s

V s t H s t a b s a

b s V t
 (20.53) 
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The matrix forms of (20.52) and (20.53) respectively are 

1

1

( ) ( ) * ( ) *

( ) * ( )

t

t r r

t

t t a a

t

V D 1 B 1

B V
 (20.54) 

1

1

( , ) ( , ) * ( , ) *

( , ) * ( , )

t

t s r sr
s

t
s

s

s t s t a s a

s t

V D 1 B 1

B V
 (20.55) 

20.3.2.2. Second model 

We now consider variable rewards and variable interest rates to obtain the 
following assumptions: 

a) rewards are variable in time, 
b) rewards are given only for the permanence in the state, 
c) rewards are paid at the beginning of the period, 
d) interest rates are time dependent. 
 
The related evolution equations are: 

1 1

0 1 1 0

1 1

( ) (1 ( )) ( 1) ( ) ( ) ( 1) ( )

( ) ( ) ( ),

t m t

i i i ik i
k

m t

ik k
k

V t H t b

b V t  (20.56) 

1

1

1 1 1 1

( , ) (1 ( , )) ( 1) ( , )

( , ) ( 1) ( , ) ( , ) ( , ) ( , ).

t

i i i
s

m t m t

ik i ik k
k s s k s

V s t H s t s

b s s b s V t s  (20.57) 

The matrix forms of (20.56) and (20.57) are 

1

1

( ) ( ) * ( ) ( ) ( ) * ( ) ( )

( ) * ( ) ( )

t

t

t t t t

t

V D 1 B 1

B V

 (20.58) 
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1 1

( , ) ( , ) * ( , ) ( , )

( , ) * ( , ) ( , ) ( , ) * ( , ) ( , )
t t

s s

s t s t s t s t

s s s s t s

V D 1

B 1 B V
 (20.59) 

where 

1 1 1

2 2 2

(1) (2) ( )
(1) (2) ( )

( )

(1) (2) ( )m m m

t
t

t

t

, 

1
(1)

( )

( 1)

t

t

 

and 

1 1 1

2 2 2

( 1) ( 2) ( )
( 1) ( 2) ( )

( , )

( 1) ( 2) ( )m m m

s s t
s s t

s t

s s t

, 

1
( , 1)

( , ) .

( , 1)

s s
s t

s t
 

20.3.2.3. Third model 

With the introduction of  rewards and with a fixed interest rate, the 
assumptions of our third model are: 

a) rewards are variable in time; 
b) rewards are given for the permanence in the state and at a given transition; 
c) rewards are paid at the beginning of the period; 
d) interest rate r is fixed. 
 
Under these hypotheses the equations are: 

1 1

0 1 1 0

1 1 1 1

( ) (1 ( )) ( 1) ( ) ( 1)

( ) ( ) ( ) ( ),

t m t

i i i ik i
k

m t m t

ik k ik ik
k k

V t H t b

b V t b  (20.60) 
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1

1 1 1 1
1

1 1

( , ) ( , ) ( ) ( , ) ( 1)

( , ) ( , ) (1 ( , )) ( 1) .

m t m t
s s

i ik ik ik i
k s k s s

m t t
s s

ik k i i
k s s

V s t b s b s

b s V t H s t  (20.61) 

(20.60) and (20.61) matrix forms are: 

( ) ( )

1

1 1

( ) ( ) * ( ) ( ) * ( )

( ) ( ) * ( ) * ( )

t
t

t t

t t t

t

V D 1 B 1

B 1 B V
 (20.62)

 

( )

1

( )

1 1

( , ) ( , ) * ( , ) ( , ) * ( , )

( , ) ( ) * ( , ) * ( , )

t
t s s

s

t t
s s

s s

s t s t s t s t

s s s

V D 1 B V

B 1 B 1
 (20.63)

 

where 

0

11
( )

1 1

1

1

1

t

t t

r

r

.
 

20.3.2.4. Fourth model 

Our last model introduces non-homogenous rewards and interest rates with the 
following assumptions: 

a) rewards are non-homogenous in time; 
b) rewards are also given at the transitions; 
c) rewards are paid at the beginning of the period; 
d) the interest rate is non-homogenous. 
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For this, the evolution equation has the following form: 

1

1

1 1 0

1 1 1 1

( , ) (1 ( , )) ( , 1) ( , )

( , ) ( , 1) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ).

t

i i i
s

m t

ik i
k s

m t m t

ik k ik ik
k s k s

V s t H s t s s

b s s s

s b s V t s b s s

 (20.64) 

The matrix form of (20.64) is given by 

1

1 1
1

1

( , ) ( , ) ( , ) ( , ) *

( , ) * ( , ) ( , ) ( , ) ( , ) ( , ) *

( , ) ( , ) ( , ) *

t

s

t t

s s

t

s s

s t s t s s

s t s s s s

s s s

V D 1

B V B 1

B 1

(20.65)
 

20.4. MRWP and stochastic annuities 

20.4.1. Stochastic annuities 

The annuity concept is very simple and can easily be understood by means of the 
following figure. 

 

Figure 20.1. Constant payment annuity-immediate 

where S represents the constant annuity payment. 
 

Figure 20.1 shows the simplest immediate case. 
 
The due case can be shown by the following figure. 

 

Figure 20.2. Constant payment annuity-due 
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Clearly, the payment can be variable. The simple problems to be dealt with are 
how to calculate the value at time 0 (present value) or at time n (capitalization value) 
of the annuity (see the first half of this book) 

 
S can be considered not as a simple variable but rather as a random variable. This 

r.v. can assume, in the case of payments that vary only because of state, the 
following values: 

1 2, , , mS S S S ,  (20.66) 

where iS  can be considered as the payment related to state i. 
 

Furthermore, if it is set that the value at time k will depend only on the value at 
time k-1, we are in Markov process hypotheses. A sum is associated with each state 
which means that we are in a Markov reward environment. The problem of 
calculating the present value of this first simple case corresponds to the simplest 
case of DTHMRWP presented. 

 
In this light, it now is possible to give the following definition. 
 

Definition 20.2 Discrete-time homogenous (non-homogenous) constant stochastic annuity 
 

Let: 

1,2, ,I m  

be the states of a system and A, B two persons. 
 

Furthermore, let 

1 2, , , ,m iS S S S   (20.67) 

be sums. 
 

The sum iS  will be paid or received from A to B if the system is in state i. These 
“payments” will be made from time 1s  [respectively s] up to time s n T  
[respectively 1 1s n T ]. 

 
We say that this financial operation is an immediate [respectively due] 

homogenous (non-homogenous) discrete-time constant stochastic annuity if: 
i) the transitions among the states are governed by a homogenous (non-

homogenous) discrete-time Markov Chain P ( ) ( )ijt p tP ; 
ii) when there is a transition from i to j, it is possible that a sum ij  is paid or 

received. 
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Each stochastic annuity can be seen as a discrete-time Markov reward process. 
The randomness is given by the fact that the periodic payment annuity is a r.v. Also, 
transition payments are allowed. 

 
In the case of a simple immediate annuity, Figure 20.1 becomes Figure 20.3, and 

the annuity value can assume one of the values of r.v. (20.66). 
 
Figure 20.4 gives the corresponding due case. 
 
We are concerned with outlining the fact that, by means of the figures, it is 

possible to see quite easily that Markov reward processes can be considered a 
natural generalization of the annuity concept.  

 
Figure 20.3. Constant stochastic annuity-immediate 

It is clear that the reward structure could have a more complex structure that, in any 
case, can be seen as a generalization of the example shown in the two figures.  

 
Figure 20.4. Constant stochastic annuity-due 
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It should be stated that this approach is not new in the actuarial environment; see, 
for example, Wolthuis (2003) and Daniel (2004). By means of our approach it is 
carried out in a more systematic way using the Markov reward process as the 
natural stochastic generalization of the annuity concept. 

 
It is our opinion that the connection between Markov reward processes and 

annuities is natural and that an annuity can be seen as the Markov reward process 
with only one state and only permanence rewards. 

 
In this light, within the field of finance it is possible to define Markov reward 

processes as stochastic annuities. 
 
This first step also allows the generalization of the payments of the annuities in 

case of permanence rewards and transition rewards. Furthermore, the permanence 
rewards can be dependent or independent on the transition. All these rewards can be 
fixed or can vary due to time. 

 
In the case of simple annuity, the payment can only vary due to time yet, in the 

case of stochastic annuity, clearly it can vary in the same way as the rewards, since 
rewards represent the payment generalization. 

20.4.2. Motorcar insurance application  

Stochastic annuities have many applications in the fields of finance and 
insurance. 

 
In a general sense, actuarial mathematics can be seen as a branch of financial 

mathematics. In any actuarial mathematics application, we have to tackle a 
stochastic event within a financial environment. As it is well known, actuarial 
mathematics uses mathematical tools for insurance problems. In this light, 
DTMRWP could be seen as a useful tool to directly solve insurance problems. 

 
In this section, DTMRWP will be applied to motor car bonus malus insurance 

rules that apply in Italy. 
 
For a general reference on bonus malus systems and their properties, see Lemaire 

(1995) and Sundt (1993). 
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This example will use a transition matrix related to the motor car bonus malus 
insurance rules that apply in Italy. In this case, the Markov model fits quite well 
because: 

1) the position of each insured person is given at the beginning of each year; 
2) there are precise rules that give the change of states as a function of the 

behavior of the insured person during the year; 
3) the future state depends only on the present one.  
 
The number of states is 18. 
 
Table 20.1 gives the evolution rules that hold in Italy for bonus malus insurance 

contract. 
 

 Arriving state according to claims 
Starting state 0 claim 1 claim 2 claims 3 claims 4 or more 

1 1 3 6 9 12 
2 1 4 7 10 13 
3 2 5 8 11 14 
4 3 6 9 12 15 
5 4 7 10 13 16 
6 5 8 11 14 17 
7 6 9 12 15 18 
8 7 10 13 16 18 
9 8 11 14 17 18 

10 9 12 15 18 18 
11 10 13 16 18 18 
12 11 14 17 18 18 
13 12 15 18 18 18 
14 13 16 18 18 18 
15 14 17 18 18 18 
16 15 18 18 18 18 
17 16 18 18 18 18 
18 17 18 18 18 18 

Table 20.1. Italian bonus malus evolution rules 

We are in possession of the history of 105,627 insured persons over a period of 
three years (1998, 1999, 2000). This means that it was possible consider 316,881 
real or virtual transitions. The Markov transition matrix that was obtained from the 
available data and taking into account the bonus malus Italian rules is given in 
Tables 20.2, 20.3 and 20.4. 
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States 1 2 3 4 5 6 
1 0.941655 0 0.056264 0 0 0.001973 
2 0.935097 0 0 0.062379 0 0 
3 0 0.941646 0 0 0.056611 0 
4 0 0 0.948892 0 0 0.049364 
5 0 0 0 0.945231 0 0 
6 0 0 0 0 0.949204 0 
7 0 0 0 0 0 0.934685 
8 0 0 0 0 0 0 
9 0 0 0 0 0 0 

10 0 0 0 0 0 0 
11 0 0 0 0 0 0 
12 0 0 0 0 0 0 
13 0 0 0 0 0 0 
14 0 0 0 0 0 0 
15 0 0 0 0 0 0 
16 0 0 0 0 0 0 
17 0 0 0 0 0 0 
18 0 0 0 0 0 0 

Table 20.2. Transition matrix I 

States 7 8 9 10 11 12 
1 0 0 0.000081 0 0 0.000027 
2 0.002427 0 0 0.000097 0 0 
3 0 0.001574 0 0 0.000169 0 
4 0 0 0.001744 0 0 0 
5 0.052354 0 0 0.002314 0 0 
6 0 0.04908 0 0 0.00157 0 
7 0 0 0.061856 0 0 0.00339 
8 0.92227 0 0 0.073137 0 0 
9 0 0.914103 0 0 0.082621 0 

10 0 0 0.923854 0 0 0.071989 
11 0 0 0 0.92933 0 0 
12 0 0 0 0 0.930156 0 
13 0 0 0 0 0 0.937854 
14 0 0 0 0 0 0 
15 0 0 0 0 0 0 
16 0 0 0 0 0 0 
17 0 0 0 0 0 0 
18 0 0 0 0 0 0 

Table 20.3. Transition matrix II 
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States 13 14 15 16 17 18 
1 0 0 0 0 0 0 
2 0 0 0 0 0 0 
3 0 0 0 0 0 0 
4 0 0 0 0 0 0 
5 0.000067 0 0 0.000034 0 0 
6 0 0.000146 0 0 0 0 
7 0 0 0.000069 0 0 0 
8 0.004246 0 0 0.00026 0 0.000087 
9 0 0.003185 0 0 0 0.000091 

10 0 0 0.003827 0 0 0.00033 
11 0.066723 0 0 0.003696 0 0.000251 
12 0 0.066697 0 0 0.002994 0.000153 
13 0 0 0.059651 0 0 0.002495 
14 0.920681 0 0 0.074704 0 0.004615 
15 0 0.885204 0 0 0.107143 0.007653 
16 0 0 0.777568 0 0 0.222432 
17 0 0 0 0.876733 0 0.123267 
18 0 0 0 0 0.888614 0.111386 

Table 20.4. Transition matrix III 

The payment of a claim by the insurance company can be seen as a lump sum 
(impulse or transition reward) paid by the insurer to the insured person. The model 
can be used to follow the financial evolution of a motor car insurance contract. 

 
In Table 20.5, the premiums (which can be seen as permanence rewards) that are 

paid in Naples for a car of 2,300 c.c. are reported. 
 
The example is constructed from the point of view of the insurance company and 

premiums are income for the company. It should be noted that these values 
correspond to the real premiums paid by an insured person in 2001 and officially 
given on the website of Assicurazioni Generali for that year. 
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States Permanence rewards 
1 1,037.5 
2 1,099.75 
3 1,162 
4 1,224.25 
5 1,286.5 
6 1,369.5 
7 1,452.5 
8 1,535.5 
9 1,618.5 
10 1,701.5 
11 1,826 
12 1,950.5 
13 2,075 
14 2,386.25 
15 2,697.5 
16 3,112.5 
17 3,631.25 
18 4,150 

Table 20.5. Naples premiums 

In this case, permanence and impulse rewards should increase roughly in line 
with the inflation rate. In this light and with the aim of simplification, we suppose 
that the rewards are fixed in time. It is clear that the model can manage time variable 
premiums and benefits. 

 
We suppose that we have a yearly fixed discount factor of 1/1.03. In the model, a 

stochastic interest rate could be easily introduced (see Janssen and Manca (2002)), 
but we do not think that this aspect is central in the presentation of our model. 

 
Tables 20.6, 20.7 and 20.8 give the mean values of the expenses that the 

insurance company should pay for the claims made by the insured person. 
 
More clearly stated, the element –7,772.51 represents the expenses that, on 

average, the company has to pay for the two accidents that an insured person who 
was in state 1 (lowest bonus malus class) had and which then took him to state 6. 

 
These tables were constructed starting from the observed data in our possession. 
 
From the point of view of the model, the elements of these three tables are 

transition rewards. More precisely, and as already mentioned, they can be seen as 
lump sums (impulse rewards) paid by the company at the time of the accident. In 
this case, being expenses for the company, they are negative. 
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States 1 2 3 4 5 6 
1 0 0 –2,185.57 0 0 –7,772.51 
2 0 0 0 –1,956.4 0 0 
3 0 0 0 0 –2,188.25 0 
4 0 0 0 0 0 –2,853.19 
5 0 0 0 0 0 0 
6 0 0 0 0 0 0 
7 0 0 0 0 0 0 
8 0 0 0 0 0 0 
9 0 0 0 0 0 0 

10 0 0 0 0 0 0 
11 0 0 0 0 0 0 
12 0 0 0 0 0 0 
13 0 0 0 0 0 0 
14 0 0 0 0 0 0 
15 0 0 0 0 0 0 
16 0 0 0 0 0 0 
17 0 0 0 0 0 0 
18 0 0 0 0 0 0 

Table 20.6. Mean insurance payments I 

States 7 8 9 10 11 12 
1 0 0 –3,240.77 0 0 –7,728.78 
2 –3,196.16 0 0 –9,004.43 0 0 
3 0 –2,846.52 0 0 –4,498.34 0 
4 0 0 –2,920.39 0 0 0 
5 –2,245.02 0 0 –3,945.44 0 0 
6 0 –2,676.12 0 0 –3,076.05 0 
7 0 0 –2,086.66 0 0 –3,391.18 
8 0 0 0 –2,198.02 0 0 
9 0 0 0 0 –2,017.77 0 
10 0 0 0 0 0 –2,103.01 
11 0 0 0 0 0 0 
12 0 0 0 0 0 0 
13 0 0 0 0 0 0 
14 0 0 0 0 0 0 
15 0 0 0 0 0 0 
16 0 0 0 0 0 0 
17 0 0 0 0 0 0 
18 0 0 0 0 0 0 

Table 20.7. Mean insurance payments II 
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States 13 14 15 16 17 18 
1 0 0 0 0 0 0 
2 0 0 0 0 0 0 
3 0 0 0 0 0 0 
4 0 0 0 0 0 0 
5 –3,240.77 0 0 –6,274.95 0 0 
6 0 –6,703.61 0 0 0 0 
7 0 0 –1,572.09 0 0 0 
8 –4,027.26 0 0 –3,286.39 0 –3,629.14 
9 0 –6,397.63 0 0 0 –3,687.5 
10 0 0 –4,931.93 0 0 –5,165.44 
11 –3,110.63 0 0 –4,710.94 0 –5,993.19 
12 0 –3,048.69 0 0 –3,893.94 –1,1602.3 
13 0 0 –2,613.27 0 0 –8,271.51 
14 0 0 0 –3,564.01 0 –4,145.45 
15 0 0 0 0 –2,468.23 –7,356.78 
16 0 0 0 0 0 –2,883.68 
17 0 0 0 0 0 –3,764.32 
18 0 0 0 0 0 –2,578.55 

Table 20.8. Mean insurance payments III 

Tables 20.9, 20.10 and 20.11 report the present values of the mean total rewards 
that the company earns in 1 year, in 2 years and so on up to 20 years. Each column 
represents the starting state at time 0. 

 
The permanence reward (insurance premium) increases as a function of the state 

and therefore the money earned by the company increases as a function of the 
starting state as well. 

 
The results are interesting and show that, in this case, the company will earn a lot 

of money from this kind of insurance contract. The illustrated case is very particular. 
In Naples, the premiums are higher than in the other parts of Italy, the car is big and 
for this reason too the premiums are very high. 
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 Starting state 
Years 1 2 3 4 5 6 

1 902.77 972.89 1,036.64 1,082.56 1,163.11 1,236.34 
2 1,791.82 1,866.47 1,935.73 2,048.02 2,191.17 2,312.57 
3 2,656.91 2,732.23 2,809.19 2,930.74 3,083.67 3,270.51 
4 3,497.68 3,573.83 3,652.22 3,775.21 3,941.71 4,143.27 
5 4,314.34 4,390.67 4,469.36 4,594.66 4,764.41 4,969.33 
6 5,107.32 5,183.70 5,262.80 5,388.66 5,559.25 5,768.62 
7 5,877.27 5,953.71 6,032.93 6,158.92 6,330.56 6,541.29 
8 6,624.83 6,701.29 6,780.54 6,906.73 7,078.71 7,289.89 
9 7,350.64 7,427.09 7,506.39 7,632.64 7,804.75 8,016.42 

10 8,055.31 8,131.77 8,211.08 8,337.36 8,509.59 8,721.46 
11 8,739.46 8,815.92 8,895.24 9,021.54 9,193.83 9,405.77 
12 9,403.68 9,480.15 9,559.48 9,685.79 9,858.10 10,070.11 
13 10,048.57 10,125.03 10,204.36 10,330.68 10,503.01 10,715.05 
14 10,674.67 10,751.13 10,830.46 10,956.78 11,129.12 11,341.18 
15 11,282.53 11,359.00 11,438.33 11,564.65 11,736.99 11,949.07 
16 11,872.69 11,949.16 12,028.49 12,154.81 12,327.16 12,539.24 
17 12,445.66 12,522.13 12,601.46 12,727.78 12,900.13 13,112.22 
18 13,001.94 13,078.41 13,157.74 13,284.06 13,456.42 13,668.51 
19 13,542.02 13,618.49 13,697.82 13,824.14 13,996.50 14,208.59 
20 14,066.37 14,142.84 14,222.17 14,348.49 14,520.85 14,732.94 

Table 20.9. Present values of Naples mean total rewards I 

 Starting state 
Years 7 8 9 10 11 12 

1 1,315.92 1,361.69 1,436.54 1,534.53 1,606.13 1,740.04 
2 2,469.70 2,593.59 2,753.00 2,900.66 3,052.08 3,286.69 
3 3,492.55 3,674.17 3,909.79 4,134.20 4,367.87 4,657.60 
4 4,382.20 4,634.06 4,938.46 5,222.52 5,525.47 5,891.88 
5 5,228.55 5,505.30 5,835.84 6,187.59 6,556.49 6,983.41 
6 6,034.35 6,319.67 6,678.49 7,060.54 7,457.96 7,950.03 
7 6,809.20 7,103.35 7,473.42 7,867.06 8,296.11 8,822.13 
8 7,560.03 7,857.72 8,232.06 8,638.05 9,081.02 9,621.21 
9 8,287.45 8,586.54 8,965.12 9,376.39 9,824.94 10,380.44 

10 8,992.84 9,293.23 9,673.65 10,087.09 10,541.51 11,104.04 
11 9,677.48 9,978.47 10,359.67 10,775.25 11,232.34 11,797.92 
12 10,341.97 10,643.23 11,025.15 11,441.72 11,899.99 12,468.63 
13 10,986.98 11,288.47 11,670.74 12,087.76 12,547.16 13,117.28 
14 11,613.17 11,914.78 12,297.21 12,714.64 13,174.59 13,745.41 
15 12,221.08 12,522.75 12,905.32 13,322.96 13,783.17 14,354.63 
16 12,811.27 13,112.98 13,495.62 13,913.36 14,373.81 14,945.60 
17 13,384.26 13,686.00 14,068.67 14,486.50 14,947.07 15,519.02 
18 13,940.55 14,242.30 14,625.01 15,042.88 15,503.51 16,075.60 
19 14,480.63 14,782.40 15,165.12 15,583.01 16,043.70 16,615.86 
20 15,004.99 15,306.76 15,689.48 16,107.40 16,568.11 17,140.31 

Table 20.10. Present values of Naples mean total rewards II 
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 Starting state 
Years 13 14 15 16 17 18 

1 1,903.62 2,109.18 2,386.09 2,489.76 3,180.75 3,871.15 
2 3,538.69 3,915.36 4,368.44 4,882.38 5,882.82 6,518.34 
3 4,997.82 5,490.12 6,098.49 6,905.42 8,018.71 8,901.15 
4 6,314.29 6,882.64 7,623.49 8,611.49 9,873.82 10,918.70 
5 7,472.94 8,130.11 8,978.07 10,108.28 11,489.33 12,626.28 
6 8,505.23 9,232.41 10,168.21 11,433.54 12,903.74 14,115.84 
7 9,409.12 10,207.05 11,226.54 12,600.42 14,143.75 15,430.51 
8 10,243.01 11,083.99 12,154.42 13,629.21 15,242.53 16,587.94 
9 11,019.16 11,881.88 13,001.76 14,549.49 16,208.08 17,608.71 
10 11,750.15 12,634.42 13,783.26 15,376.53 17,078.46 18,518.44 
11 12,451.75 13,347.40 14,511.96 16,143.98 17,872.64 19,335.34 
12 13,126.18 14,027.61 15,206.00 16,861.44 18,604.95 20,088.86 
13 13,776.58 14,683.14 15,869.25 17,538.23 19,294.90 20,791.12 
14 14,406.36 15,315.68 16,505.98 18,185.46 19,949.58 21,452.49 
15 15,016.42 15,927.19 17,120.85 18,806.47 20,574.67 22,083.25 
16 15,607.81 16,519.76 17,715.31 19,404.45 21,175.93 22,687.72 
17 16,181.59 17,094.19 18,290.79 19,982.49 21,755.83 23,269.37 
18 16,738.36 17,651.32 18,848.70 20,541.89 22,316.27 23,831.17 
19 17,278.73 18,191.95 19,389.78 21,083.84 22,858.99 24,374.67 
20 17,803.26 18,716.63 19,914.72 21,609.38 23,384.97 24,901.09 

Table 20.11. Present values of Naples mean total rewards III 

20.5. DTSMRWP and generalized stochastic annuities (GSA) 

20.5.1. Generalized stochastic annuities (GSA) 

The semi-Markov reward process is a generalization of the Markov reward 
process. 

 
In discrete-time, the generalization of the SMRWP has the property that the 

waiting time before a transition is a r.v. 
 
In the discrete-time Markov case, the transitions occur at each time step (the d.f 

that rules the transition is geometric). They can be real transitions, in the case where 
the system that goes all over the given system changes the state, or virtual in the 
case in which after the transition it remains in the same state. However, at each 
period there is a transition. 

 
In the discrete-time Markov chain case, the time evolution of a trajectory can be 

described by means of Figure 20.5. 
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The time evolution of a trajectory of a discrete-time semi-Markov process is 
described in Figure 20.6. 

 
The behavior of the two trajectories is not the same. The transition time in semi-

Markov processes is random. A virtual transition case is shown in Figure 20.6. 
 

 

Figure 20.5. A trajectory of discrete-time Markov reward process 

We attach a reward structure to the related process. In this light we can give the 
following definition. 

 
Definition 20.3 A generalized homogenous (non-homogenous) discrete-time 
stochastic annuity is a homogenous (non-homogenous) discrete-time stochastic 
annuity in which the following property holds: 

i) the transitions among the states follow a homogenous (non-homogenous) 
discrete-time semi-Markov process. 

 
This financial concept naturally corresponds to the homogenous (non-

homogenous) discrete-time semi-Markov reward process as defined in section 20.3. 
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Figure 20.6. A trajectory of DTNH semi-Markov reward process 

20.5.2. GSA examples 

In Haberman and Pitacco (1999), Figure 20.7 is given to illustrate a trajectory of 
the stochastic process that describes a general insurance contract. 

 
The depicted model has four states. It is evident that the transition time is 

naturally random. 
 
A general insurance contract can be considered naturally to evolve in a semi-

Markov environment. In the figures there are the states of the systems on the y axis, 
the time on the x axis; besides in Figure 20.7 the premiums and benefits of the 
insurance contract are also considered.  

 
Figure 20.7. Trajectory evolution of a general insurance contract 

Clearly, premiums and benefits can be considered as rewards. More precisely, in 
an HSMRWP environment we have the following: 
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1 1( ) ( )p t t  represents the premium paid by the insured. It is a permanence 
reward that can be constant or variable in time depending on the insurance contract; 

2 2( ) ( )b t t  gives a benefit flow paid by the insurance company. Also in 
this case it is a constant or variable permanence reward; 

3 4 3( ) ( )d t t  represents a discontinuous variable benefit flow where 

4 3
3

4 3

if

if

( )
( )

k t t t t
t

b t t t
 clearly could also be 4 3( ) 0k t t t t ; 

13 3 13( ) ( )c t t  and 34 5 34( ) ( )c t t  are transition rewards. 
 
In this light we can say that any insurance contract can be modeled by means of 

SMRWP (MRWP can be seen as a particular case of SMRWP)! 
 
In some cases, the homogenous environment is enough to model the insurance 

phenomenon. In other cases, the non-homogenity has to be introduced. Furthermore, 
in more composite cases the non-homogenous environment must be generalized to 
model the phenomenon (see Manca and Janssen (2007)). 

 
In this first approach, we will consider the first examples that are reported in 

Haberman and Pitacco (1999). The related rewards evolution equations will be 
written. 

 
The values that represent premiums and benefits have opposite algebraic signs. 

In these examples we will apply the discounted DTHSMRWP. Furthermore, we will 
suppose that the interest rate intensity  is constant. 

20.5.2.1. Two states examples 

 

Figure 20.8. 1 = alive state; 2 = dead state 

Figure 20.8 can be used to depict three different cases of insurance: 
(i) temporary assurance; 
(ii) endowment assurance; 
(iii) deferred annuity. 
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(i) In the case of death a constant sum c is assured and a premium at a constant 
rate p is paid at beginning of period. The policy ends at time T. So we have: 

1
if

if

0,1 , 1
( )

0
p t T

t
t T

,      12 , 0c t T . 

In all three cases, state 2 is an absorbing state and after time T the insurance 
contract is extinguished. The premiums are always anticipated. Furthermore, in this 
case 2 0 . 1( )t  can be considered as a constant permanence reward and the 
evolution equations will follow the system for a time T. 

 
The evolution equation is the equation with a fixed interest rate, fixed time due 

permanence rewards and fixed time transition reward. 
 
Under all these hypotheses we can write the following evolution equations: 

1 1 1 12 1
1

12 12
1

( ) 1 ( ) ( )

( )

t

t

t

V t H t a b a

b
      1 t T  (20.68) 

2 ( ) 0, .V t t   (20.69) 

1( )V t  represents the present value of the temporary assurance at time 0 for a 
time period t (backward reserve). 

 
(ii) In the endowment assurance, a sum c is insured in both the cases of death and 

of survival to maturity T. We can have the following positions: 

1
if

if

1, ,
( )

0
p t T

t
t T

,    12 , 0c t T  

Also, in this case 2 0 . 1( )t  can be considered as a variable permanence 
reward and the evolution equations will follow the system for a time T. 

 
The evolution equation is the equation with a fixed interest rate, variable time 

permanence rewards and fixed time transition reward. 
 
We can write the following evolution equation:  
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1

1 1 1
0

1

12 1 12 12
1 0 1

( ) 1 ( ) ( 1)

( ) ( 1) ( )

t

t t

V t H t

b b
 0 t T  

Also, in this case 1( )V t  represents the backward reserve at time 0 for a period t 
and (20.69) holds. 

 
(iii) In the third case, the deferred annuity premiums are paid over the time 

period 11, ,T  when the insured person is in state 1. Also, the benefits are paid 
continuously from time 1T  until the death of the insured, and as usual the premiums 
are anticipated and the claim amounts unknown, we recognize the well known 
phenomenon of inversion of the production cycle in insurance. 

 
In this case we have: 

1
1

1

if

if

1 ,
( )

,
p t T

t
b T t x

 (20.70) 

where  represents the maximum age reachable by a person and x the insured age 
at the formation the contract. 
 

In this case, 2 0 . 1( )t  can be considered as a variable permanence reward 
and the evolution equations will follow the system for a time x . 

 
The evolution equation is the equation with a fixed interest rate, variable time 

permanence rewards and no transition rewards.  
 
We do not present this case but we can easily write the following evolution 

equation:  

1 1

1 1 1 12 1
0 1 0

( ) 1 ( ) ( 1) ( ) ( 1)
t t

V t H t b  (20.71) 

In this case, 1( )V t  represents the backward reserve at time t and (20.69) holds.  
 
In these three cases, the dead state does not give any permanence reward. It 

allows for the end of the contract and, in the first two cases, before the natural 
maturity. 
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Another two states example, given in Haberman and Pitacco, is as follows. 
 

 
Figure 20.9. 1 = employed; 2 = unemployed 

In this case, the model can be used to study the annuity benefit in the case of 
unemployment. The dead state, in this two states model, is not considered because, 
as specified in Haberman and Pitacco (1999), the age range covered by such 
insurance contracts is characterized by low probabilities of death relative to the 
probabilities of moving from state 1 to state 2 or from state 2 to state 1, and because 
the financial effects of death may be small in relation to that of unemployment. 

 
We will suppose that the premiums and benefits are fixed in time, but it is also 

possible to consider them variable without any difficulty. Under these hypotheses 
we obtain: 

1 2

if if
and

if if

1 1
( ) ( )

0 0
p t T b t T

t t
t T t T

 (20.72) 

where p is the premium paid by the insured, b is the benefit that he receives in the 
unemployment case and T W x , W is the maximum working age and x the 
insured age at the contractual formation. 1( )t  and 2 ( )t  could be considered as 
constant permanence rewards and the evolution equations will follow the system for 
a time T. In this case, because of the different period of payments we have a due 
case for premiums and an immediate case for claims. 
 

The evolution equations will be the following: 

1 1 1 12 1
1

12 2
1

( ) 1 ( ) ( )

( ) ( )

t

t

t

V t H t a b a

b V t
 (20.73) 

2 2 2 21 2
1

12 1
1

( ) 1 ( ) ( )

( ) ( )

t

t

t

V t H t a b a

b V t
 (20.74) 
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(20.73) represents the mean present value that an insured has at time t if it starts 
at time 0 in state 1. (20.74) has the same meaning but this time starting in state 2. 

 
In all the cases that we have considered there are no possibility of virtual 

transitions, which means that 0iip  and so also 0iiQ  and in the evolution 
equation only 12 21orb b  is considered. 

20.5.2.2. Three states examples 

 

Figure 20.10. Three state graph for the two three state examples 

Figure 20.10 can be used for the description of two cases: 
(i) a temporary assurance with a rider benefit in the case of accidental death; 
(ii) a lump sum benefit in the case of permanent and total disability. 
 
In the first case, the three states will have the following meaning: 
1 = alive; 
2 = dead (other causes); 
3 = dead (accident). 
 
Two different causes of death are considered and the lump sums are a function of 

the death cause. We have: 

1

if

if

1
( )

0
p t T

t
t T

  12 13, ', 0c c t T  

The evolution equation is similar to (20.68).  

3

1 1 1 1 1
2 1

3

1 1
2 1

( ) 1 ( ) ( )

( )

t

kt
k

t

k k
k

V t H t a b a

b
    0 t T  



830     Mathematical Finance  

2 3( ) 0, ( ) 0, .V t V t t   (20.75) 

In the other example related to Figure 20.10 a lump sum will be paid in the case 
of a permanent and total disability. The states are: 

1 = active; 
2 = disabled (permanent disability); 
3 = dead.  
The considered rewards are: 

1

if 0
( )

0 if
p t T

t
t T

  12 , 0c t T   

The evolution equation is the following: 
3

1 1 1 1 1
2 1

12 12
1

( ) 1 ( ) ( )

( )

t

kt
k

t

V t H t a b a

b
 (20.76) 

(20.75) holds also in this case. 
 

Remark 20.2 The time continuous version of the theory and other examples are 
given in Janssen and Manca (2006, 2007). 
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hedging 553, 559, 567-568, 570, 576, 
578, 588, 624, 713 

hedging portfolio 567-568, 570, 576, 
578 

hitting time 449, 463, 600 
historical (physical) measure 560, 

661 
Ho-Lee model 658, 662, 666 
homogeneity 32, 290, 713, 792, 825 
homogenous Markov chain 458, 484, 

508, 515, 624, 759, 761, 776 
homogenous semi-Markov chain 483, 

509-511, 513-514, 631, 637-638, 
770-771 
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I  

i-convexity 377-378, 380, 384 
implicit rates theorem 314 
implicit structure of prices 304 
incorporated return 108, 117, 277, 

292, 304 
increasing annuity 180-181, 183-184, 

186-187, 189, 205, 370 
increasing perpetuity 180 
independence 29, 49, 305, 311, 332, 

336, 338, 398, 421, 424-425, 436-
437, 440, 442-443, 485, 487, 729 

indexed bond 274-275 
indicator of an event 439 
indifference 4-5, 8-11, 13, 15, 18-19, 

25-28, 32, 84-87, 92, 289, 762 
indifference curve 8-11 
indifference relation 4, 8, 13, 15, 18-

19, 25-28, 32, 92, 289 
inessential state 463 
infinitively divisible securities 290 
initial accumulation factor 19, 29, 34 
initial discounting factor 22 
initial discounting intensity 23 
initial discounting rate 22 
initial distribution 458, 470 
initial interest rate 19-20 
initial value (IV) 150, 214 
initial yield 386, 388 
input and output amounts 112 
installment 80, 148, 150-155, 158-

160, 162-163, 165-176, 178-181, 
184-185, 188-192, 194-197, 199, 
201, 203-205, 207-209, 211, 213, 
218, 220-223, 226-237, 235-241, 
245-248, 251-257, 264-266, 337-
342 

instantaneous continuous rate 658-
659 

instantaneous discount intensity time 
structure 327 

instantaneous discount intensity 69, 
327 

instantaneous forward rate 658 

instantaneous intensity of return at 
maturity structure 295 

instantaneous interest intensity 23, 
75, 303 

instantaneous yield curve 662, 663, 
665 

instantaneous rate 579, 605, 644, 
646-649, 659, 667, 749 

insurance natural premium 235 
integer term value of rates 334 
integrand process 518, 525, 535 
integrator process 518, 520, 525, 

531-532 
intensity 12, 20, 43, 94, 156, 223, 

291, 332, 375, 621, 762 
intensity of return at maturity 

(intensity r.m.) 295 
interarrival time 489, 491 
interest 4, 13, 41, 93, 148, 211, 289, 

333, 363, 558, 609, 641, 707, 745, 
792 

interest conversion 55, 59, 66, 149 
interest law 15, 24, 29-30, 33-34, 39, 

50, 53, 57, 83-85, 89, 149, 172, 
175, 792 

interest paid 45, 157, 213, 218-220, 
222-223, 225-228, 230, 235-237, 
257, 264-265, 338, 340, 342, 344-
347, 349, 351-352, 354-358 

interest rate risk 386, 394 
interest share 105, 356 
internal financial law (IFL) 109 
internal rate of costs 229 
internal rate of return (IRR) 108, 110, 

115-116, 134, 260, 290, 338, 366, 
386 

intersection 27, 74, 89, 134, 137, 139, 
142-143, 412 

in the money 563, 587, 597, 599 
intrinsic financial value 27 
invariance by translation 40, 713 
invariance of duration 727 
invariance property 93, 99 
investment in the broad sense 112, 

114, 122, 139 
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investment in the strict sense 112-
113, 122 

investment operation 111, 244, 360, 
387 

irreducible Markov chain 474 
Itô’s formula 529, 531-532, 537-538, 

540, 543, 571, 660, 668 
Itô’s lemma 529, 538, 549 

J  

Janssen-Manca-Çinlar model 625 
Janssen-Manca-Di Biase formula 638 
Janssen-Manca option pricing 

formula 621 
J-process 484 

L  

leasing with line interest 
compensation 268 

leasing with line value compensation 
268 

Lebesgue-Stieltjes integral 417, 421 
life amortization 234-235, 237-242, 

244, 337, 349, 351 
life amortization with advance 

installments 237-238 
linear interpolation method 118, 139-

141 
linearity 65-66, 205, 298, 312, 422-

423, 521, 655, 668 
load factor 713 
loan amortization 211, 213, 215, 217, 

219, 221, 223, 225, 227, 229, 231, 
233, 235, 237, 239, 241, 243, 245, 
247, 249, 251, 253, 255, 257, 259, 
261, 263, 265, 267, 269, 271-273, 
275, 277, 279, 281, 283, 285, 287, 
331 

loan operation 13, 253, 266 
loan operation with brokerage by 

third party 268 
loan operation with many private 

lenders 268 
loan operation with public guarantees 

269 

lognormal distribution 431-432, 566, 
569-570, 584, 628, 707, 710, 735, 
737 

Longstaff-Schwartz model 750 
lookback option 588, 601 
lost profit 128, 266 
L-S transform of matrices (Laplace 

Stieltjes) 499 
lump sum with only one interest 

payment 212 
lump sum with periodic interest 

payment 212 

M  

Makeham’s formula 258-261, 263-
265, 276, 352 

Margrabe option 602 
Markov chain 457-458, 462,-463, 

465, 469-475, 478, 483-484, 502, 
505-506, 508-509, 513, 616, 619, 
621-622, 624, 630, 633, 759, 761, 
764-765, 776, 812, 822, 832, 836 

Markov process 491-492, 511, 513-
514, 607, 631, 637-639, 661, 758, 
764, 766, 770-772, 794, 812, 823 

Markov renewal equation 500-501 
Markov renewal matrix 500 
Markov renewal process 487, 491-

492, 511, 765 
martingale 450-453, 455, 521-522, 

524-525, 529-532, 535, 573-574, 
609-610, 629, 836 

maturity 5, 13, 42, 91, 228, 291, 333, 
363, 553, 610, 641, 726, 744 

maturity date 5, 293, 593, 595, 631, 
641-642, 761-762 

maturity time 553-554, 573-575, 588, 
592-593, 602, 628, 635, 637, 644-
645, 683, 744 

mean 32, 44, 97, 160, 229, 295, 333, 
363, 427, 464, 497, 533, 556, 611, 
650, 688, 705, 796 

mean recurrence time 464 
measurable space 413, 417, 421, 447 
MEDAF model 730-731 
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migration 759-760, 767, 771, 831-
832 

mixed accumulation with conversion 
m times per year 59 

mixed accumulation with annual 
conversion 57-58 

mixed operation 97, 99 
mixed project 108, 130-131, 133-137 
modified duration 382, 385 
monetary amount 4, 11-12, 355 
monetary interest rate 193-194 
monotonicity 713 
Monte Carlo simulation method 654, 

657 
multi-period Markov option model 

616 
mutually exclusive financial projects 

124 

N  

NE (north east) 6-7, 321 
negative exponential distribution 432 
nominal annual interest rate 

convertible m times 58 
nominal annual discount rate 

convertible m times 70 
no friction 290 
non-homogenous Markov chain 759, 

776 
non-homogenous Markov process 

508, 758 
non-homogenous semi-Markov chain 

509 
non-path dependent option 588 
non-risky asset 692-693, 698 
non-risky debt 745-746, 748 
non-risky interest rate 576, 587, 609, 

611-612, 620, 734, 745 
normal distribution 427-435, 445, 

566, 569, 705-707, 713, 718, 721, 
723, 725, 730-731, 734, 753 

null set 420 

O  

occupation time of state j 467 

one period binomial model 558 
operation of investment 38, 42 
option model with arbitrage 

possibility 631 
option on a bond with coupon 682 
option on extrema 601 
option on zero coupon 682 
option premium 554, 595 
ordinary leasing operation 265 
Ornstein-Uhlenbeck-Vasicek (OUV) 

model 552, 641, 647, 649 
out of the money 563, 587, 597 
outstanding loan balance 213-214, 

253-258, 260-261, 286, 337-339, 
342, 353 

P  

p-annual perpetuity 163 
p-annual temporary delayed annuity 

163 
partially non-homogenous semi-

Markov kernel 514 
partially non-homogenous  semi-

Markov process 514 
path dependent option 588, 599, 601 
perfect capital market 290 
periodic repayment 91, 212 
perpetuity 148-149, 155, 159-160, 

163-164, 180-181, 185-186, 194-
196, 198-200, 204, 234, 370 

perspective transitivity 24, 29 
physical (historical) measure 560  
PICO (point input continuous output) 

112, 117, 124 
PIPO (point input point output) 112, 

124, 365-366 
plain vanilla option 734 
pluriannual annuity 162, 169, 196, 

201 
pluriannual annuity in geometric 

progression 196 
pluriannual increasing annuity 189 
Poisson distribution 426-427 
portfolio 298, 369, 430, 559, 668, 

687, 710 
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positive J-X process 481, 625 
predictable simple stochastic process 

519 
preference 4-7, 13, 27-28, 84, 89, 762 
present value 10, 15, 22-23, 105, 

115-116, 118, 124-125, 127, 130-
131, 134, 149, 151, 165, 181, 234, 
259, 322, 333-335, 352, 365-366, 
370, 379-380, 382, 386-388, 399-
400, 560, 573-574, 583, 590-591, 
609-610, 617, 633, 643, 667, 724, 
726-727, 746-747, 749, 794, 796, 
799-800, 812, 826, 829 

present value of deferred annuity 
(PVDA) 154-155, 159-161, 163, 
165, 167, 176, 182, 184-185, 198-
199, 205 

present value of prompt annuity 333 
principal 10, 42, 93, 150, 212, 289, 

337, 363, 425, 760 
principal repaid 213, 218-220, 22-

223, 225-228, 230, 235-237, 254-
255, 257, 264-265, 338-340, 342, 
344-345, 347-349, 351-358 

principal share 105 
principle of financial equivalence 10 
probability distribution 419, 426, 

505-506, 619, 633, 637 
probability measure 413-417, 419, 

437, 550, 557, 560, 573, 591, 610, 
673-674 

probability space 412, 414, 416-417, 
420, 424, 435, 441, 443, 446-447, 
449-450, 454, 482, 509, 517, 519, 
525, 533, 536-537, 545, 568, 591, 
608, 625-626, 633, 649, 660, 667, 
704, 753, 765 

progressive amortization 221, 229-
230, 266 

project final result 129-130 
project of pure financing 129-130 
project of pure investment 129-130 
prompt annuity 149, 196, 333-335 
property of price linearity 298 
property of proportional amount 17 

prospective reserve (pro-reserve) 97, 
100, 106, 115, 215, 233, 388 

pure financing project 129 
pure investment project 120, 137 
pure premium 713 
pure project 108 
put asset or nothing option 596-597 
put cash or nothing option 593-594 
put option 553-554 

Q  

quantile 652, 705, 713, 753 

R  

rainbow option 602 
random variable 417-418, 420, 511, 

518, 610, 616, 698, 704, 791, 794, 
812 

rate as derived quantity 11 
rate structure of spot interest 312 
rating withdrawn 760 
rational discount regime 45 
real interest rate 193 
realization risk 387, 391 
recurrent state 465, 468, 472 
Redington theorem 403 
reflexive property 15, 27, 33 
regular Markov matrix 460 
reinvestment risk 387, 390-391 
renewal process 487, 489, 491-497, 

503, 511, 514-515, 765 
renewal time 491 
retrospective reserve (retro-reserve) 

97, 100, 215, 233, 350, 358, 388 
retrospective transitivity 25, 29 
return and cost rate (RCR) 134 
return rate 108, 113, 116, 124, 128, 

134-136, 138, 164, 261, 266, 278-
279, 291-292, 296-299, 304, 326-
327, 358, 620 

reward structure 791, 794, 813, 823 
rho coefficient 579 
right continuity property 446 
risk adverse 570, 687-688 
risk lover 570, 693 
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risk measure 674, 712-714, 716 
riskmetrics method 724, 726 
risk neutral conditional probability 

measure 610 
risk neutral measure 560, 562, 567, 

573-574, 590-591, 593, 596, 617, 
629, 661-663, 675, 745 

risk premium 668-669, 672, 676, 699 
risky asset 692-693, 698-699 
risky debt 744-749 
ruin probability 752 

S  

sample space 411-412, 414-415 
secants and tangents method 142 
semi-Markov chain 483, 509 
semi-Markov kernel 483, 494-495, 

513-514 
semi-Markov process 492, 511, 513-

514, 607, 631, 637-639, 766, 770-
772, 794, 823 

semi-Markov process kernel 637 
semi-martingale 521, 524-525, 529-

531 
sensitivity indicator 380 
set of states 768 
Sharpe model 728, 730 
short selling 
simple advance interest regime (SAI) 

50, 83, 94 
simple delayed interest regime (SDI) 

42, 83, 94, 173 
simple discount regime 290, 297, 

301, 305 
simple fair operation 93 
simple financial operation 13-14, 108 
simple operation 92, 321 
sinking fund 228, 230, 244-245, 248, 

251-252, 356 
smile effect 587 
smoothing property of conditional 

expectation 441, 522 
sojourn time 485-486, 496, 505, 630 
spot contract 294-295, 301-302 
spot intensity 301, 313, 315, 325, 327 

spot present value 333 
spot price (SP) 279, 294, 304-305, 

313, 317, 325-327, 331, 354, 379-
380, 385, 601 

spot rate 299-300, 307, 311, 313, 
317, 322-323, 325, 327, 333, 345, 
647, 649-651, 657, 662-663, 666-
669, 672, 676, 680, 683 

spot return at maturity 333 
spot structure 305-306, 313-315, 325, 

327 
spread 18, 52, 79, 86-88, 94, 99, 112, 

116, 134, 136, 141, 174, 215, 225, 
260-261, 272, 380, 400, 587, 748-
749, 759, 762-763 

square integrable process 535 
standard Brownian motion 455, 518, 

521-522, 525, 527-529, 531-532, 
526, 537, 544-545, 549, 573, 591, 
626, 649, 652, 660-661, 753, 757 

standard lookback option 601 
stationarity in maturity rate 645 
stationarity in time rate 645 
stationarity in time and in maturity 

rate 645 
stochastic differential 536-537, 539-

541, 545-546, 549, 571, 573, 626, 
655, 657, 668, 752, 833 

stochastic differential equation (SDE) 
546, 573, 626, 655, 657, 752 

stochastic differential of a product 
537 

stochastic integral 455, 520, 523, 
525-526, 532-533, 536, 651, 654, 
834 

stochastic integration 517-519, 521, 
523 

stochastic process 447-450, 453-454, 
481, 489-490, 518-519, 521, 524, 
530, 536, 538, 540-542, 545, 549-
550, 555, 568, 626, 631, 667, 673, 
704, 707, 722, 756, 791, 824 

stochastic process adapted to a 
filtration 448 

stochastic process trajectory 518 
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Stock Exchange 268, 326, 411, 614, 
641 

stopped stochastic process 453 
stopping time 447, 449, 453, 519, 

522, 751 
strong decomposability 23, 25-26, 

29-30, 64, 93, 289, 332, 365 
strong law of large number 425 
strong Markov property 551 
strong preference 5-7, 27-28 
structure of forward interest rates 336 
sub-additivity 713, 715 
sub-martingale 450 
substitutive financial operations 127 
super-martingale 450-451 
symmetric property 16-17, 19, 27 

T  

Tail-VaR 717 
tel quel price 299 
temporary annuity 152, 160, 162, 

164, 167-168, 180, 184, 189, 192, 
195, 198, 205, 369 

temporary m-fractional annuity 158 
term rate structure 331 
term structure of interest rates 41 
term structure of spot rates 321, 324 
theorem of implicit prices 305 
theta coefficient 578 
threshold default 753 
time indicator 363-364 
time of payment 4-5, 7, 97, 112, 224, 

302, 794 
time to maturity 53, 294, 364 
total number of transitions 513 
total occupation time of state j 467 
T-process 487 
TRM method 127, 129 
transient state 468, 472, 506-507 
transition graph 458, 460-461, 476, 

478-479 
transition matrix 458, 470-472, 474-

475, 477, 484, 493, 635, 759-760, 
765, 772-773, 776, 798, 815-817 

Treasury Bond 269, 271 

U  

unconditional distribution of sojourn 
time 485 

unconditional mean of sojourn time 
487 

underlying asset 553, 555, 557-558, 
560-562, 564-568, 571, 581, 584, 
586, 592, 594-595, 597, 599, 601, 
607, 624, 633, 637, 734 

uniform convergence 519-520, 523 
uniform convergence in probability 

523, 535, 652 
uniform and decomposable financial 

law 39 
uniform exchange law 32 
uniform financial regime 41, 52 
uniform integrability 452 
uniform law of interest 42 
uniform relation 32-33 
uniformity (homogeneity) in time 41, 

64, 311 
union 27, 91, 93, 125, 149, 177, 295, 

371, 395, 400, 412-413 
 
uniperiod forward coupon rate 358 
uni-reducible Markov chain 478 
unitary annuity 161, 170, 180, 191, 

201, 205, 364 
unitary m-fractional annuity 157-158 
unitary zero coupon bond (UZCB) 

294, 394 
up-and-in option 599 
up-and-out option 599 
usufruct 104-105, 107, 160, 223-225, 

258-259, 262-265, 278-281, 286, 
352 

usufruct in continuous case 104 

V  

variability indicators under the flat 
yield structure 376 

variance 688, 690, 694, 697, 700-
701, 710, 721-726, 732-733, 738-
739, 742, 833 
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variance and covariance matrix 722-
725, 433-434 

VaR value 704-705, 707, 709, 711, 
713-714, 725, 730, 732, 741-742 

varying annuity 201 
varying rate amortization 211 
Vasicek model 647, 658, 664-665 
vega coefficient 579 
virtual transition 769, 823 
volatility 382, 570, 576, 579-580, 

582, 584, 586-587, 601, 607, 622, 
624-627, 651, 661-663, 665, 669, 
707, 709, 727, 729, 734, 749, 752 

volatility-convexity 377-380 
volatility indicator 376 

W  

waiting time distribution function 
766 

Wald identities 442 
weak preference 6, 27 
weak decomposability 25, 29-30, 149 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wiener process 454 

X  

X-process 484-485 

Y  

yield curve 299-300, 366, 373, 386, 
401, 642-643, 645-646, 648-649, 
658-659, 662-663, 665, 726 

yield curve inversion 643 
yield in advance 386, 390-391, 395 
yield rate 280, 282-283, 294, 299-

300, 359, 371, 386, 388, 682 
yield at maturity 386, 392 
yield to maturity 391, 643-644 

Z  

zero bond 642 
zero coupon bond (ZCB) 291-292, 

294, 297, 299, 311-312, 366, 370, 
394, 556, 74, 748, 761 

zero coupon value 680 
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