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Preface to the Second Edition

Since the appearance of the first edition over a decade ago, several new
wavelets and wavelet-like functions have been introduced alongwith many
interesting applications. These developments have motivated us to substan-
tially revise the book and bring out this second edition. The basic structure of
the book remains the same. Apart from making a few minor additions and
corrections, the first seven chapters are carried over from the earlier edition.
In these chapters, wavelet theory and algorithms are gradually and systemati-
cally developed from basic linear algebra, Fourier analysis, and time-frequency
analysis. Chapter 8 is renamed as “Special Topics in Wavelets and Algorithms”
where four new sections on ridgelets, curvelets, complex wavelets, and lifting
wavelet transform are introduced. Various edge detection techniques are
summarized in a new section in Chapter 9. Another interesting addition
in Chapter 9 is a comprehensive review of applications of wavelets to geo-
physical problems, in particular to oilfield industry. In Chapter 10, section on
differential equations has been expanded by including multiresolution time
domain method.

Some of the new material in the second edition are derived from our col-
laboration with students and colleagues at Texas A&M university, College
Station; Indian Institute of Technology, Kharagpur; Georgia Institute of
Technology, Atlanta; and Schlumberger. To them and to many readers who
drew our attention to errors and misprints, we wish to express our gratitude.
We also thank George Telecki, Kristen Parrish, and Lucy Hitz of John Wiley
& Sons for their assistance during the preparation of the second edition.

July 2010 Japeva C. Goswami AND ANDREW K. CHAN

XV



Preface to the First Edition

This textbook on wavelets evolves from teaching undergraduate and post-
graduate courses in the Department of Electrical Engineering at Texas A&M
University and teaching several short courses at Texas A&M University as
well as in conferences such as the Progress in Electromagnetic Research
Symposium (PIERS), the IEEE Antenna and Propagation (IEEE-AP)
Symposium, the IEEE Microwave Theory and Technique (IEEE-MTT)
Conference, and the Association for Computational Electromagnetic Society
(ACES). The participants at the short courses came from industries as well as
universities and had backgrounds mainly in electrical engineering, physics, and
mathematics with little or no prior understanding of wavelets. In preparing
material for the lectures, we referred to many books on this subject; some
catering to the need of mathematicians and physicists, while others were
written for engineers with a signal-processing background. We felt the need
for a textbook that would combine the theory, algorithm, and applications of
wavelets and present them in such a way that readers can easily learn the
subject and be able to apply them to practical problems. That being the moti-
vation, we have tried to keep a balance between the mathematical rigor and
practical applications of wavelet theory. Many mathematical concepts are
elucidated through the figures.

The book is organized as follows. Chapter 1 gives an overview of the book.
The rest of the book is divided into four parts. In Chapters 2 and 3 we review
some basic concepts of linear algebra, Fourier analysis, and discrete signal
analysis. Chapters 4-6 are devoted to discussing theoretical aspects of time-
frequency analysis, multiresolution analysis, and the construction of various
types of wavelets; Chapters 7 and 8 give several algorithms for computing
wavelet transform and implement them through a filter bank approach. Part
of Chapter 8 and Chapters 9 and 10 present many interesting application of
wavelets to signal-processing and boundary value problems.

In preparing this book we have benefited from a number of individuals. We
learned a lot on wavelets from our association with Professor Charles Chui.
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CHAPTER ONE
|

What Is This Book All About?

The concept of wavelet analysis has been in place in one form or the other
since the beginning of this century. The Littlewood-Paley technique and
Calderén-Zygmund theory in harmonic analysis and digital filter bank theory
in signal processing can be considered forerunners to wavelet analysis.
However, in its present form, wavelet theory drew attention in the 1980s
with the work of several researchers from various disciplines—Stromberg,
Morlet, Grossmann, Meyer, Battle, Lemarié, Coifman, Daubechies, Mallat,
and Chui, to name a few. Many other researchers have also made significant
contributions.

In applications to discrete data sets, wavelets may be considered basis func-
tions generated by dilations and translations of a single function. Analogous
to Fourier analysis, there are wavelet series (WS) and integral wavelet trans-
forms (IWT). In wavelet analysis, WS and IWT are intimately related. The
IWT of a finite-energy function on the real line evaluated at certain points in
the time-scale domain gives the coefficients for its wavelet series representa-
tion. No such relation exists between the Fourier series and Fourier transform,
which are applied to different classes of functions; the former is applied to
finite energy periodic functions, whereas the latter is applied to functions that
have finite energy over the real line. Furthermore, Fourier analysis is global
in the sense that each frequency (time) component of the function is influ-
enced by all the time (frequency) components of the function. On the other
hand, wavelet analysis is a local analysis. This local nature of wavelet analysis
makes it suitable for time-frequency analysis of signals.

Wavelet techniques enable us to divide a complicated function into several
simpler ones and study them separately. This property, along with fast wavelet
algorithms which are comparable in efficiency to fast Fourier transform

Fundamentals of Wavelets: Theory, Algorithms, and Applications, Second Edition,
By Jaideva C. Goswami and Andrew K. Chan
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algorithms, makes these techniques very attractive for analysis and synthesis.
Different types of wavelets have been used as tools to solve problems in signal
analysis, image analysis, medical diagnostics, boundary-value problems, geo-
physical signal processing, statistical analysis, pattern recognition, and many
others. While wavelets have gained popularity in these areas, new applications
are continually being investigated.

A reason for the popularity of wavelets is their effectiveness in representa-
tion of nonstationary (transient) signals. Since most of the natural and
manmade signals are transient in nature, different wavelets have been used to
represent a much larger class of signals than the Fourier representation of
stationary signals. Unlike Fourier-based analyses that use global (nonlocal)
sine and cosine functions as bases, wavelet analysis uses bases that are local-
ized in time and frequency to more effectively represent nonstationary signals.
As a result, a wavelet representation is much more compact and easier for
implementation. Using the powerful multiresolution analysis, one can repre-
sent a signal by a finite sum of components at different resolutions so that
each component can be adaptively processed based on the objectives of the
application. This capability of representing signals compactly and in several
levels of resolutions is the major strength of the wavelet analysis. In the case
of solving partial differential equations by numerical methods, the unknown
solution can be represented by wavelets of different resolutions, resulting in
a multigrid representation. The dense matrix resulting from an integral opera-
tor can be sparsified using wavelet-based thresholding techniques to attain an
arbitrary degree of solution accuracy.

There have been many research monographs on wavelet analysis as well as
textbooks for certain specific application areas. However, there does not seem
to be a textbook that provides a systematic introduction to the subject of
wavelets and its wide areas of applications. This is the motivating factor for
this introductory text. Our aims are (1) to present this mathematically elegant
analysis in a formal yet readable fashion, (2) to introduce to readers many
possible areas of applications both in signal processing and in boundary value
problems, and (3) to provide several algorithms and computer codes for basic
hands-on practices. The level of writing will be suitable for college seniors and
first-year graduate students. However, sufficient details will be given so that
practicing engineers without background in signal analysis will find it useful.

The book is organized in a logical fashion to develop the concept of wave-
lets. The contents are divided into four major parts. Rather than vigorously
proving theorems and developing algorithms, the subject matter is developed
systematically from the very basics in signal representation using basis func-
tions. The wavelet analysis is explained via a parallel with the Fourier analysis
and short-time Fourier transform. The multiresolution analysis is developed
for demonstrating the decomposition and reconstruction algorithms. The
filter-bank theory is incorporated so that readers may draw a parallel between
the filter-bank algorithm and the wavelet algorithm. Specific applications
in signal processing, image processing, electromagnetic wave scattering,
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boundary-value problems, geophysical data analysis, wavelet imaging system
and interference suppression are included in this book. A detailed chapter by
chapter outline of the book follows.

Chapters 2 and 3 are devoted to reviewing some of basic mathematical
concepts and techniques and to setting the tone for the time-frequency and
time-scale analysis. To have a better understanding of wavelet theory, it is
necessary to review the basics of linear functional space. Concepts in Euclidean
vectors are extended to spaces in higher dimension. Vector projection, basis
functions, local and Riesz bases, orthogonality, and biorthogonality are dis-
cussed in Chapter 2. In addition, least-square approximation of functions and
mathematical tools like matrix algebra and z-transform are also discussed.
Chapter 3 provides a brief review of Fourier analysis to set the foundation for
the development of continuous wavelet transform and discrete wavelet series.
The main objective of this chapter is not to redevelop the Fourier theory but
to remind readers of some of the important issues and relations in Fourier
analysis that are relevant to later development. The main properties of Fourier
series and Fourier transform are discussed. Lesser known theorems, including
Poisson’s sum formulas, partition of unity, sampling theorem, and Dirichlet
kernel for partial sum are developed in this chapter. Discrete-time Fourier
transform and discrete Fourier transform are also mentioned briefly for the
purpose of comparing them with the continuous and discrete wavelet trans-
forms. Some advantages and drawbacks of Fourier analysis in terms of signal
representation are presented.

Development of time-frequency and time-scale analysis forms the core of
the second major section of this book. Chapter 4 is devoted to the discussion
of short-time Fourier transform (time-frequency analysis) and the continuous
wavelet transform (time-scale analysis). The similarities and the differences
between these two transforms are pointed out. In addition, window widths as
measures of localization of a time function and its spectrum are introduced.
This chapter also contains the major properties of the transform such as
perfect reconstruction and uniqueness of inverse. Discussions on the Gabor
transform and the Wigner-Ville distribution complete this chapter on time-
frequency analysis. Chapter 5 contains an introduction to and discussion of
multiresolution analysis. The relationships between the nested approximation
spaces and the wavelet spaces are developed via the derivation of the two-
scale relations and the decomposition relations. Orthogonality and biorthogo-
nality between spaces and between basis functions and their integer translates
are also discussed. This chapter also contains a discussion on the semiorthogo-
nal B-spline function as well as mapping techniques of function onto the
multiresolution spaces. In Chapter 6, methods and requirements for wavelet
construction are developed in detail. Orthogonal, semiorthogonal and bior-
thogonal wavelets are constructed via examples to elucidate the procedure.
Biorthogonal wavelet subspaces and their orthogonal properties are also dis-
cussed in this chapter. A derivation of formulas used in methods to compute
and display the wavelet is presented at the end of this chapter.
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The algorithm development for wavelet analysis is contained in Chapters
7 and 8. Chapter 7 provides the construction and implementation of the
decomposition and reconstruction algorithms. The basic building blocks for
these algorithms are discussed in the beginning of the chapter. Formulas for
decimation, interpolation, discrete convolution and their interconnections are
derived. Although these algorithms are general for various types of wavelets,
special attention is given to the compactly supported semiorthogonal B-spline
wavelets. Mapping formulas between the spline spaces and the dual spline
spaces are derived. The algorithms of perfect reconstruction filter banks in
digital signal processing are developed via z-transform in this chapter. The
time-domain and polyphase-domain equivalent of the algorithms are dis-
cussed. Examples of biorthogonal wavelet construction are given at the end
of the chapter. In Chapter &, limitations of the discrete wavelet algorithms,
including time-variant property of DWT and sparsity of the data distribution
are pointed out. To circumvent the difficulties, the fast integral wavelet trans-
form (FIWT) algorithm is developed for the semiorthogonal spline wavelet.
Starting with an increase in time resolution and ending with an increase in
scale resolution, a step-by-step development of the algorithm is presented in
this chapter. A number of applications using FIWT are included to illustrate
its importance. Special topics in wavelets, such as ridgelet, curvelets, complex
wavelets, and lifting algorithms, are briefly described.

The final section of this book is on application of wavelets to engineering
problems. Chapter 9 includes the applications to signal and image processing,
and in Chapter 10, we discuss the use of wavelets in solving boundary value
problem. In Chapter 9, the concept of wavelet packet is discussed first as an
extension of the wavelet analysis to improve the spectral domain performance
of the wavelet. Wavelet packet representation of the signal is seen as a refine-
ment of the wavelet in a spectral domain by further subdividing the wavelet
spectrum into subspectra. This is seen to be useful in the subsequent discussion
on radar interference suppression. Three types of amplitude thresholding are
discussed in this chapter and are used in subsequent applications to show
image compression. Signature recognition on faulty bearing completes the
one-dimensional wavelet signal processing. The wavelet algorithms in Chapter
7 are extended to two-dimensions for the processing of images. Several edge
detection algorithms are described. Major wavelet image-processing applica-
tions included in this chapter are image compression and target detection and
recognition. Details of the tree-type image coding are not included because of
limited space. However, the detection, recognition, and clustering of microcal-
cifications in mammograsm are given in moderate detail. The application of
wavelet packets to multicarrier communication systems and the application of
wavelet analysis to three-dimensional medical image visualization are also
included. Applications of wavelets in geophysical problems are presented.

Chapter 10 concerns with wavelets in boundary value problem. The tradi-
tional method of moment (MOM) and the wavelet-based method of moment
are developed in parallel. Different techniques of using wavelet in MoM are
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discussed. In particular, wavelets on a bounded interval as applied to solving
integral equations arising from electromagnetic scattering problems are
presented in some detail. These boundary wavelets are also suitable to avoid
edge effects in image processing. An application of wavelets in the spectral
domain is illustrated by applying them to solving a transmission line disconti-
nuity problem. Finally, the multiresolution time domain method is described
along with its applications to electromagnetic problems.

Most of the material is derived from lecture notes prepared for undergradu-
ate and graduate courses in the Department of Electrical Engineering at Texas
A&M University as well as for short courses taught in several conferences.
The material in this book can be covered in one semester. Topics can also be
selectively amplified to complement other signal-processing courses in any
existing curriculum. Some homework problems are included in some chapters
for the purpose of practice. A number of figures have been included to expound
the mathematical concepts. Suggestions on computer code generation are also
included at the end of some chapters.



CHAPTER TWO

Mathematical Preliminary

The purpose of this chapter is to familiarize the reader with some of the math-
ematical notations and tools that are useful in an understanding of wavelet
theory. Since wavelets are continuous functions that satisfy certain admissibil-
ity conditions, it is prudent to discuss in this chapter some definitions and
properties of functional spaces. For a more detailed discussion of functional
spaces, the reader is referred to standard texts on real analysis. The wavelet
algorithms discussed in later chapters involve digital processing of coefficient
sequences. A fundamental understanding of topics in digital signal processing,
such as sampling, the z-transform, linear shift-invariant systems, and discrete
convolution, are necessary for a good grasp of wavelet theory. In addition, a
brief discussion of linear algebra and matrix manipulations is included that is
very useful in discrete-time domain analysis of filter banks. Readers already
familiar with its contents may skip this chapter.

2.1 LINEAR SPACES

In the broadest sense, a functional space is simply a collection of functions
that satisfies a certain mathematical structural pattern. For example, the
finite energy space L?(—es, =) is a collection of functions that are square inte-
grable; that is,

.EJ F ()Pl < . 2.1

Some of the requirements and operational rules on linear spaces are stated as
follows:
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. The space S must not be empty.
.IfxeSandyeS,thenx+y=y+x.

.IfzeS then (x+y)+z=x+(y+2).

. There exists in S a unique element 0, such that x + 0 = x.

DN B W N =

. There exists in § another unique element —x such that x + (—x) = 0.

Besides these simple yet important rules, we also define scalar multiplica-
tion y = cx such that if x € S, then y € S, for every scalar c. We have the fol-
lowing additional rules for the space S:

1. c(x+y)=cx+cy.

2. (¢ + d)x = cx + dx with scalar ¢ and d.
3. (cd)x = c(dx).

4. 1-x=x.

Spaces that satisfy these additional rules are called linear spaces. However, up
to now, we have not defined a measure to gauge the size of an element in a
linear space. If we assign a number llxll, called the norm of x, to each function
in S, this space becomes a normed linear space (i.e., a space with a measure
associated with it). The norm of a space must also satisfy certain mathematical
properties:

1. lIxll>0and llxll =0 & x=0.
2. b + yll < Hlxll + Hyll.
3. llaxIl = lal llxIl where a is scalar.

The norm of a function is simply a measure of the distance of the function
to the origin (i.e., 0). In other words, we can use the norm

e =yl 22)

to measure the difference (or distance) between two functions x and y.

There are a variety of norms one may choose as a measure for a par-
ticular linear space. For example, the finite energy space L2(—co, o) uses the
norm

1

b= [ rfas [ <o 23

—oco

which we shall call the Z2-norm. This norm has also been used to measure the
overall difference (or error) between two finite energy functions. This measure
is called the root mean square error (RMSE) defined by
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1
T/ 2

B
RMSE =| lim — £,(x)Pdx 2.4
{T*w m )= fa(x)| } (24)

where f,(x) is an approximating function to f{x). The expression in (2.4) is the
approximation error in the L? sense.

2.2 VECTORS AND VECTOR SPACES

Based on the basic concepts of functional spaces discussed in the previous
section, we now present some fundamentals of vector spaces. We begin with a
brief review of geometric vector analysis.

A vector V in a three-dimensional Euclidean vector space is defined by
three complex numbers {vq, vo, v3} assoc1ated with three orthogonal unit
vectors {ai, a;, as}. The ordered set {v]} _, represents the scalar components

of the vector V where the unit vector set {a]} spans the three-dimensional

Euclidean vector space. Any Vector U in this space can be decomposed into
three vector components {u; a]} (Figure 2.1d).

FIGURE 2.1: Orthogonal decomposition of a vector in Euclidean space.
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The addition and scalar multiplication of vectors in this space are
defined by:

1. U+ V={us + vy, us+ vo, uz + v3}.
2. kV= {kV], sz, kV3}.

In addition to these operations, vectors in a three-dimensional Euclidean
space also obey the commutative and associative laws:

1. U+ V=V+U.
2. U+ WV)Y+W=U+(V+W).

We may represent a vector by a column matrix
V= V2, (25)

since all of the above mathematical rules apply to column matrices. We define
the length of a vector similar to the definition of the norm of a function by

[V|=vi+v3 +v3. (2.6)

The scalar product (inner product) of two vectors is a very important opera-
tion in vector algebra that we should consider here. It is defined by

U-V =|U||V|cos£U,V

=uv1 +Upvy +U3V3

Vi
=[u] up Ma] V2
V3
t
1258 V1
=| Uy V2 |, (27)
us V3

where the superscript ¢ indicates matrix transposition and := is the symbol for
definition. It is known that the scalar product obeys the commutative law:
U-V=V.UTwovectors U and V are orthogonal to each otherif U - V = 0.
We define the projection of a vector onto another vector by
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Uu.v
W =U- a, (28)
= projection of U in the direction of a,

=a component of U in the direction of a,.

Projection is an important concept that will be used often in later discussions.
If one needs to find the component of a vector in a given direction, simply
project the vector in that direction by taking the scalar product of the vector
with the unit vector of the desired direction.

We may now extend this concept of basis and projection from the three-
dimensional Euclidean space to an N-dimensional vector space. The compo-
nents of a vector in this space form an N X 1 column matrix, while the basis
vectors {a; }j\il form an orthogonal set such that

a;-a 25/(7(; Vk,ﬂGZ (29)

where &, is the Kronecker delta, defined as
1, k=
5l ={ (2.10)

and Z is the set of all integers, {..., -1,0,1, ...}.
One can obtain a specific component v; of a vector V (or the projection of
V in the direction of a;) using the inner product

Vi =V-a,», (211)

and the vector V is expressed as a linear combination of its vector
components

N
V= 2 Ved. (2.12)

k=1

It is well known that a vector can be decomposed into elementary vectors
along the direction of the basis vectors by finding its components one at a time.
Figure 2.1 illustrates this procedure. The vector Vin Figure 2.1a is decomposed
into V, = V - v3a3 and its orthogonal complementary vector vsas. The vector
V), is further decomposed into via; and v,a,. Figure 2.1d represents the recon-
struction of the vector V from its components.

The example shown in Figure 2.1, although elementary, is analogous to the
wavelet decomposition and reconstruction algorithm. There the orthogonal
components are wavelet functions at different resolutions.
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2.3 BASIS FUNCTIONS, ORTHOGONALITY, AND BIORTHOGONALITY

We extend the concept of Euclidean geometric vector space to normed linear
spaces. That is, instead of thinking about a collection of geometric vectors, we
think about a collection of functions. Instead of basis vectors, we have basis
functions to represent arbitrary functions in that space. These basis functions
are basic building blocks for functions in that space. We will use the Fourier
series as an example. The topic of Fourier series will be considered in more
detail in the next chapter.

2.3.1 Example

Let us recall that a periodic function p7(f) can be expanded into a series

oo

pr(t)= 2 cekour (2.13)

k=—c0

where T is the periodicity of the function, my = 27/T = 2xf is the fundamental
frequency, and e/"® is the nth harmonic of the fundamental frequency.
Equation (2.13) is identical to equation (2.12) if we make the equivalence
between pr(z) with V, ¢, with vy, and e’k with ay. Therefore, the function set
{ejk“’"t} er forms the basis set for the Fourier space of discrete frequency. The
coefficient set {cr)kez 1s often referred to as the discrete spectrum. It is well
known that the discrete Fourier basis is an orthogonal basis. Using the inner
product notation for functions

(e.1)= [ _shta, e14)

where the overbar indicates complex conjugation, we express the orthogonal-
ity by

72 y
J. elkwot o=jtwot gp — Ok Vk, (€. (2.15)
TJ-112

We may normalize the basis functions (with respect to unit energy) by dividing
them with +7'. Hence {e’k“"” / JT } i forms the orthonormal basis of the dis-
crete Fourier space.

2.3.2  Orthogonality and Biorthogonality

Orthogonal expansion of a function is an important tool for signal analysis.
The coefficients of expansion represent the magnitudes of the signal com-
ponents. In the previous example, the Fourier coefficients represent the
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amplitudes of the harmonic frequency of the signal. If for some particular
signal-processing objective, we decide to minimize (or make zero) certain
harmonic frequencies (such as 60-Hz noise), we simply design a filter at that
frequency to reject the noise. It is therefore meaningful to decompose a signal
into components for observation before processing the signal.

Orthogonal decomposition of a signal is straightforward and the computa-
tion of the coefficients is simple and efficient. If a function f(f) € L?is expanded
in terms of a certain orthonormal set {¢y(f)}xez € L% we may write

oo

FO= conlo) (2.16)

k=—c0

We compute the coefficients by taking the inner product of the function with
the basis to yield

(fo00)= | FOd@a

:Jt: i ci (1) o (1)t

(=—c0

= Z C€5/,k

(=—o0

= ¢ (2.17)

Computation of an inner product such as the one in (2.17) requires the knowl-
edge of the function f(¢) for all ¢ and is not real-time computable.

We have seen that an orthonormal basis is an efficient and straightforward
way to represent a signal. In some applications, however, the orthonormal
basis function may lack certain desirable signal-processing properties, causing
inconvenience in processing. Biorthogonal representation is a possible
alternative to overcoming the constraint in orthogonality and producing a
good approximation to a given function. Let {¢(f)}xez € L? be a biorthogonal
basis function set. If there exists another basis function set {q~)k (t)}kEZ el?
such that

(000)=[ 005 0di=5,.. (2.18)

the set {(/~);{(t)}k€Z is called the dual basis of {¢x(?)}xez. We may expand a func-
tion g(z) in terms of the biorthogonal basis

oo

g(1)=Y digi 1),
k=0

and obtain the coefficients by
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oo

=| g)du()ar. (2.20)

—oo

On the other hand, we may expand the function g(z) in terms of the dual basis

g(1)= Y ddi(r), (221)
k=0
and obtain the dual coefficients dj by
d; = (g, ¢u) (222)
[ g (1), (1) dt. (2.23)

—o0o

We recall that in an orthogonal basis, all basis functions belong to the same
space. In a biorthogonal basis, however, the dual basis does not have to be in
the original space. If the biorthogonal basis and its dual belong to the same
space, then these bases are called semiorthogonal. Spline functions of an arbi-
trary order belong to the semiorthogonal class. More details about spline
functions will be considered in later chapters.

We use geometric vectors in a two-dimensional vector space to illustrate
the biorthogonality. Let the vectors

1
1 2
bi=| |,b=
1 M S RE
2
form a biorthogonal basis in the 2D Euclidean space. The dual of this
basis is

1 0
b = _i,b2= i
J3 NE)

The bases are graphically displayed in Figure 2.2. We can compute the dual
basis in this 2D Euclidean space simply by solving a set of simultaneous equa-
tions. Let the biorthogonal basis be

and the dual basis be
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b,
b,

b,

AN
N\
AS

\ b
N\

FIGURE 2.2: Biorthogonal basis in a two-dimensional Euclidean space.

EHCEN
u Vv

The set of simultaneous equations that solves for l;l and I;z is

(b1, bi)=1
(b, bn) =0 (2.24)
(b1.By)=0
(by.by)=1.

This process can be generalized into a finite dimensional space where the basis
vectors form an oblique (nonorthogonal) coordinate system. It requires linear
matrix transformations to compute the dual basis. This process will not be
elaborated on here. The interested reader may refer to [1].

2.4 LOCAL BASIS AND RIESZ BASIS

We have considered orthogonal bases of a global nature in previous sections
[¢(f):t € (—oo, o0)]. Observe that sine and cosine basis functions for Fourier
series are defined on the entire real line (—oo, o) and, therefore, are
called global bases. Many bases that exist in a finite interval of the real line
[¢(¢):t € (a, b)] satisfy the orthogonality or biorthogonality requirements.
We call these the local bases. The Haar basis is the simplest example of a
local basis.
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2.4.1 Haar Basis
The Haar basis is described by ¢ x(f) = x0,1)(t — k), k € Z, where

1, 0<r<1;
X0, (1) = { (2.25)

0 otherwise,

is the characteristic function. The Haar basis clearly satisfies the orthogonality
condition

oo

(Or1,5(1), S i (1)) = X0 (t=7) xjo.0)(t=k)dt

—oo

=5;x. (2.26)

To represent a global function f(f), t € (oo, =) with a local basis ¢(¢),
t € (a, b), functions that exist outside of the finite interval must be represented
by integer shifts (delays) of the basis function along the real line. Integer shifts
of global functions can also form bases for linear spaces. The Shannon function
dsu(?) is an example of such a basis.

2.4.2 Shannon Basis

The Shannon function is defined by

sin 7t

Psn (1) = ) (2.27)
Tt
and the basis formed by
sinz(t—k)
ty=———>, kel 2.28
Psr k(1) 2—F) € (2.28)

is an orthonormal basis and is global. The proof of the orthonormality is best
shown in the spectral domain.
Let g(¢) € L? be expanded into a series with basis functions {¢(f)}xez:

g(r)= chtpk (1). (2.29)

k

The basis set {¢x(t)}rez is called a Riesz basis if it satisfies the following
inequality:

Rille s < g OF < Rollw P (2:30

chfpk(f)
k

Rillel?, < < Rollc P (2.31)
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where 0 < Ry £ R; < o are called Riesz bounds. The space 7% is the counter
part of L? for discrete sequences with the norm defined as

1
2
lexll> = [ZlcklzJ <eo. (2.32)
k

An equivalent expression for (2.30) in the spectral domain is

0<Ri <Y [p(o+ 27k) < Ry < oo, (2.33)
k

The derivation of (2.33) is left as an exercise. A hat over a function represents
its Fourier transform, a topic that will be discussed in the next chapter.

If Ry = R, =1, the basis is orthonormal. The Shannon basis is an example
of a Riesz basis that is orthonormal, since the spectrum of the Shannon func-
tion is one in the interval [-7, 7]. Hence

2|¢SH(w+ 2k ) = 1. (2.34)
k

If the basis functions {¢(¢ — k):k € Z} are not orthonormal, then we can
obtain an orthonormal basis set {¢'(¢ — k):k € Z} by the relation

o' (0)= ?(©) (2.35)

{zk|q§((o+ 27rk)|2 }% |

The Riesz basis is also called a stable basis in the sense that if
a1(0)=Y ;1)
J
g ()= z a?e; (1),

]

then a small difference in the functions results in a small difference in the
coefficients and vice versa. In other words, stability implies

2
small g1 (£)— g2 (¢)|* < small "aﬁl) - as-z) "(2. (2.36)
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2.5 DISCRETE LINEAR NORMED SPACE

A discrete linear normed space is a collection of elements that are discrete
sequences of real or complex numbers with a given norm. For a discrete
normed linear space, the operation rules in Section 2.1 are applicable as
well. An element in an N-dimensional linear space is represented by a
sequence

x(n)={x(0), x(1),...,x(N-1)}, (2.37)
and we represent a sum of two elements as
w(n)=x(n)+y(n)={x(0)+y(0), x(1)+y(1),...,x(N-1)+y(N-1}. (2.38)

The inner product and the norm in discrete linear space are separately
defined as

(x(n), y(m)) = Y x(n)¥(n) (239)

n

= (x.x)2 = [ e (2.40)

Orthogonality and biorthogonality as previously defined apply to discrete
bases as well. The biorthogonal discrete basis satisfies the condition

(0:n), G () =D 0:(m)9;(n) = & (241)

For an orthonormal basis, the spaces are self-dual; that is,
0 = 9. (2.42)

2.5.1 Example 1

The discrete Haar basis, defined as

1
— forn=0,1
Hy(n)=<+2 (2.43)

0 otherwise,

is an orthonormal basis formed by the even translates of Hy(n). The Haar basis,
however, is not complete. That is, there exists certain sequence that cannot be
represented by an expansion from this basis. It requires a complementary
space to make it complete. The complementary space of Haar is
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% forn=0
Hy(n)= _T; forn=1 (2.44)

0  otherwise.
The odd translates of Hi(n) forms the complementary space so that any real

sequence can be represented by the Haar basis.

2.5.2 Example 2

The sequence

1+4/3 3+43 3-3 1—\/5} (245)

DZ(n):{ NN PN NG

is a finite sequence with four members whose integer translates form an ortho-
normal basis. The proof of orthonormality is left as an exercise.

2.6 APPROXIMATION BY ORTHOGONAL PROJECTION

Assuming a vector u(n) is not a member of the linear vector space V spanned
by {¢x}, we wish to find an approximation u, € V. We use the orthogonal
projection of u onto the space V as the approximation. The projection is
defined by

u, = Z(u, &) Ok (2.46)

k

We remark here that the approximation error u — u, is orthogonal to the
space V-

<u—up, ¢k>:0Vk.

Furthermore, mean square error (MSE) of such approximation is minimum.
To prove the minimality of MSE for any orthogonal projection, consider a
function g € L*[a, b], which is approximated by using a set of orthonormal
basis functions {@:k =0, - -, N — 1} such that

N-1
g(1)=ge(r)= Y ¢9;(1), with (2.47)
j=0
¢j=(g9;) (2.48)

The pointwise error () in the approximation of the function g(¢) is
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N-1
ec(t)= g(1)- ge(1) = g(1)= D ;95 (0). (249)

j=0

We wish to show that when the coefficient sequence {c;} is obtained by orthog-
onal projection given by (2.48), the MSE lle(¢)II? is minimum. To show this, let

us assume that there is another sequence {d;:j =0, - - -, N — 1} that is obtained
in a way other than orthogonal projection and also minimizes the error. Then
we will show that ¢;=d;;j=0,---, N -1, thus completing our proof.
With the sequence {d;}, we have
N-1
g(0)=ga(t)=Y d;g;(0), (2.50)
=0
and
N-1 2 N-1 N-1
leaOIF =|lg()= Y digy)| =)=, dio; (1), g()= Y djo;(1)
j=0 j=0 Jj=0
N-1 N-1 N-1
- 2
(g.8)= D di{9(1), &)= D di{g. 8;(0)+ Y. |dj]
j=0 j=0 J=0
N-1 N-1 N-1
— - 2
=(g.8)= D dici= D dic;+ ) ldj|" (2.51)
=0 =0 =0

To complete the square of the last three terms in (2.51), we add and
N-1],. |2 .
subtract X' [¢j|” to yield

2 2

N-1 N-1 N-1
2
leaOF =g()=> digy(0)| =[g)= D cigi®) + Y ldj-¢f’  (@52)
j=0 j= j=0
N-1
2
= e (0) + Z |d; —c;il". (2.53)
j=0
It is clear that to have minimum MSE, we must have d;=¢;;j=0,--- ,N -1,

and hence the proof.

2.7 MATRIX ALGEBRA AND LINEAR TRANSFORMATION

We have already used column matrices to represent vectors in finite dimen-
sional Euclidean spaces. Matrices are operators in these spaces. We give a
brief review of matrix algebra in this section and discuss several types of
special matrices that will be useful in the understanding of time-domain analy-
sis of wavelets and filter banks. For details readers may refer to [2].
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2.7.1 Elements of Matrix Algebra

1. Definition: A matrix A =[A;] is a rectangular array of elements. The
elements may be real numbers, complex numbers, or polynomials. The
first integer index i is the row indicator, and the second integer index j is
the column indicator. A matrix is infinite if i, j — . An m X n matrix is
displayed as

A A A
A A
A= 07 (2.54)

Az
: Amn

If m =n, A is a square matrix. An N x 1 column matrix (only one column)
represents an N-dimensional vector.

2. Transposition: The transpose of A is A’ whose element is Aj. If the dimen-
sion of A is m x n, the dimension of A’ is n X m. The transposition of a
column (N x 1) matrix is a row (1 x N) matrix.

3. Matrix sum and difference: Two matrices may be summed together if they
have the same dimensions.

C=AiB=>C,]=A,]iBI]

4. Matrix product: Multiplication of two matrices is meaningful only if their
dimensions are compatible. Compatibility means the number of columns
in the first matrix must be the same as the number of rows in the second
matrix. If the dimensions of A and B are m X p and p x q respectively, the
dimension of C = AB is m x q. The element Cj; is given by

p
Cij = ZAZ‘(BQ’.
(=1

The matrix product is not commutative since p X g is not compatible with
m X p. In general, AB # BA.

5. Identity matrix: Anidentity matrix is a square matrix whose major diagonal
elements are ones and the off-diagonal elements are zeros.

S O = O O O
o = O O O O
— o O O O O

S O O O o
S O O O = O
S O O = O O
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6. Matrix minor: A minor §;; of matrix A is a submatrix of A created by delet-
ing the ith row and jth column of A.The dimension of Sj;is (m — 1) x (n — 1)
if the dimension of A is m x n.

7. Determinant: The determinant of a square matrix A is a value computed
successively using the definition of minor. We compute the determinant of
a square (m x m) matrix by

det(A)= 2 (=1)"* A; det(S;).
=1

1

The index j can be any integer between [1, m].

8. Inverse matrix: A~ is the inverse of a square matrix A such that
A7'A =T=AA"'. We compute the inverse by

L1

Ay = det(A)(_l)]H det(S}; ).

If det(A) = 0, the matrix is singular, and A~! does not exist.

2.7.2 Eigenmatrix

A linear transformation is a mapping such that when a vector x € V' (a vector
space) is transformed, the result of the transformation is another vector
y = Ax € V.The vector y, in general, is a scaled, rotated, and translated version
of x. In particular, if the output vector y is only a scalar multiple of the input
vector, we call this scalar the eigenvalue and the system an eigensystem.
Mathematically, we write

y=Ax=pux (2.55)

where A is an N X N matrix, x is an N X 1 vector and u is a scalar eigenvalue.
We determine the eigenvalues from the solution of the characteristic
equation

det(A—ul)=0. (2.56)

If x is an N x 1 column matrix, there are N eigenvalues in this system. These
eigenvalues may or may not be all distinct. Associated with each eigenvalue,
there is an eigenvector. The interpretations of the eigenvectors and eigenval-
ues depend on the nature of the problem at hand. For each eigenvalue u;, we
substitute it into (2.56) to solve for the eigenvector x;. We use the following
example to illustrate this procedure. Let
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3 -1 0
A=|-1 2 -1
0 -1 3

be the transformation matrix. The characteristic equation from (2.56) is

3-u -1 0
det(A—pul)=det| -1 2-u -1
0 -1 3-u

=B-w[2-w)(B-u)-1]-(3-u)
=@-m(u-1)(u-4)=0

and the eigenvalues are p =4, 1, and 3. We substitute u = 4 into (2.55)

3 -1 0 X1 X1
1 2 “1|x|=4x
0 -1 3 X3 X3

and obtain the following set of linear equations

—x1—x+0=0
—X1 —2X2—X3 =0
0-x, —x3=0. (2.57)

This is a linearly dependent set of algebraic equations. We assume x; = o and
obtain the eigenvector e; corresponding to u =4 as

1
o|-1{;a=0. (2.58)
1

The reader can compute the other two eigenvectors as an exercise.

2.7.3 Linear Transformation

Using the example on the eigensystem in the previous section, we have

3 -1 0
A=|-1 2 -1
0 -1 3

u;=1,3,4forj=1,2,3,
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and the eigenvectors corresponding to the eigenvalues are

1 1 1
e = 2 ,€) = 0 ,e3 = -11. (259)
1 -1 1

From the definitions of eigenvalue and eigenfunction, we have
Ae; = pjej, for j=1,2,3. (2.60)
We may rearrange this equation as
Aler ey e3]=[ue; e uzes]. (2.61)

To be more concise, we put equation (2.61) into a compact matrix form,

w0 0
AE=E|0 w 0
0 0 wu

= Eu (2.62)

where u is a diagonal matrix and E is the eigen matrix. If the matrix E is
nonsingular, we diagonalize the matrix A by premultiplying (2.62) by E~%:

E'AE=p. (2.63)

Therefore, we have used the eigenmatrix E in a linear transformation to
diagonalize the matrix A.

2.7.4 Change of Basis

One may view the matrix A in the previous example as a matrix that defines
a linear system

1 X1
y=|m|=Ax=A|x; | (2.64)
Y3 X3

The matrix A is a transformation that maps x € R to y € R®. The components
of y are related to that of x via the linear transformation defined by (2.64).
Since ey, e, and e3 are linearly independent vectors, they may be used as a
basis for R>. Therefore, we may expand the vector x on this basis
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X = Xxie| + x5e, + x3e;
=Ex’, (2.65)

and the coefficient vector x’” is computed by
x'=Ex. (2.66)
The new coordinates for the vector y with respect to this new basis become

Y =Ey
=E'Ax
=E'AEx’
=ux’. (2.67)

Equation (2.67) states that we have modified the linear system y = Ax by a
change of basis to another system y” = px” in which the matrix | is a diagonal
matrix. We call this linear transformation via the eigenmatrix the similarity
transformation.

2.7.5 Hermitian Matrix, Unitary Matrix, and Orthogonal Transformation

Given a complex-valued matrix H, we can obtain its Hermitian, H", by taking
the conjugate of the transpose of H, namely

H" =H" (2.68)
The two identities
(H")' =H
(GH)" = H"G"

obviously follow from the definition.

Let the basis vectors of an N-dimensional vector space be b;,i=1,---, N,
where b; is itself a vector of length N. An orthogonal basis means that the inner
product of any two different basis vectors vanishes:

(b;,b;y=[b;][b:]=6,,,Y i, e Z. (2.69)
For complex-valued basis vectors, the inner product is expressed by

(b b;)=[b;]" [b].
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If the norm of b; is one, this basis is called an orthonormal basis. We form
an N x N matrix of transformation P by putting the orthonormal vectors in
a row as

P=[b,b,,...by]. (2.70)
Since
[6;1"[b:]= 6. 2.71)
it follows that
P'P=1, 2.72)
and
P =p. (2.73)

In addition to the column-wise orthonormality, if P also satisfies the row-
wise orthonormality, PP" = I, matrix P is called a unitary (or orthonormal)
matrix.

2.8 DIGITAL SIGNALS

In this section we provide some basic notations and operations pertinent to
the signal processing techniques. Details may be found in [3].

2.8.1 Sampling of Signal
Let x(¢) be an energy-limited continuous-time (analog) signal. If we measure
the signal amplitude and record the result at a regular interval A, we have a
discrete-time signal

x(n)=x(t,),n=0,1,..., N—1, (2.74)
where

t, = nh.

For simplicity in writing and convenience of computation, we use x(n) with

the sampling period /& understood. These discretized sample values constitute
a signal, called a digital signal.
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To have a good approximation to a continuous band-limited function x(¢)
from its samples {x(n)}, the sampling interval 4 must be chosen such that

h<Z
Q

where 2Q is the bandwidth of the function x(z), i.e., X(@0)=0 for all lwl > Q.
The choice of 4 is the Nyquist sampling rate, and the Shannon recovery
formula

0=y x(nh)SREE= 1) (2.75)

~ n(t—nh)

enables us to recover the original analog function x(¢). The proof of this
theorem is most easily carried out using the Fourier transform and the Poisson
sum of Fourier series. We shall differ this proof until Chapter 3.

2.8.2 Linear Shift-Invariant Systems

Let us consider a system characterized by its impulse response h(n). We
say the system is linearly shift invariant if the input x(n) and the output y(n)
satisfy the following system relations:

Shift invariance:

=
£(n) = y(n) 076)
x(n-n")= y(n-n’).
Linearity:
{xl (n) = y1(n) and x;(n) = y,(n), @.77)
x1(n)+mxy(n) = y1(n)+my(n). '

In general, a linear shift-invariant system is characterized by

xiy(n=n")+mxy(n—-n")= y1(n—n")+my(n—n’). (2.78)

2.8.3 Convolution

Discrete convolution, also known as moving averages, defines the input—output
relationship of a linear shift-invariant system. The mathematical definition of
a linear convolution is
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y(n)=h(n)*x(n)
=Zh(k—n)x(k)
k

=) x(k=n)h(k). (2.79)

k

We may express the convolution sum in matrix notation as

-l | - . . : . . x(-1)

¥(

y(0) - h(1) h(0) A(-1) h(=2) - ~ x(0)

y(1) |=]- h(2) k(1) h(0) h(-1) h(-2) - = x(1) |. (2.80)
¥(

2| h(2) k(1) h(0) h(-1) h(=2)| |x(2)

As an example, if h(n)={1/4,1/4,1/4,1/4} and x(n) ={1,0, 1,0, 1, 0, 1} are
causal sequences, the matrix equation for the input-output relations is

EN

PR TIN

ENY [ N (S N [

Bl= Bl A= A=
ENY [ N (S N T Y [

Bl= Bl A= A=

(2.81)

N [ N [ N .
[N [N (S N (S N [
EN [ N [ N N I

[N [ N (S N [ N [

O O Rl= A== = = = = = A=
|

EN [ N [ N N I
=
—~
~
Il

The output signal is seen to be much smoother than the input signal. In fact,
the output is very close to the average value of the input. We call this type of
filter a smoothing or averaging filter. In signal-processing terms, it is called a
lowpass filter.

On the other hand, if the impulse response of the filter is i (n)={1/4,-1/4,
1/4,-1/4}, we have a differentiating filter or high-pass filter. With the input
signal x(n) as before, the output signal is
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% %_%% _% 0O 0 e ° [x(-2)=0]
_% 0% _%% _% 0 0 e o x(-1)=0
% 0 0 % _%% _% 0 O ° ° x(0)=1
e A I U
Sllee o0 0 0 | e
L= ¢ ¢ 0 0 4 -4+ 1+ 40 0 x(3)=0
% ° ° 0 0 % —%% —% 0 x(4):1
_% ° ° 0 O % —%% —% x(5)=0
% ° ° 0 0 % —%% x(6):1
0 ° ° 0 0 % —% x(7)=0
10 ] | ° ° 0 O %_ | x(8)=0 |
(2.82)

The oscillation in the input signal is allowed to pass through the filter, while
the average value (DC component) is rejected by this filter. This is evident
from the near-zero average of the output while the average of the input is 1/2.

2.8.4 z-Transform

The z-transform is a very useful tool for discrete signal analysis. We will use
it often in the derivations of wavelet and filter bank algorithms. It is defined
by the infinite sum

H(z)= zh(k)z‘k

keZ
= h(-DZ'+h0)+h(D)z +h(2)z72 +... (2.83)

The variable z! represents a delay of one unit of sampling interval; z~ means
a delay of M units. If one replaces z by €, the z-transform becomes the
discrete-time Fourier transform, which will be discussed in more detail in the
next chapter:

H(z),_yo = H(e®)= Y h(k)e . (2.84)
keZ

We will use these notations interchangeably in future discussions. One impor-

tant property of the z-transform is that the z-transform of a linear discrete
convolution becomes a product in the z-transform domain

y(n)=h(n)#x(n)=Y(z)= H(z) X (2). (2.85)
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2.8.5 Region of Convergence

The variable z in the z-transform is complex valued. The z-transform,
X(z) =Xt x(n)z™", may not converge for some values of z. The region of
convergence (ROC) of a z-transform indicates the region in the complex plane
in which all values of z make the z-transform converge. Two sequences may
have the same z-transform but with different regions of convergence.

Example: Find the z-transform of x(n) = a" cos(ayn)u(n), where u(n) is the
unit step function, defined by

1 n=20
u(n)= .
{O otherwise.

Solution: From the definition of z-transform, we have

oo

X(z)= Za” cos(won)z™"

n=0

n=0 2

S Fformey |
n=0 n=0

e
2[1-ae/®z  1-qge /™07t

1-acos(wy)z~

= ,ROC: |z|>|q.
" 1-2acos(wy)z ! +a?z 2 1 >1d

The case where a = 0.9 and @y = 107 is shown in Figure 2.3.

Special Cases:
1. If a =1 and wg =0, we have

1-z71
1-2z771+77

%,ROC: |z] > 1.

U(z)=

2. If a=1, we have

1—cos(wg)z™!
1-2cos(mw)z ' +2772

X(z)= ,ROC: |7]>1.



30 MATHEMATICAL PRELIMINARY

1.2}

11
x(n)
0.8+
0.6

0.4}

T 1T

T

04}
5 0 5 10 15 20
Im(z)
ROC ROC
|al
Re(z)
ROC ROC

FIGURE 2.3: The sequence and the ROC (a = 0.9).

3. If wy=0, we have

B 1-az’!
1-2az'+a%z2
1
1—-az!

X(z)

ROC: |z|>|al.
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2.8.6 Inverse z-Transform

The formula for recovering the original sequence from its z-transform involves
complex integration of the form

x(n) = %jg)cX(z)z"_ldz (2.86)

where the contour is taken within the ROC of the transform in the counter-
clockwise direction. For the purpose of this text, we shall not use (2.86) to
recover the sequence. Since the signals and filters that are of interest in this
book are rational functions of z, it is more convenient to use partial fractions
or long division to recover the sequence.

Example: Determine the sequence x(n) corresponding to the following
z-transform

z—1 z—-1
X(z)= = ,ROC: |z]>1.2
@) (z-0.7)(z-1.2) z>-1.9z+0.84 4

Solution: Using long division, we have

0.897z72 -0.7308z°

X(2)=2" 409272 +0.87z7 +——
2% ~1.92+0.84

Obviously, x(0) =0, x(1) =1, x(2) = 0.9, x(3) = 0.87, ... . x(n) is a right-sided
infinite sequence since the ROC is outside a circle of radius, r = 1.2.
If ROC:Izl < 0.7, x(n) is a left-sided sequence. We obtain

4z 1 1( 1.9)
Xz)=———""F=-"""+—|1-—|z+
D= s 107 s mll )

using long division. The sequence {x(n)} becomes a sequence of ascending
powers of z and is a left-sided sequence where x(0)=-1/.84=-1.19,
x(-1)=1/84[1-(1.9/.84)]=-1.5,x(-2) = ... .

2.9 EXERCISES
1. Letu = (—4,-5) and v = (12, 20) be two vectors in the 2D space. Find —5u,
3u + 2v,—v,and u + v.For arbitrarya,b € R,show thatlaul + |bvl > lau + bvl.

2. Expand the function f(r) =sint¢ in the polynomial basis set {t",} n=
0,1,2, ... Is this an orthogonal set?
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. The following three vectors form a basis set: e; = (1, 2, 1); e2 = (1, 0, -2);

e3 = (0, 4, 5). Is this an orthonormal basis? If not, form an orthonormal
basis through a linear combination of e, k = 1,2, 3.

. Let e; = (1,0) and e, = (0, 1) be the unit vectors of a 2D Euclidean space.

Let x1 = (2,3) and x; = (-1, 2) be the unit vector of a nonorthogonal basis.
If the coordinates of a point w is (3, 1) with respect to the Euclidean space,
determine the coordinates of the point with respect to the nonorthogonal
coordinate basis.

. Let e; = (0.5,0.5) and e, = (0, —1) be a biorthogonal basis. Determine the

dual of this basis.

b, 1 cn ]| b2

1 2 -2 1
A= ,B=
2 4 1 3
Form (AB)” and BTA’, and verify that these are the same. Also check if
AB is equal to BA.

a1 axp

a a b c c b
.Showthatif[ B 12}{ 1}[ 1 12}{ l}forallbl and b, then A = C.

. Find the eigenvalues and the eigenvectors for matrix A.

310
A=1 2 2
0 2 3

Form the transform matrix P which makes P~'AP a diagonal matrix.

. Find the convolution of x(n) and D,(n) where

x(n)=(1,3,0,2,4) forn=0,1,2,3,4

and D;(n) is given in equation (2.45). Plot x(n) and h(n) = x(n) * Dy(n) as
sequences of 7.

. Find the z-transform of the following sequences and determine the ROC

for each of them:

cos(na), n=0

0, n<0.

n, 1<n<m

(b) x(n)=42m—-n, m+1<n<2m-1

0, otherwise.

@ x(n=
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10. Find the z-transform of the system function for the following discrete
systems:

(a) y(n)=3x(n) —5x(n-1) + x(n - 3)
(b) y(n) =46(n) —116(n — 1) + 58(n — 4), where

6(n)={1’ n=1;

0, otherwise.
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CHAPTER THREE
|

Fourier Analysis

Since the days of Joseph Fourier, his analysis has been used in all branches of
engineering science and some areas of social science. Simply stated, the
Fourier method is the most powerful technique for signal analysis. It trans-
forms the signal from one domain to another domain in which many charac-
teristics of the signal are revealed. One usually refers to this transform domain
as the spectral or frequency domain, while the domain of the original signal
is usually the time domain or spatial domain. The Fourier analysis includes
both the Fourier transform (or Fourier integral) and the Fourier series. The
Fourier transform is applicable to functions that are defined on the real line,
while the Fourier series is used to analyze functions that are periodic. Since
wavelet analysis is similar to Fourier analysis in many aspects, the purpose of
this chapter is to provide the reader with an overview of the Fourier analysis
from the signal analysis point of view without going into the mathematical
details. Most of the mathematical identities and properties are stated without
proof.

3.1 FOURIER SERIES

Fourier series and Fourier transform are often separately treated by mathema-
ticians since they involve two different classes of functions. However, engi-
neers have always been taught that Fourier transform is an extension of
Fourier series by allowing the period T of a periodic function to approach
infinity. We will follow this route by discussing Fourier series first. The Fourier
series representation of a real-valued periodic function p(t), [p(¢t) = p(t + T)],
is given by

Fundamentals of Wavelets: Theory, Algorithms, and Applications, Second Edition,
By Jaideva C. Goswami and Andrew K. Chan
Copyright © 2011 John Wiley & Sons, Inc.

34
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p)="Y axelon (3.1)
k=—co
with
1 (lo+T )
O == p(t)e ke, (3.2)
T )

where oy are the Fourier coefficients and the period T = 27/, with @ being

the fundamental frequency. The set of functions {ek}:{e/k”’“’ }, k € Z forms
a complete orthogonal basis in L? [y, to + T]:

to+T
J‘ exepdt = T5k,[.
Q)

The coefficient o written in the form of an inner product

i = (e, p() (33)

represents the orthogonal component of the function p(¢) in kwo. Hence the
Fourier series is an orthogonal expansion of p(¢) with respect to the basis set
{ex}). The representation in (3.1) is exact. However, if we truncate the series to,
say =N terms (k =—N, --- , N) then there will be some error. As described
in Section 2.6, the Fourier coefficients, being orthogonal projections, minimize
the mean square of such error. A Fourier series may be represented in other
forms. Representation using sine and cosine functions is given by

p()= a70+2(ak cos kot + by sin wyt), (34)

k=1

in which the a; and by are real quantities. Complex representation using only
positive harmonics is written as

p()=co+ Y cicos(wyt +6;) (3.5)
k=1
with
lex|=a; +b;, 6, =tan™ (— b—k) (3.6)
di

where ¢ =|ci|e/% are complex quantities. Computation formulas for a; and
by are
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2 T
@ =?J'0 p(t)coskat dt, 3.7)

2 T
b :-J' £)sin kot d. 38
(=2 p(sinkoy (8)

3.2 EXAMPLES

3.2.1 Rectified Sine Wave

Consider a function p(f) =Isin ¢, as shown in Figure 3.1, with the period
T = wand @y =27/T =2 rad/s. Since the function p(r) is an even function with
respect to =0, i.e., p(-t) = p(t), by =0 for all k. The coefficients {a;} are
computed as

2 T
ag = —j sintcos(2kt)dt
wJo
1 w
_ —jo [sin (1= 2/k) ¢ +sin (1+2k)¢]di
T

”}rl{cos(nzk)r

~ 1{005(1—2k)t

|

n|  1-2k |y| = 1+2k
4 1

=—— ) 3.9
7 4k? -1 (39)

Hence the Fourier series of p(¢) is given as

2 4o 1
p(t)_———choszk[.

Y ”k:l

—T 0 s 2

FIGURE 3.1: Rectified sine wave.
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3.2.2 Comb Function and the Fourier Series Kernel Kx(f)

In this example, we want to find the Fourier series of a periodic impulse train
[i.e., a periodic train of delta function! & (¢)]. We write the impulse train with
period T as

Ir(t) = Z §(t—nT)

N=—oco
- z oo, (3.10)
k=—oc0

The Fourier coefficients are given by

oo

1JT/2 a
O =— S(t—nT)e 7"y, 3.11
=7 —T/znZ; (t=nT) (3.11)

Since the only 7 that is within the range of integration is n = 0, we find
O = l, keZ.
T

Therefore, the Fourier series expansion of an impulse train /7(¢) is written as

oo

Ir(t) == 2 efkont, (3.12)

k=—oco

It is instructive to examine the behavior of a truncated version of (3.12).
Let Kn(?) be the (2N + 1) term finite Fourier sum of /7(¢):

N

Kn(t) =% 2 elkoot, (3.13)

k=N

Kn(¢) is known as the Fourier series kernel. The geometric series sum in (3.13)
is carried out to give

1 sin (N + %) wot
K =g
sin ——

2

'This is not a function in the classical sense. It is called a generalized function or distribution.
However, in this book, we will refer to this as a delta function.
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Kn(t)

JANA JANWANWA JANWANA JANWANWA AW
AV VA AV A A AV AR VAR AVAR VA

FIGURE 3.2: Fourier series kernel Ky(?).

1

=3T =T 0 T 3T
FIGURE 3.3: Comb function.

A graph of Kx(f) for N =4 is given in Figure 3.2. We also compute the kernel
for N =10 and N = 15, but find that the shape of the kernel does not change
except the oscillation frequency is correspondingly increased for higher value
of N.The main lobes (main peaks) of the graph become narrower as the value
of N increases. The oscillation characteristic of Kx(f) contributes to the Gibb’s
phenomenon to be discussed later. These oscillation patterns can be modified
by weighting the amplitudes of the coefficients in (3.12). This is a common
practice in antenna array design [1].

Since Kn(f) is periodic, we only need to consider the behavior of the kernel
within the interval [-77/2,T/2]. It is clear that t/sin(wo?/2) is bounded in the
interval [-7/2,T/2], and sin (N +1/2)wyt/t approaches &(¢) as N tends to infin-
ity [2]. Hence

. T
= < —
Alllil}nKN(t) o(r), 1< 5"

This procedure is applied to all other intervals [(2k+1)7/2], k € Z, and the
result is that

lim Ky (0)=1I7(1)= z 8(t—kT). (3.14)
e keZ

The impulse train of (3.12) is called the comb function in engineering litera-
ture [3] (see Figure 3.3).
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Several important properties of Fourier series such as Poisson’s sum formula,
partial sum, and sampling theorem require the use of Fourier transform for
efficient derivation. We will consider these topics later in this chapter.

3.3 FOURIER TRANSFORM

To extend the Fourier series to Fourier transform, let us consider equations
(3.1) and (3.2).
The time function p(f) in (3.1) can be expressed using (3.2) as

= 1 T2 o }
p= 3 H p(t)e ko dt'}ew
Pt TJ-112
1 — 72 o )
= o U p(t")e koot dt'} elkoot, (3.15)
T =772
k:—oo

We extend the period 7 to infinity so that wy approaches dw and kwy
approaches . The summation in (3.15) becomes an integral

1

P(f)=g

J [ p(t')ef‘""dz’} e do. (3.16)

—oo

The integral inside the bracket is represented by a function p ()

oo

pl@)=| p@)el™ar, (3.17)
and (3.16) becomes
1 = . jt
pt)=—1| p(w)edo. (3.18)
271 Jd o

Equations (3.17) and (3.18) are known as the Fourier transform pair.

From here on, we will use f{(¢) to represent a time-domain function, while
p(?) is restricted to representing periodic time functions. Let’s rewrite (3.17)
in new notation.

The Fourier transform of a finite energy function f(f) € L*(R) of a real vari-
able ¢ is defined by the integral

Fo)=[ foyeioar, (3.19)
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In inner product notation, described in Chapter 2, the Fourier transform can
also be expressed as

F(@)=(f(0),e). (3.20)

We should emphasize the fact that f (w) is a complex-valued function, which
can be expressed in terms of amplitude and phase by

f (@)= (@) e™. (321)

However, the mapping from the domain of f(¢) to that of f () is from R to
R (i.e., from the t-axis to the w-axis), even though the real-valued function
f(¢) is mapped to a complex-valued function f (o).

The interpretation of (3.20) is very important. This equation states that for
an @1, f (@) represents the component of f(¢) at ;. If we can determine all
the components of f(¢) on the w-axis, then a superposition of these components
should give back (reconstruct) the original function f():

1 oo

i f(w)e®do. (3.22)

f(@)

Hence (3.22) can be viewed as a superposition integral that produces f{(¢) from
its components. The integral is referred to as the inverse Fourier transform
of f(w). If the variable ¢ represents time, f (w) is called the spectrum of f(t).
If ¢ represents space, f () is called the spatial spectrum.

The Fourier transform is very important in the development of wavelet
analysis and will be used often in subsequent chapters. We will use it as an
example to present some of the properties of the d-function.

Let us recall that

_ f0)8(t=y)di=Ff(y). (3.23)
Consequently, the Fourier transform of (¢)

S(w)=| 8(r)e®dr=e0 =1. (3.24)

From the inverse transform of S(a)), the identity

5()==— [ eide (325)
27 Jd—oo

is established. The inverse transform in (3.22) can now be shown to be
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zi ],E(w)ejwtda)=2L efwtdw f(t')e‘f“’"dz’
Td—o I N
= ZLJ f(t,)J. ejw(t_tl)dw dar’
7dco e

= :of(z')é(z—t’)dt'= f(@).

Since the Fourier transform is unique, we may write

f(ne f(o).

meaning that for each function f{¢), there is a unique Fourier transform cor-
responding to that function, and vice versa.

3.4 PROPERTIES OF FOURIER TRANSFORM

Since the focus of this chapter is not a detailed exposition of the Fourier
analysis, only the properties that are relevant to wavelet analysis will be
discussed.

3.4.1 Linearity

If f(t) = afi(f) + Bfa(t), for some constants « and S, then the Fourier trans-
form is

f@=] roema=a| fwerap] poema

= afi(0)+Bh(). (3.26)

The extension of (3.26) to the finite sum of functions is trivial.

3.4.2 Time Shifting and Time Scaling

Let the function f(r) be shifted by an amount #. The spectrum is changed by
a phase shift. Indeed, the spectrum of the shifted function fy(¢) := f(t — ) is
expressed by

f()((i)): f([_to)e—ja)tdt: f(u)e—ja)(u+t())du
= e—/'wto]?(w) - |f(a))|ej¢(w)_j“’“’, (327)

where ¢(w) is the phase of the original function f{¢). The magnitude of the
spectrum remains unchanged for a shifted signal. The shifting is incorporated
into the phase term of the spectrum.
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Let a be a nonzero constant; the spectrum of f,(¢) := f(at) is given by

oo

fulw) =  flan)edr (3.28)
—jo| =
(" ()
=| fwe d(;) (3.29)
1 (o

Depending on whether a is greater or smaller than one, the spectrum is
expanded or contracted, respectively. We shall see this important property
occur frequently later in the development of wavelet analysis.

3.4.3 Frequency Shifting and Frequency Scaling

The results for frequency shifting and scaling follow in a similar way. If
fo(w):=f(w-wy), then

folt)=f(e)e’™, (3.31)
and if fa(a)) = f(aw) for a nonzero value of a, then
1 t
fa(t)= I (;) (3.32)

3.4.4 Moments
The nth-order moment of a function is defined as

oo

M, = t"f(t)dt. (3.33)

The first-order moment,

ad

Mi={ e f(odr=(-j) F(0)e ™ d
e doJ— w=0

i df (o

=(-J) ]—];( ) (3.34)
0}

w=0
The extension of this formula to the nth-order moment results in
nend" F(w
M, =y L) (3:35)
@ w=0
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3.4.5 Convolution

The convolution of two functions fi(f) and f,(¢) is defined by
fO=] A AE=y)dy. (3.36)

We write (3.36) symbolically by

f()=fi(t)= fo(2). (3.37)

Notice that if f,(¢) is &(¢), the convolution integral recovers the function fi(z).
It is well known that a linear system represented symbolically by the block
diagram in Figure 3.4 has the input—output relation given by

O@t)=h(t)*i(t), (3.38)

where h(?) is the system response function. Hence if i(¢) is a delta function,
the output function O(¢) is the same as h(f). For an arbitrary input function
f(¢) the convolution integral

oo

o)=| r@it-1)dr (3.39)

—oo

represents a superposition of the output due to a series of input delta functions
whose amplitudes are modulated by the input signal. It is easy to show that
the spectral domain representation of the convolution integral of (3.36) is
given by

3.4.6 Parseval’s Theorem

Parseval’s theorem states that

J_Z' £ di = %J:J f (o) do. (3.40)

h(t)

FIGURE 3.4: Linear System.
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Two functions, f(f) and g(r), are related to their Fourier transform f (w) and
g(w) via the Parseval’s identity for Fourier transform given as

(080N ==(7 (@), 2(). (3.41)
This can be shown from

(S gen=]_ rg@

%r U f(w)efwdwjﬂdt

g(t)e‘f“”dt]d

/_\

27r
=§<ff<w),g(w)>. (3.42)

In particular, with g(¢) = f(t), we get the so-called Parseval’s theorem given in
(3.40). Equation (3.40) is a statement about the energy content in the signal.

It states that the total energy computed in the time domain Uw |f (t)|2dt:| is
equal to the total energy computed in the spectral domain { J. | flo | }

The Parseval theorem allows the energy of the signal to be considered in either
the spectral domain or the time domain and can be interchanged between
domains for convenience of computation.

3.5 EXAMPLES OF FOURIER TRANSFORM

We evaluate the Fourier transforms of several functions that will occur fre-
quently in various applications. For this purpose, we may use the definition
given in Section 3.4 directly or use the properties of Fourier transform.

3.5.1 The Rectangular Pulse
The rectangular pulse (Figure 3.5), r(¢), is defined by

r(t)=u(t+T)—u(t-T) (3.43)
:{1 lt|<T

. (3.44)
0 otherwise.
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r(t) 7(w)

-T 0 T \/0\/

FIGURE 3.5: A rectangular pulse and its Fourier transform.

T, (t) T, (w)

—2T 0 2T 0

FIGURE 3.6: A triangular function and its Fourier transform.

‘We obtain

< . T .
f(CD):J r(t)e—]wfdtzj‘ €_thdl‘:2TSl—an'

3.45
-T ol ( )

The function, sinwT/wT, called the sinc function, is the Fourier transform
of a rectangular pulse. We remark here that for 7 =1/2, the function
r(t=1/2) = xj0,)(t) is called the characteristic function or the first-order B-spline.
This is an important function to remember and will be recalled later in the
development of wavelet theory.

3.5.2 The Triangular Pulse

By convoluting two rectangular pulses, we obtain a triangular pulse (Figure
3.6), which is expressed by

T.(t)=r(t)*r(r) (3.46)
2T(1+L) 2T <t<0
2T

2T
0 otherwise.

- 2T(1—L) 0<r<2T (3.47)
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By the convolution theorem we have

5 2TsinwT T
Ty (@)= 0T | (3.48)
s 2
=4TZS“‘—(‘"ZT). (3.49)
(«T)
IfT=1/2,
141 1<1<0
T.(t)=41-t 0<r<1 (3.50)

0  otherwise,

. 2

and fr(a))z(%) . The triangular function with 7'=1/2 is called the
[0)

second-order B-spline, which plays an important role as a scaling function

of the spline wavelet.

3.5.3 The Gaussian Function

The Gussian function is one of the most important functions in probability
theory and the analysis of random signals. It plays the central role in the Gabor
transform to be developed later. The Gaussian function with unit amplitude
is expressed as

2

glt)y=e". (3.51)

Its Fourier transform, §(w), can be computed easily as

g(w)= j e’ it gy

T 2
= |[E et (3.52)
o

It is interesting to note that the Fourier transform of a Gaussian function
is also a Gaussian function. The waveform and its transform are shown in
Figure 3.7.

The parameter « can be used to control the width of the Gaussian pulse. It
is evident from (3.51) and (3.52) that a large value of o produces a narrow
pulse, but its spectrum spreads wider on the w-axis.
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g(t) 9(w)

—10 0 10 -5 0 )

FIGURE 3.7: A Gaussian function and its Fourier transform.

3.6 POISSON’S SUM AND PARTITION OF UNITY

We now return to the Fourier series and discuss the Poisson’s sum whose deri-
vation is made much simpler by using some properties of the Fourier trans-
form. In many applications, it is necessary to form a periodic function from a
nonperiodic function with finite energy for the purpose of analysis.

Poisson’s sum formula is useful in relating the time-domain information of
such a function with its spectrum. Let f() € L*(R). The periodic version of f(f),
to be called f,(f), is obtained by

= i f(t+27n), (3.53)

N=—c0

where we have assumed 7 =2m to be the period of f,(¢). Consequently,
o =27/T =1, and the Fourier series representation of f,(f) is

fpt)= i cel. (3.54)

k=—c0

with the coefficient cx given by

1 2r ik
cr = _27-;.'. fp(t)e ™dt
2r -
z -
=5 J f(t+2mn)e ™ dt

nez
ZJ' Ft+27n)e M
neZ
271' n+1
2 J‘Zm F(E)ekE2m e (3.55)
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where a change of variable & =+ 27n has been used. Since the summation
and the integration limits effectively extend the integration over the entire
real line R, we may write

| r@era
iG] (356)

where the definition of the inverse Fourier transform has been used. Combining
(3.53), (3.54), and (3.56), we have the so-called Poisson’s sum formula

2 f(t+2mn)= Z Fk)el, (3.57)
N=—oc0 k_—oo
For an arbitrary period 7, the formula is generalized to

f(t+nT)= 7 (kap ) e, (3.58)
> Z

N=—oc0

If g(¢) is a scaled version of f{f):

g(t)=f(at),a>0, (3.59)
we have
N 1. (0
s@=-17(2) (3.60)
a \a
Poisson’s sum formula for f(at) is
z f(at+2man)=— Z fl—|e™. (3.61)
= 2ra = \a

If at is renamed as ¢, we have

Jkt

i f(t+27mn)— 2 f( ) . (3.62)

N=—o0

Two other forms of Poisson’s sum will be needed for derivations in subse-
quent sections. They are stated here without proof. The proofs are left as
exercises.

Z F(w+2rmk) = Z £ (k)e ke (3.63)

keZ keZ

“) f f(ak)e 7 3.64
Z (w+2nkj Z k)e ko (3.64)

keZ
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3.6.1 Partition of Unity

A direct consequence of Poisson’s sum is that a basis may be found so that
unity is expressed as a linear sum of the basis. We call this property the parti-
tion of unity. Let a be 1/2x in (3.62). Poisson’s sum formula becomes

z f(t+n)= Z 7 (2mk) e, (3.65)
n=—oo k:—oo
If the spectrum of a function f(f) € L(R) is such that
f@2mk) =8y for ke Z, (3.66)

that is,

~

f(0)=1,
and

F(2rk)=0k e Z\{0},

then it follows from (3.65) that

D re+m=1. (3.67)

nez

The first- and second-orders of B-splines are good examples of functions sat-
isfying this property.

First-order B-spline

N1(t) = xpo1)(?)

R 1 _ jo
Nl(w)=f ety =1
0 jo
. oo
Ry (0)=lim =" —q
w—0 Jo

Ny (27k) =0, keZ\{0}.

Hence

2 Ni(t+k)=1. (3.68)
keZ
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Second-order B-spline

N (1) = N1(£)* N (1) (3.69)
t tel0,1)
=4{2-1t te[l,2) (3.70)

0  otherwise.

From the convolution property, we have

~ ~ 2
N> (@) =(Ni(o)) (3.71)
N2
.\ 1—e /@
Ny () =( ¢ ) . (3.72)
Jo
Again, we find here that
N> (0)=1; (3.73)
No(27k)=0; kez\{0] (3.74)

Consequently, N,(¢) also satisfies the conditions for partition of unity. In fact,
from the recursive relation of B-spline

Ny (t) = N1 (£) % N1 (1) (3.75)
1
- jo N (1= 7)d, (3.76)
we have Nm(w)z[(l—e‘fw ) / ja)]m, which satisfies the requirement for par-

tition of unity. Hence B-splines of arbitrary orders all have that property.
Graphic illustrations for the partition of unity are shown in Figure 3.8.

L Ni(t+2) Ni(t)  M¢-1n
—2 -1 0 1 2

L N+ No(t)  Nat-1)
< >
-2 -1 0 1 2

FIGURE 3.8: Partition of unity.
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3.7 SAMPLING THEOREM

The sampling theorem is fundamentally important to digital signal analysis. It
states that if a signal f(¢) is bandlimited with bandwidth 2Q, then the signal
f(t) can be exactly reconstructed from its sampled values at equidistant grid
points. The distance between adjacent sample points, called the sampling
period /, should not be less than 7/Q. The function f{¢) is recovered by using
the formula

sm sin[Q(z—kh)]
hgz’ f(k t_kh)] , kel (3.77)

If A = /Q, the sampling frequency f; =1/h=Q/x is called the Nyquist rate.
Theoretically, f(f) can always be reconstructed perfectly from samples if
h < 7/Q. In practice, however, we cannot recover f{f) without error due to the
infinite nature of the sinc function.

Let f(w) be the Fourier transform of f(¢)

fl)=| f)eidr.
The integral can be approximated using Simpson’s rule as

)z F(w)= hz £ (kh)eTokh. (3.78)

keZ

Using Poisson’s sum formula in (3.64), we can rewrite F (o)

F(w)= hz £ (kh)e/koh

keZ
o @h+ 21k
- >
=@+ Y f(m%). (3.79)

keZ\[0}

Hence F (o) contains f‘ (o) plus infinitely many copies of 7 (w) shifted along
the w-axis. In order for f(w) to be disjointed with its copies, the amount of
shift, 27z/h, must be at least 2Q (see Figure 3.9):

2o, n<l. (3.80)
h Q
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—-Q Q
(b)
FIGURE 3.9: (a) Undersampling (S = 2x/h <2Q). (b) Oversampling (S =27/h >2Q).

To recover the original function, we use a spectral window

()= {:) lcc)ilhirgjvise (3.81)
and recover f (o) by
f()=F (o)W (). (3.82)
From the convolution theorem we obtain f{(¢):
f()=F ()W (). (3.83)

Since W (t) = sin Qt/nt is well known, we compute F(f) from the inverse Fourier
transform

F(f)= % _Wz £ (kh)e *heeiongg

keZ
h ° e
=§Zi fkh)| o de
:hz £(kh)8(t—kh), (3.84)

keZ

where we have used (3.25). The function f(¢) is recovered by using the convolu-
tion formula
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f(z)=h2f(kh) " S(r—kh)W (t-1)dr
keZ -

= hz £ (kh)W (t—kh)

_hzf sm sin[Q(7—kh)]

= w(t—kh)
=Yk Smg?i o ) (3.85)
keZ

where we have used Qh = 7. We remark here that (3.85) represents an inter-
polation formula. Since sin[Q(t — kh)]/[Q(t — kh)] is unity at ¢ = kh and zero,
at all other sampling points, the function value at k4 is not influenced by other
sampled values.

sin (0)

fkh)=")" f(kh) = f (kh). (3.86)

keZ

Hence the function f{(¢) is reconstructed through interpolation of its sampled
values with the sinc function as the interpolation kernel.

3.8 PARTIAL SUM AND GIBB’S PHENOMENON
The partial sum of a Fourier series is a least square approximation to the
original periodic function. Let py(f) be the (2M + 1) term partial sum of the
Fourier series of a periodic function p(¢) with period T
M
pu(n)= ") el (3.87)
k=—M

with the Fourier coefficients given by

TJ' _ p(eorr, (3.88)

Putting oy back into (3.87), we have the partial sum

2 ‘
Py TJ- T/ZP(T )e Ikeotgikeot g (3.89)
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On interchanging the order of summation and integration, we obtain

72 Mo
pn=x[ " p) Y eroa
TJ-1/2 =

Sin(M-ﬁ-%j(t— T) o

=% j o dr. (3.90)

172 sinE(t—T) oy

which is the convolution between the original periodic function with the
Fourier series kernel discussed in Section 3.2.2. We can easily see that the
oscillatory characteristic Ky is carried into the partial sum. If p(¢) is a rectan-
gular pulse train or a periodic function with jump discontinuities, the partial
Fourier series will exhibit oscillation around the discontinuities. This is known
as the Gibb’s phenomenon. The percentage of overshoot remains constant
regardless of the number of terms taken for the approximation. As M — oo,
the sum converges to the midpoint at the discontinuity [4].

3.9 FOURIER ANALYSIS OF DISCRETE-TIME SIGNALS

Since the computation of the Fourier series coefficients and Fourier trans-
form requires integration, the function must be analytically describable
by elementary functions such as sine and cosine functions, exponential func-
tions and terms from a power series. In general, most signals we encounter in
real life are not representable by elementary functions. We must use numerical
algorithms to compute the spectrum. If the signals are sampled signals,
the discrete Fourier series and discrete-time Fourier transform are directly
computable. They produce an approximate spectrum of the original analog
signal.

3.9.1 Discrete Fourier Basis and Discrete Fourier Series
For a given periodic sequence with periodicity N, we have
fp(n+mN)=f,(n), mel. (3.91)
The Fourier basis for this periodic sequence has only N basis functions, namely,
27

—kn
ex(n)=eN | k=0,1,..., N-1. (3.92)

We can easily show the periodicity of the basis set
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j2n

—(k+N)n
en=eN (3.93)
=ey .ejZn'n
= ek

since /™ = 1 for integer n. Therefore, the expansion of f,(n) is in the form of

N-1
fom)="Y axer(n) (3.94)
k=0
! jz—”kn
= 2 oxe N (3.95)
k=0
and then we can compute the coefficients by
j2rk
ak - <fp (n)’ e >
N-1 2
—j=—kn
LN f eV (3.96)
N
n=0

Equations (3.94) and (3.96) form a transform pair for discrete periodic
sequences and their discrete spectra. It is quite easy to see from (3.96) that
the Fourier coefficients {0y} are also periodic with N.

O = QiymN, ME L.

Example 1. Find the Fourier series coefficients for the sequence
f(n)= cos(x/gnn).

Solution: The given sequence is not a periodic sequence since we cannot
find an integer N such that f(n + N) = f(n). Consequently, f(n) does not have
a discrete Fourier series representation.

Example 2. Find the Fourier series representation of
(a) f(n)= cos%, and
(b) f(n)={1,1,0,0}.

Solution: (a) Instead of directly computing the coefficients using (3.96), we
may represent the cosine function in its exponential form

1] 2 2%
f(n)zz{e 10" 4 ¢ 10 } (3.97)
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The periodicity of this sequence is seen as N = 10. Since (3.97) is already in
the form of an exponential series as in (3.95), we conclude that

1 k=1,
2
1
oy = 5 k=9, (3.98)
0, otherwise.

(b) We compute the Fourier coefficients using (3.96) to obtain

1 -
ap=71ve 47| k=0123,

We have
1 k=0,
2
l(1—j) k=1
o =414 ’ (399)
0 k=2,
l(1+j) k=3,
4

The sequence and its magnitude spectrum are shown in Figure 3.10.

3.9.2 Discrete-Time Fourier Transform (DTFT)

If a discrete signal is aperiodic, we may consider it to be a periodic signal with
period N = . In this case, we extend the discrete Fourier series analysis to
DTFT similar to the extension in the analog domain. In DTFT, the time vari-
able (n) is discretized while the frequency variable (w) is continuous since

. 2r
Aw = lim — — ®.
N—oo

The DTFT pair is explicitly given by

flo)= 2 f(n)ye e, (3.100)
fn=o-" Fweredo G.101)

Example. Determine the spectrum of the exponential sequence
f(n)=a", VnezZ":={0,1,---}, l|a|<1.
Solution: Using (3.100),
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FIGURE 3.10: (a) The sequence f(n) and (b) its magnitude spectrum |ozl.

_1 (3.102)



58 FOURIER ANALYSIS

We pointed out in Chapter 2 that the DTFT can be obtained from the
z-transform by replacing the variable z with ¢/“. For this example, the z-
transform is

F(@eeo=

The z-transform F(z) and the DTFT, [ f (w)=F (z)|Z:e,'w], will be used inter-

changeably in future derivations and discussions on wavelet construction.

3.10 DISCRETE FOURIER TRANSFORM (DFT)

The integral in the inverse DTFT discussed in Section 3.9 must be evalu-
ated to recover the original discrete-time signal. Instead of evaluating the
integral, we can obtain a good approximation by a discretization on the fre-
quency (o) axis.

Since the function f{(¢) is band limited (if it is not, we make it so by passing
it through a low-pass filter with sufficiently large width), we need to discretize
the interval [-Q, Q] only, namely

0= = N N (3.103)
Nh 2 2
The integral in equation (3.17) can now be approximated as a series sum,
namely

N-1
Fl@n) =Y ke = nf (n) (3.104)
k=0
where
N N-1 _j2mkn
f(n)= Z flk)e N . (3.105)
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We can easily verify that the evaluation of the discrete Fourier transform
using (3.105) is an O(N?) process. We can compute the discrete Fourier trans-
form with an O(Nlog;N) operation with the well-known algorithm of fast
Fourier transform (FFT). One of the commonly used FFT algorithms is by
Danielson and Lanczos, according to which, assuming N to be such that it is
continuously divisible by 2, a DFT of data length N can be written as a sum
of two discrete Fourier transforms, each of length N/2. This process can be
used recursively until we arrive at the DFT of only two data points. This is
known as the Radix-2 FFT algorithm. Without getting into many details of the
algorithm, which the interested reader can obtain from many excellent books
available on these topics, we simply mention here that by appropriately
arranging the data of length N where N is an integer power of 2 (known as
decimation-in-time and decimation-in-frequency arrangements), we can
compute the discrete Fourier transform in an O(NlogyN) operation. If N is
not an integer power of 2, we can always make it so by padding the data
sequence with zeros.

3.11 EXERCISES

1. Verify that the order of taking the complex conjugate and the Fourier
transform of a function f € L?(—oo, o) can be reversed as follows:

F(n)=F(-n)
for any n e R.
2. Check that the condition
d .
—_— (0] =0
Py v ( )a):O

is equivalent to the moment condition
J ty (t)dt =0

for any positive integer number j.

3. Show that the Dirichlet kernel

1M1 & sin(n+l)u
D, (u)=— —+Zcosku -\ 2
T 2 k=1 27rsin(ﬁj

B 2

Plot the kernel for n = 6.
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N

. Find the Fourier series of f(f) = ¢/, ~n < t < 1.

W

. Determine the energy-normalized constant A of the Gaussian function
_ar? . . .
go(t)=Ae™" and derive the expression of the Fourier transform.

=

. Extend the Poisson sum formula to arbitrary period 7.

~

. Derive the following Poisson sum formulae in the spectral domain (a > 0):
Z Fo+2mk) = Z £ (k)e ko
k k

é;f(w-’-jﬂk) =;f(ak)€jkw-
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CHAPTER FOUR
|

Time-Frequency Analysis

We summarized rather briefly the Fourier analysis in the last chapter to
refresh the memory of the reader and to point out a few important concepts
in the analysis that will be useful when we discuss the time-frequency analysis.
We observe from the definition of the Fourier transform (3.19) that the inte-
gration cannot be carried out until the entire waveform in the whole of the
real line (—oo, o) is known. This is because the functions e/ or coswt and sinat
are global functions. By this we mean that a small perturbation of the function
at any point along the r-axis influences every point on the w-axis and vice-
versa. If we imagine the signal f(f) as the modulating function for e/, then
a perturbation at any point on the f-axis will propagate through the entire
w-axis. Another observation we make on the Fourier transform is that the
integral can be evaluated at only one frequency at a time. This is quite incon-
venient from a signal-processing point of view. Although there are fast algo-
rithms to compute the transform digitally, it cannot be carried out in real time.
All necessary data must be stored in the memory before the discrete or fast
Fourier transform can be computed.

Although unquestionably the most versatile method, Fourier analysis
becomes inadequate when one is interested in the local frequency contents of
a signal. In other words, the Fourier spectrum does not provide any time-
domain information about the signal. To demonstrate this point, let us examine
the function shown in Figure 4.1a, which represents a truncated sinusoid of
frequency 4 Hz in the time domain with perturbations near ¢ = 0.7s and t = 1.3s.
We saw in the previous chapter that a sinusoid in the time domain will appear
as a delta function in the frequency domain and vice-versa. Observe that the
frequency spread near 4 Hz in Figure 4.1b is due to the truncation of the sinu-
soid. We conclude from the Fourier spectrum shown in Figure 4.1b that the
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0.8

0.6

0.4

0.2F

FIGURE 4.1: (a) A sinusoid signal with perturbation at ¢t = 0.7 and ¢ = 1.3. (b) Its mag-
nitude spectrum.

sharp pulse near 4 Hz comes primarily from the sinusoid of 4 Hz, and the small
ripples that appear throughout the frequency axis are primarily due to some
delta functions (sharp changes) in the time domain. However, we are unable
to point out the locations of these delta functions in the time axis by observing
the spectrum of Figure 4.1b. This can be explained simply by the Fourier
representation of delta function (3.25). The delta function requires an infinite
number of sinusoidal functions that combine constructively at ¢ =0 while
interfering with one another destructively to produce zero at all points ¢ # 0.
This shows the extreme cumbersomeness and ineffectiveness of using global
functions ¢/® to represent local functions. To correct this deficiency, a local
analysis is needed to combine both the time-domain and the frequency-domain
analyses to achieve time-frequency analysis, by means of which we can extract
the local frequency contents of a signal. This is very important, since in practice
we may be interested in only some particular portion of the spectrum and,
therefore, we may like to know which portion of the time-domain signal is
primarily responsible for a given characteristic in the spectrum.

Common sense dictates that to know the local frequency contents of a
signal, we should first remove the desired portion from the given signal and
then take the Fourier transform of the removed part. Such a method of the
time-frequency analysis is referred to as short-time Fourier transform (STFT).
Before we discuss STFT, let us discuss the notion of window function, by
means of which the desired portion of a given signal can be removed.
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4.1 WINDOW FUNCTION

A desired portion of a signal can be removed from the main signal by multi-
plying the original signal with another function that is zero outside the desired
interval. Let ¢(r) € L*(R) be a real-valued window function. Then the product
f(t)o(t — b) =: f»(¢) will contain the information of f(¢) near ¢ = b. In particular,
if ¢(t) = ¥{-7(1), as shown in Figure 4.2, then

(t); te[b-1,b+1]

4.1
otherwise. (1)

wo=1)

By changing the parameter b we can slide the window function along the time
axis to analyze the local behavior of the function f{¢) in different intervals.
The two most important parameters for a window function are its center
and its width; the latter is usually twice the radius. It is clear that the center
and the standard width of the window function in Figure 4.2 are 0 and 27,
respectively. For a general window function ¢(¢), we define its center ¢* as

—oo

1= LZJ. tlo (o) dt (4.2)
lol
and the root-mean-square (r.m.s.) radius A4 as

- 1/2
Ay = mu_w(t — %) (o) dt} . (4.3)

For the particular window in Figure 4.2, it is easy to verify that ¥ =0

and Ay =1/v/3. Therefore, the r.m.s. width is smaller than the standard
width by 1//3.

X[-7m)(t)

FIGURE 4.2: Characteristic function.
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The function ¢(f) described above with finite A, is called a time window.
Similarly, we can have a frequency window ¢(®) with center w* and the r.m.s.
radius A; defined analogous to (4.2) and (4.3) as

wF = %Jﬁ; w|q3(a))|2 dw, (4.4)
oo 12
Ag = %U_W(w—co*)2 |q3(co)|2 da)} . 4.5)

As we know, theoretically a function cannot be limited in time and frequency
simultaneously. However, we can have ¢(¢) such that both A; and A 4 are both
finite; in such a case, the function ¢(¢) is called a time-frequency window. It is
easy to verify that for the window in Figure 4.2, »* =0 and Aj =oo. This
window is the best (ideal) time window but the worst (unacceptable) fre-
quency window.

A figure of merit for the time-frequency window is its time-frequency width
product AyA;, which is bounded from below by the uncertainty principle and
is given by

Aphy > =

1
525 (4.6)

where the equality holds only when ¢ is of the Gaussian type (see Section
3.5.3).

4.2 SHORT-TIME FOURIER TRANSFORM

In the beginning of this chapter we indicated that we could obtain the approxi-
mate frequency contents of a signal f(¢) in the neighborhood of some desired
location in time, say ¢ = b, by first windowing the function using an appropriate
window function ¢(¢) to produce the windowed function f;(¢) = f(t)¢(t — b) and
then taking the Fourier transform of f;(¢). This is the short-time Fourier trans-
form (STFT). Formally, we can define the STFT of a function f{(¢) with respect
to the window function ¢(¢f) evaluated at the location (b,§) in the time-
frequency plane as

Gof (0= Fw)anza (47
where

Bpe(t):=o(t—Db)e. (4.8)
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The window function ¢(¢) in (4.7) is allowed to be complex and satisfies the
condition

a0)= [ o(e)dr =0,

In other words, é(a)) behaves as a low-pass filter. That is, the spectrum is
nonzero at @ = 0. Because of the windowing nature of the STFT, this trans-
form is also referred to as the windowed Fourier transform or running-window
Fourier transform.

Unlike the case of Fourier transform, in which the function f(¢) must be
known for the entire time axis before its spectral component at any single
frequency can be computed, STFT needs to know f(¢) only in the interval in
which ¢(f — b) is nonzero. In other words, Gyf(b,&) gives the approximate
spectrum of fnear ¢t = b.

If the window function ¢(¢ — b) in (4.7) is considered as the modulating
function of the sinusoid ¢7%, the STFT can be written as

Gof (b.E)={f(1).0(1—Db)e/). (4.9)

The function @, (f) = ¢(t - b)e’¥ behaves like a packet of waves, where the
sinusoidal wave oscillates inside the envelope function ¢(¢). In addition, (4.8)
indicates that each of these packets of waves behaves like a basis function, so
that the STFT may be interpreted as the components of the function f{(¢) with
respect to this basis in the time-frequency plane.

4.2.1 Inversion Formula

One can recover the time function f;(¢) by taking the inverse Fourier transform
of Gyf(b.5)

7o(0)=0(-)1 ()= Gof (b.&)ede. (410)

—oo

The original f{(¢) is obtained by multiplying (4.10) with ¢(¢ —b) and integrating
with respect to b. The final recovery formula is

1
= def‘f’ G b b)db. 4.11
ft)= . "¢ T g - of (0,£)p(t—Db) (4.11)

One may observe a similar symmetric property between equations (4.7) and
(4.11) and that of the Fourier transforms in (3.19) and (3.22).
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4.2.2 Gabor Transform
The Gabor transform was developed by D. Gabor [1], who used the Gaussian
function

t2
8a(t)= _271m e 4oy >0 (4.12)

as the window function. The Fourier transform of (4.12) is

oy

ga(@)=e " a>0, (4.13)
The window property of g.(t) can be computed using the formulas in Section

4.1to give * = w* = 0,Agy = Vor and Agy = 1/(2var). Observe that AgyAZy = 0.5
attains the lower bound of the uncertainty principle.

4.2.3 Time-Frequency Window

Let us consider the window function ¢(¢) in (4.7). If #* is the center and A4 the
radius of the window function, then (4.7) gives the information of the function
f(¢) in the time window.

[P+ b= Ay, 5+ b+ Ay (4.14)

To derive the corresponding window in the frequency domain, apply Parseval’s
identity (3.41) to (4.7). We have

Gof(b,&)= : F(0)o(t—b)e ' dt (4.15)
e[ f@)io-eredo

=4[ fo)p(@-8) | (), (4.16)

where the symbol V represents the inverse Fourier transform. Observe that
(4.15) has a form similar to (4.7). If @* is the center and A; is the radius
of the window function ¢(w), then (4.15) gives us information about the func-
tion f(w) in the interval

[a)*+§—AA,a)*+1§+A¢;]. (4.17)

Because of the similarity of representations in (4.7) and (4.15), the STFT gives
the information about the function f(¢) in the time-frequency window:
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FIGURE 4.3: Time-frequency window for short-time Fourier transform (1* = o* = 0).

[F+D—Ag, 15+ b+ Ag | x[0*+E— A, 0%+ S+ Ag]. (4.18)

Figure 4.3 represents the notion of the time-frequency window given by (4.18).
Here we have assumed that t* = @* = 0.

4.2.4 Properties of STFT

Linearity: Let f(t) = afi(f) + Bf>(t) be a linear combination of two functions
fi(¢) and f>(r) with the weights « and 8 independent of ¢. Then the STFT of

f,
Gy f (b,) =Gy fi(b,6)+ BGy f2(b,6), (4.19)

is the linear sum of the STFT of the individual function. Hence STFT is a
linear transformation.

Time Shift: Letting fo(t) = f(t — 1), then

Gy fo(b,8) Zj:of(t—to)(p(z_b)e—jétd[

= Jm F@)p(t—(b—1))e S e /50 dy
= e—j§,0G¢ f(b—19,8). (4.20)

Equation (4.20) simply means that if the original function f{(¢) is shifted by an
amount f#j in the time axis, the location of STFT in the time-frequency domain
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will shift by the same amount in time while the frequency location will remain
unchanged. Apart from the change in position, there is also a change in the
phase of the STFT, which is directly proportional to the time shift.

Frequency Shift: Letting f(t) be the modulation function of a carrier signal
e!™" such that

fole)=F(0)e’™, (4.21)
then the STFT of fy(¢) is given by

Golo(b.9)= [ (0 glt-b)e s
=G¢f(b,§—a)0). (4.22)

Equation (4.22) implies that both the magnitude and the phase of the
STFT of fu(f) remain the same as those of f(#), except that the new location
in the t — @ domain is shifted along the frequency axis by the carrier fre-
quency ax.

4.3 DISCRETE SHORT-TIME FOURIER TRANSFORM

Similar to the discussion of Section 3.10, we can efficiently evaluate the inte-
gral of (4.7) as a series sum by appropriately sampling the function f(¢) and
the window function ¢(¢). In its discrete form, the short-time Fourier transform
can be represented as

N-1
Gof (bs&n) =B Y F (1) 0tk = by )e %, (423)
k=0
where
te =bk=kh; k=0,...,N-1 (4.24)
and
2rn N N
n=——— N=——,...,—. 4.25
A R (4.25)
In particular, when /& =1, we have
N-1
_j27zkn
Gof (n.&0)= Y. Fk)p(k=m)e ", (4.26)
k=0
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FIGURE 4.4: Signal for which the STFT is shown in Figure 4.5.

We use an example similar to the one used in [2] to show the computation
of the STFT and the effect of the window width with respect to resolution.
The signal

f(@)=sin(2avit)+sin(2rvat)+ K[6(t—1)+6(t—15)] (4.27)

consists of two sinusoids at frequencies of v; = 500Hz and v, = 1000Hz and
two delta functions occurring at #; = 0.192ms and #, = 196 ms. We arbitrarily
choose K = 3. We apply a rectangular window to the function, and compute
the STFT for four different window sizes. The signal and the window function
are both sampled at 8KHz. The window size varies from 16ms to 2ms, and
the corresponding number of samples in the windows are 128, 64, 32, and 16,
respectively. Since the delta functions are separated by 32 samples, window
sizes equal to or greater than 32 samples are not narrow enough to resolve
the delta functions.

To compute the STFT, we apply the FFT algorithm on the product of the
signal and the window function. We compute a 128-point FFT each time the
window is moved to the right by one sample. Figure 4.4 shows the function
f(¢), and the results of these STFTs are given in Figure 4.5.

Initially, when the time window is wide, the delta functions are not resolv-
able at all. However, the two frequencies are well distinguished by the high
resolution of the window in the spectral domain. As the window size gets
smaller, we begin to see the two delta functions while the frequency resolution
progressively worsens. At the window size of 16 samples, we can distinguish
the delta functions quite easily, but the two frequencies cannot be resolved
accurately. To resolve events in the frequency axis and the time axis, we must
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FIGURE 4.5: STFT of signal shown in Figure 4.4 with a different window width (2A).
The horizontal axis is time (s) and the vertical axis is frequency (Hz).

compute the STFT every time we change the window size. Computation load
is a serious issue in using STFT for signal processing.

4.4 DISCRETE GABOR REPRESENTATION

Formally writing the Gabor transform given in Section 4.2.2, we obtain

Gg(xf(b’é) = :of([)me*jéfd[

ey : F(t)e D’ 1o gmiét gy (4.28)
o J—o
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for —eo < b, £< . The Gabor transform is dense over the f— @ plane.
Computation load for the Gabor transform in (4.28) is quite heavy. We may,
instead of (4.28), compute the discretized version of (4.28).That is, we compute
(4.28) only at a set of points on the ¢ — ® plane.

Goo (bus&)= | (0 gal=By)e e

=(f(t),8a(t—bu)e™")
=(f (1), i (1)) (4.29)

The last expression of (4.29) is the inner product of the function with the
function @, (¢)= gu(t—b,)e’*k. The function f(r) may be recovered under a
restricted condition [3]:

FO=D Gouf (bn&e) gult=bu)e. (4.30)
n k

Equation (4.30) is known as the Gabor expansion, in which G, f(b,,&) play
the role as the coefficients in the recovery formula

FO=D Gouf (b &) i 1), (431)
n k

The function ¢, (¢) is a Gaussian modulated sinusoid. The spread of the func-
tion is controlled by ¢, while the oscillation frequency is controlled by &.
These “bullets” of the ¢t — @ plane form the basis of the Gabor expansion. Since
the Gaussian function has the minimum size of the time-frequency window, it
has the highest concentration of energy in the ¢ — w plane. The Gabor basis
én.x(t) appears to be a useful basis for signal representation. However, it lacks
the basic properties, such as orthogonality, completeness, and independence
to achieve simple representations and efficient computation.

4.5 CONTINUOUS WAVELET TRANSFORM

The STFT discussed in Section 4.4 provides one of many ways to generate a
time-frequency analysis of signals. Another linear transform that provides
such analyses is the integral (or continuous) wavelet transform. The terms
continuous wavelet transform (CWT) and integral wavelet transform (IWT)
will be used interchangeably throughout this book. Fixed time-frequency reso-
lution of the STFT poses a serious constraint in many applications. In addition,
the developments on the discrete wavelet transform (DWT) and the wavelet
series (WS) make the wavelet approach more suitable than the STFT for
signal and image processing. To clarify our points, let us observe that the radii
Ay and A; of the window function for STFT do not depend on the location in
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FIGURE 4.6: A chirp signal with frequency changing linearly with time.

the ¢ — @ plane. For instance, if we choose ¢(f) = g,(f) as in the Gabor trans-
form (4.28), once o is fixed, then so are Ag, and Ag,, regardless of the window
location in the # — @ plane. A typical STFT time-frequency window was shown
in Figure 4.3. Once the window function is chosen, the time-frequency resolu-
tion is fixed throughout the processing. To understand the implications of such
a fixed resolution, let us consider a chirp signal shown in Figure 4.6 in which
the frequency of the signal increases with time.

It we choose the parameters of the window function ¢(¢) [e in the case of
8o(t)] such that A, is approximately equal to AB, then the STFT as computed
using (4.7) will be able to resolve the low-frequency portion of the signal
better, while there will be poor resolution for the high-frequency portion. On
the other hand, if A4 is approximately equal to CD, then the low frequency
will not be resolved properly. Observe that if A is very small, then A; will be
proportionally large, and hence the low-frequency part will be blurred.

Our objective is to devise a method that can give good time-frequency reso-
lution at an arbitrary location in the # — @ plane. In other words, we must have
a window function whose radius increases in time (reduces in frequency) while
resolving the low-frequency contents and decreases in time (increases in fre-
quency) while resolving the high-frequency contents of a signal. This objective
leads us to the development of wavelet functions y(¢).

The integral wavelet transform of a function f(f) € L* with respect to some
analyzing wavelet y is defined as

Wyl (ba)= [ @it (432)

where

O e ) (433)
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The parameters b and a are called translation and dilation parameters, respec-
tively. The normalization factor a2 is included so that lly;ll = llyl.
For v to be a window function and to recover f{(¢) from its IWT, y(¢) must

satisfy the following condition

oo

v(0)=| w(ndt=0. (4.34)

—oco

In addition to satisfying (4.34), wavelets are constructed so that it has a higher
order of vanishing moments. A wavelet is said to have vanishing moments of
order m if

j Py (t)dt=0; p=0,...,m-1. (4.35)

—oco

Strictly speaking, integral wavelet transform provides the time-scale analy-
sis and not the time-frequency analysis. However, by proper scale-to-frequency
transformation (discussed later), one can get an analysis that is very close to
the time-frequency analysis. Observe that in (4.33), by reducing a, the support
of y,, reduces in time and hence covers a larger frequency range and vice-
versa. Therefore, 1/a is a measure of frequency. The parameter b, on the other
hand, indicates the location of the wavelet window along the time axis. Thus,
by changing (b, a), W,,f can be computed on the entire time-frequency plane.
Furthermore, because of the condition (4.34), we conclude that all wavelets
must oscillate, giving them the nature of small waves and hence the name
wavelets. Recall that such an oscillation is not required for the window func-
tion in STFT. Compared with the definition of STFT in (4.7), the wavelet
W4(f) takes the place of ¢, Hence a wavelet also behaves like a window
function. The behavior and measures of wavelet windows are discussed in
more detail in Section 4.5.2.

4.5.1 Inverse Wavelet Transform

Since the purpose of the inverse transform is to reconstruct the original func-
tion from its integral wavelet transform, it involves a two-dimensional integra-
tion over the scale parameter a >0 and the translation parameter b. The
expression for the inverse wavelet transform is

f(t):ci N dbj:aiz[wwf(b,a)]z,/b,a(t)da, (4.36)
S

where Cy, is a constant that depends on the choice of wavelet and is given by

[ ~ 2
C, = de < oo, (4.37)
—00 a)
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The condition (4.37), known as admissibility condition, restricts the class of
functions that can be wavelets. In particular, it implies that all wavelets must
have y(0)=0 [see (4.34)] to make the left-hand side of (4.37) a finite number.
For a proof of (4.36) readers may refer to [2, Chap. 2].

Equation (4.36) is essentially a superposition integral. Integration with
respect to a sums all the contributions of the wavelet components at a location
b, while the integral with respect to b includes all locations along the b-axis.
Since the computation of the inverse wavelet transform is quite cumbersome
and the inverse wavelet transform is used only for synthesizing the original
signal, it is not used as frequently as the integral wavelet transform for the
analysis of signals. In subsequent sections, in which the discrete wavelet trans-
form (DWT) is introduced, the inverse of the DWT is very useful in data
communication and signal processing.

4.5.2 Time-Frequency Window

The definitions of the frequency domain center and radius discussed in Section
4.1 do not apply to wavelet windows because, unlike the window of STFT in
which ¢(0)=1, here the wavelet window W(0)=0. In other words, W(w)
exhibits band-pass filter characteristics. Consequently, we have two centers
and two radii for (). We are interested only in the positive frequencies.
Let us, therefore, define the center w¥ and the radius A;Z/ on the positive fre-
quency axis as

[ ol do
wf =0 (4.38)
[ do
0
[(o-of) W1 do
AL =10 (4.39)

[ iordo

The definitions for #* and A, remain the same as those in Section 4.1, with ¢(¢)
replaced by y(¢). For wavelets the uncertainty principle gives

1
N
AyAy >, (4.40)

If r* is the center and Ay, is the radius of y(t), then W f(b, a) contains the
information of f(¢) in the time window

[ar* +b—aly,at*+b+al,|. (4.41)
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FIGURE 4.7: Time-frequency window for continuous wavelet transform.

Let us apply Parseval’s identity to (4.32) to get an idea of the frequency
window:

W, f (b.a)= % : f(z)w(@)dz (4.42)
_Ya j " H o) i (aw)edo. (4.43)
27 J -

From (4.43) it is clear that the frequency window is
Lo aey Loos A+
—(0F —A%),—(0F +A%) | (4.44)
a Va v

The time-frequency window product = 2aA,, x (Z/a)A; = 4AWA; = constant.

Figure 4.7 represents the notion of the time-frequency window for the
wavelet transform. Compare Figure 4.7 with the corresponding Figure 4.3
for STFT and observe the flexible nature of the window in the wavelet trans-
form. For the higher frequency (1/a;), the time window is small, whereas for
the lower frequency (1/4p), the time window is large. For the fixed frequency
level, (1/ay), for example, both the time and frequency windows are fixed.
Recall that in STFT the time-frequency window is fixed regardless of the
frequency level.

Example: We perform a continuous wavelet transform on the same function
used for computing the STFT. We choose the complex Morlet wavelet
given by
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FIGURE 4.8: Continuous wavelet transform of the signal shown in Figure 4.4 with
Morlet’s wavelet.

2
v(t)= P PREE (4.45)

to compute the CWT
= t=b
Wt .= s =2 .

The results are shown in Figure 4.8. The figure indicates good resolution of
the events in both the time and the frequency axes. If we choose an appropri-
ate range for a, the transform needs be computed only once to capture most,
if not all, of the events occurring in the time and frequency domains.

4.6 DISCRETE WAVELET TRANSFORM

Similar to the discrete Fourier transform and discrete short-time Fourier
transform, we have the discrete wavelet transform (DWT). However, unlike
the discretized time and frequency axes shown earlier in Fourier analysis, here
we take the discrete values of the scale parameter a and the translation param-
eter b in a different way. The interest here is to introduce the DWT and show
the relationship between DWT and IWT. A detailed discussion of the DWT
will be presented in Chapter 7. Here we just mention that we will take a to be
of the form 2™ and b to be of the form k2%, where k, s € Z. With these values
of a and b, the integral of (4.32) becomes
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W, f(k27,27)= 2»[” FOw(2°1=k)d. (4.46)

Let us now discretize the function f{(¢). For simplicity, assume the sampling rate
to be 1. In that case, the integral of (4.46) can be written as

W, f (k27,27 = 252 Fm)yw(2°n-k) (4.47)

To compute the wavelet transform of a function at some point in the time-scale
plane, we do not need to know the function values for the entire time axis. All
we need is the function at those values of time at which the wavelet is nonzero.
Consequently, the evaluation of the wavelet transform can be done almost in
real time. We will discuss algorithms to compute the wavelet transform in later
chapters.

One of the important observations about (4.47) is its time-variant nature.
The DWT of a function shifted in time is quite different from the DWT of the
original function. To explain it further, let

fm(t):f(t_tm)- (4.48)

This gives

—222]‘ w[2n—(k-m2°)]
zW.,,f[(k—st)Z 27 (4.49)

Therefore, we see that for DWT, a shift in time of a function manifests itself
in a rather complicated way. Recall that a shift in time of a function appears
as a shift in time location by an exact amount in the case of STFT, with an
additional phase shift. Also in Fourier transform, the shift appears only as a
phase change in the frequency domain.

4.7 WAVELET SERIES

Analogous to the Fourier series, we have the wavelet series. Recall that the
Fourier series exists for periodic functions only. Here for any function (¢) € L?,
we have its wavelet series representation given as
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F0=3D Wi 0), (4.50)
sk

where

Wis(1)=27 (21— k). (4.51)

The double summation in (4.50) is due to the fact that wavelets have two
parameters: the translation and scale parameters. For a periodic function p(¢),
its Fourier series is given by

p(t)= ZCkefk‘. (4.52)

k
Since {e/* : k € Z} is an orthogonal basis of L?(0, 27r), we can obtain ¢ as

= %( p(1).e™). (4.53)

On a similar line, if {y;(¢) : k, s € Z} forms an orthonormal basis of L*(R),
then we can get

Wies = (f (1), Wies (1)) (4.54)
k 1

Therefore, the coefficients {wy } in the wavelet series expansion of a function
are nothing but the integral wavelet transform of the function evaluated
at certain dyadic points (k/2°,1/2%). No such relationship exists between
Fourier series and Fourier transform, which are applicable to different classes
of functions; Fourier series applies to functions are that square integrable in
[0, 27], whereas Fourier transform is for functions that are in L*(R). Both
wavelet series and wavelet transform, on the other hand, are applicable to
functions in L*(R).

It {yi (1)} is not an orthonormal basis, then we can obtain wy using the
dual wavelet {; (1)} as wi s = (f(¢), Wk 5(1)). The concept of dual wavelets will
appear in subsequent chapters.

4.8 INTERPRETATIONS OF THE TIME-FREQUENCY PLOT

Let us briefly discuss the significance of a surface over the time-frequency
plane. Usually the height of a point on the surface represents the magnitude
of the STFT or the IWT. Suppose the given function is such that its frequency
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does not change with time; then we should expect a horizontal line parallel to
the time-axis in the time-frequency plot corresponding to the frequency of the
function. However, because of the finite support of the window function and
the truncation of the sinusoid, instead of getting a line we will see a band
(widened line) near the frequency. To understand it more clearly, let us con-
sider a truncated sinusoid of frequency wo. We assume, for the purpose of
explaining the time-frequency plot here, that even though the sinusoid is
truncated, its Fourier transform is represented as 5(60 o).
By replacing f(w)= (w @) in (4.7) and (4.32), respectively, we obtain

Gof (b.8) =560 ) (4.56)
|W,, f (b,a)| = —|t//(aw0)| (4.57)

It is clear from (4.56) and (4.57) that |Gf(b,&)! and IW,,f(b,E)l do not depend
on b. On the frequency axis, since |q3(0)|=1, and assuming that |q3(w)|£l,
o # 0, we will get the maximum magnitude of STFT at &= wo. Then there
will be a band around & = wy, the width of which will depend on A, the radius

of p(a).

Interpretation of (4.57) is a little complicated because, unlike STFT, wavelet
transform does not give a time-frequency plot directly. Let us consider a point
' on the frequency axis such that

V()] = max{|y(w)); @e(0,)}. (4.58)

For all practical purposes, we may take @’ = ©7.
Now if we consider a variable &=} /a and rewrite (4.57) in terms of the

new variable &, we have
o .| @F
Wy f = ||= V| —o ||
’ ( ¢ J [ ¢

Therefore the maximum value of the wavelet transform (4.57) will occur at
§ o with a band around & = @y, depending on the radius A+ of the wavelet
y(o).
As our next example, let () = §(¢ — ty). Since this function has all the fre-
quency components, we should expect a vertical line in the time-frequency
plane at ¢ = fy. Substituting f(¢) = 6(t — to) in (4.7) and (4.32), we obtain

1 |of

2\ e (4.59)
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|Gof (,5) =10 (20 =), (4.60)
1 ~b
Wy (b.a)=— w(to - j‘ (4.61)

Explanation of the STFT is straightforward. As expected, it does not depend
on £ We get a vertical line parallel to the frequency axis near b = fy with the
time-spread determined by A4 For wavelet transform, we observe that it
depends upon the scale parameter a. Rewriting (4.61) in terms of the new
variable &, we have

¢

o

Wwf[b,w—g] -

Although all the frequency contents of the delta function in time are indicated
by (4.62),it is clear that as we reduce &, the time-spread increases. Furthermore,
the location of the maximum will depend on the shape of y(r). Readers are
referred to [4] for more information on the interpretation of time-frequency
plots.

w[i(to —b)J‘. (4.62)

o

4.9 WIGNER-VILLE DISTRIBUTION

We have considered in previous sections linear time-frequency representa-
tions of a signal. The STFT and CWT are linear transforms because they
satisfy the linear superposition theorem:

T[(lel + Olzfz] = alT[fl] + (ZzT[fz ], (463)

where T may represent either the STFT or the CWT, and fi(¢), f>2(¢) are two
different signals in the same class with coefficients oq and o. These transforms
are important because they provide an interpretation to the local spectrum of
a signal at the vicinity of time ¢. In addition, easy implementation and high
computation efficiency of their algorithms add to their advantages. On
the other hand, these linear transforms do not provide instantaneous energy
information of the signal at a specific instant of time. Intuitively, we want to
consider a transform of the type

[ ira-opererar=] " pe-ofanerar

Since it is not easy to determine the energy of a signal at a given time, it is
more meaningful to consider the energy within an interval (¢ —7/2, ¢ + 7/2) that
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is centered around the time location ¢. For this purpose, the Wigner-Ville dis-
tribution (WVD) is defined by

W () = % :o f(t ; %)f(t——%je‘f‘”df. (4.64)

The constant 1/27 is a normalization factor for simplicity of computation. We
should note that the linearity property no longer holds for equation (4.64).
The Wigner-Ville distribution is a nonlinear (or bilinear) time-frequency
transform because the signal enters the integral more than once. One may also
observe that the Wigner-Ville distribution at a given time ¢ looks symmetrically
to the left and right sides of the signal at a distance 7/2. Computation of
We(t,w) requires signal information at #+17/2, and cannot be carried out in
real-time.

4.9.1 Gaussian Modulated Chirp
Let us consider a chirp signal that is modulated by a Gaussian envelop

1 a2 2
f(t):(%) exp("Tt+ j’%+ jwotj (4.65)

where exp(—at2 / 2) is the Gaussian term, exp(— jbt? / 2) is the chirp signal, and

e/®" is a frequency shifting term. The Wigner-Ville distribution from (4.64)
yields

ol

(3 )
o —a|t+— bl t+— .
J exp 2 j 2 +ja)0(t+5)

1 (a
2 2
At AT
% _ —jog| t——= |- jotdt
exp 2 I/ / 0( 2) !
1(a\: o[> —at?
:_(_j e J exp + jbtt+ joyt — joot |dT. (4.66)
2r\ 7w —oo 4

Using the Fourier transform of a Gaussian function as given in Chapter 3, the
WYVD of a Gaussian modulated chirp is

2 —wo—bt)
Wf(t,w)=%exp[—%—W]. (4.67)

The function and its WVD are shown in Figure 4.9.
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FIGURE 4.9: Wigner-Ville distribution of a Gaussian modulated chirp signal.

4.9.2 Sinusoidal Modulated Chirp

A sinusoidal modulated chirp signal is given by
b
f(t)=exp ]7+]a)ot . (4.68)
We compute the WVD straightforwardly to obtain

2
1 ¢ b(t+%) .
Wrlto)=o7) e fT“’“’O(”E)

—o00

L exp(jbtt+ jwgt — jot)dt
2r

—oo

=6(w—ay —bt). (4.69)
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FIGURE 4.10: Wigner-Ville distribution of a chirp signal.

4.9.3 Sinusoidal Signal

We compute the WVD of a pure sinusoidal signal e/®0" by setting the chirp
parameter b to zero. Therefore,

e = §(w—ay). (4.70)

The WVDs of equations (4.67) and (4.69) on the time-frequency plane are a
straight line with a slope b and a straight line parallel to the time axis, respec-
tively. They are given in Figures 4.10 and 4.11. Figure 4.12 shows the WVD
of a Gaussian modulated sinusoidal function.

4.10 PROPERTIES OF WIGNER-VILLE DISTRIBUTION

There are several general properties of WVD that are important for signal
representation in signal processing. Some of them are discussed in this section.
It has been shown [5] that the Wigner-Ville distribution has the highest con-
centration of signal energy in the time-frequency plane. Any other distribution
that has a higher energy concentration than WVD will be in violation of the
uncertainty principle. Furthermore, it cannot satisfy the so-called marginal
properties discussed in this section.
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FIGURE 4.11: Wigner-Ville distribution of a sinusoidal function.

-

Real Part Amplitude
o
o o

)
O
(9]

Amplitude

“}\}\ﬁ
¢TI
oY

FIGURE 4.12: Wigner-Ville distribution of a Gaussian modulated sinusoid.
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FIGURE 4.13: Plot indicating that Wigner-Ville distribution may be negative.

4.10.1 A Real Quantity

The Wigner-Ville distribution is always real, regardless of whether the signal
is real or complex. This can be seen by considering the complex conjugate of
the Wigner-Ville distribution:

W (t,w)= LJ. s(t—z)s(t+1)ej“’7d7
21 d - 2 2

= LJ. s(t+z)s(t—z)e_7“"d1
21— 2 2

= W,(1,0). (4.71)

The Wigner-Ville distribution is always real but not always positive. Figure 4.13
shows the WVD of a function that becomes negative near the center.
Consequently, WVD may not be used as a measure of energy density or prob-
ability density.

4.10.2 Marginal Properties

Of particular concern to signal processing is the energy conservation. This is
expressed by the marginal properties of the distribution
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'[:o W (t,0)do = (1) 4.72)

j:, W, (Lo)di =| (o) (4.73)

Marginal (density) expresses the energy density in terms of one of the two
variables alone. If we wish to find the energy density in terms of ¢, we simply
integrate (sum up) the distribution with respect to @ and vice versa. The total
energy of the signal can be computed by a two-dimensional integration of the
Wigner-Ville distribution over the entire time-frequency plane.

E=[ Irwpa=[ |f@) do
:J._oo _wa(t,w)dwdtzl.

4.10.3 Correlation Function

We can compute the correlation functions in the time or frequency domains
easily from the marginals:

7(0) =j°° F(O G+ 0t = Wy (10) (4.74)

j f (@) (@t @)do=W,(0,0"). (4.75)

4.11 QUADRATIC SUPERPOSITION PRINCIPLE

We recall that WVD is a nonlinear distribution where the linear superposition
principle does not apply. For instance, let a multicomponent signal be

HOEDWAG! (4.76)

The Wigner-Ville distribution of this signal is
m m
Wi (6,0)= Y Wy (1,0) +2 D, Wi (o), (477)
k=1 k=10=11k

where Wy, (¢, w) is called the auto-term of the WVD, while W;,_, (¢, ®) is a
cross-term defined by
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FIGURE 4.14: Wigner-Ville distribution of multicomponent signal.

Wfk,f/(t,w)=% _Mfk(w%) fg(t—%)e’f“"dr. (4.78)
These cross-terms of the WVD are also called the interference terms and
represent the cross-coupling of energy between two components of a multi-
component signal. These interference terms are undesirable in most signal-
processing applications and much research effort has been devoted to reduce
the contribution of these terms. We must remember that these cross-terms
[6, 7] are necessary for perfect reconstruction of the signal. In signal detection
and identification applications, we are interested in discovering only those
signal components that have significant energy. The cross-terms are rendered
unimportant since reconstruction of the signal is not necessary.

In radar signal processing and radar imaging, the signals to be processed
have a time-varying spectrum like that of a linear chirp or quadratic
chirp. Using either the STFT or the WT to represent a chirp signal loses
the resolution in the time-frequency plane. However, the WVDs of these
signals produce a well-defined concentration of energy in the time-frequency
plane as shown in Figure 4.10. For multicomponent signals, the energy
concentration of the WVD will be far apart in the time-frequency plane
if the bandwidths of the components are not overlapped too much (see
Figure 4.14). However, if this is not the case, a certain cross-interference
reduction technique must be applied, and that leads to the reduction of
resolution.
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FIGURE 4.15: Ambiguity function of a chirp signal.

4.12 AMBIGUITY FUNCTION

The ambiguity function (AF) is the characteristic function of the Wigner-Ville
distribution, defined mathematically as

Af(u,v)zj J eMHVOW, (1, @) dt do. (4.79)

While the Wigner-Ville distribution is a time-frequency function that measures
the energy density of the signal on the time-frequency plane, the ambiguity
function is a distribution that measures the energy distribution over a
frequency-shift ( Doppler) and time-delay plane. This is a very important func-
tion in radar signal processing, particularly in the area of waveform design. We
shall see some applications of this function toward the end of this book.

Apart from a complex constant, we may express the AF in terms of the
signal as

A=k f(r-%)@e—fifdt, (4.80)

—oo

where K is a complex constant. The proof of this relationship can be found in
[8]. For further information on the ambiguity function readers are referred to
[9]. Figure 4.15 shows the AF for a chirp signal. This time-frequency representa-
tion will be revisited in Chapter 9, where the combination of wavelet packets
and Wigner-Ville distribution is applied to radar signal detection.
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4.13 EXERCISES

1.

Verify that for any function y € L*(—os, o), the normalized function given

by wi(t) =22 l//(2st—k) for k,s € Z,t € R, has the same L? norm as y:

j_ |1//(t)|2dt=J._ Wis (O dt, k.sel.

. . . 2 .
. Consider the window function g,(f)=e™*", a > 0. Compute the window

widths in the time and frequency domains and verify the uncertainty
principle.

. The hat function N, is defined by

t for 0<t<1
Ny(t)=42—-t for 1<t<2
0 otherwise.

Compute the time-frequency window for N(z).

. Show that [[f (1) = % J' _[|G¢ F(b, &P dbdE.

. Given that f(f) =sin (nt%), and using the raised cosine as the window

function

o(0) = {1+ cos(mt), <1

0, otherwise,

plot the window-shifted time functions f;(z) = ¢(t —3)f(¢). and f5(¢) and their
spectra.

Consider the time-frequency atoms or the kernel

Re[ ¢(1—4)e/*™ + ¢(1—6)e/5™ ]
Re[q)(t— 4)e/ 4 4 (1 — 6)ef6”’:|.

Plot the spectral energy density of the two time-frequency atoms. Comment
on the time-frequency resolution of the two atoms.

. In the CWT, show that the normalization constant 1/va is needed to give

()l = (D).

. Show that the energy conservation principle in the CWT implies that

oo . 1 oo @oo - d
_J050d= [ [ Wt . WegBraids'.
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8. Show that the frequency window width of a wavelet y is [(1/ a)(wf — Ay),
(1/a)(w* +Al//)].

9. Identify the reason for dividing the frequency axis by 2 in the program
wvd.m.

4.14 COMPUTER PROGRAMS

14.1 Short-Time Fourier Transform

N

oo

oo

PROGRAM stft.m

oo

o

Short-time Fourier Transform using Rectangular window [0,1]
generates Figure 4.5

oo

oo

% Signal

vl = 500; % frequency

v2 = 1000;

r = 8000; %sampling rate
tl = 0.192; % location of the delta function
t2 = 0.196;

k = 1:2048;

t = (k-1)/x;

f = sin(2*pi*vl*t) + sin(2*pi*v2*t);
k = tl * r;

f(k) = f£(k) + 3;

k = t2 * r;

f(k) = f£(k) + 3;

plot(t, f)

axis ([0 0.24 -2 2])

figure (2)

% STFT computation

N = 16 % rectangular window width

bot = 0.1;
hi = 0.175;
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Nb2 =N / 2;
for b = 1:2048-N+1
fb = f(b:b+N-1);
fftfb = abs(fft(fb));
STFT (b, :) = fftfb(1:Nb2);
end
% Plot

NColor = 256;

colormap (gray (NColor) ) ;

STFT _min = min(min (STFT)) ;

STFT_max = max(max(STFT)) ;

STFT = (STFT - STFT_max) * NColor /
STFT_max) ;

time=(0:2048-N) /r;

freg = (0:Nb2-1) * r / N;

axes ('position’, [0.1 bot 0.8 hil)

image (time, freq, STFT')

axis ([0 0.24 0 20001)

YTickmark = [0 500 1000 1500 2000];

set (gca, 'YDir’, 'normal’, 'ytick’, YTickmark)

hold on;

N =N * 2

bot = bot + 0.225;

clear STFT; clear time; clear freq;
end

set (gcf, 'paperposition’, [0.5 0.5 7.5 101])

4.14.2 Wigner-Ville Distribution

o°

o°

PROGRAM wvd.m

o°

o°

Computes Wigner-Ville Distribution

o°

o°

Signal

4000; % sampling rate
t = (0:255) / «r;

R
Il

(STFT _min

91
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omegal = 2.0 * pi * 500.0;
f = exp(i*omegal * t) ;

% WVD Computation
N=length(f) ;

if (mod(N, 2

Z rh

1]
A
+
(o

end

N2ml = 2 * N - 1;
Nb2 = N / 2;

for m = 1:N

s = zeros(1l,N2ml) ;
s (N-(m-1) :N2ml-(m-1)) = £;
s = conj (fliplr(s)) .*s;

s = s(Nb2:N2ml-Nb2) ;
shat = abs(fft(s));

oo

oo

Normalize with the number of overlapping terms

oo

if m <= Nb2
shat = shat / (2 * m - 1);

else
shat = shat / (2 * N - 2 * m + 1);
end

wvd (m, : )=shat (1:Nb2) ;

end

% Plot

time = (0:N-1) / r;

freg = (0:Nb2-1) * r / N / 2;

NColor = 256;
colormap (gray (NColor) ) ;
wvd_min = min (min (wvd)) ;
wvd_max = max (max (wvd)) ;

wvd = (wvd - wvd_max) * NColor / (wvd_min - wvd_max) ;
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image (time, freq,wvd’) ;

oo

%

Because of the finite support of the signal, there will
end effects

xlabel ('Time (seconds)’);
vlabel ('Frequency (Hz)');
set (gca, 'YDir’, 'normal’)
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CHAPTER FIVE

Multiresolution Analysis

Multiresolution analysis (MRA) forms the most important building block for
the construction of scaling functions and wavelets (Chapter 6) and the devel-
opment of algorithms (Chapters 7 and 8). As the name suggests, in multireso-
lution analysis, a function is viewed at various levels of approximations or
resolutions. The idea was developed by Meyer [1] and Mallat [2, 3]. By apply-
ing the MRA we can divide a complicated function into several simpler ones
and study them separately. To understand the notion of MRA, let us consider
a situation in which a function consists of slowly varying and rapidly varying
segments, as illustrated in Figure 5.1. If we want to represent this function at
a single level of approximation, we have to discretize it using step size (h),
determined by the rapidly varying segment. This leads to a large number of
data points. By representing the function using several discretization steps
(resolutions) we can significantly reduce the number of data points required
for accurate representation. The coarsest approximation of the function
together with the details at every level completely represent the original func-
tion. Observe that with every level (scale), the step size is doubled. This cor-
responds to “octave level” representation, familiar in audio signal processing.
In addition to this specific example, there are many situations in signal pro-
cessing as well as in computational electromagnetics in which multiresolution
analysis can be very useful.

In this chapter we begin with an understanding of the requirements of
MRA. Two-scale relations and decomposition relations are explained.
Cardinal B-splines, discussed in Section 5.5, generate an MRA and form the
basis of most of the wavelets discussed in this book and elsewhere. Finally,
in Section 5.6 we discuss how to map a given function into an appropriate
subspace before starting an MRA.

Fundamentals of Wavelets: Theory, Algorithms, and Applications, Second Edition,
By Jaideva C. Goswami and Andrew K. Chan
Copyright © 2011 John Wiley & Sons, Inc.
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FIGURE 5.1: Multilevel representation of a function.

5.1 MULTIRESOLUTION SPACES

Let us go back to Figure 5.1. Every time we go down one level by doubling
the step size, we remove certain portions of the function, shown on the right-
hand side plots. Then there are the “leftover” parts that are further decom-
posed. In Figure 5.1, we will assign all the functions on the left-hand side to
A and the ones on the right-hand side to W, where s represents individual
scales. Let A be generated by the bases {¢y : 22¢(2°t — k); k € Z} and Wy by
{(Wis : 22w(2°t - k); k € Z). In other words, any function x,(¢) and y,(¢) can be
represented as the linear combinations of ¢ (¢) and yj ,(¢), respectively.

Observe that both the functions x,1(¢) € A,y and y,1(f) € W,_4(t) are
derived from x, € A,. Therefore, we should expect that the bases @1 of A,y
and yy - of W,y should somehow be related to the bases ¢ of As. Such a
relationship will help in devising an algorithm to obtain the functions x,_; and
ys—1 from x; more efficiently.

To achieve a multiresolution analysis of a function as shown in Figure 5.1,
we must have a finite-energy function ¢(f) € L*(R), called a scaling function,
that generates a nested sequence {A;}, namely

0} cA cAycAc---> I
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and satisfies a dilation (refinement) equation

0(1)=Y golk]¢(ar—k)
k

for some a > 0 and coefficients {go[k]} € ¢>. We will consider a = 2, which cor-
responds to octave scales. Observe that the function ¢(t) is represented as a
superposition of a scaled and translated version of itself, and hence the term
scaling function. More precisely, A is generated by {¢(- — k) : k € Z}, and in
general, A, by {¢x: k,s € Z}. Consequently, we have the following two obvious
results:

x(t)e Ay © x(2t) € Agq (5.1)
x()e Ay & x(1+27)e A, (5.2)
For each s, since A; is a proper subspace of Ay, there is some space left in
Ay, called Wy, which when combined with A; gives us Ay.. This space {W,} is
called the wavelet subspace and is complementary of A in Ay,;, meaning
AsNWs ={0},se€Z, and (5.3)
A, ®W, = Ay, (5.4)
With the condition (5.3), the summation in (5.4) is referred to as a direct sum,
and the decomposition in (5.4) as a direct-sum decomposition.
Subspaces {W,} are generated by w(f) € L%, called the wavelet, in the

same way as {A;} is generated by ¢(¢). In other words, any x,(f) € A, can be
written as

(1) = Zam(zw —k), (5.5)

k

and any function y(¢) € W, can be written as

y(0)= Y wis y(2°1-k), (5.6)
k

for some coefficients {ax s}rez, {(Wrshkez € /2.
Since

Ag1 =W @As
=W, ©W,_ ® Asy
=W, @W,_ ©W,_, ®--- (5.7)
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FIGURE 5.2: Splitting of MRA subspaces.

we have

s—1
A= ® W,

f=—oco

Observe that the {A;} are nested while the {W,} are mutually orthogonal.
Consequently, we have

A/nAm :A/,mZF
W,NW,, ={0};(=zm
A, NW, 2{0};€Sm.

A schematic representation of the hierarchical nature of Ay and W; is shown
in Figure 5.2.

5.2 ORTHOGONAL, BIORTHOGONAL, AND
SEMIORTHOGONAL DECOMPOSITION

In Section 5.1, the only requirement we had for the wavelet subspace W, was
that it be complementary of A, in Ay In addition to this, if we also require
that W, L A, then such a decomposition is called an orthogonal decomposi-
tion. Let us explain the orthogonality of A, and W; a little further. For simplic-
ity,let s = 0. For this case, {¢(t — k) : k € Z} spans Ay; likewise, {y(t — k) : k € Z}
spans Wy. Then Ay L W, implies that

oo

o()y(t—0)dt=0 forallleZ. (5.8)

—oo
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In general, {¢( — k) : k € Z} and {y(t — k) : k € Z} need not be orthogonal in
themselves; that is,

_M o()o(t—10)dt#0 (5.9)

vy (t—10)dr #0. (5.10)

—oo

Let us relax the condition that A; and W, be orth0g~0nal to each other and
assume that the wavelet y; ; € W, has a dual, y ; € W,. Duality implies that
the biorthogonality condition is satisfied; namely

(Wkjo Wimt) = Okm0jss Jik,l,me. (5.11)

Although we do not require Wy L A, we do need that W, L A,,the importance
of which will become clear later. Similar to the dual wavelet v, ;, we also
consider a dual scaling function ¢, that generates another MRA {A} of L.
In other words, ¢ and yj, are associated with the MRA {A,}, and J)k,s and
Vs are associated with the MRA {A,}.

Let us summarize our results so far before proceeding to explain their
importance.

MRA {A,}
Asi = A+ W
A( ﬂ Am = A/, m2/
WﬁﬂWm 2{0}; {#=m
A NW, ={0}; (<m.
MRA {A,}

Agi1 = A, +Wy
ANA, =A; m>(
W.NW, ={0}; l#m
ANW,, ={0}; (<m.

W, LA, =ANW, ={0}orl<m

{"i]sJ-As = A, NW,, ={0} for ¢/ <m.

The decomposition process discussed so far is called biorthogonal decom-
position. To understand its importance let us briefly point out the procedure
of decomposing a function into scales, as shown in Figure 5.1. The details are
left for Chapter 7.
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Given a function x(f) € L?, the decomposition into various scales begins
by first mapping the function into a sufficiently high-resolution subspace Ay,
that is,

1? BX(I)I—)XM:Zak’M(P(ZMl—k)EAM. (512)
k

Now since

Ay =Wy + Ay
=Wy_1 + Wy + Ay

N
= Wayr—n + Ay—n, (513)
n=1
we can write
N
xu(t) = Z Yron(£)+ Xpn () (5.14)
n=1

where xp_n(f) is the coarsest approximation of x,(f) and

xy(t)= Zam(p(Zst—k) €A, (5.15)
k
ys(t) = zwk,sll/(zst_k) eW,. (5.16)
k

Now the importance of dual wavelets becomes clear. By using the biorthogo-
nality condition (5.11), we can obtain the coefficients {wy s} as

Wis = 2SJ' ()W (22— k)dr. (5.17)

Recall that l/?(Zst—k)eWs and A, L W, for ¢ <s. Therefore, by taking the
inner product of (5.14) with ¥y s(¢) and by using the condition (5.11), we have

w,m:sz' o (0 (251 k) de
k1
=22w, (—,—). 5.18
vAM 25798 ( )

The dual wavelet ¥ can be used to analyze a function xj, by computing its
integral wavelet transform at a desired time-scale location, while y can be
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used to obtain its function representation at any scale. Therefore, we call { an
analyzing wavelet, while y is called a synthesis wavelet.

Of course, if we have orthogonal decomposition A; L W, with orthonormal
bases {¢, ¥}, then the analyzing and synthesis wavelets are the same. Observe
that when we say orthonormal (o.n.) wavelets, this implies that the wavelets
are orthonormal with respect to scale as well as with respect to translation in
a given scale. But orthonormal scaling function implies that the scaling func-
tions are orthonormal only with respect to translation in a given scale; not with
respect to the scale because of the nested nature of the MRA.

A question that arises is, Why do we need biorthogonal (b.o.) wavelets? One
of the attractive features in delegating the responsibilities of analysis and syn-
thesis to two different functions in the biorthogonal case as opposed to a single
function in the orthonormal case is that in the former, we can have compactly
supported symmetric analyzing and synthesis wavelets and scaling functions,
something that a continuous o.n. basis cannot achieve. Furthermore, o.n. scaling
functions and wavelets have poor time-scale localization.

In some applications to be discussed in later chapters, we need to inter-
change the roles of the analysis and synthesis pairs, {¢, v}, {9, 7}, respectively.

In b.o. decomposition, we cannot do so easily since ¢ and 0 generate two
different MRAs, A and A, respectively. For such an interchange, we need to
map the given function x > X, € Ay, and then we can use y as analyzing and
¥ as synthesizing wavelets.

In addition to b.o. and o.n. decomposition, there is another class of decom-
position called semiorthogonal decomposition, for which A; L W;. Since in this
system, the scaling function and wavelets are nonorthogonal, we still need their
duals, a} and Y. However, unlike the b.o. case, there is no dual space. That is,
0,9 <€ A, and v, [y € W,, for some appropriate scale s. In this system it is very
easy to interchange the roles of ¢, y with those of ¢, V.

For semiorthogonal scaling functions and wavelets, we have

(o(t—k),9(t—0))=6ks, k,leZ, and (5.19)
(Wi Wim)=0 forj#(, and j k,(,meZ. (5.20)

The wavelets {¢, y} are related to {9, 7} as

$(w)=% (5.21)

and
fu(m:% (522)

with
E.(e®):= i |% (0 +27k)]* = i Ay (k)elk®, (5.23)

k=—oo K=—oo
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where A,(f) is the autocorrelation function of x(¢). For a proof of (5.23), see
Section 7.6.1. Observe that the above relation is slightly different from the
orthonormalization relation (2.35) in that here we do not have the square root
in the denominator. In Chapter 6 we will discuss the construction of all the
scaling functions and wavelets that we have discussed.

5.3 TWO-SCALE RELATIONS

Two-scale relations relate the scaling function and the wavelets at a given scale
with the scaling function at the next higher scale. Since

(1) € Ag < Ay, and (5.24)
y(r)eWy c Ay, (5.25)

we should be able to write ¢(f), and y(¢) in terms of the bases that generate
Ay. In other words, there exist two sequences {go[k]}, {g1[k]} € ¢* such that

0(1)=) golklo(2i~k), (526)
k

y(0)= Y ailkloi-k) (527)
k

Equations (5.26) and (5.27) are referred to as two-scale relations. In general,
for any j € Z, the relationship between A;, W; with A, is governed by

9(2/1) =) golklo(2/*1 k),
k

w(2/r)= Z gilk]o(2/ 1 —k).
k

By taking the Fourier transform of the two-scale relations, we have

$(w)= Go(Z)é(%), (5.28)
V()= Gl(z)é)(%), (5.29)

where
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on(t) € Ao on(2t) € Ay (2t —1) € Ay
1 — —
I 1 I I 1 I I 1 I
I I I I I I
| | = | | + | |
I I I I I I
I I I I I I
o 1 o 1/2 1 o 1/2 1
’L/JH(t) e Wy ¢H(2t) €A 7¢H(2t - ].) € A
— —
I 1 I 1 I
I I I
| = | | +
: : : o 1/2 1
o 1 o 1/2 1

-1

FIGURE 5.3: Two-scale relation for Haar case (go[0] = go[1]=1; &1[0] =-gi[1] =1,
go[k] = gi[k] = O for all other k).

Go(z):= %Zgo[k]z", (5.30)
k

Gi(2):= %Zgl[k]z", (531)
k

with z = ¢7?2. Observe that the definitions in (5.30) and (5.31) are slightly
different from those used in Chapter 2 for z-transform. An example of a two-
scale relation for the Haar case (H) is shown in Figure 5.3. Using (5.28) and
(5.29) recursively, we have

¢(w)= EI[GO(GXP(_j 23/}) (5.32)
V(o) =G (exp(—j%)) I_!GO (exp(—j %D (5.33)
(=

Since the scaling functions exhibit the low-pass filter characteristic [dA)(O) = 1],
all the coefficients {go[k]} add up to 2, whereas because of the band-pass filter
characteristic of the wavelets [ (0) = 0] the coefficients {g;[k]} add up to 0.

5.4 DECOMPOSITION RELATION

Decomposition relations give the scaling function at any scale in terms of the
scaling function and the wavelet at the next lower scale. Since A =Ag+ W
and ¢(21), (2t —1) € A, there exist two sequences ({ho[k]}, {h1[k]}) in ¢
such that
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om(2t) € Ay u(t)/2 € Ao Yu(t)/2€ Wo
1
| | 1/2 1/2
| | = 1 + 1
l l 1 l l l 1
o 1/2 1 o 1 o | |
| |
-1/2
¢H(2t71)€A1 ( )/QEAO 7¢H(t)/2€W0
V1—\
| | 1/2 1/2
I | = 1 + | |
1 1 ! 1 o | |
o 1/2 1 o 1 : : 1

FIGURE 5.4: Decomposition relation for Haar case (ho[0] = ho[-1] = 1/2; hy[0] =
—hi[-1] = 1/2; ho[k] = hy[k] = O for all other k).

0(20)= Y {ho[2k]9 (1~ k)+ [ 2k]w (1 k)

k
9(20-1)= Y {ho[2k—1]9(c—k)+ [2k~ 1]y (t=k)}.
k

Combining these two relations, we have:

0(2-1)= Y {2k =119~ k)+ 2K~y (=k)}  (534)
k

for all ¢ € Z. In general, we have

o(2 - z{ho[Zk (21— k)+ 2k -y (27t -k)}.  (5.35)
Figure 5.4 shows an example of decomposition relation for the Haar case (H).

5.5 SPLINE FUNCTIONS AND PROPERTIES

One of the most basic building blocks for wavelet construction involves car-
dinal B-splines. A complete coverage of spline theory is beyond the scope of
this book. In this section, we describe briefly spline functions and their proper-
ties that are required to understand the topics of this book. Further details are
available in many excellent books (e.g., [4-8]).

Spline functions consist of piecewise polynomials (see Figure 5.5) joined
together smoothly at the break points (knots: #y, t1, ...), where the degree of
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FIGURE 5.5: Piecewise polynomial functions.

smoothness depends on the order of splines. For cardinal B-splines, these break
points are equally spaced. Unlike polynomials, these form local bases and have
many useful properties that can be applied to function approximation.

The mth order cardinal B-spline N,,(¢) has the knot sequence {..., —1, 0,
1, ...} and consists of polynomials of order m (degree m — 1) between the
knots. Let Ni(f) = x[0,1)(f) be the characteristic function of [0, 1). Then for each
integer m > 2, the mth order cardinal B-spline is defined, inductively, by

N (£) 1= (Npt % N1 ) (2) (5.36)

= Ny (t—x) Ny (x)dx

—oo

- _[01 Ny (= x) dx. (5.37)

A fast computation of N,,(¢), for m > 2, can be achieved by using the fol-
lowing formula [7, p. 131].

Nm(t)=LNmfl(t)"_m__tNmfl(t_l)
m—1 m—1

recursively until we arrive at the first-order B-spline N; (see Figure 5.6).
Splines of orders 2 to 6, along with their magnitude spectra, are shown in
Figure 5.7. The most commonly used splines are linear (m =2) and cubic
(m = 4) splines. Their explicit expressions are as follows:

t te[0,1]
Ny(t)=42-t t€[1,2] (5.38)
0 elsewhere
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FIGURE 5.6: Ny, the spline of order 1.
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1
|
Ni(t) | [N1(w)]
} 0 =
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Na(t) ! /—\Nz(w)
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0
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FIGURE 5.7: Spline functions and their magnitude spectra.
3 tel0,1]
4-12t+122 -3 te[l,2]
N4(t)=1<-44+60t—24t> +36> te[2,3] (5.39)
64-48t+12t> 1> te[3,4]

0

elsewhere.
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TABLE 5.1: Cardinal B-Splines at Integer Points

k (m = 1IN, (k) k (m - 1)IN,,(k) k (m — 1)IN,,(k)
m=3 m=28 m=11
1 1 1 1 1 1
m=4 2 120 2 1,013
1 1 3 1,191 3 47,840
2 4 4 2,416 4 455,192
m=>5 m=9 5 1,310,354
1 1 1 1 m=12
2 11 2 247 1 1
m=6 3 4,293 2 2,036
1 1 4 15,619 3 152,637
2 26 m=10 4 2,203,488
3 66 1 1 5 9,738,114
m="17 2 502 6 15,724,248
1 1 3 14,608
2 57 4 88,234
3 302 5 156,190

In many applications, we need to compute splines at integer points. Table 5.1
gives spline values at integer locations. Symmetry property can be used to get
values at other points.

To obtain the Fourier transform of N,(t), observe that (5.36) can be
written as

N (t) = (Ny -5 Np)(2). (5.40)
| S ——
Therefore,
N _ e io\"
Nm(w)=(1 - j (5.41)
jo
since

A~

1 _ jo
Ry (@) = jo eiongp=1=¢"

Jo

(5.42)

The important property of splines for our purposes is the fact that
they are scaling functions. That is, there exists a sequence {go[m, k]} € /2
such that
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No(t) = 2 go[m, kN, (2t — ). (5.43)
k

In Chapter 6, we will derive an expression for go[m, k].

5.5.1

Properties of Splines

Some important properties of splines, relevant to the topics discussed in this
book, are discussed in this section without giving any proof. Proofs of some of
the properties are left as exercises.

e

10.

Supp N,,, = [0, m] with N,,,(0) = N,,,(m) =0

. N (t) € C"% Ck is the space of functions that are k-times continuously

differentiable.

- Nulik-14] € Ttm-1; k € Z; m is the polynomial space of degree k (order

k+1).

[" . Nu(t)dt =1

N ()= Np1(t)= Ny (1 1)

N,,(t) is symmetric with respect to the center t* = m/2:

Nm(%+t)=Nm(%—tj; teR (5.44)

~

N,(t) behaves as a lowpass filter [ N,,(0) =1; see Figure 5.7].

N,.(¢) has mth order of approximation in the sense that N,, (o) satisfies
the Strang-Fix condition

{ N,,(0)=1,and (5.45)

DIN,,(2nk)=0, keZ\{0} and j=1,....,m—1,

where D’ denotes the j order derivative. Consequently, N,,(¢) locally
reproduces all polynomials of order m [8, pp. 114-121].

. Npu(t = k) = 1; for all . This property is referred to as the partition of

unity property.

Total positivity: N,,(t) 2 0, for ¢ € [0, m]. By virtue of the total positivity
[6, p. 7] property of B-splines, coefficients of a B-spline series follow the
shape of the data. For instance, if g(¢)=2X;;N,,(t—j), then
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aj20Vji=g(t)=0
a; T (increasing) = g (1) T, and

o (convex) = g(r) convex.

Furthermore, the number of sign changes of g(¢) does not exceed that
of the coefficient sequence {¢;}. The latter property can be used to
identify the zero crossing of a signal.

11. As the order m increases, N,,(f) approaches a Gaussian function
(A, Ay, — 0.5). For instance, in the case of a cubic spline (m = 4), the
r.m.s. time-frequency window product is 0.501.

5.6 MAPPING A FUNCTION INTO MRA SPACE

As discussed in Section 5.2, before a signal x(f) can be decomposed, it must
be mapped into an MRA subspace A, for some appropriate scale M, that is,

x(t) > xy () = Zak,qu(th-k). (5.46)
k

Once we know {ay ]} we can use fast algorithms to compute {ay} for s < M.
Fast algorithms will be discussed in later chapters. Here we are concerned with
the evaluation of the coefficients {ay u}.

If x(¢) is known at every ¢, then we can obtain {a, ]} by the orthogonal
projection (L? projection) of the signal:

oo

Gt = 2MJ () §(2M1— k). (5.47)

—oo

However, in practice the signal x(7) is known at some discrete points. The
given time step determines the scale M to which the function can be mapped.
For representation such as (5.46), we want it to satisfy two important
conditions: (1) interpolatory and (2) polynomial reproducibility. By interpola-
tory representation we mean that the series should be exact, at least at the
points at which the function is given, meaning x(k/2™) = x/(k/2™). As pointed
out before, polynomial reproducibility means that the representation is
exact at every point for polynomials of order m if the basis ¢(¢) has the
approximation order m. In other words, x(¢) = xp(¢) for x(¢) € m,_;. Cardinal
B-splines have m order of approximation. In addition, since they are a
local basis, the representation (5.46) is also local. By /local we mean that to
obtain the coefficient ay,, for some k, we do not need all the function values;
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only a few, determined by the support of the splines, will suffice. The coeffi-
cients when ¢(f) = N»(¢) and ¢(t) = N4(t) are derived below.

5.6.1 Linear Splines (m = 2)

Suppose a function x(¢) is given at ¢t = ¢/2¥ : / € Z. Then to obtain the spline
coefficients {ay ) for the representation

x(0) - xm (1) = Zak,MNQ(zMz—k), (5.48)
k

we apply the interpolation condition, namely

l L
By using equation (5.49), along with the fact that
Ny(1)=1,and N,(k)=0, k € Z\{0}, (5.50)

we get
k+1
arm = x(z—Mj (551)
The representation (5.48) preserves all polynomials of degree at most 1.

5.6.2 Cubic Splines (m = 4)

In this case

x(t)HxM(t)zzak,M Ny(2M1k) (5.52)
k

where [4, p. 117]

and
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é, n=0

24

l, n=+=1

12

—l, n=12
Vy=3 8

—i, n=13

12

i, n=14

48

0, otherwise.

The representation (5.52) preserves all polynomials of degree at most 3.

5.7 EXERCISES

1. For a given j € Z, a projection P, f(t) of any given function f(f) € L*(—oo, =)
onto the “hat function space”

V; :{ Z csz(ij—k)i{Ck}kez efz}
it

can be determined by the interpolation conditions Py ;f (k/2/)= f(k/2')
for all k € Z. Find the formulas for the coefficients {a,} if P, ;fis written as

Py if(1)= z a,N> (2t -n).

N=—o0

2. For the Haar wavelet

1 for te[O,l)
2

1
v (t)=4-1 for te[z,l)

0 otherwise.

define

Vinks(t)=22yy(2°t-k), k,seZ
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Show the orthogonality relations
J Vi ks (OWitmp (1)t = 8085 K, posEZ.

Due to these relations, we say that the set { Wk s}xsez forms an orthonormal
family in L2(—eo, o).

. . 2 . .
. Show that the Gaussian function ¢(z)=e™"" cannot be the scaling function
of a multiresolution analysis. (Hint: assume that e can be written as

e =37 ware™ K for a sequence {aglkez in (5, which has to be true if

e eVyc V. Then show that this leads to a contradiction by taking

Fourier transforms on both sides of the equation and comparing the
results.)

. Show that the mth order B-spline N, (f) and its integer translates form a
partition of unity:

2 Nn(t—k)=1 forallzreR.
k:—oo

(Hint: use Poisson sum formula.)

. Show the following symmetry property of N,,(¢):

m m
Nm(?-Fl‘):Nm(E—I), teR.

. Use exercise 5 to show that

- Np(t+k)N,,(t)dt = Ny (m+k)

—oo

for any k € Z.

. Show that the hat function
t t€[0,1]

Nyp(t)=42-t te[l,2] (5.53)
0, otherwise

and the function N,(¢) are related by convolution: Ny(7) = Ni(¢) * Ni(¢).
Find the defining equations (the polynomial expression) for the functions
given by

N3(l)1= Ng([)*Nl([)

Na(r)i= N3(0)* Ny 1),
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5.8 COMPUTER PROGRAMS

5.8.1 B-Splines

oe

oe

PROGRAM Bspline.m

oe

oe

Computes uniform Bsplines
function y = Bspline(m,x)
y = 0;

% Characteristic function

if m = 1
if x >= 0.0 & x < 1.0
y = 1.0;
else
y = 0.0;
end
end

% Higher order

a = zeros(1l,500);
if m > 2 & m < 100
for k = 1:m-1
a(k) = 0.0;
xl = x - k + 1;
if x1 > 0.0 & x1 < 1.0
a(k) = x1;
end
if x1 > 1.0 & x1 < 2.0
a(k) = 2 - x1;
end
end
for p=1l:m-2
for g=l:m-1-p
a(q) = ((x-gtl) * al(q)
(p+1) ;
end
end
y = a(l);

+ ((p+2)+g-1-x)

*

a(at+l))

/
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CHAPTER SIX
|

Construction of Wavelets

In this chapter we are concerned with the construction of orthonormal, semi-
orthogonal, and biorthogonal wavelets. The construction problem is tanta-
mount to finding suitable two-scale and decomposition sequences as introduced
in Chapter 5. It turns out that these coefficients for orthonormal wavelets can
be easily derived from those of semiorthogonal wavelets. Therefore, we first
discuss the semiorthogonal wavelet followed by orthonormal and biorthogo-
nal wavelets.

Recall that for the semiorthogonal wavelet, both ¢(¢) and ¢(t) are in Ay,
and () and () are in W,. Consequently, we can write ¢(¢) in terms of ¢(¢);
similarly for w(). These relations as given by (5.21) and (5.22) are reproduced
here.

q:)(a)) = Efézi‘)")’ and (6.1)
8 V()
w(w)=%, (62)

with the Euler-Frobenius-Laurent (E-F-L) polynomial E¢(e/®) given by

oo

Ef(e®):= 2 |jf(w+2nk)|2 = i Ap(el™). (6.3)

k=—co k=—c0

We will, therefore, concentrate on the construction of ¢ and y only.

Fundamentals of Wavelets: Theory, Algorithms, and Applications, Second Edition,
By Jaideva C. Goswami and Andrew K. Chan
Copyright © 2011 John Wiley & Sons, Inc.
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As the first step toward constructing wavelets, we express {ho[k]}, {f1[k]}
and {g1[k]} in terms of {go[k]} so that only {go[k]} and hence the scaling func-
tions need to be constructed. In semiorthogonal cases, all these sequences have
different lengths, in general. Later we will show that for o.n cases, all of these
sequences have the same length and that there is a very simple relation among
them which can be easily derived as a special case of the relationship for
semiorthogonal cases. The construction of a semiorthogonal wavelet is fol-
lowed by the construction of several popular orthonormal wavelets: the
Shannon, Meyer, Battle-Lemarié, and Daubechies wavelets. Finally, we con-
struct a biorthogonal wavelet. Other wavelets such as ridgelets, curvelets,
complex wavelets, and lifting wavelets are discussed in Chapter 8.

6.1 NECESSARY INGREDIENTS FOR WAVELET CONSTRUCTION

As pointed out before, we need to obtain the coefficient sequences {go[k]},
{g1[k]} to be able to construct wavelets. In this section, our goal is to find a
relationship among various sequences. This will help us in reducing our task.
Here we consider the case of semiorthogonal decomposition of a multiresolu-
tion space.

6.1.1 Relationship between the Two-Scale Sequences

Recall from Chapter 5 that, as a result of the multiresolution properties, the
scaling functions and wavelets at one scale (coarser) are related to the scaling
functions at the next higher scale (finer) by the so-called two-scale relations:

¢(r>=§k‘,go[k]¢<2r—k), (6.4)
w<r>=;gl[k]¢<zr—k). (6.5)

By taking the Fourier transform of the above relation, we have
6(0)=Go(2)3( 2 . (66)
()= GMZ)&(%} (6.7)

where z = ¢ 72 and

Go(2):=5 ) golk]zH, (68)
k
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1 k
GI(Z)-—E Ek gilk]z". (6.9)

Observe that ¢(r) € Ay, ¢(2f) € A1, and y(r) € W,. From the nested property
of MRA, we know that Ag < A; and Ay L W, such that Ag ® Wy =A;. The
orthogonality of the subspaces Ag and W, implies that for any ¢ € Z,

(@(t=10), w(1))=0. (6.10)
Equation (6.10) can be rewritten by using the Parseval’s identity as

0= [ b0 P (@) do

21
i3

1 471'(k+1)
=E;J Go(2)Gr(2)

2

e "dw
i)
2

43(%+2ﬂk)

:% j:oGo(z)Gl(z)

e "4

drk
4r

:%;J.o Go(2)Gi(z)

1 Iy 4 . )
- jo Go(2)Gr(@) Ey(2)e " dw 6.11)

2
e

where z = ¢ 7“2, By partitioning the integration limit [0, 47] into [0, 27] and
[27, 47], and with a simple change of variable, it is easy to verify that equation
(6.11) is the same as

2n . .
%J‘O [Go(2)G1(2)E(2)+ Go(-2)G1(—2)Ey(~2) Je "dw=0.  (6.12)

The expression (6.12) holds for all ¢ € Z. What does it mean? To understand
this let us recall that an integrable 27-periodic function f{(¢) has the Fourier
series representation

f(w)=ch e/, where (6.13)
¢
1 2r )
a=—| flwedo. (6.14)
2rdo

From the above it is clear that the quantity on the left of (6.12)
represents the (th Fourier coefficient of a periodic function Gy(z)Gi(2)E(z)+
Go(—z)Gi(-z)Es(—z)- Since all these coefficients are zero, it implies that




NECESSARY INGREDIENTS FOR WAVELET CONSTRUCTION 117

Go(2)Gi(2)E¢(2)+Go(~2) G (=2)Ey(~2) =0 (6.15)

for IzI = 1. The solution of (6.15) gives the relationship between G1(z) and
Go(z). By direct substitution, we can verify that

Gi(z)=—-cz*""'Gy(-2) Ey(-2) (6.16)

for any integer m, and a constant ¢ > 0 is a solution (6.15). Without any loss
of generality we can set ¢ = 1. The effect of m is to shift the index of the
sequence {gi[k]}. Usually m is chosen such that the index begins with 0.

6.1.2 Relationship between Reconstruction and Decomposition Sequences

Recall from Chapter 5 that the scaling function at a certain scale (finer) can
be obtained from the scaling functions and wavelets at the next lower (coarse)
scale. In mathematical terms, it means that there exist finite energy sequences
{holk]}, {M[k]} such that

6(2—1)= Z{hg [2k — (]¢(t—k)+hy [2k — O]y (t—k)}, (6.17)
k

where, as discussed in Chapter 5, {ho[k]}, {l[k]} are the decomposition
sequences. By taking the Fourier transform of the decomposition relation,
we get

%&( je jot/2 Zho [2k — ]e k@ ( w)+2hl [2k — ]e % ()

= {Go(z)Zho [2k = £ + Gy (2) D In [2k—!@]e‘fk‘”}q3(%).
k k

This equation reduces to

[z ho[2k — g]ef@“)w/zjco(z)
k
+ [z h[2k - z]ef@k“w/Z]G (z)= % VA (6.18)
k

Combining the Fourier transforms of the decomposition and two-scale rela-
tions we get

[Ho(z)+ Ho(-2)]Go(z)+[H1(z)+ H1(-2)]Gi1(z)== for even ¢, (6.19)

[Ho(z)— Ho(-2)]Go(z)+[H1(z)— H1(-2)]G1(z) == for odd ¢, (6.20)

N[ = N =
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where z = ¢7?2 and

Ho(Z)?%Zho[k]zk,
%

Hl(z):zéz‘hl[k]zk.
k

These equations lead to

Hy(2)Go(2)+ Hy(2)Gi (2) :%
Hy(-2)Go(z)+ H1(~2)G1(2) =0.
The last equation can also be written as
Hy(2)Go(-z)+ H1(2)Gi(-z)=0. (6.21)

In the matrix form, we have

e G Trotal|

the solution of which gives

1
8}, (6.22)

1 Gi(-z)

Ho()= 332 = (6.23)
Hi(2)= —% x % (6.24)
with Ay, () = Go(2) Gi(~2) - Go(~2) G (2). (6.25)

It can be shown that
MGy (2)=c 2™ Ey(2%), (6.26)

where ¢ > 0 and # is an integer. Since ¢ generates a Riesz or stable basis, Ey(z)
and hence Agg, (z) #0.
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6.2 CONSTRUCTION OF SEMIORTHOGONAL SPLINE WAVELETS

The significance of the results obtained in Section 6.1 is that we need to con-
struct only the scaling functions—that is, we need to find only the sequence
{go[k]}. In this section we will obtain these sequences for semiorthogonal spline
wavelets introduced by Chui-Wang [1]. Here the cardinal B-splines N,, are
chosen to be the scaling functions. We will show that a finite energy sequence
{go[m, k]} exists such that the scaling relation

Nou()=Y" golm, KIN (21~ k) (6.27)
k

is satisfied and, therefore, N, (t) is a scaling function. For m = 1, {Ny(z — k):
k € Z} form an orthonormal basis of Ay. For this case, we have already seen
that go[0] = go[1] = 1 (see Figure 5.3). In this section we will consider the cases
for which m = 2.

For m > 2, the scaling functions {N,,(t — k): k € Z} are no longer orthogonal:

j Nop(6) Ny (6= £)di # 0., (6.28)

for all ¢eZ. AoIol example of nonorthogonality of N,(f) is shown in
Figure 6.1. The | N,(t)N,(t—/)dt is shown by the shaded area, which is
non-zero.

6.2.1 Expression for {go[kl}
Recall, from the definition of N,,(¢) in Chapter 5, that

No(t)=(Ny#---# Ny )(1)

m

No(t) No(t—1)

0 1 2 3
FIGURE 6.1: Nonorthogonality of linear spline shown by the shaded area.
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and that

By comparing the coefficient of powers of z, we get

m), 0<k<m

27m+1 (
golk]:=go[m, k]=
’ ! 0 otherwise.

(6.29)

(6.30)

(6.31)

(6.32)

Once we have {go[k]}, the rest of the sequences {gi[k]}, {ho[k]}, and {h;[k]} can
be found by using the relations derived in Section 6.1. The expression

of {g1[k]} is derived next.
For N,(t), the E-F-L polynomial Ey,, (z) takes the form of

hd 2

Nm (9+ Zﬂk)
2

m—1
= Y Naw(m+h)Z,
k=—m+1

with z := ¢7®? and the autocorrelation function

A ()= [ Nop(6) Non(k + 1) dix = Ny (m + k).

—oo

Finally, by using the relation (6.16), we have

gilk] = gi[m, k] =(—1)k2_m+1z[ )Nz,n(kﬂ—f), 0<k<3m-2.

m
L

(=0

(6.33)

(6.34)

(6.35)
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6.2.2 Remarks

Recall that, in the expressions for Hy(z) and Hi(z) in terms of Gy(z) and
G1(z), there is a term Ag,g, (z) =z"Ey,, (z) in the denominator. Consequently,
the sequences {ho[k]} and {h[k]} are infinitely long, although their magnitude
decays exponentially. These are the sequences that will be used in the develop-
ment of decomposition and reconstruction algorithms in Chapters 7 and 8.
It is clear that while Gy and G; form FIR filters, Hy and H; are always IIR.
We will, however, prove in Chapter 7 that we can use Gy and G; for both
reconstruction and decomposition purposes. This is a consequence of the
duality principle that we briefly mentioned in Chapter 5.

The commonly used cubic spline and the corresponding semiorthogonal
wavelet with their duals and magnitude spectra are shown in Figures 6.2 and
6.3. See Chapter 10 for the expressions of commonly used semiorthogonal
scaling functions and wavelets. Table 6.1 gives the coefficients {gi[m, k]} for
m =2 through 6.

Na(t) | Na(w)]
0 0
0 1 2 0 10 20 30
0.8 R
ba(t) 05 [s(w)]
0
.0'5 0 e
0 1 2 3 0 10 20 30

2 2 R
Ny(t) 1 [N2(w)]
0
0 —_—
: 0 10 20

1 Tat) 2 [y ()|
0
-1 0 e

40 1 2 3 4 0 10 20 30

FIGURE 6.2: Linear spline, dual linear spline, the corresponding wavelets, and their
magnitude spectra.

30
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Na(t)

05 Uu(t)

-0.5

2 0 2 4 6 8

0-§ *’MM 02
02

FIGURE 6.3: Cubic spline, dual cubic spline, the corresponding wavelets, and their

magnitude spectra.

TABLE 6.1: Coefficients up := 2m1 (2m — 1)! g4[m, k] for Semiorthogonal Wavelet

(g1lm, k] = (-1)"g{[m, 3m — 2 — k])

k Um k k Um .k k Um k
m=2 m=>5 m=6
0 1 0 1 0 1
1 -6 1 =507 1 -2,042
10 2 17,128 2 164,868
m=3 3 -1,66,304 3 -3,149,870
0 1 4 7,48,465 4 25,289,334
1 -29 5 -1,900,115 5 —-110,288,536
2 147 6 2,973,560 6 296,526,880
3 -303 7 —525,228,384
m=4 8 633,375,552
0 1
1 -124
2 1,677
3 -7,904
4 18,482
5 —24.264
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6.3 CONSTRUCTION OF ORTHONORMAL WAVELETS

Recall from Chapter 2 that the Riesz bounds for orthonormal bases are 1.
Therefore, for orthonormal scaling functions, ¢, and the corresponding wave-
lets v, we have

Eg(e™)= Z|q3(a)+ 27tk)|2 =1,
k

Ey(e)= 2|1/7(a)+27rk)|2 =1,
k

for almost all @. Consequently,

9(t)=¢(t), and (1) =y (¢);

that is, they are self-duals. Remember from our discussion in Chapter 5 that
because of the nested nature of MRA subspaces, the scaling functions are not
orthogonal with respect to scales. Orthonormal scaling functions imply that
these are orthogonal with respect to translation on a given scale. Orthonormal
wavelets, on the other hand, are orthonormal with respect to scale as well as
the translation. By starting with

(@(t=1), (1)) =0, (6.36)

and following the derivation of (6.12), we arrive at the following results:
Go(2)? +|Go(-2)P =1, |zl =1. (6.37)

For orthonormal scaling functions and wavelets, the relationships among the
various sequences {go[k]}, {g1[k]}, {ho[k]}, and {h1[k]} can be obtained from the
results of Section 6.1 by setting m = 0. These results are summarized below.

G1(Z) = —ZG()(—Z)

= ai[k]=(-1)go[1-K]; (6.38)

AGy61(2)=Go(2)G1(-2) - Go(-2)Gi(z) =z (6.39)
Ho(z)zéx@:%x&)(z)

= hylk]= %go[—k]; (6.40)
i(0)=—3x 2 G0

= m[k]==(-1)*go[k +1]. (6.41)

N | =
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As an example, For a Haar scaling function and wavelet (Figures 5.3 and 5.4),

go[0]=go[1]=1;
g1[0]=1, g1 [1]=-1;

hol0)=ho[-1]=3;

1 1
h1 [0] =§, h] [—1]= —E;

golk]=gi[k]=ho|k]=m[k]=0 for all other k.

Remarks: One of the most important features of the orthonormal bases is
that all of the decomposition and reconstruction filters are FIR and have
the same length. This helps tremendously in the decomposition and recon-
struction algorithm discussed in Chapter 7. One of the disadvantages of ortho-
normal wavelets is that they generally do not have closed form expressions,
nor does a compactly supported orthonormal wavelet has linear phase
(no symmetry). The importance of linear phase in signal reconstruction will
be discussed in Chapter 7. It has also been shown [2] that the higher-
order orthonormal scaling functions and wavelets have poor time-frequency
localization.

6.4 ORTHONORMAL SCALING FUNCTIONS

In this section we will discuss the commonly used orthonormal wavelets of
Shannon, Meyer, Battle-Lemarié, and Daubechies. We will derive expressions
for only the sequence {go[k]} since other sequences can be obtained from the
relationships of Section 6.1.

6.4.1 Shannon Scaling Function
The Shannon sampling function

sin 7t

Osu (1) =

— (6.42)

is an orthonormal scaling function with @gz (@)= X(-xx)(@). Proving the
orthogonality of (6.42) in the time-domain by the relation

(D5 (t=10), ¢s (1)) = So,0 (6.43)

is cumbersome. Here it is rather easy to show that the Riesz bounds are 1;
that is,
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> |bsu(e+ 27k =1. (6.44)
k
The sequence {go[k]} can be obtained from the two-scale relation
1 —j )
=) golk]eikerr = A (6.45)
2 zk“ s (0/2)

Since the left-hand side of the expression is a 4m-periodic function, we need a
4r-periodic extension of the right-hand side. In other words, Gy(z) is nothing
but a 47-periodic extension of s (0) (see Figure 6.4)

= %z/ go[é]exp(— ,%f) = ;&SH(M 4ro). (6.46)

From (6.46) we can get the expression for the coefficients {go[k]}

4r R
golk]= % . 2¢5H(w+ 4ﬂ€)exp(j%k)dw

471' /+1

z J477:€ ¢SH exp(j%kjdw

= % _w¢SH ((U)CXP[] Tk)da)
=¢SH[§). (647)

By using (6.42), we get
1 fork=0
2o [k]=4(=)* V2 2 for odd k
krm
0 for even k #0.
Figure 6.5 shows the Shannon scaling function and the wavelet.
G5 (w + 4r) ) Gsu(w — 4r)
| | |
| | |
| | |
| | |
—47 —T

| |
| |
| |
| |
0

FIGURE 6.4: 47-periodic extension of sy ().



126 CONSTRUCTION OF WAVELETS

1 1 |
|
|
0.5 | N
Psu(t) L |psE(w)]
0 |
|
|
05 0 !
-10 5 0 5 10 0 T
1 1 | ‘
~ |
05 Vs (t) s (w)] ! 3
0 | |
! I
0.5 : !
! I
I I
-1 0 ! I
10 5 0 5 10 0 T o

FIGURE 6.5: Shannon scaling function, the corresponding wavelet, and their magni-
tude spectra.

6.4.2 Meyer Scaling Function

The Shannon scaling function ¢sy(f) has poor time localization (Agg,, = ).
The reason for this is that in the frequency domain, ¢sy (@) has a discontinuity
at —m and 7. Consequently, in the time domain, as given by (6.42), the function
decays as 1/t and hence its rms time window width (4.3) is e. To improve it,
Meyer [3, 4] obtained the scaling function ¢,»(®) by applying a smoothing
function near the discontinuities of ¢sy (@) in such a way that the orthogonal-
ity condition

vt m(@+27k) =1 (6.48)
S fousto-250)

is satisfied. In (6.48) the index m indicates the degree of smoothness—that is,
the mth order corner smoothing function S,,(®) is m times continuously dif-
ferentiable. To satisfy the orthogonality requirement (6.48), these corner
smoothing functions should have the following properties:

Su(¥)+Sn(l-y)=1, 0<y<1;
Sn(y)=0, y<0;
Sn(y)=1, y>1.

Examples of corner smoothing functions are given below.
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0, y<O0;
So(y)=1y, 0<y<l;
1, y>1.
0, y<0;
Si(y)= 2y?, 0<y<0.5;
2y?+4y—-1, 05<y<1;
1, y>1.

Let S,,(y) be a desirable corner smoothing function. Then

cos(ESm(i|w|—1D, 2—7T£|a)|£4—7r;
2 2r 3 3
A 4r
Ortm ((0) =10, |CO| 2 ?;
1, o)< 2.
3

The scaling function in the time domain then becomes

. 2mt
2SI . o
=3 i +§jo cos[sz(é)}cos[?(1+é)t}dé. (6.49)

3

¢M,m([)

For a linear smoothing function m = 0, the above integral can be easily evalu-
ated. The result is

. 2mt . 2wt 47t
o) SIHT 4 4ts1n7+cosT
Omp = 3 2m - 9167 . (6.50)
3

For higher values of m, the integral in (6.49) needs to be evaluated numerically.
In Figure 6.6 we show the scaling function and wavelet of Meyer for m =0
and 1.

As done before, the two-scale coefficients {go[k]} can be obtained by a 47-
periodic extension of ¢y, (®). An example of such an extension is shown in
Figure 6.7.

1 —_j ‘ZSMm(w)
=Y go[k]e kel =2
2 ; ¢M,m (%)

=) bum(@-+4rk).

k

Similar to the case of the Shannon scaling function, here too we get



128 CONSTRUCTION OF WAVELETS

|par0(w)]
0
27 A 6 8w
3 33 3
1 |12)M;0(w)|
0 n
27 A 61 8w
3 33 3
1 Par;1(t) 1 |bara (W)
0
0
4 2 0 2 4 2r  4n 6x  8r
3 3 3 3
1 |’(Z)M,1(w)|
0

2 A 6m 8w

3 3 3 3

FIGURE 6.6: Meyer scaling function, the corresponding wavelet, and their magnitude
spectra.

Ortm(w +4m) Drm(w

-
=
B
€
|
'
2

|
|
|
|
—4m —dn 0 4?” 47

FIGURE 6.7: 47-periodic extension of @y, (o).

golk]=orim (g) (6.51)

Therefore, for m = 0, we can obtain go[k] by simply substituting /2 for ¢ in
(6.50). Table 6.2 gives the two-scale coefficients for m = 1.

Meyer’s wavelets can be obtained by using the two-scale relations. Since the
scaling functions have compact support in the frequency domain, Meyer wave-
lets are related to the scaling function in a more direct way as shown below.
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TABLE 6.2: Two-Scale Sequence for First-Order Meyer Scaling Function @;:

n go[n] = go[-n] n go[n] = go[-n] n go[n] = go[-n]
0 1.0635133307325022 13 0.0018225696961070 26 0.0000781583234904
1 0.6237929148320031 14 -0.0001225788843060 27 —0.0002817686403039
2 -0.0594319217681172 15 -0.0019003177368828 28 —0.0000686017777485
3 -0.1762971983704155 16 —0.0000361315305005 29  0.0003520515347881
4 0.0484777578300750 17  0.0018514320187282 30 -0.0000591760677635
5
6
7
8

0.0751184531725782 18 —0.0004792529715153 | 31 —0.0002870818672708
—0.0339527984193033 19 -0.0013039128005108 | 32  0.0001435155716864
—0.0311015336438103 | 20  0.0007208498373768 33 0.0001507339706291
0.0197659340813598 | 21  0.0006265171401084 | 34 -0.0001171599560112
9 0.0110906323385240 | 22 -0.0005163028169833 | 35 -0.0000530482980227
10 -0.0089132072379117 | 23 -0.0002172396357380 | 36  0.0000282695514764
11 -0.0035390831203475 | 24  0.0001468883466883 37 0.0000443263271494
12 0.0025690718118815 25 0.0001627491841323 38  0.0000355188445237

Vatn (@) = G1(2) ftm (%) z=exp(—jw/2)

[

=—2Go(~2)Pmm (E)

S b 1) | Gim| 2
ZLZ’CJ)M’ (w+27+4n )}¢M, (2)

—=z[Bun( @+ 20)+ (027 Joun (2] (652

6.4.3 Battle-Lemarié Scaling Function

Battle-Lemarié [5, 6] scaling functions are constructed by orthonormalizing
the mth order cardinal B-spline N,,(f) for m > 2. As pointed out before, the
set of basis functions {N,,(t — k): k € Z} is not orthogonal for m > 2. The cor-
responding orthonormal scaling function N;5() can be obtained as

N (@)= _ Nn@) (6.53)

[En, ()]
The Battle-Lemarié (B-L) scaling function ¢g;. ,(?) is, then,
$pLm(1)= Niu(1),

and the coefficients {go[k]} can be found from

L
%zk:go [k]z* = Gy(e7/?) = % (6.54)
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TABLE 6.3: Two-scale Sequence for Linear Battle-Lemarié Scaling Function ¢gy;,

n go[n] = go[2 - n] n go[n] = go[2 - n] n go[n] = go[2 - n]
1 1.1563266304457929 14 0.0000424422257478 27 —0.0000000053986543
2 0.5618629285876487 15 -0.0000195427343909 28 —0.0000000028565276
3 —-0.0977235484799832 16 -0.0000105279065482 29 0.0000000013958989
4 —-0.0734618133554703 17  0.0000049211790530 30  0.0000000007374693
5 0.0240006843916324 18  0.0000026383701627 31 -0.0000000003617852
6
7
8

0.0141288346913845 19 -0.0000012477015924 | 32 —0.0000000001908819
—-0.0054917615831284 | 20 -0.0000006664097922 | 33  0.0000000000939609
—-0.0031140290154640 | 21  0.0000003180755856 | 34  0.0000000000495170

9 0.0013058436261069 | 22  0.0000001693729269 | 35 -0.0000000000244478
10 0.0007235625130098 | 23 —0.0000000814519590 | 36 —0.0000000000128703
11 -0.0003172028555467 | 24 -0.0000000432645262 | 37  0.0000000000063709
12 -0.0001735046359701 25 0.0000000209364375 | 38  0.0000000000033504
13 0.0000782856648652 | 26  0.0000000110975272 | 39 -0.0000000000016637

where z = ¢ 72, By combining (6.53) and (6.54), we have

m—-1
k
1+Zj Zk:—m+lN2m(m+k)z (655)

m—1
2 2 Nop(m+k)z?*

k=—m+1

GO(Z)=(

As an example consider the linear B-L scaling function for which m = 2. For
this case we have

2 2
ek, p el (6.56)

1 k
Ezk:go[k]z =Go(z) R
The coefficients {go[k]} can be found by expanding the expression on the right-
hand side as a polynomial in z and then comparing the coefficients of the like
powers of z. These coefficients can also be found by computing the Fourier
coefficients of the right-hand side expression. Observe that Go(1) =1 is satis-
fied, thus giving the sum of all {go[k]} to be 2. In Tables (6.3) and (6.4) we
provide the coefficients of the linear and cubic B-L scaling functions. The
linear and cubic Battle-Lemarié scaling functions and corresponding wavelets
are shown in Figure 6.8.

6.4.4 Daubechies Scaling Function

Battle-Lemarié obtained orthonormal scaling functions by orthonormalizing
mth-order cardinal B-splines N,,(f) for m > 2. However, because of the pres-
ence of Ey,, (z) in the denominator for the orthonormalization process, the
sequence {go[k]} becomes infinitely long.
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TABLE 6.4: Two-Scale Sequence for Cubic Battle-Lemarié Scaling Function ¢g;.4

n go[n] = go[4 — n] n go[n] = go[4 — n] n go[n] = go[4 - n]
2 1.0834715125686560 15  0.0026617387556783 28 —0.0000282171646500
3 0.6136592734426418 16 -0.0015609238233188 29 —0.0000222283943141
4 —0.0709959598848591 17 -0.0013112570210398 30  0.0000146073867894
5 —0.1556158437675466 18  0.0007918699951128 31  0.0000114467590896
6
7
8

0.0453692402954247 19 0.0006535296221413 | 32 -0.0000075774407788
0.0594936331541212 | 20 -0.0004035935254263 | 33 -0.0000059109049365
—0.0242909783203567 | 21 —0.0003285886943928 | 34  0.0000039378865616

9 —-0.0254308422142201 22 0.0002065343929212 | 35  0.0000030595965005
10 0.0122828617178522 | 23  0.0001663505502899 | 36 —0.0000020497919302
11 0.0115986402962103 | 24 -0.0001060637892378 | 37 -0.0000015870262674
12 -0.0061572588095633 | 25 -0.0000846821755363 | 38  0.0000010685382577
13 —0.0054905784655009 | 26  0.0000546341264354 | 39  0.0000008247217560
14 0.0030924782908629 | 27  0.0000433039957782 | 40 —0.0000005577533684

To obtain orthonormality but preserve the finite degree of the (Laurent)
polynomial, Daubechies [7, 8] considered the two-scale symbol for the scaling
function ¢p,:

1+z

Gol2)= (T)ms@), (657)

where S(z) € m,—1. So our objective is to find S(z). First, observe that since
Go(1) = 1,we must have S(1) = 1. Furthermore, we also want S(—1) # 0 because
if §(-1) =0, then z + 1 is a factor of S(z) and hence can be taken out. Now
Go(z) given by (6.57) must satisfy the orthogonality condition, namely

Go(2) +|Go(=2)F =1, z=e7T0 (6.58)
= cos>" (%)|S(z)|2 +sin?" (%)S(—zﬂz =1. (6.59)
By defining
x :=sin? (9), and
4

f(x)=18()F.

Equation (6.59) can be rewritten as
(1=x)" fx)+x" f(1-x)=1
=>f(x):(l—x)_m{l—xmf(l—x)}
mrk-1
= [m f )X" + Ry (%), (6.60)
k=0
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FIGURE 6.8: Battle-Lemarié scaling function, the corresponding wavelet, and their

magnitude spectra.

where the remainder R,,(x) is

o (m+k-1 o (m+k-1
R(x):= Z (m f Jxk +(—x)mf(1—x)2(m L jxk. (6.61)
k=m k=0
Since f(x) is a polynomial of order m, R,,(x) = 0. Therefore, we have
ol m+k—-1 w
|S(Z)|2 = 2( jsinZk (—j, 7= e~io/2, (662)
k 4
k=0
The above polynomial can be converted to
m—1 k
IS = %O + Z ax cos(Tw), (6.63)

k=1
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where [9]

akz(-l)kmi_l 22(k+)1 (2(k+n))(m+k+n—1)' (6:54)

prar n k+n

Our next task is to retrieve S(z) from IS(z)I>. According to Riesz lemma [10],
corresponding to a cosine series

N
Flw)= %0 + Zak cos(kw) (6.65)
k=1

with ao, -+, ay € R and ay # 0, there exists a polynomial

N
g(2)= Y bzt (6.66)
k=0

with by, -+, by € R, such that
8(2) = f(w), z=eT". (6.67)

By applying Riesz lemma to (6.63) it easy to verify [9] that S(z) has the fol-
lowing form

K L
S(Z)ZCH(Z_rk) (z-z)(z-z )y K+2L=m-1, (6.68)
k=1 =1

where {ri} are the nonzero real roots and {z/ are the complex roots of
7" 11S(z)P? inside a unit circle and C is a constant such that S(1) = 1. Once we
have S(z), we can substitute this into (6.57) and compare the coefficients of
powers of z to get the sequence {gi}. We will show the steps to get these
sequences with an example. Consider m =2. For this, we have ap=4 and
ay = —1, which gives

Q)]
ISGz)fF =2- cos(;)
=2‘%(Z+Z‘1) (6.69)
= 2lS(@F = (-1 +4z-2)==3c-n) 21

where r =2—+/3. From (6.68), we have

S(Z)=L(z—r1)=

- _1+1\5(z—2+\6). (6.70)
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So, for m =2, we get
1
Go(z)= E{go +g12+ g% + 837}
1+z) 1
=(T) XE{(1+\/§)Z+(1—\/§)}

1{1-v3 3-V3_ 3+43 , 1+V3 ,
=— + z+ 7+ F e
2| 4 4 4 4

(6.71)

Since S(z) is a polynomial of order m, the length of two-scale sequence for
¢D;m is 2m.

For m =2 and 7, the scaling functions and wavelets along with their mag-
nitude spectra are shown in Figure 6.9. Two-scale sequences for some of
Daubechies scaling functions are given in Table 6.5. Readers should keep in
mind that in some books (e.g. [8]), there is a factor of ¥2 in the two-scale
sequences.

|<13D;2(W)|

0 10 20 30

30

1 |6 (w)]
0 N
0 10 20 30
1 [V (w)|
‘ ‘ ‘ 0 /\ .
5 0 5 0 10 20 30

FIGURE 6.9: Daubechies scaling function, the corresponding wavelet, and their mag-
nitude spectra.
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6.5 CONSTRUCTION OF BIORTHOGONAL WAVELETS
In the previous sections, we have discussed the semiorthogonal and orthonor-

mal wavelets. We developed the orthogonal wavelets as a special case of the
semiorthogonal wavelets by using

=0 (6.72)
=y.

< o

One of the major difficulties with compactly supported orthonormal wavelets
is that they lack spatial symmetry. This means the processing filters are non-
symmetric and do not possess linear phase property. Lacking the linear phase
property results in severe undesirable phase distortions in signal processing.
This topic will be dealt with in Chapter 7 in more detail. Semiorthogonal
wavelets, on the other hand, are symmetric but suffers from the drawback that
their duals do not have compact support. This is also undesirable since trunca-
tion of the filter coefficients is necessary for real-time processing. Biorthogonal
wavelets may have both symmetry and compact support.

Cohen, Daubechies, and Feaveau [11] extended the framework of the
theory of orthonormal wavelets to the case of biorthogonal wavelets by a
modification of the approximation space structure. Let us recall that in both
the semiorthogonal and orthonormal cases, there exist only one sequence of
nested approximation subspaces,

{0}ecA_2 CA—lCAO CA1CA2 C—>L2 (673)

The wavelet subspace, W, is the orthogonal complements to A within Ay
such that

A;NW;={0}, seZ, and

A+ W = Agnr. (674)

This framework implies that the approximation space is orthogonal to the
wavelet space at any given scale s and the wavelet spaces are orthogonal across
scales:

W, LW, fors#p. (6.75)

In the orthonormal case, the scaling functions and wavelets are orthogonal to
their translates at any given scale s

<¢k,s(t)a ¢m,s(t)> = 5k,m

(Wies (1), Wons (1)) = S - (6.76)
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In the semiorthogonal case, equation (6.76) no longer holds for ¢ and .
Instead, they are orthogonal to their respective duals

<¢k,s (t)9 ém,s (t)> = 5k,m

~ (6.77)
<l//k,5 (t)’ l//m,s(l‘» = 6k,m,

and the duals span dual spaces in the sense that A= span{i)(Zst—m),
s, m,eZ} and W, = span{lf/(Zst—m),s, m,eZ}. As described in Chapter 5,

semiorthogonality implies that A, = A, and W, = W,.
In biorthogonal system, there exist an additional dual nested space:

{O}e-“CA_Z CA_ch()CAlCAz C---—)Lz. (678)

In association with this nested sequence of spaces is a set of dual wavelet
subspaces (not nested) W,, s € Z, that complements the nested subspaces Aj,
s € Z.To be more specific, the relations of these subspaces are

A+ W, = Ay (6.79)
A+ W, = Ay, (6.80)

The orthogonality conditions then become

A LW, (6.81)
Ay LW, (6.82)
giving us
(Grs(0), Y5 (1)) =0 (6.83)
<‘§k,s([)’ Yins (t)> =0. (684)

In addition, the biorthogonality between the scaling functions and the wave-
lets in (6.77) still holds. The two-scale relations for these bases are

o(0)="Y golklo(t—k) (6:85)
k

8(0)="Y holk1g(1-k) (6:86)
k

(0= gilklo(t—k) (6:87)
k

()= lkp(t—k). (6:88)
k
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The orthogonality and biorthogonality between these bases give the fol-
lowing four conditions on the filtering sequences:

(golk—2m], [k —2n])=0 (6.89)
(g1lk=2m], holk —2n])=0 (6.90)
(golk=2m]., ho[K]) =B (6.91)
(g1lk—2m], y[k]) = Spmp- (6.92)

Biorthogonal wavelet design consists of finding the filter sequences that satisfy
(6.89) through (6.92). Because there is quite a bit of freedom in designing the
biorthogonal wavelets, there are no set ways to the design procedure. For
example, one may begin with go[k] being the two-scale sequence of a B-spline
and proceed to determine the rest of the sequences. Another way is to design
biorthogonal filter banks and then iterate the sequences to obtain the scaling
functions and the wavelet (discussed in Section 6.6). Unlike the orthonormal
wavelet where the analysis filter is a simple time-reversed version of the syn-
thesis filter, one must iterate both the synthesis filter and the analysis filter to
get both wavelets and both scaling functions. We will follow this approach and
defer our discussion of biorthogonal wavelet design by way of example at the
end of Chapter 7.

6.6 GRAPHICAL DISPLAY OF WAVELET

Many wavelets are mathematical functions that may not be described analyti-
cally. For examples, the Daubechies compactly supported wavelets are given
in terms of two-scale sequences and the spline wavelets are described in terms
of infinite polynomials. It is difficult for the user to visualize the scaling func-
tion and the wavelet based on parameters and indirect expressions. We
describe three methods here to display the graph of the scaling function and
the wavelet.

6.6.1 Iteration Method

The iteration method is the simplest in implementation. We include a Matlab
program with this book for practice. Let us write

(/)mﬂ(t):z golk]om (2t—k), m=0,1,2,3,... (6.93)

and compute all values of ¢. In practice, we may initialize the program by taking

Po(1)=6(1). (6.94)

and setting ¢g(n) = 8(n) = 1, After upsampling by 2, the sequence is convolved
with the go[k] sequence to give ¢1(n). This sequence is upsampled and con-
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volved with go[k] again to give ¢ (n), and so on. In most cases, the procedure
usually converges within 10 iterations. For biorthogonal wavelets, conver-
gence time may be longer. Once the scaling function has been obtained, the
associated wavelet can be computed and displayed using the two-scale relation
for the wavelet

v(0)= alklo(2e-k)

A display indicating the iterative procedure is given in Figure 6.10. The figure
indicates the number of points in each iteration. To get the corresponding
position along the time axis, the abscissa needs to be divided by 2 for each
iteration m.

6.6.2 Spectral Method

In this method, the two-scale relation for the scaling function is expressed in
the spectral domain

2 2
m=1 m=2
0 0
2 2
1 2 3 4 0 2 4 6 8 10
2 2
/\/_Tj 3 m =4
0 0
2 - 2
0 5 10 15 20 25 0 10 20 30 40 50
2 2
m=>5 m==6
2 2
20 20 40 60 80 100 20 50 100 150 200
0 0
2 2
20 100 200 300 400 20 200 400 600 800
0 0
2 2
0 500 1000 1500 2000 0 1000 2000 3000 4000

FIGURE 6.10: Iterative procedure to get scaling functions. Abscissa need to be divided
by 2 to get the correct position in time.
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$(w)= Go[ej;)]rfb(%), =2, (6.95)

k=1
N—oo L0

-] Go[efzk }?)(0). (6.96)
k=1

Since (]3(0) =1, we may take the inverse Fourier transform of (6.96) to yield

IR = Ayl
¢(t):ﬂj_w g Gyl e 2" ||e/dw. (6.97)

To compute (6.97), the user has to evaluate the truncated infinite product and
then take the FFT.

6.6.3 Eigenvalue Method

The eigenvalue method converts the two-scale relation into an eigen-equation.
Let us consider the two-scale relation by setting x = n to yield the following
matrix equation:

9(n)=Y golk]o(2n-k)
k
=) gol2n—m]g(m)

=[&o(n, m)]¢(m) (6.98)

where the matrix element go(n, m) = go(2n — m). In matrix form, we write
(6.98) as

go[o] go[_l] go[_z] : ¢(0) ¢(O)
8l[2] g1l  &I[0] - |l o) |=10(1)|
go[4] g0[3] go[z] : ¢(2) ¢(2)
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The eigenvalue of this eigenmatrix is 1, so we can compute ¢(n) for all integer
n. This procedure can be repeated for a twofold increase in resolution. Let
x =n/2, and the two-scale relation becomes

o(2)= lklo(n-k) (699)
k

By repeating this procedure for x =n/4,n/8,---, we compute the discretized
#(¢) to an arbitrarily fine resolution.

6.7 EXERCISES

1.
2.

Show that the support of semiorthogonal wavelets, y,(¢) = [0, 2m — 1].

Show that the integer translates of the Shannon wavelet w,(t — k) form an
orthonormal basis.

Find the cubic spline polynomial S, that satisfies the conditions
S4(0)=54(0)=0, S4(1)=84(1)=0, and S4(x) + S4(1 — x) = 1. Use this poly-
nomial as the smoothing function for Meyer’s scaling function and compute
the two-scale coefficients.

Show that if {¢(t — k), k € Z} is a Riesz basis of V=, {¢(t — k) : k € Z},
then {¢r hrez is a Riesz basis of V= {g(t), k € Z} for a fixed s € Z.
That is

AZ jax <

k=—oc0

akQ) t—k

oo
Z Jac

=—0c0

implies

o0 2 oo
z a5 ()| <B z |ax |

k=—cc D k=—cc

A i la [ <

k=—co

with the same constants A, B.

Show that the following statements are equivalent: (a) {¢(- — k) : k € Z}

is an orthonormal family, and (b) Zfz_oo|¢3(a)+2k7r)|2:1 almost
everywhere.

Prove that {Ni(-— k) : k € Z} is an orthonormal family by using this
theorem, that is, by showing

oo

PRLACE 2kn)f =1.

k=—oo
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7. Obtain an algebraic polynomial corresponding to Euler-Frobenius-
Laurent polynomial Ey, (z) and find its roots A; > -+ > A¢. Check that these
zeros are simple, real, negative, and come in reciprocal pairs:

MAe = ApAs = AzAy = 1.
8. The autocorrelation function F of a given function fe L*(—co, o) is
defined as
F(x):J. Fe+0)F(0dt, xeR.

Compute the autocorrelation function of the hat function N, and compare
it to the function N, as introduced in Exercise 7.

9. Construct a linear Battle-Lemarié as)caling function to show that for the hat

function N,(t), it holds (let z = 67}5) that

i |]</2(w + 2l’czr)|2

1
=—(z2+4+2%)
k=—co 6

and
s -1 2\2
Na(w)=—(1-27)"
0]
The Fourier transform of the orthonormalized scaling function N5 (¢) is

given by

1

N (o) = ;(l—zz)z/[é(z‘z +4+zz)]2 :
We have shown that the symbol
HO)
w(5)

Compute the ratio to show that the result is

(HTZJZ(Hn);,

Go(2)

where
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Use the power series expansions

oo

L w11 .
(1+n)2—1+5n+%(—1) o3 (2n=3)n

and

(14+x)" = g(—w(”—;”jﬂ

J

as well as the binomial theorem to expand the expression [(1+z)/2]2
(1+n)"? in power of z and determine the coefficients go[k], for k =
-5, ..., 5, by comparing the corresponding coefficients of z7, ... , z° in
Go(z) and [(1+2)/2]*(1+n)"%. You should use symbolic packages like
Mathematica or Maple for these computations.

Construction of linear B-spline wavelet: Given the two-scale relation for
the hat function

2 102
No(6)= ) S|, |[Na(2t=K),
2 ;Z(k) 2(2t

0

we want to determine the two-scale relation for a linear wavelet with
minimal support

va(t)= Y gilkIN2(2-k),
k

using the corresponding E-F-L polynomial E(z)=z"'+4+z. It was
shown that for the corresponding symbols

1 1 -z
Go(z)zzz(go[k]zk, and G1(Z)=§Zg1[k]lk, where z=¢ 2,
k k

the orthogonality condition is equivalent to

Go(2)G1(2)E(2)+Go(-2)Gi(=2)E(-2) =0, with|z[=1.
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We need to determine the polynomial Gi(z) from the above equation.

There is no unique solution to this equation.

a. Show that Gy(z)=(~1/3!)z’Gy(-z) E(~z) is a solution of the above
equation.

b. Show that Gy(z)=[(1+z)/2]*.

c. Expand G(z)=(~1/3!)zGy(~z) E(~z) in powers of z and thus deter-
mine the two-scale relation for the function yy, by comparing coeffi-
cients in

Gi(2) =5 3 1lK1et =51 2 Go(-) E(-2).
4 |

d. Graph y».

11. Complete the missing steps in the derivation of Daubechies wavelet in
Section 6.4.4. Note that IS(z)I” is a polynomial in cos(/2).

12. Use the sequence {-0.102859456942, 0.477859456942, 1.205718913884,
0.544281086116, —0.102859456942, —0.022140543057} as the two-scale
sequence {go[n]} in the program iterate.m and view the results. The resul-
tant scaling function is a member of the Coifman wavelet system or coiflets
[8]. The main feature of this system is that in this case the scaling functions
also have vanishing moments properties. For mth order coiflets

J tPy(t)dt=0, p=0,...,m-1;

—oo

j tPo(t)dt=0, p=1,...,m-1;

- o(r)dr=1.

13. Construct biorthogonal wavelets beginning with the two-scale sequence
{go[n]} for linear spline.

6.8 COMPUTER PROGRAMS

6.8.1 Daubechies Wavelet

o

o

PROGRAM wavelet.m

o

o

Generates Daubechies scaling functions and wavelets
0 = [0.68301; 1.18301; 0.31699; -0.183011;

= [0; 1; 2; 31;

gl = flipud(g0) .*(-1)."k;

~ Q
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ngl = length(gl);

Q

% Compute scaling funtion first
NIter = 10; interation time

%
%

phi_new = 1; initialization
for 1 = 1:NIter
unit = 27(i-1);
phi = conv(g0,phi_new);
n = length(phi);
phi_new(1l:2:2*n) = phi;
length (phi_new) ;
if(i = (NIter-1))
phi2 = phi;
end
end

dt = 1.0 / (2 * unit);
t = [l:length(phi)] * dt;
subplot(2,1,1), plot(t,phi)
title(’Scaling Function’)

Q

% Compute wavelet using 2-scale relation

for 1 = 1:ngl
a = (i-1) * wunit + 1;
b = a + length(phi2) - 1;
psi2s(i,a:b) = phi2 * gl(i); psi2s(l,n) = 0;
end
psi = sum(psi2s);
t = [0:length(phi)-1] * dt - (ngl - 2) / 2;

subplot(2,1,2), plot(t,psi)
title(’'Wavelet’)

6.8.2 Iteration Method

o°

o°

PROGRAM iterate.m

o°

o°

Iterative procedure to get scaling function
generates Figure 6.10

o°

o°

g0 = [0.68301 1.18301 0.31699 -0.183011];

number of interation
initialization

NIter = 10;
phi_new = 1;
for 1 = 1:NIter
unit = 27 (1i-1);
phi = conv(g0,phi_new) ;

o° o

145
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n = length(phi);
phi_new(1:2:2*n) = phi;
subplot(5,2,1), plot(phi); hold on;
heading = sprintf(’Iteration = %.4g’,1)
title (heading) ;

end

oe
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CHAPTER SEVEN
|

DWT and Filter
Bank Algorithms

The discussion on multiresolution analysis in Chapter 5 prepares the readers
for understanding of wavelet construction, and algorithms for fast computa-
tion of the continuous wavelet transform (CWT). The two-scale relation and
the decomposition relation are essential for the development of the fast algo-
rithms. The need of these algorithm is obvious since a straightforward evalu-
ation of the integral in (4.32) puts a heavy computation load in problem
solving. The CWT places redundant information on the time-frequency plane.
To overcome these deficiencies, the CWT is discretized and algorithms equiva-
lent to the two-channel filter bank have been developed for signal representa-
tion and processing. The perfect reconstruction (PR) constraint is placed on
these algorithm developments. In this chapter, we develop these algorithms
in detail. Since the semiorthogonal spline functions and the compactly sup-
ported spline wavelets require their duals in the dual spaces, signal representa-
tion and the PR condition for this case are developed along with the algorithms
for change of bases. Before we develop the algebra of these algorithms, we
first discuss the basic concepts of sampling rate changes through decimation
and interpolation.

7.1 DECIMATION AND INTERPOLATION

In signal processing, we often encounter signals whose spectrum may vary with
time. A linear chirp signal is a good example. To avoid aliasing, this chirp
signal must be sampled at least twice of its highest frequency. For a chirp signal

Fundamentals of Wavelets: Theory, Algorithms, and Applications, Second Edition,
By Jaideva C. Goswami and Andrew K. Chan
Copyright © 2011 John Wiley & Sons, Inc.
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with wide bandwidth, this Nyquist rate may be too high for the low frequency
portion of the chirp. Consequently, there is a lot of redundant information to
be carried around if one uses a fixed rate for the entire chirp. There is the area
of multirate signal processing which deals with signal representation using
more than one sampling rate. The mechanisms for changing the sample rate
are decimation and interpolation. We discuss their basic characteristics in the
time and spectral domains here.

7.1.1 Decimation

An M-point decimation retains only every Mth sample of a given signal.
In the time-domain, an M-point decimation of an input sequence {x(n)} is
given by

y(n)=x(nM),forneZ. (7.1)

Figure 7.1 depicts the system diagram of an M-point decimator. The output of
the decimator may be written in terms of a product of x(n) and a sequence of
unit impulses separated by M samples Yxcz 6(n—kM). Let

u(n)= Zx(n)(S(n—kM), forkeZ (7.2)
keZ

which selects only the kMth samples of x(n). The Fourier series representation
of the M-point period impulse sequence (7.2) is

1 M-1
2 8(n—kM)=— 2 e~i2mkn{M, (7.3)
keZ k=0

Based on the geometric sum

le I {M, for k= (M, (€ Z,
e =

= 0, otherwise,

{z(n)} {y(n)}

FIGURE 7.1: An M-point decimator.
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the identity in (7.3) is proved. Writing y(n) = u(nM), the z-transform of y(n)
has the following form

(7.4)

where the M-point exponential basis function W}, := e 27/M has been used.
In the spectral domain, we obtain the DFT of y(n) simply by setting z = ¢/“ to
yield

y(e/w):

S

M-1 ]_w—Zn:k
ch(e M ] (7.5)
k=0

The spectrum of the decimator output contains M copies of the input spec-
trum. The amplitude of the copy is reduced by a factor of 1/M. In addition,
the bandwidth of the copy is expanded by M times. As a result, if the spectral
bandwidth of the input signal is greater than 7/M, (i.e. |o| > 7/M), an M-point
decimator will introduce aliasing in its output signal. We will see later that
aliasing does indeed occur in a wavelet decomposition tree or a two-channel
filter bank decomposition algorithm. However, the aliasing is canceled by
carefully designing the reconstruction algorithm to remove the aliasing and
recover the original signal.

For M = 2, we decimate a sequence by taking every other data points. From
(7.4), we obtain

1k 1 1
=§|:X 22J+X[—Z2 ]:| (76)
j/(ef‘”) = %[fc[ej;)]+ fc[—ej;) H (7.7)

The spectrum of j/(ef“’) is shown in Figure 7.3.

and
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—%0% I ISt o LlIn

Gl

I U I on
T In On
0 4 2n 7

FIGURE 7.2: Spectral characteristic of decimation by 2.

{y(n)} {#'(n)}

FIGURE 7.3: An M-point interpolator.

For the sake of simplicity in using matrix form, we consider only the case
where M =2. We use |2 in the subscript to represent decimation by 2.
We write

as

[y1=[x, (7.8)

N
— —
=

=
)}

y(=2)| | x(=4)
yE | x(=2)
y(0) | | x(0)
y() |=]x(2) (7.9)
¥( (4)
( (6)
(8)

=
=]

In terms of matrix operator, we write (7.9) as
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y(=2)| |1 0 0 x(-2)
y1)| |0 01 0 0 x(-1)
y(0) 00100 x(0)
y(1) |= 00100 x(1) (7.10)
y(2) 0010 0]x(2
y(3) 0 0 1| x(3)
x(4)

or

[y]=[DEC;,][x]

The shift-variant property of the decimator is evident when we shift the input
column either up or down by a given number of position. In addition, the
decimation matrix is an orthogonal matrix since

[DECMT1 = [DECM ]l-

Consequently, decimation is an orthogonal transformation.

7.1.2 Interpolation

Interpolation of data means inserting additional data points into the
sequence to increase the sampling rate. Let y(n) be the input to an interpola-
tor. If we wish to increase the number of sample by M-fold, we insert M — 1
zeros in between any two adjacent samples so that the interpolator output
gives

y(ﬁ), forn=kM,keZ
M

x'(n)= (7.11)

0, otherwise.

The system diagram of a M-point interpolator is shown in Figure 7.3. We
can also write the expression of interpolation in standard form of a convolu-
tion sum
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Images
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FIGURE 7.4: Spectral characteristic of interpolation by 2.

X' (n)= Z y(k)8(n—kM). (7.12)

k

The spectrum of the interpolator output is given by

;’(ef“’) = ZZy(k)(?(n —kM)e "
n k

:Zy(k)e’jka (713)
k

=§)(e_jM“’).

The z-transform of the interpolator output is
X'(z)=Y (™). (7.14)

Interpolation raises the sampling rate by filling zeros in between samples. The
output sequence has M times more points than the input sequence, and the
output spectrum is shrunk by a factor of M on the w-axis. Unlike the decima-
tor, there is no danger of aliasing for interpolator since the output spectrum
has narrower bandwidth than the input spectrum. The spectrum of a twofold
interpolator is given in Figure 7.4.

Using M =2 as an example, we write

x'(n)=y(n,

:{y(n/Z), for neven (7.15)
0, otherwise.

In matrix form, we have
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X(=2) | y(=1)

(-1 |0

x(0) | | »(0)

() |=[0 | (7.16)
x(2) | |y

X3 | |o

xX(4) | |y(Q@)

As before, we represent the interpolator by a linear matrix operator. It
turns out that the interpolation matrix is the transpose of the decimation
matrix

10
00
x'(-2) 010 y(=2)
x'(-1) 0000 y(-1)
x’(0) 0010 y(0)
x'(1) |= 00 00O y(1) (7.17)
x'(2) 00010 y(2)
x'(3) 0 00O0O O y(3)
1o y(4)
00
)L 0 1 I
or we can write
[x'|=[INT;, ][y]. (7.18)

The operations of convolution followed by decimation and interpolation
followed by convolution are two of the most important building blocks of
algorithms. They will be used to build tree algorithms for wavelets, wavelet
packets, two-dimensional and three-dimensional signal processing. We show
only their time-domain identities in the following sections.
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{z(n)} {u(n)} {y(n)}

FIGURE 7.5: Convolution followed by decimation.

7.1.3 Convolution Followed by Decimation

Mathematically, we express this operation by

y(n)={h(n)=x(n)}, (7.19)

The processing block diagram is given in Figure 7.5. If we label the intermedi-
ate output as u(n), it is the convolution of x(n) and h(n) given by

u(n):Zx(k)h(n—k).

k

The two-point decimation gives
y(n)=u(2n)=2x(k)h(2n—k). (7.20)
k

7.1.4 Interpolation Followed by Convolution

The time-domain expression of this operation is given by

y(n)={g(n)*[x(n)k,}. (7.21)

Using v(n) as the intermediate output, we have

y(m) =Y v(k)g(n-k).

k

Since v(k)=x(k/2) for even k, we have

ym= Y o5 )sn-k)

k:even

- Zx(f) g(n-20). (7.22)

l

This process is shown in Figure 7.6.
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{z(n)} @ {v(n)} (g(n)} {y(n)}

FIGURE 7.6: Interpolation followed by convolution.

7.2 SIGNAL REPRESENTATION IN THE APPROXIMATION SUBSPACE

We have shown in Chapter 5 that the approximation subspaces A, are nested
so that the subspace A..=L? A_.={0} and A, c A, for any n € Z. For
an arbitrary finite energy signal x() there is no guarantee that this signal is in
any of these approximation subspaces. That is, we may not be able to find a
coefficients ay s such that

x(t)= Z ak,sw(Zst— k) for some s. (7.23)
kel

To make use of the two-scale relations for processing, a signal must be in
one of these nested approximation subspaces. One way to meeting this
requirement is by projecting the signal into one of the A, for some s. This is
particularly important if one only knows the sampled values of the signal at
x(t =k/2% k e Z) for some large value of s.

Assuming that the signal x(¢) is not in the approximation A, we wish to
find x4(¢) € A, such that

x(t) = x,(t)= Zak,mk,s(z) = Zak,s¢(25z— k) (7.24)
k k

where ay; are the scaling function coefficients to be computed from the signal
samples. We will show how one can determine a; from the sample data
x(t =k/ ZS) using the orthogonal projection of x(¢) on to the A, space.

Since A is a subspace of L? and x(¢) € L% we consider x,(¢) as the orthogo-
nal projection of x(¢) onto the A; subspace. Then, x(¢) — x,(¢) is orthogonal to
Aj, and therefore orthogonal to the basis function ¢ ¢

((x(6)=x5(1)), ¢r.5) =0, VIeZ (7.25)
Consequently, the coefficients are determined from the equation
<xs(t)’ ¢l’,,s> = <x(t)’ ¢é‘,s> = <Zak,s¢k,s (l), ¢é,s([)>' (726)
k

We expand the last equality yielding
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25'[% X(l‘)¢(2st—€)d1‘= ZSZak,{ - ¢(25t_k)¢(2st_€)d{|

- k
=Y . [ JA:ogb(t)(p(t—m)dt} (7.27)

where we have made a change of index m = ¢ — k. The matrix form of
(7.27) is

o oy 0 s (x(2), Oms )
oy O :

(7.28)

(2]

where
an=[_opl=mydr=a,

is the autocorrelation of the scaling function ¢(¢). If the scaling function is
compactly supported, the autocorrelation matrix is banded with a finite size
diagonal band. If the scaling function and its translates form an orthonormal
basis, then

O = Om -

By assuming orthonormal basis, the autocorrelation matrix is the identity
matrix and the coefficients are obtained by computing the inner product

s =(X(1), Pms) (7.29)

If we are given only the sample values of the signal x(¢) at x(t =k/ 2“), we can
approximate the integral by a sum. That is,

Qs = 2%‘[00 x(t)q)(Zst—m)dt

= 2_;Zx(§j¢(k——m). (7.30)

k

This equation demonstrates the difference between the scaling function
coefficients and the sample values of the signal. The former are expansion
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coefficients of an analog signal while the latter are samples of a discrete-time
signal. For representation of a given discrete signal in terms of a spline series
of order 2 and 4, we have given formulas in Section 5.6.

7.3 WAVELET DECOMPOSITION ALGORITHM

Let us rewrite the expression of the CWT of a signal x(¢)

(Wyx)(b, a)=%a _Zx(f)‘//(%)dt- (7.31)

Let us denote the scale a = 1/2° and the translation b = k/2°, where s and k
belong to the integer set Z, the CWT of x(¢) is a number at (k/ 25,1/ 25) on the
time-scale plane. It represents the correlation between x(¢) and ¥ (¢) at that
time-scale point. We call this the discrete wavelet transform (DWT) that gen-
erates a sparse set of values on the time-scale plane. We use

k
=] r——

ko1 ;
Wi = (wa)(z—s, z_fj = Lox(z)w 12 dt (7.32)
27

to represent the wavelet coefficient at (b =k/2°,a=1/2° ) A discrete time-scale
map representing the signal x(¢) may look like Figure 7.7.

[ T T T T T
20 -
* * * * * * * * * * * * * * * * ®
15 -
s |
N +
— 10} -
* * * * * * * * x*
5L i
* * * * x*
ol . 1 . 1 . 1 . 1 .
0 0.2 0.4 0.6 0.8 1.0

b
FIGURE 7.7: A typical time-scale grid using the decomposition algorithm.
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It is known that the CWT generates redundant information about the signal
on the time-scale plane. By choosing (b =k/2°,a=1/ 23), it is much more effi-
cient using DWT to process a signal. It has been shown that DWT keeps
enough information of the signal such that it reconstructs the signal perfectly
from the wavelet coefficients. In fact, the number of coefficients needed for
perfect reconstruction is the same as the number of data samples. This is
known as critical sampling, which minimizes redundant information.

The decomposition (analysis) algorithm is used most often in wavelet signal
processing. It is used in signal compression as well as in signal identification,
although in the latter case, the reconstruction of the original signal is not
always required. The algorithm separates a signal into components at various
scales corresponding to successive octave frequencies. Each component can
be processed individually by a different algorithm. In echo cancellation, for
example, each component is processed with an adaptive filter of a different
filter length to improve convergence. The important issue of this algorithm is
to retain all pertinent information so that the user may recover the original
signal (if needed). The algorithm is based on the decomposition relation in
MRA discussed in Chapter 5. We rewrite several of these relations here for
easy reference.

Let

Xg1(1) € Agi1, = X541 (1) = Zak,s+1¢k,s+l (1)
k

x,(1)€ A= x,(0)= Y ai s (1)

k
WD) e W= yi(6)= ) wiesyis (1)
k

Since the MRA requires that
Ag = A+ W, (733)
we have

xs+1(t):xs(t)+ys(t)

z Ak 51 Pr 541 (1) = Z e 5P 5 (1) + Z Wi sWis (). (7.34)
k

k k

We substitute the decomposition relation

o(2*11-0)=Y {hol2k—(1p(2 1~ k)+ m[2k - ]y (21~ k)}  (7.35)
k
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Qs h,o —( : )—> s

hy

Wy

FIGURE 7.8: Single-level wavelet decomposition process.

into (7.34) to yield an equation in which all bases are at the resolution s. After
interchanging the order of summations and comparing the coefficients of
dr.s(1) and i 4(f) on both sides of the equation, we obtain

Qg5 = Zho[Zk —lag o1
l

Wis = Zhl[Zk —f]llg’SH.
l

where the right side of the equations correspond to decimation by 2 after
convolution (see Section 7.1.3). These formulas relate the coefficients of the
scaling functions and wavelets at any scale to coefficients at the next higher
scale. By repeating this algorithm, one obtains signal components at various
frequency octaves. This algorithm is depicted Figure 7.8 where we have used
the vector notation

as = {ak,s}, Wg = {Wk,s}> ho = {h() [k]}, and h1 = {hl [k]} (736)

with k € Z. This decomposition bloc can be repeatedly applied to the scaling
function coefficients at lower resolution to build a wavelet decomposition tree
as shown in Figure 7.9.

The reader should note that the wavelet decomposition tree is not sym-
metric since only the scaling function coefficients are further decomposed to
obtain signal components at lower resolutions. A symmetric tree may be con-
struct by decomposing the wavelet coefficients as well. This is the wavelet
packet tree that will be discussed in Chapter 9.

7.4 RECONSTRUCTION ALGORITHM

Itis important for any transform to have a unique inverse such that the original
data can be recovered perfectly. For random signals, some transforms have
their unique inverses in theory, but cannot be implemented in reality. There
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a < :>a,, ( > ay
M he M-1_ ho M-M

h1 hl

wWhyr—1 W — M

FIGURE 7.9: Wavelet decomposition tree.

exists a unique inverse discrete wavelet transform (or the synthesis transform)
such that the original function can be recovered perfectly from its components
at different scales. The reconstruction algorithm is based on the two-scale
relations of the scaling function and the wavelet. We consider a sum of these
components at the sth resolution

x5 (1) +ys(t) = Zak,sq)k,s([) + ZWk,slI/k,s(f) =Xg1(1). (7.37)
k

k

By a substitution of the two-scale relations into (7.37) one obtains

Y as Y golA0(2 =2k = 1)+ Y we s Y e[ 19(2 -2k 1)
k 0 k 4
=Y arsag(21e-1) (7.38)

14

Comparing the coefficients of ¢(2°*!t — ¢) on both sides of (7.38) yields

arse = Y {golt~2k]a s +gil - 2k]w s} (7.39)
k

where the right-side of the equations corresponds to interpolation followed
by convolution as discussed in 7.1.4. The reconstruction algorithm of (7.39) is
graphically shown in Figure 7.10.

We emphasize here that although the mechanics of computation is carried
out in digital signal processing fashion, the decomposition and reconstruction
algorithms are actually processing analog signals. The fundamental idea is to
represent an analog signal by its components at different scale for efficient
processing.
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an— M/ ay—m+1 Ap—1 ay
- 9o 9 17—

Wn—Mm' Wp-1

FIGURE 7.10: Signal reconstruction from scaling function and wavelet coefficients.

7.5 CHANGE OF BASES

The algorithms discussed in previous section apply to all types of scaling
functions and wavelets, including orthonormal, semiorthogonal, and bior-
thogonal systems. We have seen in Chapter 6 that the processing sequences
{golk], gi[k]}, and {ho[k], hi[k]} are finite and equilength sequences for com-
pactly supported orthonormal wavelets. In the case of semiorthogonal wave-
lets, such as compactly supported B-spline wavelets, the processing sequences
{ho[k], hi[k]} are infinitely long. Truncation of the sequences is necessary for
efficient processing. To avoid using the infinite sequences, it is better to map
the input function into the dual spline space and process the dual spline coef-
ficients with go[k] and gi[k] that have finite lengths. This and the next
two sections are devoted to the modification of the algorithm via a change of
bases.

We have shown in Chapter 6 that the mth order spline ¢, = N,, and the
corresponding compactly supported spline wavelets v, are semiorthogonal
bases. To compute the expansion coefficients of a spline series or a spline
wavelet series, it is necessary to make use of the dual spline ¢,, or the
dual spline wavelet ,,. In semiorthogonal spaces, all these bases span the
same spline space S,,. For certain real-time applications in wavelet signal
processing, it is more desirable to use finite length decomposition sequences
for efficiency and accuracy. Therefore, it is necessary to represent the
input signal by dual splines of the same order before the decomposition
process.

Let us recall the formulation of the multiresolution analysis, in which we
have the approximation subspace as an orthogonal sum of the wavelet
subspaces

Ay =@M W+ Ay
=Wy 1 ®@Wy,®...9Wy_y @ Ay (740)
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for any positive integer M’. Consequently, any good approximant xy; € A of
a given function x € L? (for sufficiently large M) has a unique (orthogonal)
decomposition

MI
XM = YM-n t XM-M75 (7.41)

n=1

where x; € A and y; € W;. Since ¢, and dN)m generate the same MRA while v,
and V,, generate the same wavelet subspace (a property not possessed by
biorthogonal scaling functions and wavelets that are not semiorthogonal), we
write

x(0)= ) au0(21-k)= Y ab(21-k);
W)=Y wesw(21=k)= Y Wi (2'1=k),

for each s € Z. We have not included the normalization factor 22 in order to
simplify the implementation.

If we apply the decomposition formula (7.36) to the scaling function coef-
ficients, we have

(7.42)

ay 5 = Z/ho[Zk —]ay 515

(7.43)

Wsk = Z[h] [2k - []a(/’s+l .
Since sequences {ho[k]} and {hi[k]} are infinitely long for semiorthogonal
setting, it will be more efficient to use sequences {go[k]} and {gi[k]} instead.
This change of sequences is valid from the duality principle, which states that
{golk], g1[k]} and {ho[k], h1[k]} can be interchanged, in the sense that

Z80lk1> ho[—K];
. (7.44)
Egl[k] o h[-k],

when ¢,, and v, are replaced by ¢,, and ¥,,. With the application of duality
principle, we have
g s = zﬁgo[f —2k]a si1;
i (7.45)
wk,s = ng] [f_ Zk]dé’,sﬂ-

However, to take advantage of the duality principle, we need to transform the
coefficients {ay s} to {axs}. We recall that both ¢ and ¢ generates the same A
space so that ¢ can be represented by a series of ¢
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9(1)=Y nd(t-k) (7.46)

k

for some sequence {r;}. We observe that this change-of-bases sequence is a
finite sequence, if the scaling function has compact support. Indeed, by the
definition of the dual, we have

" = :oq)(t)q)(t—k)dt. (7.47)

Therefore, at the original scale of approximation, with s = M, an application
of (7.46) yields

dkm = Zrk—f,a/,,M> (7.48)
l

which is an FIR operation. Observe that if we take splines as scaling functions—
that is, ¢(¢) = N,, (1), then ry = Ny(m — k); k= 0,11, ... ,2m — 1 [1]. As we have
seen in previous discussions, the sequences {go[k]} and {gi[k]} in the decompo-
sition algorithm are finite sequences.

We can summarize our computation scheme as in Figure 7.11. The com-
putation of Wy 5,s = M —1,... ,M — M’ using ay, as the input sequence requires
2M’ FIR filters. The importance of the coefficients Wy is that they constitute
the CWT of xj relative to the analyzing wavelet y,, at certain dyadic
points—namely

N

Wk,SZZE(WWxM)(g,%j, M-M'<s<M, kel. (7.49)

W1 W

FIGURE 7.11: Standard wavelet decomposition process implemented with change of
bases.
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7.6 SIGNAL RECONSTRUCTION IN SEMIORTHOGONAL SUBSPACES

The algorithm described in Section 7.4 concerns the recovery of the original
data. In that case, the original data are the set of scaling function coefficients
{a,n} at the highest resolution. Since the original input signal is an analog
function x(t)=xpy ()=, a/,M¢(2M t—é), it is necessary to recover the signal
by performing the summation. Recall that the decomposition algorithm dis-
cussed in Section 7.5 produces the spline and wavelet coefficients in the dual
spaces—namely ({d s}, {W« s}). To use finite length two-scale sequences for the
reconstruction, we must express the coefficients in dual spaces in terms of
({aks), {wks}) in the spline and wavelet spaces. In addition, if the user needs to
see the signal component at any intermediate steps in the decomposition, he
or she would have to use the dual spline and dual wavelet series. In both cases,
one can simplify the problem by a change of basis that maps the dual sequences
back to the original space [2]. Since the sequences do not depend on the scale,
the second subscript of the coefficients can be arbitrary. Such sequences are
applicable to mapping between any two different scales.

7.6.1 Change of Basis for Spline Functions

Our objective is to write

s(t)= Z[szm(t—k) =) aN(t-k) (7.50)
k k

By taking the Fourier transform of (7.50), we get
A(e™) N (@) = A(e2) N, (@), (7.51)

where, as usual, the hat over a function implies its Fourier transform and
A(e’®) and A(ef“’) are the symbols of {a,} and {d,} respectively, defined as

A(ef“)) = Z&keﬂ“"; A(ef“’) = Zakeﬂ“". (7.52)
k k
The dual scaling function N,, is given by
an(w)=—N’"(w2 , z=el? (7.53)
En, ()

where Ey,, (zz) = |Nm(w + 27rk)|2 # 0 for almost all wsince {N,,(- — k)} is a stable

or Riesz basis of A¢. As discussed in Chapter 6, Ey, () is the Euler-Frobenius
Laurent series and is given by
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EN |N (0 + 27rk)|
m—1

- 2 N (m+k) 22, (7.54)
k=—m+1

m

It is clear that by multiplying (7.54) by z"~!, we can get a polynomial of degree
2m — 1 in z. The last equality in (7.54) is a consequence of the relation

Z |f (w+27rk = { _[ f(t+k) Tt)dz}ef’“". (7.55)

Proof for (7.55). Using Parseval identity, we have

j f(t+ E
=5 j_m|f(w)

Z J-Zﬂ (k+1)

- %J‘O § Z |f(co+ 2k7t)|2 e dow. (7.56)
Ko

|2 eI 4w

~

f(a))|2 e ?dw

It is clear the F(/) is the /th Fourier coefficient of a 2z-periodic function

A 2
Yoo | f(o+ 2k7r)| . With this relation (7.55) follows directly. It is easy to show
that

f Nop(t+ k) Nu@)dt = Ny (m+ k) (7.57)

with supp Nopw(t) = [0, 2m].
Combining (7.51), (7.53), and (7.54) and taking the inverse Fourier trans-
form, we get

ar =({an}* p[n])(k) (7.58)

where

EN,,, Zp , J7=1. (7.59)

It can be shown that
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Pm
pIKI=wn Y AR, k2 0; (7.60)
i=1
where
(7.61)

2Pm
AL
j= 1,];&1

and A;:i =1, ... ,2p,, are the roots of (7.54) with IAl <1 and iz, +1-; =1 for
i=1,..., pm Here u, =(2m - 1)! and p,, = m — 1. Observe from (7.54) and
(7.59) that

1
plk]= =1, (7.62)
2 1) Zk  Naw(m+k)

where the last equality is a consequence of the partition of unity property of
cardinal B-splines, described in Chapter 5.

Roots 4; for linear and cubic splines are given below. The coefficients {p[k]}
are given in Tables 7.1 and 7.2. The coefficients p[k] have better decay than
{ho[k]} (Figure 7.12).

Linear Spline (m = 2)
1
M==2+3=—, (7.63)
A

plk]=(-13(2-3)". (7.64)

TABLE 7.1: Coefficients {p[k]} for Linear Spline Case (p[k] = p[-k])

k plk] k plk]

0 1.7320510 8 0.46023608 x 107
1 -0.46410170 9 -0.12331990 x 10~
2 0.12435570 10 0.33043470 x 107
3 -0.33321008 x 107! 11 —0.88539724 x 107°
4 0.89283381 x 1072 12 0.23724151 x 107°
5 —-0.23923414 x 1072 13 -0.63568670 x 1077
6 0.64102601 x 1073 14 0.17033177 x 1077
7 —-0.17176243 x 103 15 -0.45640265 x 1078
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TABLE 7.2: Coefficients {p[k]} for Cubic Spline case (p[k] = p[-k])
k plk] k plk]
0 0.4.9647341 15 —-0.51056378 x 1073
1 —0.3.0910430 16 0.27329483 x 1073
2 0.1.7079600 17 -0.14628941 x 10~
3 —-0.92078239 18 0.78305879 x 107*
4 0.49367899 19 -0.41915609 x 10~
5 —0.26435509 20 0.22436609 x 10~
6 0.14151619 21 —0.12009880 x 107*
7 -0.75752318 x 107! 22 0.64286551 x 107°
8 0.40548921 x 107! 23 —0.34411337 x 107
9 —-0.21705071 x 107! 24 0.18419720 x 107>
10 0.11618304 x 10~ 25 —0.98597172 x 107°
11 —0.62190532 x 1072 26 0.52777142 x 107°
12 0.33289378 x 1072 27 -0.28250579 x 107°
13 —-0.17819155 x 1072 28 0.15121984 x 107°
14 0.95382473 x 1073 29 —-0.80945043 x 1077
T T T T
O l l

_5 -
s log(|ha[K]) —-5r saalog(|hy [k
=== 1og(|olk1) Zioalhle)
- log(|p[k]) o log([p[k])
oo log(\q[k]) oo 1og(|q[k})
-10 L -10 L
0 5 10 15 0 10 20
k k

FIGURE 7.12: Plots of hy[k], h[k],

spline cases.

Cubic Spline (m = 4)

A =-9.1486946 x 1073

=1/

A =—0.1225546 =1/ A5
Az =—0.5352805 = 1/ As.

(b)
plk], and g[k] versus k for (a) linear and (b) cubic

30

(7.65)
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7.6.2 Change of Basis for Spline Wavelets

Here our objective is to write

r(6)= D Weln(t=k)= Y Wiy (t=k). (7.66)
k k

Replacing N,, by v, in (7.53) we get the relationship between v, and .
Proceeding in the same way as before, we get

wie =({Wa}#q[n])(k) (7.67)

where

Zq[k]e ok, (7.68)
Z |l//m(a) + Zﬂ'k T
Furthermore, we have
D [im(@+27k)F = En,(22) En, () En,(-2), =1 (7.69)
k
Proof for (7.69). With the help of two-scale relation, we can write
2
3 li(@+ 220 = Y (G (exp( j @+ 2mk DN,"(“’””" ) (7.70)
2 2
k k
with
e’"’/2 Zgl k]eke/?, (7.71)

Now separating the right-hand side of (7.70) into parts with even k£ and odd
k and making use of the relation (7.54), we can write

D lim(@+21k) =G (2 En,(2)+IGi(=2)f En,,(~2).  (7.72)
k

From the relation |G (z)|=|Go(-z)Ew,, (~2)|, with Go(z) defined in a similar
way as in (7.71) with gi[k] replaced by go[k], we can write
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TABLE 7.3: Coefficients {g[k]} for Linear Spline Case (g[k] = q[-k]).

k qlk] k qlk]

0 43301268 8 0.92047740 x 107*
1 —0.86602539 9 —0.24663908 x 107
2 0.25317550 10 0.66086895 x 107
3 —-0.66321477 x 107! 11 -0.17707921 x 10~
4 0.17879680 x 107! 12 0.47448233 x 107°
5 —-0.47830273 x 1072 13 —-0.12713716 x 107°
6 0.12821698 x 1072 14 0.34066300 x 1077
7 —-0.34351606 x 1073 15 —-0.91280379 x 1078

D lim(e+27K)f ={[Go(~2) Exp(=2)+1Go (2) Enp(@)} En,i(2) En,(~2)-
k

(7.73)

Following the steps used to arrive at (7.72), it can be shown that

|Go(=2) En,,(=2) +|Go(2) En,,(z) = En,,(2?)- (7.74)

which, together with (7.72), gives the desired relation (7.69).
The expression for g[k] has the same form as that of p[k] with
=—((2m — 1)!)?, p,y = 2m — 2, and A, being the roots of (7.69). Observe from
(7.68) and (7.69) that

ZC] ENm Y (7.75)

since Ey,, (1)=1. Roots A; and Xq[k] for linear and cubic splines are given
below. The coefficients are given in Tables 7.3 and 7.4. The coefficients g[k]
have better decay than {h[k]} of (Figure 7.12).

Linear Spline (m = 2)

A =7.1796767x1072 =1/24
Ay =—0.2679492 = 1/ A3

Y alk]=30. (7.77)
k

(7.76)
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TABLE 7.4: Coefficients {g[k]} for Cubic Spline Case (g[k] =p[-k]).

k qlk] k qlk]
0 33.823959 18 0.39035085 x 1073
1 ~13.938340 19 —0.20894629 x 1073
2 9.0746698 20 0.11184511 x 1073
3 —4.4465132 21 -0.59868424 x 107~
4 2.5041881 22 0.32046413 x 107*
5 -1.3056690 23 -0.17153812 x 10~
6 0.70895731 24 0.91821012 x 1075
7 -0.37662071 25 -0.49149990 x 10~
8 0.20242150 26 0.26309024 x 107>
9 —-0.10811640 27 —0.14082705 x 107
10 0.57940185 x 107" 28 0.75381962 x 107°
11 —-0.30994879 x 107! 29 —0.40350486 x 1070
12 0.16596500 x 107! 30 0.21598825 x 107°
13 —-0.88821910 x 1072 31 —0.11561428 x 107°
14 0.47549186 x 1072 32 0.61886055 x 1077
15 —0.25450843 x 1072 33 -0.33126394 x 1077
16 0.13623710 x 1072 34 0.17731910 x 1077
17 —-0.72923984 x 103 35 —0.94915444 x 1078

Cubic Spline (m = 4)

A1 =8.3698615x107° =1/,
Ay =—-9.1486955x 107 =1/ Ay,
A3 =1.5019634 x 1072 =1/ A9
Ay =—0.1225546 =1/ Ao

As =0.2865251=1/2g

A =—0.5352804 =1/A;

zq[k] =18.5294121.
k

7.7 EXAMPLES

(7.78)

Figure 7.13 shows decomposition of a music signal with some additive noise.
Here the music data are considered to be at integer points. Intermediate
approximate functions s; and detail functions r; have been plotted after
mapping the dual spline and wavelet coefficients into the original space with
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FIGURE 7.13: Decomposition of music signal with noise.

the help of coefficients p[k] and g[k] derived in this chapter. To illustrate the
low-pass and band-pass characteristics of splines and wavelets, respectively, we
show in Figure 7.14, the magnitude spectra of the decomposed signals at
various scales. Reconstruction process is shown in Figure 7.15 using the same
sequences ({go[k]}, {g1[k]}) as were used for the decomposition. The original
signal s(¢) is also plotted next to the reconstructed signal so(¢) for the purpose
of comparison.

To further expound the process of separating a complicated function into
several simple one with the help of wavelet techniques, we consider a function
composed of three sinusoids with different frequencies. These frequencies are
chosen such that they correspond to octave scales. As can be seen from Figures
7.16 and 7.17, standard wavelet decomposition separates the frequency com-
ponents fairly well.
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FIGURE 7.14: Magnitude spectrum of the decomposed music signal indicating the
low-pass and band-pass filter characteristics of scaling functions and wavelets,
respectively.

7.8 TWO-CHANNEL PERFECT RECONSTRUCTION FILTER BANK

Many applications in digital signal processing require multiple band-pass
filters to separate a signal into components whose spectra occupy different
segments of the frequency axis. Examples of these applications include filter
bank for Doppler frequencies in radar signal processing and tonal equalizer
in music signal processing. Figure 7.18 demonstrates the concept of multiband
filtering. In this mode of multiband filtering, the spectral bands corresponding
to components of the signal may be processed with a different algorithm to
achieve a desirable effect on the signal. In the case of Doppler processing and
tonal equalizer, there is no need to reconstruct the original signal from the
processed components. However, there is another form of filtering that requires
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FIGURE 7.15: Reconstruction of the music signal after removing the noise.

the original signal to be recovered from its components: the subband filter
banks. The major applications of subband filtering is in signal compression in
which the subband components are coded for archiving or transmission
purpose. The original signal can be recovered from the coded components with
various degrees of fidelity.

We use a basic two-channel PR filter bank to illustrate the main features
of this algorithm. Filter bank tree structures can be constructed using this basic
two-channel filter bank. A two-channel filter bank consists of an analysis
section and a synthesis section, each consists of two filters. The analysis section
includes high-pass and low-pass filters that are complementary to each
other so that information in the input signal is processed by either one of the
two filters. The block diagram for a two-channel PR filter bank is shown in
Figure 7.19.
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FIGURE 7.16: Decomposition of a signal composed of three sinusoids with different
frequencies corresponding to octave scales.

The perfect reconstruction condition is an important condition in filter bank
theory. It establishes the unique relationship between the low-pass and high-
pass filters of the analysis section. Removal of the aliasing caused by decima-
tion defines the relations between the analysis and synthesis filters. We will
elaborate these conditions in much greater detail below.

The filters in a two-channel PR filter bank is specially designed so that the
component signals may be reconstructed perfectly with no loss of information.
The output of the filter bank is simply a delayed version of the input signal.
For a two-channel filter bank, the filtering operation is exactly the same as the
wavelet algorithm. Because of the PR condition and the need to remove the
aliasing components in the output, one needs to design only one of the four
filters. For further details on filter banks and how they relate to wavelet
theory, readers are referred to Refs. 3-7.
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FIGURE 7.17: Decomposition of a signal with three frequency components (continued
from Figure 7.16).

— Yol

Hy
[ 1

H,
1
) ’—‘H , Y, (D)
’-—‘ yy(®

Ril

FIGURE 7.18: Multiband filter bank.
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FIGURE 7.19: Two-channel perfect reconstruction filter bank.

7.8.1 Spectral-Domain Analysis of a Two-Channel PR Filter Bank

Let a discrete signal X(z) be the input to a two-channel PR filter bank as
shown in Figure 7.19 in terms of z-transforms with intermediate output signals.
The analysis section of the filter bank consists of a low-pass filter Hy(z) and a
high-pass filter H(z). The convolved output of the low-pass filter Hy(z) fol-
lowed by a two-point decimation ({2) is

ol (A <] om

while the high-pass filter H1(z) with decimation yields

o)l om

For analysis purposes, we assume the outputs of the analysis bank are not
processed so that the outputs of the processor labeled U'(z) and V’(z) are

U'(z)=U(z)
V'(z)=V(2).

After the interpolator (T2) and the synthesis filter bank Gy(z) and G,(z), the
outputs of the filters are

U"(2) =5 [X @ Ho(D)Go(@)+ X (<) Ho(-)Go(2)]  (781)
and

V7(z)= %[X(Z)H1(Z)G1(Z)+ X (=2)Hi(-2)Gi(2)]. (7.82)
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These outputs are combined synchronously so that the processed output
X*(z) is

X*(z)=U"(2)+V"(2)

:%X(z)[Ho(z)Go(Z)Jr Hi(2)Gi(2)]

N %X(—z)[Ho(—z)Go(z) +Hy(~2)Gi(2)]. (7.83)

The second term of the expression contains the alias version of the input signal
[one that contains X(—z)]. For perfect reconstruction, we may choose the filters
Go(z) and Gi(z) to eliminate the aliasing component. We obtain the aliasing
free condition for the filter bank

Il
I+

Go(z)=*H1(-2), (7.84)
Gi(z)=FHo(~z).

Once the analysis filters have been designed, the synthesis filters are deter-
mined automatically. Choosing the upper signs in (7.84), the output of the
filter bank becomes

X4(2)= 3 X @)[Ho() Hi(-2)~ i (2) Ho(=2)]. (7.85)

The perfect reconstruction condition requires that X*(z) can only be a delayed

version of the input X(z) (i.e., X*(z) = X(z)z™" for some integer m). We obtain
the following relations:

Ho(2)Go(2)+ H1(2)Gi(z) = Ho(2) Hi(=2) = Hi(z) Ho(=2) ~ (7.86)

= H(2)Go(z) - Ho(-z)Go(-z2) (7.87)

=2z (7.88)

We define the transfer function of the filter bank

7(2)= 2 = {1y (2)Go() + 11 (2)Gi(2)

To simplify the analysis, let us also define composite filters Cy(z) and Ci(z) as
product filters for the two filtering paths respectively,



178 DWT AND FILTER BANK ALGORITHMS

Co(z)=Ho(2)Go(z)=~Ho(z) Hi(~z)
Ci(2)= Hi(2)Gi(z) = Hi(z) Ho(~2)
=—Hy(-z)Go(-z2)
= —Co(~2) (7.89)

where we have made use of the aliasing free condition. In terms of the com-
posite filters, the PR condition becomes

Co(z)-Co(-z)=2z"" (7.90)

and
7(2)=31Co(0)-Co(-2)]. (7.9

If we design the composite filter Cy(z) that satisfies the condition in (7.90), the
analysis filters Hy(z) and Gy(z) can be obtained through spectral factorization.
We will have numerical examples to demonstrate this procedure in later
sections.

We note that the transfer function 7(z) is an odd function since

7(-2)=5[Co(-2)-Co 2]
-21(0). (1.92)

The integer m in (7.90) must be odd, which implies that Cy(z) must contain
only even-indexed coefficients except c,, = 1, where m is odd. Finding Hy(z)
and Hy(z) [or Hy(z) and Gy(z)] to meet the PR requirement is the subject of
filter bank design. Two basic approaches emerged in the early development
of PR filter bank theory: (1) quadrature mirror filter (QMF) approach and
(2) half-band filter (HBF) approach. In this section, we discuss the fundamen-
tal ideas in these two approaches.

7.8.1.1 Quadrature Mirror Filter (QMF) Approach. Let us choose Hi(z) =
Hy(—z). We have, in the spectral domain,
Hl(ej‘”) = Ho(—ej‘”)
= Hy(e/ ™). (7.93)
The spectrum of the highpass filter H;(e/®) is the mirror image of that of the

low-pass filter with the spectral crossover point at @ = /2 as shown in Figure
7.20. The transfer function becomes
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|Ho(e™)] |Hi(e™)]

0

o

FIGURE 7.20: Spectral characteristic of quadrature mirror filter.

1 1 m
T(2)=5[Hi(x)- Hi(2)]= 5[ Hi ()~ Hi(=2) ] == (7.94)
Suppose Hy(z) is a linear phase* FIR filter of order N so that

.
Ho(e)=e 2" |y (o)

Hy(e)=e "2 Yy (e,

The spectral response of the transfer function becomes

.0
1 750D [

re)=ge 2 (e -0 e | as)

If (N — 1) is even, T(e/®) = 0 at the crossover point @ = /2! The transfer func-
tion produces severe amplitude distortion at this point and that violates the
PR requirement. Therefore, N must be even. If we wish to eliminate all ampli-
tude distortion for even N, we must have the spectral amplitude of Hy(z) and
H,(z) satisfying

*A function f e L*(R) has linear phase if
fl@)==|f (@)

where a is some real constant. The function f has generalized linear phase it

f(@)=g(w)e

where g(w) is a real-valued function and constants a and b are also real valued. To avoid distor-
tion in signal reconstruction, a filter must have linear or generalized linear phase.
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|Ho(e) +|Hi () =2. (7.96)

Observe that the condition (7.96) differs from the normalized form by a factor
of 2 on the right-hand side. This happens because previously we used a nor-
malizing factor in the definition of z-transform of the two-scale and decom-
position sequences.

The trivial solution to (7.96) is the sine and cosine function for Hy(e/®) and
H(e’®), which contradict to our initial assumption of FIR filter. Any nontrivial
linear phase FIR filter Hy causes amplitude distortion. If the right-hand side
of (7.96) is normalized to unity, the type of filters that satisfies this normaliza-
tion is called power complementary filters. They are IIR filters that can be
used in IIR-PR filter banks.

Returning to (7.94), if we restrict the filters to be FIR, Hy(z) can have at
most two coefficients so that HZ(z) has only one term with odd power of z7!.
It is easy to see this solution leads to the Haar filters. We will discuss these
filters further in orthogonal filter banks.

7.8.1.2 Half-band Filter Approach. Observe from (7.89) that if we allow
only causal FIR filters for the analysis filter bank, the composite filter Cy is
also causal FIR with only one odd-indexed coefficient. To overcome this
restriction, we can design anticausal or noncausal filters and then add a delay
to make them causal. We first simplify the analysis by adding an advance to
the composite filter and by making use of the properties of a half-band filter,
to be defined below. The composite filter Cy is advanced by m taps so that

S(z)=7"Cy(2) (7.97)

where S(z) is a noncausal filter symmetric with respect to the origin. The PR
condition becomes

S(z2)+S(-z)=2 (7.98)

since S(-z) = (-2)"Co(—z) = —z"Co(-z) for odd m. All even-indexed coeffi-
cients in $(z) are zero except s(0) = 1. $(z) is a half-band filter satisfying the
following conditions:

1. s(n) =0 for all even n except n = 0.
2. s(0) = constant.

3. s(n) = s(-n).

4. S(e’®) + S(—e7?) = constant.

This half-band filter is capable to be spectral-factorized into a product of
two filters. We will have discussions on the HBF with examples.
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To find the solution to (7.98),let Hy(z) = —z"Hy(-z"), the transfer function
becomes

T(z)==[Ho(z)H(~z)~ H1(z) Ho(~2)]

2 =Ho(2) Ho(z™)(=1) " + Ho(-2) Ho(-z )] (7.99)

NS NI»—x

In view of (7.90), m must be odd. We have the expression
1
T(z)= S [ Ho(z)Ho(z™")+ Ho(=2) Ho(-27")]- (7.100)

The filter bank has been designed once the half-band filter has been designed.
The resultant filters are listed as follow

S(z)=Ho(z)Ho(z™")

Co(z)= Ho(z)Ho(z ")z

Ci(z2)= Ho(z)Ho(z’l)z_m

Hy(z)=-z""Ho(-z") (7.101)
Go(z)=Hi(-z)

Gi(z)=-Ho(~z)

7()=5[5(2)+S(-2)]

The low-pass filter Hy(z) comes from the spectral factorization of S(z).
7.8.1.2.1 Example. We use the derivation of the Daubechies [5] scaling func-
tion coefficients as an example. Let us recall the conditions on the half-band
filter
S(z)+S(-z)=2

The simplest form of S(z) other than the Haar filter is

S(2)=(1+2 (1+ ) R(2). (7.102)
All even coefficients of §(z) must be zero except at 0 where s(0) = 1. Let

R(z)=az+b+az™!

be a noncausal symmetric filter so that S(z) remains symmetric. By carrying
out the algebra in (7.102) and using condition on S(z), we have
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S(0)=1 — Sa+6b=1
S(2)=8(2)=0 = da+b=0
giving a =-1/16 and b =1/4. The symmetric filter R(z) becomes
1 1 1
R(z)=-——z+-——z
S TRV
1\
= — | [1+B3+(1-V3)z |[1+3+(1-+/3)z
() [+ 33 +(1=5) 143+ (1-43)z]

This expression is substituted into (7.102) so that we can factor S(z) into a
product of two filters Hy(z) and Hy(z ™). The result of this spectral factoriza-
tion gives a causal filter

Ho() =5 J1+ 2 14 5+ (1-45)2 ]

(5 1+ B) 4 (3 4 (3-3) 22 (1-45)2
=0.4929+0.8365z 1 +0.2241772 —0.12947 3

Note that these coefficients need to be multiplied by V2 to get the values
given in Chapter 6.

7.8.1.3 Biorthogonal Filter Bank. A linear phase FIR filter bank is desirable
because it minimizes phase distortion in signal processing. On the other hand,
an orthogonal FIR filter bank is also desirable because of its simplicity. One
has to design only one filter—namely, H(z), and all other filters in the entire
bank are specified. Biorthogonal filter banks are designed to satisfy the linear
phase requirement.

Let us recall the PR condition and the antialiasing condition on the synthe-
sis and analysis filters. They are

Hy(2)Go(z)+ H1(2)Gi(z)=2z""
Go(z)Ho(-z)+G1(z) Hi(-2)=0

We can solve for the synthesis filters Go(z) and Gi(z) in terms of the analysis
filters Hy(z) and Hi(z). The result is

LG;;EEH ) dif[_;nr] [_}25(__2))} (7.103)

where the transfer matrix is
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[Tr]:{HO(Z) H(2) }

Ho(=z) Hi(=2)
If we allow symmetric filters
Hy(z)= Ho(z_l) & ho(n)=ho(-n)
and are not concern with causality at the moment, we may safely ignore the

delay z7". This is equivalent to designing all filters to be symmetric or antisym-
metric about the origin. We also recall the definitions of the composite filters

Co(z)= Ho(2)Gy(2)
Ci(z)=Hi(2)Gi(2).

Using the result of (7.103), we write

Co(z)= Ho(2)Gy(z)=2H(z) H1(-z)/det[Tr]

C0)= H()Gi(2) = 2t @) Ho(-odenfrr]. T
If we replace —z for z in the second equation and note that
det[Tr(—z)]=—-det[Tr(z)],
we have
Ci(z)=Co(-2). (7.105)
The final result is
Co(2)+Co(-2)=2. (7.106)

We now have a half-band filter for Cy(z) from which we can use spectral fac-
torization to obtain Hy(z) and Gy(z). There are many choices for spectral
factorization and the resulting filters are also correspondingly different. They
may have different filter lengths for the synthesis and analysis banks. The
resulting filters have linear phase. The user can make judicious choice to
design the analysis bank or the synthesis bank to meet requirements of the
problem on hand. We use the example in Ref. 3 to show different ways of
spectral factorization to obtain Hy(z) and Go(z).
Let the product filter

Co(2) = Ho(2)Go(2) = (1+271)' 0()

_1 -2 -3 4 __-6
=1 (F1+927 #1627 +927 - 279), (7.107)
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Since the binomial (1 + z7!)" is symmetrical, Q(z) must be symmetrical to
make Cy(z) symmetrical. An advance of z* makes S(z) a half-band filter. The
choices of spectral factorization include

1. Ho(z)=(1+27) Go(2)=(1+z1)' 0(z)

2. Ho(2)=(1+77) Go(2)=(1+21) 0(2)

3.Ho(z)=(1+z" ])2 Go(z)=(1+2 ) 0(z) (7108)
(1+z-1) 2-3-z7) or (1+z1) (2443 -27)

4.Hy(z)=(1+2 1)3 Go(z)=(1+27")0(z)

5.Ho(z)=(1+2") (2-V3-2") Go(x)=(1+2") (2443 -2")

The last choice corresponds to Daubechies’s orthogonal filters, which do not
have linear phase. The 3/5 filter in the upper line of (3) gives linear phase filter
while the lower one does not.

7.8.2 Time-Domain Analysis

The development of the filter bank theory is primarily based on the spectral
analysis, we discuss the time-domain equivalent of the theory for enhancement
of the understanding of and for the digital implementation of the algorithm.
Thus it suffices to illustrate the meaning of the terms, filter requirements, and
the filter systems in terms of time domain variables.

7.8.2.1 Causality. An FIR filter is causal if the impulse response
h(n)=0 V n<O0.
The z-transform of h(n) is a right-sided polynomial of 77!
H(2)=h(0)+h()z ' +h(2)z2 +...+ h(m)z™"
If H(z) is a causal filter, then H(z™") is anticausal since
H(z")=h(0)+h(1)z+h(2)2* +...+ h(m)z"

which is a left-sided polynomial of z. As a result, H(-z ') is also anticausal
since the polynomial is the same as that of H(z™') except the signs of odd
coefficients have been changed

H(-z)=h(0)-h(1)z+h(2)z* —...— h(m)z"™.
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The last term has a negative sign if we assume m is odd. To realize the anti-
causal FIR filter, we must delay the filter by the length of the filter to make it
causal. Hence

—z"H(-z")=h(m)-h(m-1)z"+ .+ h(1) 2™ = h(0)z™"

is a causal filter. If we choose

Hoy(z)=H(z)
Hi(z)=-z ’"Ho(—z Y
Go(z)=Hi(-2)
Gi(z)=-Ho(-2),

we have a filter bank consisting of causal filters.

7.8.2.2 PR Requirements. Perfect reconstruction demands that
S(z)+S(-z)=2.
In terms of the low-pass filter Hy(z), the equation becomes
Ho(z)Ho(z™")+ Ho(-2) Ho(-z7")=2. (7.109)

Let us consider the PR condition in (7.109). In time domain we have

z)+S(-z Zho _"Zho(m)zm + Zho(n)z‘"Z(_l)-(n+m) ho(m) 2"
zho Yho(m)z7"z +Z(—1)_(n+m) ho(n)ho(m)z™"z"

nm

= 2. (7.110)

Satisfaction of (7.110) requires (m + n) be even, and we have

zho(n)ho(m)z_”z’" =1. (7.111)

The left side of (7.111) is the z-transform of the auto-correlation function of
the sequence ho(n). To show this relation, we denote

= Zho(k)ho(k+n):1c(—n) (7.112)
k

be the autocorrelation function. Its z-transform is written as
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K(Z) = ZZh()(k)ho(k + n)z‘”
n k
=2h0(k)2h0(k+n)z-"
k n

= Zho(k)Zho(m)z‘(m‘k) (7.113)
k m

which implies
Kk (n)=ho(n)*ho(-n). (7.114)

Comparing (7.113) and (7.110) and making the substitution
we have

From (7.98) and the fact that s(2r) = 0 for all integer n, we have the orthonor-
mality condition required for PR

Zho(k)ho(k+2n) = 8,0- (7.115)
k

This implies the orthogonality of the filter on all its even translates. We apply
the same analysis to the high-pass filter s(n) and get the same condition
for hy(n)

Zhl(k)hl(k+2n) =80 (7.116)
k

Zho(k)hl(k+2n) =0. (7.117)
k

In terms of wavelet and approximation function basis, the orthonormality
conditions given above are expressed as inner products

<ho(k), ho (k + 21’!)> = 6n,0

(hi(k), m(k +2n))= 6,0 (7.118)
</’l0 (k), hl (k + 2n)> =0
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where the approximation basis /(k) and the wavelet basis /1(k) are ortho-
normal to their even translates. They are also orthogonal to each other. If we
construct an infinite matrix [Hy] using the FIR sequence /y(n) such that

[holO0] hol[1] hol2] ho[3] O 0 0
0 0 ho[0] ho[l] ho[2] ho[3] O
0 0 0 hol[0]  ho[1] ho[2]

[Ho]= 0 0 0 ho[0]],  (7.119)
0 0
0
0

it is obvious that
[Hol[Hol =1 (7.120)
using the orthonormality conditions in (7.118). Therefore, [Hy] is an orthogo-
nal matrix. We define [H;] in a similar way using the FIR sequence of A;(n)
and show that
[Hi[H\] =1. (7.121)
In addition, the reader can also show that
[Hi][Ho] =[Ho][H:] =[0]. (7.122)
Equations in (7.118) constitute the orthogonal conditions imposed on the
FIR filters. This type of filter bank is called the orthogonal filter bank.

The processing sequences for Haar scaling function and Haar wavelets are the
simplest linear phase orthogonal filter bank. Indeed, if we denote

wor-{ 3

and

()

these two sequences satisfy the orthogonal conditions in (7.118). We recall that
linear phase FIR filters must be either symmetric or antisymmetric, a condition
not usually satisfied by orthogonal filters. This set of Haar filters is the only
orthogonal set that has linear phase.
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7.8.2.3 Two-Channel Biorthogonal Filter Bank in the Time-Domain. We
have shown in last section that the biorthogonal condition on the analysis and

synthesis filters is

Co(2)+Co(~z)= Ho(2)Go(z)+ Ho(-2) Go(~z)
=2.

Writing this equation in the time domain and using the convolution formula,
yield the time-domain biorthogonal condition

Zho )go(l—k)+(— Zho )go(£—k)=28,0. (7.123)

The equality holds only if 7 is even. This results in the biorthogonal relation
between the analysis and synthesis filters

D ok go(2n k)= (ho(k), go(2n—k))
k
=0n0- (7.124)
The biorthogonal condition can also be expressed in terms of H;(z) to yield
Y m(k)gi(2n-k) = (k), gi(2n—k))
k
= 0n0- (7.125)

The additional biorthogonal relations are

(hi(k), g ( —k))
(ho(k), k))=0

If we consider the filters as discrete bases, we have

’

(7.126)

&m(k)=gm(-k). (7.127)

The biorthogonal relations become

(7.128)
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7.9 POLYPHASE REPRESENTATION FOR FILTER BANKS

Polyphase representation of a signal is an alternative approach to discrete
signal representation other than in the spectral domain and the time
domain. It is an efficient representation for computation. Consider the pro-
cess of convolution and decimation by 2, we compute all the resulting
coefficients and then cast out half of them. The polyphase approach decimates
the input signal and then convolves with only half of the filter coefficients.
This approach increases the computational efficiency by reducing the
redundancy.

7.9.1 Signal Representation in Polyphase Domain

Let the z-transform of a discrete causal signal separated into segments of M
points, be written as

X(2)=x(0)+x()z' +x(2)z2 +x(3)z > +--+x(M-1)z7 M

+x(M)z ™+ x(M+1)z7MD) 4 x(M+2)z77 M) 4.
+x(2M) M 4 x(2M +1) 77 @M+ 4 x (2M +2)77@M+2) 4 (7.129)
+x(3M) M + x(BM +1) 77 GM+D 4.
M-1

=2 @ Xl (7.130)
=0

where X(z¥) is the z-transform of x(n) decimated by M ({ M). The index ¢
indicates the number of sample shifts. For the case of M =2, we have

X (2)=Xo(2?)+27'X1(2?). (7.131)

7.9.2 Filter Bank in the Polyphase Domain

For a filter H(z) in a two-channel setting, the polyphase representation is
exactly the same as in (7.131)

H(z)=H,(2*)+2 7 Ho(2%) (7.132)

where H,(z?) consists of the even samples of 4(n) and H,(z?) has all the odd
samples. The odd and even parts of the filter are used to process the odd and
even coefficients of the signal separately. To formulate the two-channel filter
bank in the polyphase domain, we need the help of two identities:

(I M)G(2)=G(™)(I M)

1.
2. (T M)G(M)=GE)(T M), (7133)
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A filter G(z%) followed by a two-point decimator is equivalent to a two-point
decimator followed by G(z). The second identity is useful for the synthesis
filter bank.

Let us consider first the time domain formulation of the low-pass branch
of the analysis filter. Assuming causal input sequence and causal filter, the
output y(n) = [x(n) * f(n)]i, is expressed in matrix form as

y(O) f(O) 0 0 0 0 0 x(O)
v | [rm @ 0 0 0 olx
Yol [r@ ro fo 0 0 ofx@
v 7153 r@ ro s o ol PP
v | 7@ 1@ f@ r £ o] x@)
Yo 110 @ 13 @ r@  |[x6)
) | JLx(6)]

The output coefficients are separately represented by the odd and even
parts as

[y(m)]=[ye(n)]+(delay)[yo(n)]

where

)

) 7.135
)| (7.135)
)

The even part of y(n) is made up of the products of f.(n) with x.(n) and f,(n)
with x,(n) plus a delay. The signal x(rn) is divided into the even and odd parts,
and they are processed by the even and odd part of the filter, respectively. In
the same way, the high-pass branch of the analysis section can be seen exactly
as we demonstrate above. In the polyphase domain, the intermediate output
from the analysis filter is given by

e[ e )

(7.136)

LT N

Z_1X1(Z)
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where [H] is the analysis filter in the polyphase domain. In the same
manner, we obtain the reconstructed sequence X’(z) from the synthesis filter
bank as

P

]

(7.137)

The PR condition for the polyphase processing matrices is [H][G] = .

7.10 COMMENTS ON DWT AND PR FILTER BANKS

We have shown the parallel between the algorithms of the DWT and the two-
channel filter bank. In terms of numerical computation, the algorithms of both
disciplines are exactly the same. We would like to point out several funda-
mental differences between the two disciplines.

1. Processing domain. Let us represent an analog signal f() € L? by an ortho-
normal wavelet series

FO=D wiswis (1), (7.138)
k s

The coefficients wy; are computed via the inner product

wis =(f (1), Wis(1)- (7.139)

The wavelet series coefficients, much in the same way like the Fourier series
coefficients, are time- (or analog-) domain entities. From this point of view,
we see that the DWT is a fast algorithm to compute the CWT at a sparse
set of points on the time-scale plane, much like the FFT is a fast algorithm
to compute the discrete Fourier transform. The DWT is a time-domain
transform for analog signal processing. On the other hand, the filter bank
algorithms are designed from spectral domain consideration (i.e., the high-
pass and low-pass design) for processing of signal samples (instead of
coefficients).

2. Processing goal. We have shown that the wavelet series coefficients are
essentially the components (from projection) of the signal in the direction
of the wavelet y at the scale a=2"" and at the time point b = k27"
This concept of component is similar to the Fourier component. The
magnitude of the wavelet series coefficient represents the strength of the
correlation between the signal and the wavelet at that particular scale
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and point in time. The processing goal of the filter bank is to separate the
high-frequency and low-frequency components of the signal so that they
may be processed or refined by different DSP algorithms. Although the
DWT algorithms inherently have the same function, the focus of DWT is
on finding the similarity between the signal and the wavelet at a given scale.

3. Design origin. A wavelet is designed primarily via the two scale relation
to satisfy the MRA requirements. Once the two-scale sequences are found,
the DWT processing sequences have been set. A wavelet can be con-
structed, and its time and scale window widths can be computed. In general,
a filter bank is designed in the spectral domain via spectral factorization to
obtain the processing filters. These sequences may or may not serve as the
two-scale sequences for the approximation function and the wavelet. The
time-scale or time-frequency characteristics of these filters may not be
measurable.

4. Application areas. Most of signal- and image-processing applications
can be carried out either with DWT or with filter bank algorithms. In
some application areas, such as non-Fourier magnetic resonance imaging
where the processing pulse required is in the analog domain, wavelet is
more suitable for the job because the data set is obtained directly via
projection.

5. Flexibility. Since filter banks may be designed in the spectral domain via
spectral factorization, a given half-band filter may result in several sets of
filters, each having its own merit vis-a-vis the given signal. In this regard,
the filter bank is much more adaptable to the processing need than the
wavelets.

Wavelet or filter bank? The user must decided for himself or herself based

on the problem on hand and the efficiency and accuracy of using either one
or the other!

7.11  EXERCISES

1. For a positive integer M > 2, set wk, =exp[j(2nk/M)] for k=1, ... , M.
Show that
M .
1 , [0 it Ml
— wl — 7.140
MZ{WM {1 if Ml/¢ (7.140)

Y(eo)= %Zx(w’;{ exp(— ]%D (7.141)
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where X(z)=Xix[k]zX and Y (z)=3,y[k]z* are the z-transform of
sequences {x[k]} and {y[k]}.

If the sequence {y[k]} is generated from {x[k]} by upsampling by M:

x[ﬁ} if ke MZ
M

ylk]= (7.142)

0 otherwise,
show that
(Y ()= X (e7Me) (7.143)

for the respective z-transforms.

In the QMF solution to the PR condition, it is found that the only solution
that can satisfy the condition is Haar filters. Why don’t any other FIR filters
satisfy the PR condition?

Use the antialiasing condition and the PR condition, find the filter sequences
ho(n), hi(n), g1(n) if go(n) is the D, sequence given the example of this
chapter.

Show the validity of the identities given in Section 7.9.2.

7.12 COMPUTER PROGRAM

7.12.1 Decomposition and Reconstruction Algorithm

o 0° 0P o° o o°

oe

PROGRAM algorithm.m

Decomposes and reconstructs a function using Daubechies’
wavelet (m = 2). The initial coefficients are taken as
the function values themselves.

% Signal

vl = 100; % frequency

v2 = 200;

v3 = 400;

r = 1000; %$sampling rate

k = 1:100;

t = (k-1) / r;

s = sin(2*pi*vl*t) + sin(2*pi*v2*t) + sin(2*pi*v3*t);
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% Decomposition and reconstruction filters

]

g0 = [0.68301; 1.18301; 0.31699; -0.18301];
k = [0; 1; 2; 31;

gl = flipud(g0).*(-1)."k;

h0 = flipud(g0) / 2;

hl = flipud(gl) / 2;

oo

Decomposition process

oo

First level decomposition

x = conv(s,h0);
a0 = x(1l:2:1length(x)); $downsampling
x = conv(s,hl);
w0 = x(1:2:1length(x)); $downsmapling

% Second level decomposition

x = conv(al,hO0);
al = x(1:2:1ength(x));
x = conv(al,hl);

wl = x(1:2:1length(x));
% Plot

subplot(3,2,1), plot(s)
yvlabel (’Signal’)
subplot(3,2,3), plot(al)
vlabel(’a_0")
subplot(3,2,4), plot(w0l)
vlabel (‘w_0")
subplot(3,2,5), plot(al)
vlabel (‘a_{-1}")
subplot(3,2,6), plot(wl)
vlabel (‘w_{-1}")

set (gcf, 'paperposition’, [0.5 0.5 7.5 101)

oo

Reconstuction process

oo

Second level reconstruction

x = zeros(2*length(al),l);
x(1l:2:2*1length(al)) = al(l:length(al));
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v = zeros(2*length(wl),h 1) ;
v(l:2:2*1length(wl)) = wl(l:length(wl));

X = conv
al0_rec =

(x,90) + conv(y,gl);
x(4:length(x)-4);

% First level reconstruction

vy = zeros(2*length(w0), 1);

v(l:2:2*1length(w0)) = wO(1l:length(w0));
x = zeros(2*length(al_rec), 1);
x(1l:2:2*1length(al0_rec)) = al_rec;
x = conv(x,g0);

y = conv(y,gl);

v = xX(1l:1length(y))+y;

s_rec = y(4:1length(y)-4);

% Plot

figure (2)

subplot (3,2,1) plot (al)
ylabel(’a_{-1}")

subplot(3,2,2) plot (wl)

yvlabel ("w_{-1}")

subplot(3,2,3),

plot (a0_rec)

yvlabel ('Reconstructed a_0"')

subplot(3,2,4),

ylabel (‘w_0")

subplot(3,2,5),

plot (w0)

plot (s_rec)

ylabel ('Reconstructed Signal’)
set (gcf, 'paperposition’, [0.5 0.5 7.5 101)
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CHAPTER EIGHT
|

Special Topics in Wavelets
and Algorithms

In Chapter 7 we discussed standard wavelet decomposition and reconstruction
algorithms. By applying an optimal-order local spline interpolation scheme as
described in Section 5.6, we obtain the coefficient sequence a of the desired
B-spline series representation. Then, depending on the choice of linear or
cubic spline interpolation, we apply the change-of-bases sequences (Section
7.5) to obtain the coefficient sequence @ of the dual series representation for
the purpose of FIR wavelet decomposition.

A typical time-scale grid obtained by following the implementation scheme
described in Chapter 7 is shown in Figure 7.7. In other words, the IWT values
of the given signal at the time-scale positions shown in Figure 7.7 can be
obtained (in real time) by following this scheme. However, in many signal
analysis applications, such as wide-band correlation processing [1] used in some
radar and sonar applications, this information on the IWT of f on such a sparse
set of dyadic points (as shown in Figure 7.7), is insufficient for the desired
time-frequency analysis of the signal. It becomes necessary to compute the
IWT at nondyadic points as well. By maintaining the same time resolution at
all the binary scales, the aliasing and the time variance difficulties associated
with the standard wavelet decomposition algorithm can be circumvented.
Furthermore, as will be shown in this chapter,computation only at binary scales
may not be appropriate to separate all the frequency contents of a function.

An algorithm for computing the IWT with finer time resolution was intro-
duced and studied by Rioul and Duhamel [2] and Shensa [3]. In addition, there
have been some advances in fast computation of the IWT with finer frequency
resolution, such as the multivoice per octave (mvpo) scheme, first introduced

Fundamentals of Wavelets: Theory, Algorithms, and Applications, Second Edition,
By Jaideva C. Goswami and Andrew K. Chan
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in [Ref. 4] (see also [Ref. 5]) and later improved with the help of FFT by Rioul
and Duhamel [2]. However, the computational complexity of the mvpo scheme,
with or without FFT, increases with the number of values of the scale param-
eter a. For example, in the FFT-based computational scheme, both the signal
and the analyzing wavelet have to be sampled at the same rate, with the sam-
pling rate determined by the highest frequency content (or the smallest scale
parameter) of the signal, and this sampling rate cannot be changed at the
subsequent larger scale values for any fixed signal discretization. Furthermore,
even at the highest frequency level, where the width of the wavelet is the
narrowest in the time domain, the required number of sampled data for the
wavelet will be significantly larger than the number of decomposition coeffi-
cients in the pyramid algorithm.

In this chapter, we will discuss the fast integral wavelet transform (FIWT).
Other wavelets and algorithms such as ridgelets, curvelets, complex wavelets,
and lifting algorithm are briefly described.

8.1 FAST INTEGRAL WAVELET TRANSFORM

As mentioned before, in many applications it is important to compute wavelet
transform on a dense set of points in the time-scale domain. A fast algorithm
[6-8] is presented.

8.1.1 Finer Time Resolution

In this section, we will be concerned with maintaining the same time resolution
on each scale by filling in the “holes” along the time axis on each scale—that
is, we want to compute (Wxy)(n/2Y,1/2),n € Z,s < M. Recall that the stan-
dard algorithms discussed in Chapter 7 gives the IWT values only at dyadic
points {n/ 25, 1/ 2% nel,s<M } For finer time resolution, we first observe
that for each fixed n, by introducing the notation

n
XM’n(t) = XM(t+2_Mj’ (81)
we have

oo

e )"

—oo

=(WWxM,n)(o, 21) (82)
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Now, since

xu(t)= Zak,Mé(zM t—k), (8.3)

k

we have

aa(t)= Y dm(2M t+n-k)
k

2 +kM¢ 2Mf k) (84)

k

Hence we observe from (8.2), that the IWT of x,; at (n/2¥, 1/2%) is the same
as that of x, at (0, 1/2%). In general, for every k € Z, we even have

ko1 T —
(Wy X )(?’ 2—) =292 j X () (21— k)dt

oo

=252 j xM(t+2LM)I//(2St—k)dt

—oco

)

n2s
= 25/2 J' XM(t)l//(zst—k—z—de[

—oco

- (W)

M-s
k2 +n 1 ), (8.5)

oM oS

where s < M. Hence for any fixed s and M with s < M, since every integer /
can be expressed as k2"~ + n,where n =0, ... , 2"~ — 1 and k € Z, we obtain
all the IWT values

(WWfM)(;w ’ 2%) =27 Wy M s (8.6)

of xpat (¢/2M,1/2%), ¢ € Z and s < M, by applying the standard wavelet decom-
position algorithm of Chapter 7 to the function x,,,. The time-scale grid for

s=M-1,M-2,and M —3,but only ¢ =0, ..., 3,is given in Figure 8.1.
For implementation, we need notations

Wy = {szs—M’s }keZ and a, = {ékzs—M,s }kez’ so that ay; = ayy, (8.7)

and the notation for the upsampling operations
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FIGURE 8.1: Filling in holes along the time axis.

_ [identity operator forp=0
oo forp >1,

where

Xp for even n;

o{x,}={yn}, with y"={0 for odd n

As a consequence of (8.2) and (7.45), we have,fors=M — 1,

(&1*an), : Zgl ke, M

Z gl n+k

20D (W, )(0, 2M_1*1)
= Gpp2, M-1-
In a similar way it can be shown that
np2.m-1 = (8o *anr ),
That is, in terms of the notations in (8.7) and (8.8), we have

{aMl = (Gogo ) *ay,

Wy-1= (Gogl ) *ay.

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)
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FIGURE 8.2: Wavelet decomposition process with finer time resolution.

To extend this to other lower levels, we rely on the method given in [3],
yielding the algorithm

a1 = (O-M_SgO)*as,
W1 = (GM_Sgl)*WSa (813)
withs=M, M-1,..., M—M’+1.

A schematic diagram for implementing this algorithm is shown in Figure 8.2.

8.1.2 Finer Scale Resolution

For the purpose of computing the IWT at certain interoctave scales, we define
an interoctave parameter

2N

N°

N>Oandn=1,---,2" -1, (8.14)
n+2

oy = an,N =

which gives 2" — 1 additional levels between any two consecutive octave levels,
as follows.

For each k € Z, s < M to add 2V — 1 levels between the (s — 1) and sth
octaves, we introduce the notations

1
.00 = () o(Z k)

. (8.15)
vy ()= (25 o, )5 1//(25 ot — k).
Observe that since 1/2 < o, < 1, we have
supp Qs < supp @y <supp ¢ y; (8.16)
SUPP Wk,s ©SUpp Yy S supp Wi ..
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As a consequence of (8.16), the RMS bandwidths of ¢A)g70 and yg, are

narrower than those of ¢ and ¥ and wider than those of #(2) and y(2)),
respectively.
The interoctave scales are described by the subspaces

Vit =clos 2 (¢} -k e Z). (8.17)

It is clear that for each n, these subspaces also constitute an MRA of L2. In
fact, the two-scale relation remains the same as that of the original scaling
function ¢, with the two-scale sequence {go[k]}—namely

¢3,s(t>=;go [k]¢g,s(zr—;‘—n). ®.18)

It is also easy to see that yy  is orthogonal to V5". Indeed,

(0r o wi ) ={(drs vis) =0, 1 ke, (8.19)

for any s € Z. Hence the spaces
Wyt =clos,» <1//,'€”S ke Z> (8.20)

are the orthogonal complementary subspaces of the MRA spaces V. In addi-
tion, analogous to (8.18), the two-scale relation of yg, and ¢;" remains the
same as that of y and ¢—namely

v (0= Y silklag, (20- ) 521

k n

Since ({go[k]}, {g1[k]}) remain unchanged for any interoctave scale, we can use
the same implementation scheme, as shown in Figure 7.11, to compute the

IWT values at (k/ 2%, , 1/ 2% (xn). However, there are still two problems. First,
we need to map xy, to Vi, and second, we need to compute the IWT values
at (k/ZM o, 1/25 (xn) instead of the coarser grid (k/25 a,, 1/ZS Oc,,).

Let us first consider the second problem. That is, suppose that x}, € V}; has
already been determined. Then we may write

xhy = D 92" ot k)= Yy, 8(2" ot ~ k) (8.22)
k k

for some sequences {a; ,,} and {‘71?, u } € /?. Then the decomposition algorithm
as described by Figure 7.11 yields
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N | =

77, = (20 ) (. v

oo

=2%a, J. Xy (O (25t —k)dt (8.23)

—oo

o k1
e

Now by following the algorithm in (8.13), we can also maintain the same time
resolution along the time axis on each interoctave scale for any fixed n. More
precisely, by introducing the notations

n ~n n ~Nn n ~n
wl =W and a! =1a so thata), =a 8.24
s { kzs—M’s }kGZ S { kzs—M‘S }kEZ’ M M> ( )

we have the algorithm for computing the IWT at the interoctave scale levels
as given below

al, =(c¥"g)=ar,
wi =(oM g )xal, (8.25)

s—1

withs=M,M—1,...,M—-M’+1.

However, it is clear from (8.23) that the time resolution for each fixed n is
1/ 2™ o, which is less than the one for the original octave scales, in which case
the time resolution is 1/2". As has been discussed in Chapter 7, the highest
attainable time resolution in the case of the standard (pyramid) decomposition
algorithm is 1/2™71, It should be pointed out that the position along the time
axis on the interoctave scales is not the same as the original octave levels—that
is, we do not get a rectangular time-scale grid (see Figure 8.4). A diagram of
(8.25) is shown in Figure 8.3. If we begin the index n of (8.14) from 0, then
n =0 corresponds to the original octave level. Figure 8.4 represents a typical
time-scale grid fors =M - 1,M —2,and M -3 with N=2and n=0, ..., 3.

n _ -
ays ay, - ap—1 M~ | GM—-M'
— jayr—ai - 7 M Go il oM-M'g | GM]
= M-M' 5
g1 o 91
n n
Whr—q Whr—m

FIGURE 8.3: Wavelet decomposition process with finer time-scale resolution.
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FIGURE 8.4: Time-scale grid using the scheme described in Figure 8.3.

8.1.3 Function Mapping into the Interoctave Approximation Subspaces

Now going back to the first problem of mapping x), to x},, we observe that
since Vi # V), we cannot expect to have x}, = xj in general. However, if the
MRA spaces {V;} contain locally all of the polynomials up to order m in the
sense that for each /,0</<m —1,

1= ap(-k), (8.26)

k

pointwise, for some sequence {a}rez, then it is clear that {VJ"} also possesses
the same property. Consequently, the vanishing moment properties of the
interoctave scale wavelets yg  are the same as those of the original y. Hence
in constructing the mapping of x), to x},, we must ensure that this transforma-
tion preserves all polynomials up to order m.

For the case of linear splines, such mapping can be easily obtained based
on the fact that the coefficients in the linear-spline representation of a function
are the function values evaluated at appropriate locations.

From the points of symmetry of N»(2M¢) and N»(2™a,,t) we obtain the mag-
nitude of the shift & in the centers (Figure 8.5)

1 1 n
E= 2_M(a_,, - 1) = SN (8.27)

and, therefore, a ,, as

ayy = (1—2M ‘S)aO,M +2M Eay . (8.28)
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FIGURE 8.6: The first term of {a} ,,} when {a ] starts with k # 0.

However, if the lowest index of ay, is other than zero, then aj, will not start
with the same index as that of ay,. To illustrate this situation, suppose x(z) has
been discretized beginning with ¢ = 4.25 with 0.25 as the step size (mapping
into V5). Then we have

x (1) = Zak,zNz(QZt—k)= Zai’zNz(%t—k), (8.29)
k k

with n =1, N =2, =4/5. As is clear from Figure 8.6, the index for ¢121 does
not start with the same index as a,. It should also be observed that some of
the coefficients a; , will coincide with c. The next index, ¢}, ,, will then lie
between c/12 and ¢4

Taking all of these points into account, we can obtain aj, from ay by fol-
lowing these steps:
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. Based on the given discretized function data, determine the starting

index of aj,. Let it be a’y,.
Let a;'), lie between a,y and a1 p-

. Let a'), be shifted from ayy toward the right by &£ in time. Then starting

with r = 0, compute
aiy = (1 -2M g)as+r,M +2M Eagi1r M- (8.30)

Increment i, s by 1 and & by n/2M+N.

. Continue (3), (4) until 1 — 2M& < 0. When 1 — 2M& < 0, increment r by 1

and reset & to n/2M*N Increment i, s by 1.

. Repeat steps (3)—(5) until a4, takes the last index of ay,.

For a general case, the mapping of xj, to x}, can be obtained following the
method described in Sections 5.6 and 7.2. For instance, to apply the linear
spline interpolatory algorithm or the cubic spline interpolatory algorithm, we
need to compute the function values of xj, [k/(ZM o, )] or xM[k/(ZM_lan )],
k € Z. These values can be easily determined by using any spline evaluation
scheme. More precisely, we have the following:

(i) For m =2 (linear splines), it is clear that

xh (1) =Zka,’c‘,MN2(2Mant—k)

s k+1 (8.31)
with @i \, = xm i .

On

(i) For m =4 (cubic splines), we have

Xy ()= a  No(2M ot~ k), (8.32)
k
with
k+6 "
e m = 2 Vier2-2nXM (—2 =T ) (8.33)
n=k-2

where the weight sequence {v,} is given in Section 5.6.
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Finally, to obtain the input coefficient sequence {ay ,,} from {a; ,,} for the
interoctave scale algorithm (8.19), we use the same change-of-bases sequence
r as in (7.47).

8.1.4 Examples

In this section, we present a few examples to illustrate the FIWT algorithm
discussed in this chapter. The graphs shown are the centered integral wavelet
transform (CIWT) defined with respect to the spline wavelet y;, as

1 @

(W@mf)ﬂha%=a75Ihfﬁ)wm(5§2+4*jdn (8.34)
where
w_ 2m-1
=T (8.35)

Observe that the IWT as defined by (4.32) does not indicate the location
of the discontinuity of a function properly since the spline wavelets are
not symmetrical with respect to the origin. The CIWT circumvents this
problem by shifting the location of the IWT in the time axis by ar* toward the
right.

The integral wavelet transform of a function gives local time-scale informa-
tion. To get the time-frequency information, we need to map the scale param-
eter to frequency. There is no general way of doing so. However, as a first
approximation, we may consider the following mapping,

ars f=5, (8.36)
a

where ¢ > 0 is a calibration constant. In this book, the constant ¢ has been
determined based on the one-sided center (@) and one-sided radius (Ay,)
of the wavelet (), which are defined in Chapter 4.

For the cubic spline wavelet we get @ =5.164 and Ay, =0.931. The cor-
responding figures for the linear spline wavelet are 5.332 and 2.360, respec-
tively. Based on these parameters, we choose values of ¢ as 1.1 for cubic spline
and 1.5 for linear spline cases. It is important to point out that these values of
¢ may not be suitable for all cases. Further research in this direction is required.
We have chosen ¢ by taking the lower cut-off frequency of V¥ (®).

8.1.4.1 IWT of a Linear Function. To compare the results obtained by the
method presented in this chapter with the results obtained by evaluating the
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FIGURE 8.7: Linear function whose WT is shown in Figures 8.8-8.10.

integral of (8.34), we first take the linear function, which changes slope as
shown in Figure 8.7. The function is sampled with 0.25 as the step size. So for
linear splines, it means that the function is mapped into V,, whereas for the
cubic splines, the function is mapped into V3. We choose N =1, which gives
one additional scale between two consecutive octaves. It is clear from Figures
8.8 and 8.9 that both the FIWT algorithm and direct integration give identical
results for wavelet coefficients for octave levels, but there are errors in the
results for inter-octave levels as discussed before.

The importance of the moment property becomes clear from Figures 8.8
and 8.9. In both the linear and cubic cases, when the wavelet is completely
inside the smooth region of the function, the WC are close to zero since the
function is linear. Wherever the function changes the slope, the WCs have
larger magnitudes. We also observe the edge effects near 1 = 0 and ¢ = 50. The
edge effects can be avoided by using special wavelets near the boundaries.
Such boundary wavelets will be discussed in Chapter 10. If we use the IWT
instead of the CIWT, then the whole plot will be shifted toward the left, and
the shift will continue to become larger for lower levels. For Figures 8.8 and
8.9, the direct evaluation of (8.34) is done with f>(¢) and f5(¢), respectively. In
Figure 8.10, the direct integration is done with f3(¢), which indicates that for
interoctave levels also, the FIWT algorithm gives identical results if compared
with the corresponding approximation function.
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FIGURE 8.8: TWT of the function shown in Figure 8.7, using the linear spline wavelet
for a = 0.50 and a = 0.75. Direct integration is performed with f>(z).
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FIGURE 8.9: IWT of the function shown in Figure 8.7 using the cubic spline wavelet
for a = 0.50 and a = 0.75. Direct integration is performed with f3(¢).
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FIGURE 8.10: IWT of the function shown in Figure 8.15 the using cubic spline wavelet
for a = 0.75. Direct integration is performed with f5(¢); the approximation of the func-
tion of Figure 8.7iss=3,n=N=1.

For Figure 8.9, 440 wavelet coefficients have been computed. The direct
integration takes about 300 times the cpu time of the FIWT algorithm. We
wish to emphasize that the ratio of 300:1 is minimal, since with the increase
in scale parameter a, the complexity of the direct integration method increases
exponentially, while for the FIWT it remains almost constant. Furthermore, in
the FFT-based algorithm also, the complexity increases with a.

8.1.4.2 Crack Detection. As a further example to highlight the importance
of the IWT in identifying the change in function behavior, we consider the
following function:

Fory =2t-1

—%y(4y2+16y+13) re[0,1/2]

f()= 1
—gy(y—l)(y—Z)

(8.37)
te(1/2,1].

Figure 8.11 shows the function and its WC for linear and cubic spline cases.
The edge effect has not been shown. Once again, here we observe that for the
cubic spline case, the WC are close to zero in the smooth region of the func-
tion; however, for the linear spline case, the WC are nonzero in this region
since the function is of degree three in both intervals. This example shows that
even a physically unnoticeable discontinuity can be detected using the wavelet
transform.
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FIGURE 8.12: Decomposition of a signal composed of three sinusoids with different
frequencies corresponding to nonoctave scales using the standard algorithm of
Chapter 6.

8.1.4.3 Decomposition of Signals with Nonoctave Frequency Components.
To further emphasize the importance of FIWT algorithm, we consider
a similar composite function as was used in Chapter 7, but with slightly
different frequencies that do not correspond to octave scales. Figures 8.12
and 8.13 indicate the inability of the standard decomposition algorithm
of Chapter 7 to separate those frequencies that do not correspond to
octave scale. Figures 8.14 and 8.15 show, on the other hand, that by properly
selecting the values of n and N, we can separate any frequency band that we
desire.

8.1.4.4 Perturbed Sinusoidal Signal. Figure 8.16 gives the time-frequency
representation of a function that is composed of two sinusoids and two delta
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FIGURE 8.13: Decomposition of a signal with three frequency components (continued
from Figure 8.12).

functions, represented as sharp changes in some data values. Observe that two
sinusoids appear as two bands parallel to the time axis whereas the delta func-
tions are indicated by two vertical bands parallel to the frequency axis. As
discussed in Chapter 4, the frequency spread is due to finite window width of
the wavelets.

8.1.4.5 Chirp Signal. Figures 8.17 and 8.18 show the CIWT of a chirp signal
with respect to linear and cubic spline wavelets, respectively. In Figure 8.19,
we have shown the CIWT of a chirped signal by applying the standard wavelet
decomposition algorithm. Here the interoctave scales have been filled with
values at the previous octave scales. Similarly, on the time axis, “holes” are
filled with values from the previous locations.
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FIGURE 8.14: Decomposition of a signal composed of three sinusoids with different
frequencies corresponding to nonoctave scales using the FIWT algorithm with n =1,
and N =2.

8.1.4.6 Music Signal with Noise. In Figure 8.20 we show the CIWT of a
portion of a music signal with additive noise using the cubic spline wavelet as
the analyzing wavelet. Here the music data have been assumed to be at the
integer points.

8.1.4.7 Dispersive Nature of Waveguide Mode. As a final example, we find
the wavelet transform of experimental data obtained for the transmission
coefficient of an X-band rectangular waveguide. The waveguide is excited by
a coaxial-line probe inserted through the center of the broad side of the wave-
guide. The scattering parameter S,; of the waveguide is measured using an
HP-8510 network analyzer by sweeping the input frequency from 2 to 17 GHz.
The time-domain waveform is obtained by inverse Fourier-transforming the
frequency domain data. The time response (up to a constant multiplier) and
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FIGURE 8.15: Decomposition of a signal with three frequency components (continued
from Figure 8.14).

the magnitude (in dB) of the frequency response are shown in Figure 8.21. It
should be pointed out here that several low-amplitude impulses appeared in
the negative time axis, but they have not been taken into account while per-
forming the wavelet decomposition since they represent some unwanted
signals and can be removed from the plot by proper thresholding. Furthermore,
such an omission will not have any significant effect on the WC plot of Figure
8.21 because of the local nature of wavelet analysis.

The cut-off frequency and dispersive nature of the dominant TE, is well
observed from its time-frequency plot. Because of the guide dimension and
excitation, the next higher-order degenerate modes are TE; and TM;; with
the cut-off frequency 16.156 GHz. This does not appear on the plot. The plot
indicates some transmission taking place below the lower frequency
operation. There is a short pulse at ¢ =0, which contains all the frequency
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components and is almost nondispersive. These can be attributed to the system
noise. No further attempt has been made to isolate the effects of various transi-
tions used in the experiment. The thresholding for Figure 8.21 has been done
with respect to the relative magnitude (in dB) of the local maximum of each
frequency and the global maximum. Finally the magnitude of the wavelet
coefficients has been mapped to eight-bit gray scale levels. Readers are referred
to [Refs. 9 and 10] for more applications of continuous wavelet transform to
electromagnetic scattering data.

8.2 RIDGELET TRANSFORM

One-dimensional wavelet transforms are very good in detecting point
discontinuities (Figure 8.11) in the sense that wavelet coefficients near the
discontinuity are significantly higher than those at the smooth region. For a
two-dimensional function—an image, for instance—discontinuities are repre-
sented by edges. We can construct a two-dimensional wavelets by simply
taking the tensor product (more on edges and two-dimensional wavelets in
the next chapters) and compute wavelet coefficients. However, these edges,
while separating smooth regions, are themselves smooth curves. As a result, a
direct applications of 2D wavelets will not be able to localize coefficients near
the edges as a 1D wavelet transform does.

To overcome the difficulties of wavelets in effectively localizing edges in
higher dimensions, ridgelet and curvelet transforms [11-14] have been devel-
oped. Ridgelet transform essentially projects a line discontinuity into a point
discontinuity and then takes its wavelet transform. For a 2D smooth function
f(x,y), the continuous ridgelet transform, Cy(b, a, 6), is defined by

Crb.a0)=| | 1y Wrastr vdxdy (838)

where the ridgelets, y;,6(x, ¥), are defined in terms of wavelet functions as

1 (xcosQersinQ—bj

Vhao(X,y):= Wrhd (8.39)

a

Figure 8.22 shows an example of ridgelets. The expression in (8.38) can be
thought of as a combination of Radon transform, and the wavelet transform
in 1D. Radon transform is an integral transform that gives projection of a 2D
function along a straight line at a desired angle. It’s widely used in tomography.
It has also been extended to higher-dimensional space. The Radon transform
of a function f(x, y) is given by

Ry (t,0)= J. f(x,y)0(xcosO+ ysinO—rt)dxdy. (8.40)
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FIGURE 8.22: An example of a ridgelet using Daubechies wavelet.

By combining (8.38) and (8.40) it is easy to verify that

oo

Cr(b,a,0)=| Ry(t,0)yp.(0)dr, (8.41)
where as before, W.(t) = a ?y((t — b)/a). Therefore, ridgelet transform is
obtained by applying a 1D wavelet transform to the slices or projections of a
2D function obtained via Radon transform. We notice that the ridgelet is
constant along lines that satisfy

xcosO+ ysin = const, (8.42)

whereas the direction orthogonal to the line contains a 1D wavelet y. The
ridgelet transform is the wavelet transform applied in the direction orthogonal
to the lines. By setting the angle 8 = 0, the ridgelet transform is reduced to the
wavelet transform

Cf(b,a,9=0)=Wl,,f(b,a)=% :Of(x, yo)y/(¥)dx. (8.43)

Hence, by varying the angle 6 and the parameter b and by applying the ridgelet
transform over the 2D plane, the higher ridgelet coefficients indicate locations

of line singularities of the function f(x,y).
The 2D function f(x,y) is uniquely recovered by the inverse transform

involving a triple integral

oo oo 27'[ 1 —
13J J Cf(b,a,O)xy/(xcose+y81ne bjdedadb. (8.44)
4na’ J—-J0 JO a

fx,y)=
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Computation of the integral ridgelet transform is very cumbersome and
inefficient. Analogous to the discrete wavelet transform (DWT) we have
discrete ridgelet transform (DRT) to efficiently implement the continuous
ridgelet transform using discrete samples. Several approaches have been pro-
posed with different degrees of efficiency and accuracy, depending on the
discretization of the 2D image into a polar grid for the DRT. We give a brief
outline of a method based on projection, transformation, and FFT.

1. Use 2D FFT to transform the image in frequency domain.

2. Change the grid point locations into polar coordinates using rectangle-
to-polar conversion.

3. Determine the equidistance grid points along a radial line at different
angle using an interpolation scheme. The number of angular directions
give the number of projections; the number of points along a radial
direction correspond to the number of shifts in the wavelet transform.

4. Compute the 1D inverse FFT along the radial direction; this gives the
Radon transform of the image along that radial direction.

5. Take the 1D DWT to obtain the ridgelet transform.

Improvements can be made in the steps of this algorithm such as choosing
the rectangular grid points to simplify the interpolation and choosing a band-
limited wavelet so that the ridgelet transform can be directly computed in the
Fourier space instead of the Radon space.

8.3 CURVELET TRANSFORM

Since edges in an image are usually not straight lines, it is difficult to apply
the ridgelet directly to an image with curvilinear objects and expect good
detection results. However, the curve edge can be subdivided into smaller
segments that can be approximated by straight edges. The first-generation
curvelet algorithm starts with an overcomplete wavelet transform (that is
without down-sampling) that produces J + 1 size n X n subimages given by

J

f(j»k)=al(js k)+2wm(j,k),

m=1

where the a,(j, k) is the coarse image after being low-pass filtered J times and
wy(j, k) is the nth wavelet (high-pass) filtered image. That is

ar(j, k)—ar1(j, k) =wi1(j, k).

Each of these collection of subimages are partitioned into small block
images, where the discrete ridgelet transform (DRT) is applied to locate the
“approximately straight” edges. The results are then combined to obtain the
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FIGURE 8.23: Examples of curvelets at different scales, orientations, and locations.
(Reprinted with permission from [13], copyright © 2002 by IEEE.)

curvelet transform of an image. Typical curvelets constructed by Starck,
Candes, and Donoho [13] are shown in Figure 8.23.

The first-generation curvelet is based on the extension of ridgelet transform
in the blocks of subband images of the original image. It requires an intricate
combination and overlapping blocks to extract the ridges in the original image.
As a result, it has limited application to image analysis. A second-generation
curvelet has recently been developed to simplify the application procedure.
Similar to a 2D scaling function, its support is approximately a curvilinear
rectangle on a polar grid.

Following Fadili and Starck [14], the second-generation curvelets are triple-
indexed basis functions—namely, y; ; x (x) = y; I:Re,g (x—x,’;’[ ):I at resolution j,
angular rotation 6,, and the position

x,’;’[ = Re_ll (2_j kq, 27 kz),
where Ry, corresponds to the rotation by 6, radians, and 6, =27/ X 2772 is the

equally spaced sequence of angles. The index k = (k1, k) is the translation
indices. The curvelet y; is defined by its Fourier transform

. . olil2lg
ii(r,0)=2"34W (27 r)V
V/](r ) ( ") ( o

j, (r,0)e R? (8.45)

where (r, 0) are the polar coordinates. It can be seen that the support of the
function y; is a wedge shape on the 2D polar plane, defined by the support
of W(27-) = [2/71,2/*!] and the support of V(2"2) = [-271/?] 27/2]] The trans-
forms W and V must also satisfy the partition of unity.
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In continuous space domain, the curvelet coefficients are obtained by inner
product, which can be computed from the spectral domain

CJ/k—<f Vjok(x J-f )W (Ro, @ )exp[]xk ]da" (8.46)

8.4 COMPLEX WAVELETS

As mentioned in Chapter 6, continuous real-valued compactly supported
orthonormal wavelets do not have linear phases—that is, they do not have any
symmetry or antisymmetry. In addition, all wavelets and wavelet algorithms
that we have discussed thus far suffer from four major drawbacks: (1) shift
variance—as a result of which wavelet coefficients of a shifted signal differs
significantly compared with the original one (in Fourier transform, such shifts
appear simply as a phase shift in the transformed domain); (2) aliasing due to
up- and down-sampling; (3) directional inflexibility of the tensor product 2D
wavelets for image processing, especially for detecting edges and ridges; and
(4) the oscillatory property of the wavelet complicates the detection of singu-
larity. Complex wavelets seem to address these issues effectively. A detailed
discussion on complex wavelets is beyond the scope of this book. In this
section we give brief introduction of the topic; readers may refer to [15-18]
for further details.

Similar to the Fourier transform kernel (e/* = cos t + jsin ax), consider a
complex wavelet with real and imaginary parts as

ve()=w, () +jwi(t), (8.47)

where v, is an even and y; is an odd function of . Complex scaling function
is defined in a similar way.

Let us recall from the DWT that a signal x(f) may be decomposed into
components using the scaling function ¢(f) and its associated wavelet y(r) as

oo

x(t)= 2 a(k)o(t—k)+ ZS/ZZ z w(n, s) 23t—n), (8.48)

k=—c §=0 n=—oco

where a(k) and w(n, s) are scaling-function and wavelet coefficients, respec-
tively. In complex wavelet analysis, the coefficients

w(n,s)=w,(n,s)+ jw;(n,s)

:zs/zf:x(t)[wr(%—n%fvn(?‘f—")]df’

are complex with magnitude and phase as in the Fourier transform. To mimic
the Fourier transform, the complex wavelet must be an analytic signal so that



COMPLEX WAVELETS 225

s ()|
—0, .

FIGURE 8.24: A typical magnitude spectrum of a signal.

the imaginary part is the Hilbert transform of the real part. The Hilbert trans-
form converts a real-valued signal into a complex signal so that it has no nega-
tive frequency component.

The Hilbert transform of a signal s(¢) produces a signal s;,(¢) that is orthogo-
nal to s(¢). Let §(w) represent the Fourier transform of a real-valued signal
s(t). A typical magnitude spectrum of s(¢) is shown in Figure 8.24. We can
construct a signal s.(f) that contains only positive frequencies of s(f) by mul-
tiplying its spectrum §(®) with a unit step function as

Si(w)=5(0)i(w), (8.49)

where @ () is the unit step function, defined in the usual way as

1 =0
(W) = 8.50
(@) {0 otherwise. (8:50)

From (8.49) we have

25 (0) = §(0)[1+sgn(w)] = §(@)+ j[-jsgn(w)$(w)]

8.51
) ®51)
where sgn(w) is the signum function defined as
1 w>0
sgn(w)=40 =0 (8.52)
-1 w<O.
In (8.51), su(?) is the Hilbert transform of s(¢), defined as
sp(t) = F H-jsgn(w)§(w)} = lJ. @dr (8.53)
Md—ol—T
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FIGURE 8.25: Decomposition and reconstruction of a signal using complex wavelets;
x(n) should ideally be exactly same as x(#).

where F~! represents inverse Fourier transform. It is easy to verify that
(s(0), sn()) = 0 = s(2) L 5(2).

There are broadly two approaches to implementing discrete complex wave-
lets. In the first, y,. forms an orthonormal or biorthogonal basis [15-16]. Such
constraints on orthonormality, however, prevent the complex wavelet trans-
form to overcome the shortcomings of DWT, as outlined before. In the other
approach, y, and y; individually form orthonormal or biorthogonal bases. This
latter approach leads to a redundant dual-tree complex wavelets, which is
based on two filter bank trees and thus two bases [17-18]. Essentially, dual-tree
complex wavelets employ two real DWTs to produce the real and imaginary
parts of the transform. Figure 8.25 illustrates decomposition and reconstruc-
tion using dual-tree complex wavelets (compare this with Figure 7.19). Since
there are two DWT-type processings, we have two pairs of low-pass {go, /o)
and band-pass {g1, /1} filters along with their duals.

It can be shown that a compactly supported wavelet (time-limited function)
can only have an approximate Hilbert transform. Hence complex wavelets
cannot entirely eliminate the shortcomings of real-valued wavelets mentioned
previously; they can only reduce them. The key challenge in dual-tree wavelet
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design is the joint design of its two filter banks to yield a set of complex wavelet
and scaling functions that are as close as possible to be analytic.

The filter sets {ho(n), h1(n)} and {go(n), g1(n)} individually satisfy the perfect
reconstruction (PR) condition. They are the processing filters for the wavelet
wi(t) and (1), respectively. The filters are jointly designed such that the
complex wavelet

V()= wa )+ g (1) (8.54)

is approximately analytic—that is, y,(7) is approximately the Hilbert transform
of y,(t). The dual-tree approach comes very close to mirroring the properties
of the Fourier transform.

The filters are all real-valued so that there is no complex processing in the
implementation of complex wavelet transform. The complexity is exactly twice
that of a 1D real-valued DWT.

It has been shown [17] that the following conditions should be satisfied at
least approximately by the filter banks:

1. The low-pass filters hp and gy should be approximately a half-sample shift
of each other. That is

go(n) = ho(n-0.5) (8.55)

which implies that y,(¢) is approximately the Hilbert transform of ;,(z).
In the spectral domain, the condition (8.55) is equivalent to the
requirement

Go(2)| =|Ho(2)]; 2= e’“’}' (8.56)

£Gy(z)= £Hy(z)-0.50

2. PR condition must be satisfied by the filter banks.
3. Finite impulse response filters must be of approximately the same length.
4. There must be good stop-band behavior.

There are three approaches [17] to designing these filter banks.

8.4.1 Linear Phase Biorthogonal Approach

The filter Ay and gy are symmetric FIR, with odd and even lengths,
respectively

ho(n)=ho(N —1-n),
go(n)=go(N-1),
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FIGURE 8.26: Complex wavelets using the g-shift approach (N = 14). (Reprinted with
permission from [17], copyright © 2005 by IEEE.)

where N is an odd number so that the half-delay condition is met. This satisfies
the phase condition of (8.56); however, the filters should be designed such that
spectral amplitudes are approximately the same.

8.4.2 Quarter-Shift Approach
In the quarter-shift (q-shift) method, the filter length N of Ay(n) is chosen as
even and go(n) is set to be

go(n)=ho(N —1-n). (8.57)

This choice clearly satisfies the magnitude condition of (8.56); however, the
filters should be designed such that both have approximately the same phase
characteristics. Figure 8.26 show complex wavelets designed using q-shift
approach (N = 14).

8.4.3 Common Factor Approach

By choosing a common factor and introducing it into the low-pass filters

ho(n) = F(n)* A(n)

the amplitude requirement of (8.56) is satisfied. The phase requirement can
be approximately satisfied if the phase of A(n) is chosen as a fractional delay
allpass filter. Figure 8.27 show complex wavelets designed using common
factor approach.
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FIGURE 8.27: Complex wavelets using the common factor approach. (Reprinted with
permission from [17], copyright © 2005 by IEEE.)

8.5 LIFTING WAVELET TRANSFORM

The lifting scheme [19] is an alternative approach to constructing wavelets and
computing wavelet transform. Unlike the classical wavelet construction
methods demonstrated in previous chapters that rely heavily on the Fourier
transform, the lifting procedure for discrete wavelet transform and for wavelet
construction is carried out entirely in the time domain. Instead of using the
filter banks for decomposition and reconstruction of a signal, the lifting pro-
cedure uses three steps—namely, the split [S], the predict [P] and the update
[U] to decompose a signal into approximation and wavelet coefficients ay ; and
wps. It eliminates the need for performing the convolution followed by deci-
mation or interpolation followed by convolution in wavelet analysis of a signal.
Instead of using the synthesis filters go[k] and gi[k] to derive the analysis filters
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holk] and hy[k], as shown in Chapter 6, the lifting algorithm can be used to
construct the wavelet from coefficients resulting from the lifting process.

The advantage of the lifting procedure is that the coefficients can be com-
puted in place to minimize the storage requirement and the reconstruction
phase can be carried out by running the decomposition process backward. The
procedure eliminates the need for the Fourier transform as in the classical
method for signal processing, and new wavelets are constructed out of the
lifting process.

In this section, we use the Haar wavelet to illustrate the decomposition of
a signal. It proceeds in simple steps, with each step moving toward one-level
lower in resolution. It computes the average and difference of adjacent signal
values. Let {x(k)} be a signal that has 2" points. At some resolution ¢ + 1, one
decomposition step using Haar wavelet computes the average and difference
of the adjacent signal value.

_ M1 T Wi, 041
Ajer = —2

>

Wit = Q2k+1,0+1 — A2k, 0+1-

As this step is repeated, it generates the approximation coefficient (the
average) and wavelet coefficients (the difference) of the next lower
resolution.

It is easy to see that if we wish to reconstruct the signal from level ¢ to
(¢ + 1), we simply solve for the values of ay +1 and azg41,041, using the above
equations to obtain

Wi,r

W+1,0+1 = Ao+ 0 (8.58)
Y NS —% (8.59)

Rewriting (8.59),
A0 = A2k r+1 + %, (8.60)

we observe that the approximation coefficient of the lower resolution can be
computed from the corresponding approximation coefficients of the higher
resolution—namely the even coefficient plus half of the difference between
its adjacent coefficients. Instead of computing the average and difference
simultaneously, we compute the difference (odd—even) first and then the
average:
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Wit = k41,041 — B2k 0+1

Wi (8.61)
v = Mk 41t 5

This is the lifting approach for the Haar wavelet transform of a one-dimensional
signal. The process can be summarized in three simple steps:

1. The S-step splits (or unzips) the signal into an even and an odd sample
paths.

Even path — ayy ,,

k)= mn 7
x (k)= an, {Odd path = aysin.

Notice that each path carries only half of the total number of samples in
the original signal.

2. The P-step predicts the odd samples based on the even samples. At certain
(¢ + 1)* resolution of the Haar wavelet analysis, the lifting scheme assumes
the predicted odd value to be the same as its preceding even value.

Wfer1,041 = Q2% 041-

At this point, the wavelet coefficients (difference) of the next lower resolu-
tion is computed by

Wit = Dk+1,0+1 _&2k+1,5+1 =Mk+1,0+1 — D2k 0+1-

3. The U-step updates the even value based on the difference obtained in the
P-step to compute the approximation coefficients of the next lower
resolution.

iy = Aokep41 + Wi /2.

From here on, the next level of signal decomposition starts with a;, and
repeats the prediction and updating procedures with the same predictor and
updator. It is important to note that the design of the predictor and updator
must keep the average value of the signal level to be the same to preserve the
zeroth order moment:

2n—1 on-lg

1N = Y ao (3:62)
k=0 k=0
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This condition is shown to be true as

n-1_1 n-1_1 on=1_1 1 2n-1
2 A .p-1 = z [aZk,n + Wk n-1 /2] = z (aZk,n T W10 )/2 = 5 z i n-
k=0 k=0 k=0 k=0
(8.63)

The reconstruction phase of the DWT is carried out by simply running the
decomposition algorithm backward! That is, we apply (8.61) in the reverse
direction:

W41 = Ak —Wie o /2, (8.64)

Wfe+1,041 = Who + Ao - (8.65)

The coefficients are merged (zipped) together to form the next higher resolu-
tion signal.

M 0+1
merge} — ay s+
D k+1,0+1

This process is repeated for every level of resolution until all the wavelet
coefficients at each level have been used in the reconstruction process
and the final sequence of samples will be the original signal x(k). The general
lifting stages for decomposition and reconstruction of a signal are given in
Figure 8.28.

Even (\JTD a
ak,/ﬂ‘%Split‘ ‘ II ‘ ‘ U ‘
2
Odd Wi
Decomposition
) @ Even
‘ u ‘ ‘ P ‘ ‘Merge‘—w;k,,ﬂ
, ()
. odd -/
Recomposition

FIGURE 8.28: Lifting wavelet algorithm.
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One sees the advantages of the lifting scheme as follows: (1) Fourier tech-
niques are not required, (2) the transform can be carried out without a fixed
form for the P and U operators, (3) the computation of the inverse transform
is straightforward, and (4) there are many variations on the operators P and
U that generate various wavelets.

8.5.1 Linear Spline Wavelet

The complexity of the lifting scheme is increased slightly when we use the
linear prediction for the odd samples of the signal. The predictor (P) uses the
average of the two adjacent even samples to predict the in-between odd
sample

- 1
Wfr1,041 = 5(”2k,[+1 +Wok42,041)- (8.66)
The prediction error (difference) forms the wavelet coefficient
- 1
Wit = Qa1 p41 — @kr1,041 = §(2ﬂ2k+1,z+1 — W1 —Woks2,041).  (8.67)

To preserve the zeroth and first order moments for all resolution, we have

on-lg 1251
Z Ak n-1 = 5 Z Ak.ns (8.68)
k=0 k=0
2n-1g 121
2 kak,n,l = 5 2 kak,n. (869)
k=0 k=0
The updator (U) is found to be
1
iv = Mk 41t Z(kau: + Wk,z)~ (8.70)

The inverse transform is computed in a reverse manner by
1
Mg +1 = Ay — Z(Wk—lj +Wiy) (8.71)
1
Wof+1,0+1 = Wi o + E(aZk,Hl +@p42,041)- (8.72)

These coefficients are zipped back together by the merger to form the signal
at the next higher resolution.
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8.5.2 Construction of Scaling Function and Wavelet from Lifting Scheme

Thus far we have described the lifting algorithm as a means to obtain the
average and the difference from a given set of data. From the DWT point of
view, these data streams correspond to the approximation coefficients and the
wavelet coefficients for the next lower level of resolution. However, the pre-
dicting and updating schemes are user designed, and therefore, there are
no known scaling function and wavelet bases associated with the schemes. They
will have to be constructed based on the schemes. Unlike the classical wavelet
construction where the Fourier analysis is used extensively, in lifting schemes,
subdivision algorithms are often used in the literature. These are important
techniques in computer-aided curve and surface designs. A detail exposition on
the topic is beyond the scope of this section. We will use only the elementary
ones to demonstrate the procedure of wavelet construction from lifting.

8.5.3 Linear Interpolative Subdivision

Subdivision is a method of refining a set of original data (i.e., to increase the
number of data points by suitably inserting data in between two original data
points). Interpolative subdivision means that the original data points are not
changed by running the algorithm. One simple way to subdivide data is by
using the average of the adjacent value as the new (inserted) data value. Let
{ako} be the original data set. We compute the expanded set by

Dk, j+1 = A j (8.73)
1
D f+1,j+1 = E(ak,j + Ak+1,j ) (8.74)

The new data points are inserted halfway between two adjacent old data
points. Its value is the linear interpolation of the two adjacent old values. If
the original data values are samples from linear functions, this linear subdivi-
sion algorithm will reproduce the linear functions.

More sophisticated algorithms are available for interpolative subdivision.
One can use more known values (original data values) adjacent to the desir-
able data point location to compute its value. If we use four-points (ax-1,j, ax j,
a1, Ak+2,j) and use a cubic interpolation to compute the value of @k i1, the
resulting value is a weighting of the 4 original values

Wk+1,j+1 = T;ak—l,j + %ak,j + %akﬂ,]’ + —;dmz,/- (8.75)
This is known as the four-point scheme in computer graphics.

The interpolative subdivision is a very simple yet powerful algorithm to
refine a set of data. A new sample value at a given location is computed via
an interpolating polynomial constructed by using near by sample values. If the
samples are equidistant, the weights for the polynomial need to be computed
only once. Since equidistant sample is not a requirement for subdivision, it can
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be used for defining approximation basis and wavelet basis on irregular grid
points.

Another scheme for subdivision is the interpolating average algorithm. The
simplest algorithm for the new value at the higher resolution is

Mk, j+1 = Aj |
M f+1,j+1 = Aj k-

A slightly more complicated one will be using a quadratic polynomial. We
need to define a quadratic polynomial g(x) such that

2J(k)

wi= ] oy 1
2J (k+1)

aj = jzf(k) q(x)dx. (8.76)
2J (k+2)

wni = oy 1O

The resulting quadratic polynomial will be used to compute the unknown
values at 2! level so that

2J(k+1/2)
@k, j+1 = ijf(k) q(x)dx

2J(k+1) '
+ ~=2J. . d.
k41, 2}(k+1/2)61(x) X

(8.77)

For two-interval average, the coefficients are {1/2, 1/2},while the quadratic
polynomial results in {-1/8,1/8, 1, 1, 1/8, —1/8}.The graphs for these two scaling
functions are shown in Figure 8.29.

For the construction of wavelet basis function, we need to recall that the
wavelet space Wi is a subspace complementary to the Vi in V. If a function
fi(t) is expressed as

filx)= zak,j¢k,j(x), (8.78)

a similar expression can be obtained for fj_i(x). Since the multiresolution space
requires fi_1(x) + gj_1(x) = fi(x), the gi_1(x) represents the contribution from the
wavelet subspace. Hence if the reconstruction process is carried out from
(j — 1) level to jth level with only one detail coefficient dyy = 1 and the rest of
the d coefficients set to zero, we will obtain the coefficients connecting the
scaling function and the wavelet as g

Voo(x)= 2 G Pre.1 ().

Wavelets from interpolative subdivision and average subdivision are shown in
Figure 8.30.
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The lifting scheme opens a new way of constructing many new wavelets.
The key to the construction lies in the designs of the predictor and the updator
as well as the choice of subdivision algorithm. Various ways to design the
predictor have been thoroughly investigated in the mathematics literature.
Subdivision algorithms have found many interesting and useful wavelets.
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CHAPTER NINE
|

Digital Signal Processing
Applications

The introduction of wavelets to signal and image processing has provided
engineers with a very flexible tool to create innovative techniques for solving
various engineering problems. A survey of recent literature on wavelet
signal processing shows the focus on using the wavelet algorithms for pro-
cessing one-dimensional (1D) and two-dimensional (2D) signals. Acoustic,
speech, music, and electrical transient signals are popular in 1D wavelet
signal processing. The 2D wavelet signal processing mainly involves image
compression and target identification. Problem areas include noise reduction,
signature identification, target detection, signal and image compression, and
interference suppression. We make no attempt to detail techniques in
these areas; neither are we trying to provide the readers with processing tech-
niques at the research level. Several examples are given in this chapter to
demonstrate the advantages and flexibility of using wavelets in signal and
image processing.

In these examples, wavelet algorithms are working in synergy with other
processing techniques to yield a satisfactory solution to the problem. Wavelet
decomposition plays the vital role in separating the signal into components
before other DSP techniques are applied. Algorithms include wavelet tree,
wavelet-packet tree decomposition, 2D wavelet or wavelet-packet tree decom-
position, and pyramid or direction decomposition. In signature recognition
and target detection, the corresponding reconstruction algorithm is not needed
since the signal components are either destroyed or rendered useless after
processing. In the last two examples, the orthogonality between wavelet
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packets is applied to multicarrier communication systems, and the wavelet
algorithms are extended to the third dimension for 3D medical image visual-
ization. We discuss the extension of the wavelet algorithms to wavelet-packet
algorithms and their 2D versions before we discuss various application
examples.

9.1 WAVELET PACKET

Because of the two-scale relation and the choice of the scale parameter a = 2°,
the hierarchical wavelet decomposition produces signal components whose
spectra form consecutive octave bands. Figure 9.1 depicts this concept graphi-
cally. In certain applications, the wavelet decomposition may not generate
a spectral resolution fine enough to meet the problem requirements. One
approach is to use the CWT for obtaining the necessary finer resolution by
changing the scale parameter a with a smaller increment. This approach
increases the computation load by orders of magnitude. Another approach
was discussed in Chapter 8. The use of wavelet packets also helps avoid this
problem. A wavelet packet is a generalization of a wavelet in that each octave
frequency band of the wavelet spectrum is further subdivided into finer fre-
quency bands by repeatedly using the two-scale relations. In other words, the
development of wavelet packets is a refinement of wavelets in the frequency
domain and is based on a mathematical theorem proven by Daubechies [1]
(splitting trick). The theorem is stated as follows:

0.25

02} R

0.15 i

0.1} R

0 L L L L
0 0.5 1 1.5 2 2.5 3 3.5 4

FIGURE 9.1: Constant Q spectra for wavelets at different resolutions.



WAVELET PACKET 241

If f(- — k)lgez forms an orthonormal basis and

F(x)= Y golk]f(x=k) ©O.1)
k

Fax)= ) ailk]f(x-k), 9.2)
k

then {F,(- — 2k), F>(- — 2k); k € Z} are orthonormal bases of E = span{f(- — n);
n e 7).

This theorem is obviously true when f is the scaling function ¢ since the
two-scale relations for ¢ and the wavelet v give

A;30(271)= ) golkl9(2/*1-k)
k

W oy (2/1)= Zgl[k]q)(zf“t—k).
K

If we apply this theorem to the W, spaces, we generate the wavelet packet
subspaces. The general recursive formulas for wavelet packet generation are

w:(0)=Y ol (2 k) (9.3)
k

ton ()= Y g1kl (21~ k)k e, (94)
k

where Ly = ¢ and py = y are the scaling function and the wavelet, respectively.
For /=1, we have the wavelet packets u, and u3 generated by the wavelet
1y = y. This process is repeated so that many wavelet packets can be generated
from the two-scale relations. The first eight wavelet packets for the Haar func-
tion and ¢p, (also referred to as Ds) together with their spectra are shown in
Figures 9.2-9.5. The translates of each of these wavelet packets form an orthog-
onal basis and the wavelet packets are orthogonal to one another within the
same family generated by a orthonormal scaling function. We can decompose
a signal into many wavelet packet components. We remark here that a signal
may be represented by a selected set of wavelet packets without using every
wavelet packet for a given level of resolution. An engineering practitioner may
construct an algorithm to choose the packets for optimizing a certain measure
(such as energy, entropy, and variance). Best-basis and best-level are two
popular algorithms for signal representations. The reader can find these algo-
rithms in Ref. 2.
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Wavelet packets of Haar scaling function.
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Fourier transform of Haar
T. T. T.
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FIGURE 9.3: Magnitude spectra of Haar wavelet packets.

9.2 WAVELET-PACKET ALGORITHMS

The decomposition tree for wavelet packets uses the same decomposition block
of two parallel filtering channels followed by decimation by two ({2), as in the
wavelet algorithm. Any coefficient set in the tree may be processed by this
block. In the wavelet decomposition tree, only the approximation coefficient
sets {a} in Figure 7.9 are processed for different resolutions z, while the wavelet
coefficient sets {w} are outputs of the algorithm. In wavelet packet decomposi-
tion, the wavelet coefficient sets {w} are also processed by the same building
block to produce wavelet packet coefficient sets {r}. We see from Figure 9.6 that
for each set of N coefficients, we obtain two coefficient sets of N/2 length after
processing by the decomposition block. The number of coefficient sets is 2™ if
the original coefficient set is processed for m resolutions. Figure 9.6 demon-
strates the wavelet packet tree for m = 3.

Itis important to keep track of the indices of the wavelet packet coefficients
in the decomposition algorithm. To achieve perfect reconstruction, if a coef-
ficient set has been processed by Ag[n] and ({2), the result should be processed
by go[n] and (T2). The same order is applicable to /;[n] and g[n]. For example,
if we process a set of data first by 4g[n] and ({2) followed by A;[n] and ({2),
the resulting signal must be processed by (12) and gi[n] and then followed by
(T2) and go[n] to achieve perfect reconstruction. Thus signal processing using
wavelet packets requires accurate bookkeeping of different orders of digital
filtering and sampling rate changes.
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FIGURE 9.4: Wavelet packets of Daubechies 3 scaling function.




WAVELET-PACKET ALGORITHMS 245

Fourier transform of Daubechies 3

FIGURE 9.5: Magnitude spectra of Daubechies 3 wavelet packets.

Decompostion : Reconstruction

FIGURE 9.6: A block diagram for the decomposition and reconstruction algorithms
for wavelet packets.
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9.3 THRESHOLDING

Thresholding is one of the most commonly used processing tools in wavelet
signal processing. It is widely used in noise reduction, signal and image com-
pression, and sometimes in signal recognition. We consider three simple thre-
sholding methods [3] here: (1) hard thresholding, (2) soft thresholding,
and (3) percentage thresholding. The choice of thresholding method depends
on the application. We discuss each type here briefly.

9.3.1 Hard Thresholding

Hard thresholding is sometimes called gating. If a signal (or a coefficient)
value is below a preset value, it is set to zero:

x, for|x|>c
y—{ 95)

0 for|x|<o,

where ois the threshold value or the gate value. A representation of the hard
threshold is shown in Figure 9.7. Notice that the graph is nonlinear and dis-
continuous at x = 0.

9.3.2 Soft Thresholding
Soft thresholding is defined as

y=sgn(x)f(x-0), for|x|>2c

9.6
=0, for x| < 0. ©6)

FIGURE 9.7: Hard thresholding.



THRESHOLDING 247

FIGURE 9.8: Soft thresholding.

The function f(x) is generally a linear function (a straight line with slope to
be chosen; Figure 9.8). However, spline curves of the third or fourth order
may be used to effectively weight the values greater than o. In some signal
compression applications, using a quadratic spline curves of order m > 2 may
affect the compression ratio by a small amount.

9.3.3 Percentage Thresholding

In certain applications such as image compression where a bit quota has been
assigned to the compressed file, it is more advantageous to set a certain per-
centage of wavelet coefficients to zero to satisfy the quota requirement. In this
case, the setting of the threshold value o is based on the histogram of the
coefficient set and the total number of coefficients. The thresholding rule is
the same as hard thresholding once we have determined the threshold o.

9.3.4 Implementation

Implementations of the hard, soft, and percentage thresholding methods are
quite simple. One simply subtracts the threshold value from the magnitude of
each coefficient. If the difference is negative, the coefficient is set to zero. If
the difference is positive, no change is applied to the coefficient. To implement
the soft thresholding by using a linear function of unit slope, the thresholding
rule is

{sgn(x)(lxl—a), if x—02>0,
y:

9.7
0 if [x|— o <0. ®-7
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9.4 INTERFERENCE SUPPRESSION

The Wigner-Ville distribution and other nonlinear time-frequency distribu-
tions are often used in radar signal processing. Although they are not linear
transformations, they have an advantage in that a linear chirp signal appears as
a straight line on the time-frequency plane (see Chapter 4). However, the non-
linear distribution of a multicomponent signal produces interference that may
have a high amplitude to cover up the signal. This example combines the
Wigner-Ville distribution decomposition and the wavelet packets to suppress
the interference [4]. We take the signal with interference and decompose it
optimally into frequency bands by a best basis selection [2]. We then apply the
WVD decomposition to each of the wavelet packet signals. The cross terms are
deleted in the distribution before reconstruction. This approach keeps the high
resolution of WVD yet reduces the cross-term interference to a minimum.
From the viewpoint of time-frequency analysis, an orthonormal (o.n.)
wavelet y generates an o.n. basis {ys,}, j, k € Z, of L?(R) in such a way that
for each j € Z, the subfamily {y ;:k € Z} is not only an o.n. basis of W; but is
also a time-frequency window for extracting local information within the sth

octave band H; —(2”1A; 2”2A;) where A* is the RMS bandwidth of the

wavelet. Unlike wavelets for which the Wldth of the frequency band H;
increases with the frequency ranges, wavelet packets are capable of partition-
ing the higher-frequency octaves to yield better frequency resolution. Here,

A% as discussed in Chapter 4, is the standard deviation of ¥ relative to the

pgsitive frequency range (0, «). Let {u,} be a family of wavelet packets cor-
responding to some o.n. scaling function py = ¢, as defined in Section 8.1. Then
the family of subspaces U{| = {u,(-—k):k € Z),n € Z*,is generated by {u,}, and
W, can be expressed as

w,=Uv? eU¥ " @---0UZ ", (9.8)
In addition, for each m =0, ... ,2/ —1,and j=1,2 ... , the family
{uy, . (—k):keZ} (9.9)

is an orthonormal basis of U&””’. The jth frequency band H; is therefore par-
titioned into 2 subbands:

H;m=0,...,2/ ~1. (9.10)

Of course, the o.n. basis in (3) of Ugj“" provides time-localization within
the subband H}". Any function s(x) € L?(R) has a representation

=i iw%wtmzwm (9.11)

Jj=1 m=0n=—oco j,m

2/-1
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where d}" = {s(t), t,j,,,(t—n)), and the component

Sim(0)= D db"y,, (t=n) (9.12)

n

represents the signal content of s(¢) within the mth subband of the jth band.
Let us rewrite the WVD for a multicomponent signal,

WVD,(t, f)= > WVDy, (&, f)
j,m
+2 2 WVDy;,, . (¢, ). (9.13)
J.muk smEn;j#k

Equation (9.13) partitions the traditional WVD into two subsets. The first
summation in (9.13) represents the autoterm whereas the second summation
represents the cross-terms between components in each subband to be con-
sidered as interference. By removing this interference, we obtain the wavelet-
packet based cross-term deleted representation ( WPCDR), given by

WPCDR(t, f) = z WVD,,, (1, f). (9.14)

Jom

We remark here that the WPCDR actually gives the auto WVD of the signal
components within each subband; therefore, it is quite effective and is perhaps
the best choice for analyzing a multicomponent signal. In addition, the
WPCDR is computationally advantageous, since both decomposition and rep-
resentation can be implemented efficiently.

9.4.1 Best Basis Selection

Equation (9.8) is actually a special case of

w,=U2 oU o euZ, ! (9.15)
when k = j Equation (9.15) means that the jth frequency band H; can be par-
titioned into 2¥, k =0, 1, ... , j, subbands

HY™ m=0,...,2¢ - 1. (9.16)

The uniform division of the frequency axis and the logarithmic division for
wavelets are just two extreme cases, when k in (9.16) takes on the values of
j and 0, respectively. In fact, k is allowed to vary among H;,j = 1,2, ... ,so that
the subbands adapt to (or match) the local spectra of the signal and thereby
yield the best representation or the best basis of the signal. The best basis can
be obtained by minimizing the global cost functional or entropy. Specifically,
the following algorithm is used in [2] to find the adapted frequency subband
or the equivalent best basis
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Hf™" if E(H]’F'm) < E(Hf*l’z’")+

H]k’m — E(H;C+L2m+1) (917)

H ]1»“1"2’” UH ]]»“1’2"”1 otherwise,

where H ]’-"m represents the adapted frequency subband, and E (H Ik’") denotes

the entropy of the local spectrum of the signal restricted to the H }k’"
Although the minimum entropy-based best basis is useful for applications

to segmentation in speech processing, it is not effective in our case, since the

resultant distribution yields interference. We modify the algorithm to yield

Hk’m =

- {H]’F»m if Var(Hf"™)< o
]

H /1-‘“’2’" UH j-‘”’z’"“ otherwise,

where Var(H ]'”") denotes the variance of the local spectrum, and o'is a preset

threshold. The idea behind this algorithm is that a narrow analysis band should

be used when the local spectrum is well concentrated or when a small variance

is obtained, while a wide band should be used when the local spectrum is spread

or variance is large. We note in passing that a best basis is usually obtained

between the third layer and the fourth layer, since deeper layers may yield

some adverse effects due to the amplitude increase in their spectral sidelobes.
Once we have chosen a best basis, the signal is readily expressed as

2k_1

0558 s ricn

Jj=1 m=0 n=—co

) (9.18)
j.m
where d™ —< s Mok +m( n)> and
sim(t) = z A ", (277t -n). (9.19)
n
The WPCDR with a best basis selection is given by
WPCDR,(t, )= Y WVDy,, (&, f). (9.20)

Jm

We apply this algorithm to a bicomponent signal consisting of a sinusoid and
a linear chirp signal. When compared with the WVD (see Figure 9.9), the
WPCDR of the same signal shown in Figure 9.10, the interference is sup-
pressed. Figure 9.11 shows the WPCDR with a best basis selection produces
the highest resolution on the time-frequency plane.
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FIGURE 9.9: WVD of a bicomponent signal. (Reprinted with permission from Ref. 4;
copyright © 1998 by Wiley.)
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FIGURE 9.10: WPCDR of a bicomponent signal. (Reprinted with permission from
Ref. 4; copyright © 1998 by Wiley.)
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WPCDR with the best basis selection
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FIGURE 9.11: Best-basis WPCDR of a bicomponent signal. (Reprinted with permis-
sion from Ref. 4; copyright © 1998 by Wiley.)

9.5 FAULTY BEARING SIGNATURE IDENTIFICATION

9.5.1 Pattern Recognition of Acoustic Signals

Acoustic signal recognition has gained much attention in recent years. It is
applicable to the recognition of ships from sonar signatures, cardiopulmonary
diagnostics from heart sounds, safety warnings and noise suppression in fac-
tories, and recognition of different types of bearing faults in the wheels of
railroad cars. The basic goal of acoustic signal recognition is to identify an
acoustic signal pattern from a library of acoustic signatures. Practically all
acoustical signature patterns are statistical in nature, and they are also highly
nonstationary. Using wavelets to extract feature signals for recognition has
great potential for success.

To reliably recognize an acoustic pattern, it is necessary to have a set of
distinctive features forming a feature vector for each pattern. These feature
vectors from different patterns are obtained by applying many data sets
belonging to a particular event to train a recognition algorithm such as an
artificial neural network (ANN). After we obtain the feature vectors through
training, they are stored in a library and used to compare with feature vectors
from unknown events.

In this example [5], we apply wavelet techniques and an ANN to identify
several different types of faults in the wheel bearings of railroad cars. For
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FIGURE 9.12: (a) An acoustic signal emitted from a faulty bearing and (b) its
spectrum.

information purposes, we show the acoustic signal and its spectrum of a data
set with a known bearing defect (Figure 9.12).

The American Association of Railroads (AAR) provides us with acoustic
signals of 18 different types of bearing faults in two classes of sizes, the E-class
and the F-class. Each data set is about 0.5 megabites sampling at greater than
260KHz. Each bearing was tested under two different load conditions, and
the wheel was rotating at equivalent train speeds of 30-80mph. Only 25
percent of each data set was used for training the feature vector in every case.
The recognition algorithm is given in Figure 9.13.



254 DIGITAL SIGNAL PROCESSING APPLICATIONS

Railroad defective Sensors A/D Sampling
wheel bearings under at> 260 kHz
evaluation * Microphone or at 196kHz
* Tachometer .
* Two loads * Accelerometer Microphone

* 30-90 mph per 10 mph data only

* Two bearing classes E& F
* 16 known bearing conditions
» Two mystery conditions

Wavelet multiresolution or
FFT spectrum generation

processing
Off-line training
of NN classifier with Feature Feature
training data sets: normalization| known extraction
feature
* E-class only 5 vectors | *FFT feature
* F-class only "é 7 * CWT features
Both E and F classes =R « DWT features
Weights & biases § = * WP features
Z Unknown
On-line (real-time) Feature conditionin; feature
classification Classifier ) g vectors
of unknown defect Neural network using the
. normalization factors
acoustics

FIGURE 9.13: A block diagram of faulty bearing detection algorithm.

9.5.2 Wavelets, Wavelet Packets, and FFT Features

The number of samples in each training data is 2!2. The formation of the
feature vectors for each technique is given as follows:

Wavelet Feature Extraction

1. Perform the discrete wavelet decomposition on the signal (DWT) to the
12th level of resolution.

2. From the wavelet coefficients of each of the 12 resolution and approxima-
tion coefficients, compute the average energy content of the coefficients at
each resolution. There are a total of 13 subbands (12 wavelet subbands and
one approximation subband) from which features are extracted. The ith
element of a feature vector is given by

nj
1 .
=N Wl i=12,.,13, (9.21)
n; 4 ’
J=1
where n; =21, 1, =21 n3=2° ... npp = 2% nyz = 2% v™ is the ith feature

element in a DWT feature vector; n; is the number of samples in individual
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subband; and wf) i is the jth coefficient of the ith subband. As a result,a DWT
feature vector is formed as given by

e T R R }t. (9.22)

Wavelet Packet Feature Extraction

1. Perform the wavelet packet multiresolution analysis to the fifth level of
resolution to obtain 32 subbands. Each subband contains a total of 128
wavelet packet coefficients.

2. From each subband at the fifth level of resolution, compute the average
energy content in the wavelet packet coefficients such that

nj
VP = lz Pl i=1,2,...,32,andn; =128, Vi, (9.23)
n; =t :

where v;” is the ith feature in a wavelet packet feature vector; n; is the
number of sample in each subband; and p;; is the jth wavelet packet coef-
ficient in the ith subband. The WP feature vector is represented as follows:

ver = Lo v e (9.24)

Spectral Feature Extraction

We also use the traditional FFT approach to solve this problem for the sake
of comparison. The FFT feature vectors are constructed following the same
pattern.

1. From the 2'? data points, we compute the FFT and take only the positive
frequency information represented by 2! spectral coefficients.

2. We divide the spectrum into 32 nonoverlapping bands with equal width.
From each band, we compute the average energy contained in the coeffi-
cients. The feature element becomes

n;
Vi =12s§j, i=1,2,...,32,and m; =128, Vi, (9.25)
n; =i ’

where sl-ZJ is the jth FFT coefficient in the ith subband. Consequently the
feature vector become

v = ot v (9.26)

After the feature vectors have been obtained, we apply the feature vector
normalization to separate the vectors farther apart to improve performance of
recognition. These vectors are used to train an ANN. There are three hidden
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TABLE 9.1: Overall Performance of the Network for F, E, and F and
E Class Bearings

Value (%) FFT CWT DWT WP
F Class Bearings

Correct decision 96.06 95.70 92.37 92.87

Misclassification 1.67 1.69 4.56 2.49

Miss 2.26 2.61 3.07 4.64
E Class Bearings

Correct decision 95.96 94.16 87.50 93.76

Misclassification 1.28 2.35 7.05 2.50

Miss 2.76 3.50 5.45 3.74
F and E Class Bearings

Correct decision 95.18 94.22 87.61 92.41

Misclassification 0.93 2.35 8.88 3.19

Miss 3.89 3.42 3.51 4.40

neurons in this ANN. Details of construction and training of the ANN are
beyond the scope of this text, and we refer the interested reader to Ref. 6.

Results: The recognition results obtained using the wavelet techniques com-
bined with the ANN are astounding. Every fault in every class is identified
using the unused (not for training) portion of each data set. In fact, the two
mystery (unknown) bearings containing more than one fault are all identified.
Although the traditional FFT approach produces roughly the same results as
the wavelet approach, it fails to recognize the unknown bearing by missing
one of the two faults. We conclude that the new feature extraction methods
using DWT and WP are comparable if not superior to the FFT approach. The
FFT lacks the time-domain information and thus misses some of the more
localized faults.

The feature vector normalization and conditioning play a key role in the
convergence of the neural network while training. Without the normalization,
the network does not converge to the desired network error. Convergence of
the network produces the biases and the weights necessary for the testing of
the real data. Three hidden layers are used to improve the convergence. The
results are collectively given in Table 9.1.

9.6 TWO-DIMENSIONAL WAVELETS AND WAVELET PACKETS

9.6.1 Two-Dimensional Wavelets

When the input signal is 2D, it is necessary to represent the signal components
by two-dimensional wavelets and a two-dimensional approximation function.
For any scaling function ¢ with its corresponding wavelet y, we construct three
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different 2D wavelets and one 2D approximation function using the tensor-
product approach. We write the 2D wavelets as

Pl(x, y)=o(x—i)y(y-)) (9.27)
P (x, y) =y (x—i)o(y- ), (9.28)
P y) =y (x—i)w(y-)) (9.29)

and the 2D scaling function as
D;j(x,y)=p(x=0)¢(y—J). (9.30)
‘{‘E}j](x, ¥), ‘PE-Z-](x, y), and ‘I‘E?j](x, y) are all wavelets since they satisfy

5]

J._ ) ‘I’Ef}(x,y)dxdyzO, for j=1,2,3.

The 2D approximation function and wavelets of the compactly supported ¢p,
are shown in Figure 9.14. In the spectral domain, each of the wavelets and the

2D scaling function 2D wavelet 1

Y
Bl
el

z;
)

0 II, /o "\"7

XU

”II%'A 2

" S

01
( 6

2D wavelet 2

0 ,0"‘\‘\\““\\\\\\ | I
g : i

FIGURE 9.14: Two-dimensional scaling function and the corresponding wavelets.
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FIGURE 9.15: Regions on the 2D spectral plane occupied by the 2D scaling functions
and wavelets.

scaling function occupy a different portion of the 2D spectral plane. The spec-
tral distributions of each of the four 2D functions are shown in Figure 9.15.
The spectral bands that are labeled low-high (LH), high-low (HL), and high-
high (HH) correspond to the spectra of the wavelets ‘I‘Ey](x, y),M=1,2,3.
The low-low (LL) band corresponds to the 2D approximation function. The
terms low and high refer to whether the processing filter is low-pass or high-
pass. The decomposition of a 2D signal results in the well-known hierarchical
pyramid. Due to the downsampling operation, each image is decomposed into
four subimages. The size of each subimage is only a quarter of the original
image. An example of hierarchical decomposition of a gray-scale image is
given in Figure 9.16.

9.6.2 Two-Dimensional Wavelet Packets

Two-dimensional wavelet packets are refinements of the 2D wavelets, similar
to the 1D case. Using the notation y(x) to represent the kth wavelet packet
belonging to the approximation function uy(x) = ¢(x), a tensor product of any
two wavelet packets generates a 2D wavelet packet:

Mo (X, )= i (x) e (). (9.31)
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FIGURE 9.16: A two-dimensional wavelet decomposition of an image.

Consequently, there are many 2D wavelet packets that can be chosen to form
bases in L? for signal representation. For example in the 1D case, we use the
two-scale relations for three levels resulting in 2° = 8 wavelet packets including
the LLL components of the approximation function. Taking the tensor product
of any two packets, we obtain 64 different 2D wavelet packets including the
2D approximation functions

Moo(x, y) = to(x) o (y)- (9.32)

There are too many 2D wavelet packets to be shown individually. Two exam-
ples of 2D wavelet packets are shown in Figure 9.17.

9.6.3 Two-Dimensional Wavelet Algorithm

We have discussed in previous sections that the 2D wavelets are tensor prod-
ucts of the 1D scaling function and the wavelet. Corresponding to the scaling
function ¢ and the wavelet yin one dimension are three 2D wavelets and one
2D scaling function at each level of resolution. As a result, the 2D extension
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FIGURE 9.17: Two-dimensional Haar wavelet packets at different scales.

of the wavelet algorithms is the 1D algorithm applied to both the x and y
directions of the 2D signal. Let us consider a 2D signal as a rectangular
matrix of signal values. In the case where the 2D signal is an image, we
call these signal values PIXEL values corresponding to the intensity of the
optical reflection. Consider the input signal ¢/(m,n) as an N x N square matrix.
We may process the signal along the x direction first. That is, we decompose
the signal row-wise for every row using the 1D decomposition algorithm.
Because of the downsampling operation, the two resultant matrices are
rectangular of size N x(N/2). These matrices are then transposed, and they
are processed row-wise again to obtain four (N/2)x(N/2) square matrices—
namely, ¢/"\(m, n), /"' (m, n), d}”"(m, n), and d}~'(m, n). The subscripts of the
d matrices correspond to the three different wavelets. The algorithm for 2D
decomposition is shown in Figure 9.18. This procedure can be repeated for an
arbitrary number of times to the ¢/(m, n) matrix (or the LL component), and
the total number of coefficients after the decomposition is always equal to the
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FIGURE 9.18: Block diagram of the two-dimensional wavelet decomposition
algorithm.
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FIGURE 9.19: A two-dimensional hierarchical decomposition of an image.

initial input coefficient N>. An example of the decomposition is shown in
Figure 9.19.

If the coefficients are not processed, the original data can be recovered
exactly through the reconstruction algorithm. The procedure is simply the
reverse of the decomposition except that the sequences are {go[k], gi[k]}
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FIGURE 9.20: Perfect reconstruction from components shown in Figure 9.19.

instead of {hg[k], h1[k]}. Care should be taken to remember upsampling before
convolution with the input sequences. The perfectly reconstructed image is
identical to the original image in Figure 9.20.

9.6.4 Wavelet Packet Algorithm

The 2D wavelet packet algorithm mimics the 1D case. It simply repeats the
algorithms first along the x direction and then the y direction. Not only is the
LL component (the approximation function component) decomposed to
obtain further details of the image but the other wavelet components (LH,
HL, HH) are also further decomposed. For example, starting with an original
image with size 256 x 256, a 2D wavelet decomposition of this image will result
in four subimages of size 128 x 128. Continuing the decomposition, one gets
16 2D wavelet packet subimages of size 64 x 64. The computational algorithm
for 2D wavelet packets is no more difficult than that for the 2D wavelets. It
requires orderly bookkeeping to keep track of the directions (x or y), and the
filters that have been used in processing. It is necessary to reverse the order
to reconstruct the image from its wavelet packet components. An example of
2D wavelet packet decomposition of an image and its reconstruction is shown
in Figures 9.21-9.22.
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FIGURE 9.22: Perfect reconstruction from wavelet packet components shown in
Figure 9.21.



264  DIGITAL SIGNAL PROCESSING APPLICATIONS
9.7 EDGE DETECTION

An edge is defined as a set of connected pixels that lie on the boundary
between two regions of relatively uniform intensity. Edge detection is a disci-
pline of great importance in digital image analysis. It locates object boundaries
that are useful for image segmentation, image registration, and object/shape
identification. An edge detected in an image often outlines the framework of
the scene/object. It significantly reduces the data storage requirement by filter-
ing out the unnecessary information.

There are many algorithms for detecting edges [7-10] in a digital image.
However, they can be largely classified into two categories: the gradient (first
derivative of the signal) approach and the Laplacian (second derivative of the
signal) approach. We will consider some representative algorithms of these
two classes as well as wavelet- and curvelet-based approaches.

An ideal edge should be like a step function, but in practice, edges are
blurred and are closely modeled as ramp functions (Figure 9.23). A blurred
edge can be modeled mathematically at x = 0 by an error function given by

F(x)= I">°;IX<° [erf( J;Gj+1]+lx<o (9.33)

where the error function erf(y)=(2/x) (y)e‘“zdu is bounded by #*1 as the vari-
able y — *eo. Another model for an edge is

f(x)=1+tanh(Bx) (9.34)
which has similar behavior as the error function model. The steepness of the
edge is controlled by the parameter f3.

It is easy to see that the first derivative of these models at x = 0 attains a

maximum such that the second derivative for these modeling function becomes
0 at x = 0, which is the center of the edge.

L E
ST e

Edge Blurred edge

FIGURE 9.23: Ideal (left) and blurred (right) edge.
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9.7.1 Sobel Edge Detector

For the gradient approach, the methods usually compute and search for the
maximum of the first-order derivative of the image in both directions. The
strength of the gradient

IVfl= (3—92 +(g—];)2 (9.35)

indicates the sharpness of the edge. It can be approximated by computing

of
LA +‘a_y . (9.36)

The Sobel edge detector approximates this equation by creating a pair of 3 x 3
image filters to be convolved with the image:

-1 0 1 1 2 1
G —>|-2 0 2|; G,—|0 0 O
-1 0 1 -1 2 -1

9.7.2 Llaplacian of Gaussian Edge Detector

Laplacian of Gaussian (LoG) approach—as in Marr-Hildreth method—
employs a Gaussian filter for smoothing before the Laplacian is taken over all
the image. The location of the edge is indicated by the zeros of the following
equation:

V2[G+ f(x,y)]=0, (9.37)

where G is the two-dimensional Gaussian function

exp(— Xty ] (9.38)

G(x,y)=

2102 202

A 5 x 5 mask of an LoG operator is shown below

0 0 -1 0 0
0 -1 2 -1 0
-1 2 16 =2 -1| (9.39)
0 -1 2 -1 0
0 0 -1 0 0
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9.7.3 Canny Edge Detector

The Canny detector is an optimized form of the Marr-Hildreth detector by
finding the direction of the edge as well as its gradient. Canny detector uses
the second derivative of the image along the direction of the edge [7],

T2 (5]
Dy f _||Vf||2{(axj 8x2+2(8x) w) \ay) a2 040

Vs

and that of the gradient

_ L Jrary s a_fz[a_sz (a_f)a_f
Do f _||Vf||2{(axj ox’ 2(8)5] w) Hay) a2 O

IvLrIP

The procedure for locating the edge points is as follows:

1. Smooth the image with a Gaussian function.

2. Compute the gradient of the result of step 1.

3. If the gradient is not zero, compute the function D y.y) f.
V(@GP

4. Search the edge points by the location of sign change of step 3.

9.7.4 Wavelet Edge Detector

As mentioned in previous chapters, wavelets acts in some sense as differential
operators (band-pass filters). The simplest example is the Haar wavelet, which
gives the first difference of a function.

Wavelet edge detection is based on two-dimension wavelet transform of
the image. Recall from Section 9.6 that at any resolution level, 2D wavelet
transform provides four components of an image—LL, which results from
convolving with scaling functions (low-pass) along both x and y directions; LH
(scaling function along x and wavelets along y); HL (wavelets along x and
scaling function along y); and HH (wavelets along both directions). Component
LL represent the image at lower resolution, whereas the other three combined
together gives the edges.

As described in Chapter 6, wavelets are very good in detecting point dis-
continuity. Edges, on the other hand, represent discontinuity along a line. For
edge detection, therefore, ridgelet transforms are better suited. However
evaluation of ridgelet transform takes considerably more computation time.
Figure 9.24 shows edges detected using wavelets and ridgelet transforms.
Ridgelet data are taken from [10].
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FIGURE 9.24: Original image (top) and edges detected using wavelets (middle) and
ridgelet transform (bottom).

9.8 IMAGE COMPRESSION

9.8.1 Basics of Data Compression

Signals such as music, voice, graphics, images, and movies are either stored
for later usage or transmitted via networks to their ultimate users. Before the
digital era, magnetic tapes, photographs, and films were the popular means
for signal storage. Telephone and television were the usual transmission media
for voice and image. Since the 1980s, the digital revolution has transformed
the modes and means of signal storage and transmission. A 2-h-long movie
can easily be stored in a DVD that takes up about 1/5000 of the physical space
of two to three reels of film negatives.

Nowadays, most signals, such as computed tomography (CT), magnetic
resonance imaging (MRI), photographs, music, and voice, are already gener-
ated in digital format. Analog signals from antiquated documents, photo-
graphs, and phonographs can be converted to digital format through powerful
digitizers, quantizers, and scanners. The size for some of these signals may be
quite large so as to preserve the fidelity of the signal. The challenge is to
manipulate the files in the digital domain to reduce the sizes for convenient
storage and/or efficient transmission. Many 1D, 2D, and 3D signal-compression
schemes have been developed. We will briefly explain the classification and
approaches of these schemes.

Compression ratio and distortion or fidelity (the difference between the
original and the reconstructed signal) are two main measures for evaluating a
compression algorithm. Generally, such algorithms are either lossless, meaning
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perfect reconstruction, or lossy, in which some information is lost during
reconstruction. From Shannon’s information theoretic approach we know that
the highest achievable lossless compression is to encode the output of a source
with an average number of bits equal to the entropy* of the source. The objec-
tive, therefore, is to devise a scheme that will reduce the entropy and increase
the compression ratio. Messages made up of strings of English alphabets
can be recovered without loss using Morse code. Huffman code, run-length
code, bit plane coding, predictive coding, arithmetic coding, and dictionary
techniques, such as LZ77 and LZW, are some of the lossless coding schemes.
The compression ratio achieved through lossless algorithms are usually small
(typically 10 or less).

In this chapter, we discuss lossy compression in which, as mentioned before,
the signal is not exactly recoverable. Transform coding, subband (multiresolu-
tion) coding, scalar quantization, and vector quantization are examples of
lossy compression schemes.

Several 1D signal compression schemes are available for voice and music.
They are the pulse code modulation (PCM), differential pulse code modula-
tion (DPCM), adaptive DPCM (ADPCM), audio CODEC coder-decoder
(CODEC) manager (ACM), waveform data (WAV), and MP3. MP3 stands
for MPEG-1 audio layer 3 and it is a lossy form of data compression. Currently,
it is the most popular format for audio storage. Digital voice recorders and
portable music players also use this format. The compression scheme by
reducing/removing certain signal samples that are not perceptible by most
people is known as perceptual coding. It uses psychoacoustic approach in
discarding the unperceptible information and retaining the useful information
in an efficient manner. For still images, JPEG format is widely used.

9.8.1.1 Transform Coding. In transform coding, input sequences are trans-
formed into other sequences in which most of the information is contained in
a few elements. Consider input sequences {xg; X1} as given in Figure 9.25 and
transform them to sequences {yg; y1} using a rotation transformation:

[YO} z[ cosd Sme}{“} 6=60". (9.42)

b2 —sinf@ cosé || xq

As we can see in the transformed domain, most of the information is con-
tained in yo. We can remove half the data—that is, set y; = 0—and still be
able to recover the original sequence with little distortion. Transform coding
steps can be summarized as follows.

1. Divide input sequence {x;} in blocks of size N and transform them to
sequence {y;}.

*Entropy of a system of independent events {x;} =—3; P(x;)In P(x;) where P(x;) is the probabil-
ity that the event x; will occur.
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Original sequence (x)

Xo 50 75 100 80 60 40 70 60 100 85
X4 90 130 170 140 100 70 120 100 160 150

Transformed sequence y = Ax

Yo 102.9 | 150.1 | 1972 | 1612 | 116.6 | 80.6 | 138.9 | 116.6 | 188.6 | 172.4
V1 1.7 0 -1.6 0.7 -2 0.4 -06 | -2 —6.6 1.4

Reconstructed sequence after setting y1 =0

X0 515 75.1 986 | 806 | 583 | 40.3 | 69.45| 58.3 943 | 86.2
X'1 89.1 | 130 170.8 | 139.6 | 101 69.8 |120.3 | 101 163.3 | 149.3

FIGURE 9.25: Example of transform coding.

2. Quantize the transformed sequence {y;}.
3. Encode the quantized data.

Some of the transformation techniques used are [11] Karhunen-Loéve
Transform (KLT), Discrete Cosine Transform (DCT), Discrete Walsh-
Hadmard Transform (DWHT), and wavelet transform. Recall that in wavelet
transform, wavelet coefficients in “smooth” regions are close to zero because
of vanishing moment property.

Subband coding is similar to transform coding except that the transforma-
tion is applied at various scales. A series of low-pass and band-pass filters
(similar to scaling and wavelets) are used to reduce quantization error and
achieve higher compression ratio than can be typically achieved through
lossless compression.

9.8.1.2 Differential Pulse Code Modulation (DPCM). The differential pulse
code modulation algorithm is based on the understanding that for most images,
the values of adjacent pixels are highly correlated. Instead of coding the pixel
value, which may be large, the method requires a predictor for predicting each
pixel value and a code for the difference between the actual and the predicted
values. The user has the freedom to choose the predictor by some forms of
linear prediction. A good predictor will result in smaller errors, which will
increase the compression performance. The histogram of the code value can
be used to measure the compression performance. The code value histogram
for the DPCM on the Lena image (Figure 9.28) varies between £25, while the
code values for the original image are between 0 and 240.

9.8.1.3 Vector Quantization (VQ). Vector quantization is a popular
scheme for image compression. The process can be carried out on the image
plane or after transformation. The procedure may be put into several sequen-
tial steps:
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. Divide the image into many n-dimensional vectors. This may be done

by choosing a rectangular block of m x / = n and the vector is formed by
reading the pixel value row-wise.

. A code book of size N is prepared beforehand with codevector Xii=1,

2, ..., N.The size of the codevector is also n.

. Each vector X from the image block is compared with the codevector

using the MSE as a measure to determine which codevector has the
smallest distance from the block vector X.

k

MSE=13 (x5} (9.43)

e}

. Once the codevector k is selected from the MSE computation, the index

k is transmitted to the receiver.

. The receiver, having received the index k, uses a table look-up method

to find the codevector X from a duplicate codebook.

There are different algorithms for generating the VQ code book. These
discussions are beyond the scope of this section. For more details, the reader
is referred to an excellent tutorial in Ref. 12. VQ can be applied to the
transformation of an image. Transforms like the cosine transform and
wavelet/wavelet packet transforms are good candidates for this scheme. VQ
can also be combined with other schemes, such as DPCM, to compress an
image. Figure 9.26 shows a composite DWT-DPCM-VQ scheme for image

compression.
Approx.
Coeft. DPeM
INPUT_| Wavelet | Coeff.

Decomp. Threshold

Detail

Coeff. vQ _‘
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—
e

OUTPUT
Wavelet
Recon.

DPCM!

FIGURE 9.26: Composite DWT-DPCM-VQ compression algorithm.
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9.8.2 Wavelet Tree Coder

In general, tree coders [13] use a tree structure, which takes advantage of the
correlation between the discrete wavelet coefficients (DWCs) in each of
the three spatial directions (HL, LH and HH), as shown in Figure 9.27. That
means, if a DWC at a higher decomposition level is smaller than a specified
threshold, there is a great possibility that all of its children and grandchildren
are smaller than the threshold. Thus all of these insignificant DWCs can be
encoded with one symbol. The encoding of a significant DWC may need
more bits. Many tree structures have been developed for improving the effi-
ciency of encoding the locations of the correlated DWCs, such as EZW, SOT,
and GST.

A brief description of a generic tree coder is given here:

¢ The DWCs are selected in groups with decreasing thresholds such that
larger DWCs are encoded earlier.

* The first threshold is selected to be an integer Ty =2/, where j is the
nearest integer <log,max|DWCIl and the kth threshold is T} = To/2k—that
is, the uniform quantization.

* Choosing the threshold Ty, all the locations of this group of DWCs, C; ; with
Ty <1Cijl < Ty, are encoded with a tree structure, and signs of these

encoded DWCs are also appended. This process is called the dominant
pass.

ILL3 HL3 HL2 HL1

LH1L AN HH1

FIGURE 9.27: Spatial correlation and parent-child relationship among wavelet coef-
ficients at different resolutions.
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* Those C;; encoded in previous higher thresholds are refined to a better
accuracy by appending the bit corresponding to T%. This process is called
the subordinate pass.

* With decreasing thresholds, the leading zero bits of encoded DWCs are
saved to achieve compression.

* The number of bits in the coded bit stream from a tree coder can be
further reduced using a lossless entropy coder—for example, an arithme-
tic coder [12].

9.8.3 EZW Code

Initiated by Shapiro [14], the zerotree structure combined with bit plane
coding is an efficient compression scheme for the discrete wavelet transforma-
tion. The embedded zerotree wavelet (EZW) coding scheme has proven its
efficiency and flexibility in still image coding in terms of image quality and
computation simplicity. Also, the EZW image coding algorithm generates an
embedded bitstream in which information is sent to the decoder in the
order of its importance; importance is judged by how much the information
reduces the distortion of the reconstructed image. This embedded technique
has two important advantages. First, the bit rate control allows one to stop
the coding process at any point. Second, the image can be reconstructed from
a point at which the encoded bitstream has been disrupted, even with reduced
quality.

As an entropy coder, the zerotree coder takes advantage of the correlation
between interlevel subbands of DWCs. Four symbols, ZTR, POS, NEG, and
1Z, are used in the zerotree. A ZTR, zerotree root, represents a DWC and all
of its descendants if they are insignificant, and it is the symbol that gets most
of the compression. A POS or NEG symbol stands for a significant DWC with
a positive or negative sign, respectively. An IZ represents an insignificant
DWC with at least one significant descendent. It is this symbol that reduces
the compression since more symbols are needed for encoding its descendants.
With these definitions, two bits per symbol on average are needed for each of
the four symbols. Without a good follow-up entropy coder for those symbols,
zerotree cannot get good compression results. Also, all of the encoded symbols
must be reordered so that the entropy coder can achieve compression on them.
Both of these procedures increase the computation overhead.

9.8.4 EZW Example

We use a well-designed example similar to the one appearing in Shapiro’s
original paper [14] to demonstrate the procedure. The EZW is a successive
approximation algorithm. It uses the dominant pass and the subordinate pass
recursively to achieve the approximation. The coefficient map of this example is
shown as follows:
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22 14 -13 |3 6 |-8 |11 |5
9 -1 |9 -1212 |5 9 |3

Following the steps outlined in Section 9.8.3, we find the largest value to be
coded is M = 58.The nearest power-of-two integer 2/ > 58/2 =29 is 2° = 32. We
set the initial threshold value T,=32=2>. We then use this threshold and
compare it with all of the coefficients in a dominant pass (to be described
below).

In wavelet-tree coding, not only do the values of the coefficients need to be
coded but the location of the coefficients must also be known to the decoder. The
EZW makes use of the parent-children relationship between coefficients in adja-
cent coefficient maps to record the location of a given coefficient. This relation-
shipisembeddedinthe EZW codetoreduce the codingoverhead.Thisrelationship
is best shown in Figure 9.27. The coding procedure is listed as follows.

1. For the first dominant pass, the threshold is set at 32, and the results of
the code assignment are given in the following table. We assign a symbol
to each of the codeble values:

Reconstructed Reconstructed
Value Symbol Value Value Symbol Value
58 P 48 -16 ZTR 0
41 P 48 12 ZTR 0
29 ZTR 0 -8 Z 0
—47 N —48 13 Z 0
—44 N —48 3 Z 0
17 ZTR 0 4 Z 0
42 P 48 35 P 48
-13 ZTR 0 -11 Z 0
25 ZTR 0 -3 Z 0
-9 ZTR 0 6 Z 0

2. After the first dominant pass has been completed, the first subordinate
pass refines the coded values. Only those significant values (P and N)
are coded in this pass. The symbol P in the first subordinate pass states
that the value lies in the interval (64, 32], and the symbol N for
the interval (—64,-32]. The subordinate pass refines these values by
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narrowing the interval from (64,32] to (64,48] and (48,32]. If the value is
in the upper interval, the subordinate pass appends a 1 to the code, and
a 0 if the value lies in the lower interval. The six significant values now
have the following code file:

Coefficient Reconstructed Binary
Magnitude Symbol Magnitude Representation
58 1 56 111010
41 0 40 101001
47 0 40 101111
44 0 40 101100
42 0 40 101010
35 0 40 100011

This completes the first iteration of both passes. The user has to remem-
ber that in the subordinate pass, if a 1 is appended to the code, one has
to subtract the refinement amount—16 in this case—from the value that
is over the threshold for this pass. For example, the coefficient 58 has
58 — 32 — 16 =10 yet to be refined by the next iteration. In addition, one
should also remember that the coded values are now replaced by zero
in the coefficient map and will not be coded from later iterations.

3. We repeat step 1 with the second dominant pass with a threshold 77 = 16.

We have the following codes from this pass.

Coefficient Reconstructed Coefficient Reconstructed
Value Symbol Value Value Symbol Value
29 P 24 -11 Z 0
-17 N 24 -3 Z 0
-13 ZTR 0 6 Z 0
22 P 24 -13 Z 0
-14 ZTR 0 2 Z 0
-9 1z 0 10 Z 0
-11 ZTR 0 -5 Z 0
25 P 24 =22 N 24
-9 ZTR 0 4 Z 0
-16 N 24 9 Z 0
12 ZTR 0 -1 Z 0
-8 Z 0 0 Z 0
13 Z 0 -30 N 24
3 Z 0 -7 Z 0
4 Z 0 -1 Z 0
5 Z 0 6 Z 0
8 Z 0 -8 Z 0
-1 Z 0 2 Z 0
10 Z 0 5 Z 0
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4. The second subordinate pass will separate the intervals more finely by
dividing all intervals at their midpoints. Hence we have intervals (64,56],
(56,48], (40,32], (32,24], and (24,16]. This pass also updates all previous
code files. The value to be compared with in this pass is 8. The updated
code file becomes

Coefficient Reconstructed Binary
Magnitude Symbol Magnitude Representation
58 1 60 111010
41 1 44 101001
47 1 44 101111
44 1 44 101110
42 1 44 101010
35 0 36 100011
29 1 28 011101
17 0 20 010001
22 0 20 010110
25 1 28 011001
16 0 20 010000
22 0 20 010001
30 1 28 011110

The passes are repeated by cutting the threshold by half each time. If all
the coefficients are coded, we have a lossless code. The compression ratio
achieved in this manner is limited. The user may stop coding at any time or
when the bit budget is exhausted. We have a lossy compression scheme
wherein the user may control the bit budget, but he or she cannot control the
compression ratio. An original image and the recovered image from EZW
coding are shown in Figures 9.28 and 9.29.

9.8.5 Spatial Oriented Tree (SOT)

Said and Pearlman [15, 16] discovered set partitioning principles to improve
the performance up to 1.3dB over that of the zerotree method. They observed
that there is a spatial self-similarity between subbands, and the discrete wavelet
coefficients (DWCs) are expected to be better magnitude ordered if one
moves downward in the pyramid following the same spatial orientation. Based
on this observation, a tree structure called a spatial orientation tree (SOT) is
used to define the spatial relationship of the DWCs in the hierarchical struc-
ture. Three main concepts are proposed by Said and Pearlman to adapt the
SOT to obtain a better performance in image coding: (1) partial ordering of
the transformed image by magnitude and transmission of coordinates via a
subset partitioning algorithm, (2) ordered bit-plane transmission of refinement
bits, and (3) exploitation of the self-similarity of the DWCs across the different
scales.
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FIGURE 9.28: Original image for EZW image coding.

FIGURE 9.29: Decoded image at compression of 30:1.
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For the SOT [15-17], only two symbols zero and one are used, and each
symbol has a different meaning at a different part of the tree. The symbol one
may represent (1) a significant DWC, (2) the negative sign of a significant
DWC, (3) the case that any one of the four children is significant, or (4)
the case that any of the grandchildren is significant. The symbol zero could
indicate (1) an insignificant DWC, (2) the positive sign of a significant DWC,
(3) the case that all four children are insignificant, or (4) the case that all
grandchildren are insignificant. To maintain the SOT for the DWCs along with
the different scales, three lists are used as follows:

1. List of insignificant sets (LIS) is a list of the roots of a tree for further
tracing, and type A and B of the roots of the tree are used interchange-
ably to obtain better adaptability.

2. List of insignificant pixels (LIP) is a list of the DWCs that are not
roots of the tree currently but are the candidates to be placed into the
LSP.

3. List of significant pixels (LSP) is a list of the DWCs that have been
encoded and are to be further refined.

9.8.6 Generalized Self-Similarity Tree (GST)

Based on the SOT, a generalized self-similarity tree (GST) coding algorithm
has been constructed that can handle images of any size and any gray level
[18]. In the GST, the wavelet decomposition/reconstruction algorithm with
boundary reflection techniques is used so that perfect reconstruction can be
achieved. Analysis of the GST coder shows results comparable to the original
SOT coder for images of dyadic size, and it even outperforms the SOT for
images of nondyadic size.

9.9 MICROCALCIFICATION CLUSTER DETECTION

The majority of early breast cancers are indicated by the presence of one or
more clusters of microcalcifications on a mammogram. Although breast cancer
can be fatal, women have one of the highest chances of survival among cancer
types if the tumors can be detected and removed in an early stage. Thus the
detection of microcalcifications with minimal false positive rates is critical to
screening mammograms. Microcalcifications are small deposits of calcium
phosphate hydroxide in breast tissue with sizes raging from .05 to 1.0 mm in
diameter that appear as bright specks on photonegative x-ray film [19]. They
are difficult to detect because they vary in size and shape and are embedded
in parenchymal tissue structures of varying density [20].

Screening mammograms have been one of the main thrusts in the health-
care program of the United States. However, even partial compliance with the
rule set by the ACR would produce a huge volume of data to be read by a
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limited number of radiologists. Consequently, human error can run the
percentages of false negatives (a true target missed) up to 20% [21]. If a
computer-aided diagnostic (CAD) algorithm were designed and constructed,
it could serve as a second opinion to help the radiologist by pointing out suspi-
cious regions in the mammogram needing a more detailed diagnostic screen-
ing. This application example attempts to show how a 2D wavelet pyramid
algorithm working in conjunction with other image-processing techniques can
identify the microcalcifications in mammograms and localize the suspicious
regions.

9.9.1 CAD Algorithm Structure

Success in signature recognition greatly depends on the features one can
extract from a signature. The more distinct the features, the higher the success
rate for making a positive identification. The most important objective in the
detection and recognition of microcalcifications is to remove the background
noise and enhance the object to be identified. We use several traditional
image-processing techniques to work with the wavelet decomposition algo-
rithm to achieve this objective. Decision-making rules in some of these algo-
rithms are goal oriented and therefore are problem dependent. Parameter
choices often depend on the data to be analyzed. The CAD algorithm for
microcalcification cluster detection in a highly textured and cluttered back-
ground is illustrated in Figure 9.30. The image-processing techniques used in
this CAD algorithm include nonlinear image enhancement, wavelet pyramidal
and directional image decomposition and reconstruction, wavelet coefficient
domain operations, dark pixel removal, constant false alarm rate (C-FAR)
type adaptive thresholding, adaptive resonance theory clustering, and false
cluster discrimination.

9.9.2 Partitioning of Image and Nonlinear Contrast Enhancement

We partition the mammogram to be analyzed by simply dividing the image
into a number of equal-size subimages. In this case, the size of the mammo-
gram is 1024 x 1024, and we divide it up in to 64 subimages of size 128 x 128.
Each partitioned subimage is separately processed to bring out locally signifi-
cant details of the input image with image contrast enhancement. This step
provides better localization for detection of the targets. Since wavelet process-
ing is known to handle the image boundary better than DCT, we are ensured
that information is not lost in the partitioning. We use a cubic mapping to
suppress pixels with low gray scale values and enhance pixels with large gray
scale values.

9.9.3 Wavelet Decomposition of the Subimages

We decompose each subimage using the wavelet decomposition algorithm so
that the high frequency components of the subimage are singled out. There
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FIGURE 9.30: Block diagram of the microcalcification cluster detection algorithm.

are many choices of wavelets in this applications. We chose the Haar wavelet
after examining all of Daubechies’ orthogonal and biorthogonal wavelets and
the Coiflets, because the spatial domain window of the Haar wavelet is very
small for better spatial localization. Higher-order wavelets tend to average and
blur the high-frequency information to produce a low-amplitude wavelet
coefficient.

Two types of wavelet MRA tree decompositions are applied simultaneously
to the same subimage—namely, the pyramidal and directional decompositions.
The pyramidal MRA decomposes only the subband image obtained through
the LL-suband in the column and row direction at each level of resolution
(LOR). The directional MRA, on the other hand, decomposes images in only
one direction. The decomposition wavelet coefficient maps of these two MRA
trees are shown in Figures 9.31 and 9.32.

9.9.4 Wavelet Coefficient Domain Processing

Once we have the wavelet coefficients computed as shown in preceding section,
the goal of processing these coefficients is to retain only the significant wavelet
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FIGURE 9.31: Hierarchical wavelet decomposition of a segmented mammogram.

FIGURE 9.32: Directional wavelet decomposition of a segmented mammogram.

coefficients that pertain to microcalcifications and other high-frequency infor-
mation. Processing these coefficients includes removal, thresholding, and
amplification. These are operations without user interface; we must generate
rules and parameters to guide these operations.
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To retain high-frequency information that contains microcalcifications and
other high-frequency noise, the wavelet coefficients in the lower-resolution
subbands are removed. For each partitioned subimage, we compute the global
(all wavelet coefficients in the subimage) standard deviation to mean ratio
(GSMR) and local (wavelet coefficients in one subband of the subimage)
standard deviation to mean ratio (LSMR) for the removal of coefficients
containing low-frequency or insignificant high-frequency information. Let us
denote ¥, and ¥« as the GSMR and LSMR computed from the wavelet coef-
ficients of the kth subimage. The wavelet coefficients w;(-) are set to zero
according to the following rules:

{wj,k ()=0 for coefficients in subband j, if ¥, x > ¥jx (9.44)

retain in subband j for further processing, if ¥, x < ¥jx.

We use the mean and standard deviation, u;x and ojx, from each subband to
set the thresholding and amplification criterion. The rule is stated as follow:

wik()=0, if wix ()< pix +2.5% 055
: (9.45)
wik()= ab{%} Xwj (), otherwise.

Mk

After the operations in the wavelet coefficient maps have been completed, we
reconstruct the image using the remaining subband coefficients. The recon-
structed images have a dark background with white spots representing the
microcalcifications and high-frequency speckle noise. To differentiate the
microcalcifications and noise, we use histogram thresholding and dark pixel
removal.

9.9.5 Histogram Thresholding and Dark Pixel Removal

Since the reconstructed images also contain information that is not relevant
to the microcalcifications, we need to filter out this erroneous information.
The histogram threshold requires the peak value of the histogram of a given
gray scale g,.q.. We formulate the following thresholding rule:

{vr(-x? J’) = 07 lf Vr (Xs Y) < (gpeak + 1)+ 05 X O-rrlzs (946)

v,(x,y) remain unchanged for further processing,

where oy, and u;,, are the standard deviation and mean obtained from all
nonzero (nz) pixels in the reconstructed images; and v,(x,y) is the value of the
(x,y)th pixel in the reconstructed image. After this step, the CAD algorithm
adds the two images together in a spatially coherent fashion to form a com-
posite image in which all microcalcification information is contained.
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We now refer back to the original image. Since the pixel intensity from the
microcalcification is greater than 137 in an 8-bit (256 levels) linear gray scale,
we make use of this information to formulate a dark pixel removal threshold
as follows:

v (x,¥)=0,if v, (x,y)=0;
ve(x, y)=0,if vi(x,y) #20,and u(x, y) < florg +0.5X Oorg (9.47)
Ve(Xnz Ynz) = v (x, ), if vi(x,y) 20, and u(X, y) > porg +0.5X Oorg

where lorg, Yorg are the mean and standard deviations obtained using nonzero
pixels in the original input mammogram. u(x,y) is the pixel value of the
(x,y)th pixel in the original image.

After the dark pixels are set to zero, potential microcalcification regions
(PMR) are identified in the enhanced image. The nonzero pixel locations
indicate potential sites of microcalcifications. These sites are then made the
centers of 5 x 5 pixel PMRs. Each of these PMRs must go through a CFAR-
like detector to reduce the number of PMRs to a manageable level. The
CFAR acts like a probabilistic discriminator. The PMRs with high probabili-
ties are retained for further analysis. Hence the 5 x 5 pixel region acts like a
window through which an adaptive rule is set up to determine its probability
as a microcalcification. To evaluate the CFAR threshold, one needs the mean
and standard deviation from the PMR, an a priori probability distribution, and
a desired false alarm rate. The detailed theory of CFAR is beyond the scope
of this text, the interested reader may refer to [22].

9.9.6 Parametric ART2 Clustering

The suspicious regions are formed by using adaptive resonance theory (ART)
[5] with a vigilance factor, p,, or 25 pixels. In this example application, we
choose the search region to be an area corresponding to 1 x 1cm, which
has approximately 50 x 50 pixels of the image. Once an initial clustering is
completed, each cluster must be tested for false alarm discrimination. Each
cluster must have at least three microcalcifications whose individual size must
not exceed 5 x 5 pixels. If an initial cluster does not meet this criterion, it is
declared a false positive (FP) cluster and removed from the list of suspicious
regions.

9.9.7 Results

We have applied this CAD algorithm to 322 mammograms obtained from
the MIAS MiniMammographic Database of England. We found 150 truly
suspicious regions and 1834 false alarms with 37 undeterminable regions.
When we compare the results from the algorithm with the biopsy results (came
with the data set), all 31 true positives (TP) were correctly recognized with
one false negative (FN). There were 119 FPs. In terms of sensitivity, the CAD
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FIGURE 9.33: Detected clusters in a segmented mammogram.

FIGURE 9.34: Comparison between detected clusters with true positive.

achieved between 87% and 97% accuracy. In terms of the number of FPs, it
attains 0.35 to 5 per image, with .04 to .26 FNs per image. These results
compare favorably with respect to results from other CAD algorithms as
well as statistics from the radiological community. An original mammogram
and the algorithm output of the same mammogram are shown in Figures 9.33
and 9.34.
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9.10 MULTICARRIER COMMUNICATION SYSTEMS (MCCS)

Multicarrier modulation is the principle of transmitting data by dividing the
data stream into several parallel bitstreams, each of which has a much lower
bit rate. Each of these substreams modulates an individual carrier. Figure 9.33
shows the block diagram of the transmitter of a multicarrier communication
system. A serial-to-parallel buffer segments the information sequences into
frames of Ny bits. The Ny bits in each frame are parsed into M groups, where
the ith group is assigned #; bits so that

M-1

2 ni=Ny. (9.48)

i=0

It is convenient to view the multicarrier modulation as having M independent
channels, each operating at the same symbol rate 1/7". The data in each channel
are modulated by a different subcarrier. We denote the signal input to the
subchannels by S;,i =0, ... , M — 1. To modulate the M subcarriers, we use an
orthogonal basis @ = {(])},’(”:61, such that

<¢m’ ¢V> = gsm,/,-

9.10.1 OFDM Multicarrier Communication Systems

Orthogonal frequency division multiplexing (OFDM) is a special form of
MCCS with densely spaced subcarriers and overlapping spectra. It abandons
the use of steep bandpass filters that completely separate the spectra of indi-
vidual subcarriers. Instead, OFDM time-domain waveforms are chosen such
that mutual orthogonality is ensured, even though subcarrier spectra may
overlap. OFDM is more robust against time-domain impulse interference due
to its long symbol time, which tends to average out the effects. OFDM subcar-
riers may lose their mutual orthogonality if high-frequency errors occur in the
channel. As shown in Figure 9.35, the operating principle is simple. The data
are transmitted on several subcarriers. The spectra of the subcarriers may
overlap, but the mutual orthogonality is ensured. These subcarrier are summed
together and transmitted over the channel. On the receiver end of the channel,
the received signal is sent in parallel to the matched filters in each subchannel.
The output of the matched filter is sampled before the decision is made on
the signal. In general, each subchannel uses the binary phase-shift key (BPSK)
scheme [23] to represent the signal.

When the channel behaves well and does not introduce frequency disper-
sion, the bit error rate (P,) is very small. The imperfection may be due to noise
in the channel. On the other hand, when frequency dispersion is present due
to time variation of the channel parameter, the P, increases. Phase jitters and
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FIGURE 9.35: A multicarrier communication system: (a) transmitter, (b) receiver.

receiver frequency offsets introduce interchannel interferences that degrade

the P,.

9.10.2 Wavelet Packet-Based MCCS

Instead of sine or cosine functions used in the OFDM, the WP-based
MCCS uses different wavelet packets as the time-domain waveforms. If the
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FIGURE 9.36: A WP multicarrier communication system: (a) transmitter, (b) receiver.

approximation function ¢ generates an orthonormal set in the L? space,
the corresponding wavelet packets are guaranteed to be orthogonal. The
subcarriers are now wavelet packets, and the matched filters in the receiver
are designed accordingly (Figure 9.36). Since there are a large number
of wavelet packets to be chosen for the subcarriers, our experiment chooses
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FIGURE 9.37: Probability of error vs. signal to noise ratio for the 3D wavelet-packet
multicarrier communication system for different frequency offsets.

those whose spectra are very close to those of the OFDM. Under this con-
dition, we can make a fair comparison between the results of these two
systems.

The curves in Figure 9.37 represent the P, verse symbols/s. Without any
frequency offsets, all system performances are very close to being the same.
When the frequency offset is 10%, the wavelet packet system performs slightly
better than the OFDM. When we stress the system by allowing 25% offset,
the WP system works far better than the OFDM. In particular, the Daubechies
D5 orthogonal WP system seems to be the best. Comparing the spectra of the
subcarriers in both systems, they are very similar. However, there appears to
be an optimal set of wavelet packets through which the system produces the
best performance under a highly stressed system.

9.11 THREE-DIMENSIONAL MEDICAL IMAGE VISUALIZATION

Medical image visualization is becoming increasingly popular for planning
treatment and surgery. Medical images captured by various instruments are
two-dimensional gray-level signals. A 3D image reconstructed from 2D slices
provides much more information about surfaces and localization of objects in
a 3D space. The medical community has increasingly taken advantage of
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recent advances in communication and signal-processing technology to
improve diagnostic accuracy and treatment planning. Through teleradiology,
it is now possible to have surgeons making diagnoses and plan treatments
for a patient who lives at a remote location. This is possible by transmitting
2D images of the infected region of the patient and reconstructing the
image in 3D at a place where a group of experts can make an accurate diag-
nosis of the disease. Problems that have hindered the progress of this work
include

1. Large storage requirements. The 3D data sets occupy huge memory
space, and storing them for easy retrieval is an important issue.

2. Low transmission rate. Channel bandwidths for telephone lines or ISDN
lines are small, thus slowing down the transmission speed.

3. Low speed image reconstruction. Rendering algorithms is complex, and
it takes time to maneuver these huge sets of data.

We use a 3D wavelet decomposition and reconstruction algorithm for com-
pression of 3D data sets. For region of interest (ROI) volume compression,
the advantages of using wavelets are

1. Upon reconstruction from a spectral-spatial localized representation of
a highly correlated 3D image data, a more natural and artifact-free 3D
visualization is produced, even at high compression rates.

2. The localized nature of the transform in the space and frequency domains
allows for an ROI transmission of data.

9.11.1 Three-Dimensional Wavelets and Algorithms

Similar to the 2D wavelet, the 3D wavelet decomposition can be per-
formed for discrete volume data by a filtering operation, as shown in
Figure 9.38.

After a single 3D level wavelet transform, the volume data would be
decomposed into eight blocks, as shown in Figure 9.39. The 3D volume can
be approximated by using

at(x,y,2)= 2 al ®(2x=n,27y-m,2/z-1)

n,m,l

where ¢(x, vy, z) = ¢(x)9(y)¢(z) and af,,m’, is the scaling function coefficients.
We can add the details by adding the 3D wavelet functions at the resolu-
tion 2/ such as
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FIGURE 9.38: Block diagram of a three-dimensional hierarchical wavelet decomposi-
tion algorithm.
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FIGURE 9.39: Labeling wavelet coefficient sets in eight different octants.
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3 [(ed),,, '@ 2iy=m 2z

n,m,l
(), WA (x-n2y-m2z-1)s
(w4),,, ¥’ (2 x=n 2 y—m. 2 z=1)+
(wh), ., v (@ x=n2y—m 2z-1)+
(9),, g ¥° (@ x=n 2 y=m, 2 2= 1)+
(9),, ¥ (2 x =m0 2 y=m, 2 z—1)+
(W) W(Zx-n2y-m2 z_z)}, (9.49)

where w] through wj are the wavelet coefficients. We can reconstruct the
original 3D function volume to any refinement by adding some of the details
listed above.

9.11.2 Rendering Techniques

Rendering is the process of generating images using computers. In data visu-
alization, our goal is to transform numerical data into graphical data, or
graphical primitives, for rendering.

Traditional techniques assumed that when an object was rendered, the
surfaces and their interactions with light were viewed. However, common
objects such as clouds and fog are translucent and scatter light that passes
through them. Therefore, for proper rendering, we need to consider the chang-
ing properties inside the object.

When we render an object using surface rendering techniques, we mathe-
matically model the object with a surface description such as points, lines,
triangles, polygons, or surface splines. The interior of the object is not described
or is only implicitly represented by the surface representation.

One of the key developments in volume visualization of scalar data was the
marching cubes algorithm of Lorenson and Cline [24]. The basic assumption
of this technique and its higher-dimension counterparts is that a contour can
pass through a cell in only a finite number of ways. A case table is constructed
that enumerates all possible topological states of a cell, given combinations of
scalar values at the cell points. The number of topological states depends on
the number of cell vertices, and the number of inside/outside relationships a
vertex can have with respect to the contour value. A vertex is considered to
be inside a contour if its scalar value is larger the scalar value of the contour
line. Vertices with scalar values less than the contour value are said to be
outside the contour. For example, if a cell has four vertices and each vertex
can be either outside or inside the contour, there are 2* = 16 possible ways
that contour lines can pass through the cell. There are 16 combinations for a
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FIGURE 9.40: Inside/outside relationship of a square whose vertices have numerical
value either higher or lower than a set threshold.

square cell, but these can be reduced to four cases by using symmetry (Figure
9.40). Once the proper case is selected, the location of the contour-cell edge
intersection can be calculated using interpolation. The algorithm processes a
cell and then moves or marches to the next cell. After all cells are visited, the
contour will be complete. (Note: The dotted line in Figure 9.40 indicates a
contouring ambiguity.)

In summary, the marching algorithm proceeds as follows:

1. Select a cell.

2. Calculate the inside/outside state of each vertex of the cell.

3. Create an index by storing the binary state of each vertex in a separate
bit.

4. Use the index to look up the topological state of the cell in a case table.

5. Calculate the contour locations for each edge in the case table.

9.11.3 Region of Interest

Due to the localized nature of wavelets in frequency and space domains,
Region of interest refinement can be achieved by adding details in only the
regions required. Figure 9.41 shows the ROI in the original image and in the
wavelet domain for two levels of decomposition. Thus wavelets can be useful
tool for compression as the image can be approximated by first reconstructing
the low-pass coefficients and the detail can be restored to the ROI solely by
transmitting the appropriate high-pass coefficients in the ROI. The results of
this volume rendering using a 3D wavelet algorithm are shown in Figures
9.42-9.44.

9.11.4 Summary

The 3D wavelet decomposition and reconstruction algorithm is useful for 3D
image visualization. It improves the speed of rendering algorithm and achieves
data compression by using a region of interest approach.



(a) (b)

FIGURE 9.41: The Region of interest (ROI) (a) in the original image and (b) in
subimages.

FIGURE 9.42: Multiresolution rendering of 93 slices of 64 x 64, 8-bit image using
iso-surfacing with the marching cubes algorithm.

FIGURE 9.43: Low resolution rendering except for the ROI (nose portion of the
head).
292
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FIGURE 9.44: Low resolution rendering except for the ROI (left side ear portion of
the head).

9.12 GEOPHYSICAL APPLICATIONS

Geophysical applications include characterization of subsurface geological
structure; location, and identification of subsurface objects; and estimation,
mapping, and monitoring of material properties. A comprehensive discussion
is beyond the scope of this book. We will, instead, concentrate on a few appli-
cations related to oil and gas exploration and production.

The primary goal of oilfield exploration is to identify, quantify, produce, and
monitor oil and gas (in general, hydrocarbons) reserves. Hydrocarbons reside
in rocks that are porous in nature. Earth formation can be viewed as a layered
medium with each layer having its own properties. Some of these properties
are conductivity, permittivity, density, elasticity, porosity,” and permeability.*

Two main data acquisition techniques are seismic and well logging. A
seismic source generates acoustic or elastic waves that propagate through the
earth formation. Reflections from various layers are recorded in receivers
(geophones for land seismic or hydrophones for marine). The amount of
data to be processed is huge. Seismic images are basically maps of acoustic

tPorosity represents the storage capacity of a rock. It is the ratio of void space to the total volume
of the rock.

fPermeability, not to be confused with magnetic permeability y, is a measure of connectedness
of pores in the rock. It represents how well fluid residing in pore spaces can flow under pressure
gradient.
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impedance. These images can provide valuable information on oilfield reserve.
Well logging, on the other hand, gives higher spatial resolution data. In a
typical exploration environment, a wellbore (15 to 30cm in diameter) is drilled
to a depth that may extend to a few kilometers. Formation properties are
measured using a combination of sensors (electromagnetic, nuclear, acoustic,
optical, etc.) that move along the wellbore trajectory. Material properties as a
function of depth are known as a “log.”

Wavelet analysis has been used extensively in seismic data analysis, fluid
identification, well log data processing and interpretation, upscaling, denois-
ing, detection of abnormalities, processing of nonstationary pressure transient
signals, long-term downhole signals, and many others [25-50]. In fact, it was
the work of Morlet et al. [25,26] in 1980s on problems related to seismic signal
that revived the interest in wavelets. A few applications of wavelets are briefly
described in the next sections.

9.12.1 Boundary Value Problems and Inversion

Most applications of wavelets are in geophysical data analysis and interpreta-
tion. There are, however, some limited work in applying wavelets to boundary
value problems and inversions in geophysics. Moridis et al. [27], for instance,
have applied wavelets to solve the Buckley-Leverett nonlinear partial differ-
ential equation (PDE) arising from two-phase flow in one dimension. The
equation can be represented as

R(x,t)= %—f +u o (5) =0, (9.50)

where § is the water saturation, (x, ) are space and time variables respectively,
u is a parameter relating the porosity, the cross-section and the injection rate.
The term f{(S) is a nonlinear function that depends on the mobilities of oil and
water and the corresponding irreducible saturations.

Two classes of wavelet bases (Daubechies and Chui-Wang) and two methods
(Galerkin and collocation) are reported in the paper by Moridis
et al. [27]. (See Chapter 10 for details on wavelets in boundary value prob-
lems.) The paper concludes that the Chui-Wang wavelets and a collocation
method provide the optimum wavelet solution for the problem.

For many inverse problems, accounting for model uncertainty is an
important issue, and Bayesian model averaging is commonly used for such
purposes. This, however, requires choosing many model parameterizations
and computing the posterior distribution for each model from scratch. For a
1D seismic problem and generally for linear inverse problems, Bennett
and Malinverno [38] show how wavelets provide a multiresolution family of
model parameterizations and further give a fast algorithm for converting
the posterior distribution for one model to another when changing its
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local resolution. Gholami and Siahkoohi [50] have applied wavelets to solve
linear and nonlinear inverse problems by constraining the solution to
have sparse representations in two appropriate transformation domains simul-
taneously. They verified the effectiveness of the method by applying it to
synthetic examples as well as field data from seismic travel time. Lu and
Horne [33] have also applied wavelets and inverse problem theory to many
issues related to reservoir modeling and simulation, such as system parameter-
ization, resolution and uncertainty tradeoff, and preservation of geological
structures.

9.12.2 Well Log Analysis

There are numerous examples of application of wavelets to analyze individual
well log or a combinations thereof. These applications include feature extrac-
tion, fluid identification, data compression, and image analysis.

Definition and interpretation of sedimentary facies often involve examina-
tion of well logs to assess values, trends, cycles, and sudden changes. The
detection of cyclicity in sedimentary strata may point to the factors controlling
sediment deposition. Cycles in rock successions may indicate depositional
processes of varying complexity and origin. These characteristics may vary
over a wide range of scales and cannot be easily identified from the logs using
traditional means.

Recent developments on wavelet analysis for well logs provide a visual
representation of signals for interpretation and good supports for stratigraphic
analyses. Wavelets make easy detection of cyclicities, transitions, unconformi-
ties, and other sudden changes in sedimentary successions. The continuous
wavelet transform provides a space-scale analysis of the signal. Revera et al.
[39] have used the CWT to evaluate the well log and core data from the
Sherwood Sandstone Group, Irish Sea. The wavelet features extracted from
several logs are processed and combined to form a feature vector. As a result,
one can automatically identify boundaries separating the sabkha, dune, and
fluvial intervals. The cyclic behavior within each interval, representing differ-
ent depositional episodes, can also be identified. Use of neural network and
genetic algorithm have been applied in conjunction with wavelet analysis for
zone detection and classification [35]. Yue et al. [43] have demonstrated that
by proper depth-scale (similar to time-frequency) analysis of well log data, one
could identify various zones with different types of fluid (Figure 9.45). It
should be noted here that the vertical axis in Figure 9.45 is relative depth, not
the absolute which may be in the thousands of feet.

Another area where wavelet has been effective is in data compression. In
measurement while drilling (MWD) applications, measured data are stored
in the measuring instrument itself. Because of the drilling environment,
there is no electrical connection to the surface for data transmission. A low-
bit-rate telemetry system severely limits real-time data processing, inter-
pretation, and operational decision making at the surface. To reduce the
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FIGURE 9.45: Wavelet-based depth-scale analysis of electrical logs to identify fluid
type [43].

amount of data to be transmitted, yet maintain good fidelity, data compression
becomes necessary. Bernasconi et al. [30] have investigated a lossy data com-
pression algorithm based on the wavelet transform suitable for downhole
implementation and may be successfully applied to both online and off-line
solutions.

To illustrate the effectiveness of data compression, a hierarchical decom-
position of a resistivity log from a deviated well is shown in Figure 9.46 [48].
For each level of decomposition, the number of data points is roughly halved.
For example, the original log, shown in the top of Figure 9.46, has 2991 data
points. The lengths of a1, ay, a3, and a4 are 1497, 750,377,190, respectively. The
high-pass components, wi, w,, ws, and wy, represent differences at respective
levels. The signal a4, although much smaller in size, preserves the essential
elements of the original signal.

9.12.3 Reservoir Data Analysis

Reservoir properties are measured by many sensors and at different resolu-
tions, resulting in a large volume of data that need to be analyzed. Such analy-
sis is important for better reservoir characterization, management, risk
assessment, and key business decision. Conventional Fourier-based methods
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FIGURE 9.46: Hierarchical decomposition of log data in highly deviated well. The
horizontal axis is measured depth (feet); the vertical axis is resistivity in Q — m.
(Reprinted with permission from [48], copyright © 2008 by SPWLA, Petrophysics.)
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such as spectral and geostatistical methods prove to be ineffective because
they lack the properties for localizing the isolated discontinuities such as
faults, fractures, high-permeability streaks, and changes in geologic facies in
reservoir rocks. Since the wavelet transforms provide localization in spatial
and spatial frequency domains, they are well suited for analyzing nonstation-
ary data. A discrete data set may be transformed into a family of data sets
at different resolutions and spectral bands. They provide information of
the structure at different scales and show the locations of sharp change in
the data.

As mentioned before, rock properties are measured by different sensors
and resolutions. One problem that is often encountered in reservoir model is
estimating rock properties from geological data at fine scale. Reservoirs are
inherently heterogeneous with multiphase fluid. Wavelet methods provide
a computationally efficient and accurate approach for generating equivalent
rock and fluid properties under various geological and flow conditions
[29]. Panda et al. [32] have addressed the issues of data parameter estimation
and scale change in reservoir characterization. They have considered both 1D
and 2D data using the discrete wavelet transform as well as wavelet packet
transform to compare results. Wavelet transform is applied to permeability
data to demonstrate scaling of permeability, removal of noise, and edge
detection.

In reservoir description, history matching can lead to nonunique and geo-
logically unrealistic property distribution. Shani and Horne [41] have pro-
posed a wavelet-based algorithm that integrates information from various
sources to improve reservoir description.

9.12.4 Downhole Pressure Gauge Data Analysis

Downhole gauges for pressure and temperature are commonly used in oil and
gas wells to understand dynamic behavior of the field and to monitor reservoir
condition and performance. Long-term data from permanent gauges are dif-
ferent from short-term pressure transient data in several aspects. Long-term
data give insights on changes of reservoir behavior as the reservoir is pro-
duced. It provides a four-dimensional look at the reservoir information instead
of a glimpse in time. These long-term data require special handling and inter-
pretation. A number of papers [31, 34, 36, 45, 47, 49] deal with application of
wavelets to downhole pressure data. Most of these methods involve following
major steps:

1. Outlier removal. Outliers in long-term data can be detected and
effectively removed using denoising techniques. The outlier detection
framework can be applied to any type of data, such as geostatistical
data.
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2. Denoising. The wavelet thresholding method is useful for data denois-
ing. Data should be denoised before identifying the transients. Results
using denoised data appear to be more reliable and robust.

3. Transient identification. The transient identification algorithm can effec-
tively locate the start of new transients. The approach is to identify the
intermediate resolutions at which the noise singularities have disap-
peared while the signal singularity is still present.

4. Data reduction. Permanent pressure gauge data are usually enormous
due to the long recording time. The pressure data may not change for a
long period of time. The data reduction algorithm selects only the data
that exceed a predetermined threshold.

5. Flow history reconstruction. Using a nonlinear regression model, the
flow rate history is successfully reconstructed by assuming unknown
model parameters and matching the pressure response constrained to
known flow rates and production data.

6. Behavioral filtering. The behavioral filtering process intends to elimi-
nate aberrant transients from the data. It can be very effective in reduc-
ing the uncertainties in the nonlinear regression. Filtering can be carried
out by comparing the variance aberrant transients to the average vari-
ance of the overall data.

7. Data interpretation: Due to the variation of the reservoir properties over
long duration of the monitoring, a constant data window for analysis
may not fit the acquired data. A moving window analysis can account
for gradual changes in reservoir parameters. Otherwise, the estimates of
model parameters in that data region may not be accurate. The moving
window analysis provides parameter distributions that capture some of
the uncertainties that may be useful in assessing uncertainties in subse-
quent analysis and predictions. It can also be used in reservoir
characterization.

9.13 COMPUTER PROGRAMS

9.13.1 Two-Dimensional Wavelet Algorithms

o

o

PROGRAM algorithm2D .m

Decomposes and reconstructs a 256x256 image using Daubechies’

o0 o° oP

wavelet (m = 2). The initial coefficients are taken as the
function values themselves.

o

oe

test image
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picture = 256 * ones(256);
for 1 = 1:256
picture(i,i) = 0;
picture(i,257-1) = 0;
end

image (picture)
title(’Original Image’)

(o)

% Decomposition and reconstruction filters

g0 = [0.68301; 1.18301; 0.31699; -0.18301];
k = [0; 1; 2; 31;

gl = flipud(g0).*(-1)."k;

h0 = flipud(g0) / 2;

hl = flipud(gl) / 2;

% Decomposition process

% First level decomposition

for k=1:256
s=[0; 0; picture(:,k); 0; 071;
x=conv (s,h0) ;

a=x(1:2:1length(x)); $downsampling
x=conv(s,hl);
w=x(1l:2:1length(x)); %$downsmapling
C(:,k)=la; wl;

end

for k=1:256+8

s=rot90([0 O C(k,:) 0O 01,3);
x=conv (s, ho0) ;
a=x(1:2:1length(x)); %downsampling
x=conv (s, hl);
w=x(1l:2:1length(x)); $downsmapling
CC(k, :)=rot90([a; w]);

end

LL=CC(1:132,1:132);
HL=CC(133:264,1:132);
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LH=CC(1:132,133:264);
HH=CC (133:264,133:264) ;

figure (2)

$colormap (gray (256))

axes ('position’,[0.1 0.5 0.3 0.31)
image (LL)

title(’'LL")

axes ('position’, [0.5 0.5 0.3 0.31)
image (LH)

title('LH")

axes ('position’,[0.1 0.1 0.3 0.31)
image (HL)

title(’HL’)

axes ('position’,[0.5 0.1 0.3 0.31)
image (HH)

title(’'HH’)

clear C
clear CC

% Second level decompostion

for k=1:132

s=LL(:,k);
x=conv (s, h0) ;
a=x(1:2:1length(x)); %downsampling
x=conv (s,hl);
w=x(1l:2:1length(x)) ; %downsmapling
C(:,k)y=[la; wl;

end

for k=1:128+8
s=rot90(C(k,:),3);
x=conv (s, h0) ;
a=x(1:2:1length(x)); %downsampling
x=conv (s,hl);
w=x(1l:2:1length(x)) ; %downsmapling
CC(k, :)=rot90([a; wl);

end;

LL_LL=CC
HL_LL=CC
LH_LL=CC
HH_LL=CC

1:68,1:68);
69:136,1:68);
1:68,69:136) ;
69:136,69:136) ;

—~ o~~~
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clear C
clear CC

Q

% Reconstruction Process

Q

% Second level reconstruction

s=[LL_LL LH_LL; HL_LL HH_LL];

for k=1:136
x=zeros (136,1) ;
x(1:2:136)=rot90(s(k,1:68),3);
y=zeros (136,1);
v(1:2:136)=rot90(s(k,69:136),3);

x=conv (x,g0)+conv(y,gl) ;
C(k, :)=rot90(x(4:1length(x)-4)) ;
end

s=C;
clear C

for k=1:132
x=zeros (136,1) ;
x(1:2:136)=s(1:68,k);
y=zeros (136,1);
v(1:2:136)=s(69:136,k) ;

x=conv (x,g0)+conv(y,gl) ;
C(:,k)=x(4:1length(x)-4);

end
LL_rec=C;
clear C

Q

% First level reconstruction

s=[LL_rec LH; HL HH];

for k=1:264
xX=zeros (264,1) ;
x(1:2:264)=rot90(s(k,1:132),3);
y=zeros (264,1);
v(1:2:264)=rot90(s(k,133:264),3);
x=conv (x,g0)+conv(y,gl);
C(k, :)=rot90 (x(4:1length(x)-4));

end
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s=C;
clear C

for k=1:260
x=zeros (264,1) ;
x(1:2:264)=s(1:132,k);
y=zeros (264,1) ;
v(1l:2:264)=s(133:264,Kk);

x=conv (x,g0)+conv (y,gl) ;
C(:,k)=x(4:1length(x)-4);
end

picture_rec=C(3:258,3:258) ;
figure (3)

image (picture_rec)
title(’'Reconstructed Image’)

9.13.2 Wavelet Packet Algorithms

o

o

PROGRAM waveletpacket.m

e

Wavelet packet decompositionand reconstructionof a function
using Daubechies’ wavelet (m=2). Theinitial coefficients
are taken as the function values themselves.

@ o

o

% Signal

vl = 100; % frequency

v2 = 200;

v3 = 400;

r = 1000; %sampling rate
k = 1:100;

t = (k-1) / r;

sin(2*pi*vl*t) + sin(2*pi*v2*t) + sin(2*pi*v3*t);

o

Decomposition and reconstruction filters

g0 = [0.68301; 1.18301; 0.31699; -0.183011;
k = [0; 1; 2; 31;
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gl = flipud(g0).*(-1)."k;
h0 = flipud(g0) / 2;
hl = flipud(gl) / 2;

% Decomposition process

% First level decomposition

x=conv (s,h0) ;

a=x(1l:2:1length(x)); $downsampling
x=conv (s, hl) ;
w=x(1l:2:1length(x)) ; $downsmapling

%second level decomposition
x=conv (a, h0) ;
aa=x(1l:2:1length(x)) ;
x=conv(a,hl);
aw=x(1:2:1length(x)) ;

x=conv (w, g0);
wa=x(1l:2:1length(x)) ;
x=conv (w, gl);
ww=x (1:2:1length(x)) ;

% Reconstruction process
% Second level reconstruction

x=zeros (2*length(aa), 1
x(1l:2:2*1length (aa) )=aa
y=zeros (2*length(aw),b 1) ;
v(l:2:2*1length(aw) )=aw(1l:length(aw)) ;
x=conv (x,g0)+conv(y,gl) ;
a_rec=x(4:1length(x)-4) ;

l:length(aa));

—~ — o —

x=zeros (2*length(wa), 1)
x(1:2:2*1length (aw) )=wa (
y=zeros (2*1length (ww) ,b 1)
v(1l:2:2*1length (ww) ) =ww (
x=conv (x, hO0)+conv(y,hl
w_rec=x(4:1length(x)-4)

l:length(wa)) ;

:length (ww) ) ;

7

— B~

7

% First level reconstruction

]
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y=zeros (2*length(w_rec), 1);
v(l:2:2*1length(w_rec))=w_rec(l:length(w_rec)) ;
x=zeros (2*length(a_rec), 1);
x(1l:2:2*1length(a_rec))=a_rec;

x=conv (x,g0) ;
y=conv(y,gl);
v=x(1:1length(y))+y;
s_rec=y(4:1length(y)-4);
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CHAPTER TEN
|

Wavelets in Boundary
Value Problems

All of the applications discussed so far deal with processing a given function
(signal, image, etc.) in the time, frequency, and time-frequency domains. We
have seen that wavelet-based time-scale analysis of a function can provide
important additional information that cannot be obtained by either time or
frequency domain analyses. There is another class of problems that we quite
often come across involve solving boundary value problems (BVPs). In BVPs
functions are not known explicitly; some of their properties along with
function values are known at a set of certain points in the domain of interest.
In this chapter we discuss the applications of wavelets in solving such
problems.

Much of the phenomena studied in electrical engineering can be described
mathematically by second-order partial differential equations (PDEs). Some
examples of PDEs are the Laplace, Poisson, Helmholtz, and Schrodinger
equations. Each of these equations may be solved analytically for some but
not for all cases of interest. These PDEs can often be converted to integral
equations. One of the attractive features of integral equations is that boundary
conditions are built-in and, therefore, do not have to be applied externally [1].
Mathematical questions of existence and uniqueness of a solution may be
handled with more ease with the integral form.

Either approach, differential or integral equations, to represent a physical
phenomenon can be viewed in terms of an operator operating on an unknown
function to produce a known function. In this chapter we deal with the linear
operators. The linear operator equation is converted to a system of linear
equations with the help of a set of complete bases, which is then solved for
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the unknown coefficients. The finite element and finite difference techniques
used to solve PDEs result in sparse and banded matrices, whereas integral
equations almost always lead to a dense matrix. An exception is when the
basis functions, chosen to represent the unknown functions, happen to be the
eigen functions of the operator.

Two of the main properties of wavelets vis-a-vis boundary value problems
are their hierarchical nature and the vanishing moments properties. Because
of their hierarchical (multiresolution) nature, wavelets at different resolutions
are interrelated, a property that makes them suitable candidates for multigrid-
type methods in solving PDEs. On the other hand, the vanishing moment
property by virtue of which wavelets, when integrated against a function of
certain order, make the integral zero, is attractive in sparsifying a dense matrix
generated by an integral equation.

A complete exposition of the application of wavelets to integral and dif-
ferential equations is beyond the scope of this chapter. Our objective is to
provide readers with some preliminary theory and results on the application
of wavelets to boundary value problems and give references where more
details may be found. Since most often in electrical engineering problems we
encounter integral equations, we emphasize their solutions using wavelets. We
give a few examples of commonly occurring integral equations. The first and
the most important step in solving integral equations is to transform them into
a set of linear equations. Both conventional and wavelet-based methods in
generating matrix equations are discussed. Both the methods fall under the
general categories of method of moments (MoM). We call methods with con-
ventional bases (pulse, triangular, piecewise sinusoid, etc.) conventional MoM,
while methods with wavelet bases will be referred to as wavelet MoM. Some
numerical results are presented to illustrate the advantages of the wavelet-
based technique. We also discuss wavelets on a bounded interval. Some of the
techniques applied to solving integral equations are useful for differential
equations as well. At the end of this chapter we briefly describe the applica-
tions of wavelets in PDEs, particularly the multiresolution time domain
(MRTD) method, and provide references where readers can find further
information.

10.1 INTEGRAL EQUATIONS

Consider the following first-kind integral equation

J.bf(x’)K(x,x’)dx’ =g(x), (10.1)

where f is the unknown function, and the kernel K and the function g are
known. This equation, depending on the kernel and the limits of integration,
is referred to by different names, such as Fredholm, Volterra, convolution,
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7@ X

FIGURE 10.1: Cross-section of an infinitely long metallic cylinder illuminated by a TM
plane wave.

Laplace, Fourier, Hankel, Mellin, and Wiener-Hopf integral equation. Such
integral equations appear frequently in practice [2]; for instance, in inverse
problems in which the objective is to reconstruct the function f from a set of
known data represented in the functional form of g, one encounters the first-
kind integral equations. In some electromagnetic scattering problems, dis-
cussed next, the current distribution on the metallic surface is related to the
incident field in the form of an integral equation of type (10.1), with Green’s
function as the kernel. Observe that solving for f is equivalent to finding
the inverse transform of g with respect to the kernel K; in particular, if
K(x, x") = ¢ then f is nothing but the inverse Fourier transform of g. We
assume that (10.1) has a unique solution. Although we discuss solutions of
first-kind integral equations only, the method can be extended to second-kind
[3, 4] and higher-dimension integral equations [5] with little additional work.
As an example of (10.1), consider that an infinitely long metallic cylinder
is illuminated by a TM (Transverse Magnetic) plane wave, as shown in Figure
10.1. An integral equation relating the surface current distribution and the
incident field can be formulated by enforcing the boundary condition

nx E(p)=nx[E;(p)+Es(p)]=0; peS, (10.2)

where E, E;, and E; are the total, incident and scattered electric fields, respec-
tively. The surface of the cylinder is represented by S. For the TM plane wave
incident field,

E;=3E., H;=0H! and J=zJ, (10.3)
where, as usual, H; is the incident magnetic field and J is the induced electric

current on the surface of the cylinder. This electric current is related to the
incident field and the Green’s function by an integral equation
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jouo | 1o (#)G(e.0)dr = EL(), (10.4)
where
G(t.0)= = HEY (koo ()= p(E ). (105)

with ko = 271/A¢, and A¢ denoting the wavelength. E! is the z-component of the
incident electric field and H(()Z) is the second-kind Hankel function of order 0.
Here, the contour of integration has been parameterized with respect to the
chord length. The field component E: can be expressed as

E%(0)= Egexpl[j ko (x(£)cos ¢+ y({)sin ¢;)], (10.6)

where ¢; is the angle of incidence.

It is clear that (10.4) is of the form of equation (10.1). Our objective is to
solve (10.4) for the unknown current distribution J,; and compute the radar
cross-section (RCS); the latter being given by

2
ES 22
Sk | Z'_|2 Sk [ (10.7)
Ao |E§| 8r
where 1y =/lo/& is a known constant and
Fy= JC explj ko (x(¢")cos o+ y(¢")sin@)]J (¢7)d?’. (10.8)

Scattering from a thin perfectly conducting strip, as shown in Figure 10.2a,
gives rise to an equation similar to (10.4). For this case, we have

I:&MKXHLKMK=E%@ (10.9)

where G(z, z') is given by (10.5)

As a final example, consider the scattering from a thin wire shown in Figure
10.2b. Here the current on the wire and the incident field are related to each
other as

J._il (2')K.w(2,2')dz’ =~E'(2) (10.10)

where the kernel K,, is given by
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FIGURE 10.2: (a) A thin half-wavelength long metallic strip illuminated by a TM wave.
(b) A thin wire of length A/2 and thickness A/1000 illuminated by a plane wave.

L exp(=jkoR)

K. (z,2)=

drjwey R’
x [ (1+ jkoR)x (2R? = 3a* )+ kia’R* (10.11)
E'(z) = Eysin @exp(jkozcos ). (10.12)

This kernel is obtained by interchanging integration and differentiation
in the integrodifferential form of Pocklington’s equation and by using
the reduced kernel distance R = [a® + (z — z)?]"? where a is the radius of the
wire [6].

The first step in solving any integral or differential equation is to convert
these into a matrix equation which is then solved for the unknown coefficients.
Let us rewrite (10.1) as Lgf = g where

Lif = Lb F(&)K (x,x7)dx. (10.13)

The goal is to transform equation (10.1) to a matrix equation

Ac=b (10.14)
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where A is a two-dimensional matrix, sometimes referred to as impedance
matrix, ¢ is the column vector of unknown coefficients, and b is another
column vector related to g. Computation time depends largely on the way we
obtain and solve (10.14). In the following sections, we describe conventional
and wavelet basis functions that are used to represent the unknown
function.

10.2 METHOD OF MOMENTS

Method of moments [7] is probably the most widely used technique for solving
integral equations in electromagnetics. In conventional MoM, the boundary
of integration is approximated by discretizing it into many segments. Then the
unknown function is expanded in terms of known basis functions with unknown
coefficients. These bases may be “global” (entire domain), extending the
entire length [a, b], or they may be “local” (subdomain), covering only a small
segment of the interval, or a combination of both. Finally, the resultant equa-
tion is tested with the same or different functions, resulting in a set of linear
equations whose solution gives the unknown coefficients.
The unknown function f(x) can be written as

()= Y eatnlx) (10.15)

n

where {A,} form a complete set of basis functions. For an exact representation
of f(x) we may need an infinite number of terms in the above series. However,
in practice, a finite number of terms suffices for a given acceptable error.
Substituting the series representation of f(x) into the original equation (10.1),
we get

N
chLKAn ~g. (10.16)

n=1

For the present discussion we will assume N to be large enough so that the
above representation is exact. Now by taking the inner product of (10.16) with
a set of weighting functions or testing functions {&,,:m =1, ... , M} we get a set
of linear equations

N
D clbmLihn)=(Engh: m=1..... M (10.17)

n=1
which can be written in the matrix form as
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where

Apn =(Ems Lk Ay); m=1,... M;n=1,...,N
bm=<§m,g>; m=1,...,M.

Solution of the matrix equation gives the coefficients {c,} and thereby the
solution of the integral equations. Two main choices of the testing functions
are (1) &,(x) = 8(x — x,,), where x,, is a discretization point in the domain, and
(2) &u(x) = Ap(x). In the former case the method is called point matching
whereas the latter method is known as Galerkin method. Observe that the
operator Lk in the preceding paragraphs could be any linear operator—
differential as well as integral operator.

10.3 WAVELET TECHNIQUES

Conventional bases (local or global) when applied directly to the integral
equations, generally lead to a dense (fully populated) matrix A. As a result,
the inversion and the final solution of such a system of linear equations are
very time consuming. In later sections, it will be clear why conventional bases
give a dense matrix while wavelet bases produce sparse matrices. Observe that
conventional MoM is a single-level approximation of the unknown function
in the sense that the domain of the function ([a, b], for instance), are dis-
cretized only once, even if we use nonuniform discretization of the domain.
Wavelet-MoM as we will discuss, on the other hand, is inherently multilevel
in nature.

Beylkin et al. [8] first proposed the use of wavelets in sparsifying an integral
equation. Alpert et al. [3] used wavelet-like basis functions to solve second-
kind integral equations. In electrical engineering, wavelets have been used
to solve integral equations arising from electromagnetic scattering and
transmission line problems [5, 9-28]. In the following sections, we briefly
describe four ways in which wavelets have been used in solving integral
equations.

10.3.1 Use of Fast Wavelet Algorithm

In the fast wavelet algorithm method, the impedance matrix A is obtained
via the conventional method of moments using basis functions such as trian-
gular functions, and then wavelets are used to transform this matrix into a
sparse matrix [9, 10]. Consider a matrix W formed by wavelets. The transfor-
mation of the original MoM impedance matrix into the new wavelet basis is
obtained as

WAWT (W) ¢ = Wb, (10.19)
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which can be written as
Ay Cp =by, (10.20)

where W7 represents the transpose of the matrix W. The new set of wavelet
transformed linear equations are

A, = WAWT
Cp = (WT )_1 c
b,, = Wh. (10.21)

The solution vector c is then given by
c=WT (WAWT)" Wb

For orthonormal wavelets W7 = W' and the transformation (10.19) is unitary
similar. It has been shown [9, 10] that the impedance matrix A,, is sparse, which
reduces the inversion time significantly. Discrete wavelet transform (DWT)
algorithms can be used to obtain A,, and finally the solution vector c.

10.3.2 Direct Application of Wavelets

In another method of applying wavelets to integral equations, wavelets are
directly applied—that is, first the unknown function is represented as a super-
position of wavelets at several levels (scales) along with the scaling function
at the lowest level, before using Galerkin’s method described before.

Let us expand the unknown function fin (10.1) in terms of the scaling func-
tions and wavelets as

sy K(s) K(s0)
FOO=) ) wieswis(0)+ Y i () (10.22)
s=s0 k=K1 k=K1

It should be pointed out here that the wavelets {y;} by themselves form a
complete set; therefore, the unknown function could be expanded entirely in
terms of the wavelets. However, to retain only a finite number of terms in the
expansion, the scaling function part of (10.22) must be included. In other
words, {5}, because of their band-pass filter characteristics, extract succes-
sively lower and lower frequency components of the unknown function with
decreasing values of the scale parameter s, while ¢ y,, because of its low-pass
filter characteristics, retains the lowest frequency components or the coarsest
approximation of the original function.

In Equation (10.22), the choice of sy is restricted by the order of
wavelet, while the choice of s, is governed by the physics of the problem. In
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applications involving electromagnetic scattering, as a rule of thumb, the
highest scale s, should be chosen such that 1/2%*! does not exceed 0.1

The expansion of fgiven by (10.22) is substituted in (10.1), and the resultant
equation is tested with the same set of expansion functions. This result gives
a set of linear equations as

{[Aw] [Aaw]}{ [k T }: { <<Eé’¢k/’xo e } (10.23)

[AW,‘Z’] [AWJV] [w”vs]n,s E27‘//n’,.s’>n,’s,
where

[ ] <¢k .50 > LK¢k .50 )>kk (1024)

[ ] :<¢k S()7(LKWns)>k s (1025)

[Ayo]= (W (Lkbeso)y (10.26)

[Ayy =W s (LW s (10.27)

(= rstod (10.28)

b
(L f)(x) = L FK () d. (10.29)

In (10.23), [w; ] is @ one-dimensional vector and should not be confused
with a two-dimensional matrix. Here the index n is varied first for a fixed
value of s.

We can explain the denseness of the conventional MoM and the sparseness
of the wavelet MoM by recalling the fact that unlike wavelets, the scaling
functions discussed in this book do not have vanishing moments properties.
Consequently, for two pulse or triangular functions ¢; and ¢, (usual bases for
the conventional MoM and suitable candidates for the scaling functions), even
though (¢, ¢,) = 0 for nonoverlapping supports, (¢;, Lx¢,) is not very small
since Lg¢, is not small. On the other hand, as is clear from the vanishing
moment property—namely

J' Pyn()di=0; p=0,....m-1 (10.30)

that the integral vanishes if the function against which the wavelet is being
integrated behaves as a polynomial of a certain order locally. Away from the
singular points the kernel usually has a locally polynomial behavior.
Consequently, the integrals such as (Lgy, ) and the inner products involving
the wavelets are very small for nonoverlapping supports.

Because of its total positivity property, the scaling function has a smoothing
or variation diminishing effect on a function against which it is integrated. The
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smoothing effect can be understood as follows. If we convolve two pulse func-
tions, both of which are discontinuous but totally positive, the resultant func-
tion is a linear B-spline that is continuous. Likewise, if we convolve two linear
B-splines, we get a cubic B-spline that is twice continuously differentiable.
Analogous to these, the function Lg @y s, is smoother than the kernel K itself.
Furthermore, because of the MRA properties that give

(Prs Wiy)=0, s<s’, (10.31)

the integrals <¢k’,so» (LxWns )> and <l//n’,x', (LK¢1¢,A~0 )> are quite small.

Although diagonally dominant, the [A,4] portion of the matrix usually does
not have entries that are very small compared to the diagonal entries. In the
case of the conventional MoM, all the elements of the matrix are of the form
(¢ s, (Lxrs)). Consequently, we cannot threshold such a matrix to sparsify it.
In the case of the wavelet MoM, the entries of [A4,4] occupy a very small
portion (5 x 5 for linear and 11 x 11 for cubic spline cases) of the matrix, while
the rest contain entries whose magnitudes are very small compared to the
largest entry, hence a significant number of entries can be set to zero without
affecting the solution appreciably.

10.3.3 Wavelets in Spectral Domain

In the preceding chapters, we have used wavelets in the time (space) domain.
In previous sections, the local support and vanishing moment properties of
wavelet bases were used to obtain a sparse matrix representation of an integral
equation. In some applications, particularly in the spectral domain methods in
the electromagnetic problems, wavelets in the spectral domain may be quite
useful. Whenever we have a problem in which the unknown function is
expanded in terms of the basis function in the time domain while the numeri-
cal computation takes place in the spectral domain, we should look at the
time-frequency window product to determine the efficiency of using the par-
ticular basis function. Because of the nearly optimal time (space-frequency
wave number) window product of the cubic spline and the corresponding
semiorthogonal wavelet, the double integral appearing in the transmission line
discontinuity problems can be evaluated efficiently. In this section we consider
an example from a transmission line discontinuity to illustrate the usefulness
of wavelets in the spectral domain.

Transmission line configurations are shown in Figure 10.3. Formulation of
the integral equation for these configurations is not the purpose of this section.
Readers may refer to [5, 29, 30] for details on such formulation. The integral
equation obtained is

JA(kx,ky)fy (ky)or (e )k, =0 (1032)
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FIGURE 10.3: (a) Open coupled-microstrip and (b) short-circuited coupled slot line
with uniaxial substrate.

with

. 2
Alkviky) = Gy (ke k) )3 (kxd){;(; ((:*5))} (10.33)

where G,, is the appropriate Green’s function and cos? (k,p) and sin’ (kp)

refer to even and odd modes, respectively. The functions fy(ky),qsk(ky) are the
Fourier transforms of the basis functions representing the y-dependence of
the magnetic current. To find the propagation constant, k., of any infinite
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transmission line, we assume that all the field and current distributions have
their y-dependence as e """, It is easy, for this case, to arrive at

j AP (ke ey )k, =0, (10.34)

—oo

Since the transverse dimensions of slots (strips) are very small compared
with the wavelength, we assume that the current distribution, sufficiently away
from the discontinuity, is due to the fundamental mode only. Near the discon-
tinuity, in addition to the entire domain basis functions resulting from the
fundamental mode, subdomain basis functions are used to expand the unknown
current (magnetic or electric) to account for the deviation caused by the pres-
ence of higher-order modes generated by the discontinuity. We use three
different sets of subdomain basis functions—(1) piecewise sinusoids (PWS),
(2) cubic B-splines, and (3) combination of cubic B-splines and the corre-
sponding s.o. wavelets.

For cases (1) and (2), the longitudinal variation of current is given as

K
£ () =5:()ETs, (1) + Y axde(y), (10.35)
k=0

where K > 0 and the plus and minus signs apply to transmission line configura-
tions with strips (Figure 10.3a), and with slots (Figure 10.3b), respectively.
Ideally, the magnitude of the reflection coefficient I" should be 1; we will see,
however, that IT'l < 1, indicating the pseudo nature of such terminations, shown
in Figure 10.3. The entire domain functions (s;) and (s,), representing incident
and reflected waves, respectively, are given below

si(y)= COS(ker)U[_y - 2]7: j— jsin(kyey)U (=y), (10.36)
ye
ol
ye
Kye )
x {ﬁ + ]§[5(ky ~kye)=8(ky + kye)]} (10.37)

T
()= kyey)U| —y—
s (y) = cos(kyey) (y Sk

ye
A .k .
sr(ky)={exp(—] Zky )+1}
ye

x{ zk” —+ jf[s(ky—kye)—s(kﬁkye)]}, (10.39)
K-kZ 2

)+jsin(kyey)U(—y), (10.38)




320 WAVELETS IN BOUNDARY VALUE PROBLEMS

where k. is the propagation constant for the fundamental mode and U(y) is
the Heaviside function, defined in the usual way as

1 y=0;
U(y)= 10.40
m={5 120 (1040)

The subdomain basis function ¢ for the piecewise sinusoid case is

O (y) :=ﬂ(y+r(k+1)) (10.41)
N(y)= sm(kyer) (10.42)
0 elsewhere;
2 i 2 e el )™
¢k (ky) — e—/‘r(k+l)ky - ky - % COS(ky' T) COS(kyT) , (1043)
ky — kg, sin(ky.T)

with 0 < 7 < 7/2k,. For the cubic B-spline case,
& ()= N4 (X +hk+ 4) (10.44)
T

. 4
(k)= re /Dot (%ygz)} : (10.45)
y

For the third choice of basis function, we have the following representation

of fy(y)

0 NGs)

L(¥)=5i(y)£Ts, (v +22wm%s y)+ Z Ao (y),  (10.46)

where N(s), K(s9) 20,59 <0, and

Ors = N4(2A Y +k+4j (10.47)
T
2%y
Yis = l//4[ +k+7j (1048)
T
. T (2k+ 7k, Ky [ sin(k,7/2°7)
wk,s(ky)=§exp(—1T1y) Q( > )(W (10.49)
O(ky):= 252O[cos(3ky/2) 120cos(ky)+1191cos(k, /2)—1208]

x sin* (ky /4). (10.50)



WAVELET TECHNIQUES 321

Observe that the definitions of ¢, and y; ; are slightly different from the ones
used in previous chapters. The time-frequency window products of PWS, cubic
spline, and the cubic spline wavelet are 0.545, 0.501, and 0.505, respectively.
Observe that the product for the linear spline is 0.548; therefore, the double
integral as discussed before will take about the same time to compute in both
cases.

Application of the Galerkin method with the basis functions previously
described leads to a set of linear equations, the solution of which gives the
desired value of the reflection coefficient I'. For the first two, we have

r
[cx]

where, in the case of cubic splines, the matrix elements take the form of

4
oo p sin(k,7/2
Ap1 :2Tkyejo .[0 AHM(kx’kY)[%j
y

(Asa) [Aral] ) |15 (10.51)

T .
COS[(erl_Zkyer)ky T:|+]COS[(p+1)ky 7]
ki —k3.

- oo : 8
Apg = 212J' J AP (k. k) sin(ky7/2)
’ 0Jo kyt/2

x cos[(p—q+1)k, t]dk.dk,, (10.53)

X

dk.dk,,  (10.52)

withp=1,... ,M+2and qg=2,..., M+ 2. Matrix elements for the PWS can
be written in a similar way. In both cases, we observe that

Ap’q = Aq717P+1; p = 17 cee 9M + 13 (1054)
Apg=Apig; P=2,....,M+2; q=3,... . M+2, (10.55)

indicating the symmetry and Toeplitz nature of the major portion of the
matrix.

For the discontinuity problem, we find that the third representation (10.46),
does not give much advantage over the second one. Unlike the scattering
problem in which the domain of the unknown function may be several wave-
lengths long, for most of the discontinuity problems, the domain of unknown
is approximately one wavelength, since the effect of discontinuity on the
current distribution is localized. The size of the matrix in the case of the dis-
continuity problems is usually small compared with the scattering problem.
Consequently, achieving sparsity of the matrix may not be a major concern.
On the other hand, the spectral integrals associated with each matrix element
in the case of the discontinuity problems usually takes a considerably large



322 WAVELETS IN BOUNDARY VALUE PROBLEMS

amount of CPU time. Faster computations of these integrals are achieved
using cubic splines due to their decay property which is better than that of
PWS [see (10.43), (10.45)]. For further details on the numerical results for the
reflection coefficients, the reader is referred to [5, 29, 30].

10.3.4 Wavelet Packets

Recently, discrete wavelet packet (DWP) similarity transformations has been
used to obtain a higher degree of sparsification of the matrix than is achievable
using the standard wavelets [21]. It has also been shown that DWP method
gives faster matrix-vector multiplication than some of the fast multipole
methods.

In the standard wavelet decomposition process, first we map the given func-
tion to a sufficiently high resolution subspace (V) and obtain the approxima-
tion coefficients {ax »} (see Chapter 7). The approximation coefficients {ax y-1}
and wavelet coefficients {wy -1} are computed from f{ax ). This process
continues—that is, the coefficients for the next lower level M — 2 are obtained
from {ay p—1}, and so on. Observe that in this scheme, only approximation coef-
ficients {a} are processed at any scale s; the wavelet coefficients are merely
the outputs and remain untouched. In a wavelet packet, the wavelet coeffi-
cients are also processed, which, heuristically, should result in higher degree
of sparsity since in this scheme, the frequency bands are further divided com-
pared with the standard decomposition scheme.

10.4 WAVELETS ON THE BOUNDED INTERVAL

In the previous chapters we described wavelets and scaling functions defined
on the real line. If we use these functions directly to expand the unknown
function of an integral equation, then some of the scaling functions and wave-
lets will have to be placed outside the domain of integration, thus necessitating
the explicit enforcement of the boundary conditions. In signal processing, uses
of these wavelets lead to undesirable jumps near the boundaries (see Figures
8.8-8.10). We can avoid this difficulty by periodizing the scaling function
as [31]

o= Zq)k,s(x +0); (10.56)
14

where the superscript p implies periodic case. Periodic wavelets are
obtained similarly. It is easy to show that if ¢(27k)= ) o, which is generally
true for the scaling functions, then Xx ¢(x —k)=1.If we apply the last relation,
which (as discussed in Chapter 5) is also known as the partition of unity to
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(10.56), we can show that {¢f, JU{yf ;seZ":={0,1,2,..},k=0,...,2° -1}
generates L*([0, 1]).

The idea of periodic wavelets has been used [18-20]. However, as men-
tioned in [31], unless the function that is being approximated by the periodized
scaling functions and wavelets is already periodic, we still have edge problems
at the boundaries. Therefore, we follow a different approach to account for
the boundary effects. We apply the compactly supported s.o. spline wavelets
[23, 32, 33], which are specially constructed for the bounded interval [0, 1].
Other ways of obtaining intervallic wavelets are described in [34, 35].

As we discussed in Chapter 5, splines for a given simple knot sequence can
be constructed by taking piecewise polynomials between the knots and joining
them together at the knots in such a way as to obtain a certain order of overall
smoothness. For instance, consider a knot sequence {0, 1, 2, 3, 4}. With this
sequence we can construct the cubic spline (m = 4) by taking polynomials of
order 4 between knots, such as [0, 1), [1,2), ... , and joining them together at
1,2, and 3 so that the resultant function (cubic spline) is in C?>—that is, up to
its second derivative is continuous in [0, 4). In general, cardinal B-splines
of order m are in C""2. However, if we have multiple knots, say for example
{0, 0, 1, 2, 3}, then the smoothness at the point with multiple knots decreases.
It is easy to verify that the smoothness decreases by r—1 at a point
with r—tuple knots. Observe that at the boundary points 0 and 1, the knots
coalesce and form multiple knots. Inside the interval, though, the knots are
simple, and hence the smoothness remains unaffected.

125 +m-1 .
Fors € 77, let {t}{ }k::” : be a knot sequence with m-tuple knots at 0 and 1,

and simple knots inside the unit interval:

tim+l = [im+2 == [8 = 0’

£ =k2Sk=1,..,2°-1, (10.57)
g, =0 ==t =0

2 2°+1 2°+m-1

For the knot sequence (10.57) we define the B-spline (m > 2) as [36]
By (%)= (6 =10 )X [ 8 B oo G ], (=207, (10.58)

where [t,i,...,t,i o ]l, is the mth order divided difference of (t—x):'H with
respect to ¢ and (x); := max(0, x). Wavelets can be obtained from the corre-
sponding spline scaling functions. Instead of going into the details of construc-
tion of scaling functions and wavelets on bounded interval, we provide their
explicit formulas in Section 10.9. Interested readers may find details in [23,
32,33].

The support of the inner (without multiple knots) B-spline occupies m seg-
ments and that of the corresponding s.o0. wavelet occupies 2m — 1 segments.
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At any scale s the discretization step is 1/2° which, for s > 0, gives 2° number
of segments in [0, 1]. Therefore, to have at least one inner wavelet, the follow-
ing condition must be satisfied:

25 >2m—1. (10.59)

Let 5o be the scale for which the condition (10.59) is satisfied. Then for each
s 2 sp, let us define the scaling functions ¢, s of order m as

B (259 x), k=-m+1,...,~1;
Onks(X) =B, 55 o (1-270x), k=2"—m+1,...,2°=1;  (10.60)
Bm,O,so (ZX_SO x—=27% k), k= 0, ey 25 — m,
and the wavelets ¥, ks as

Winkso (270 %), k=-m+1,...,~1;
Yok s () =AW 55 o (17270%), k=2°=2m+2,...,2 —m; (10.61)
Vo (2°70x=270k),  k=0,...,2°-2m+1,

Observe that the inner scaling functions (k =0, ... , 2* — m) and the wavelets
(k=0,...,2° = 2m + 1) are the same as those for the nonboundary case. There
are m — 1 boundary scaling functions and wavelets at 0 and 1, and 2° — m + 1
inner scaling functions and 2° — 2m + 2 inner wavelets. Figure 10.4 shows all
the scaling functions and wavelets for m =2 at the scale s = 2. All the scaling
functions for m =4 and s = 3 are shown in Figure 10.5a, while Figure 10.5b
gives only the corresponding boundary wavelets near x =0 and one inner
wavelet. The rest of the inner wavelets can be obtained by simply translating
the first one whereas the boundary wavelets near x = 1 are the mirror images
of ones near x = 0.

10.5 SPARSITY AND ERROR CONSIDERATIONS

The study of the effects of thresholding the matrix elements on the sparsity
and error in the solution is the objective of this subsection. By thresholding,
we mean setting those elements of the matrix to zero that are smaller (in
magnitude) than some positive number §(0 < d< 1), called the threshold
parameter, times the largest element of the matrix.

Let Apax and Apin be the largest and the smallest elements of the matrix
in (10.23). For a fixed value of the threshold parameter &, define percent rela-
tive error (gs) as

g5 =0 =Tl g0 (10.62)
Ifoll,
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FIGURE 10.4: (a) Linear spline (m = 2) scaling functions on [0, 1], (b) Linear spline
wavelets on [0, 1]. The subscripts indicate the order of spline (m), scale (s), and the
position (k), respectively. Reprinted with permission from [23]; copyright © 1995 by
1IEEE.

and percent sparsity (Ss) as

No - N
0

Ss = % 100. (10.63)

In the above, fs represents the solution obtained from (10.23) when the
elements whose magnitudes are smaller than O0Ap.,x have been set to
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FIGURE 10.5: (a) Cubic spline (m = 4) scaling functions on [0, 1], (b) Cubic spline
wavelets on [0, 1]. The subscripts indicate the order of spline (m), scale (s), and the
position (k), respectively. Reprinted with permission from [23]; copyright © 1995 by
IEEE.

zero. Similarly, N5 is the total number of elements left after thresholding.
Clearly, fo(x) = f(x) and Ny = N? where N is the number of unknowns. If
we use the intervallic wavelets of Section 10.4 in solving (10.1), then
number of unknowns (N) in (10.23), interestingly, does not depend on sy. This
number N is

N=2%"14m—1. (10.64)
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TABLE 10.1: Relative Magnitudes of the Largest and the Smallest Elements of the
Matrix for Conventional and Wavelet MoM. a = 0.1y

Conventional Wavelet Wavelet
MoM MoM (m = 2) MoM (m = 4)
Amax 5.377 0.750 0.216
Amin 1.682 7.684 x 1078 8.585 x 10713
Ratio 3.400 9.761 x 10° 2.516 x 101!

Source: Reprinted with permission from [23]; copyright © 1995 by IEEE.

Table 10.1 gives an idea of the relative magnitudes of the largest and the
smallest elements in the matrix for conventional and wavelet MoM. As is
expected, because of their higher vanishing moment property, cubic spline
wavelets give the higher ratio Apnax/Amin-

With the assumption that the [A44] part of the matrix is unaffected by the
thresholding operation, a fairly reasonable assumption, it can be shown that

1 (29+m-1)(2% +m-2)

Sp (1=~ 2 x 100, (10.65)

where N is given by (10.64).

As mentioned before [see (10.64)], the total number of unknowns is inde-
pendent of sy, the lowest level of discretization. However, it is clear from
(10.65) that the upper limit of Ss increases with the decreasing values of s.
Therefore, it is better to choose sy =[logy(2m — 1) |, where [ x| represents the
smallest integer that is greater than or equal to x.

10.6 NUMERICAL EXAMPLES

In this section we present some numerical examples for the scattering prob-
lems described in Section 10.1. Numerical results for strip and wire problems
can be found in [14]. For more applications of wavelets to electromagnetic
problems, readers may refer to [22].

The matrix equation (10.23) is solved for a circular cylindrical surface [23].
Figures 10.6 and 10.7 show the surface current distribution using linear and
cubic splines, respectively, for different sizes of the cylinder. The wavelet
MoM results are compared with the conventional MoM results. To obtain the
conventional MoM results, we have used triangular functions for both expand-
ing the unknown current distribution and testing the resultant equation. The
conventional MoM results have been verified with the series solution [37].
Figure 10.8 gives the radar cross section for linear and cubic spline cases. The
results of the conventional MoM and the wavelet MoM agree very well.
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permission from [23]; copyright © 1995 by IEEE.



NUMERICAL EXAMPLES 329

— T T 1 T v v T T T T T T T T 7
- a=0.1, 1
»/.
/
6x10731 e .
_ — _ Conventional MoM v _
....... Wavelet MoM Va /,("
- /' ’/: -
m =4 o/ I
E) -3 / —
\4)(10 L 7 »a=0.47, 4
N 7 4
= v /
L /' /7 4
/ a
/' /
2x1073 ’ < i
- - vlq,
— 7
- - _|.H+ Q
L P i
- 2 a—>1
_ -
ol . oy e
0 50 100 150
¢
e e e o e e L e e e
I I _ _ _ Conventional MoM A
P a=04N S Wavelet MoM ]
L / L |
/' ! /’/
100 . : -
I / | // ]
L '/ | m =4 Va |
LI ! R 1
e b/ | 4 .
o 0 A N N 1 N N N N W/ N N
o " T
8 L | . - i
< | ///
o L i 7 i
I |\ -7 |
L /_\'/ y |
—-100 -— P /' \ // '3_4) —-
L e | —Ht—= il
I L/
'»'"5':0.1)\0 2 a—> 1
c . . oy
0 50 100 150
¢

FIGURE 10.7: Magnitude and phase of the surface current distribution on a metallic
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FIGURE 10.8: Radar cross-section of a metallic cylinder computed using linear (m = 2)
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FIGURE 10.9: Error in the solution of the surface current distribution as a function of

the threshold parameter 6. Reprinted with permission from

1IEEE.

[23]; copyright © 1995 by

FIGURE 10.10: A typical gray-scale plot of the matrix elements obtained using con-

ventional MoM. The darker color represents larger magnitude.

The effects of 6 on the error in the solution and the sparsity of the matrix
are shown in Figure 10.9. The magnitude of error increases rapidly for the

linear spline case. Figure 10.10 shows a typical matrix obtained by applying

the conventional MoM. A darker color on an element indicates a larger

magnitude. The matrix elements with &

0.0002 for the linear spline case are
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FIGURE 10.11: A typical gray-scale plot of the matrix elements obtained using linear
wavelet MoM. The darker color represents larger magnitude. Reprinted with permis-
sion from [23]; copyright © 1995 by IEEE.

FIGURE 10.12: A typical gray-scale plot of the matrix elements obtained using cubic
wavelet MoM. The darker color represents larger magnitude. Reprinted with permis-
sion from [23]; copyright © 1995 by IEEE.

shown in Figure 10.11. In Figure 10.12, we present the thresholded matrix
(0= 10.0025) for the cubic spline case. The [Ay,,] part of the matrix is almost
diagonalized. Figure 10.13 gives an idea of the point-wise error in the solution
for linear and cubic spline cases.

It is worth pointing out here that regardless of the size of the matrix, only
5 x 5in the case of the linear spline and 11 x 11 in the case of the cubic splines
(see the top-left corners of Figures 10.11 and 10.12) will remain unaffected by
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FIGURE 10.13: The magnitude of the surface current distribution computed
using linear (m = 2) and cubic (m = 4) spline wavelet MoM for different values of the
threshold parameter 6. Reprinted with permission from [23]; copyright © 1995 by
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thresholding; a significant number of the remaining elements can be set to zero
without causing much error in the solution.

10.7 SEMIORTHOGONAL VERSUS ORTHOGONAL WAVELETS

Both semiorthogonal and orthogonal wavelets have been used for solving
integral equations. A comparative study of their advantages and disadvantages
has been reported in [14]. The orthonormal wavelet transformation, because
of its unitary similar property, preserves the condition number (x) of the origi-
nal impedance matrix A; semiorthogonal wavelets do not. Consequently, the
transformed matrix equation may require more iterations to converge to the
desired solution. Some results comparing the condition number of matrices
for different cases are given in Table 10.2 [17].

In applying wavelets directly to solve integral equations, one of the most
attractive features of semiorthogonal wavelets is that closed-form expressions
are available for such wavelets. Most of the continuous o.n. wavelets cannot
be written in closed form. One thing to be kept in mind is that, unlike signal
processing applications where one usually deals with a discretized signal and
decomposition and reconstruction sequences, here in the boundary value
problem we often have to compute the wavelet and scaling function values at
any given point. For a strip and thin wire case, a comparison of the computa-
tion time and sparsity is summarized in Tables 10.3 and 10.4 [14].

As discussed in the previous chapters, semiorthogonal wavelets are sym-
metric and hence have a generalized linear phase, an important factor in func-
tion reconstruction. It is well known [31] that symmetric or antisymmetric,
real-valued, continuous, and compactly supported o.n. scaling functions and
wavelets do not exist. Finally, in using wavelets to solve spectral domain prob-
lems, as discussed before, we need to look at the time-frequency window
product of the basis. Semiorthogonal wavelets approach the optimal value of
the time-frequency product, which is 0.5, very fast. For instance, this value for

TABLE 10.2: Effect of Wavelet Transform Using Semiorthogonal and Orthonormal
Wavelets on the Condition Number of the Impedance Matrix®

Condition Number x

Number
Basis and of Octave Before After
Transform  Unknowns Level ) Ss £s Threshold  Threshold
Pulse and 64 NA NA 00 26x107° 14.7 —
none
Pulse and 64 1 72%x1072 468 0.70 16.7 16.4
S.0.
Pulse and 64 1 75%x10° 597 087 14.7 14.5
o.n.

“Original impedance matrix is generated using pulse basis functions.
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TABLE 10.3: Comparison of CPU Time per Matrix Element for Spline,
Semiorthogonal, and Orthonormal Basis Function

Wire Plate
spline 0.12s 0.25 x 1073s
s.0. wavelet 0.49s 0.19s
o.n. wavelet 4.79s 4.19s

Source: Reprinted with permission from [14]; copyright © 1997 by IEEE.

TABLE 10.4: Comparison of Percentage Sparsity (S5) and Percentage Relative Error
(e5) for Semiorthogonal and Orthonormal Wavelet Impedance Matrices as a
Function of Threshold Parameter (3)

Number of Sparsity Relative Error

Scatterer Unknowns S £

Octave 7 """  Threshold 5 5

Levels S.0. o.n. 5 S.0. o.n. S.0. o.n.

Wire/j = 4 29 33 1x107° 345 244  34x107 43 %107
5%x10° 481 343 3.9 13 %1073
1x107° 511 365 165 5.5%x 107

Plate/ 33 33 1x10™ 51.6  28.1 1x10™ 0.7

j=2,3,4 5%x107™ 69.7 459 4.7 5.2

1x1073 8.4 509 5.8 10.0

Source: Reprinted with permission from [14]; copyright © 1997 by IEEE.

the cubic spline wavelet is 0.505. It has been shown [38] that this product
approaches to o with the increase in smoothness of o.n. wavelets.

10.8 DIFFERENTIAL EQUATIONS

An ordinary differential equation (ODE) can be represented as

Lf(x)=g(x); xe[0,1] (10.66)
with
L= Zaj(x)% (10.67)
=0

and some appropriate boundary conditions. If the coefficients {a;} are indepen-
dent of x then the solution can be obtained via a Fourier method. However
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in ODE case, with nonconstant coefficients, and in PDEs, we generally use
finite element or finite difference type methods. In this section we describe
wavelet-based method to solve differential equations and give a few examples
illustrating such applications.

10.8.1 Multigrid Method

In the traditional finite element method (FEM), local bases are used to rep-
resent the unknown function and the solution is obtained by Galerkin’s
method, similar to the approach described in previous sections. For the dif-
ferential operator, we get sparse and banded stiffness matrices that are gener-
ally solved using iterative techniques, the Jacobi method for instance.

One of the disadvantages of conventional FEM is that the condition
number (k) of the stiffness matrix grows as O(h™>) where 4 is the discretiza-
tion step. As a result, the convergence of the iterative technique becomes slow
and the solution becomes sensitive to small perturbations in the matrix ele-
ments. If we study how the error decreases with iteration in iterative tech-
niques, such as the Jacobi method, we find that the error decreases rapidly for
the first few iterations. After that, the rate at which the error decreases slows
down [39]. Such methods are also called high-frequency methods since these
iterative procedures have a “smoothing” effect on the high-frequency portion
of the error. Once the high-frequency portion of the error is eliminated, con-
vergence becomes quite slow. After the first few iterations, if we could redis-
cretize the domain with coarser grids and thereby go to lower frequency, the
convergence rate would be accelerated. This leads us to a multigrid-type
method.

Multigrid or hierarchical methods have been proposed to overcome the
difficulties associated with the conventional method [39-55]. In this technique,
one performs a few iterations of the smoothing method (Jacobi-type) and then
the intermediate solution and the operator are projected to a coarse grid. The
problem is then solved at the coarse grid and by interpolation one goes back
to the finer grids. By going back and forth between finer and coarser grids, the
convergence can be accelerated. It has been shown for elliptic PDEgs, that for
wavelet-based multilevel methods, the condition number is independent of
discretization step, that is, Kk = O(1) [50]. The multigrid method is too involved
to be discussed in this book. Readers are encouraged to look at the references
provided at the end of this chapter.

Multiresolution aspects of wavelets have also been applied in evolution
equations [54-69]. In evolution problems, the space and time discretization
are interrelated to gain a stable numerical scheme. The time-step must be
determined from the smallest space discretization. This makes the computa-
tion quite complex. A space-time adaptive method has been introduced in [55],
where wavelets have been used to adjust the space-time discretization steps
locally. The rest of the discussion and results in this section are primarily
derived from [69].
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10.8.2 Multiresolution Time Domain (MRTD) Method

The explosive growth in wireless communications (3G cellular systems, 802.11
WLANS) has spawned a great deal of research in electronic packaging for
high-performance devices. In addition, advances in device processing are
enabling the creation of increasingly compact microwave circuits. These cir-
cuits incorporate a high degree of functionality through the combination of
many microwave components in close proximity. These advanced devices
often use geometries with high aspect ratios, small feature size, and moving
parts. The simulation of these complex devices requires the use of extremely
small elements or cells, which can tax many simulation tools beyond their
limits. This has led to the use of a combination of methods, such as full-wave
simulation and microwave circuit simulation, or, if higher numerical efficiency
and accuracy are required, the use of a parallel full-wave simulator on special-
ized hardware. Time-domain full-wave techniques demonstrate numerous
advantages since they are robust and easy to program. Furthermore, they can
use wideband excitations that allow for one simulation to cover the entire
frequency band of interest and can be easily parallelized on relatively inex-
pensive hardware making it possible to simulate large structures.

The finite difference time domain (FDTD) [70, 71] method is one of the
most mature and versatile time-domain numerical techniques, and it has been
used for a wide variety of structures. The use of variable gridding along with
effective parallelization approaches allows fine details of large structures to
be modeled. Curves and diagonal elements can be modeled using stair step-
ping. The multiresolution time-domain technique [54, 57] is an adaptive gen-
eralization of the FDTD technique based on the principles of multiresolution
analysis. It makes use of wavelets to alleviate the computational burdens of
FDTD for complex or large structures, such as multilayer packages or micro-
electromechanical systems (MEMS), where the position of the boundaries is
time-changing and the membrane thickness is much smaller than any other
detail in the transverse direction. The MRTD technique allows the cell resolu-
tion to vary with both time and position. The wavelets can be used to represent
higher levels of detail along with higher frequency content. As fields propagate
through the structure the resolution can be varied to allow for the rapidly
changing fields.

The multiresolution time-domain technique uses wavelet discretization of
Maxwell’s equations to provide a time- and space-adaptive electromagnetic
modeling scheme. The advantage of this method is that it can use much larger
cells than similar methods [56], such as FDTD. The number of basis functions
used in each cell can be varied as a function of space and time [60]. In this
way, grids of complex structures can use high-resolution cells in areas of large
field variation and lower-resolution cells elsewhere.

In the application of the method, the electric and magnetic fields are
expanded into a scaling and wavelet functions and then inserted into Maxwell’s
equations. The method of moments is then applied to these equations. This
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leads to a time-marching scheme much like the FDTD technique. The advan-
tage of this technique over other methods is that wavelets can be added or
subtracted during the simulation at any point in the grid. In this way the grid
can react to both complex geometry and rapid changes in the field as it propa-
gates through the grid. The choice of wavelet basis functions determines the
characteristics of the MRTD scheme. The Battle-Lemarié, Daubechies and
other wavelet basis (e.g., biorthogonal wavelets [61]) have been successfully
applied and demonstrated significant savings in memory and execution time
requirements by one and two orders of magnitude respectively [62-66] com-
pared with FDTD technique. The stability and dispersion performance of
entire-domain (e.g., Battle-Lemari¢) MRTD schemes have been investigated
for different stencil sizes [67]. Analytical expressions for the maximum stable
time step have been derived. Larger stencils decrease the numerical phase
error, making it significantly lower than FDTD for low and medium discretiza-
tions. Stencil sizes greater than 10 offer a smaller phase error than FDTD even
for discretizations close to 50 cells/wavelength. The enhancement of wavelets
further improves the dispersion performance for discretizations close to the
Nyquist limit (23 cells/wavelength), making it comparable to that of much
denser grids (10-15 cells/wavelength), though it decreases the value of the
maximum time step guaranteeing the stability of the scheme.

The finite-domain Haar basis functions provide a convenient tool for
the transition from FDTD to MRTD due to their compact support and their
similarity with the FDTD pulse basis, thus providing an effective demonstra-
tion tool for this section. The Haar wavelet family is in many ways one of
the simplest; however, it has many properties that make its application to
practical structures favorable [56]. Most importantly, it has finite domain
and when reconstructed leads to finite areas of constant field value (equiva-
lent grid points [58]). Using this property, it is possible to apply pointwise
effects in the MRTD grid when an arbitrary level of Haar wavelets is
used. To clearly present the MRTD method, a brief derivation of 2D Haar-
MRTD is presented. The extension to 3D and other basis functions is
straightforward.

10.8.3 Haar-MRTD Derivation

Haar scaling functions and wavelets are based on pulses in space. As described
in previous chapters, for this case, the inner product of any wavelet with any
other wavelet at any resolution level, or with the scaling function, is 0. We
assume that the highest resolution level is ryax. Electromagnetic fields are
expanded as linear combinations of scaling functions and wavelets. The recon-
struction of the wavelets yields some interesting properties. When the coef-
ficients of the expansion are summed to determine field values, the function
appears as a pulse train. The pulses have the domain of half of the highest
resolution wavelet. Furthermore, these pulses overlap the constant valued
sections of the highest resolution wavelets. A linear combination of the
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wavelet/scaling functions has as many degrees of freedom as the number of
coefficients used. There are 2™ *! functions used per level, and any finite real
value can be represented at the center of each half of the ry,y level wavelets.

The effect of the variable grid when it is used to represent electromagnetic
fields can be easily seen. If the field value can be approximated as constant
across the half-domain of the highest resolution wavelet, there is no need for
increasing resolution. If the field has more rapid variation, each increase in
resolution doubles the effective resolution of the cell. High-resolution cells
can be used to represent rapid field variation (such as impressed currents and
discontinuity effects) while low-resolution cells can be used elsewhere.

The equations

dbx _1dH, (10.68)
dt € dy ’

dEy __1dH, (10.69)
dt £ dx

aH; _ l[dEx _ dEy} (10.70)
dt dy dx

represent the 2D TE,; mode of Maxwell’s equations for source-free, lossless,
isotropic media. The expansion of the E, field in (10.68) in terms of Haar
scaling and wavelet functions is

n,i,j
”maxzr
22 WESY () 6;(3)
max -1

£y Z ESSY, 00w ()
r=0 p=0

rmax 2" —1#max 25-1

DI IP I AAHE M) (10.71)

r=0 p=0 s=0 ¢g=0

where nEi’fj’»d’d’ is the coefficient corresponding to scaling function in x and y
that represents the electric field in the £, j cell at time step n; y; , denotes a

wavelet of resolution r at the p-position [(p — 0.5)/2"] of the j cell. Other coef-
ficients have similar definitions. The time dependence is assumed to be con-
stant for each time step using the pulse #,(7), though efforts have been
published showing wavelets used in the time domain as well [64].
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FIGURE 10.14: Two-dimensional Haar coefficients for rp.x = 0.

In a 2D expansion, wavelets and scaling functions are used in both the x
and y directions. The terms in (10.71) represent the products of the basis func-
tions in both directions. Each of these products produces one coefficient.
The four groups of coefficients represent the scaling-x/scaling-y, wavelet-x/
scaling-y, scaling-x/wavelet-y, and wavelet-x/wavelet-y coefficients. There are
22max+1) wavelets for a maximum resolution Fmax. FOT @ maximum resolution
level rimax = 0, the four coefficients in 2D (one for each product term in (10.71)
are presented in Figure 10.14.

When the E and H field expansions are inserted into (10.68)-(10.70) the
method of moments can be applied to determine update equations for each
of the wavelet/scaling coefficients [57]. It has been shown [57, 58] that the
offset between the E and H fields in this expansion yields the best dispersion
properties and locates the equivalent grid points in the same pattern as the
FDTD-Yee cell [70]. In the 2D case, like the previously presented 1D case,
the equivalent grid points are at the center of the constant valued sections of
the highest resolution wavelets. In Figure 10.14 these are the locations of the
+ and - in the y,y, function.

The update equations for this case are

nEl = na B+ ™ (UEMlH +Up,, i Hf, ) (10.72)

At
nElj = n B+ —— Uk, naHYj+Ug,, i HE ) (10.73)
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Ar| 1
nEij = n B+ Z[A_y(UHExl B+ U, n—lE;fj+1)

Z,
L]

1
a E(UHE,H wt B+ Unip, Bl )} (10.74)

These equations are written in a matrix form similar to [57], where, for example,
each , E; is the vector of the scaling and wavelet coefficients that represent
the electric field in the i, j cell at time step n. The U matrices are the results
of the inner products from the method of moments. Equations (10.72)—(10.74)
form an explicit set of equations which can be used in a time marching scheme
similar to the FDTD method [70]. The resolution can be varied on a cell by
cell basis, and can also be changed as a function of time [56]. The time step for
this method

At = L (10.75)

2" max+1 : 2" max+1 :
oGl ———m—— | +| —"=
Ax Ay

is the same as FDTD for a cell spacing equal to the equivalent grid point
spacing [56, 57].

10.8.4 Subcell Modeling in MRTD

The method presented in the previous section allows a time and space variable
grid to be used to model Maxwell’s equations. It is also possible to continu-
ously vary the dielectric constant through a cell [59,66]. Using this method,
arbitrary structures consisting of only dielectrics can be modeled efficiently.
However, the addition of PEC structures adds difficulties. A novel technique
has been introduced that allows for the intracell modeling of multiple PEC’s
[68] using MRTD grids.

The PEC boundary condition requires that electric fields tangential to
PECs are set to zero. In (10.72)—(10.74) update equations are presented that
allow the determination of wavelet/scaling coefficients at a future time step
based on the wavelet/scaling coefficients of the surrounding fields at previous
time steps. If the PEC structure is the size of an MRTD cell, all of the scaling/
wavelet coefficients can be zeroed to apply the boundary condition. If the PEC
structure is smaller than the cell, however, the scaling/wavelet coefficients
must be modified such that the field values at non-PEC locations are unchanged
while the field values at PEC locations are zeroed.

One way to determine the scaling/wavelet coefficients that zero selected
fields while leaving other fields unchanged is to use the reconstruction matrix.
For example, the ,, E;'; matrices in (10.72)—(10.74) can be transformed into field
values by multiplying with a matrix that represents the summation of the fields
at the appropriate equivalent grid points. In this case,
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FIGURE 10.15: Coordinates for reconstructed fields. (Reprinted with permission
from [69], copyright © 2005 by Wiley.)

Eg =REy (10.76)

where Efg is the reconstructed fields, Ew is the wavelet coefficients, and R is
the reconstruction matrix. It was previously noted that there are as many
independent points that can be reconstructed in Egr as there are coefficients
in Ew Thus R is square. For the case of rpy,x = 0, (10.76) can be expanded as

Enlmo1 o1 17 B
Eo| [1 1 1 1| .Ef
Ey| (1 -1 1 -1 B
Epn| |1 -1 -1 1

(10.77)

nEij"
if the coordinates for the reconstructed fields are given as in Figure 10.15.
Just as R can be used to reconstruct the field coefficients from their scaling/
wavelet values, R™! can be used to decompose the field values to scaling/
wavelet coefficients. Thus the application of a PEC boundary condition to an
individual equivalent grid point can be accomplished by reconstructing the
fields, zeroing the fields tangential to PECs, and then decomposing back to
scaling/wavelet coefficients. However, a more efficient method results when
the reconstruction/decomposition matrices are applied directly to the MRTD
update equations.
By using the reconstruction/decomposition matrices directly on (10.72)-
(10.74) a pointwise update equation results. For example, multiplying (10.72)

by R, using Hf; = R'RH ;> and defining U = RU R!yield

At

R.E; =R, Ej; + Ay

(Ut Ry H+Uf, R, H, ), (10.78)

which gives the update of the electric field points in terms of the magnetic
field points.
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Using this equation, it is possible to zero the field points that are tangential
to PECs by multiplying with a matrix I,,, which is the identity matrix with zeros
in the rows corresponding to PEC locations. As (10.78) is an update equation
and the initial values of all fields are 0, multiplying the electric field vectors in
(10.78) with I, is redundant.

The new update equation with PEC locations zeroed is

At , ,
RnEi)fj = Rn—lEi)’Cj +8Ty(IpUEx1 Rn—lHi)f]‘ + IpUExz Rﬂlez%j—l)’ (1079)

By multiplying (10.79) with R™! and defining U” = R"'I,U'R the PEC MRTD
update equation becomes

— At 4 P
E}; = ,.E}; JFE(UEX1 o HY+U H}

ndj j E» n-1 z,j—l)' (10.80)

This equation is the same as (10.72) except for the use of the U, matrices. Thus,
it is possible to implement subcell PEC modeling in MRTD simply by chang-
ing the inner product matrices. This method does not increase computational
overhead; it only requires the additional memory to store the U matrices.

10.8.5 Examples

10.8.5.1 CPW-Microstrip Transition. The coplanar waveguide (CPW)-
microstrip transition is shown in Figure 10.16. The loss of this transition can
be optimized over a wide frequency range with the use of FDTD and design
curves for various packaging specifications can be derived. The plot in Figure
10.17 shows S5; of this transition for a variety of lengths of the central straight
section from 10 to 20GHz. These data were obtained using time-domain
voltage probes at the input (V) and output (V>) of the transition, converting
them to frequency domain through the use of a discrete Fourier transform and

40
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L/ } 125
- - Lao
15 - L35
45
5 50
55

20 30 40 50 60 70 80 90 100
FIGURE 10.16: CPW-microstrip transition; E-field distribution. (Reprinted with per-
mission from [69], copyright © 2005 by Wiley.)
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FIGURE 10.17: Sy; for various central line widths. (Reprinted with permission
from [69], copyright © 2005 by Wiley.)

identifying the reflected voltage through the use of a reference input voltage
(Vier) derived by the simulation of a through CPW line [69]. In addition, the
use of the full-wave FDTD, that provides the values of all electromagnetic
components throughout the geometry, offers a more intuitive visualization of
the circuit. For example, in the transition zone the electric fields have to change
smoothly from a coplanar waveguide mode to a microstrip mode, to minimize
the local reflections. Thus in the design process it is desirable to identify where
this transition takes place and optimize the tapering. Figure 10.16 is a plot of
total electric field for a transverse cross-section of the transition. It can be seen
that at the position of this cross-section, the field is mostly in a CPW mode,
though a microstrip mode has started developing below and at the edges of
the signal line there. The relative amplitudes of the E-field could provide an
intuitive design rule for the spacing between the CPW ground and signal line,
s0 as not to suppress the microstrip mode.

10.8.5.2 Microstrip-Line Coupling. Embedded transmission lines are com-
monly used in multilayer packages, where the use of noncontinuous grounds
could lead to increased cross-talk effects. The FDTD technique is used to
estimate the coupling of finite-ground microstrip lines of Figure 10.18 [69]. The
results presented in [69] for different line spacing and for a ground connecting
via (optimized design) are obtained by combining two simulations, an even
and an odd mode excitation. In addition, to reduce the unwanted cross-talk,
the electric and the magnetic field distributions are also calculated. It is shown
that most of the coupling is through the magnetic field lines, leading to the
design conclusion that attempts to reduce the coupling should focus on mag-
netic shielding.
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FIGURE 10.18: Embedded finite-ground microstrip lines. (Reprinted with permission
from [69], copyright © 2005 by Wiley.)
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FIGURE 10.19: MEMS switch feeding capacitive stub. (Reprinted with permission
from [69], copyright © 2005 by Wiley.)

10.8.5.3 MEMS Capacitive Switch. One example of a MEMS structure that
benefits from simulation in MRTD is the MEMS capacitive switch shown in
Figure 10.19. The gap between the plates in the switch is 1/175th of the sub-
strate thickness. The simulation of this device in FDTD is tedious and slow
because of the large number of cells that must be used to accurately represent
the very small gap and substrate.

In MRTD, the number of cells can be reduced by using the built-in adaptive
gridding capability of the method. In addition, further efficiencies can be
obtained in large simulations featuring this structure by allowing fewer cells
to be used when the electric field variation near the cell is low.

These examples demonstrate the strength of MRTD in the calculation of
the scattering parameters as well as in the estimation of the packaging effects
and of the parasitic crosstalk between neighboring geometries. In addition, its
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inherent capability of global electromagnetic field calculation as well as
MRTD’s multi-PEC cell allows for the identification of “hot spots” of high
field concentration and for the derivation of physics-driven solutions for the
improvement of the overall system-on-package efficiency. The time- and
space-adaptive grid of MRTD allows it to be used to model finely detailed
structures. Areas of the grid containing small features can use increased reso-
lution, while homogenous areas can use low resolution. It is important to note
that this technique can be used to model structures with multiple PEC and
dielectric regions per cell.

10.9 EXPRESSIONS FOR SPLINES AND WAVELETS

We provide formulas for the scaling functions B, ox(x) and the wavelets
Ymio(x) for k=-m+1, ... ,0 and m =2, 4. Formulas at the scale sy can be
obtained by replacing x by 2°0 x and scaling the intervals accordingly.

Bm,_mﬂ,o(x):{“‘x)m boxeloD (10.81)
0 otherwise.
X, xe[0,1)
Broo(x)=42-x x€[l,2) (10.82)
0 otherwise.

Formulas for cubic spline scaling functions except for B4 _3, are given in Table
10.5. Formulas for B,_;p and B4_3o can be obtained from (10.81). Tables
10.6-10.8 contain the formulas for the wavelets. Functions are zero outside
the intervals given in the tables. An empty entry indicates that the function is
zero in the interval.

It should be pointed out that the scaling functions and wavelets described
in this book can also be computed from their Bernstein polynomial represen-
tations [72] and [73]; however, the formulas presented here are direct and easy
to implement.

TABLE 10.5: Cubic Spline Scaling Functions By ¢ for Different Values of k°

Interval k=-2 k=-1 k=0
[0,1) 0,18,-27,21/2 0,0,9,-11/2 0,0,0,1

[1,2) 12,-18,9,-3/2 -9,27,-18,7/2 4,-12,12,-3
[2,3) 27,-27,9, -1 —44,60,-24,3
(3,4) 64,-48,12, -1

“Note: 6 X By (x)= 2?:0 a;x'. Here are ay, a1, az, as for different intervals.
Source: Reprinted with permission from [23]; copyright © 1995 by IEEE.



EXPRESSIONS FOR SPLINES AND WAVELETS 347

TABLE 10.6: Linear Spline Wavelet y, ;o for Different

Values of k?

Interval k=-1 k=0
[0.0,0.5) -6, 23 0,1
[0.5,1.0) 14,-17 4,-7
[1.0,1.5) -10,7 -19, 16
[1.5,2.0) 2,-1 29,-16
[2.0,2.5) -17,7
[2.5,3.0) 3,-1

“Note: 6 X yrio(x) =ap+ ajx. Here are ag, a; for different

intervals.

Source: Reprinted with permission from [23]; copyright © 1995 by

IEEE.

TABLE 10.7: Cubic Spline Wavelet yy o for k = -3, —2. 5040 X W4 4,0(x) = Z?=0 aix’e

Interval k=-3 k=-2
[0.0,0.5) —5097.9058, 75122.08345, 1529.24008, —17404.65853,
-230324.8918, 191927.6771 39663.39526, —24328.27397
[0.5,1.0) 25795.06384, —110235.7345, 96.3035852, —-8807.039551,
140390.7438, —55216.07994 22468.15735, -12864.78201
[1.0,1.5) -53062.53069, 126337.0492, —37655.11514, 104447.2167,
-96182.03978, 23641.5146 -90786.09884, 24886.63674
[1.5,2.0) 56268.26703, —92324.54624, 132907.7898, —236678.5931,
49592.35723, —-8752.795836 136631.1078, —25650.52030
[2.0,2.5) -31922.33501, 39961.3568, —212369.3156, 281237.0648,
—16550.59433, 2271.029421 —122326.7213, 17509.11789
[2.5,3.0) 8912.77397, -9040.773971, 184514.4305, —195023.4306,
3050.25799, —342.4175544 68177.47685, —7891.441873
[3.0,3.5) -904, 776, 222, 127/6 —88440.5, 77931.5, —22807.5,
2218
[3.5,4.0) 32/3,-8,2,-1/6 21319.5,-16148.5, 4072.5,
-342
[4.0,4.5) —11539/6, 1283.5, -285.5,
127/6
[4.5,5.0) 125/6,-12.5,2.5,-1/6

“Here are ay, ai, a, az for different intervals.

Source: Reprinted with permission from [23]; copyright © 1995 by IEEE.
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TABLE 10.8: Cubic Spline Wavelet y; 1,0 for k= -1, 0. 5040 X Y4 40(x) = X3, aix’

Interval k=-1 k=0

[0.0,0.5) —-11.2618185, 68.79311672, 0,0,0,1/6
—242.2663844, 499.28435

[0.5,1.0)  330.8868107, —1984.098658, 8/3,-16,32,-127/6
3863.517164, —2237.904686

[1.0,1.5)  —9802.095725, 28414.84895, -360.5,1073.5, -1057.5, 342
—26535.43044, 7895.077856

[1.5,2.0)  75963.58449, -143116.5114, 8279.5, -16206.5, 10462.5, —2218
87818.80985, —17516.97555

[2.0,2.5) —270337.7867, 376335.5451, —72596.5,105107.5, =50194.5,
—171907.2184, 25770.69585 7891.5

[2.5,3.0)  534996.0062, —590065.0062, 324403.5,-371292.5, 140365.5,
214653.0021, —25770.66691 -17516.5

[3.0,3.5) —633757.5,578688.5, -174931.5, —844350, 797461, —249219, 77312/3
17516.5

[3.5,4.0)  455610.5, -355055.5, 91852.5, 4096454/3, —1096683, 291965,
-7891.5 -77312/3

[4.0,4.5) —191397.5,130200.5, -29461.5,2218  —1404894, 981101, —227481, 17516.5

[4.5,5.0) 41882.5,-25319.5, 5098.5, —342 910410, —562435, 115527, -7891.5

[5.0,5.5) —10540/3, 1918, -349, 127/6 —353277.5,195777.5, -36115.5, 2218

[5.5,6.0) 36,-18,3,-1/6 72642.5,-36542.5, 6124.5, -342

[6.0,6.5) —5801.5, 2679.5, -412.5,127/6

[6.5,7.0) 343/6,-24.5,3.5,-1/6

“Here are ay, a1, a», az for different intervals.
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Wavelet theory originated from research activities in many areas of science and
engineering. As a result, it linds applications in a wide range of practical

lenis, Wavelet techniques are specifically suited for nonstationary signals for
which classic Fourier methods are ineffective. Developments over the last decade
have led 10 many new wavelet applications such as image compression, turbu-
lence, human vision, radar, and earthquake prediction.

Based on courses tiught by the authors at Texas A&M University as well as related
conferences, Fundamentals of Wavelets is a textbook offering an up-to-date engi-
neering approach 1o wavelet theory. It balances a discussion of wavelet theory
and algorithms with its far-ranging practical applications in_signal processing;
image processing, geophysical applications, electromagnetic wave scattering, and
haundary value problems,

In a clear. progressive format, the book describes:
* Busic concepts of linear algebra, Fourier analysis, and discrete signal analysis
® Theoretical uspects of ime-frequency analysis and multiresolution analysis
* Construction and properties of various real and
complex wavelets and curvelets
® Algorithms for computing wavelet ransformations

* Applications 1o signal processing, geophysical applications,
and boundary value problems

This Second Edition leatures new sections' on curvelets, ridgelets, and lifung
wavelet transforms; complex wavelets; edge detection and geophysical applica-
tions; and multiresolution time domain method. It covers time-frequency analysis
techniques such as short-time Fourier transform and Wigner-Ville distribution.
Concluding cha present interesting applications of wavelets o signal process-
ing and boundary value problems. Numerous examples and figures are also
included along with simple MATLAB® programs.

Fundamentals of Watelers s andessential introduction (o wavelet theory for stu-
dents and professionals alike in a practical. real-world engineering context. It is
ideally suited for senior and graduate students in clectrical engineering, physics,
and mathematics; research engineers and physicists; and design and software
engineers in the lecommunications and signal processing industrics,

JAIDEVA C. GOSWAMI, PuD, is an Engincering Advisor a1 Schlumberger in
Sugarland, Texas. He is also a former professor of Elecironics and Communication
Engincering at the Indian Institute of Technology, Kharagpur. Dr, Goswami hus
taught several short courses on wavelets and contributed to the Wiley Encyclopedia
of Electrical and Electronics Engineering as well as Wiley Encyclopedia of RE and
Microwave Engineering. He has many research papers and patems 1o his credit,
and is a Fellow of IEEE,

ANDREW K. CHAN, PuD, is on the faculty of Texas AXM University and is the
coauthor of Wavelets in a Box and Warelet Toolware. He is a Lite Fellow of 1EEE.
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