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xv

 Preface to the Second Edition     

  Since the appearance of the fi rst edition over a decade ago, several new 
wavelets and wavelet - like functions have been introduced alongwith many 
interesting applications. These developments have motivated us to substan-
tially revise the book and bring out this second edition. The basic structure of 
the book remains the same. Apart from making a few minor additions and 
corrections, the fi rst seven chapters are carried over from the earlier edition. 
In these chapters, wavelet theory and algorithms are gradually and systemati-
cally developed from basic linear algebra, Fourier analysis, and time - frequency 
analysis. Chapter  8  is renamed as  “ Special Topics in Wavelets and Algorithms ”  
where four new sections on ridgelets, curvelets, complex wavelets, and lifting 
wavelet transform are introduced. Various edge detection techniques are 
summarized in a new section in Chapter  9 . Another interesting addition 
in Chapter  9  is a comprehensive review of applications of wavelets to geo-
physical problems, in particular to oilfi eld industry. In Chapter  10 , section on 
differential equations has been expanded by including multiresolution time 
domain method. 

 Some of the new material in the second edition are derived from our col-
laboration with students and colleagues at Texas A & M university, College 
Station; Indian Institute of Technology, Kharagpur; Georgia Institute of 
Technology, Atlanta; and Schlumberger. To them and to many readers who 
drew our attention to errors and misprints, we wish to express our gratitude. 
We also thank George Telecki, Kristen Parrish, and Lucy Hitz of John Wiley 
& Sons for their assistance during the preparation of the second edition. 

   July 2010  J aideva  C. G oswami   and  A ndrew  K. C han         
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xvii

 Preface to the First Edition     

  This textbook on wavelets evolves from teaching undergraduate and post-
graduate courses in the Department of Electrical Engineering at Texas A & M 
University and teaching several short courses at Texas A & M University as 
well as in conferences such as the Progress in Electromagnetic Research 
Symposium (PIERS), the IEEE Antenna and Propagation (IEEE - AP) 
Symposium, the IEEE Microwave Theory and Technique (IEEE - MTT) 
Conference, and the Association for Computational Electromagnetic Society 
(ACES). The participants at the short courses came from industries as well as 
universities and had backgrounds mainly in electrical engineering, physics, and 
mathematics with little or no prior understanding of wavelets. In preparing 
material for the lectures, we referred to many books on this subject; some 
catering to the need of mathematicians and physicists, while others were 
written for engineers with a signal - processing background. We felt the need 
for a textbook that would combine the theory, algorithm, and applications of 
wavelets and present them in such a way that readers can easily learn the 
subject and be able to apply them to practical problems. That being the moti-
vation, we have tried to keep a balance between the mathematical rigor and 
practical applications of wavelet theory. Many mathematical concepts are 
elucidated through the fi gures. 

 The book is organized as follows. Chapter  1  gives an overview of the book. 
The rest of the book is divided into four parts. In Chapters  2  and  3  we review 
some basic concepts of linear algebra, Fourier analysis, and discrete signal 
analysis. Chapters  4  –  6  are devoted to discussing theoretical aspects of time -
 frequency analysis, multiresolution analysis, and the construction of various 
types of wavelets; Chapters  7  and  8  give several algorithms for computing 
wavelet transform and implement them through a fi lter bank approach. Part 
of Chapter  8  and Chapters  9  and  10  present many interesting application of 
wavelets to signal - processing and boundary value problems. 

 In preparing this book we have benefi ted from a number of individuals. We 
learned a lot on wavelets from our association with Professor Charles Chui. 
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To him we are very grateful. We would like to thank Professors Raj Mittra, 
Linda Katehi, and Hao Ling for inviting us to speak at the short courses in 
the IEEE AP and MTT conferences. Thanks are also due to Profession L. 
Tsang for inviting us to organize the short course at PIERS. Parts of Chapters 
 9  and  10  come from our collaboration with graduate students at Texas A & M 
University, notable among them are Minsen Wang, Howard Choe, Nai - wen 
Lin, Tsai - fa Yu, and Zhiwha Xu. We thank all of them for their contribution. 
We wish to express our deep sense of appreciation to Michelle Rubin who 
typed and proofread most of this book. We thank Profession Kai Chang and 
Mr. George J. Telecki for giving us the opportunity to write this book. Last but 
not the least, we thank Mousumi Goswami and Sophia Chan for their encour-
agement and support during the preparation of this book. 

   October 1998  Jaideva C. Goswami and Andrew K. Chan        
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1

  CHAPTER ONE 

What Is This Book All About?     

  The concept of wavelet analysis has been in place in one form or the other 
since the beginning of this century. The  Littlewood - Paley  technique and 
 Calder ó n - Zygmund  theory in harmonic analysis and digital fi lter bank theory 
in signal processing can be considered forerunners to wavelet analysis. 
However, in its present form, wavelet theory drew attention in the 1980s 
with the work of several researchers from various disciplines — Str ö mberg, 
Morlet, Grossmann, Meyer, Battle, Lemari é , Coifman, Daubechies, Mallat, 
and Chui, to name a few. Many other researchers have also made signifi cant 
contributions. 

 In applications to discrete data sets, wavelets may be considered basis func-
tions generated by dilations and translations of a single function. Analogous 
to Fourier analysis, there are wavelet series (WS) and integral wavelet trans-
forms (IWT). In wavelet analysis, WS and IWT are intimately related. The 
IWT of a fi nite - energy function on the real line evaluated at certain points in 
the time-scale domain gives the coeffi cients for its wavelet series representa-
tion. No such relation exists between the Fourier series and Fourier transform, 
which are applied to different classes of functions; the former is applied to 
fi nite energy periodic functions, whereas the latter is applied to functions that 
have fi nite energy over the real line. Furthermore, Fourier analysis is global 
in the sense that each frequency (time) component of the function is infl u-
enced by all the time (frequency) components of the function. On the other 
hand, wavelet analysis is a local analysis. This local nature of wavelet analysis 
makes it suitable for time - frequency analysis of signals. 

 Wavelet techniques enable us to divide a complicated function into several 
simpler ones and study them separately. This property, along with fast wavelet 
algorithms which are comparable in effi ciency to fast Fourier transform 
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2  WHAT IS THIS BOOK ALL ABOUT?

algorithms, makes these techniques very attractive for analysis and synthesis. 
Different types of wavelets have been used as tools to solve problems in signal 
analysis, image analysis, medical diagnostics, boundary - value problems, geo-
physical signal processing, statistical analysis, pattern recognition, and many 
others. While wavelets have gained popularity in these areas, new applications 
are continually being investigated. 

 A reason for the popularity of wavelets is their effectiveness in representa-
tion of nonstationary (transient) signals. Since most of the natural and 
manmade signals are transient in nature, different wavelets have been used to 
represent a much larger class of signals than the Fourier representation of 
stationary signals. Unlike Fourier - based analyses that use global (nonlocal) 
sine and cosine functions as bases, wavelet analysis uses bases that are local-
ized in time and frequency to more effectively represent nonstationary signals. 
As a result, a wavelet representation is much more compact and easier for 
implementation. Using the powerful multiresolution analysis, one can repre-
sent a signal by a fi nite sum of components at different resolutions so that 
each component can be adaptively processed based on the objectives of the 
application. This capability of representing signals compactly and in several 
levels of resolutions is the major strength of the wavelet analysis. In the case 
of solving partial differential equations by numerical methods, the unknown 
solution can be represented by wavelets of different resolutions, resulting in 
a multigrid representation. The dense matrix resulting from an integral opera-
tor can be sparsifi ed using wavelet - based thresholding techniques to attain an 
arbitrary degree of solution accuracy. 

 There have been many research monographs on wavelet analysis as well as 
textbooks for certain specifi c application areas. However, there does not seem 
to be a textbook that provides a systematic introduction to the subject of 
wavelets and its wide areas of applications. This is the motivating factor for 
this introductory text. Our aims are (1) to present this mathematically elegant 
analysis in a formal yet readable fashion, (2) to introduce to readers many 
possible areas of applications both in signal processing and in boundary value 
problems, and (3) to provide several algorithms and computer codes for basic 
hands - on practices. The level of writing will be suitable for college seniors and 
fi rst - year graduate students. However, suffi cient details will be given so that 
practicing engineers without background in signal analysis will fi nd it useful. 

 The book is organized in a logical fashion to develop the concept of wave-
lets. The contents are divided into four major parts. Rather than vigorously 
proving theorems and developing algorithms, the subject matter is developed 
systematically from the very basics in signal representation using basis func-
tions. The wavelet analysis is explained via a parallel with the Fourier analysis 
and short - time Fourier transform. The multiresolution analysis is developed 
for demonstrating the decomposition and reconstruction algorithms. The 
fi lter - bank theory is incorporated so that readers may draw a parallel between 
the fi lter - bank algorithm and the wavelet algorithm. Specifi c applications 
in signal processing, image processing, electromagnetic wave scattering, 
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WHAT IS THIS BOOK ALL ABOUT?  3

boundary - value problems, geophysical data analysis, wavelet imaging system 
and interference suppression are included in this book. A detailed chapter by 
chapter outline of the book follows. 

 Chapters  2  and  3  are devoted to reviewing some of basic mathematical 
concepts and techniques and to setting the tone for the time - frequency and 
time - scale analysis. To have a better understanding of wavelet theory, it is 
necessary to review the basics of linear functional space. Concepts in Euclidean 
vectors are extended to spaces in higher dimension. Vector projection, basis 
functions, local and Riesz bases, orthogonality, and biorthogonality are dis-
cussed in Chapter  2 . In addition, least - square approximation of functions and 
mathematical tools like matrix algebra and  z  - transform are also discussed. 
Chapter  3  provides a brief review of Fourier analysis to set the foundation for 
the development of continuous wavelet transform and discrete wavelet series. 
The main objective of this chapter is not to redevelop the Fourier theory but 
to remind readers of some of the important issues and relations in Fourier 
analysis that are relevant to later development. The main properties of Fourier 
series and Fourier transform are discussed. Lesser known theorems, including 
Poisson ’ s sum formulas, partition of unity, sampling theorem, and Dirichlet 
kernel for partial sum are developed in this chapter. Discrete - time Fourier 
transform and discrete Fourier transform are also mentioned briefl y for the 
purpose of comparing them with the continuous and discrete wavelet trans-
forms. Some advantages and drawbacks of Fourier analysis in terms of signal 
representation are presented. 

 Development of time - frequency and time - scale analysis forms the core of 
the second major section of this book. Chapter  4  is devoted to the discussion 
of short - time Fourier transform (time - frequency analysis) and the continuous 
wavelet transform (time - scale analysis). The similarities and the differences 
between these two transforms are pointed out. In addition, window widths as 
measures of localization of a time function and its spectrum are introduced. 
This chapter also contains the major properties of the transform such as 
perfect reconstruction and uniqueness of inverse. Discussions on the Gabor 
transform and the Wigner - Ville distribution complete this chapter on time -
 frequency analysis. Chapter  5  contains an introduction to and discussion of 
multiresolution analysis. The relationships between the nested approximation 
spaces and the wavelet spaces are developed via the derivation of the two -
 scale relations and the decomposition relations. Orthogonality and biorthogo-
nality between spaces and between basis functions and their integer translates 
are also discussed. This chapter also contains a discussion on the semiorthogo-
nal  B  - spline function as well as mapping techniques of function onto the 
multiresolution spaces. In Chapter  6 , methods and requirements for wavelet 
construction are developed in detail. Orthogonal, semiorthogonal and bior-
thogonal wavelets are constructed via examples to elucidate the procedure. 
Biorthogonal wavelet subspaces and their orthogonal properties are also dis-
cussed in this chapter. A derivation of formulas used in methods to compute 
and display the wavelet is presented at the end of this chapter. 
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4  WHAT IS THIS BOOK ALL ABOUT?

 The algorithm development for wavelet analysis is contained in Chapters 
 7  and  8 . Chapter  7  provides the construction and implementation of the 
decomposition and reconstruction algorithms. The basic building blocks for 
these algorithms are discussed in the beginning of the chapter. Formulas for 
decimation, interpolation, discrete convolution and their interconnections are 
derived. Although these algorithms are general for various types of wavelets, 
special attention is given to the compactly supported semiorthogonal  B  - spline 
wavelets. Mapping formulas between the spline spaces and the dual spline 
spaces are derived. The algorithms of perfect reconstruction fi lter banks in 
digital signal processing are developed via  z  - transform in this chapter. The 
time - domain and polyphase - domain equivalent of the algorithms are dis-
cussed. Examples of biorthogonal wavelet construction are given at the end 
of the chapter. In Chapter  8 , limitations of the discrete wavelet algorithms, 
including time - variant property of DWT and sparsity of the data distribution 
are pointed out. To circumvent the diffi culties, the fast integral wavelet trans-
form (FIWT) algorithm is developed for the semiorthogonal spline wavelet. 
Starting with an increase in time resolution and ending with an increase in 
scale resolution, a step - by - step development of the algorithm is presented in 
this chapter. A number of applications using FIWT are included to illustrate 
its importance. Special topics in wavelets, such as ridgelet, curvelets, complex 
wavelets, and lifting algorithms, are briefl y described. 

 The fi nal section of this book is on application of wavelets to engineering 
problems. Chapter  9  includes the applications to signal and image processing, 
and in Chapter  10 , we discuss the use of wavelets in solving boundary value 
problem. In Chapter  9 , the concept of wavelet packet is discussed fi rst as an 
extension of the wavelet analysis to improve the spectral domain performance 
of the wavelet. Wavelet packet representation of the signal is seen as a refi ne-
ment of the wavelet in a spectral domain by further subdividing the wavelet 
spectrum into subspectra. This is seen to be useful in the subsequent discussion 
on radar interference suppression. Three types of amplitude thresholding are 
discussed in this chapter and are used in subsequent applications to show 
image compression. Signature recognition on faulty bearing completes the 
one - dimensional wavelet signal processing. The wavelet algorithms in Chapter 
 7  are extended to two - dimensions for the processing of images. Several edge 
detection algorithms are described. Major wavelet image - processing applica-
tions included in this chapter are image compression and target detection and 
recognition. Details of the tree - type image coding are not included because of 
limited space. However, the detection, recognition, and clustering of microcal-
cifi cations in mammograsm are given in moderate detail. The application of 
wavelet packets to multicarrier communication systems and the application of 
wavelet analysis to three - dimensional medical image visualization are also 
included. Applications of wavelets in geophysical problems are presented. 

 Chapter  10  concerns with wavelets in boundary value problem. The tradi-
tional method of moment (MOM) and the wavelet - based method of moment 
are developed in parallel. Different techniques of using wavelet in MoM are 
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WHAT IS THIS BOOK ALL ABOUT?  5

discussed. In particular, wavelets on a bounded interval as applied to solving 
integral equations arising from electromagnetic scattering problems are 
presented in some detail. These boundary wavelets are also suitable to avoid 
edge effects in image processing. An application of wavelets in the spectral 
domain is illustrated by applying them to solving a transmission line disconti-
nuity problem. Finally, the multiresolution time domain method is described 
along with its applications to electromagnetic problems. 

 Most of the material is derived from lecture notes prepared for undergradu-
ate and graduate courses in the Department of Electrical Engineering at Texas 
A & M University as well as for short courses taught in several conferences. 
The material in this book can be covered in one semester. Topics can also be 
selectively amplifi ed to complement other signal - processing courses in any 
existing curriculum. Some homework problems are included in some chapters 
for the purpose of practice. A number of fi gures have been included to expound 
the mathematical concepts. Suggestions on computer code generation are also 
included at the end of some chapters.        
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6

  CHAPTER TWO 

Mathematical Preliminary     

     The purpose of this chapter is to familiarize the reader with some of the math-
ematical notations and tools that are useful in an understanding of wavelet 
theory. Since wavelets are continuous functions that satisfy certain admissibil-
ity conditions, it is prudent to discuss in this chapter some defi nitions and 
properties of functional spaces. For a more detailed discussion of functional 
spaces, the reader is referred to standard texts on real analysis. The wavelet 
algorithms discussed in later chapters involve digital processing of coeffi cient 
sequences. A fundamental understanding of topics in digital signal processing, 
such as sampling, the  z  - transform, linear shift - invariant systems, and discrete 
convolution, are necessary for a good grasp of wavelet theory. In addition, a 
brief discussion of linear algebra and matrix manipulations is included that is 
very useful in discrete - time domain analysis of fi lter banks. Readers already 
familiar with its contents may skip this chapter.  

   2.1    LINEAR SPACES 

 In the broadest sense, a functional space is simply a collection of functions 
that satisfi es a certain mathematical structural pattern. For example, the 
fi nite energy space  L  2 ( −  ∞ ,  ∞ ) is a collection of functions that are square inte-
grable; that is,

    f x dx( ) < ∞
−∞

∞

∫ 2 .     (2.1)   

 Some of the requirements and operational rules on linear spaces are stated as 
follows: 
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LINEAR SPACES  7

  1.     The space  S  must not be empty.  
  2.     If  x     ∈     S  and  y     ∈     S , then  x     +     y     =     y     +     x .  
  3.     If  z     ∈     S , then ( x     +     y )    +     z     =     x     +    ( y     +     z ).  
  4.     There exists in  S  a unique element  0 , such that  x     +     0     =     x .  
  5.     There exists in  S  another unique element  −  x  such that  x     +    ( −  x )    =     0 .    

 Besides these simple yet important rules, we also defi ne  scalar multiplica-
tion y     =     cx  such that if  x     ∈     S , then  y     ∈     S , for every  scalar c . We have the fol-
lowing additional rules for the space  S : 

  1.      c ( x     +     y )    =     cx     +     cy .  
  2.     ( c     +     d ) x     =     cx     +     dx  with scalar  c  and  d .  
  3.     ( cd ) x     =     c ( dx ).  
  4.     1    ·     x     =     x .    

 Spaces that satisfy these additional rules are called linear spaces. However, up 
to now, we have not defi ned a measure to gauge the size of an element in a 
linear space. If we assign a number || x ||, called the norm of  x , to each function 
in  S , this space becomes a  normed linear space  (i.e., a space with a measure 
associated with it). The norm of a space must also satisfy certain mathematical 
properties: 

  1.     || x ||    ≥    0 and || x ||    =    0    ⇔     x     =    0.  
  2.     || x     +     y ||    ≤    || x ||    +    || y ||.  
  3.     || ax ||    =    | a |   || x || where  a  is scalar.    

 The norm of a function is simply a measure of the distance of the function 
to the origin (i.e., 0). In other words, we can use the norm

    x y−     (2.2)   

 to measure the difference (or distance) between two functions  x  and  y . 
 There are a variety of norms one may choose as a measure for a par-

ticular linear space. For example, the fi nite energy space  L  2 ( −  ∞ ,  ∞ ) uses the 
norm

    x f x dx= ( )⎡
⎣⎢

⎤
⎦⎥

< ∞
−∞

∞

∫ 2

1
2

,     (2.3)   

 which we shall call the  L  2  - norm. This norm has also been used to measure the 
overall difference (or error) between two fi nite energy functions. This measure 
is called the root mean square error (RMSE) defi ned by
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8  MATHEMATICAL PRELIMINARY

    RMSE
/

/
= ( ) − ( )⎡

⎣
⎢

⎤

⎦
⎥→∞ −∫lim

T
a

T
f x f x dx

T

T1 2

1
2

2

2
    (2.4)  

where  f a  ( x ) is an approximating function to  f ( x ). The expression in  (2.4)  is the 
approximation error in the  L  2  sense.  

   2.2    VECTORS AND VECTOR SPACES 

 Based on the basic concepts of functional spaces discussed in the previous 
section, we now present some fundamentals of vector spaces. We begin with a 
brief review of geometric vector analysis. 

 A vector  V  in a three - dimensional Euclidean vector space is defi ned by 
three complex numbers { v  1 ,  v  2 ,  v  3 } associated with three orthogonal unit 
vectors { a  1 ,  a  2 ,  a  3 }. The ordered set   vj j{ } =1

3  represents the scalar components 

of the vector  V  where the unit vector set   aj j{ } =1
3  spans the three - dimensional 

Euclidean vector space. Any vector  U  in this space can be decomposed into 
three vector components   uj j ja{ } =1

3  (Figure  2.1 d).   

     FIGURE 2.1:     Orthogonal decomposition of a vector in Euclidean space.  
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VECTORS AND VECTOR SPACES  9

 The addition and scalar multiplication of vectors in this space are 
defi ned by: 

  1.      U     +     V     =    { u  1     +     v  1 ,  u  2     +     v  2 ,  u  3     +     v  3 }.  
  2.      k  V     =    { kv  1 ,  kv  2 ,  kv  3 }.    

 In addition to these operations, vectors in a three - dimensional Euclidean 
space also obey the commutative and associative laws: 

  1.      U      +      V      =      V      +      U .  
  2.     ( U      +      V  )      +      W      =      U      +      (  V      +      W  ) .    

 We may represent a vector by a column matrix

    V =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

v

v

v

1

2

3

,     (2.5)   

 since all of the above mathematical rules apply to column matrices. We defi ne 
the length of a vector similar to the defi nition of the norm of a function by

    V = + +v v v1
2

2
2

3
2 .     (2.6)   

 The scalar product (inner product) of two vectors is a very important opera-
tion in vector algebra that we should consider here. It is defi ned by

    

U V U V U V⋅ = ∠
= + +

= [ ]
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

: cos ,

u v u v u v

u u u

v

v

v

u

u

1 1 2 2 3 3

1 2

1

2

3

1

3

22

3

1

2

3u

v

v

v

t⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,     (2.7)  

where the superscript  t  indicates matrix transposition and : =  is the symbol for 
defi nition. It is known that the scalar product obeys the commutative law: 
 U      ·      V     =     V      ·      U . Two vectors  U  and  V  are  orthogonal  to each other if  U      ·      V     =    0. 
We defi ne the  projection  of a vector onto another vector by
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10  MATHEMATICAL PRELIMINARY

    
U V

V
U a

U a

⋅ ⋅=

=
=

v

vprojection of in the direction of

a component  of in the direction ofU av.

    (2.8)   

 Projection is an important concept that will be used often in later discussions. 
If one needs to fi nd the component of a vector in a given direction, simply 
project the vector in that direction by taking the scalar product of the vector 
with the unit vector of the desired direction. 

 We may now extend this concept of basis and projection from the three -
 dimensional Euclidean space to an  N  - dimensional vector space. The compo-
nents of a vector in this space form an  N     ×    1 column matrix, while the basis 
vectors   aj j

N{ } =1
 form an orthogonal set such that

    a ak k k⋅ = ∀ ∈� � �δ , , Z     (2.9)  

where   δ   k,    �    is the Kronecker delta, defi ned as

    δk
k

k
,

,

, .
�

�
�

=
=
≠

⎧
⎨
⎩

1

0
    (2.10)   

 and  Z  is the set of all integers, { … ,  − 1, 0, 1,  … }. 
 One can obtain a specifi c component  v j   of a vector  V  (or the projection of 

 V  in the direction of  a   j  ) using the inner product

    vj j= ⋅V a ,     (2.11)  

and the vector  V  is expressed as a linear combination of its vector 
components

    V a=
=
∑vk k

k

N

1

.     (2.12)   

 It is well known that a vector can be decomposed into elementary vectors 
along the direction of the basis vectors by fi nding its components one at a time. 
Figure  2.1  illustrates this procedure. The vector  V  in Figure  2.1 a is decomposed 
into  V   p      =     V     −     v  3  a  3  and its orthogonal complementary vector  v  3  a  3 . The vector 
 V   p   is further decomposed into  v  1  a  1  and  v  2  a  2 . Figure  2.1 d represents the recon-
struction of the vector  V  from its components.  

 The example shown in Figure  2.1 , although elementary, is analogous to the 
wavelet decomposition and reconstruction algorithm. There the orthogonal 
components are wavelet functions at different resolutions.  
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BASIS FUNCTIONS, ORTHOGONALITY, AND BIORTHOGONALITY  11

   2.3    BASIS FUNCTIONS, ORTHOGONALITY, AND BIORTHOGONALITY 

 We extend the concept of Euclidean geometric vector space to normed linear 
spaces. That is, instead of thinking about a collection of geometric vectors, we 
think about a collection of functions. Instead of basis vectors, we have basis 
functions to represent arbitrary functions in that space. These basis functions 
are basic building blocks for functions in that space. We will use the Fourier 
series as an example. The topic of Fourier series will be considered in more 
detail in the next chapter. 

   2.3.1    Example 

 Let us recall that a periodic function  p T  ( t ) can be expanded into a series

    p t c eT k
jk t

k

( ) =
=−∞

∞

∑ ω0 ,     (2.13)  

where  T  is the periodicity of the function,   ω   0     =    2  π  / T     =    2  π f  is the fundamental 
frequency, and   e jn tω0  is the  n th harmonic of the fundamental frequency. 
Equation  (2.13)  is identical to equation  (2.12)  if we make the equivalence 
between  p T  ( t ) with  V ,  c k   with  v k  , and   e jk tω0  with  a   k  . Therefore, the function set 
  e jk t

k
ω0{ } ∈Z  forms the basis set for the Fourier space of discrete frequency. The 

coeffi cient set { c k  }  k    ∈  Z   is often referred to as the discrete spectrum. It is well 
known that the discrete Fourier basis is an orthogonal basis. Using the inner 
product notation for functions

    g h g t h t dt, ,= ( ) ( )∫Ω     (2.14)  

where the overbar indicates complex conjugation, we express the orthogonal-
ity by

    
1

0 0

2

2

T
e e dt kjk t j t

k
T

T
ω ω δ−

−∫ = ∀ ∈�
� �

/

/
, , .Z     (2.15)   

 We may normalize the basis functions (with respect to unit energy) by dividing 
them with   T . Hence   e Tjk t

k
ω0{ } ∈Z

 forms the orthonormal basis of the dis-
crete Fourier space.  

   2.3.2    Orthogonality and Biorthogonality 

 Orthogonal expansion of a function is an important tool for signal analysis. 
The coeffi cients of expansion represent the magnitudes of the signal com-
ponents. In the previous example, the Fourier coeffi cients represent the 
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12  MATHEMATICAL PRELIMINARY

amplitudes of the harmonic frequency of the signal. If for some particular 
signal - processing objective, we decide to minimize (or make zero) certain 
harmonic frequencies (such as 60 - Hz noise), we simply design a fi lter at that 
frequency to reject the noise. It is therefore meaningful to decompose a signal 
into components for observation before processing the signal. 

 Orthogonal decomposition of a signal is straightforward and the computa-
tion of the coeffi cients is simple and effi cient. If a function  f ( t )    ∈     L  2  is expanded 
in terms of a certain orthonormal set {  ϕ  k  ( t )}  k    ∈  Z      ∈     L  2 , we may write

    f t c tk k

k

( ) = ( )
=−∞

∞

∑ φ .     (2.16)   

 We compute the coeffi cients by taking the inner product of the function with 
the basis to yield

    

f f t t dt

c t t dt

c

k k

k

k

,

,

φ φ

φ φ

δ

= ( ) ( )

= ( ) ( )

=

−∞

∞

=−∞

∞

−∞

∞

=−∞

∞

∫
∑∫

∑

� �

� �

�

�
== ck.     (2.17)   

 Computation of an inner product such as the one in  (2.17)  requires the knowl-
edge of the function  f ( t ) for all  t  and is not real - time computable. 

 We have seen that an orthonormal basis is an effi cient and straightforward 
way to represent a signal. In some applications, however, the orthonormal 
basis function may lack certain desirable signal - processing properties, causing 
inconvenience in processing. Biorthogonal representation is a possible 
alternative to overcoming the constraint in orthogonality and producing a 
good approximation to a given function. Let {  ϕ  k  ( t )}  k    ∈  Z      ∈     L  2  be a biorthogonal 
basis function set. If there exists another basis function set   �φk k

t L( ){ } ∈∈Z
2 

such that

    φ φ φ φ δk k kt t dt, ,,
� �� � �= ( ) ( ) =

−∞

∞

∫     (2.18)   

 the set   �φk k
t( ){ } ∈Z  is called the dual basis of {  ϕ  k  ( t )}  k    ∈  Z  . We may expand a func-

tion  g ( t ) in terms of the biorthogonal basis

   g t d tk k

k

( ) = ( )
=

∞

∑ φ
0

,  

and obtain the coeffi cients by
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BASIS FUNCTIONS, ORTHOGONALITY, AND BIORTHOGONALITY  13

    d gn n= , �φ     (2.19)  

    = ( ) ( )
−∞

∞

∫ g t t dtn
�φ .     (2.20)   

 On the other hand, we may expand the function  g ( t ) in terms of the dual basis

    g t d tk k

k

( ) = ( )
=

∞

∑ � �φ
0

,     (2.21)  

and obtain the dual coeffi cients   �dk by

    �� �d g= , φ     (2.22)  

    = ( ) ( )
−∞

∞

∫ g t t dtφ� .     (2.23)   

 We recall that in an orthogonal basis, all basis functions belong to the same 
space. In a biorthogonal basis, however, the dual basis does not have to be in 
the original space. If the biorthogonal basis and its dual belong to the same 
space, then these bases are called  semiorthogonal . Spline functions of an arbi-
trary order belong to the semiorthogonal class. More details about spline 
functions will be considered in later chapters. 

 We use geometric vectors in a two - dimensional vector space to illustrate 
the biorthogonality. Let the vectors

   b b1 2
1

0

1
2

3
2

= ⎡
⎣⎢

⎤
⎦⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,   

 form a biorthogonal basis in the 2D Euclidean space. The dual of this 
basis is

   � �b b1 2

1

1

3

0

2

3

=
−

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

, .   

 The bases are graphically displayed in Figure  2.2 . We can compute the dual 
basis in this 2D Euclidean space simply by solving a set of simultaneous equa-
tions. Let the biorthogonal basis be  

   b b1
1

2
2

1

2
= ⎡

⎣⎢
⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

x

x

y

y
,  

and the dual basis be
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14  MATHEMATICAL PRELIMINARY

   � �b b1
1

2
2

1

2
= ⎡

⎣⎢
⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

u

u

v

v
, .   

 The set of simultaneous equations that solves for   �b1 and   �b2  is

    

b b

b b

b b

b b

1 1

2 1

1 2

2 2

1

0

0

1

,

,

,

, .

�

�

�

�

=

=

=

=

    (2.24)   

 This process can be generalized into a fi nite dimensional space where the basis 
vectors form an oblique (nonorthogonal) coordinate system. It requires linear 
matrix transformations to compute the dual basis. This process will not be 
elaborated on here. The interested reader may refer to [ 1 ].   

   2.4    LOCAL BASIS AND RIESZ BASIS 

 We have considered orthogonal bases of a  global  nature in previous sections 
[  ϕ  ( t )   :    t     ∈    ( −  ∞ ,  ∞ )]. Observe that  sine  and  cosine  basis functions for Fourier 
series are defi ned on the entire real line ( −  ∞ ,  ∞ ) and, therefore, are 
called global bases. Many bases that exist in a fi nite interval of the real line 
[  ϕ  ( t )   :    t     ∈    ( a ,  b )] satisfy the orthogonality or biorthogonality requirements. 
We call these the  local  bases. The Haar basis is the simplest example of a 
local basis. 

     FIGURE 2.2:     Biorthogonal basis in a two - dimensional Euclidean space.  
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LOCAL BASIS AND RIESZ BASIS  15

   2.4.1    Haar Basis 

 The Haar basis is described by   ϕ  H   ,   k  ( t )    =      χ   [0,1) ( t     −     k ),  k     ∈     Z , where

    χ 0 1
1 0 1

0,
, ;

,[ ) ( ) =
≤ <⎧

⎨
⎩

t
t

otherwise
    (2.25)   

 is the characteristic function. The Haar basis clearly satisfi es the orthogonality 
condition

    φ φ χ χ

δ

H j H k

j k

t t t j t k dt, , , ,

,

,

.

( ) ( ) = −( ) −( )

=

[ ) [ )
−∞

∞

∫ 0 1 0 1     

(2.26)

   

 To represent a global function  f ( t ),  t     ∈    ( −  ∞ ,  ∞ ) with a local basis   ϕ  ( t ), 
 t     ∈    ( a ,  b ), functions that exist outside of the fi nite interval must be represented 
by integer shifts (delays) of the basis function along the real line. Integer shifts 
of global functions can also form bases for linear spaces. The Shannon function 
  ϕ  SH  ( t ) is an example of such a basis.  

   2.4.2    Shannon Basis 

 The Shannon function is defi ned by

    φ π
πSH t

t
t

( ) = sin
,     (2.27)  

and the basis formed by

    φ π
πSH k t

t k
t k

k,
sin

,( ) = −( )
−( )

∈Z     (2.28)   

 is an orthonormal basis and is global. The proof of the orthonormality is best 
shown in the spectral domain. 

 Let  g ( t )    ∈     L  2  be expanded into a series with basis functions {  ϕ  k  ( t )}  k    ∈  Z  :

    g t c tk k

k

( ) = ( )∑ φ .     (2.29)   

 The basis set {  ϕ  k  ( t )}  k    ∈  Z   is called a Riesz basis if it satisfi es the following 
inequality:

    R c g t R ck k1
2 2

2
2

2 2� �
≤ ( ) ≤     (2.30)  

    R c c t R ck k k k

k
1

2

2

2
2

2 2� �
≤ ( ) ≤∑ φ ,     (2.31)  
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16  MATHEMATICAL PRELIMINARY

where 0    <     R  1     ≤     R  2     <     ∞  are called  Riesz bounds . The space   �   2  is the counter 
part of  L  2  for discrete sequences with the norm defi ned as

    c ck k

k
�2

2

1
2

=
⎛

⎝
⎜

⎞

⎠
⎟ < ∞∑ .     (2.32)   

 An equivalent expression for  (2.30)  in the spectral domain is

    0 21
2

2< ≤ +( ) ≤ < ∞∑R k R
k

ˆ .φ ω π     (2.33)   

 The derivation of  (2.33)  is left as an exercise. A hat over a function represents 
its Fourier transform, a topic that will be discussed in the next chapter.  

 If  R  1     =     R  2     =    1, the basis is orthonormal. The Shannon basis is an example 
of a Riesz basis that is orthonormal, since the spectrum of the Shannon func-
tion is one in the interval [ −   π  ,   π  ]. Hence

    φ ω πSH k
k

+( ) ≡∑ 2 12 .     (2.34)   

 If the basis functions {  ϕ  ( t     −     k )   :    k     ∈     Z } are not orthonormal, then we can 
obtain an orthonormal basis set {  ϕ    ⊥  ( t     −     k )   :    k     ∈     Z } by the relation

    φ ω φ ω

φ ω π

⊥ ( ) = ( )

+( ){ }∑
� ˆ

ˆ
.

2
2

1
2k

k

    (2.35)   

 The Riesz basis is also called a stable basis in the sense that if

   g t a tj j

j
1

1( ) = ( )( )∑ φ  

   g t a tj j

j
2

2( ) = ( )( )∑ φ ,   

 then a small difference in the functions results in a small difference in the 
coeffi cients and vice versa. In other words, stability implies

    small smallg t g t a aj j1 2
2 1 2 2

2( ) − ( ) ⇔ −( ) ( )
�

.     (2.36)     
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DISCRETE LINEAR NORMED SPACE  17

   2.5    DISCRETE LINEAR NORMED SPACE 

 A discrete linear normed space is a collection of elements that are discrete 
sequences of real or complex numbers with a given norm. For a discrete 
normed linear space, the operation rules in Section  2.1  are applicable as 
well. An element in an  N  - dimensional linear space is represented by a 
sequence

    x n x x x N( ) = ( ) ( ) −( ){ }0 1 1, , , ,…     (2.37)  

and we represent a sum of two elements as

   w n x n y n x y x y x N y N( ) = ( ) + ( ) = ( ) + ( ) ( ) + ( ) −( ) + −( ){ }0 0 1 1 1 1, , , .…     (2.38)   

 The inner product and the norm in discrete linear space are separately 
defi ned as

   x n y n x n y n
n

( ) ( ) = ( ) ( )∑,     (2.39)  

   x x x x n
n

= = ( )∑, .
1
2

2     (2.40)   

 Orthogonality and biorthogonality as previously defi ned apply to discrete 
bases as well. The biorthogonal discrete basis satisfi es the condition

    φ φ φ φ δi j i j i jn n n n
n

( ) ( ) = ( ) ( ) =∑, .,
� �     (2.41)   

 For an orthonormal basis, the spaces are self - dual; that is,

    φ φj j= � .     (2.42)   

   2.5.1    Example 1 

 The discrete Haar basis, defi ned as

    H n
n

0

1

2
0 1

0
( ) = =⎧

⎨
⎪

⎩⎪

for 

otherwise

,

,
    (2.43)   

 is an orthonormal basis formed by the even translates of  H  0 ( n ). The Haar basis, 
however, is not complete. That is, there exists certain sequence that cannot be 
represented by an expansion from this basis. It requires a complementary 
space to make it complete. The complementary space of Haar is
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18  MATHEMATICAL PRELIMINARY

    H n

n

n1

1

2
0

1

2
1

0

( ) =

=

−
=

⎧

⎨

⎪
⎪

⎩

⎪
⎪

for 

for 

otherwise.

    (2.44)   

 The odd translates of  H  1 ( n ) forms the complementary space so that any real 
sequence can be represented by the Haar basis.  

   2.5.2    Example 2 

 The sequence

    D n2
1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2
( ) = + + − −⎧

⎨
⎩

⎫
⎬
⎭

, , ,     (2.45)   

 is a fi nite sequence with four members whose integer translates form an ortho-
normal basis. The proof of orthonormality is left as an exercise.   

   2.6    APPROXIMATION BY ORTHOGONAL PROJECTION 

 Assuming a vector  u ( n ) is not a member of the linear vector space  V  spanned 
by {  ϕ  k  }, we wish to fi nd an approximation  u p      ∈     V . We use the orthogonal 
projection of  u  onto the space  V  as the approximation. The projection is 
defi ned by

    u up k k

k

=∑ , .φ φ     (2.46)   

 We remark here that the approximation error  u     −     u p   is orthogonal to the 
space  V :

   u u kp k− = ∀, .φ 0   

 Furthermore, mean square error (MSE) of such approximation is minimum. 
To prove the minimality of MSE for any orthogonal projection, consider a 
function  g     ∈     L  2 [ a ,  b ], which is approximated by using a set of orthonormal 
basis functions {  ϕ  k     :    k     =    0,  ·   ·   ·  ,  N     −    1} such that

    g t g t c tc j j

j

N

( ) ≈ ( ) = ( )
=

−

∑ φ
0

1

, with     (2.47)  

    c gj j= , .φ     (2.48)   

 The pointwise error   ε    c  ( t ) in the approximation of the function  g ( t ) is
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MATRIX ALGEBRA AND LINEAR TRANSFORMATION  19

    ε φc c j jt g t g t g t c t
j

N

( ) = ( ) − ( ) = ( ) − ( )
=

−

∑
0

1

.     (2.49)   

 We wish to show that when the coeffi cient sequence { c j  } is obtained by orthog-
onal projection given by  (2.48) , the MSE ||  ε    c  ( t )|| 2  is minimum. To show this, let 
us assume that there is another sequence { d j     :    j     =    0,  ·   ·   ·  ,  N     −    1} that is obtained 
in a way other than orthogonal projection and also minimizes the error. Then 
we will show that  c j      =     d j  ;  j     =    0,  ·   ·   ·  ,  N     −    1, thus completing our proof.  

 With the sequence { d j  }, we have

    g t g t d td j j

j

N

( ) ≈ ( ) = ( )
=

−

∑ φ
0

1

,     (2.50)  

and

   

ε φ φ φd j j j j j jt g t d t g t d t g t d t
j

N

j

N

( ) = ( ) − ( ) = ( ) − ( ) ( ) −
=

−

=

−

∑ ∑2

2

0

1

0

1

, (( )

= − ( ) − ( ) +

=

−

=

−

=

−

=

−

∑

∑ ∑
j

N

j

N

j

N

j

N

g g d t g d g t dj j j j j

0

1

0

1

0

1

0

1
2, , ,φ φ ∑∑

∑ ∑ ∑= − − +
=

−

=

−

=

−
g g d c d c dj j j j j

j

N

j

N

j

N

, .
0

1

0

1

0

1
2     (2.51)   

 To complete the square of the last three terms in  (2.51) , we add and 

sub tract   ∑ =
−

j
N

jc0
1 2

 to yield

    ε φd j j j j j jt g t d t g t c g t d c
j

N

j

N

j

( ) = ( ) − ( ) = ( ) − ( ) + −
=

−

=

−

=
∑ ∑2

2 2

2

0

1

0

1

0

NN−

∑
1

    (2.52)  

    = ( ) + −
=

−

∑εc j jt d c
j

N
2 2

0

1

.     (2.53)   

 It is clear that to have minimum MSE, we must have  d j      =     c j  ;  j     =    0,  ·   ·   ·  ,  N     −    1, 
and hence the proof.  

   2.7    MATRIX ALGEBRA AND LINEAR TRANSFORMATION 

 We have already used column matrices to represent vectors in fi nite dimen-
sional Euclidean spaces. Matrices are operators in these spaces. We give a 
brief review of matrix algebra in this section and discuss several types of 
special matrices that will be useful in the understanding of time - domain analy-
sis of wavelets and fi lter banks. For details readers may refer to [ 2 ]. 
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20  MATHEMATICAL PRELIMINARY

   2.7.1    Elements of Matrix Algebra 

    1.     Defi nition:     A matrix  A     =    [ A ij  ] is a rectangular array of elements. The 
elements may be real numbers, complex numbers, or polynomials. The 
fi rst integer index  i  is the row indicator, and the second integer index  j  is 
the column indicator. A matrix is infi nite if  i ,  j     →     ∞ . An  m     ×     n  matrix is 
displayed as

    A =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

A A A

A A

A

Amn

11 12 13

21 22

31

�

� �
�

.     (2.54)   

 If  m     =     n ,  A  is a square matrix. An  N     ×    1 column matrix (only one column) 
represents an  N  - dimensional vector.  

  2.     Transposition:     The transpose of  A  is  A   t   whose element is  A ji  . If the dimen-
sion of  A  is  m     ×     n , the dimension of  A   t   is  n     ×     m . The transposition of a 
column ( N     ×    1) matrix is a row (1    ×     N ) matrix.  

  3.     Matrix sum and difference:     Two matrices may be summed together if they 
have the same dimensions.

   C A B= ± ⇒ = ±C A Bij ij ij    

  4.     Matrix product:     Multiplication of two matrices is meaningful only if their 
dimensions are compatible. Compatibility means the number of columns 
in the fi rst matrix must be the same as the number of rows in the second 
matrix. If the dimensions of  A  and  B  are  m     ×     p  and  p     ×     q  respectively, the 
dimension of  C      =      AB  is  m     ×     q . The element  C ij   is given by

   C A Bij i j

p

=
=
∑ � �

� 1

.   

 The matrix product is not commutative since  p     ×     q  is not compatible with 
 m     ×     p . In general,  AB      ≠      BA .  

  5.     Identity matrix:     An identity matrix is a square matrix whose major diagonal 
elements are ones and the off - diagonal elements are zeros.

   I =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

.    
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MATRIX ALGEBRA AND LINEAR TRANSFORMATION  21

  6.     Matrix minor:     A minor  S   ij   of matrix  A  is a submatrix of  A  created by delet-
ing the  i th row and  j th column of  A . The dimension of  S   ij   is ( m     −    1)    ×    ( n     −    1) 
if the dimension of  A  is  m     ×     n .  

  7.     Determinant:     The determinant of a square matrix  A  is a value computed 
successively using the defi nition of minor. We compute the determinant of 
a square ( m     ×     m ) matrix by

   det detA Ai j
ij ij

i

m

( ) = −( ) +

=
∑ 1 ( ).

1

S   

 The index  j  can be any integer between [1,  m ].  
  8.     Inverse matrix:      A   − 1  is the inverse of a square matrix  A  such that 

 A   − 1  A      =      I      =      AA   − 1 . We compute the inverse by

   Aij
j i

ji
− +=

( )
−( ) ( )1 1

1 .
det

det
A

S   

 If det( A )    =    0, the matrix is  singular , and  A   − 1  does not exist.     

   2.7.2    Eigenmatrix 

 A linear transformation is a mapping such that when a vector  x     ∈     V  (a vector 
space) is transformed, the result of the transformation is another vector 
 y      =      Ax     ∈     V . The vector  y , in general, is a scaled, rotated, and translated version 
of  x . In particular, if the output vector  y  is only a scalar multiple of the input 
vector, we call this scalar the  eigenvalue  and the system an  eigensystem . 
Mathematically, we write

    y Ax x= = μ     (2.55)  

where  A  is an  N     ×     N  matrix,  x  is an  N     ×    1 vector and   μ   is a scalar eigenvalue. 
We determine the eigenvalues from the solution of the characteristic 
equation

    det .A I−( ) =μ 0     (2.56)   

 If  x  is an  N     ×    1 column matrix, there are  N  eigenvalues in this system. These 
eigenvalues may or may not be all distinct. Associated with each eigenvalue, 
there is an eigenvector. The interpretations of the eigenvectors and eigenval-
ues depend on the nature of the problem at hand. For each eigenvalue   μ  j  , we 
substitute it into  (2.56)  to solve for the eigenvector  x   j  . We use the following 
example to illustrate this procedure. Let
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   A =
−

− −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3 1 0

1 2 1

0 1 3
  

 be the transformation matrix. The characteristic equation from  (2.56)  is

   

det detA I−( ) =
− −
− − −

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −( ) −( ) −( )

μ
μ

μ
μ

μ μ μ

3 1 0

1 2 1

0 1 3

3 2 3 −−[ ]− −( )
= −( ) −( ) −( ) =

1 3

3 1 4 0

μ
μ μ μ

 

and the eigenvalues are   μ      =    4, 1, and 3. We substitute   μ      =    4 into  (2.55) 

   

3 1 0

1 2 1

0 1 3

4
1

2

3

1

2

3

−
− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x

x

x

x

x

x

 

and obtain the following set of linear equations

    

− − + =
− − − =

− − =

x x

x x x

x x

1 2

1 2 3

2 3

0 0

2 0

0 0.

    

(2.57)

   

 This is a linearly dependent set of algebraic equations. We assume  x  1     =      α   and 
obtain the eigenvector  e  3  corresponding to   μ      =    4 as

    α α
1

1

1

0−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

≠; .     (2.58)   

 The reader can compute the other two eigenvectors as an exercise.  

   2.7.3    Linear Transformation 

 Using the example on the eigensystem in the previous section, we have

   A =
−

− −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3 1 0

1 2 1

0 1 3
 

   μ j j= =1 3 4 1 2 3, , , , ,for  
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and the eigenvectors corresponding to the eigenvalues are

    e e e1 2 3

1

2

1

1

0

1

1

1

1

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, , .     (2.59)   

 From the defi nitions of eigenvalue and eigenfunction, we have

    Ae ej j j j= =μ , , , .for 1 2 3     (2.60)   

 We may rearrange this equation as

    A e e e e e e1 2 3 1 1 2 2 3 3[ ] = [ ]μ μ μ .     (2.61)   

 To be more concise, we put equation  (2.61)  into a compact matrix form,

    

AE E

E

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

μ
μ

μ

1

2

3

0 0

0 0

0 0

m     (2.62)  

where   μ   is a diagonal matrix and  E  is the eigen matrix. If the matrix  E  is 
nonsingular, we diagonalize the matrix  A  by premultiplying  (2.62)  by  E    − 1 :

    E AE− =1 m.     (2.63)   

 Therefore, we have used the eigenmatrix  E  in a linear transformation to 
diagonalize the matrix  A .  

   2.7.4    Change of Basis 

 One may view the matrix  A  in the previous example as a matrix that defi nes 
a linear system

    y Ax A=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

y

y

y

x

x

x

1

2

3

1

2

3

.     (2.64)   

 The matrix  A  is a transformation that maps  x     ∈     R  3  to  y     ∈     R  3 . The components 
of  y  are related to that of  x  via the linear transformation defi ned by  (2.64) . 
Since  e  1 ,    e  2 , and  e  3  are linearly independent vectors, they may be used as a 
basis for  R  3 . Therefore, we may expand the vector  x  on this basis
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    x e e e

Ex

= ′ + ′ + ′
= ′

x x x1 1 2 2 3 3

,

   

 (2.65)

  

and the coeffi cient vector  x  ′  is computed by

    ′ = −x E x1 .     (2.66)   

 The new coordinates for the vector  y  with respect to this new basis become

    

′ =

=

= ′
= ′

−

−

−

y E y

E Ax

E AEx

x

1

1

1

m .     (2.67)   

 Equation  (2.67)  states that we have modifi ed the linear system  y     =     Ax  by a 
change of basis to another system    y  ′     =      μ x  ′  in which the matrix   μ   is a diagonal 
matrix. We call this linear transformation via the eigenmatrix the  similarity 
transformation .  

   2.7.5    Hermitian Matrix, Unitary Matrix, and Orthogonal Transformation 

 Given a complex - valued matrix  H , we can obtain its Hermitian,  H    h  , by taking 
the conjugate of the transpose of  H , namely

    H Hh t: .=     (2.68)   

 The two identities

   H Hh h( ) =  

   GH H G( ) =h h h   

 obviously follow from the defi nition. 
 Let the basis vectors of an  N  - dimensional vector space be  b   i  ,  i     =    1,  ·   ·   ·  ,  N , 

where  b   i   is itself a vector of length  N . An  orthogonal basis  means that the inner 
product of any two different basis vectors vanishes:

    b b b bj i j
t

i i j i j, , , .,= [ ] [ ] = ∀ ∈δ Z     (2.69)   

 For complex - valued basis vectors, the inner product is expressed by

   b b b bj i j
h

i, .= [ ] [ ]   
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 If the norm of  b   i   is one, this basis is called an  orthonormal basis . We form 
an  N     ×     N  matrix of transformation  P  by putting the orthonormal vectors in 
a row as

    P b b b= [ ]1 2, , .… N     (2.70)   

 Since

    b bj
h

i i j[ ] [ ] = δ , ,     (2.71)   

 it follows that

    P P Ih = ,     (2.72)  

and

    P Ph = −1.     (2.73)   

 In addition to the column - wise orthonormality, if  P  also satisfi es the row - 
wise orthonormality,  PP   h       =      I , matrix  P  is called a  unitary ( or  orthonormal)  
matrix.   

   2.8    DIGITAL SIGNALS 

 In this section we provide some basic notations and operations pertinent to 
the signal processing techniques. Details may be found in [ 3 ]. 

   2.8.1    Sampling of Signal 

 Let  x ( t ) be an energy - limited continuous - time (analog) signal. If we measure 
the signal amplitude and record the result at a regular interval  h , we have a 
discrete - time signal

    x n x t n Nn( ) = ( ) = −: , , , , ,0 1 1…     (2.74)  

where

   t nhn = .   

 For simplicity in writing and convenience of computation, we use  x ( n ) with 
the sampling period  h  understood. These discretized sample values constitute 
a signal, called a  digital signal . 
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 To have a good approximation to a continuous band - limited function  x ( t ) 
from its samples { x ( n )}, the sampling interval  h  must be chosen such that

   h ≤
π
Ω

,  

where 2 Ω  is the bandwidth of the function  x ( t ), i.e.,   x̂ ω( ) = 0 for all |  ω  |    >     Ω . 
The choice of  h  is the Nyquist sampling rate, and the Shannon recovery 
formula

    x t x nh
t nh

t nh
n

( ) = ( ) −( )
−( )∈

∑ sinπ
πZ

    (2.75)   

 enables us to recover the original analog function  x ( t ). The proof of this 
theorem is most easily carried out using the Fourier transform and the Poisson 
sum of Fourier series. We shall differ this proof until Chapter  3 .  

   2.8.2    Linear Shift - Invariant Systems 

 Let us consider a system characterized by its impulse response  h ( n ). We 
say the system is linearly shift invariant if the input  x ( n ) and the output  y ( n ) 
satisfy the following system relations: 

 Shift invariance:

    
x n y n

x n n y n n

( )⇒ ( )
− ′( )⇒ − ′( )

⎧
⎨
⎩ .

    (2.76)   

 Linearity:

    
x n y n x n y n

x n mx n y n my n
1 1 2 2

1 2 1 2

( )⇒ ( ) ( )⇒ ( )
( ) + ( )⇒ ( )+ ( )

⎧
⎨
⎩

 and ,

.
    (2.77)   

 In general, a linear shift - invariant system is characterized by

    x n n mx n n y n n my n n1 2 1 2− ′( ) + − ′( )⇒ − ′( ) + − ′( ).     (2.78)    

   2.8.3    Convolution 

 Discrete convolution, also known as  moving averages , defi nes the input – output 
relationship of a linear shift - invariant system. The mathematical defi nition of 
a linear convolution is
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y n h n x n

h k n x k

x k n h k

k

k

( ) = ( )∗ ( )
= −( ) ( )

= −( ) ( )

∑
∑ .

   

 (2.79)

   

 We may express the convolution sum in matrix notation as

    

⋅
−( )
( )
( )
( )

⋅
⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅

y

y

y

y

1

0

1

2

hh h h h

h h h h h

h h h

1 0 1 2

2 1 0 1 2

2 1 0

( ) ( ) −( ) −( ) ⋅ ⋅
⋅ ( ) ( ) ( ) −( ) −( ) ⋅
⋅ ⋅ ( ) ( ) ( )) −( ) −( )
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

⋅
−( )
(

h h

x

x

1 2

1

0))
( )
( )

⋅
⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

x

x

1

2

.     (2.80)   

 As an example, if   h n( ) = { }1 4 1 4 1 4 1 4/ / / /, , ,  and  x ( n )    =    {1, 0, 1, 0, 1, 0, 1} are 
causal sequences, the matrix equation for the input - output relations is

    

1
4
1
2
1
2
1
2
1
2
1
2
1
2
1
4
1
4

1
4

1

0

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

44
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

11
4

1
4

1
4

1
4

1
4

1
4

1
4
1
4

2⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−( )x ==
−( ) =
( ) =
( ) =
( ) =
( ) =
( ) =
( ) =
( ) =
( ) =

0

1 0

0 1

1 0

2 1

3 0

4 1

5 0

6 1

7 0

x

x

x

x

x

x

x

x

x

xx 8 0( ) =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.     (2.81)   

 The output signal is seen to be much smoother than the input signal. In fact, 
the output is very close to the average value of the input. We call this type of 
fi lter a  smoothing  or  averaging  fi lter. In signal - processing terms, it is called a 
 lowpass  fi lter. 

 On the other hand, if the impulse response of the fi lter is   h n( ) = −{1 4 1 4/ /, ,
  1 4 1 4/ /, − }, we have a differentiating fi lter or high - pass fi lter. With the input 
signal  x ( n ) as before, the output signal is
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1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
4

1
4

0

0

−

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

==

− − • •
− − • •

− − • •
• − −

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

0 0

0 0 0

0 0 0 0

0 0 11
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

0 0

0 0 0 0

0 0 0 0

0 0 0

0

• •
• • − − •

• • − −
• • − −

• • 00

0 0

0 0

0 0

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

− −
• • −

• • −
• •

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−( ) =
−( ) =
( ) =
( ) =
( ) =
( ) =
(

x

x

x

x

x

x

x

2 0

1 0

0 1

1 0

2 1

3 0

4)) =
( ) =
( ) =
( ) =
( ) =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1

5 0

6 1

7 0

8 0

x

x

x

x

⎥⎥
⎥
⎥
⎥

.

  
   (2.82)   

 The oscillation in the input signal is allowed to pass through the fi lter, while 
the average value (DC component) is rejected by this fi lter. This is evident 
from the near - zero average of the output while the average of the input is   1 2/ .  

   2.8.4     z  - Transform 

 The  z  - transform is a very useful tool for discrete signal analysis. We will use 
it often in the derivations of wavelet and fi lter bank algorithms. It is defi ned 
by the infi nite sum

    

H z h k z

h z h h z h z

k

k

( ) = ( )

= −( ) + ( ) + ( ) + ( ) +

−

− −
∈
∑

Z
… …, 1 0 1 21 1 2     (2.83)   

 The variable  z   − 1  represents a delay of one unit of sampling interval;  z   −    M   means 
a delay of  M  units. If one replaces  z  by  e j ω   , the  z  - transform becomes the 
discrete - time Fourier transform, which will be discussed in more detail in the 
next chapter:

    H z H e h k ez e
j jk

j

k

( ) = ( ) = ( )=
−

∈
∑ω

ω ω

Z
.     (2.84)   

 We will use these notations interchangeably in future discussions. One impor-
tant property of the  z  - transform is that the  z  - transform of a linear discrete 
convolution becomes a product in the  z  - transform domain

    y n h n x n Y z H z X z( ) = ( )∗ ( )⇒ ( ) = ( ) ( ).     (2.85)    
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   2.8.5    Region of Convergence 

 The variable  z  in the  z  - transform is complex valued. The  z  - transform, 
  X z x n zn

n( ) = ∑ ( )=−
−

∞
∞ , may not converge for some values of  z . The  region of 

convergence  ( ROC ) of a  z  - transform indicates the region in the complex plane 
in which all values of  z  make the  z  - transform converge. Two sequences may 
have the same  z  - transform but with different regions of convergence. 

  Example:     Find the  z  - transform of  x ( n )    =     a n     cos(  ω   0  n ) u ( n ), where  u ( n ) is the 
unit step function, defi ned by

   u n
n

( ) =
≥⎧

⎨
⎩

1 0

0 otherwise.
  

  Solution:  From the defi nition of  z  - transform, we have

   

X z a n z

a
e e

z

ae

n n

n
j n j n

n

n

n

( ) = ( )

=
+⎛

⎝⎜
⎞
⎠⎟

=

−

−
−

=

∞

=

∞

∑

∑

cos ω

ω ω

0

0

0

0 0

2

1
2

jj n j n

j

z ae z

ae z

n n

ω ω

ω

0 0

0

1 1

1

0 0

1
2

1

1

1

1

− − −

−

( ) + ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

+

=

∞

=

∞

∑ ∑

−−
⎡
⎣⎢

⎤
⎦⎥

=
− ( )

− ( ) +
>

− −

−

− −

ae z

a z

a z a z
ROC z

jω

ω
ω

0 1

0
1

0
1 2 2

1

1 2

cos

cos
, : aa .

  

 The case where  a     =    0.9 and   ω   0     =    10  π   is shown in Figure  2.3 .    

  Special Cases:    
    1.     If  a     =    1 and   ω    0     =    0, we have

   
U z

z

z z

z
ROC z

( ) = −
− +

=
−

>

−

− −

−

1

1 2
1

1
1

1

1 2

1
, : .

   

  2.     If  a     =    1, we have

   X z
z

z z
ROC z( ) = − ( )

− ( ) +
>

−

− −
1

1 2
10

1

0
1 2

cos

cos
, : .

ω
ω
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     FIGURE 2.3:     The sequence and the  ROC  ( a     =    0.9).  
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1

1.2
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n

x(n)

0

  3.     If   ω    0     =    0, we have

   
X z

az

az a z

az
ROC z a

( ) = −
− +

=
−

>

−

− −

−

1

1 2
1

1
.

1

1 2 2

1
:
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   2.8.6    Inverse  z  - Transform 

 The formula for recovering the original sequence from its  z  - transform involves 
complex integration of the form

    x n
j

X z z dzn

c
( ) = ( ) −∫1

2
1

π �     (2.86)  

where the contour is taken within the  ROC  of the transform in the counter-
clockwise direction. For the purpose of this text, we shall not use  (2.86)  to 
recover the sequence. Since the signals and fi lters that are of interest in this 
book are rational functions of  z , it is more convenient to use partial fractions 
or long division to recover the sequence. 

  Example:     Determine the sequence  x ( n ) corresponding to the following 
 z  - transform

   X z
z

z z
z

z z
ROC z( ) = −

−( ) −( )
=

−
− +

>
1

0.7 1.2
1

1.9 0.84
1 2

2
, : .   

  Solution:  Using long division, we have

   X z z z z
z z

z z
( ) = + + +

−
− +

− − −
− −

1 2 3
2 3

2
0.9 0.87

0.897 0.7308

1.9 0.84
.   

 Obviously,  x (0)    =    0,  x (1)    =    1,  x (2)    =    0.9,  x (3)    =    0.87,  …  .  x ( n ) is a right - sided 
infi nite sequence since the  ROC  is outside a circle of radius,  r     =    1.2. 

 If  ROC    :   | z |    <    0.7,  x ( n ) is a left - sided sequence. We obtain

   X z
z

z z
z( ) = − +

− +
= − + −⎛

⎝⎜
⎞
⎠⎟ +

1

0.84 1.9

1
.84

1
.84

1
1.9
.842

…  

using long division. The sequence { x ( n )} becomes a sequence of ascending 
powers of  z  and is a left - sided sequence where   x 0 1 84 1.19( ) = − = −/. , 
  x −( ) = − ( )[ ] = −1 1 84 1 1 9 84 1.5/ /. . . ,  x ( − 2)    =     …  .     

 2.9   EXERCISES 

          1.    Let  u     =    ( − 4,  − 5) and  v     =    (12, 20) be two vectors in the 2D space. Find  − 5 u , 
3 u     +    2 v ,  −  v , and  u     +     v . For arbitrary  a ,  b     ∈     R , show that | au |    +    | bv |    ≥    | au     +     bv |.   

       2.    Expand the function  f ( t )    =    sin    t  in the polynomial basis set { t  n  ,}  n     =    
0, 1, 2,  …  Is this an orthogonal set?   
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       3.    The following three vectors form a basis set:  e  1     =    (1, 2, 1);  e  2     =    (1, 0,  − 2); 
 e  3     =    (0, 4, 5). Is this an orthonormal basis? If not, form an orthonormal 
basis through a linear combination of  e k  ,  k     =    1, 2, 3.   

       4.    Let  e  1     =    (1, 0) and  e  2     =    (0, 1) be the unit vectors of a 2D Euclidean space. 
Let  x  1     =    (2, 3) and  x  2     =    ( − 1, 2) be the unit vector of a nonorthogonal basis. 
If the coordinates of a point  w  is (3, 1) with respect to the Euclidean space, 
determine the coordinates of the point with respect to the nonorthogonal 
coordinate basis.   

       5.    Let  e  1     =    (0.5, 0.5) and  e  2     =    (0,  − 1) be a biorthogonal basis. Determine the 
dual of this basis.   

       6.    Show that if   
a a

a a

b

b

c c

c c

b

b
11 12

21 22

1

2

11 12

21 22

1

2

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥
= ⎡

⎣⎢
⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥
 for all  b  1  and  b  2  then  A     =     C .

   A B= ⎡
⎣⎢

⎤
⎦⎥

=
−⎡

⎣⎢
⎤
⎦⎥

1 2

2 4

2 1

1 3
,   

 Form ( AB )  T   and  B   T   A   T  , and verify that these are the same. Also check if 
 AB  is equal to  BA .   

       7.    Find the eigenvalues and the eigenvectors for matrix  A .

   A =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3 1 0

1 2 2

0 2 3
  

 Form the transform matrix  P  which makes  P    − 1  AP  a diagonal matrix.   

       8.    Find the convolution of  x ( n ) and  D  2 ( n ) where

   x n n( ) = ( ) =1 3 0 2 4 0 1 2 3 4, , , , , , , ,for  

and  D  2 ( n ) is given in equation  (2.45) . Plot  x ( n ) and  h ( n )    =     x ( n )    *     D  2 ( n ) as 
sequences of  n .   

       9.    Find the  z  - transform of the following sequences and determine the  ROC  
for each of them: 

  (a)        x n
n n

n
( ) = ( ) ≥

<
⎧
⎨
⎩

cos ,

, .

α 0

0 0
   

  (b)        x n

n n m

m n m n m( ) =
≤ ≤

− + ≤ ≤ −
⎧
⎨
⎪

⎩⎪

,

,

, .

1

2 1 2 1

0 otherwise
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    10.    Find the  z  - transform of the system function for the following discrete 
systems: 

  (a)      y ( n )    =    3 x ( n )    −    5 x ( n     −    1)    +     x ( n     −    3)  
  (b)      y ( n )    =    4  δ  ( n )    −    11  δ  ( n     −    1)    +    5  δ  ( n     −    4), where

   δ n
n

( ) =
=⎧

⎨
⎩

1 1

0

, ;

, .otherwise
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  CHAPTER THREE 

Fourier Analysis     

     Since the days of Joseph Fourier, his analysis has been used in all branches of 
engineering science and some areas of social science. Simply stated, the 
Fourier method is the most powerful technique for signal analysis. It trans-
forms the signal from one domain to another domain in which many charac-
teristics of the signal are revealed. One usually refers to this transform domain 
as the  spectral  or  frequency  domain, while the domain of the original signal 
is usually the  time  domain or  spatial  domain. The Fourier analysis includes 
both the Fourier transform (or Fourier integral) and the Fourier series. The 
Fourier transform is applicable to functions that are defi ned on the real line, 
while the Fourier series is used to analyze functions that are periodic. Since 
wavelet analysis is similar to Fourier analysis in many aspects, the purpose of 
this chapter is to provide the reader with an overview of the Fourier analysis 
from the signal analysis point of view without going into the mathematical 
details. Most of the mathematical identities and properties are stated without 
proof.  

   3.1    FOURIER SERIES 

 Fourier series and Fourier transform are often separately treated by mathema-
ticians since they involve two different classes of functions. However, engi-
neers have always been taught that Fourier transform is an extension of 
Fourier series by allowing the period  T  of a periodic function to approach 
infi nity. We will follow this route by discussing Fourier series fi rst. The Fourier 
series representation of a real - valued periodic function  p ( t ), [ p ( t )    =     p ( t     +     T  )], 
is given by

Fundamentals of Wavelets: Theory, Algorithms, and Applications, Second Edition, 
By Jaideva C. Goswami and Andrew K. Chan
Copyright © 2011 John Wiley & Sons, Inc.
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    p t ek
jk t

k

( ) =
=−∞

∞

∑ α ω0     (3.1)  

with

    α ω
k

jk t

T
p t e

t

t T
= ( ) −

+

∫1
0

0

0
,     (3.2)  

where   α  k   are the Fourier coeffi cients and the period   T = 2 0π ω  with   ω   0  being 
the  fundamental frequency . The set of functions   e ek

jk t{ } = { }ω0 ,  k     ∈     Z  forms 
a complete orthogonal basis in  L  2  [ t  0 ,  t  0     +     T  ]:

   e e dt Tk k
t

t T
� �

0

0+

∫ = δ , .   

 The coeffi cient   α  k   written in the form of an inner product

    α ω
k

jk t

T
e p t= ( )1

0 ,     (3.3)  

represents the orthogonal component of the function  p ( t ) in  k ω    0 . Hence the 
Fourier series is an orthogonal expansion of  p ( t ) with respect to the basis set 
{ e k  }. The representation in  (3.1)  is exact. However, if we truncate the series to, 
say  ±  N  terms ( k     =     −  N ,  …  ,  N ) then there will be some error. As described 
in Section  2.6 , the Fourier coeffi cients, being orthogonal projections, minimize 
the mean square of such error. A Fourier series may be represented in other 
forms. Representation using sine and cosine functions is given by

    p t
a

a k t b tk k

k

( ) = + +( )
=

∞

∑0
0 0

2
1

cos sin ,ω ω     (3.4)  

in which the  a k   and  b k   are real quantities. Complex representation using only 
positive harmonics is written as

    p t c c tk k

k

( ) = + +( )
=

∞

∑0 0

1

cos ω θ     (3.5)  

with

    c a b
b
a

k k k k
k

k
= + = −⎛⎝⎜

⎞
⎠⎟

−2 2 1, tan ,θ     (3.6)  

where   c c ek k
j k= θ  are complex quantities. Computation formulas for  a k   and 

 b k   are

c03.indd   35c03.indd   35 11/9/2010   10:12:46 AM11/9/2010   10:12:46 AM
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    a
T

p t k t dtk

T
= ( )∫2

0
0

cos ,ω     (3.7)  

    b
T

p t k t dtk

T
= ( )∫2

0
0

sin .ω     (3.8)    

   3.2    EXAMPLES 

   3.2.1    Rectifi ed Sine Wave 

 Consider a function  p ( t )    =    |sin  t |, as shown in Figure  3.1 , with the period 
 T     =      π   and   ω π0 2 2= =/ rad sT . Since the function  p ( t ) is an even function with 
respect to  t     =    0, i.e.,  p ( −  t )    =     p ( t ),  b k      =    0 for all  k . The coeffi cients { a k  } are 
computed as

    

a t kt dt

k t k t dt

k = ( )

= −( ) + +( )[ ]

= −

∫
∫

2
2

1
1 2 1 2

1

0

0

π

π

π

π

π

sin cos

sin sin

coos cos

.

1 2
1 2

1 1 2
1 2

4 1
4 1

0 0

2

−( )
−

⎡

⎣
⎢

⎤

⎦
⎥ +

+( )
+

⎡

⎣
⎢

⎤

⎦
⎥

= −
−

k t
k

k t
k

k

π π

π

π
    (3.9)     

 Hence the Fourier series of  p ( t ) is given as

   p t
k

kt
k

( ) = −
−=

∞

∑2 4 1
4 1

22
1

π π
cos .    

     FIGURE 3.1:     Rectifi ed sine wave.  
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   3.2.2    Comb Function and the Fourier Series Kernel   K     N   (  t  ) 

 In this example, we want to fi nd the Fourier series of a periodic impulse train 
[i.e., a periodic train of delta function 1    δ   ( t )]. We write the impulse train with 
period  T  as

    

I t t nT

e

T

k
jk t

n

k

( ) = −( )

=

=−∞

∞

=−∞

∞

∑

∑

δ

α ω0 .     (3.10)   

 The Fourier coeffi cients are given by

    α δ ω
k

jk t

T
t nT e dt

nT

T
= −( ) −

=−∞

∞

− ∑∫1
0

2

2

/

/
.     (3.11)   

 Since the only  n  that is within the range of integration is  n     =    0, we fi nd

   αk
T

k= ∈1
, .Z   

 Therefore, the Fourier series expansion of an impulse train  I T  ( t ) is written as

    I t
T

eT
jk t

k

( ) =
=−∞

∞

∑1
0ω .     (3.12)   

 It is instructive to examine the behavior of a truncated version of  (3.12) . 
Let  K N  ( t ) be the (2 N     +    1) term fi nite Fourier sum of  I T  ( t ):

    K t
T

eN
jk t

k N

N

( ) =
=−
∑1

0ω .     (3.13)   

  K N  ( t ) is known as the  Fourier series kernel . The geometric series sum in  (3.13)  
is carried out to give

   K t
T

N t

tN ( ) =
+⎛

⎝
⎞
⎠1

1
2

2

0

0

sin

sin
.

ω

ω   

     1      This is not a function in the classical sense. It is called a  generalized function  or  distribution . 
However, in this book, we will refer to this as a  delta function .  
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38  FOURIER ANALYSIS

 A graph of  K N  ( t ) for  N     =    4 is given in Figure  3.2 . We also compute the kernel 
for  N     =    10 and  N     =    15, but fi nd that the shape of the kernel does not change 
except the oscillation frequency is correspondingly increased for higher value 
of  N . The main lobes (main peaks) of the graph become narrower as the value 
of  N  increases. The oscillation characteristic of  K N  ( t ) contributes to the Gibb ’ s 
phenomenon to be discussed later. These oscillation patterns can be modifi ed 
by weighting the amplitudes of the coeffi cients in  (3.12) . This is a common 
practice in antenna array design  [1] .  

 Since  K N  ( t ) is periodic, we only need to consider the behavior of the kernel 
within the interval   −[ ]T T/ /2 2, . It is clear that   t tsin ω0 2( ) is bounded in the 
interval   −[ ]T T/ /2 2, , and   sin N t t+( )1 2 0/ ω  approaches   δ  ( t ) as  N  tends to infi n-
ity  [2] . Hence

   lim , .
N

NK t t t
T

→∞
( ) = ( ) ≤δ

2
    

 This procedure is applied to all other intervals   2 1 2k T+( )[ ]/ ,  k     ∈     Z , and the 
result is that

    lim .
N

N TK t I t t kT
k

→∞
∈

( ) = ( ) = −( )∑δ
Z

    (3.14)   

 The impulse train of  (3.12)  is called the  comb function  in engineering litera-
ture  [3]  (see Figure  3.3 ).  

     FIGURE 3.2:     Fourier series kernel  K N  ( t ).  

     FIGURE 3.3:     Comb function.  
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 Several important properties of Fourier series such as Poisson ’ s sum formula, 
partial sum, and sampling theorem require the use of Fourier transform for 
effi cient derivation. We will consider these topics later in this chapter.     

   3.3    FOURIER TRANSFORM 

 To extend the Fourier series to Fourier transform, let us consider equations 
 (3.1)  and  (3.2) . 

 The time function  p ( t ) in  (3.1)  can be expressed using  (3.2)  as

    

p t
T

p t e dt e

p t

jk t jk t

T

T

k

( ) = ′( ) ′
⎡

⎣
⎢

⎤

⎦
⎥

= ′

− ′

−=−∞

∞

∫∑ 1

1
2

0 0

2

2

0

ω ω

π
ω

/

/

(( ) ′⎡
⎣⎢

⎤
⎦⎥

− ′

−∫∑
=−∞

∞
e dt ejk t

T

T
jk t

k

ω ω0 0

2

2

/

/
.     (3.15)   

 We extend the period  T  to infi nity so that   ω    0  approaches  d ω   and  k ω   0  
approaches   ω  . The summation in  (3.15)  becomes an integral

    p t p t e dt e dj t j t( ) = ′( ) ′⎡
⎣⎢

⎤
⎦⎥

− ′

−∞

∞

−∞

∞

∫∫1
2π

ωω ω .     (3.16)   

 The integral inside the bracket is represented by a function   p̂ ω( )

    ˆ ,p p t e dtj tω ω( ) = ′( ) ′− ′

−∞

∞

∫     (3.17)  

and  (3.16)  becomes

    p t p e dj t( ) = ( )
−∞

∞

∫1
2π

ω ωωˆ .     (3.18)   

 Equations  (3.17)  and  (3.18)  are known as the  Fourier transform pair . 
 From here on, we will use  f ( t ) to represent a time - domain function, while 

 p ( t ) is restricted to representing periodic time functions. Let ’ s rewrite  (3.17)  
in new notation. 

 The  Fourier transform  of a fi nite energy function  f ( t )    ∈     L  2 ( R ) of a real vari-
able  t  is defi ned by the integral

    ˆ .f f t e dtj tω ω( ) = ( ) −

−∞

∞

∫     (3.19)   
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 In inner product notation, described in Chapter  2 , the Fourier transform can 
also be expressed as

    ˆ , .f f t e j tω ω( ) = ( )     (3.20)   

 We should emphasize the fact that   f̂ ω( ) is a complex - valued function, which 
can be expressed in terms of amplitude and phase by

    ˆ ˆ .f f e jω ω φ ω( ) = ( ) ( )     (3.21)   

 However, the mapping from the domain of  f ( t ) to that of   ̂f ω( ) is from  R  to 
 R  (i.e., from the  t  - axis to the   ω   - axis), even though the real - valued function 
 f ( t ) is mapped to a complex - valued function   f̂ ω( ). 

 The interpretation of  (3.20)  is very important. This equation states that for 
an   ω   1 ,   f̂ ω1( ) represents the component of  f ( t ) at   ω    1 . If we can determine all 
the components of  f ( t ) on the   ω   - axis, then a superposition of these components 
should give back (reconstruct) the original function  f ( t ):

    f t f e dj t( ) = ( )
−∞

∞

∫1
2π

ω ωωˆ .     (3.22)   

 Hence  (3.22)  can be viewed as a superposition integral that produces  f ( t ) from 
its components. The integral is referred to as the  inverse Fourier transform  
of   f̂ ω( ). If the variable  t  represents  time ,   f̂ ω( ) is called the  spectrum  of  f ( t ). 
If  t  represents space,   f̂ ω( ) is called the  spatial spectrum . 

 The Fourier transform is very important in the development of wavelet 
analysis and will be used often in subsequent chapters. We will use it as an 
example to present some of the properties of the   δ   - function. 

 Let us recall that

    f t t y dt f y( ) −( ) = ( )
−∞

∞

∫ δ .     (3.23)   

 Consequently, the Fourier transform of   δ  ( t )

    ˆ .δ ω δ ω ω( ) = ( ) = =− −

−∞

∞

∫ t e dt ej t j 0 1     (3.24)   

 From the inverse transform of   ̂δ ω( ), the identity

    δ
π

ωωt e dj t( ) =
−∞

∞

∫1
2

    (3.25)  

is established. The inverse transform in  (3.22)  can now be shown to be
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1
2

1
2
1

2

π
ω ω

π
ω

π

ω ω ωf̂ e d e d f t e dt

f t

j t j t j t( ) = ′( ) ′

= ′(

−∞

∞

−∞

∞

−∞

∞

∫ ∫∫ − ′

)) ′

= ′( ) − ′( ) ′ = ( )

− ′( )
−∞

∞

−∞

∞

−∞

∞
∫∫

∫

e d dt

f t t t dt f t

j t tω ω

δ .

  

 Since the Fourier transform is unique, we may write

   f t f( )⇔ ( )ˆ .ω  

meaning that for each function  f ( t ), there is a unique Fourier transform cor-
responding to that function, and vice versa.  

   3.4    PROPERTIES OF FOURIER TRANSFORM 

 Since the focus of this chapter is not a detailed exposition of the Fourier 
analysis, only the properties that are relevant to wavelet analysis will be 
discussed. 

   3.4.1    Linearity 

 If  f ( t )    =      α f  1 ( t )    +      β f  2 ( t ), for some constants   α   and   β  , then the Fourier trans-
form is

    

f̂ f t e dt f t e dt f t e dtj t j t j tω α βω ω ω( ) = ( ) = ( ) + ( )

=

− − −

−∞

∞

−∞

∞

−∞

∞

∫ ∫ ∫1 2

αα ω β ωˆ ˆ .f f1 2( ) + ( )     (3.26)   

 The extension of  (3.26)  to the fi nite sum of functions is trivial.  

   3.4.2    Time Shifting and Time Scaling 

 Let the function  f ( t ) be shifted by an amount  t  0 . The spectrum is changed by 
a phase shift. Indeed, the spectrum of the shifted function  f  0 ( t )   : =     f ( t     −     t  0 ) is 
expressed by

    

ˆ

ˆ

f f t t e dt f u e du

e f

j t j u t

j t

0 0
0

0

ω

ω

ω ω

ω

( ) = −( ) = ( )

= ( )

− − +( )

−
−∞

∞

−∞

∞

∫ ∫
== ( ) ( )−ˆ ,f e j j tω φ ω ω 0     (3.27)  

where   ϕ  (  ω  ) is the phase of the original function  f ( t ). The magnitude of the 
spectrum remains unchanged for a shifted signal. The shifting is incorporated 
into the phase term of the spectrum. 
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 Let  a  be a nonzero constant; the spectrum of  f a  ( t )   : =     f ( at ) is given by

   f̂ f at e dta
j tω ω( ) = ( ) −

−∞

∞

∫     (3.28)  

   = ( ) ⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

−∞

∞

∫ f u e d
u
a

j
u
a

ω
    (3.29)  

   = ⎛
⎝⎜

⎞
⎠⎟

1
a

f
a

ˆ .
ω

    (3.30)   

 Depending on whether  a  is greater or smaller than one, the spectrum is 
expanded or contracted, respectively. We shall see this important property 
occur frequently later in the development of wavelet analysis.  

   3.4.3    Frequency Shifting and Frequency Scaling 

 The results for frequency shifting and scaling follow in a similar way. If 
  ˆ : ˆf f0 0ω ω ω( ) = −( ), then

    f t f t e j t
0

0( ) = ( ) ω ,     (3.31)  

and if   ˆ : ˆf f aa ω ω( ) = ( ) for a nonzero value of  a , then

    f t
a

f
t
a

a ( ) = ⎛
⎝⎜

⎞
⎠⎟

1
.     (3.32)    

   3.4.4    Moments 

 The  n th - order moment of a function is defi ned as

    M t f t dtn
n: .= ( )

−∞

∞

∫     (3.33)   

 The fi rst - order moment,

    

M t f t dt j
d

d
f t e dt

j
df

d

j t
1

1

0

1

= ( ) = −( ) ( )

= −( ) ( )
−∞

∞

−∞

∞

∫ ∫− −

=

−

ω

ω
ω

ω

ω

ω

ˆ

==0

.     (3.34)   

 The extension of this formula to the  n th - order moment results in

    M j
d f

d
n

n
n

n= −( ) ( )−

=

ˆ
.

ω
ω ω 0

    (3.35)    
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   3.4.5    Convolution 

 The convolution of two functions  f  1 ( t ) and  f  2 ( t ) is defi ned by

    f t f y f t y dy( ) = ( ) −( )
−∞

∞

∫ 1 2 .     (3.36)   

 We write  (3.36)  symbolically by

    f t f t f t( ) = ( )∗ ( )1 2 .     (3.37)   

 Notice that if  f  2 ( t ) is   δ  ( t ), the convolution integral recovers the function  f  1 ( t ). 
It is well known that a linear system represented symbolically by the block 
diagram in Figure  3.4  has the input – output relation given by

    O t h t i t( ) = ( )∗ ( ),     (3.38)  

where  h ( t ) is the system response function. Hence if  i ( t ) is a delta function, 
the output function  O ( t ) is the same as  h ( t ). For an arbitrary input function 
 f ( t ) the convolution integral

    O t h i t d( ) = ( ) −( )
−∞

∞

∫ τ τ τ     (3.39)  

represents a superposition of the output due to a series of input delta functions 
whose amplitudes are modulated by the input signal. It is easy to show that 
the spectral domain representation of the convolution integral of  (3.36)  is 
given by

   ˆ ˆ ˆ .f f fω ω ω( ) = ( ) ( )1 2      

   3.4.6    Parseval ’ s Theorem 

 Parseval ’ s theorem states that

    f t dt f d( ) = ( )
−∞

∞

−∞

∞

∫ ∫2 21
2π

ω ωˆ .     (3.40)   

     FIGURE 3.4:     Linear System.  
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44  FOURIER ANALYSIS

 Two functions,  f ( t ) and  g ( t ), are related to their Fourier transform   f̂ ω( ) and 
  ĝ ω( ) via the Parseval ’ s identity for Fourier transform given as

    f t g t f g( ) ( ) = ( ) ( ), ,
1

2π
ω ωˆ ˆ .     (3.41)   

 This can be shown from

    

f t g t f t g t dt

f e d g t dtj t

( ) ( ) = ( ) ( )

= ( )⎛
⎝⎜

⎞
⎠⎟

( )

−∞

∞

−∞

∞

−∞

∞
∫

∫

,

1
2π

ω ωωˆ∫∫
∫∫

∫

= ( ) ( )
⎛

⎝⎜
⎞

⎠⎟

= ( ) ( )

−

−∞

∞

−∞

∞

−∞

∞

1
2

1
2

π
ω ω

π
ω ω ω

ωˆ

ˆ ˆ

f g t e dt d

f g d

j t

== ( ) ( )1
2π

ω ωˆ ˆ .f g,     (3.42)   

 In particular, with  g ( t )    =     f ( t ), we get the so - called Parseval ’ s theorem given in 
 (3.40) . Equation  (3.40)  is a statement about the energy content in the signal. 
It states that the total energy computed in the time domain   ∫−∞

∞ ( )⎡⎣ ⎤⎦f t dt2  is 

equal to the total energy computed in the spectral domain   
1

2

2

π
ω ωf̂ d( )⎡

⎣⎢
⎤
⎦⎥−∞

∞

∫ . 

The Parseval theorem allows the energy of the signal to be considered in either 
the spectral domain or the time domain and can be interchanged between 
domains for convenience of computation.   

   3.5    EXAMPLES OF FOURIER TRANSFORM 

 We evaluate the Fourier transforms of several functions that will occur fre-
quently in various applications. For this purpose, we may use the defi nition 
given in Section  3.4  directly or use the properties of Fourier transform. 

   3.5.1    The Rectangular Pulse 

 The rectangular pulse (Figure  3.5 ),  r ( t ), is defi ned by

    r t u t T u t T( ) = +( ) − −( )     (3.43)  

    =
<⎧

⎨
⎩

1

0

t T

otherwise.
    (3.44)     
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 We obtain

    ˆ
sin

.r r t e dt e dt
T T

T
j t j t

T

T
ω ω

ω
ω ω( ) = ( ) = =− −

−∞

∞

−∫ ∫ 2
    (3.45)   

 The function,   sinω ωT T/ , called the  sinc  function, is the Fourier transform 
of a rectangular pulse. We remark here that for   T = 1 2/ , the function 
  r t t−( ) = ( )[ )1 2 0 1/ χ ,  is called the  characteristic function  or the  fi rst - order B - spline . 
This is an important function to remember and will be recalled later in the 
development of wavelet theory.  

   3.5.2    The Triangular Pulse 

 By convoluting two rectangular pulses, we obtain a triangular pulse (Figure 
 3.6 ), which is expressed by

   T t r t r tr ( ) = ( )∗ ( )     (3.46)  

   =

+⎛
⎝⎜

⎞
⎠⎟ − ≤ ≤

−⎛
⎝⎜

⎞
⎠⎟ ≤ ≤

⎧

⎨

⎪
⎪

⎩

⎪
⎪

2 1
2

2 0

2 1
2

0 2

0

T
t
T

T t

T
t
T

t T

otherwise.

     (3.47)     

     FIGURE 3.5:     A rectangular pulse and its Fourier transform.  

     FIGURE 3.6:     A triangular function and its Fourier transform.  
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46  FOURIER ANALYSIS

 By the convolution theorem we have

    ˆ sin
T

T T
T

r ω ω
ω

( ) = ⎡
⎣⎢

⎤
⎦⎥

2 2

    (3.48)  

    = ( )
( )

4 2
2

2T
T

T

sin
.

ω
ω

    (3.49)   

 If   T = 1 2/ ,

    T t

t

t

t

tr ( ) =
+
−

⎧
⎨
⎪

⎩⎪

≤ ≤
≤ ≤

1

1

0

1 0

0 1

otherwise,

    (3.50)  

and   ˆ
sin

Tr ω ω
ω

( ) = ( )
( )

⎛
⎝⎜

⎞
⎠⎟

/
/

2
2

2

. The triangular function with   T = 1 2/  is called the

second - order  B  - spline, which plays an important role as a scaling function 
of the spline wavelet.  

   3.5.3    The Gaussian Function 

 The Gussian function is one of the most important functions in probability 
theory and the analysis of random signals. It plays the central role in the Gabor 
transform to be developed later. The Gaussian function with unit amplitude 
is expressed as

    g t e t( ) = −α 2
.     (3.51)   

 Its Fourier transform,   ̂g ω( ), can be computed easily as

    

ĝ e e dt

e dt

e

t j t

t j t

ω α ω

α ω
α

ω
α

ω
α

( ) =

=

=

− −

− + −
⎛

⎝⎜
⎞

⎠⎟
−

−

−∞

∞

−∞

∞

∫

∫

2

2
2 2

4 4

ωω
α

α ω
α

ω
απ

α

2 2

2

4 2

4

e dt

e

t j− +⎛
⎝⎜

⎞
⎠⎟

−

−∞

∞

∫
= .     (3.52)   

 It is interesting to note that the Fourier transform of a Gaussian function 
is also a Gaussian function. The waveform and its transform are shown in 
Figure  3.7 .   

 The parameter   α   can be used to control the width of the Gaussian pulse. It 
is evident from  (3.51)  and  (3.52)  that a large value of   α   produces a narrow 
pulse, but its spectrum spreads wider on the   ω   - axis.   
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   3.6    POISSON ’ S SUM AND PARTITION OF UNITY 

 We now return to the Fourier series and discuss the Poisson ’ s sum whose deri-
vation is made much simpler by using some properties of the Fourier trans-
form. In many applications, it is necessary to form a periodic function from a 
nonperiodic function with fi nite energy for the purpose of analysis. 

 Poisson ’ s sum formula is useful in relating the time - domain information of 
such a function with its spectrum. Let  f ( t )    ∈     L  2 ( R ). The periodic version of  f ( t ), 
to be called  f p  ( t ), is obtained by

    f t f t np

n

( ) = +( )
=−∞

∞

∑: ,2π     (3.53)  

where we have assumed  T     =    2  π   to be the period of  f p  ( t ). Consequently, 
  ω π0 2 1= =/T , and the Fourier series representation of  f p  ( t ) is

    f t c ep k
jkt

k

( ) =
=−∞

∞

∑ .     (3.54)  

with the coeffi cient  c k   given by

    

c f t e dt

f t n e dt

f t

k p
jkt

jkt

n

= ( )

= +( )

= +

−

−

∫
∑∫
∈

1
2

1
2

2

1
2

2

0

2

0

2
π

π
π

π
π

π

π

Z

nn e dt

f e d

jkt

jk n

n

n

n

n

( )

= ( )

−

− −( )( )

∫∑

∫∑
∈

+

∈

0

2

2

2 11
2

2

π

π

π

π
ξ ξξ π

Z

Z
,     (3.55)  

     FIGURE 3.7:     A Gaussian function and its Fourier transform.  
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48  FOURIER ANALYSIS

where a change of variable   ξ      =     t     +    2  π n  has been used. Since the summation 
and the integration limits effectively extend the integration over the entire 
real line  R , we may write

    

c f e d

f k

k
jk= ( )

= ( )

−

−∞

∞

∫1
2
1

2

π
ξ ξ

π

ξ

ˆ ,     (3.56)  

where the defi nition of the inverse Fourier transform has been used. Combining 
 (3.53) ,  (3.54) , and  (3.56) , we have the so - called  Poisson ’ s sum formula 

    f t n f k e
n k

jkt+( ) = ( )
=−∞

∞

=−∞

∞

∑ ∑2
1

2
π

π
ˆ .     (3.57)   

 For an arbitrary period  T , the formula is generalized to

    f t nT
T

f k e
n k

jk t+( ) = ( )
=−∞

∞

=−∞

∞

∑ ∑1
0

0ˆ .ω ω     (3.58)   

 If  g ( t ) is a scaled version of  f ( t ):

    g t f at a( ) = ( ) >, ,0     (3.59)  

we have

    ˆ ˆ .g
a

f
a

ω ω( ) = ⎛
⎝⎜

⎞
⎠⎟

1
    (3.60)   

 Poisson ’ s sum formula for  f ( at ) is

    f at an
a

f
k
a

e
n k

jkt+( ) = ⎛
⎝⎜

⎞
⎠⎟

=−∞

∞

=−∞

∞

∑ ∑2
1

2
π

π
ˆ .     (3.61)   

 If  at  is renamed as  t , we have

    f t an
a

f
k
a

e
n k

jkt
a+( ) = ⎛

⎝⎜
⎞
⎠⎟

=−∞

∞

=−∞

∞

∑ ∑2
1

2
π

π
ˆ .     (3.62)   

 Two other forms of Poisson ’ s sum will be needed for derivations in subse-
quent sections. They are stated here without proof. The proofs are left as 
exercises.

    f̂ k f k e
k k

jkω π ω+( ) = ( )
∈ ∈
∑ ∑ −2

Z Z
    (3.63)  

    
1 2
a

f
k

a
f ak e jk

kk

ˆ ω π ω+⎛
⎝⎜

⎞
⎠⎟ = ( ) −

∈∈
∑∑

ZZ
    (3.64)   
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   3.6.1    Partition of Unity 

 A direct consequence of Poisson ’ s sum is that a basis may be found so that 
unity is expressed as a linear sum of the basis. We call this property the  parti-
tion of unity . Let  a  be   1 2/ π  in  (3.62) . Poisson ’ s sum formula becomes

    f t n f k e
n k

j kt+( ) = ( )
=−∞

∞

=−∞

∞

∑ ∑ ˆ .2 2π π     (3.65)   

 If the spectrum of a function  f ( t )    ∈     L  2 ( R ) is such that

    ˆ ,,f k kk2 0π δ( ) = ∈for Z     (3.66)  

that is,

   ˆ ,f 0 1( ) =  

and

   ˆ \ ,f k k2 0 0π( ) = ∈ { }Z  

then it follows from  (3.65)  that

    f t n
n

+( ) ≡
∈
∑

Z
1.     (3.67)   

 The fi rst -  and second - orders of  B  - splines are good examples of functions sat-
isfying this property. 

    First - order  B  - spline  

   N t t1 0 1( ) = ( )[ ): ,χ  

   N̂ e dt
e
j

j t
j

1
0

1 1ω
ω

ω
ω

( ) = = −−
−

∫  

   ˆ limN
e
j

j

1
0

0
1

1( ) = − =
→

−

ω

ω

ω
 

   ˆ , \ .N k k1 2 0 0π( ) = ∈ { }Z   

 Hence

    N t k
k

1 1+( ) ≡
∈
∑

Z
.     (3.68)    
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50  FOURIER ANALYSIS

    Second - order  B  - spline  

   N t N t N t2 1 1( ) = ( )∗ ( )     (3.69)  

   = −
⎧
⎨
⎪

⎩⎪

∈[ )
∈[ )

t

t

t

t2

0

0 1

1 2

,

,

.otherwise

    (3.70)      

 From the convolution property, we have

    ˆ ˆN N2 1
2

ω ω( ) = ( )( )     (3.71)  

    ˆ .N
e
j

j

1

2
1ω

ω

ω
( ) = −⎛

⎝⎜
⎞
⎠⎟

−

    (3.72)   

 Again, we fi nd here that

    ˆ ;N2 0 1( ) =     (3.73)  

    ˆ ; \N k k2 2 0 0π( ) = ∈ { }Z     (3.74)   

 Consequently,  N  2 ( t ) also satisfi es the conditions for partition of unity. In fact, 
from the recursive relation of  B  - spline

    N t N t N tm m( ) = ( )∗ ( )−1 1     (3.75)  

    = −( )−∫ N t dm 1
0

1
τ τ ,     (3.76)  

we have   N̂ e jm
j mω ωω( ) = −( )⎡⎣ ⎤⎦

−1 , which satisfi es the requirement for par-
tition of unity. Hence  B  - splines of arbitrary orders all have that property. 
Graphic illustrations for the partition of unity are shown in Figure  3.8 .     

     FIGURE 3.8:     Partition of unity.  
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   3.7    SAMPLING THEOREM 

 The sampling theorem is fundamentally important to digital signal analysis. It 
states that if a signal  f ( t ) is bandlimited with bandwidth 2 Ω , then the signal 
 f ( t ) can be exactly reconstructed from its sampled values at equidistant grid 
points. The distance between adjacent sample points, called the sampling 
period  h , should not be less than   π  / Ω . The function  f ( t ) is recovered by using 
the formula

    f t h f kh
t kh

t kh
k

k

( ) = ( ) −( )[ ]
−( )[ ]

∈
∈
∑

Z
Zsin

, .
Ω

π
    (3.77)   

 If  h     =      π  / Ω , the sampling frequency   f hs = =1/ /Ω π  is called the Nyquist rate. 
Theoretically,  f ( t ) can always be reconstructed perfectly from samples if 
 h     <      π  / Ω . In practice, however, we cannot recover  f ( t ) without error due to the 
infi nite nature of the sinc function. 

 Let   f̂ ω( ) be the Fourier transform of  f ( t )

   ˆ .f f t e dtj tω ω( ) = ( ) −

−∞

∞

∫   

 The integral can be approximated using Simpson ’ s rule as

    ˆ ˆ .f F h f kh e j kh

k

ω ω ω( ) ≅ ( ) = ( ) −

∈
∑

Z
    (3.78)   

 Using Poisson ’ s sum formula in  (3.64) , we can rewrite   F̂ ω( )

    

ˆ

ˆ

ˆ ˆ

F h f kh e

f
h k

h

f f
k

h

jk h

k

k

ω

ω π

ω ω π

ω( ) = ( )

= +⎛
⎝⎜

⎞
⎠⎟

= ( ) + +⎛

−

∈

∈

∑
∑

Z

Z

2

2
⎝⎝⎜

⎞
⎠⎟

∈ { }
∑

k Z\

.
0

    (3.79)   

 Hence   F̂ ω( ) contains   f̂ ω( ) plus infi nitely many copies of   f̂ ω( ) shifted along 
the   ω   - axis. In order for   f̂ ω( ) to be disjointed with its copies, the amount of 
shift,   2π /h , must be at least 2    Ω  (see Figure  3.9 ):

    
2

2
π π
h

h≥ ≤Ω
Ω

, .     (3.80)     
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 To recover the original function, we use a spectral window

    Ŵ ω
ω

( ) =
≤⎧

⎨
⎩

1

0

Ω
otherwise

    (3.81)  

and recover   f̂ ω( ) by

    ˆ ˆ ˆ .f F Wω ω ω( ) = ( ) ( )     (3.82)   

 From the convolution theorem we obtain  f ( t ):

    f t F t W t( ) = ( )∗ ( ).     (3.83)   

 Since   W t t t( ) = sinΩ /π  is well known, we compute  F ( t ) from the inverse Fourier 
transform

    

F t
h

f kh e e d

h
f kh e d

jkh j t

j t kh

k

k

( ) = ( )

= ( )

−

−( )

∈−∞

∞

∈ −

∑∫
∑

2

2

π
ω

π
ω

ω ω

ω

Z

Z ∞∞

∞

∈

∫
∑= ( ) −( )h f kh t kh
k

δ
Z

,     (3.84)  

where we have used  (3.25) . The function  f ( t ) is recovered by using the convolu-
tion formula

     FIGURE 3.9:     (a) Undersampling   S h= <( )2 2π/ Ω . (b) Oversampling   S h= >( )2 2π/ Ω .  

c03.indd   52c03.indd   52 11/9/2010   10:12:49 AM11/9/2010   10:12:49 AM



PARTIAL SUM AND GIBB’S PHENOMENON  53

    

f t h f kh kh W t d

h f kh W t kh

h f kh

k

k

( ) = ( ) −( ) −( )

= ( ) −( )

= (

−∞

∞

∈

∈

∫∑
∑

δ τ τ τ
Z

Z

)) −( )[ ]
−( )

= ( ) −( )
−( )

∈

∈

∑
∑

sin

sin
.

Ω

Ω
Ω

t kh
t kh

f kh
t k

t k

k

k

π

π
π

Z

Z
    (3.85)  

where we have used  Ω  h     =      π  . We remark here that  (3.85)  represents an inter-
polation formula. Since sin[ Ω ( t     −     kh )]/[ Ω ( t     −     kh )] is unity at  t     =     kh  and zero, 
at all other sampling points, the function value at  kh  is not infl uenced by other 
sampled values.

    f kh f kh f kh
k

( ) = ( ) ( ) = ( )
∈
∑ sin

.
0

0Z
    (3.86)   

 Hence the function  f ( t ) is reconstructed through interpolation of its sampled 
values with the sinc function as the interpolation kernel.  

   3.8    PARTIAL SUM AND GIBB ’ S PHENOMENON 

 The partial sum of a Fourier series is a least square approximation to the 
original periodic function. Let  p M  ( t ) be the (2 M     +    1) term partial sum of the 
Fourier series of a periodic function  p ( t ) with period  T 

    p t eM k
jk t

k M

M

( ) =
=−
∑ α ω0 ,     (3.87)  

with the Fourier coeffi cients given by

    α ω
k

jk t

T
p t e dt

T

T
= ( ) −

−∫
1

0

2

2

/

/
.     (3.88)   

 Putting   α  k   back into  (3.87) , we have the partial sum

    p t
T

p e e dM
jk jk t

T

T

k M

M

( ) = ( ) −

−=−
∫∑ 1

0 0

2

2
τ τω τ ω

/

/
.     (3.89)   
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 On interchanging the order of summation and integration, we obtain

    

p t
T

p e d

T
p

M t

M
jk t

k M

M

T

T
( ) = ( )

= ( )
+⎛

⎝
⎞
⎠ −

−( )

=−− ∑∫1

1
1
2

0

2

2
τ τ

τ

ω τ

/

/

sin ττ ω

τ ω
τ

( )

−( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥−∫

0

0
1
2

2

2

sin
.

t
d

T

T

/

/
    (3.90)  

which is the convolution between the original periodic function with the 
Fourier series kernel discussed in Section  3.2.2 . We can easily see that the 
oscillatory characteristic  K N   is carried into the partial sum. If  p ( t ) is a rectan-
gular pulse train or a periodic function with jump discontinuities, the partial 
Fourier series will exhibit oscillation around the discontinuities. This is known 
as the  Gibb ’ s phenomenon . The percentage of overshoot remains constant 
regardless of the number of terms taken for the approximation. As  M     →     ∞ , 
the sum converges to the midpoint at the discontinuity  [4] .  

   3.9    FOURIER ANALYSIS OF DISCRETE - TIME SIGNALS 

 Since the computation of the Fourier series coeffi cients and Fourier trans-
form requires integration, the function must be analytically describable 
by elementary functions such as sine and cosine functions, exponential func-
tions and terms from a power series. In general, most signals we encounter in 
real life are not representable by elementary functions. We must use numerical 
algorithms to compute the spectrum. If the signals are sampled signals, 
the discrete Fourier series and discrete - time Fourier transform are directly 
computable. They produce an approximate spectrum of the original analog 
signal. 

   3.9.1    Discrete Fourier Basis and Discrete Fourier Series 

 For a given periodic sequence with periodicity  N , we have

    f n mN f n mp p+( ) = ( ) ∈, .Z     (3.91)   

 The Fourier basis for this periodic sequence has only  N  basis functions, namely,

    ek

j
N

kn
n e k N( ) = = −

2

0 1 1
π

, , , , .…     (3.92)   

 We can easily show the periodicity of the basis set
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    ek N

j
N

k N n

k
j n

k

e

e e

e

+
+( )

=

= ⋅
=

2

2

π

π

    (3.93)  

since  e j   2    π n      =    1 for integer  n . Therefore, the expansion of  f p  ( n ) is in the form of

    f n np k k

k

N

( ) = ( )
=

−

∑α e
0

1

    (3.94)  

    =
=

−

∑α
π

k

j
N

kn
e

k

N 2

0

1

,     (3.95)  

and then we can compute the coeffi cients by

    

α
π

π

k p

j k
N

n

p
j

N
kn

f n e

N
f n e

n

N

= ( )

= ( )
−

=

−

∑

,

.

2

21

0

1

    (3.96)   

 Equations  (3.94)  and  (3.96)  form a transform pair for discrete periodic 
sequences and their discrete spectra. It is quite easy to see from  (3.96)  that 
the Fourier coeffi cients {  α  k  } are also periodic with  N .

   α αk k mN m= ∈+ , .Z   

  Example 1.     Find the Fourier series coeffi cients for the sequence

   f n n( ) = ( )cos .5π   

  Solution:  The given sequence is not a periodic sequence since we cannot 
fi nd an integer  N  such that  f ( n     +     N )    =     f ( n ). Consequently,  f ( n ) does not have 
a discrete Fourier series representation.  

  Example 2.     Find the Fourier series representation of

   

a f n
n

b f n

( ) ( ) =

( ) ( ) = { }

cos ,

, , , .

π
5

1 1 0 0

and

  

  Solution : ( a ) Instead of directly computing the coeffi cients using  (3.96) , we 
may represent the cosine function in its exponential form

    f n e e
j n j n

( ) = +
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

−1
2

2
10

2
10

π π

.     (3.97)   
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56  FOURIER ANALYSIS

 The periodicity of this sequence is seen as  N     =    10. Since  (3.97)  is already in 
the form of an exponential series as in  (3.95) , we conclude that

    αk

k

k=

=

=

⎧

⎨

⎪
⎪

⎩

⎪
⎪

1
2

1

1
2

9

0

,

,

, .otherwise

    (3.98)   

 ( b ) We compute the Fourier coeffi cients using  (3.96)  to obtain

   α
π

k
j k

e k= +
⎛

⎝⎜
⎞

⎠⎟
=

−1
4

1 0 1 2 3
2
4 , , , , .   

 We have

    αk

k

j k

k

j k

=

=

−( ) =

=

+( ) =

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

1
2

0

1
4

1 1

0 2

1
4

1 3

,

,

,

,

    (3.99)   

 The sequence and its magnitude spectrum are shown in Figure  3.10 .     

   3.9.2    Discrete - Time Fourier Transform ( DTFT ) 

 If a discrete signal is aperiodic, we may consider it to be a periodic signal with 
period  N     =     ∞ . In this case, we extend the discrete Fourier series analysis to 
DTFT similar to the extension in the analog domain. In DTFT, the time vari-
able ( n ) is discretized while the frequency variable (  ω  ) is continuous since

   Δω π ω= →
→∞

lim .
N N

2
  

 The DTFT pair is explicitly given by

    ˆ ,f f n e jn

n

ω ω( ) = ( ) −

=−∞

∞

∑     (3.100)  

    f n f e djn( ) = ( )
−∫

1
2π

ω ωω

π

π
ˆ .     (3.101)   

  Example.     Determine the spectrum of the exponential sequence

   f n a n an( ) = ∀ ∈ = { } <+, : , , , .Z 0 1 1�   

  Solution : Using  (3.100) ,
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ˆ

.

f a e

ae

ae

n jn

j n

j

n

n

ω ω

ω

ω

( ) =

= ( )

=
−

−

−

−

=

∞

=

∞

∑

∑
0

0

1
1

    (3.102)   

     FIGURE 3.10:     (a) The sequence  f ( n ) and (b) its magnitude spectrum |  α  k  |.  
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58  FOURIER ANALYSIS

 We pointed out in Chapter  2  that the DTFT can be obtained from the 
 z  - transform by replacing the variable  z  with  e j ω   . For this example, the  z  -
 transform is

   

F z a z

az

az

n n

n

n

n

( ) =

= ( )

=
−

−

−

−

=

∞

=

∞

∑

∑
0

0

1

1

1
1

.

  

 Therefore, replacing the variable  z  with  e j ω    yields

   F z
ae

fz e jj( ) =
−

= ( )= −ω ω ω1
1

ˆ .   

 The  z  - transform  F ( z ) and the DTFT,   f̂ F z z ejω ω( ) = ( )⎡⎣ ⎤⎦= , will be used inter-

changeably in future derivations and discussions on wavelet construction.    

   3.10    DISCRETE FOURIER TRANSFORM ( DFT ) 

 The integral in the inverse DTFT discussed in Section  3.9  must be evalu-
ated to recover the original discrete - time signal. Instead of evaluating the 
integral, we can obtain a good approximation by a discretization on the fre-
quency (  ω  ) axis. 

 Since the function  f ( t ) is band limited (if it is not, we make it so by passing 
it through a low - pass fi lter with suffi ciently large width), we need to discretize 
the interval [ −  Ω ,  Ω ] only, namely

    ω π
n

n
Nh

n
N N= = −2
2 2

, , .…     (3.103)   

 The integral in equation  (3.17)  can now be approximated as a series sum, 
namely

    ˆ ˆf h f k e hf nn
j kn

k

N

ω ω( ) ≈ ( ) = ( )−

=

−

∑
0

1

    (3.104)  

where

    ˆ .f n f k e
j

kn
N

k

N

( ) = ( )
−

=

−

∑
2

0

1 π

    (3.105)   
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 We can easily verify that the evaluation of the discrete Fourier transform 
using  (3.105)  is an  O ( N   2 ) process. We can compute the discrete Fourier trans-
form with an  O ( N log 2  N ) operation with the well - known algorithm of  fast 
Fourier transform  (FFT). One of the commonly used FFT algorithms is by 
Danielson and Lanczos, according to which, assuming  N  to be such that it is 
continuously divisible by 2, a DFT of data length  N  can be written as a sum 
of two discrete Fourier transforms, each of length   N/2. This process can be 
used recursively until we arrive at the DFT of only two data points. This is 
known as the Radix - 2 FFT algorithm. Without getting into many details of the 
algorithm, which the interested reader can obtain from many excellent books 
available on these topics, we simply mention here that by appropriately 
arranging the data of length  N  where  N  is an integer power of 2 (known as 
decimation - in - time and decimation - in - frequency arrangements), we can 
compute the discrete Fourier transform in an  O ( N log 2  N ) operation. If  N  is 
not an integer power of 2, we can always make it so by padding the data 
sequence with zeros.  

   3.11    EXERCISES 

       1.    Verify that the order of taking the complex conjugate and the Fourier 
transform of a function  f     ∈     L  2 ( −  ∞ ,  ∞ ) can be reversed as follows:

   ˆ ˆF Fη η( ) = −( )  

for any   η      ∈     R .   

    2.    Check that the condition

   
d

d

j

jω
ψ ω

ω

ˆ ( ) =
=0

0  

is equivalent to the moment condition

   t t dtjψ ( ) =
−∞

∞

∫ 0  

for any positive integer number  j .   

    3.    Show that the Dirichlet kernel

   D u ku
n u

un

k

n

( ) = +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

+⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠=

∑1 1
2

1
2

2
2

1
π π

cos
sin

sin
.   

 Plot the kernel for  n     =    6.   
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60  FOURIER ANALYSIS

    4.    Find the Fourier series of  f ( t )    =     e jxt  ,  −   π      <     t     <      π  .   

    5.    Determine the energy - normalized constant  A  of the Gaussian function 
  g t Ae t
α

α( ) = − 2
 and derive the expression of the Fourier transform.   

    6.    Extend the Poisson sum formula to arbitrary period  T .   

    7.    Derive the following Poisson sum formulae in the spectral domain ( a     >    0):

   f̂ k f k e
k k

jkω π ω+( ) = ( )∑ ∑ −2  

   
1 2
a

f
k

a
f ak e jk

kk

ˆ .
ω π ω+⎛

⎝⎜
⎞
⎠⎟ = ( ) −∑∑         
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  CHAPTER FOUR 

Time - Frequency Analysis     

     We summarized rather briefl y the Fourier analysis in the last chapter to 
refresh the memory of the reader and to point out a few important concepts 
in the analysis that will be useful when we discuss the time - frequency analysis. 
We observe from the defi nition of the Fourier transform  (3.19)  that the inte-
gration cannot be carried out until the entire waveform in the whole of the 
real line ( −  ∞ ,  ∞ ) is known. This is because the functions  e j ω t   or cos  ω t  and sin  ω t  
are  global functions . By this we mean that a small perturbation of the function 
at any point along the  t  - axis infl uences every point on the   ω   - axis and vice -
 versa. If we imagine the signal  f ( t ) as the modulating function for  e j ω t  , then 
a perturbation at any point on the  t  - axis will propagate through the entire 
  ω   - axis. Another observation we make on the Fourier transform is that the 
integral can be evaluated at only one frequency at a time. This is quite incon-
venient from a signal - processing point of view. Although there are fast algo-
rithms to compute the transform digitally, it cannot be carried out in real time. 
All necessary data must be stored in the memory before the discrete or fast 
Fourier transform can be computed. 

 Although unquestionably the most versatile method, Fourier analysis 
becomes inadequate when one is interested in the local frequency contents of 
a signal. In other words, the Fourier spectrum does not provide any time -
 domain information about the signal. To demonstrate this point, let us examine 
the function shown in Figure  4.1 a, which represents a truncated sinusoid of 
frequency 4   Hz in the time domain with perturbations near  t     =    0.7   s and  t     =    1.3   s. 
We saw in the previous chapter that a sinusoid in the time domain will appear 
as a delta function in the frequency domain and vice - versa. Observe that the 
frequency spread near 4   Hz in Figure  4.1 b is due to the truncation of the sinu-
soid. We conclude from the Fourier spectrum shown in Figure  4.1 b that the 
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Copyright © 2011 John Wiley & Sons, Inc.
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62  TIME-FREQUENCY ANALYSIS

sharp pulse near 4   Hz comes  primarily  from the sinusoid of 4   Hz, and the small 
ripples that appear throughout the frequency axis are  primarily  due to some 
delta functions (sharp changes) in the time domain. However, we are unable 
to point out the locations of these delta functions in the time axis by observing 
the spectrum of Figure  4.1 b. This can be explained simply by the Fourier 
representation of delta function  (3.25) . The delta function requires an infi nite 
number of sinusoidal functions that combine constructively at  t     =    0 while 
interfering with one another destructively to produce zero at all points  t     ≠    0. 
This shows the extreme cumbersomeness and ineffectiveness of using global 
functions  e j ω t   to represent local functions. To correct this defi ciency, a local 
analysis is needed to combine both the time - domain and the frequency - domain 
analyses to achieve  time - frequency analysis , by means of which we can extract 
the local frequency contents of a signal. This is very important, since in practice 
we may be interested in only some particular portion of the spectrum and, 
therefore, we may like to know which portion of the time - domain signal is 
primarily responsible for a given characteristic in the spectrum.   

 Common sense dictates that to know the local frequency contents of a 
signal, we should fi rst remove the desired portion from the given signal and 
then take the Fourier transform of the removed part. Such a method of the 
time - frequency analysis is referred to as  short - time Fourier transform  (STFT). 
Before we discuss STFT, let us discuss the notion of  window function , by 
means of which the desired portion of a given signal can be removed.  

     FIGURE 4.1:     (a) A sinusoid signal with perturbation at  t     =    0.7 and  t     =    1.3. (b) Its mag-
nitude spectrum.  
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WINDOW FUNCTION  63

   4.1    WINDOW FUNCTION 

 A desired portion of a signal can be removed from the main signal by multi-
plying the original signal with another function that is zero outside the desired 
interval. Let   ϕ  ( t )    ∈     L  2 ( R ) be a real - valued window function. Then the product 
 f ( t )  ϕ  ( t     −     b )    = :    f b  ( t ) will contain the information of  f ( t ) near  t     =     b . In particular, 
if   ϕ  ( t )    =      χ   [ −     τ    ,    τ    ) ( t ), as shown in Figure  4.2 , then  

    f t
f t t b b

b( ) =
( ) ∈ − +[ ]⎧

⎨
⎩

; ,

.

τ τ
0 otherwise

    (4.1)   

 By changing the parameter  b  we can slide the window function along the time 
axis to analyze the local behavior of the function  f ( t ) in different intervals. 

 The two most important parameters for a window function are its center 
and its width; the latter is usually twice the radius. It is clear that the center 
and the standard width of the window function in Figure  4.2  are 0 and 2  τ  , 
respectively. For a general window function   ϕ  ( t ), we defi ne its center  t  *  as

    t t t dt* := ( )
−∞

∞

∫1
2

2

φ
φ     (4.2)  

and the root - mean - square (r.m.s.) radius  Δ    ϕ    as

    Δφ φ
φ: .= −( ) ( )⎡

⎣⎢
⎤
⎦⎥−∞

∞

∫1 2 2
1 2

t t t dt*     (4.3)   

 For the particular window in Figure  4.2 , it is easy to verify that  t  *     =    0 
and   Δφ τ= 3. Therefore, the r.m.s. width is smaller than the standard 
width by   1 3. 

     FIGURE 4.2:     Characteristic function.  
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64  TIME-FREQUENCY ANALYSIS

 The function   ϕ  ( t ) described above with fi nite  Δ    ϕ    is called a  time window . 
Similarly, we can have a frequency window   φ̂ ω( ) with center   ω   *  and the r.m.s. 
radius   Δφ̂ defi ned analogous to  (4.2)  and  (4.3)  as

    ω
φ

ω φ ω ω* :
1

,2

2
= ( )

−∞

∞

∫ˆ
ˆ d     (4.4)  

    Δ ˆ : ˆ
ˆ .φ φ

ω ω φ ω ω= −( ) ( )⎡
⎣⎢

⎤
⎦⎥−∞

∞

∫1 2 2
1 2

* d     (4.5)   

 As we know, theoretically a function cannot be limited in time and frequency 
simultaneously. However, we can have   ϕ  ( t ) such that both  Δ    ϕ    and   Δφ̂ are both 
fi nite; in such a case, the function   ϕ  ( t ) is called a  time - frequency window . It is 
easy to verify that for the window in Figure  4.2 ,   ω   *     =    0 and   Δφ̂ = ∞. This 
window is the best (ideal) time window but the worst (unacceptable) fre-
quency window. 

 A fi gure of merit for the time - frequency window is its time - frequency width 
product   Δ Δφ φ̂, which is bounded from below by the  uncertainty principle  and 
is given by

    Δ Δφ φ̂ ,≥ 1
2

    (4.6)  

where the equality holds only when   ϕ   is of the Gaussian type (see Section 
 3.5.3   ).  

   4.2    SHORT - TIME FOURIER TRANSFORM 

 In the beginning of this chapter we indicated that we could obtain the approxi-
mate frequency contents of a signal  f ( t ) in the neighborhood of some desired 
location in time, say  t     =     b , by fi rst windowing the function using an appropriate 
window function   ϕ  ( t ) to produce the windowed function  f b  ( t )    =     f ( t )  ϕ  ( t     −     b ) and 
then taking the Fourier transform of  f b  ( t ). This is the short - time Fourier trans-
form (STFT). Formally, we can defi ne the STFT of a function  f ( t ) with respect 
to the window function   ϕ  ( t ) evaluated at the location ( b ,  ξ  ) in the time -
 frequency plane as

    G f b f t dtbφ ξξ φ, : ,( ) = ( )
−∞

∞

∫     (4.7)  

where

    φ φξ
ξ

b
j tt t b e, : .( ) = −( )     (4.8)   
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 The window function   ϕ  ( t ) in  (4.7)  is allowed to be complex and satisfi es the 
condition

   ˆ .φ φ0 0( ) = ( ) ≠
−∞

∞

∫ t dt   

 In other words,   φ̂ ω( ) behaves as a low - pass fi lter. That is, the spectrum is 
nonzero at   ω      =    0. Because of the windowing nature of the STFT, this trans-
form is also referred to as the  windowed Fourier transform  or  running - window 
Fourier transform . 

 Unlike the case of Fourier transform, in which the function  f ( t ) must be 
known for the entire time axis before its spectral component at any single 
frequency can be computed, STFT needs to know  f ( t ) only in the interval in 
which   ϕ  ( t     −     b ) is nonzero. In other words,  G  ϕ   f ( b ,  ξ  ) gives the approximate 
spectrum of  f  near  t     =     b . 

 If the window function   ϕ  ( t     −     b ) in  (4.7)  is considered as the modulating 
function of the sinusoid  e   −    j ξ t  , the STFT can be written as

    G f b f t t b e j t
φ

ξξ φ, , .( ) = ( ) −( )     (4.9)   

 The function   ϕ  b   ,    ξ   ( t )    =      ϕ  ( t     −     b ) e j ξ t   behaves like a  packet of waves , where the 
sinusoidal wave oscillates inside the envelope function   ϕ  ( t ). In addition,  (4.8)  
indicates that each of these packets of waves behaves like a basis function, so 
that the STFT may be interpreted as the components of the function  f ( t ) with 
respect to this basis in the time - frequency plane. 

   4.2.1    Inversion Formula 

 One can recover the time function  f b  ( t ) by taking the inverse Fourier transform 
of  G  ϕ   f ( b ,  ξ  )

    f t t b f t G f b e db
j t( ) = −( ) ( ) = ( )

−∞

∞

∫φ
π

ξ ξφ
ξ1

2
, .     (4.10)   

 The original  f ( t ) is obtained by multiplying  (4.10)  with   φ t b−( ) and integrating 
with respect to  b . The fi nal recovery formula is

    f t
t

d e G f b t b dbj t( ) =
( )

( ) −( )
−∞

∞

−∞

∞

∫ ∫1

2 2π φ
ξ ξ φξ

φ , .     (4.11)   

 One may observe a similar symmetric property between equations  (4.7)  and 
 (4.11)  and that of the Fourier transforms in  (3.19)  and  (3.22) .  
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   4.2.2    Gabor Transform 

 The Gabor transform was developed by D. Gabor  [1] , who used the Gaussian 
function

    g t e
t

α πα
αα( ) = >−1

2
0

2
4 ;     (4.12)   

 as the window function. The Fourier transform of  (4.12)  is

    ˆ ; .g eα
αωω α( ) = >− 2

0     (4.13)   

 The window property of  g  α   ( t ) can be computed using the formulas in Section 
 4.1  to give  t  *     =      ω   *     =    0,   Δgα α=  and   Δ ˆ )gα α= 1 2/( . Observe that   Δ Δg gα αˆ .= 0 5 
attains the lower bound of the uncertainty principle.  

   4.2.3    Time - Frequency Window 

 Let us consider the window function   ϕ  ( t ) in  (4.7) . If  t  *  is the center and  Δ    ϕ    the 
radius of the window function, then  (4.7)  gives the information of the function 
 f ( t ) in the time window.

    t b t b* *+ − + +[ ]Δ Δφ φ, .     (4.14)   

 To derive the corresponding window in the frequency domain, apply Parseval ’ s 
identity  (3.41)  to  (4.7) . We have

    G f b f t t b e dt

e f e

j t

j b jb

φ
ξ

ξ

ξ φ

π
ω φ ω ξ

( , ) ( ) ( )

1
2

( ) ( )

= −

= −

−

−

−∞

∞

−∞

∞
∫

∫ ˆ ˆ ωω ωd

    (4.15)  

    = ( ) −( )⎡
⎣

⎤
⎦ ( )−

∨
e f bj tξ ω φ ω ξˆ ˆ ,     (4.16)  

where the symbol V represents the inverse Fourier transform. Observe that 
 (4.15)  has a form similar to  (4.7) . If   ω   *  is the center and   Δφ̂  is the radius 
of the window function   φ̂ ω( ), then  (4.15)  gives us information about the func-
tion   f̂ ω( ) in the interval

    ω ξ ω ξφ φ* *+ − + +⎡⎣ ⎤⎦Δ Δˆ ˆ, .     (4.17)   

 Because of the similarity of representations in  (4.7)  and  (4.15) , the STFT gives 
the information about the function  f ( t ) in the time - frequency window:
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    [ * , * ] [ * , * ].t b t b+ − + + × + − + +Δ Δ Δ Δφ φ φ φω ξ ω ξˆ ˆ     (4.18)   

 Figure  4.3  represents the notion of the time - frequency window given by  (4.18) . 
Here we have assumed that  t  *     =      ω   *     =    0.    

   4.2.4    Properties of STFT 

  Linearity:     Let  f ( t )    =      α f  1 ( t )    +      β f  2 ( t ) be a linear combination of two functions 
 f  1 ( t ) and  f  2 ( t ) with the weights   α   and   β   independent of  t . Then the STFT of 
 f ( t ),

    G f b G f b G f bφ φ φξ α ξ β ξ, , , ,( ) = ( ) + ( )1 2     (4.19)   

 is the linear sum of the STFT of the individual function. Hence STFT is a 
linear transformation.  

  Time Shift:     Letting  f  0 ( t )    =     f ( t     −     t  0 ), then

    

G f b f t t t b e dt

f t t b t e e

j t

j t j

φ
ξ

ξ

ξ φ

φ

0 0

0

,( ) = −( ) −( )

= ( ) − −( )( )

−

− −

−∞

∞

∫
ξξ

ξ
φ ξ

t

j t

dt

e G f b t

0

0
0

−∞

∞

∫
= −( )− , .     (4.20)   

 Equation  (4.20)  simply means that if the original function  f ( t ) is shifted by an 
amount  t  0  in the time axis, the location of STFT in the time - frequency domain 

     FIGURE 4.3:     Time - frequency window for short - time Fourier transform ( t  *     =      ω    *     =    0).  
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68  TIME-FREQUENCY ANALYSIS

will shift by the same amount in time while the frequency location will remain 
unchanged. Apart from the change in position, there is also a change in the 
phase of the STFT, which is directly proportional to the time shift.  

  Frequency Shift:     Letting  f ( t ) be the modulation function of a carrier signal 
  e j tω0  such that

    f t f t e j t
0

0( ) = ( ) ω ,     (4.21)   

 then the STFT of  f  0 ( t ) is given by

    

G f b f t e t b e dt

G f b

j t j t
φ

ω ξ

φ

ξ φ

ξ ω

0

0

0,

, .

( ) = ( ) −( )

= −( )

−

−∞

∞

∫
    (4.22)   

 Equation  (4.22)  implies that both the magnitude and the phase of the 
STFT of  f  0 ( t ) remain the same as those of  f ( t ), except that the new location 
in the  t     −      ω   domain is shifted along the frequency axis by the carrier fre-
quency   ω   0 .    

   4.3    DISCRETE SHORT - TIME FOURIER TRANSFORM 

 Similar to the discussion of Section  3.10 , we can effi ciently evaluate the inte-
gral of  (4.7)  as a series sum by appropriately sampling the function  f ( t ) and 
the window function   ϕ  ( t ). In its discrete form, the short - time Fourier transform 
can be represented as

    G f b h f t t b en n k k n
j tn k

k

N

φ
ξξ φ, ,( ) ≈ ( ) −( ) −

=

−

∑
0

1

    (4.23)  

where

    t bk kh k Nk = = = −; , ,0 1…     (4.24)  

and

    ξ π
n

n
Nh

n
N N= = −2
2 2

; , , .…     (4.25)   

 In particular, when  h     =    1, we have

    G f n f k k n en
j kn

N

k

N

φ ξ φ
π

, .( ) ≈ ( ) −( ) −

=

−

∑ 2

0

1

    (4.26)   
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 We use an example similar to the one used in [ 2 ] to show the computation 
of the STFT and the effect of the window width with respect to resolution. 
The signal

    f t v t v t K t t t t( ) = ( ) + ( ) + −( ) + −( )[ ]sin sin2 21 2 1 2π π δ δ     (4.27)   

 consists of two sinusoids at frequencies of   ν   1     =    500   Hz and   ν   2     =    1000   Hz and 
two delta functions occurring at  t  1     =    0.192   ms and  t  2     =    196   ms. We arbitrarily 
choose  K     =    3. We apply a rectangular window to the function, and compute 
the STFT for four different window sizes. The signal and the window function 
are both sampled at 8   KHz. The window size varies from 16   ms to 2   ms, and 
the corresponding number of samples in the windows are 128, 64, 32, and 16, 
respectively. Since the delta functions are separated by 32 samples, window 
sizes equal to or greater than 32 samples are not narrow enough to resolve 
the delta functions. 

 To compute the STFT, we apply the FFT algorithm on the product of the 
signal and the window function. We compute a 128 - point FFT each time the 
window is moved to the right by one sample. Figure  4.4  shows the function 
 f ( t ), and the results of these STFTs are given in Figure  4.5 .   

 Initially, when the time window is wide, the delta functions are not resolv-
able at all. However, the two frequencies are well distinguished by the high 
resolution of the window in the spectral domain. As the window size gets 
smaller, we begin to see the two delta functions while the frequency resolution 
progressively worsens. At the window size of 16 samples, we can distinguish 
the delta functions quite easily, but the two frequencies cannot be resolved 
accurately. To resolve events in the frequency axis and the time axis, we must 

     FIGURE 4.4:     Signal for which the STFT is shown in Figure  4.5 .  
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70  TIME-FREQUENCY ANALYSIS

compute the STFT every time we change the window size. Computation load 
is a serious issue in using STFT for signal processing.  

   4.4    DISCRETE GABOR REPRESENTATION 

 Formally writing the Gabor transform given in Section  4.2.2 , we obtain

    

G f b f t g t b e dt

f t e e

g
j t

t b j t

α ξ

απ

α
ξ

α ξ

, :

( )

( ) = ( ) −( )

= ( )

−

− − −

−∞

∞

∫
1

2
2 4/ ddt

−∞

∞

∫     (4.28)   

     FIGURE 4.5:     STFT of signal shown in Figure  4.4  with a different window width (2 Δ    ϕ   ). 
The horizontal axis is time (s) and the vertical axis is frequency (Hz).  
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CONTINUOUS WAVELET TRANSFORM  71

 for  −  ∞     ≤     b ,   ξ      ≤     ∞ . The Gabor transform is dense over the  t     −      ω   plane. 
Computation load for the Gabor transform in  (4.28)  is quite heavy. We may, 
instead of  (4.28) , compute the discretized version of  (4.28) . That is, we compute 
 (4.28)  only at a set of points on the  t     −      ω   plane.

    

G f b f t g t b e dt

f t g t b e

f t

g n k n
j t

n
j t

k

k

α ξ α
ξ

α
ξ

,

,

( ) = ( ) −( )

= ( ) −( )
=

−

−∞

∞

∫

(( ) ( ), .,φn k t     (4.29)   

 The last expression of  (4.29)  is the inner product of the function with the 
function   φ ξ

n k a n
j kt g t b e, =( ) −( ) . The function  f ( t ) may be recovered under a 

restricted condition  [3] :

    f t G f b g t b eg n k n
j tk

kn

( ) = ( ) −( )∑∑ α ξ α
ξ

, .     (4.30)   

 Equation  (4.30)  is known as the  Gabor expansion , in which   G f bg n kα ξ,( ) play 
the role as the coeffi cients in the recovery formula

    f t G f b tg n k n k

kn

( ) = ( ) ( )∑∑ α ξ φ, .,     (4.31)   

 The function   ϕ  n   ,   k  ( t ) is a Gaussian modulated sinusoid. The spread of the func-
tion is controlled by   α  , while the oscillation frequency is controlled by   ξ  k  . 
These  “ bullets ”  of the  t     −      ω   plane form the basis of the Gabor expansion. Since 
the Gaussian function has the minimum size of the time - frequency window, it 
has the highest concentration of energy in the  t     −      ω   plane. The Gabor basis 
  ϕ  n   ,   k  ( t ) appears to be a useful basis for signal representation. However, it lacks 
the basic properties, such as orthogonality, completeness, and independence 
to achieve simple representations and effi cient computation.  

   4.5    CONTINUOUS WAVELET TRANSFORM 

 The STFT discussed in Section  4.4  provides one of many ways to generate a 
time - frequency analysis of signals. Another linear transform that provides 
such analyses is the integral (or continuous) wavelet transform. The terms 
 continuous wavelet transform  (CWT) and  integral wavelet transform  (IWT) 
will be used interchangeably throughout this book. Fixed time - frequency reso-
lution of the STFT poses a serious constraint in many applications. In addition, 
the developments on the discrete wavelet transform (DWT) and the wavelet 
series (WS) make the wavelet approach more suitable than the STFT for 
signal and image processing. To clarify our points, let us observe that the radii 
 Δ    ϕ    and   Δφ̂ of the window function for STFT do not depend on the location in 
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72  TIME-FREQUENCY ANALYSIS

the  t     −      ω   plane. For instance, if we choose   ϕ  ( t )    =     g  α   ( t ) as in the Gabor trans-
form  (4.28) , once   α   is fi xed, then so are  Δ  g  α    and   Δĝα , regardless of the window 
location in the  t     −      ω   plane. A typical STFT time - frequency window was shown 
in Figure  4.3 . Once the window function is chosen, the time - frequency resolu-
tion is fi xed throughout the processing. To understand the implications of such 
a fi xed resolution, let us consider a chirp signal shown in Figure  4.6  in which 
the frequency of the signal increases with time.   

 If we choose the parameters of the window function   ϕ  ( t ) [  α   in the case of 
 g  α   ( t )] such that  Δ    ϕ    is approximately equal to  AB , then the STFT as computed 
using  (4.7)  will be able to resolve the low - frequency portion of the signal 
better, while there will be poor resolution for the high - frequency portion. On 
the other hand, if  Δ    ϕ    is approximately equal to  CD , then the low frequency 
will not be resolved properly. Observe that if  Δ    ϕ    is very small, then   Δφ̂ will be 
proportionally large, and hence the low - frequency part will be blurred. 

 Our objective is to devise a method that can give good time - frequency reso-
lution at an arbitrary location in the  t     −      ω   plane. In other words, we must have 
a window function whose radius increases in time (reduces in frequency) while 
resolving the low - frequency contents and decreases in time (increases in fre-
quency) while resolving the high - frequency contents of a signal. This objective 
leads us to the development of wavelet functions   ψ   ( t ). 

 The integral wavelet transform of a function  f ( t )    ∈     L  2  with respect to some 
analyzing wavelet   ψ   is defi ned as

    W f b a f t t dtb aψ ψ, : ,,( ) = ( ) ( )
−∞

∞

∫     (4.32)  

where

    ψ ψb a t
a

t b
a

a, ; .( ) = −⎛
⎝

⎞
⎠ >1

0     (4.33)   

     FIGURE 4.6:     A chirp signal with frequency changing linearly with time.  
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CONTINUOUS WAVELET TRANSFORM  73

 The parameters  b  and  a  are called  translation  and  dilation parameters , respec-
tively. The normalization factor   a−1 2/  is included so that ||  ψ  b   ,   a  ||    =    ||  ψ   ||. 

 For   ψ   to be a window function and to recover  f ( t ) from its IWT,   ψ  ( t ) must 
satisfy the following condition

    ˆ .ψ ψ0 0( ) = ( ) =
−∞

∞

∫ t dt     (4.34)   

 In addition to satisfying  (4.34) , wavelets are constructed so that it has a higher 
order of  vanishing moments . A wavelet is said to have vanishing moments of 
order  m  if

    t t dt p mpψ ( ) = = −
−∞

∞

∫ 0 0 1; , , .…     (4.35)   

 Strictly speaking, integral wavelet transform provides the time - scale analy-
sis and not the time - frequency analysis. However, by proper scale - to - frequency 
transformation (discussed later), one can get an analysis that is very close to 
the time - frequency analysis. Observe that in  (4.33) , by reducing  a , the support 
of   ψ  ba   reduces in time and hence covers a larger frequency range and vice -
 versa. Therefore, 1/ a  is a measure of frequency. The parameter  b , on the other 
hand, indicates the location of the wavelet window along the time axis. Thus, 
by changing ( b ,  a ),  W  ψ   f  can be computed on the entire time - frequency plane. 
Furthermore, because of the condition  (4.34) , we conclude that all wavelets 
must oscillate, giving them the nature of small waves and hence the name 
 wavelets.  Recall that such an oscillation is not required for the window func-
tion in STFT. Compared with the defi nition of STFT in  (4.7) , the wavelet 
  ψ  b   ,   a  ( t ) takes the place of   ϕ  b   ,    ξ   . Hence a wavelet also behaves like a window 
function. The behavior and measures of wavelet windows are discussed in 
more detail in Section  4.5.2 . 

   4.5.1    Inverse Wavelet Transform 

 Since the purpose of the inverse transform is to reconstruct the original func-
tion from its integral wavelet transform, it involves a two - dimensional integra-
tion over the scale parameter  a     >    0 and the translation parameter  b . The 
expression for the inverse wavelet transform is

    f t
C

db
a

W f b a t dab a( ) = ( )[ ] ( )
−∞

∞ ∞

∫ ∫1 1
20ψ

ψ ψ, ,,     (4.36)  

where  C  ψ    is a constant that depends on the choice of wavelet and is given by

    C dψ
ψ ω

ω
ω= ( ) < ∞

−∞

∞

∫ ˆ
.

2

    (4.37)   
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74  TIME-FREQUENCY ANALYSIS

 The condition  (4.37) , known as  admissibility condition , restricts the class of 
functions that can be wavelets. In particular, it implies that all wavelets must 
have   ψ̂ 0 = 0( )  [see  (4.34) ] to make the left - hand side of  (4.37)  a fi nite number. 
For a proof of  (4.36)  readers may refer to [ 2 , Chap.  2 ]. 

 Equation  (4.36)  is essentially a superposition integral. Integration with 
respect to  a  sums all the contributions of the wavelet components at a location 
 b , while the integral with respect to  b  includes all locations along the  b  - axis. 
Since the computation of the inverse wavelet transform is quite cumbersome 
and the inverse wavelet transform is used only for synthesizing the original 
signal, it is not used as frequently as the integral wavelet transform for the 
analysis of signals. In subsequent sections, in which the discrete wavelet trans-
form (DWT) is introduced, the inverse of the DWT is very useful in data 
communication and signal processing.  

   4.5.2    Time - Frequency Window 

 The defi nitions of the frequency domain center and radius discussed in Section 
 4.1  do not apply to wavelet windows because, unlike the window of STFT in 
which   ̂φ 0 = 1( ) , here the wavelet window   ψ̂ 0 0.( ) =  In other words,   ψ̂ ω( ) 
exhibits band - pass fi lter characteristics. Consequently, we have two centers 
and two radii for   ψ̂ ω( ). We are interested only in the positive frequencies. 
Let us, therefore, defi ne the center   ω+* and the radius   Δψ̂

+  on the positive fre-
quency axis as

    ω
ω ψ ω ω

ψ ω ω
+ =

∞

∞
∫
∫

* :
( )

( )

2

2

ˆ

ˆ

d

d

0

0

    (4.38)  

    Δ ˆ :
* ˆ

ˆ
.ψ

ω ω ψ ω ω

ψ ω ω

+
+

=
−( ) ( )

( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

∞

∞
∫

∫

2 2

2

0

0

1
2

d

d
    (4.39)   

 The defi nitions for  t  *  and  Δ    ψ    remain the same as those in Section  4.1 , with   ϕ  ( t ) 
replaced by   ψ  ( t ). For wavelets the uncertainty principle gives

    Δ Δψ ψ̂ .+ > 1
2

    (4.40)   

 If  t  *  is the center and  Δ    ψ    is the radius of   ψ   ( t ), then  W  ψ   f(b ,  a ) contains the 
information of  f ( t ) in the time window

    at b a at b a* *+ − + +[ ]Δ Δψ ψ, .     (4.41)   
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 Let us apply Parseval ’ s identity to  (4.32)  to get an idea of the frequency 
window:

    W f b a
a

f t
t b

a
dtψ ψ,( ) = ( ) −( )⎛

⎝⎜
⎞
⎠⎟−∞

∞

∫1
    (4.42)  

    = ( ) ( )
−∞

∞

∫a
f a e djb

2π
ω ψ ω ωωˆ ˆ .     (4.43)   

 From  (4.43)  it is clear that the frequency window is

    
1

( * ),
1

( * ) .
a a

ω ωψ ψ+
+

+
+− +⎡

⎣⎢
⎤
⎦⎥

Δ Δˆ ˆ     (4.44)   

 The time - frequency window product   = × = =+ +2 2 4a aΔ Δ Δ Δψ ψ ψ ψ( )/  constant. 
 Figure  4.7  represents the notion of the time - frequency window for the 

wavelet transform. Compare Figure  4.7  with the corresponding Figure  4.3  
for STFT and observe the fl exible nature of the window in the wavelet trans-
form. For the higher frequency   1 2a( ), the time window is small, whereas for 
the lower frequency   1 0a( ), the time window is large. For the fi xed frequency 
level,   1 0a( ), for example, both the time and frequency windows are fi xed. 
Recall that in STFT the time - frequency window is fi xed regardless of the 
frequency level.   

  Example:     We perform a continuous wavelet transform on the same function 
used for computing the STFT. We choose the complex Morlet wavelet 
given by

     FIGURE 4.7:     Time - frequency window for continuous wavelet transform.  
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    ψ t e e
t

j t( ) = − −
2
2 5 336.     (4.45)   

 to compute the CWT

   W f b a f t
t b

a
dtψ ψ, .( ) = ( ) −⎛

⎝
⎞
⎠−∞

∞

∫   

 The results are shown in Figure  4.8 . The fi gure indicates good resolution of 
the events in both the time and the frequency axes. If we choose an appropri-
ate range for  a , the transform needs be computed only once to capture most, 
if not all, of the events occurring in the time and frequency domains.      

   4.6    DISCRETE WAVELET TRANSFORM 

 Similar to the discrete Fourier transform and discrete short - time Fourier 
transform, we have the discrete wavelet transform (DWT). However, unlike 
the discretized time and frequency axes shown earlier in Fourier analysis, here 
we take the discrete values of the scale parameter  a  and the translation param-
eter  b  in a different way. The interest here is to introduce the DWT and show 
the relationship between DWT and IWT. A detailed discussion of the DWT 
will be presented in Chapter  7 . Here we just mention that we will take  a  to be 
of the form 2  −    s   and  b  to be of the form  k 2  −    s  , where  k ,  s     ∈     Z . With these values 
of  a  and  b , the integral of  (4.32)  becomes

     FIGURE 4.8:     Continuous wavelet transform of the signal shown in Figure  4.4  with 
Morlet ’ s wavelet.  
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    W f k f t t k dts s s
s

ψ ψ2 2 2 22− −( ) = ( ) −( )
−∞

∞

∫, .     (4.46)   

 Let us now discretize the function  f ( t ). For simplicity, assume the sampling rate 
to be 1. In that case, the integral of  (4.46)  can be written as

    W f k f n n ks s s
s

n
ψ ψ2 2 2 22− −( ) ≈ ( ) −( )∑, .     (4.47)   

 To compute the wavelet transform of a function at some point in the time - scale 
plane, we do not need to know the function values for the entire time axis. All 
we need is the function at those values of time at which the wavelet is nonzero. 
Consequently, the evaluation of the wavelet transform can be done almost in 
real time. We will discuss algorithms to compute the wavelet transform in later 
chapters. 

 One of the important observations about  (4.47)  is its time - variant nature. 
The DWT of a function shifted in time is quite different from the DWT of the 
original function. To explain it further, let

    f t f t tm m( ) = −( ).     (4.48)   

 This gives

    

W f k f t t k dt

f n m n k

m
s s

m
s

s

s

s

n

ψ ψ

ψ

2 2 2 2

2 2

2

2

− −( ) = ( ) −( )
≈ −( ) −( )

=

−∞

∞

∫
∑

,

22 2 2

2 2 2

2
s

f n n k m

W f k m

s s

s s s

n

( ) − −( )⎡⎣ ⎤⎦

≈ −( )⎡⎣ ⎤⎦

∑
− −

ψ

ψ , .     (4.49)   

 Therefore, we see that for DWT, a shift in time of a function manifests itself 
in a rather complicated way. Recall that a shift in time of a function appears 
as a shift in time location by an exact amount in the case of STFT, with an 
additional phase shift. Also in Fourier transform, the shift appears only as a 
phase change in the frequency domain.  

   4.7    WAVELET SERIES 

 Analogous to the Fourier series, we have the wavelet series. Recall that the 
Fourier series exists for periodic functions only. Here for any function  f ( t )    ∈     L  2 , 
we have its wavelet series representation given as
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    f t w tk s k s

ks

( ) = ( )∑∑ , , ,ψ     (4.50)  

where

    ψ ψk s
st t k

s

, .( ) = −( )2 22     (4.51)   

 The double summation in  (4.50)  is due to the fact that wavelets have two 
parameters: the translation and scale parameters. For a periodic function  p ( t ), 
its Fourier series is given by

    p t c ek
jkt

k

( ) =∑ .     (4.52)   

 Since { e jkt     :    k     ∈     Z } is an orthogonal basis of  L  2 (0, 2  π  ), we can obtain  c k   as

    c p t ek
jkt= ( )1

2π
, .     (4.53)   

 On a similar line, if {  ψ  k   ,   s  ( t )   :    k ,  s     ∈     Z } forms an orthonormal basis of  L  2 ( R ), 
then we can get

    w f t tk s k s, ,,= ( ) ( )ψ     (4.54)  

    = ⎛
⎝

⎞
⎠W f

k
s sψ

2
1
2

, .     (4.55)   

 Therefore, the coeffi cients { w k   ,   s  } in the wavelet series expansion of a function 
are nothing but the integral wavelet transform of the function evaluated 
at certain dyadic points   ( )k s s2 , 1 2 . No such relationship exists between 
Fourier series and Fourier transform, which are applicable to different classes 
of functions; Fourier series applies to functions are that square integrable in 
[0, 2  π  ], whereas Fourier transform is for functions that are in  L  2 ( R ). Both 
wavelet series and wavelet transform, on the other hand, are applicable to 
functions in  L  2 ( R ). 

 If {  ψ  k   ,   s  ( t )} is not an orthonormal basis, then we can obtain  w k   ,   s   using the 
dual wavelet   �ψk s t, ( ){ } as   w f t tk s k s, ,,= ( ) ( )�ψ . The concept of dual wavelets will 
appear in subsequent chapters.  

   4.8    INTERPRETATIONS OF THE TIME - FREQUENCY PLOT 

 Let us briefl y discuss the signifi cance of a surface over the time - frequency 
plane. Usually the height of a point on the surface represents the magnitude 
of the STFT or the IWT. Suppose the given function is such that its frequency 
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INTERPRETATIONS OF THE TIME-FREQUENCY PLOT  79

does not change with time; then we should expect a horizontal line parallel to 
the time - axis in the time - frequency plot corresponding to the frequency of the 
function. However, because of the fi nite support of the window function and 
the truncation of the sinusoid, instead of getting a line we will see a band 
(widened line) near the frequency. To understand it more clearly, let us con-
sider a truncated sinusoid of frequency   ω    0 . We assume, for the purpose of 
explaining the time - frequency plot here, that even though the sinusoid is 
truncated, its Fourier transform is represented as   ̂δ ω ω−( )0 . 

 By replacing   ˆ ˆf ω δ ω ω( ) = −( )0  in  (4.7)  and  (4.32) , respectively, we obtain

    G f bφ ξ
π

φ ω ξ,
1

2
( )0( ) = −ˆ     (4.56)  

    W f b a
a

aψ π
ψ ω,

2
( ) .0( ) = ˆ     (4.57)   

 It is clear from  (4.56)  and  (4.57)  that | G  ϕ   f ( b ,  ξ  )| and | W  ψ   f ( b ,  ξ  )| do not depend 
on  b . On the frequency axis, since   φ̂ 0 1( ) = , and assuming that   φ̂ ω( ) ≤ 1, 
  ω      ≠    0, we will get the maximum magnitude of STFT at   ξ      =      ω    0 . Then there 
will be a band around   ξ      =      ω    0 , the width of which will depend on   Δφ̂, the radius 
of   ̂φ ω( ). 

 Interpretation of  (4.57)  is a little complicated because, unlike STFT, wavelet 
transform does not give a time - frequency plot directly. Let us consider a point 
  ω   ′  on the frequency axis such that

    ˆ ˆ ,ψ ω ψ ω ω( ) max ( ) ; .′ = ∈ ∞( ){ }0     (4.58)   

 For all practical purposes, we may take   ′ = +ω ω*. 
 Now if we consider a variable   ξ ω= +

* a and rewrite  (4.57)  in terms of the 
new variable   ξ  , we have

    W f bφ
ω
ξ π

ω
ξ

ψ ω
ξ

ω,
* 1

2

* *
.+ + +⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ˆ 0     (4.59)   

 Therefore the maximum value of the wavelet transform  (4.57)  will occur at 
  ξ      =      ω    0  with a band around   ξ      =      ω    0 , depending on the radius   Δψ̂

+  of the wavelet 
  ψ̂ ω( ). 

 As our next example, let  f ( t )    =      δ  ( t     −     t  0 ). Since this function has all the fre-
quency components, we should expect a vertical line in the time - frequency 
plane at  t     =     t  0 . Substituting  f ( t )    =      δ  ( t     −     t  0 ) in  (4.7)  and  (4.32) , we obtain
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80  TIME-FREQUENCY ANALYSIS

    G f b t bφ ξ φ, ,( ) = −( )0     (4.60)  

    W f b a
a

t b
a

ψ ψ, .( ) = −⎛
⎝

⎞
⎠

1 0     (4.61)   

 Explanation of the STFT is straightforward. As expected, it does not depend 
on   ξ  . We get a vertical line parallel to the frequency axis near  b     =     t  0  with the 
time - spread determined by  Δ    ϕ   . For wavelet transform, we observe that it 
depends upon the scale parameter  a . Rewriting  (4.61)  in terms of the new 
variable   ξ  , we have

    W f b t bψ
ω
ξ

ξ
ω

ψ ξ
ω

,
*

* *
.+

+ +

⎛

⎝
⎜

⎞

⎠
⎟ = −( )

⎛

⎝⎜
⎞

⎠⎟
0     (4.62)   

 Although all the frequency contents of the delta function in time are indicated 
by  (4.62) , it is clear that as we reduce   ξ  , the time - spread increases. Furthermore, 
the location of the maximum will depend on the shape of   ψ  ( t ). Readers are 
referred to [ 4 ] for more information on the interpretation of time - frequency 
plots.  

   4.9    WIGNER - VILLE DISTRIBUTION 

 We have considered in previous sections linear time - frequency representa-
tions of a signal. The STFT and CWT are linear transforms because they 
satisfy the linear superposition theorem:

    T f f T f T f[ ] [ ] [ ],α α α α1 1 2 2 1 1 2 2+ = +     (4.63)  

where  T  may represent either the STFT or the CWT, and  f  1 ( t ),  f  2 ( t ) are two 
different signals in the same class with coeffi cients   α   1  and   α   2 . These transforms 
are important because they provide an interpretation to the  local spectrum  of 
a signal at the vicinity of time  t . In addition, easy implementation and high 
computation effi ciency of their algorithms add to their advantages. On 
the other hand, these linear transforms do not provide instantaneous energy 
information of the signal at a specifi c instant of time. Intuitively, we want to 
consider a transform of the type

   f t e d f t f t e dj jτ τ τ τ τωτ ωτ−( ) = −( ) −( )− −

−∞

∞

−∞

∞

∫ ∫2 .   

 Since it is not easy to determine the energy of a signal at a given time, it is 
more meaningful to consider the energy within an interval (  t t− +τ τ/ /2, 2) that 
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WIGNER-VILLE DISTRIBUTION  81

is centered around the time location  t . For this purpose, the Wigner - Ville dis-
tribution (WVD) is defi ned by

    Wf
jt f t f t e d, .ω

π
τ τ τωτ( ) = +⎛

⎝
⎞
⎠ −⎛

⎝
⎞
⎠

−

−∞

∞

∫1
2 2 2

    (4.64)   

 The constant   1 2/ π  is a normalization factor for simplicity of computation. We 
should note that the linearity property no longer holds for equation  (4.64)   . 
The Wigner - Ville distribution is a nonlinear (or bilinear) time - frequency 
transform because the signal enters the integral more than once. One may also 
observe that the Wigner - Ville distribution at a given time  t  looks symmetrically 
to the left and right sides of the signal at a distance   τ /2. Computation of 
 W   f  ( t ,  ω  ) requires signal information at   t ± τ /2, and cannot be carried out in 
real - time. 

   4.9.1    Gaussian Modulated Chirp 

 Let us consider a chirp signal that is modulated by a Gaussian envelop

    f t
a at

j
bt

j t( ) = ⎛
⎝

⎞
⎠

− + +
⎛
⎝⎜

⎞
⎠⎟π

ω
1
4 2 2

0
2 2

exp     (4.65)  

where   exp −( )at2 2  is the Gaussian term,   exp −( )jbt2 2  is the chirp signal, and 

  e j tω0  is a frequency shifting term. The Wigner - Ville distribution from  (4.64)  
yields

    

Wf t
a

a t
j
b t

j t, expω
π π

τ τ

ω τ( ) = ⎛
⎝

⎞
⎠

− +⎛
⎝

⎞
⎠

+
+⎛

⎝
⎞
⎠

+ +⎛
⎝

⎞1
2

2
2

2
2 2

1
2

2 2

0 ⎠⎠

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

×
− −⎛

⎝
⎞
⎠

−
− −⎛

⎝
⎞
⎠

− −

−∞

∞

∫

exp
a t

j
b t

j t

τ τ

ω τ2
2

2
2 2

2 2

0
⎛⎛
⎝

⎞
⎠ −

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

= ⎛
⎝

⎞
⎠

− + +−

j d

a
e

a
jbt jat

ωτ τ

π π
τ τ ω1

2 4

1
2 2

2

exp 00τ ωτ τ−
⎛
⎝⎜

⎞
⎠⎟−∞

∞

∫ j d .

    

(4.66)   

 Using the Fourier transform of a Gaussian function as given in Chapter  3 , the 
WVD of a Gaussian modulated chirp is

    Wf t
at bt

a
, exp .ω

π
ω ω( ) = − −

− −( )⎛

⎝
⎜

⎞

⎠
⎟

1
2

2
0

2

    (4.67)   

 The function and its WVD are shown in Figure  4.9 .    
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   4.9.2    Sinusoidal Modulated Chirp 

 A sinusoidal modulated chirp signal is given by

    f t j
bt

j t( ) = +
⎛
⎝⎜

⎞
⎠⎟

exp .
2

0
2

ω     (4.68)   

 We compute the WVD straightforwardly to obtain

    

Wf t j
b t

j t, exp

exp

ω
π

τ

ω τ( ) =
+⎛

⎝
⎞
⎠

+ +⎛
⎝

⎞
⎠

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

×

−∞

∞

∫1
2

2
2 2

2

0

−−
−⎛

⎝
⎞
⎠

− −⎛
⎝

⎞
⎠ −

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

= +

j
b t

j t j d

jbt j

τ

ω τ ωτ τ

π
τ ω

2
2 2

1
2

2

0

exp 00

0

τ ωτ τ

δ ω ω

−( )

= − −( )
−∞

∞

∫ j d

bt .     (4.69)    

     FIGURE 4.9:     Wigner - Ville distribution of a Gaussian modulated chirp signal.  

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.5

0

0.5

1

t

R
ea

l P
ar

t A
m

pl
itu

de

0
1

2
3

4
5

6

-5

0

5
0

0.1

0.2

0.3

0.4

ωt

A
m

pl
itu

de

c04.indd   82c04.indd   82 11/9/2010   10:13:35 AM11/9/2010   10:13:35 AM



PROPERTIES OF WIGNER-VILLE DISTRIBUTION  83

   4.9.3    Sinusoidal Signal 

 We compute the WVD of a pure sinusoidal signal   e j tω0  by setting the chirp 
parameter  b  to zero. Therefore,

    e j tω δ ω ω0
0⇔ −( ).     (4.70)   

 The WVDs of equations  (4.67)  and  (4.69)  on the time - frequency plane are a 
straight line with a slope  b  and a straight line parallel to the time axis, respec-
tively. They are given in Figures  4.10  and  4.11 . Figure  4.12  shows the WVD 
of a Gaussian modulated sinusoidal function.     

   4.10    PROPERTIES OF WIGNER - VILLE DISTRIBUTION 

 There are several general properties of WVD that are important for signal 
representation in signal processing. Some of them are discussed in this section. 
It has been shown  [5]  that the Wigner - Ville distribution has the highest con-
centration of signal energy in the time - frequency plane. Any other distribution 
that has a higher energy concentration than WVD will be in violation of the 
uncertainty principle. Furthermore, it cannot satisfy the so - called marginal 
properties discussed in this section. 

     FIGURE 4.10:     Wigner - Ville distribution of a chirp signal.  
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84  TIME-FREQUENCY ANALYSIS

     FIGURE 4.11:     Wigner - Ville distribution of a sinusoidal function.  
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     FIGURE 4.12:     Wigner - Ville distribution of a Gaussian modulated sinusoid.  
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PROPERTIES OF WIGNER-VILLE DISTRIBUTION  85

   4.10.1    A Real Quantity 

 The Wigner - Ville distribution is always real, regardless of whether the signal 
is real or complex. This can be seen by considering the complex conjugate of 
the Wigner - Ville distribution:

    

Ws
jt s t s t e d

s t s t

,ω
π

τ τ τ

π
τ τ

ωτ( ) = −⎛
⎝

⎞
⎠ +⎛

⎝
⎞
⎠

= +⎛
⎝

⎞
⎠ −⎛

−∞

∞

∫1
2 2 2

1
2 2 2⎝⎝

⎞
⎠

= ( )

−

−∞

∞

∫ e d

t

j

s

ωτ τ

ωW , .     (4.71)   

 The Wigner - Ville distribution is always real but not always positive. Figure  4.13  
shows the WVD of a function that becomes negative near the center. 
Consequently, WVD may not be used as a measure of energy density or prob-
ability density.    

   4.10.2    Marginal Properties 

 Of particular concern to signal processing is the energy conservation. This is 
expressed by the marginal properties of the distribution

     FIGURE 4.13:     Plot indicating that Wigner - Ville distribution may be negative.  
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    Wf t d f t,ω ω( ) = ( )
−∞

∞

∫ 2     (4.72)  

    Wf t dt f, ( ) .
2

ω ω( ) =
−∞

∞

∫ ˆ     (4.73)   

 Marginal (density) expresses the energy density in terms of one of the two 
variables alone. If we wish to fi nd the energy density in terms of  t , we simply 
integrate (sum up) the distribution with respect to   ω   and vice versa. The total 
energy of the signal can be computed by a two - dimensional integration of the 
Wigner - Ville distribution over the entire time - frequency plane.

   

E f t dt f d

t d dtf

= ( ) = ( )

= ( ) =

−∞

∞

−∞

∞

−∞

∞

−∞

∞
∫ ∫

∫∫

2 2

, 1

ˆ

.

ω ω

ω ωW
   

   4.10.3    Correlation Function 

 We can compute the correlation functions in the time or frequency domains 
easily from the marginals:

    γ τ τ τt ft f f t d t′( ) = ( ) + ′( ) = ′( )
−∞

∞

∫ W ,0     (4.74)  

    γ ω ω ω ω ω ωω ′( ) = ( ) + ′( ) = ′( )
−∞

∞

∫ f f d fW 0, .     (4.75)     

   4.11    QUADRATIC SUPERPOSITION PRINCIPLE 

 We recall that WVD is a nonlinear distribution where the linear superposition 
principle does not apply. For instance, let a multicomponent signal be

    f t f tk

k

m

( ) = ( )
=
∑

1

.     (4.76)   

 The Wigner - Ville distribution of this signal is

    W W Wf f f ft t tk k

k

m

k

m

k

m

, , , ,,

,

ω ω ω( ) = ( ) + ( )
= = ≠=
∑ ∑∑

1 11
�

� �
    (4.77)  

where   Wfk t,ω( ) is called the auto - term of the WVD, while   Wfk f t, ,� ω( ) is a 
cross - term defi ned by
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    Wf f k
j

k t f t f t e d, , .� �ω
π

τ τ τωτ( ) = +⎛
⎝

⎞
⎠ −⎛

⎝
⎞
⎠

−

−∞

∞

∫1
2 2 2

    (4.78)   

 These cross - terms of the WVD are also called the interference terms and 
represent the cross - coupling of energy between two components of a multi-
component signal. These interference terms are undesirable in most signal -
 processing applications and much research effort has been devoted to reduce 
the contribution of these terms. We must remember that these cross - terms 
 [6, 7]  are necessary for perfect reconstruction of the signal. In signal detection 
and identifi cation applications, we are interested in discovering only those 
signal components that have signifi cant energy. The cross - terms are rendered 
unimportant since reconstruction of the signal is not necessary. 

 In radar signal processing and radar imaging, the signals to be processed 
have a time - varying spectrum like that of a linear chirp or quadratic 
chirp. Using either the STFT or the WT to represent a chirp signal loses 
the resolution in the time - frequency plane. However, the WVDs of these 
signals produce a well - defi ned concentration of energy in the time - frequency 
plane as shown in Figure  4.10 . For multicomponent signals, the energy 
concentration of the WVD will be far apart in the time - frequency plane 
if the bandwidths of the components are not overlapped too much (see 
Figure  4.14 ). However, if this is not the case, a certain cross - interference 
reduction technique must be applied, and that leads to the reduction of 
resolution.    

     FIGURE 4.14:     Wigner - Ville distribution of multicomponent signal  .  
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   4.12    AMBIGUITY FUNCTION 

 The ambiguity function (AF) is the characteristic function of the Wigner - Ville 
distribution, defi ned mathematically as

    A Wf
jut j

fu e t dt d, , .υ ω ωυω( ) = ( )+

−∞

∞

−∞

∞

∫∫     (4.79)   

 While the Wigner - Ville distribution is a time - frequency function that measures 
the energy density of the signal on the time - frequency plane, the ambiguity 
function is a distribution that measures the energy distribution over a 
frequency - shift ( Doppler) and time - delay plane. This is a very important func-
tion in radar signal processing, particularly in the area of waveform design. We 
shall see some applications of this function toward the end of this book. 

 Apart from a complex constant, we may express the AF in terms of the 
signal as

    A f
j tK f t f t e dtτ ζ τ τ ζ, ,( ) = −⎛

⎝
⎞
⎠ +⎛

⎝
⎞
⎠

−

−∞

∞

∫ 2 2
    (4.80)  

where  K  is a complex constant. The proof of this relationship can be found in 
[ 8 ]. For further information on the ambiguity function readers are referred to 
[ 9 ]. Figure  4.15  shows the AF for a chirp signal. This time - frequency representa-
tion will be revisited in Chapter  9 , where the combination of  wavelet packets  
and Wigner - Ville distribution is applied to radar signal detection.    

     FIGURE 4.15:     Ambiguity function of a chirp signal.  
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 4.13   EXERCISES 

       1 .   Verify that for any function   ψ      ∈     L  2 ( −  ∞ ,  ∞ ), the normalized function given 

by   ψ ψk s
s st t k, ( ) = −( )2 22/  for  k ,  s     ∈     Z ,  t     ∈     R , has the same  L  2  norm as   ψ   :

   ψ ψt dt t dt k sk s( ) = ( ) ∈
−∞

∞

−∞

∞

∫ ∫2
,

2 , , �.     

    2 .   Consider the window function   g t ea
at( ) = − 2

,  a     >    0. Compute the window 
widths in the time and frequency domains and verify the uncertainty 
principle.   

    3 .   The  hat function N  2  is defi ned by

   N t

t t

t t2

0 < 1

2 1 < 2

0

( ) =
≤

− ≤
⎧
⎨
⎪

⎩⎪

for

for

otherwise.
  

 Compute the time - frequency window for  N  2 ( t ).   

    4 .   Show that   f t G f b dbd( ) = ( )∫∫2 21
2

, .
π

ξ ξφ    

    5 .   Given that  f ( t )    =    sin   (  π t  2 ), and using the raised cosine as the window 
function

   φ
π

t
t t

( ) =
+ ( ) ≤⎧

⎨
⎩

1 1

0

cos ,

, otherwise,
 

plot the window - shifted time functions   f t t f t3 3( ) = −( ) ( )φ . and  f  7 ( t ) and their 
spectra. 

 Consider the time - frequency atoms or the kernel

   
Re t e t e

Re t e t e

j t j t

j t j t

φ φ
φ φ

π π

π π
−( ) + −( )⎡⎣ ⎤⎦
−( ) + −( )⎡⎣ ⎤⎦

4 6

4 6

4 8

4 6 ..

⎧
⎨
⎪

⎩⎪
  

 Plot the spectral energy density of the two time - frequency atoms. Comment 
on the time - frequency resolution of the two atoms.   

    6 .   In the CWT, show that the normalization constant   1/ a  is needed to give 
||  ψ   ( t )||    =    ||  ψ  b,a  ( t )||.   

    7 .   Show that the energy conservation principle in the CWT implies that

   f t g t dt
C

W f b a W g b a db
da
a

( ) ( ) = ( ) ( )
−∞

∞

−∞

∞

−∞

∞

∫ ∫∫1
, , .2

ψ
ψ ψ     
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    8 .   Show that the frequency window width of a wavelet   ψ   is   ( / )( )1 * ,a ω ψ+ −⎡
⎣ Δ

  ( / )( )1 *a ω ψ+ + ⎤
⎦Δ .   

    9 .   Identify the reason for dividing the frequency axis by 2 in the program 
wvd.m.      

   4.14    COMPUTER PROGRAMS 

   4.14.1    Short - Time Fourier Transform  

 % 
 % PROGRAM stft.m 
 % 
 % Short - time Fourier Transform using      Rectangular window [0,1] 

 % generates Figure 4.5 
 % 

 % Signal 

 v1  =  500;                                          % frequency 
 v2  =  1000; 
 r  =  8000;                                          %sampling rate 
 t1  =  0.192;                                    % location of the delta function 
 t2  =  0.196; 

 k  =  1:2048; 
 t  =  (k - 1)/r; 
 f  =  sin(2 * pi * v1 * t)  +  sin(2 * pi * v2 * t); 

 k  =  t1  *  r; 
 f(k)  =  f(k)  +  3; 
 k  =  t2  *  r; 
 f(k)  =  f(k)  +  3; 

 plot(t,f) 
 axis([0 0.24  - 2 2]) 

 fi gure(2) 

 % STFT computation 

 N  =  16                                                         % rectangular window width 
 bot  =  0.1; 
 hi  =  0.175; 
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 for kk  =  1:4 
          Nb2  =  N / 2; 
          for b  =  1:2048 - N + 1 
                   fb  =  f(b:b + N - 1); 
                   fftfb  =  abs(fft(fb)); 
                   STFT(b,:)  =  fftfb(1:Nb2); 
          end 

 % Plot 

 NColor  =  256; 
 colormap(gray(NColor)); 
 STFT_min  =  min(min(STFT)); 
 STFT_max  =  max(max(STFT)); 
 STFT  =  (STFT  -  STFT_max)  *  NColor / (STFT_min  -  
STFT_max); 
 time = (0:2048 - N)/r; 
 freq  =  (0:Nb2 - 1)  *  r / N; 

 axes( ’ position ’ ,[0.1 bot 0.8 hi]) 
 image(time,freq,STFT ’ ) 
 axis([0 0.24 0 2000]) 
 YTickmark  =  [0 500 1000 1500 2000]; 
 set(gca, ’ YDir ’ , ’ normal ’ , ’ ytick ’ ,YTickmark) 

 hold on; 
 N  =  N  *  2 
 bot  =  bot  +  0.225; 
 clear STFT; clear time; clear freq; 
 end 

 set(gcf, ’ paperposition ’ ,[0.5 0.5 7.5 10])   

   4.14.2    Wigner - Ville Distribution  

 % 
 % PROGRAM wvd.m 
 % 
 % Computes Wigner - Ville Distribution 
 % 

 % Signal 

 r  =  4000;                                                   % sampling rate 
 t  =  (0:255) / r; 
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 omega1  =  2.0  *  pi  *  500.0; 
 f  =  exp(i * omega1  *  t) ; 

 % WVD Computation 

 N = length(f); 

 if (mod(N,2)  =  =  1) ; 
                            f  =  [f 0]; 
                            N  =  N  +  1; 

 end 

 N2m1  =  2  *  N  -  1; 
 Nb2  =  N / 2; 

 for m  =  1:N 
          s  =  zeros(1,N2m1); 
          s(N - (m - 1):N2m1 - (m - 1))  =  f; 
          s  =  conj(fl iplr(s)). * s; 
          s  =  s(Nb2:N2m1 - Nb2); 
          shat  =  abs(fft(s)); 

 % 
 % Normalize with the number of overlapping terms 
 % 
          if m  <  =  Nb2 
             shat  =  shat / (2  *  m  -  1); 
          else 
             shat  =  shat / (2  *  N  -  2  *  m  +  1); 
          end 

 wvd(m,:) = shat(1:Nb2); 
 end 

 % Plot 

 time  =  (0:N - 1) / r; 
 freq  =  (0:Nb2 - 1)  *  r / N / 2; 

 NColor  =  256; 
 colormap(gray(NColor)); 
 wvd_min  =  min(min(wvd)); 
 wvd_max  =  max(max(wvd)); 
 wvd  =  (wvd  -  wvd_max)  *  NColor / (wvd_min  -  wvd_max); 
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 image(time,freq,wvd ’ ); 

 % Because of the fi nite support of the signal, there will 
 % end effects 

 xlabel( ’ Time (seconds) ’ ); 
 ylabel( ’ Frequency (Hz) ’ ); 
 set(gca, ’ YDir ’ , ’ normal ’ )    
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  CHAPTER FIVE 

Multiresolution Analysis     

     Multiresolution analysis (MRA) forms the most important building block for 
the construction of scaling functions and wavelets (Chapter  6 ) and the devel-
opment of algorithms (Chapters  7  and  8 ). As the name suggests, in multireso-
lution analysis, a function is viewed at various levels of approximations or 
resolutions. The idea was developed by Meyer  [1]  and Mallat  [2, 3] . By apply-
ing the MRA we can divide a complicated function into several simpler ones 
and study them separately. To understand the notion of MRA, let us consider 
a situation in which a function consists of slowly varying and rapidly varying 
segments, as illustrated in Figure  5.1 . If we want to represent this function at 
a single level of approximation, we have to discretize it using step size ( h ), 
determined by the rapidly varying segment. This leads to a large number of 
data points. By representing the function using several discretization steps 
(resolutions) we can signifi cantly reduce the number of data points required 
for accurate representation. The coarsest approximation of the function 
together with the details at every level completely represent the original func-
tion. Observe that with every level (scale), the step size is doubled. This cor-
responds to  “ octave level ”  representation, familiar in audio signal processing. 
In addition to this specifi c example, there are many situations in signal pro-
cessing as well as in computational electromagnetics in which multiresolution 
analysis can be very useful.   

 In this chapter we begin with an understanding of the requirements of 
MRA. Two - scale relations and decomposition relations are explained. 
Cardinal  B  - splines, discussed in Section  5.5 , generate an MRA and form the 
basis of most of the wavelets discussed in this book and elsewhere. Finally, 
in Section  5.6  we discuss how to map a given function into an appropriate 
subspace before starting an MRA.  

Fundamentals of Wavelets: Theory, Algorithms, and Applications, Second Edition, 
By Jaideva C. Goswami and Andrew K. Chan
Copyright © 2011 John Wiley & Sons, Inc.
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   5.1    MULTIRESOLUTION SPACES 

 Let us go back to Figure  5.1 . Every time we go down one level by doubling 
the step size, we remove certain portions of the function, shown on the right -
 hand side plots. Then there are the  “ leftover ”  parts that are further decom-
posed. In Figure  5.1 , we will assign all the functions on the left - hand side to 
 A s   and the ones on the right - hand side to  W s  , where  s  represents individual 
scales. Let  A s   be generated by the bases {  ϕ  k   ,   s   : 2  s   /2   ϕ  (2  s t     −     k );  k     ∈     Z } and  W s   by 
{  ψ  k   ,   s   : 2  s   /2   ψ  (2  s t     −     k );  k     ∈     Z }. In other words, any function  x s  ( t ) and  y s  ( t ) can be 
represented as the linear combinations of   ϕ  k   ,   s  ( t ) and   ψ  k   ,   s  ( t ), respectively. 

 Observe that both the functions  x s    − 1 ( t )    ∈     A   s    − 1  and  y s    − 1 ( t )    ∈     W   s    − 1 ( t ) are 
derived from  x s      ∈     A   s  . Therefore, we should expect that the bases   ϕ  k   ,   s    − 1  of  A   s    − 1  
and   ψ  k   ,   s    − 1  of  W   s    − 1  should somehow be related to the bases   ϕ  k   ,   s   of  A s  . Such a 
relationship will help in devising an algorithm to obtain the functions  x s    − 1  and 
 y s    − 1  from  x s   more effi ciently. 

 To achieve a multiresolution analysis of a function as shown in Figure  5.1 , 
we must have a fi nite - energy function   ϕ  ( t )    ∈     L  2 ( R ), called a scaling function, 
that generates a nested sequence { A j  }, namely

   0 1 0 1
2{ } ← ⊂ ⊂ ⊂ ⊂ →−� �A A A L ;  

     FIGURE 5.1:     Multilevel representation of a function.  
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and satisfi es a dilation (refi nement) equation

   φ φt g k at k
k

( ) = [ ] −( )∑ 0   

 for some  a     >    0 and coeffi cients { g  0 [ k ]}    ∈     �  2 . We will consider  a     =    2, which cor-
responds to octave scales. Observe that the function   ϕ  ( t ) is represented as a 
superposition of a scaled and translated version of itself, and hence the term 
 scaling function . More precisely,  A  0  is generated by {  ϕ  ( ·     −     k ) :  k     ∈     Z }, and in 
general,  A   s  , by {  ϕ  k   ,   s   :  k ,  s     ∈     Z }. Consequently, we have the following two obvious 
results:

    x t x t( ) ∈ ⇔ ( ) ∈ +A As s2 1     (5.1)  

    x t x t s( ) ∈ ⇔ +( ) ∈−A As s2 .     (5.2)   

 For each  s , since  A   s   is a proper subspace of  A   s    + 1 , there is some space left in 
 A   s    + 1 , called  W   s  , which when combined with  A   s   gives us  A   s    + 1 . This space { W   s  } is 
called the  wavelet subspace  and is complementary of  A   s   in  A   s    + 1 , meaning

    A Ws s∩ = { } ∈0 , ,s Z and     (5.3)  

    A W As s s⊕ = +1.     (5.4)   

 With the condition (5.3), the summation in (5.4) is referred to as a direct sum, 
and the decomposition in (5.4) as a  direct - sum decomposition . 

 Subspaces { W   s  } are generated by   ψ   ( t )    ∈     L  2 , called the wavelet, in the 
same way as { A   s  } is generated by   ϕ  ( t ). In other words, any  x s  ( t )    ∈     A   s   can be 
written as

    x t a t ks k s
s

k

( ) = −( )∑ , ,φ 2     (5.5)  

and any function  y s  ( t )    ∈     W   s   can be written as

    y t w t ks k s
s

k

( ) = −( )∑ , ,ψ 2     (5.6)   

 for some coeffi cients { a k   ,   s  }  k    ∈  Z  , { w k   ,   s  }  k    ∈  Z      ∈     �  2 . 
 Since

    

A W A

W W A

W W W

s s s

s s s

s s s

+

− −

− −

= ⊕
= ⊕ ⊕
= ⊕ ⊕ ⊕

1

1 1

1 2 �     (5.7)   
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 we have

   A Ws

s
= ⊕

=−∞

−

�
�

1
.   

 Observe that the { A   s  } are nested while the { W   s  } are mutually orthogonal. 
Consequently, we have

   

A A A

W W

A W

� �

�

�

∩ �
∩ �
∩ �

m

m

m

m

m

m

= ≥
= { } ≠
= { } ≤

⎧
⎨
⎪

⎩⎪

;

;

; .

0

0
  

 A schematic representation of the hierarchical nature of  A   s   and  W   s   is shown 
in Figure  5.2 .    

   5.2    ORTHOGONAL, BIORTHOGONAL, AND 
SEMIORTHOGONAL DECOMPOSITION 

 In Section  5.1 , the only requirement we had for the wavelet subspace  W   s   was 
that it be complementary of  A   s   in  A   s    + 1 . In addition to this, if we also require 
that  W   s      ⊥     A   s  , then such a decomposition is called an  orthogonal decomposi-
tion . Let us explain the orthogonality of  A   s   and  W   s   a little further. For simplic-
ity, let  s     =    0. For this case, {  ϕ  ( t     −     k ) :  k     ∈     Z } spans  A  0 ; likewise, {  ψ  ( t     −     k ) :  k     ∈     Z } 
spans  W  0 . Then  A  0     ⊥     W  0  implies that

    φ ψt t dt( ) −( ) = ∈
−∞

∞

∫ � �0 for all Z.     (5.8)   

     FIGURE 5.2:     Splitting of MRA subspaces.  
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 In general, {  ϕ  ( t     −     k ) :  k     ∈     Z } and {  ψ  ( t     −     k ) :  k     ∈     Z } need not be orthogonal in 
themselves; that is,

    φ φt t dt( ) −( ) ≠
−∞

∞

∫ � 0     (5.9)  

    ψ ψt t dt( ) −( ) ≠
−∞

∞

∫ � 0.     (5.10)   

 Let us relax the condition that  A   s   and  W   s   be orthogonal to each other and 
assume that the wavelet   ψ  k,s      ∈     W   s   has a dual,   � �ψ k s s, ∈W .  Duality  implies that 
the biorthogonality condition is satisfi ed; namely

    ψ ψ δ δk j m k m j j k m, , , ,, , , , , .� �� �= ⋅ ∈Z     (5.11)   

 Although we do not require  W   s      ⊥     A   s  , we do need that   �W As s⊥ , the importance 
of which will become clear later. Similar to the dual wavelet   �ψ k s, , we also 
consider a dual scaling function   �φk s,  that generates another MRA {  �As} of  L  2 . 
In other words,   ϕ  k   ,   s   and   ψ  k   ,   s   are associated with the MRA { A   s  }, and   �φk s,  and 
  �ψ k s,  are associated with the MRA {  �As}. 

 Let us summarize our results so far before proceeding to explain their 
importance. 

 MRA { A   s  }

   

A A W

A A A

W W

A W

s s s

m

m

m

m

m

m

+ = +
= ≥
= { } ≠
= { } ≤

⎧

⎨
⎪⎪

⎩
⎪
⎪

1

0

0

;

;

;

; .

� �

�

�

∩ �
∩ �
∩ �

  

 MRA {  �As}

   

� � �

� ∩ � � �
� ∩ � �
� ∩ � �

� �

�

�

A A W

A A A

W W

A W

s s s

m

m

m

m

m

+ = +

= ≥
= { } ≠

= { } ≤

1

0

0

;

;

;

; mm.

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 

   
W A A W

W A A W
s s m

s s m

m

m

⊥ ⇒ = { } ≤
⊥ ⇒ = { } ≤

⎧
⎨
⎩

� � ∩ �
� ∩ � �

�

�

0

0

for

for .
  

 The decomposition process discussed so far is called  biorthogonal decom-
position . To understand its importance let us briefl y point out the procedure 
of decomposing a function into scales, as shown in Figure  5.1 . The details are 
left for Chapter  7 . 
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 Given a function  x ( t )    ∈     L  2 , the decomposition into various scales begins 
by fi rst mapping the function into a suffi ciently high - resolution subspace  A   M  , 
that is,

    L x t x a t kM k M
M

M

k

2 2� ( ) = −( ) ∈∑� , .φ A     (5.12)   

 Now since

    

A W A

W W A

W A

M M M

M M M

M n M N

n

N

= +
= + +

= +

− −

− − −

− −
=
∑

1 1

1 2 2

1

,     (5.13)   

 we can write

    x t y t x tM M n M N

n

N

( ) = ( ) + ( )− −
=
∑

1

    (5.14)  

where  x M − N  ( t ) is the coarsest approximation of  x M  ( t ) and

    x t a t ks k s
s

s

k

( ) = −( ) ∈∑ , φ 2 A     (5.15)  

    y t w t ks k s
s

s

k

( ) = −( ) ∈∑ , .ψ 2 W     (5.16)   

 Now the importance of dual wavelets becomes clear. By using the biorthogo-
nality condition (5.11), we can obtain the coeffi cients { w k   ,   s  } as

    w y t t k dtk s
s

s
s

, .= ( ) −( )
−∞

∞

∫2 2�ψ     (5.17)   

 Recall that   � �ψ 2s
st k−( ) ∈W  and   A s�

�⊥ W  for  �     ≤     s . Therefore, by taking the 
inner product of (5.14) with   �ψ k s t, ( ) and by using the condition (5.11), we have

    

w x t t k dt

W x
k

k s
s

M
s

s
M s s

,

, .

= ( ) −( )

= ⎛
⎝⎜

⎞
⎠⎟

−∞

∞

∫2 2

2
2

1
2

2

�

�

ψ

ψ     (5.18)   

 The dual wavelet   �ψ  can be used to analyze a function  x M   by computing its 
integral wavelet transform at a desired time - scale location, while   ψ   can be 
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used to obtain its function representation at any scale. Therefore, we call   �ψ  an 
 analyzing wavelet , while   ψ   is called a  synthesis wavelet . 

 Of course, if we have orthogonal decomposition  A   s      ⊥     W   s   with orthonormal 
bases {  ϕ  ,   ψ  }, then the analyzing and synthesis wavelets are the same. Observe 
that when we say orthonormal (o.n.) wavelets, this implies that the wavelets 
are orthonormal with respect to scale as well as with respect to translation in 
a given scale. But orthonormal scaling function implies that the scaling func-
tions are orthonormal only with respect to translation in a given scale; not with 
respect to the scale because of the nested nature of the MRA. 

 A question that arises is, Why do we need biorthogonal (b.o.) wavelets? One 
of the attractive features in delegating the responsibilities of analysis and syn-
thesis to two different functions in the biorthogonal case as opposed to a single 
function in the orthonormal case is that in the former, we can have compactly 
supported symmetric analyzing and synthesis wavelets and scaling functions, 
something that a continuous o.n. basis cannot achieve. Furthermore, o.n. scaling 
functions and wavelets have poor time - scale localization. 

 In some applications to be discussed in later chapters, we need to inter-
change the roles of the analysis and synthesis pairs, {  ϕ  ,   ψ  }, {  �φ ,   �ψ }, respectively. 

In b.o. decomposition, we cannot do so easily since   ϕ   and   φ�  generate two 
different MRAs,  A  and   �A, respectively. For such an interchange, we need to 
map the given function   x xM M� � �∈A , and then we can use   ψ   as analyzing and 
  �ψ  as synthesizing wavelets. 

 In addition to b.o. and o.n. decomposition, there is another class of decom-
position called  semiorthogonal decomposition , for which  A   s      ⊥     W   s  . Since in this 
system, the scaling function and wavelets are nonorthogonal, we still need their 
duals,   �φ  and   �ψ . However, unlike the b.o. case, there is no dual space. That is, 
  φ φ, � ∈As and   ψ ψ, � ∈Ws, for some appropriate scale  s . In this system it is very 
easy to interchange the roles of   ϕ  ,   ψ   with those of   �φ ,   �ψ . 

 For semiorthogonal scaling functions and wavelets, we have

   φ φ δt k t kk−( ) −( ) = ∈, , , ,,
� � �� Z and     (5.19)  

   ψ ψj k m j j k m, ,, , , , , .� � �� = ≠ ∈0 for and Z     (5.20)   

 The wavelets {  ϕ  ,   ψ  } are related to {  �φ ,   �ψ } as

    �̂
ˆ

φ ω φ ω
φ

ω( ) = ( )
( )E ej     (5.21)  

and

    �̂
ˆ

ψ ω ψ ω
ψ

ω( ) = ( )
( )E ej     (5.22)  

with

    E e x k A k ex
j

x
jk

k k

ω ωω π( ) = +( ) = ( )
=−∞

∞

=−∞

∞

∑ ∑: ˆ ,2 2     (5.23)   
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 where  A x  ( t ) is the autocorrelation function of  x ( t ). For a proof of (5.23), see 
Section  7.6.1 . Observe that the above relation is slightly different from the 
orthonormalization relation  (2.35)  in that here we do not have the square root 
in the denominator. In Chapter  6  we will discuss the construction of all the 
scaling functions and wavelets that we have discussed.  

   5.3    TWO - SCALE RELATIONS 

 Two - scale relations relate the scaling function and the wavelets at a given scale 
with the scaling function at the next higher scale. Since

    φ t( ) ∈ ⊂A A0 1, and     (5.24)  

    ψ t( ) ∈ ⊂W A0 1,     (5.25)   

 we should be able to write   ϕ  ( t ), and   ψ  ( t ) in terms of the bases that generate 
 A  1 . In other words, there exist two sequences { g  0 [ k ]}, { g  1 [ k ]}    ∈     �  2  such that

    φ φt g k t k
k

( ) = [ ] −( )∑ 0 2 ,     (5.26)  

    ψ φt g k t k
k

( ) = [ ] −( )∑ 1 2 .     (5.27)   

 Equations  (5.26)  and  (5.27)  are referred to as  two - scale relations . In general, 
for any  j     ∈     Z , the relationship between  A   j  ,  W   j   with  A   j    + 1  is governed by

   φ φ2 20
1j jt g k t k

k
( ) = [ ] −( )+∑ ,  

   ψ φ2 21
1j jt g k t k

k
( ) = [ ] −( )+∑ .   

 By taking the Fourier transform of the two - scale relations, we have

    ˆ ˆ ,φ ω φ ω( ) = ( ) ⎛
⎝⎜

⎞
⎠⎟G z0

2
    (5.28)  

    ˆ ˆ ,ψ ω φ ω( ) = ( ) ⎛
⎝⎜

⎞
⎠⎟G z1

2
    (5.29)  

where
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    G z g k zk

k
0 0

1
2

( ) = [ ]∑: ,     (5.30)  

    G z g k zk

k
1 1

1
2

( ) = [ ]∑: ,     (5.31)   

 with  z     =     e   −    j ω    /2 . Observe that the defi nitions in (5.30) and (5.31) are slightly 
different from those used in Chapter  2  for  z  - transform. An example of a two -
 scale relation for the Haar case ( H ) is shown in Figure  5.3 . Using  (5.28)  and 
 (5.29)  recursively, we have  

    ˆ exp ,φ ω ω( ) = −⎛⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=

∞

∏G j0
21

�
�

    (5.32)  

    ˆ exp exp .ψ ω ω ω( ) = −⎛⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ −⎛⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=

∞

∏G j G j1 0
2 22

�
�

    (5.33)   

 Since the scaling functions exhibit the low - pass fi lter characteristic   φ̂ 0 1( ) =⎡⎣ ⎤⎦, 
all the coeffi cients { g  0 [ k ]} add up to 2, whereas because of the band - pass fi lter 
characteristic of the wavelets   ψ̂ 0 0( ) =[ ] the coeffi cients { g  1 [ k ]} add up to 0.  

   5.4    DECOMPOSITION RELATION 

 Decomposition relations give the scaling function at any scale in terms of the 
scaling function and the wavelet at the next lower scale. Since  A  1     =     A  0     +     W  0  
and   ϕ  (2 t ),   ϕ  (2 t      −     1)    ∈     A  1 , there exist two sequences ({ h  0 [ k ]}, { h  1 [ k ]}) in  �  2  
such that

     FIGURE 5.3:     Two - scale relation for Haar case ( g  0 [0]    =     g  0 [1]    =    1;  g  1 [0]    =     −  g  1 [1]    =    1; 
 g  0 [ k ]    =     g  1 [ k ]    =    0 for all other  k ).  
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   φ φ ψ2 2 20 1t h k t k h k t k
k

( ) = [ ] −( ) + [ ] −( ){ }∑ ;  

   φ φ ψ2 1 2 1 2 10 1t h k t k h k t k
k

−( ) = −[ ] −( ) + −[ ] −( ){ }∑ .   

 Combining these two relations, we have:

    φ φ ψ2 2 20 1t h k t k h k t k
k

−( ) = −[ ] −( ) + −[ ] −( ){ }∑� � �     (5.34)   

 for all  �     ∈     Z . In general, we have

    φ φ ψ2 2 2 2 21
0 1

j j jt h k t k h k t k
k

+ −( ) = −[ ] −( ) + −[ ] −( ){ }∑� � � .     (5.35)   

 Figure  5.4  shows an example of decomposition relation for the Haar case ( H ).    

   5.5    SPLINE FUNCTIONS AND PROPERTIES 

 One of the most basic building blocks for wavelet construction involves car-
dinal  B  - splines. A complete coverage of spline theory is beyond the scope of 
this book. In this section, we describe briefl y spline functions and their proper-
ties that are required to understand the topics of this book. Further details are 
available in many excellent books (e.g.,  [4 – 8] ). 

 Spline functions consist of piecewise polynomials (see Figure  5.5 ) joined 
together smoothly at the break points (knots:  t  0 ,  t  1 ,  … ), where the degree of 

     FIGURE 5.4:     Decomposition relation for Haar case ( h  0 [0]    =     h  0 [ − 1]    =    1/2;  h  1 [0]    =   
  −  h  1 [ − 1]    =    1/2;  h  0 [ k ]    =     h  1 [ k ]    =    0 for all other  k ).  
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104  MULTIRESOLUTION ANALYSIS

smoothness depends on the order of splines. For cardinal  B  - splines, these break 
points are equally spaced. Unlike polynomials, these form local bases and have 
many useful properties that can be applied to function approximation.   

 The  m th order cardinal  B  - spline  N m  ( t ) has the knot sequence { … ,  − 1, 0, 
1,  … } and consists of polynomials of order  m  (degree  m     −    1) between the 
knots. Let  N  1 ( t )    =      χ   [0,1) ( t ) be the characteristic function of [0, 1). Then for each 
integer  m     ≥    2, the  m th order cardinal  B  - spline is defi ned, inductively, by

   N t N N tm m( ) = ∗( )( )−: 1 1     (5.36)  

   

:

.

= −( ) ( )

= −( )

−

−

−∞

∞

∫
∫

N t x N x dx

N t x dx

m

m

1 1

1
0

1
    (5.37)   

 A fast computation of  N m  ( t ), for  m     ≥    2, can be achieved by using the fol-
lowing formula [ 7 , p. 131].

   N t
t

m
N t

m t
m

N tm m m( ) =
−

( ) + −
−

−( )− −
1 1

11 1   

 recursively until we arrive at the fi rst - order  B  - spline  N  1  (see Figure  5.6 ). 
Splines of orders 2 to 6, along with their magnitude spectra, are shown in 
Figure  5.7 . The most commonly used splines are linear ( m     =    2) and cubic 
( m     =    4) splines. Their explicit expressions are as follows:  

    N t

t t

t t2

0 1

2 1 2

0

( ) =
∈[ ]

− ∈[ ]
⎧
⎨
⎪

⎩⎪

,

,

elsewhere
    (5.38)  

     FIGURE 5.5:     Piecewise polynomial functions.  
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     FIGURE 5.6:      N  1 , the spline of order 1.  

N (t)1

o
o

1

1

t

     FIGURE 5.7:     Spline functions and their magnitude spectra.  

    N t

t t

t t t t

t t t t4

3

2 3

2 3

0 1

4 12 12 3 1 2

44 60 24 3 2 3( ) =

∈[ ]
− + − ∈[ ]

− + − + ∈[

,

,

, ]]
− + − ∈[ ]

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪
64 48 12 3 4

0

2 3t t t t ,

.elsewhere

    (5.39)   
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106  MULTIRESOLUTION ANALYSIS

 In many applications, we need to compute splines at integer points. Table  5.1  
gives spline values at integer locations. Symmetry property can be used to get 
values at other points.   

 To obtain the Fourier transform of  N m  ( t ), observe that (5.36) can be 
written as

    N t N N tm

m

( ) = ∗ ∗( )( )1 1�� �		 
		 .     (5.40)   

 Therefore,

    ˆ ,N
e
j

m

j m

ω
ω

ω
( ) = −⎛

⎝⎜
⎞
⎠⎟

−1
    (5.41)   

 since

    ˆ .N e dt
e
j

j t
j

1
0

1 1ω
ω

ω
ω

( ) = = −−
−

∫     (5.42)   

 The important property of splines for our purposes is the fact that 
they are scaling functions. That is, there exists a sequence { g  0 [ m ,  k ]}    ∈     �  2  
such that

  TABLE 5.1:    Cardinal  B -Splines at Integer Points 

    k      ( m     –    1)! N m  ( k )      k      ( m     –    1)! N m  ( k )      k      ( m     –    1)! N m  ( k )  

       m     =    3         m     =    8         m     =    11  
  1    1    1    1    1    1  
       m     =    4    2    120    2    1,013  
  1    1    3    1,191    3    47,840  
  2    4    4    2,416    4    455,192  
       m     =    5         m     =    9    5    1,310,354  
  1    1    1    1         m     =    12  
  2    11    2    247    1    1  
       m     =    6    3    4,293    2    2,036  
  1    1    4    15,619    3    152,637  
  2    26         m     =    10    4    2,203,488  
  3    66    1    1    5    9,738,114  
       m     =    7    2    502    6    15,724,248  
  1    1    3    14,608          
  2    57    4    88,234          
  3    302    5    156,190          
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    N t g m k N t km m

k

( ) = [ ] −( )∑ 0 2, .     (5.43)   

 In Chapter  6 , we will derive an expression for  g  0 [ m ,  k ]. 

   5.5.1    Properties of Splines 

 Some important properties of splines, relevant to the topics discussed in this 
book, are discussed in this section without giving any proof. Proofs of some of 
the properties are left as exercises. 

  1.     Supp  N m      =    [0,  m ] with  N m  (0)    =     N m  ( m )    =    0  
  2.      N m  ( t )    ∈     C m    − 2 ;  C k   is the space of functions that are  k  - times continuously 

differentiable.  
  3.      N m  | [ k  − 1, k ]     ∈      π  m    − 1 ;  k     ∈     Z ;   π  k   is the polynomial space of degree  k  (order 

 k     +    1).  
  4.       ∫−∞

∞ ( ) =N t dtm 1   
  5.       ′ ( ) = ( ) − −( )− −N t N t N tm m m1 1 1   
  6.      N m  ( t ) is symmetric with respect to the center  t  *     =     m /2:

    N
m

t N
m

t tm m
2 2
+⎛

⎝⎜
⎞
⎠⎟ = −⎛

⎝⎜
⎞
⎠⎟ ∈; R     (5.44)    

  7.      N m  ( t ) behaves as a lowpass fi lter [  N̂m 0 1( ) = ; see Figure  5.7 ].  
  8.      N m  ( t ) has  m th order of approximation in the sense that   N̂m ω( ) satisfi es 

the Strang - Fix condition

    
ˆ ,

ˆ , \ , , ,

N

D N k k j m

m

j
m

0 1

2 0 0 1 1

( ) =
( ) = ∈ { } = −

⎧
⎨
⎪

⎩⎪

and

andπ Z …
    (5.45)  

where  D j   denotes the  j  th  order derivative. Consequently,  N m  ( t ) locally 
reproduces all polynomials of order  m  [ 8 , pp. 114 – 121].  

  9.      N m  ( t   −   k )  ≡  1; for all  t . This property is referred to as the  partition of 
unity  property.  

  10.      Total positivity :  N m  ( t )    ≥    0, for  t     ∈    [0,  m ]. By virtue of the total positivity 
[ 6 , p. 7] property of  B  - splines, coeffi cients of a  B  - spline series follow the 
shape of the data. For instance, if   g t N t jj j m( ) = ∑ −( )α , then
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   α j j g t≥ ∀ ⇒ ( ) ≥0 0  

   α j g t↑ ( )⇒ ( ) ↑increasing and,  

   α j g tconvex convex( )⇒ ( ) .   

 Furthermore, the number of sign changes of  g ( t ) does not exceed that 
of the coeffi cient sequence {  α  j  }. The latter property can be used to 
identify the zero crossing of a signal.  

  11.     As the order  m  increases,  N m  ( t ) approaches a Gaussian function 
(  Δ ΔN Nm mˆ .→ 0 5). For instance, in the case of a cubic spline ( m     =    4), the 
r.m.s. time - frequency window product is 0.501.      

   5.6    MAPPING A FUNCTION INTO MRA SPACE 

 As discussed in Section  5.2 , before a signal  x ( t ) can be decomposed, it must 
be mapped into an MRA subspace  A   M   for some appropriate scale  M , that is,

    x t x t a t kM k M
M

k

( ) ( ) = −( )∑� , .φ 2     (5.46)   

 Once we know { a k   ,   M  } we can use fast algorithms to compute { a k   ,   s  } for  s     <     M . 
Fast algorithms will be discussed in later chapters. Here we are concerned with 
the evaluation of the coeffi cients { a k   ,   M  }. 

 If  x ( t ) is known at every  t , then we can obtain { a k   ,   M  } by the orthogonal 
projection ( L  2  projection) of the signal:

    a x t t k dtk M
M M

, .= ( ) −( )
−∞

∞

∫2 2�φ     (5.47)   

 However, in practice the signal  x ( t ) is known at some discrete points. The 
given time step determines the scale  M  to which the function can be mapped. 
For representation such as (5.46), we want it to satisfy two important 
conditions: (1) interpolatory and (2) polynomial reproducibility. By  interpola-
tory representation  we mean that the series should be exact, at least at the 
points at which the function is given, meaning  x ( k /2  M  )    =     x M  ( k /2  M  ). As pointed 
out before,  polynomial reproducibility  means that the repre sentation is 
exact at every point for polynomials of order  m  if the basis   ϕ  ( t ) has the 
approximation order  m . In other words,  x ( t )    ≡     x M  ( t ) for  x ( t )    ∈      π  m    − 1 . Cardinal 
 B  - splines have  m  order of approximation. In addition, since they are a 
local basis, the representation (5.46) is also local. By  local  we mean that to 
obtain the coeffi cient   akM for some  k , we do not need all the function values; 
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only a few, determined by the support of the splines, will suffi ce. The coeffi -
cients when   ϕ  ( t )    =     N  2 ( t ) and   ϕ  ( t )    =     N  4 ( t ) are derived below. 

   5.6.1    Linear Splines ( m     =    2) 

 Suppose a function  x ( t ) is given at  t     =     � /2  M   :  �     ∈     Z . Then to obtain the spline 
coeffi cients { a k   ,   M  } for the representation

    x t x t a N t kM k M
M

k

( ) ( ) = −( )∑� , ,2 2     (5.48)   

 we apply the interpolation condition, namely

    x xM M M

� �
2 2

⎛
⎝⎜

⎞
⎠⎟ =

⎛
⎝⎜

⎞
⎠⎟ .     (5.49)   

 By using equation  (5.49) , along with the fact that

    N N k k2 21 1 0 0( ) = ( ) = ∈ { }, , \ ,and Z     (5.50)   

 we get

    a x
k

k M M, .= +⎛
⎝⎜

⎞
⎠⎟

1
2

    (5.51)   

 The representation (5.48) preserves all polynomials of degree at most 1.  

   5.6.2    Cubic Splines ( m     =    4) 

 In this case

    x t x t a N t kM k M
M

k

( ) ( ) = −( )∑� , 4 2     (5.52)  

where [ 4 , p. 117]

   a v x
n

k M k n M
n k

k

, ,= ⎛
⎝⎜

⎞
⎠⎟+ − −

= −

+

∑ 2 2 122

6

 

and
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v

n

n

n

n

n

n =

=

= ±

− = ±

− = ±

= ±

⎧

⎨

29
24

0

7
12

1

1
8

2

1
12

3

1
48

4

0

,

,

,

,

,

, .otherwise

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

  

 The representation (5.52) preserves all polynomials of degree at most 3.  

 5.7   EXERCISES 

       1.    For a given  j     ∈     Z , a projection  P  2,   j f ( t ) of any given function  f ( t )    ∈     L  2 ( −  ∞ ,  ∞ ) 
onto the  “ hat function space ” 

   V c N t k cj k
j

k k Z
k

= −( ) { } ∈
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∈

=−∞

∞

∑ 2 22 : �   

 can be determined by the interpolation conditions   P f k f kj
j j

2 2 2, ( ) = ( ) 
for all  k     ∈     Z . Find the formulas for the coeffi cients { a n  } if  P  2,    j  f  is written as

   P f t a N t nj n
j

n
2 2 2, .( ) = −( )

=−∞

∞

∑     

    2.    For the Haar wavelet

   ψH t( ) =

∈⎡
⎣⎢

⎞
⎠⎟

− ∈⎡
⎣⎢

⎞
⎠⎟

⎧

⎨

⎪
⎪
⎪

⎩

⎪
:

,

,

.

1 0
1
2

1
1
2

1

0

for t

for t

otherwise⎪⎪
⎪

  

 defi ne

   ψ ψH k s

s

H
st t k k s, , , ,( ) = −( ) ∈2 22 Z   
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 Show the orthogonality relations

   ψ ψ δ δH k s H m p m k s pt t dt m k p s Z, , , , , , , , , .( ) ( ) = ∈
−∞

∞

∫   

 Due to these relations, we say that the set {  ψ  H   ,   k   ,   s  }  k   ,   s    ∈    Z   forms an orthonormal 
family in  L  2 ( −  ∞ ,  ∞ ).   

    3.    Show that the Gaussian function   φ t e t( ) = − 2
 cannot be the scaling function 

of a multiresolution analysis. (Hint: assume that   e t− 2
 can be written as 

  e a et
k k

t k−
=

− −( )= ∑ −∞
∞2 22  for a sequence { a k  }  k    ∈    Z   in  �  2 , which has to be true if 

  e V Vt− ∈ ⊂
2

0 1. Then show that this leads to a contradiction by taking 
Fourier transforms on both sides of the equation and comparing the 
results.)   

    4.    Show that the  m th order  B  - spline  N m  ( t ) and its integer translates form a 
partition of unity:

   N t k tm

k

−( ) = ∈
=−∞

∞

∑ 1 for all R.   

 (Hint: use Poisson sum formula.)   

    5.    Show the following symmetry property of  N m  ( t ):

   N
m

t N
m

t tm m
2 2
+⎛

⎝⎜
⎞
⎠⎟ = −⎛

⎝⎜
⎞
⎠⎟ ∈, .R     

    6.    Use exercise 5 to show that

   N t k N t dt N m km m m+( ) ( ) = +( )
−∞

∞

∫ 2   

 for any  k     ∈     Z .   

    7.    Show that the hat function

    N t

t t

t t2

0 1

2 1 2

0

( ) =
∈[ ]

− ∈[ ]
⎧
⎨
⎪

⎩⎪

,

,

, otherwise

    (5.53)  

and the function  N  1 ( t ) are related by convolution:  N  2 ( t )    =     N  1 ( t )    *     N  1 ( t ). 
Find the defi ning equations (the polynomial expression) for the functions 
given by

   N t N t N t3 2 1( ) = ( )∗ ( ):  

   N t N t N t4 3 1( ) = ( )∗ ( ): .        
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   5.8    COMPUTER PROGRAMS 

   5.8.1    B - Splines  

 % 
 % PROGRAM Bspline.m 
 % 
 % Computes uniform Bsplines 

 function y  =  Bspline(m,x) 

 y  =  0; 

 % Characteristic function 

 if m  =  =  1 
       if x  >  =  0.0  &  x    <    1.0 
             y  =  1.0; 
       else 
             y  =  0.0; 
       end 
 end 

 % Higher order 
 a  =  zeros(1,500); 

 if m  >  =  2  &  m    <    100 
       for k  =  1:m - 1 
             a(k)  =  0.0; 
             x1  =  x  -  k  +  1; 
             if x1  >  =  0.0  &  x1    <    1.0 
                   a(k)  =  x1; 
             end 
             if x1  >  =  1.0  &  x1    <    2.0 
                   a(k)  =  2  -  x1; 
             end 
       end 

       for p = 1:m - 2 
             for q = 1:m - 1 - p 
                   a(q)       =  ((x - q + 1)  *  a(q)  +  ((p + 2) + q - 1 - x)  *  a(q + 1)) / 
(p + 1); 
             end 
       end 
       y  =  a(1); 
 end    
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  CHAPTER SIX 

Construction of Wavelets     

     In this chapter we are concerned with the construction of orthonormal, semi-
orthogonal, and biorthogonal wavelets. The construction problem is tanta-
mount to fi nding suitable two - scale and decomposition sequences as introduced 
in Chapter  5 . It turns out that these coeffi cients for orthonormal wavelets can 
be easily derived from those of semiorthogonal wavelets. Therefore, we fi rst 
discuss the semiorthogonal wavelet followed by orthonormal and biorthogo-
nal wavelets. 

 Recall that for the semiorthogonal wavelet, both   ϕ  ( t ) and   �φ t( ) are in  A  0 , 
and   ψ  ( t ) and   �ψ t( ) are in  W  0 . Consequently, we can write   ϕ  ( t ) in terms of   �φ t( ); 
similarly for   ψ   ( t ). These relations as given by (5.21) and (5.22) are reproduced 
here.

    �̂
ˆ

,φ ω φ ω
φ

ω( ) = ( )
( )E e j and     (6.1)  

    �̂
ˆ

,ψ ω ψ ω
ψ

ω( ) = ( )
( )E e j     (6.2)  

with the Euler - Frobenius - Laurent (E - F - L) polynomial  E f   ( e j ω   ) given by

    E e f k A ef
j

f
j k

k k

ω ωω π( ) = +( ) = ( )
=−∞

∞

=−∞

∞

∑ ∑: 2
2ˆ .     (6.3)   

 We will, therefore, concentrate on the construction of   ϕ   and   ψ   only. 

Fundamentals of Wavelets: Theory, Algorithms, and Applications, Second Edition, 
By Jaideva C. Goswami and Andrew K. Chan
Copyright © 2011 John Wiley & Sons, Inc.
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 As the fi rst step toward constructing wavelets, we express { h  0 [ k ]}, { h  1 [ k ]} 
and { g  1 [ k ]} in terms of { g  0 [ k ]} so that only { g  0 [ k ]} and hence the scaling func-
tions need to be constructed. In semiorthogonal cases, all these sequences have 
different lengths, in general. Later we will show that for o.n cases, all of these 
sequences have the same length and that there is a very simple relation among 
them which can be easily derived as a special case of the relationship for 
semiorthogonal cases. The construction of a semiorthogonal wavelet is fol-
lowed by the construction of several popular orthonormal wavelets: the 
Shannon, Meyer, Battle - Lemari é , and Daubechies wavelets. Finally, we con-
struct a biorthogonal wavelet. Other wavelets such as ridgelets, curvelets, 
complex wavelets, and lifting wavelets are discussed in Chapter  8 .  

   6.1    NECESSARY INGREDIENTS FOR WAVELET CONSTRUCTION 

 As pointed out before, we need to obtain the coeffi cient sequences { g  0 [ k ]}, 
{ g  1 [ k ]} to be able to construct wavelets. In this section, our goal is to fi nd a 
relationship among various sequences. This will help us in reducing our task. 
Here we consider the case of semiorthogonal decomposition of a multiresolu-
tion space. 

   6.1.1    Relationship between the Two - Scale Sequences 

 Recall from Chapter  5  that, as a result of the multiresolution properties, the 
scaling functions and wavelets at one scale (coarser) are related to the scaling 
functions at the next higher scale (fi ner) by the so - called two - scale relations:

    φ φt g k t k
k

( ) = [ ] 2 −( )∑ 0 ,     (6.4)  

    ψ φt g k t k
k

( ) = [ ] 2 −( )∑ 1 .     (6.5)   

 By taking the Fourier transform of the above relation, we have

    ˆ ˆ ,φ ω φ ω( ) = ( )
2

⎛
⎝

⎞
⎠G z0     (6.6)  

    ˆ ˆ ,ψ ω φ ω( ) = ( )
2

⎛
⎝

⎞
⎠G z1     (6.7)  

where  z     =     e    −    j ω    /2  and

    G z g k zk

k
0 0

1
2

( ) = [ ]∑: ,     (6.8)  
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    G z g k zk

k
1 1

1
2

( ) = [ ]∑: .     (6.9)   

 Observe that   ϕ  ( t )    ∈     A  0 ,   ϕ  (2 t )    ∈     A  1 , and   ψ  ( t )    ∈     W  0 . From the nested property 
of MRA, we know that  A  0     ⊂     A  1  and  A  0     ⊥     W  0  such that  A  0     ⊕     W  0     =     A  1 . The 
orthogonality of the subspaces  A  0  and  W  0  implies that for any   �      ∈     Z ,

    φ ψt t−( ) ( ) =� , .0     (6.10)   

 Equation  (6.10)  can be rewritten by using the Parseval ’ s identity as

    

0
1

2

1
2

0 1

2

= ( ) ( )

= ( ) ( )
2

⎛
⎝

⎞
⎠

−

−

−∞

∞

−∞

∫π
φ ω ψ ω ω

π
φ ω ω

ω

ω

ˆ ˆ

ˆ

e d

G z G z e d

j

j

�

�
∞∞

+

∫
∫∑= ( ) ( )

2
⎛
⎝

⎞
⎠

= ( )

−
( )1

2

1
2

0 1

2

0 1

4

4 1

π
φ ω ω

π

ω

π

π
G z G z e d

G z G z

j

k

k

k

ˆ �

(( )
2

+⎛
⎝

⎞
⎠

= ( ) ( ) ( )

−

−

∫∑ φ̂ ω π ω

π
ω

ω

φ
ω

π

π

2

1
2

2

0 1

0

4

0

4

k e d

G z G z E z e d

j

j

k

�

�∫∫     (6.11)  

where  z     =     e    −    j ω    /2 . By partitioning the integration limit [0, 4  π  ] into [0, 2  π  ] and 
[2  π  , 4  π  ], and with a simple change of variable, it is easy to verify that equation 
 (6.11)  is the same as

    
1

2
00 1 0 1

0

2

π
ωφ φ

ω
π

G z G z E z G z G z E z e dj( ) ( ) ( ) + −( ) −( ) −( )⎡⎣ ⎤⎦ =−∫ � .     (6.12)   

 The expression (6.12) holds for all   �      ∈     Z . What does it mean? To understand 
this let us recall that an integrable 2  π   - periodic function  f ( t ) has the Fourier 
series representation

   f c e jω ω( ) =∑ �
�

�
, where     (6.13)  

   c f e dj
�

�= ( ) −∫1
2 0

2

π
ω ωω

π
.     (6.14)   

 From the above it is clear that the quantity on the left of (6.12) 
represents the   �  th Fourier coeffi cient of a periodic function   G z G z E z0 1( ) ( ) ( ) +φ
  G z G z E z0 1−( ) −( ) −( )φ . Since all these coeffi cients are zero, it implies that
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    G z G z E z G z G z E z0 1 0 1 0( ) ( ) ( ) + −( ) −( ) −( ) ≡φ φ     (6.15)  

for | z |    =    1. The solution of (6.15) gives the relationship between  G  1 ( z ) and 
 G  0 ( z ). By direct substitution, we can verify that

    G z cz G z E zm
1

2 1
0( ) = − −( ) −( )+

φ     (6.16)  

for any integer  m , and a constant  c     >    0 is a solution (6.15). Without any loss 
of generality we can set  c     =    1. The effect of  m  is to shift the index of the 
sequence { g  1 [ k ]}. Usually  m  is chosen such that the index begins with 0.  

   6.1.2    Relationship between Reconstruction and Decomposition Sequences 

 Recall from Chapter  5  that the scaling function at a certain scale (fi ner) can 
be obtained from the scaling functions and wavelets at the next lower (coarse) 
scale. In mathematical terms, it means that there exist fi nite energy sequences 
{ h  0 [ k ]}, { h  1 [ k ]} such that

    φ φ ψ2 2 20 1t h k t k h k t k
k

−( ) = −[ ] −( ) + −[ ] −( ){ }∑� � � ,     (6.17)  

where, as discussed in Chapter  5 , { h  0 [ k ]}, { h  1 [ k ]} are the decomposition 
sequences. By taking the Fourier transform of the decomposition relation, 
we get

   

1
2

2 22
0 1

ˆ ˆ ˆφ ω φ ω ψ ωω ω ω
2

⎛
⎝

⎞
⎠ = −[ ] ( ) + −[ ] ( )− − −∑ ∑e h k e h k ej jk jk

k k

� � �

== ( ) −[ ] + ( ) −[ ]
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪ 2
⎛− −∑ ∑G z h k e G z h k ejk jk

k k
0 0 1 12 2� �ω ω φ ωˆ

⎝⎝
⎞
⎠ .

  

 This equation reduces to

   

h k e G z

h k e

j k

j k

k

k

0
2 2

0

1
2 2

2

2

−[ ]
⎛

⎝
⎜

⎞

⎠
⎟ ( )

+ −[ ]
⎛

⎝
⎜

⎞

− −( )

− −( )

∑

∑

�

�

�

�

ω

ω

⎠⎠
⎟ ( ) ≡ ∀ ∈G z1

1
2

; .� Z
  

   (6.18)   

 Combining the Fourier transforms of the decomposition and two - scale rela-
tions we get

    H z H z G z H z H z G z0 0 0 1 1 1
1
2

( ) + −( )[ ] ( ) + ( ) + −( )[ ] ( ) = for even ;�     (6.19)  

    H z H z G z H z H z G z0 0 0 1 1 1
1
2

( ) − −( )[ ] ( ) + ( ) − −( )[ ] ( ) = for odd �,     (6.20)  
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where  z     =     e   −    j ω    /2  and

   H z h k zk

k
0 0

1
2

,( ) = [ ]∑:  

   H z h k zk

k
1 1

1
2

( ) = [ ]∑: .   

 These equations lead to

   H z G z H z G z0 0 1 1
1
2

( ) ( ) + ( ) ( ) =  

   H z G z H z G z0 0 1 1 0.−( ) ( ) + −( ) ( ) =   

 The last equation can also be written as

    H z G z H z G z0 0 1 1 0( ) −( ) + ( ) −( ) = .     (6.21)   

 In the matrix form, we have

    
G z G z

G z G z

H z

H z
0 1

0 1

0

1

1
2

0

( ) ( )
−( ) −( )

⎡
⎣⎢

⎤
⎦⎥

( )
( )

⎡
⎣⎢

⎤
⎦⎥
=

⎡

⎣
⎢

⎤

⎦
⎥ ,     (6.22)  

the solution of which gives

    H z
G z

zG G
0

11
2 0 1

( ) = × −( )
( )Δ

    (6.23)  

    H z
G z

zG G
1

01
2 0 1

( ) = − × −( )
( )Δ

    (6.24)  

    with ΔG G z G z G z G z G z0 1 0 1 0 1( ) = ( ) −( ) − −( ) ( ).     (6.25)   

 It can be shown that

    ΔG G
mz c z E z0 1

2( ) = ( )φ ,     (6.26)  

where  c     >    0 and  n  is an integer. Since   ϕ   generates a Riesz or stable basis,  E  ϕ   ( z ) 
and hence   ΔG G z0 1 0( ) ≠ .   
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   6.2    CONSTRUCTION OF SEMIORTHOGONAL SPLINE WAVELETS 

 The signifi cance of the results obtained in Section  6.1  is that we need to con-
struct only the scaling functions — that is, we need to fi nd only the sequence 
{ g  0 [ k ]}. In this section we will obtain these sequences for semiorthogonal spline 
wavelets introduced by Chui - Wang  [1] . Here the cardinal  B  - splines  N m   are 
chosen to be the scaling functions. We will show that a fi nite energy sequence 
{ g  0 [ m ,  k ]} exists such that the scaling relation

    N t g m k N t km m

k

( ) = [ ] −( )∑ 0 2,     (6.27)  

is satisfi ed and, therefore,  N m  ( t ) is a scaling function. For  m     =    1, { N  1 ( t     −     k ): 
 k     ∈     Z } form an orthonormal basis of  A  0 . For this case, we have already seen 
that  g  0 [0]    =     g  0 [1]    =    1 (see Figure  5.3 ). In this section we will consider the cases 
for which  m     ≥    2.  

 For  m     ≥    2, the scaling functions { N m  ( t     −     k ):  k     ∈     Z } are no longer orthogonal:

    N t N t dtm m( ) −( ) ≠
−∞

∞

∫ 0,� �δ ,     (6.28)  

for all   �      ∈     Z . An example of nonorthogonality of  N  2 ( t ) is shown in 
Figure  6.1 . The   ∫−∞

∞ ( ) −( )N t N t dt2 2 �  is shown by the shaded area, which is 
non - zero.   

   6.2.1    Expression for { g  0 [ k ]} 

 Recall, from the defi nition of  N m  ( t ) in Chapter  5 , that

   N t N N tm

m

( ) = ∗ ∗ ( )( )1 1�� �� ��  

     FIGURE 6.1:     Nonorthogonality of linear spline shown by the shaded area.  
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and that

    ˆ .N
e
j

m

j m

ω
ω

ω
( ) = −⎛

⎝⎜
⎞
⎠⎟

−1
    (6.29)   

 From the Fourier transform of the two - scale relation, we have

    G z g m k z
N

N

e

z

k m

m

j m

m

k
0 0

2

2
,

2

2

( ) = [ ] = ( )
( )

= +⎛
⎝⎜

⎞
⎠⎟

= +( )

∑
−

−

1

1

2 1

ˆ

ˆ
ω

ω

ω

mm jz e; ,= − 2ω

    (6.30)  

   = ⎛
⎝⎜

⎞
⎠⎟

−

=
∑2

0

m km

k
z

k

m

.     (6.31)   

 By comparing the coeffi cient of powers of  z , we get

    g k g m k
k mm

k
m

0 0

12 0

0
[ ] = [ ] =

( ) ≤ ≤⎧
⎨
⎪

⎩⎪

− +

: ,
,

otherwise.
    (6.32)   

 Once we have { g  0 [ k ]}, the rest of the sequences { g  1 [ k ]}, { h  0 [ k ]}, and { h  1 [ k ]} can 
be found by using the relations derived in Section  6.1 . The expression 
of { g  1 [ k ]} is derived next. 

 For  N m  ( t ), the E - F - L polynomial   E zNm ( ) takes the form of

    

E z N k

A k z

N m k z

N m

N
k

m
k

m

m

k

k

k m

( ) =
2

+⎛
⎝

⎞
⎠

= ( )

= +( )

=−∞

∞

=−∞

∞

=− +

∑

∑

ˆ ω π2
2

2

11

1m−

∑ ,     (6.33)  

with  z    : =     e   −    j ω    /2  and the autocorrelation function

    A k N x N k m dx N m kN m m mm ( ) = ( ) +( ) = +( )
−∞

∞

∫ 2 .     (6.34)   

 Finally, by using the relation (6.16), we have

    g k g m k
m

N k k mk m
m

m

1 1
1

21 2 1 0 3 2
0

[ ] = [ ] = −( ) ⎛
⎝⎜

⎞
⎠⎟

+ −( ) ≤ ≤ −− +

=
∑: , , .

�
�

�
    (6.35)    
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     FIGURE 6.2:     Linear spline, dual linear spline, the corresponding wavelets, and their 
magnitude spectra.  

   6.2.2    Remarks 

 Recall that, in the expressions for  H  0 ( z ) and  H  1 ( z ) in terms of  G  0 ( z ) and 
 G  1 ( z ), there is a term   ΔG G

m
Nz z E zm0 1 ( ) = ( ) in the denominator. Consequently, 

the sequences { h  0 [ k ]} and { h  1 [ k ]} are infi nitely long, although their magnitude 
decays exponentially. These are the sequences that will be used in the develop-
ment of decomposition and reconstruction algorithms in Chapters  7  and  8 . 
It is clear that while  G  0  and  G  1  form FIR fi lters,  H  0  and  H  1  are always IIR. 
We will, however, prove in Chapter  7  that we can use  G  0  and  G  1  for both 
reconstruction and decomposition purposes. This is a consequence of the 
duality principle that we briefl y mentioned in Chapter  5 .  

 The commonly used cubic spline and the corresponding semiorthogonal 
wavelet with their duals and magnitude spectra are shown in Figures  6.2  and 
 6.3 . See Chapter  10  for the expressions of commonly used semiorthogonal 
scaling functions and wavelets. Table  6.1  gives the coeffi cients { g  1 [ m ,  k ]} for 
 m     =    2 through 6.       
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     FIGURE 6.3:     Cubic spline, dual cubic spline, the corresponding wavelets, and their 
magnitude spectra.  

  TABLE 6.1:    Coeffi cients  u m   ,   k     : =    2  m    − 1  (2 m     −    1)!  g  1 [ m ,  k ] for Semiorthogonal Wavelet 
( g  1 [ m ,  k ]    =    ( − 1)  m g  1 [ m , 3 m     −    2    −     k ]) 

    k       u m   ,   k        k       u m   ,   k        k       u m   ,   k    

       m     =    2         m     =    5         m     =    6  
  0    1    0    1    0    1  
  1     − 6    1     − 507    1     − 2,042  
  2    10    2    17,128    2    164,868  
       m     =    3    3     − 1,66,304    3     − 3,149,870  
  0    1    4    7,48,465    4    25,289,334  
  1     − 29    5     − 1,900,115    5     − 110,288,536  
  2    147    6    2,973,560    6    296,526,880  
  3     − 303            7     − 525,228,384  
       m     =    4            8    633,375,552  
  0    1                  
  1     − 124                  
  2    1,677                  
  3     − 7,904                  
  4    18,482                  
  5     − 24,264                  
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   6.3    CONSTRUCTION OF ORTHONORMAL WAVELETS 

 Recall from Chapter  2  that the Riesz bounds for orthonormal bases are 1. 
Therefore, for orthonormal scaling functions,   ϕ  , and the corresponding wave-
lets   ψ  , we have

   E e kjw

k
φ φ ω π( ) = +( ) ≡∑ ˆ 2 1,

2
 

   E e kjw

k
ψ ψ ω π( ) = + ≡∑ ˆ ( 2 ) 1,2  

for almost all   ω  . Consequently,

   � �φ φ ψ ψt t t t( ) = ( ) ( ) = ( ), ;and  

that is, they are self - duals. Remember from our discussion in Chapter  5  that 
because of the nested nature of MRA subspaces, the scaling functions are not 
orthogonal with respect to scales. Orthonormal scaling functions imply that 
these are orthogonal with respect to translation on a given scale. Orthonormal 
wavelets, on the other hand, are orthonormal with respect to scale as well as 
the translation. By starting with

    φ φ δt t−( ) ( ) = 0,� �,     (6.36)  

and following the derivation of (6.12), we arrive at the following results:

    G z G z z0
2

0
2 1 1( ) + −( ) ≡ =, .     (6.37)   

 For orthonormal scaling functions and wavelets, the relationships among the 
various sequences { g  0 [ k ]}, { g  1 [ k ]}, { h  0 [ k ]}, and { h  1 [ k ]} can be obtained from the 
results of Section  6.1  by setting  m     =    0. These results are summarized below.

    

G z zG z

g k g kk

1 0

1 01 1

( ) = − −( )
⇒ [ ] = −( ) −[ ];     (6.38)  

    ΔG G z G z G z G z G z z0 1 0 1 0 1, ( ) = ( ) −( ) − −( ) ( ) =     (6.39)  

    

H z
G z

z
G z

h k g k

0
1

0

0 0

1
2

1
2

1
2

( ) = × −( ) = × ( )

⇒ [ ] = −[ ];     (6.40)  

    

H z
G z

z
G z

h k g kk

1
0

1

1 0

1
2

1
2

1
2

1 1

( ) = − × −( ) = × ( )

⇒ [ ] = −( ) +[ ].     (6.41)   
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 As an example, For a Haar scaling function and wavelet (Figures  5.3  and  5.4 ),

   g g0 00 1 1;[ ] = [ ] =  

   g g1 10 1, 1 1;[ ] = [ ] = −  

   h h0 00 1
1
2

;[ ] = −[ ] =  

   h h1 10
1
2

, 1
1
2

;[ ] = −[ ] = −  

   g k g k h k h k k0 1 0 1 0 .[ ] = [ ] = [ ] = [ ] = for all other   

  Remarks:   One of the most important features of the orthonormal bases is 
that all of the decomposition and reconstruction fi lters are FIR and have 
the same length. This helps tremendously in the decomposition and recon-
struction algorithm discussed in Chapter  7 . One of the disadvantages of ortho-
normal wavelets is that they generally do not have closed form expressions, 
nor does a compactly supported orthonormal wavelet has linear phase 
(no symmetry). The importance of linear phase in signal reconstruction will 
be discussed in Chapter  7 . It has also been shown  [2]  that the higher - 
order orthonormal scaling functions and wavelets have poor time - frequency 
localization.   

   6.4    ORTHONORMAL SCALING FUNCTIONS 

 In this section we will discuss the commonly used orthonormal wavelets of 
Shannon, Meyer, Battle - Lemari é , and Daubechies. We will derive expressions 
for only the sequence { g  0 [ k ]} since other sequences can be obtained from the 
relationships of Section  6.1 . 

   6.4.1    Shannon Scaling Function 

 The Shannon sampling function

    φ π
πSH t

t
t

( ) =: sin
    (6.42)  

is an orthonormal scaling function with   ̂φ ω χ ωπ πSH ( ) = ( )−( , ) . Proving the 
orthogonality of (6.42) in the time - domain by the relation

    φ φ δSH SHt t−( ) ( ) = 0,� �,     (6.43)  

is cumbersome. Here it is rather easy to show that the Riesz bounds are 1; 
that is,
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     FIGURE 6.4:     4  π   - periodic extension of   φ̂ ωSH ( ).  

    ˆ .φ ω πSH k
k

+ 2( ) ≡∑ 2
1     (6.44)   

 The sequence { g  0 [ k ]} can be obtained from the two - scale relation

    
1
2 2

0g k e jk SH

SHk

[ ] = ( )
( )

− 2∑ ω φ ω
φ ω

ˆ

ˆ .     (6.45)   

 Since the left - hand side of the expression is a 4  π   - periodic function, we need a 
4  π   - periodic extension of the right - hand side. In other words,  G  0 ( z ) is nothing 
but a 4  π   - periodic extension of   ̂φ ωSH ( ) (see Figure  6.4 )  

    G z g j SH0 0
2

exp
2

4 .( ) = [ ] −⎛⎝
⎞
⎠ = +( )∑ ∑1

�
�

�
� �

ω φ ω πˆ     (6.46)   

 From (6.46) we can get the expression for the coeffi cients { g  0 [ k ]}

    

g k j
k

d

j
k

SH

SH

0
1

2
4

2

1
2 2

0

4
[ ] = +( ) ⎛

⎝
⎞
⎠

= ( ) ⎛

∑∫π
φ ω π ω ω

π
φ ω ω

π
ˆ exp

ˆ exp

�
�

⎝⎝
⎞
⎠

= ( ) ⎛
⎝

⎞
⎠

= ⎛

+

=−∞

∞

−∞

∞

( )
∫∑

∫

d

j
k

d

k

SH

SH

ω

π
φ ω ω ω

φ

π

π

4

4 1

1
2 2

2

�

�

�

ˆ exp

⎝⎝
⎞
⎠ .     (6.47)   

 By using (6.42), we get

   g k

k

k
k

k

k
0

1 2

1 0

1
2

0 0.

[ ] =

=

−( )

≠

⎧

⎨
⎪⎪

⎩
⎪
⎪

−( )

for

for odd

for even
π

  

 Figure  6.5  shows the Shannon scaling function and the wavelet.    
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126  CONSTRUCTION OF WAVELETS

   6.4.2    Meyer Scaling Function 

 The Shannon scaling function   ϕ  SH  ( t ) has poor time localization (  ΔφSH = ∞). 
The reason for this is that in the frequency domain,   ̂φ ωSH ( ) has a discontinuity 
at  −   π   and   π  . Consequently, in the time domain, as given by (6.42), the function 
decays as 1/ t  and hence its rms time window width (4.3) is  ∞ . To improve it, 
Meyer  [3, 4]  obtained the scaling function   ̂ ,φ ωM m( ) by applying a smoothing 
function near the discontinuities of   ̂φ ωSH ( ) in such a way that the orthogonal-
ity condition

    ˆ
,φ ω πM m k

k

+ 2( ) =∑ 2
1     (6.48)  

is satisfi ed. In (6.48) the index  m  indicates the degree of smoothness — that is, 
the  m th order corner smoothing function  S m  (  ω  ) is  m  times continuously dif-
ferentiable. To satisfy the orthogonality requirement (6.48), these corner 
smoothing functions should have the following properties:

   

S y S y y

S y y

S y y

m m

m

m

( ) + −( ) = ≤ ≤
( ) =
( ) =

⎧
⎨
⎪

⎩⎪

1 1 0 1;

0, < 0;

1, > 1.

,

  

 Examples of corner smoothing functions are given below.

     FIGURE 6.5:     Shannon scaling function, the corresponding wavelet, and their magni-
tude spectra.  
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 Let  S m  ( y ) be a desirable corner smoothing function. Then
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,
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π
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ω π ω π
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 The scaling function in the time domain then becomes

    φ

π

π
π ξ π ξM m mt

t

t
S t,

sin
cos cos( ) = +

2
( )⎡

⎣⎢
⎤
⎦⎥ 3

+( )⎡
⎣⎢∫2

3

2
3

2
3

2
3

2
1

0

1 ⎤⎤
⎦⎥
dξ.     (6.49)   

 For a linear smoothing function  m     =    0, the above integral can be easily evalu-
ated. The result is

    φ

π

π π

π π

M

t

t

t
t t

t
,

sin sin cos
.0 2

2
3

2
3

2
3

4 4
2
3

4
3

9 16
= +

+

−
    (6.50)   

 For higher values of  m , the integral in (6.49) needs to be evaluated numerically. 
In Figure  6.6  we show the scaling function and wavelet of Meyer for  m     =    0 
and 1.  

 As done before, the two - scale coeffi cients { g  0 [ k ]} can be obtained by a 4  π   -
 periodic extension of   ̂ ,φ ωM m( ). An example of such an extension is shown in 
Figure  6.7 .  

   

1
2

2

4

0
2g k e

k

jk M m

M m

M m

k

k

[ ] =
( )
⎛
⎝

⎞
⎠

= +( )

−∑

∑

ω φ ω

φ ω

φ ω π

ˆ

ˆ

ˆ .

,

,

,

  

 Similar to the case of the Shannon scaling function, here too we get

c06.indd   127c06.indd   127 11/9/2010   10:15:07 AM11/9/2010   10:15:07 AM



128  CONSTRUCTION OF WAVELETS

     FIGURE 6.6:     Meyer scaling function, the corresponding wavelet, and their magnitude 
spectra.  

     FIGURE 6.7:     4  π   - periodic extension of   ̂ ,φ ωM m ( ).  

    g k
k

M m0
2

[ ] = ⎛
⎝

⎞
⎠φ , .     (6.51)   

 Therefore, for  m     =    0, we can obtain  g  0 [ k ] by simply substituting  k /2 for  t  in 
(6.50). Table  6.2  gives the two - scale coeffi cients for  m     =    1.  

 Meyer ’ s wavelets can be obtained by using the two - scale relations. Since the 
scaling functions have compact support in the frequency domain, Meyer wave-
lets are related to the scaling function in a more direct way as shown below.  
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  TABLE 6.2:    Two - Scale Sequence for First - Order Meyer Scaling Function   ϕ  M   ;1  

    n       g  0 [ n ]    =     g  0 [ −  n ]      n       g  0 [ n ]    =     g  0 [ −  n ]      n       g  0 [ n ]    =     g  0 [ −  n ]  

     0    1.0635133307325022    13    0.0018225696961070    26    0.0000781583234904  
     1    0.6237929148320031    14     − 0.0001225788843060    27     − 0.0002817686403039  
     2     − 0.0594319217681172    15     − 0.0019003177368828    28     − 0.0000686017777485  
     3     − 0.1762971983704155    16     − 0.0000361315305005    29    0.0003520515347881  
     4    0.0484777578300750    17    0.0018514320187282    30     − 0.0000591760677635  
     5    0.0751184531725782    18     − 0.0004792529715153    31     − 0.0002870818672708  
     6     − 0.0339527984193033    19     − 0.0013039128005108    32    0.0001435155716864  
     7     − 0.0311015336438103    20    0.0007208498373768    33    0.0001507339706291  
     8    0.0197659340813598    21    0.0006265171401084    34     − 0.0001171599560112  
     9    0.0110906323385240    22     − 0.0005163028169833    35     − 0.0000530482980227  
  10     − 0.0089132072379117    23     − 0.0002172396357380    36    0.0000282695514764  
  11     − 0.0035390831203475    24    0.0001468883466883    37    0.0000443263271494  
  12    0.0025690718118815    25    0.0001627491841323    38    0.0000355188445237  
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    (6.52)    

   6.4.3    Battle - Lemari é  Scaling Function 

 Battle - Lemari é   [5, 6]  scaling functions are constructed by orthonormalizing 
the  m th order cardinal  B  - spline  N m  ( t ) for  m     ≥    2. As pointed out before, the 
set of basis functions { N m  ( t     −     k ):  k     ∈     Z } is not orthogonal for  m     ≥    2. The cor-
responding orthonormal scaling function   N tm

⊥ ( ) can be obtained as

    ˆ
ˆ

.N
N

E e
m

m

N
j

m

⊥
−

( ) = ( )
( )⎡⎣ ⎤⎦

ω ω
ω 1 2     (6.53)   

 The Battle - Lemari é  (B - L) scaling function   ϕ  BL   ,   m  ( t ) is, then,

   φBL m mt N t, ,( ) = ( )⊥  

and the coeffi cients { g  0 [ k ]} can be found from

    
1
2 2

0 0g k z G e
N

N
k j m

mk

[ ] = ( ) = ( )
( )∑ − 2
⊥

⊥
ω ω

ω

ˆ

ˆ ,     (6.54)  
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where  z     =     e    −    j ω    /2 . By combining (6.53) and (6.54), we have

    G z
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m m
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k m
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2
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2
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1
2

.     (6.55)   

 As an example consider the linear B - L scaling function for which  m     =    2. For 
this case we have

    
1
2

1
4

4 1
4 1

0 0

2 2

4 2g k z G z
z z z

z z
k

k

[ ] = ( ) = +( ) × + +
+ +∑ .     (6.56)   

 The coeffi cients { g  0 [ k ]} can be found by expanding the expression on the right -
 hand side as a polynomial in  z  and then comparing the coeffi cients of the like 
powers of  z . These coeffi cients can also be found by computing the Fourier 
coeffi cients of the right - hand side expression. Observe that  G  0 (1)    =    1 is satis-
fi ed, thus giving the sum of all { g  0 [ k ]} to be 2. In Tables  (6.3)  and  (6.4)  we 
provide the coeffi cients of the linear and cubic B - L scaling functions. The 
linear and cubic Battle - Lemari é  scaling functions and corresponding wavelets 
are shown in Figure  6.8 .      

   6.4.4    Daubechies Scaling Function 

 Battle - Lemari é  obtained orthonormal scaling functions by orthonormalizing 
 m th - order cardinal  B  - splines  N m  ( t ) for  m     ≥    2. However, because of the pres-
ence of   E zNm ( ) in the denominator for the orthonormalization process, the 
sequence { g  0 [ k ]} becomes infi nitely long. 

  TABLE 6.3:    Two - scale Sequence for Linear Battle - Lemari é  Scaling Function   ϕ  BL   ;2  

    n       g  0 [ n ]    =     g  0 [2    −     n ]      n       g  0 [ n ]    =     g  0 [2    −     n ]      n       g  0 [ n ]    =     g  0 [2    −     n ]  

     1    1.1563266304457929    14    0.0000424422257478    27     − 0.0000000053986543  
     2    0.5618629285876487    15     − 0.0000195427343909    28     − 0.0000000028565276  
     3     − 0.0977235484799832    16     − 0.0000105279065482    29    0.0000000013958989  
     4     − 0.0734618133554703    17    0.0000049211790530    30    0.0000000007374693  
     5    0.0240006843916324    18    0.0000026383701627    31     − 0.0000000003617852  
     6    0.0141288346913845    19     − 0.0000012477015924    32     − 0.0000000001908819  
     7     − 0.0054917615831284    20     − 0.0000006664097922    33    0.0000000000939609  
     8     − 0.0031140290154640    21    0.0000003180755856    34    0.0000000000495170  
     9    0.0013058436261069    22    0.0000001693729269    35     − 0.0000000000244478  
  10    0.0007235625130098    23     − 0.0000000814519590    36     − 0.0000000000128703  
  11     − 0.0003172028555467    24     − 0.0000000432645262    37    0.0000000000063709  
  12     − 0.0001735046359701    25    0.0000000209364375    38    0.0000000000033504  
  13    0.0000782856648652    26    0.0000000110975272    39     − 0.0000000000016637  
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 To obtain orthonormality but preserve the fi nite degree of the (Laurent) 
polynomial, Daubechies  [7, 8]  considered the two - scale symbol for the scaling 
function   ϕ  D   ,   m  :

    G z
z

S z
m

0
1

2
( ) = +⎛

⎝
⎞
⎠ ( ),     (6.57)  

where  S ( z )    ∈      π  m    − 1 . So our objective is to fi nd  S ( z ). First, observe that since 
 G  0 (1)    =    1, we must have  S (1)    =    1. Furthermore, we also want  S ( − 1)    ≠    0 because 
if  S ( − 1)    =    0, then  z     +    1 is a factor of  S ( z ) and hence can be taken out. Now 
 G  0 ( z ) given by (6.57) must satisfy the orthogonality condition, namely

    G z G z z e j
0

2
0

2 1( ) + −( ) = = − 2, ω     (6.58)  

    ⇒
4

⎛
⎝

⎞
⎠ ( ) +

4
⎛
⎝

⎞
⎠ −( ) =cos sin .2 2 2 2 1m mS z S z

ω ω
    (6.59)   

 By defi ning

   x : sin ,= ⎛
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⎞
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2

4
ω

and  

   f x S z( ) = ( ): ,2   

 Equation  (6.59)  can be rewritten as

    

1 1 1

1 1 1
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m m

m m
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−

∑ x R xk
m

k

m

0

1

,     (6.60)  

  TABLE 6.4:    Two - Scale Sequence for Cubic Battle - Lemari é  Scaling Function   ϕ  BL   ;4  

    n       g  0 [ n ]    =     g  0 [4    −     n ]      n       g  0 [ n ]    =     g  0 [4    −     n ]      n       g  0 [ n ]    =     g  0 [4    −     n ]  

     2    1.0834715125686560    15    0.0026617387556783    28     − 0.0000282171646500  
     3    0.6136592734426418    16     − 0.0015609238233188    29     − 0.0000222283943141  
     4     − 0.0709959598848591    17     − 0.0013112570210398    30    0.0000146073867894  
     5     − 0.1556158437675466    18    0.0007918699951128    31    0.0000114467590896  
     6    0.0453692402954247    19    0.0006535296221413    32     − 0.0000075774407788  
     7    0.0594936331541212    20     − 0.0004035935254263    33     − 0.0000059109049365  
     8     − 0.0242909783203567    21     − 0.0003285886943928    34    0.0000039378865616  
     9     − 0.0254308422142201    22    0.0002065343929212    35    0.0000030595965005  
  10    0.0122828617178522    23    0.0001663505502899    36     − 0.0000020497919302  
  11    0.0115986402962103    24     − 0.0001060637892378    37     − 0.0000015870262674  
  12     − 0.0061572588095633    25     − 0.0000846821755363    38    0.0000010685382577  
  13     − 0.0054905784655009    26    0.0000546341264354    39    0.0000008247217560  
  14    0.0030924782908629    27    0.0000433039957782    40     − 0.0000005577533684  
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where the remainder  R m  ( x ) is

    R x
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    (6.61)   

 Since  f ( x ) is a polynomial of order  m ,  R m  ( x )    ≡    0. Therefore, we have
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 The above polynomial can be converted to
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−

∑2 0

2
1

1

cos ,
ω

    (6.63)  

     FIGURE 6.8:     Battle - Lemari é  scaling function, the corresponding wavelet, and their 
magnitude spectra.  
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where  [9] 
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 Our next task is to retrieve  S ( z ) from | S ( z )| 2 . According to Riesz lemma  [10] , 
corresponding to a cosine series

    ˆ cosf
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a kk

k
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ω ω( ) = + ( )
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2
1

    (6.65)  

with  a  0 ,  ·  ·  ·  ,  a N      ∈     R  and  a N      ≠    0, there exists a polynomial

    g z b zk
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k
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( ) =
=
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0

    (6.66)  

with  b  0 ,  ·  ·  ·  ,  b N      ∈     R , such that

    g z f z e j( ) = ( ) = −2 ˆ , .ω ω     (6.67)   

 By applying Riesz lemma to (6.63) it easy to verify  [9]  that  S ( z ) has the fol-
lowing form

    S z C z r z z z z K L mk

k

K L

( ) = −( ) −( ) −( ) + = −
= =
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1 1

2 1� �

�
; ,     (6.68)  

where { r k  } are the nonzero real roots and { z  �   } are the complex roots of 
 z m    − 1 | S ( z )| 2  inside a unit circle and  C  is a constant such that  S (1)    =    1. Once we 
have  S ( z ), we can substitute this into (6.57) and compare the coeffi cients of 
powers of  z  to get the sequence { g k  }. We will show the steps to get these 
sequences with an example. Consider  m     =    2. For this, we have  a  0     =    4 and 
 a  1     =     − 1, which gives
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where   r1 2 3= − . From (6.68), we have

    S z
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z r z( ) =
−
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− +( )1
1

1

1 3
2 3

1
1 .     (6.70)   
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 So, for  m     =    2, we get
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 Since  S ( z ) is a polynomial of order  m , the length of two - scale sequence for 
  ϕ  D   ;   m   is 2 m . 

 For  m     =    2 and 7, the scaling functions and wavelets along with their mag-
nitude spectra are shown in Figure  6.9 . Two - scale sequences for some of 
Daubechies scaling functions are given in Table  6.5 . Readers should keep in 
mind that in some books (e.g.  [8] ), there is a factor of   2  in the two - scale 
sequences.       

     FIGURE 6.9:     Daubechies scaling function, the corresponding wavelet, and their mag-
nitude spectra.  
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136  CONSTRUCTION OF WAVELETS

   6.5    CONSTRUCTION OF BIORTHOGONAL WAVELETS 

 In the previous sections, we have discussed the semiorthogonal and orthonor-
mal wavelets. We developed the orthogonal wavelets as a special case of the 
semiorthogonal wavelets by using

    
�

�
φ φ
ψ ψ

=
= .

    (6.72)   

 One of the major diffi culties with compactly supported orthonormal wavelets 
is that they lack spatial symmetry. This means the processing fi lters are non-
symmetric and do not possess linear phase property. Lacking the linear phase 
property results in severe undesirable phase distortions in signal processing. 
This topic will be dealt with in Chapter  7  in more detail. Semiorthogonal 
wavelets, on the other hand, are symmetric but suffers from the drawback that 
their duals do not have compact support. This is also undesirable since trunca-
tion of the fi lter coeffi cients is necessary for real - time processing. Biorthogonal 
wavelets may have both symmetry and compact support. 

 Cohen, Daubechies, and Feaveau  [11]  extended the framework of the 
theory of orthonormal wavelets to the case of biorthogonal wavelets by a 
modifi cation of the approximation space structure. Let us recall that in both 
the semiorthogonal and orthonormal cases, there exist only one sequence of 
nested approximation subspaces,

    0 2 1 0 1 2
2{ }← ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ →− −� �A A A A A L .     (6.73)   

 The wavelet subspace,  W s  , is the orthogonal complements to  A   s   within  A   s    + 1  
such that

    
A ss s

s s s

�W

A W A

= { } ∈
+ = +

0

1

, ,

.

Z and
    (6.74)   

 This framework implies that the approximation space is orthogonal to the 
wavelet space at any given scale  s  and the wavelet spaces are orthogonal across 
scales:

    W Ws p s p⊥ ≠for .     (6.75)   

 In the orthonormal case, the scaling functions and wavelets are orthogonal to 
their translates at any given scale  s 

    
φ φ δ
ψ ψ δ

k s m s k m

k s m s k m

t t

t t
, , ,

, , ,

,

, .

( ) ( ) =
( ) ( ) =

    (6.76)   
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CONSTRUCTION OF BIORTHOGONAL WAVELETS  137

 In the semiorthogonal case, equation  (6.76)  no longer holds for   ϕ   and   ψ  . 
Instead, they are orthogonal to their respective duals

    
φ φ δ

ψ ψ δ
k s m s k m

k s m s k m

t t

t t

, , ,

, , ,

,

, ,

( ) ( ) =

( ) ( ) =

�

�
    (6.77)  

and the duals span dual spaces in the sense that   A span t ms
s	 �: 2= −( ){φ ,   

s m, , ∈ }
  and   Ws
sspan t m s m	 � 
: , , ,= −( ) ∈{ }ψ 2 . As described in Chapter  5 , 

semiorthogonality implies that   A As s
	 =  and   W Ws s

	 = . 
 In biorthogonal system, there exist an additional dual nested space:

    0 2 1 0 1 2
2{ }← ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ →− −� � � � � � �A A A A A L .     (6.78)   

 In association with this nested sequence of spaces is a set of dual wavelet 
subspaces (not nested)   �Ws,  s     ∈     Z , that complements the nested subspaces  A   s  , 
 s     ∈     Z . To be more specifi c, the relations of these subspaces are

    A W As s s+ = +�
1     (6.79)  

    � �A W As s s+ = +1.     (6.80)   

 The orthogonality conditions then become

    A Ws s⊥ �     (6.81)  

    �A Ws s⊥ .     (6.82)  

giving us

    φ ψk s m st t, ,,( ) ( ) =� 0     (6.83)  

    �φ ψk s m st t, ,, .( ) ( ) = 0     (6.84)   

 In addition, the biorthogonality between the scaling functions and the wave-
lets in (6.77) still holds. The two - scale relations for these bases are

    φ φt g k t k
k

( ) = [ ] −( )∑ 0     (6.85)  

    � � �φ φt h k t k
k

( ) = [ ] −( )∑ 0     (6.86)  

    ψ φt g k t k
k

( ) = [ ] −( )∑ 1     (6.87)  

    � � �ψ φt h k t k
k

( ) = [ ] −( )∑ 1 .     (6.88)   
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138  CONSTRUCTION OF WAVELETS

 The orthogonality and biorthogonality between these bases give the fol-
lowing four conditions on the fi ltering sequences:

    g k m h k n0 12 2 0−[ ] −[ ] =, �     (6.89)  

    g k m h k n1 02 2 0−[ ] −[ ] =, �     (6.90)  

    g k m h k m0 0 02−[ ] [ ] =, ,
� δ     (6.91)  

    g k m h k m1 1 02−[ ] [ ] =, .,
� δ     (6.92)   

 Biorthogonal wavelet design consists of fi nding the fi lter sequences that satisfy 
(6.89) through (6.92). Because there is quite a bit of freedom in designing the 
biorthogonal wavelets, there are no set ways to the design procedure. For 
example, one may begin with  g  0 [ k ] being the two - scale sequence of a  B  - spline 
and proceed to determine the rest of the sequences. Another way is to design 
biorthogonal fi lter banks and then iterate the sequences to obtain the scaling 
functions and the wavelet (discussed in Section  6.6 ). Unlike the orthonormal 
wavelet where the analysis fi lter is a simple time - reversed version of the syn-
thesis fi lter, one must iterate both the synthesis fi lter and the analysis fi lter to 
get both wavelets and both scaling functions. We will follow this approach and 
defer our discussion of biorthogonal wavelet design by way of example at the 
end of Chapter  7 .  

   6.6    GRAPHICAL DISPLAY OF WAVELET 

 Many wavelets are mathematical functions that may not be described analyti-
cally. For examples, the Daubechies compactly supported wavelets are given 
in terms of two - scale sequences and the spline wavelets are described in terms 
of infi nite polynomials. It is diffi cult for the user to visualize the scaling func-
tion and the wavelet based on parameters and indirect expressions. We 
describe three methods here to display the graph of the scaling function and 
the wavelet. 

   6.6.1    Iteration Method 

 The iteration method is the simplest in implementation. We include a Matlab 
program with this book for practice. Let us write

    φ φm mt g k t k m+ ( ) = [ ] −( ) =∑1 0 2 0 1 2 3, , , , ,…     (6.93)  

and compute all values of  t . In practice, we may initialize the program by taking

    φ δ0 t t( ) = ( ).     (6.94)  

and setting   ϕ   0 ( n )    =      δ  ( n )    =    1, After upsampling by 2, the sequence is convolved 
with the  g  0 [ k ] sequence to give   ϕ   1 ( n ). This sequence is upsampled and con-
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GRAPHICAL DISPLAY OF WAVELET  139

volved with  g  0 [ k ] again to give   ϕ   2 ( n ), and so on. In most cases, the procedure 
usually converges within 10 iterations. For biorthogonal wavelets, conver-
gence time may be longer. Once the scaling function has been obtained, the 
associated wavelet can be computed and displayed using the two - scale relation 
for the wavelet

   ψ φt g k t k( ) = [ ] −( )∑ 1 2 .   

 A display indicating the iterative procedure is given in Figure  6.10 . The fi gure 
indicates the number of points in each iteration. To get the corresponding 
position along the time axis, the abscissa needs to be divided by 2  m   for each 
iteration  m .    

   6.6.2    Spectral Method 

 In this method, the two - scale relation for the scaling function is expressed in 
the spectral domain

     FIGURE 6.10:     Iterative procedure to get scaling functions. Abscissa need to be divided 
by 2  m   to get the correct position in time.  
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⎛
⎝

⎞
⎠ =

=
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠

G e z e

G e G e

j j

j j

0 2 2

0 2 0 4

2

⎟⎟
⎛
⎝

⎞
⎠

=
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

=
∏

ˆ

.

.

.

ˆ

φ ω

φ ωω

4

2
0 2

1

G e
j

N
k

k

N

    (6.95)  

    =
⎛

⎝
⎜

⎞

⎠
⎟ ( )

=

→∞

∏ G e
j

k

k

N

0 2 0
1

ω

φ̂ .     (6.96)   

 Since   ̂φ 0 1( ) = , we may take the inverse Fourier transform of (6.96) to yield

    φ
π

ω
ω

ωt G e e d
j

j tk

k

N

( ) =
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

→∞

−∞

∞

∏∫1
2

0 2

1

.     (6.97)   

 To compute (6.97), the user has to evaluate the truncated infi nite product and 
then take the FFT.  

   6.6.3    Eigenvalue Method 

 The eigenvalue method converts the two - scale relation into an eigen - equation. 
Let us consider the two - scale relation by setting  x     =     n  to yield the following 
matrix equation:

    

φ φ

φ

φ

n g k n k

g n m m

g n m m

k

m

( ) = [ ] −( )

= −[ ] ( )

= ( )[ ] ( )

∑
∑

0

0

0

2

2

,     (6.98)  

where the matrix element  g  0 ( n ,  m )    =     g  0 (2 n     −     m ). In matrix form, we write 
(6.98) as

   

⋅ ⋅ ⋅ ⋅
⋅ [ ] −[ ] −[ ] ⋅
⋅ [ ] [ ] [ ] ⋅
⋅ [ ] [ ] [ ] ⋅
⋅

g g g

g g g

g g g

o o o

o o o

o o o

0 1 2

2 1 0

4 3 2

⋅⋅ ⋅ ⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦
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⎥
⎥
⎥
⎥

⋅
( )
( )
( )

⋅

⎡

⎣

⎢
⎢
⎢
⎢
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⎢

⎤

⎦
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⎥
⎥
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⋅
( )φ
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1

2

1
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⎢
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⎥
⎥
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EXERCISES  141

 The eigenvalue of this eigenmatrix is 1, so we can compute   ϕ  ( n ) for all integer 
 n . This procedure can be repeated for a twofold increase in resolution. Let 
  x n= /2, and the two - scale relation becomes

    φ φn
g k n k

k
2

0
⎛
⎝

⎞
⎠ = [ ] −( )∑ .     (6.99)   

 By repeating this procedure for   x n n= / /4, 8,�, we compute the discretized 
  ϕ  ( t ) to an arbitrarily fi ne resolution.  

 6.7   EXERCISES 

          1.    Show that the support of semiorthogonal wavelets,   ψ  m  ( t )    =    [0, 2 m     −    1].   

       2.    Show that the integer translates of the Shannon wavelet   ψ  s  ( t     −     k ) form an 
orthonormal basis.   

       3.    Find the cubic spline polynomial  S  4  that satisfi es the conditions 
  S S4 40 0 0( ) = ′ ( ) = ,   S S4 41 1 0( ) = ′ ( ) = , and  S  4 ( x )    +     S  4 (1    −     x )    ≡    1. Use this poly-
nomial as the smoothing function for Meyer ’ s scaling function and compute 
the two - scale coeffi cients.   

       4.    Show that if {  ϕ  ( t     −     k ),  k     ∈     Z } is a Riesz basis of  V  0     = ,   {  ϕ  ( t     −     k ) :  k     ∈     Z }, 
then {  ϕ  k   ,   s  }  k    ∈    Z   is a Riesz basis of  V s      =    {  ϕ  k   ,   s  ( t ),  k     ∈     Z } for a fi xed  s     ∈     Z . 
That is

   A a a t k B ak k k

k k k

2

2

2

2

=−∞

∞

=−∞

∞

=−∞

∞

∑ ∑ ∑≤ −( ) ≤φ  

implies

   A a a t B a
k k k

k k k s k

=−∞

∞

=−∞

∞

=−∞

∞

∑ ∑ ∑≤ ≤2
,

2

2

2( )φ  

with the same constants  A ,  B .   

       5.    Show that the following statements are equivalent: ( a ) {  ϕ  ( ·     −     k )   :    k     ∈     Z }

is an orthonormal family, and ( b )   ∑ + 2( ) ==−∞
∞
k kφ̂ ω π

2
1 almost 

everywhere.   

       6.    Prove that { N  1 ( ·     −     k )   :    k     ∈     Z } is an orthonormal family by using this 
theorem, that is, by showing

   N̂ k
k

1
2

2 1.ω π+( ) =
=−∞

∞

∑     
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142  CONSTRUCTION OF WAVELETS

       7.    Obtain an algebraic polynomial corresponding to Euler - Frobenius -
 Laurent polynomial   E zN4 ( ) and fi nd its roots  λ  1     >     ·  ·  ·     >     λ  6 . Check that these 
zeros are simple, real, negative, and come in reciprocal pairs:

   λ λ λ λ λ λ1 6 2 5 3 4 1.= = =     

       8.    The autocorrelation function  F  of a given function  f     ∈     L  2 ( −  ∞ ,  ∞ ) is 
defi ned as

   F x f t x f t dt x( ) = +( ) ( ) ∈
−∞

∞

∫ , .R   

 Compute the autocorrelation function of the hat function  N  2  and compare 
it to the function  N  4  as introduced in Exercise 7.   

       9.    Construct a linear Battle - Lemari é  scaling function to show that for the hat

function  N  2 ( t ), it holds (let   z e
j

=
− ω

2 ) that

   N̂ k z z
k

2
2 2 22

1
6

4ω π+( ) = + +( )
=−∞

∞

∑ −  

and

   N̂ z2 ω
ω

( ) = − −1
(1 ) .2

2 2   

 The Fourier transform of the orthonormalized scaling function   N t2
⊥( ) is 

given by

   N̂ z z z2 2
2 2 2 2

1
21

1
1
6

( 4 ) .⊥ −( ) = − −( ) + +⎡
⎣⎢

⎤
⎦⎥

ω
ω

  

 We have shown that the symbol

   G z
N

N
0

2

2 2

.( ) = ( )
⎛
⎝

⎞
⎠

⊥

⊥

ˆ

ˆ

ω
ω   

 Compute the ratio to show that the result is

   1
2

1
2 1

2
+⎛

⎝
⎞
⎠ +( )z η ,  

where
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η =

+ − +

+ +

− −

−

z z z z

z z

1 2 2

2 2
4 4

1
4

.
  

 Use the power series expansions

   1 1
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1
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1 3 2 3
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∞

∑x
n j
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j

 

as well as the binomial theorem to expand the expression   1 2 2+( )[ ]z /  
  1 1 2+( )η /  in power of  z  and determine the coeffi cients  g  0 [ k ], for  k     =     
− 5,  …  , 5, by comparing the corresponding coeffi cients of  z   − 5 ,  …  ,  z  5  in 
 G  0 ( z ) and   1 2 12 1 2+( )[ ] +( )z / /η . You should use symbolic packages like 
 Mathematica  or  Maple  for these computations.   

    10.     Construction of linear B - spline wavelet : Given the two - scale relation for 
the hat function

   N t
k

N t k
k

2 2
1
2

2
2 ,

0

2

( ) = ⎛
⎝⎜

⎞
⎠⎟

−( )
=
∑  

we want to determine the two - scale relation for a linear wavelet with 
minimal support

   ψ 2 1 2 2 ,t g k N t k
k

( ) = [ ] −( )∑  

using the corresponding E - F - L polynomial  E ( z )    =     z   − 1     +    4    +     z . It was 
shown that for the corresponding symbols

   G z g k zk

k k
0 0 1 1 2

1
2

,
1
2

, ,( ) = [ ] ( ) = [ ] =∑ ∑ −
and G z g k z where z ek j

ω

 

the orthogonality condition is equivalent to

   G z G z E z G z G z E z z0 1 0 1 0, 1.( ) ( ) ( ) + −( ) −( ) −( ) = =with   
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144  CONSTRUCTION OF WAVELETS

 We need to determine the polynomial  G  1 ( z ) from the above equation. 
There is no unique solution to this equation. 
  a.     Show that   G z z G z E z1

3
01 3( ) = −( ) −( ) −( )/ !  is a solution of the above 

equation.  
  b.     Show that   G z z0

21 2( ) = +( )[ ]/ .  
  c.     Expand   G z z G z E z1

3
01 3( ) = −( ) −( ) −( )/ !  in powers of  z  and thus deter-

mine the two - scale relation for the function   ψN2 by comparing coeffi -
cients in

   G z g k z z G z E zk

k
1 1

3
0

1
2

1
3

.( ) = [ ] = − −( ) −( )∑ !
   

  d.     Graph   ψ   2 .      

    11.    Complete the missing steps in the derivation of Daubechies wavelet in 
Section  6.4.4 . Note that | S ( z )| 2  is a polynomial in cos(  ω  /2).   

    12.    Use the sequence { − 0.102859456942, 0.477859456942, 1.205718913884, 
0.544281086116,  − 0.102859456942,  − 0.022140543057} as the two - scale 
sequence { g  0 [ n ]} in the program  iterate.m  and view the results. The resul-
tant scaling function is a member of the Coifman wavelet system or  coifl ets  
 [8] . The main feature of this system is that in this case the scaling functions 
also have vanishing moments properties. For  m th order coifl ets

   t t dt p mpψ( ) 0, 0, , 1
−∞

∞

∫ = = −… ;  

   t t dt p mpφ( ) = = −
−∞

∞

∫ 0, 1, , 1… ;  

   φ t dt( ) =
−∞

∞

∫ 1.     

    13.    Construct biorthogonal wavelets beginning with the two - scale sequence 
{ g  0 [ n ]} for linear spline.       

   6.8    COMPUTER PROGRAMS 

   6.8.1    Daubechies Wavelet 

  % 
 %      PROGRAM      wavelet.m 
 % 
 %      Generates Daubechies scaling      functions      and      wavelets 
 g0       =       [0.68301; 1.18301; 0.31699;  - 0.18301]; 
 k  =  [0; 1; 2; 3]; 
 g1  =  fl ipud(g0). * ( - 1). ̂ k; 
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 ng1  =  length(g1); 
 %      Compute scaling funtion fi rst 
 NIter  =  10;                  %         interation      time 
 phi_new       =  1;            %         initialization 
 for i  =  1:NIter 
          unit       =  2 ̂ (i - 1); 
          phi       =  conv(g0,phi_new); 
          n       =       length(phi); 
          phi_new(1:2:2 * n)  =  phi; 
          length(phi_new); 
          if(i  =  =  (NIter - 1)) 
             phi2  =  phi; 
          end 
 end 
 % 
 dt  =  1.0         / (2       *       unit); 
 t  =  [1:length(phi)]  *       dt; 
 subplot(2,1,1), plot(t,phi) 
 title( ’ Scaling      Function ’ ) 
 %      Compute wavelet using 2 - scale relation 
 for i  =       1:ng1 
       a  =  (i - 1)  *       unit  +  1; 
       b  =  a       +  length(phi2)  -  1; 
             psi2s(i,a:b)  =  phi2          *       g1(i); psi2s(1,n)  =  0; 
 end 
 psi  =  sum(psi2s); 
 t  =  [0:length(phi) - 1]  *       dt  -  (ng1       -  2)      / 2; 
 subplot(2,1,2), plot(t,psi) 
 title( ’ Wavelet ’ )   

   6.8.2    Iteration Method  

 % 
 %      PROGRAM            iterate.m 
 % 
 %      Iterative procedure to get scaling function 
 %      generates      Figure 6.10 
 % 
 g0  =  [0.68301      1.18301 0.31699  - 0.18301]; 

 NIter  =  10;                  %         number      of      interation 
 phi_new       =  1;            %         initialization 
 for i  =  1:NIter 
       unit  =  2 ̂ (i - 1); 
       phi       =  conv(g0,phi_new); 
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       n       =       length(phi); 
       phi_new(1:2:2 * n)       =  phi; 
       subplot(5,2,i), plot(phi); hold         on; 
       heading       =     sprintf( ’ Iteration  =  %.4g ’ ,i) 
       title(heading); 
 end 
 %    
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  CHAPTER SEVEN 

 DWT  and Filter 
Bank Algorithms     

     The discussion on multiresolution analysis in Chapter  5  prepares the readers 
for understanding of wavelet construction, and algorithms for fast computa-
tion of the continuous wavelet transform (CWT). The two - scale relation and 
the decomposition relation are essential for the development of the fast algo-
rithms. The need of these algorithm is obvious since a straightforward evalu-
ation of the integral in  (4.32)  puts a heavy computation load in problem 
solving. The CWT places redundant information on the time - frequency plane. 
To overcome these defi ciencies, the CWT is discretized and algorithms equiva-
lent to the two - channel fi lter bank have been developed for signal representa-
tion and processing. The perfect reconstruction (PR) constraint is placed on 
these algorithm developments. In this chapter, we develop these algorithms 
in detail. Since the semiorthogonal spline functions and the compactly sup-
ported spline wavelets require their duals in the dual spaces, signal representa-
tion and the PR condition for this case are developed along with the algorithms 
for change of bases. Before we develop the algebra of these algorithms, we 
fi rst discuss the basic concepts of sampling rate changes through decimation 
and interpolation.  

   7.1    DECIMATION AND INTERPOLATION 

 In signal processing, we often encounter signals whose spectrum may vary with 
time. A linear chirp signal is a good example. To avoid aliasing, this chirp 
signal must be sampled at least twice of its highest frequency. For a chirp signal 
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148  DWT AND FILTER BANK ALGORITHMS 

with wide bandwidth, this Nyquist rate may be too high for the low frequency 
portion of the chirp. Consequently, there is a lot of redundant information to 
be carried around if one uses a fi xed rate for the entire chirp. There is the area 
of multirate signal processing which deals with signal representation using 
more than one sampling rate. The mechanisms for changing the sample rate 
are  decimation  and  interpolation . We discuss their basic characteristics in the 
time and spectral domains here. 

   7.1.1    Decimation 

 An  M  - point decimation retains only every  M th sample of a given signal. 
In the time - domain, an  M  - point decimation of an input sequence { x ( n )} is 
given by

    y n x nM n( ) = ( ) ∈, .for Z     (7.1)   

 Figure  7.1  depicts the system diagram of an  M  - point decimator. The output of 
the decimator may be written in terms of a product of  x ( n ) and a sequence of 
unit impulses separated by  M  samples   ∑ −( )∈k Z n kMδ . Let  

    u n x n n kM k
k

( ) = ( ) −( ) ∈
∈
∑ δ

Z
Z, for     (7.2)   

 which selects only the  kM th samples of  x ( n ). The Fourier series representation 
of the  M  - point period impulse sequence  (7.2)  is

    δ πn kM
M

e
k k

M
j kn M−( ) =

∈ =

−

∑ ∑ −

Z

1 2

0

1

.     (7.3)   

 Based on the geometric sum

   e
M k Mj kn M

k

M
−

=

−

∑ =
= ∈⎧

⎨
⎩

2

0

1 , , ,

0, ,
π for

otherwise

� � Z
  

     FIGURE 7.1:     An  M  - point decimator.  
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 the identity in  (7.3)  is proved. Writing  y ( n )    =     u ( nM ), the  z  - transform of  y ( n ) 
has the following form

    

Y z
M

X z e

M
X z W

M j k M

M
M
k

k

M

k

M

( ) =
⎛

⎝⎜
⎞

⎠⎟

=
⎛

⎝⎜
⎞

⎠⎟

−

=

−

=

−

∑

∑

1

1

1
2

1

0

1

0

1

π

    (7.4)  

where the  M  - point exponential basis function   W eM
k j k M:= − 2π  has been used. 

In the spectral domain, we obtain the DFT of  y ( n ) simply by setting  z     =     e j ω    to 
yield

    ˆ ˆ .y e
M

x ej j
k

M

k

M
ω

ω π

( ) =
⎛

⎝⎜
⎞

⎠⎟
−

=

−

∑1 2

0

1

    (7.5)   

 The spectrum of the decimator output contains  M  copies of the input spec-
trum. The amplitude of the copy is reduced by a factor of   1/M . In addition, 
the bandwidth of the copy is expanded by  M  times. As a result, if the spectral 
bandwidth of the input signal is greater than   π /M, (i.e.   ω π> /M), an  M  - point 
decimator will introduce aliasing in its output signal. We will see later that 
aliasing does indeed occur in a wavelet decomposition tree or a two - channel 
fi lter bank decomposition algorithm. However, the aliasing is canceled by 
carefully designing the reconstruction algorithm to remove the aliasing and 
recover the original signal. 

 For  M     =    2, we decimate a sequence by taking every other data points. From 
 (7.4) , we obtain

    

Y z X z W

X z X z

k

k

( ) =
⎛

⎝⎜
⎞

⎠⎟

=
⎛

⎝⎜
⎞

⎠⎟
+ −

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∑12

1
2

1
2

2

1
2

1
2

0

1

   

 (7.6)

  

and

    ˆ ˆ ˆ .y e x e x ej j jω
ω ω

( ) = ⎛

⎝⎜
⎞

⎠⎟
+ −
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

2 2     (7.7)   

 The spectrum of   ̂y e jω( ) is shown in Figure  7.3 .   
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 For the sake of simplicity in using matrix form, we consider only the case 
where  M     =    2. We use  ↓ 2 in the subscript to represent decimation by 2. 
We write

    y x[ ] = [ ]↓2     (7.8)  

as

    

⋅
⋅
−( )
−( )
( )
( )
( )
( )
⋅
⋅
⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

y

y

y

y

y

y

2

1

0

1

2

3

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⋅
⋅
−( )
−( )
( )
( )
( )
( )
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⋅
⋅

⎡
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

x

x

x

x

x

x

x

4

2

0

2
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6

8

⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.     (7.9)   

 In terms of matrix operator, we write  (7.9)  as

     FIGURE 7.3:     An  M  - point interpolator.  

     FIGURE 7.2:     Spectral characteristic of decimation by 2.  
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.     (7.10)  

or

   y x[ ] [ ][ ]↓= 2DEC   

 The shift - variant property of the decimator is evident when we shift the input 
column either up or down by a given number of position. In addition, the 
decimation matrix is an orthogonal matrix since

   DEC DEC↓
−

↓[ ] = [ ]2
1

2 .t   

 Consequently, decimation is an orthogonal transformation.  

   7.1.2    Interpolation 

 Interpolation of data means inserting additional data points into the 
sequence to increase the sampling rate. Let  y ( n ) be the input to an interpola-
tor. If we wish to increase the number of sample by  M  - fold, we insert  M     −    1 
zeros in between any two adjacent samples so that the interpolator output 
gives

    ′ ( ) =
⎛
⎝

⎞
⎠ = ∈⎧

⎨
⎪

⎩⎪
x n

y
n
M

n kM k, ,

,

for

otherwise.

Z

0
    (7.11)   

 The system diagram of a  M  - point interpolator is shown in Figure  7.3 . We 
can also write the expression of interpolation in standard form of a convolu-
tion sum
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    ′ ( ) = ( ) −( )∑x n y k n kM
k

δ .     (7.12)   

 The spectrum of the interpolator output is given by

    

′ ( ) = ( ) −( )

= ( )

= ( )

−

−

−

∑∑
∑

x e y k n kM e

y k e

y e

j jn

jkM

jM

kn

k

� ω ω

ω

ω

δ

ˆ .

    (7.13)   

 The  z  - transform of the interpolator output is

    ′ ( ) = ( )X z Y zM .     (7.14)   

 Interpolation raises the sampling rate by fi lling zeros in between samples. The 
output sequence has  M  times more points than the input sequence, and the 
output spectrum is shrunk by a factor of  M  on the   ω    - axis. Unlike the decima-
tor, there is no danger of aliasing for interpolator since the output spectrum 
has narrower bandwidth than the input spectrum. The spectrum of a twofold 
interpolator is given in Figure  7.4 .   

 Using  M     =    2 as an example, we write

    

′ ( ) = ( )

=
( )⎧

⎨
⎩

↑x n y n

y n n
2

2

0

,

, .

for even

otherwise
    (7.15)   

 In matrix form, we have

     FIGURE 7.4:     Spectral characteristic of interpolation by 2.  
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 As before, we represent the interpolator by a linear matrix operator. It 
turns out that the interpolation matrix is the transpose of the decimation 
matrix
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or we can write

    ′[ ] = [ ][ ]↑x yINT 2 .     (7.18)   

 The operations of convolution followed by decimation and interpolation 
followed by convolution are two of the most important building blocks of 
algorithms. They will be used to build tree algorithms for wavelets, wavelet 
packets, two - dimensional and three - dimensional signal processing. We show 
only their time - domain identities in the following sections.  

c07.indd   153c07.indd   153 11/9/2010   10:16:25 AM11/9/2010   10:16:25 AM



154  DWT AND FILTER BANK ALGORITHMS 

   7.1.3    Convolution Followed by Decimation 

 Mathematically, we express this operation by

    y n h n x n( ) = ( )∗ ( ){ }↓2     (7.19)   

 The processing block diagram is given in Figure  7.5 . If we label the intermedi-
ate output as  u ( n ), it is the convolution of  x ( n ) and  h ( n ) given by  

   u n x k h n k
k

( ) = ( ) −( )∑ .   

 The two - point decimation gives

    y n u n x k h n k
k

( ) = ( ) = ( ) −( )∑2 2 .     (7.20)    

   7.1.4    Interpolation Followed by Convolution 

 The time - domain expression of this operation is given by

    y n g n x n( ) = ( )∗ ( )[ ]{ }↑2 .     (7.21)   

 Using  v ( n ) as the intermediate output, we have

   y n v k g n k
k

( ) = ( ) −( )∑ .   

 Since   v k x k( ) = ( )/2  for even  k , we have

    

y n x
k

g n k

x g n

k even

( ) = ⎛
⎝
⎞
⎠ −( )

= ( ) −( )

∑
∑

2

2

:

.� �
�

    (7.22)   

 This process is shown in Figure  7.6 .     

     FIGURE 7.5:     Convolution followed by decimation.  
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   7.2    SIGNAL REPRESENTATION IN THE APPROXIMATION SUBSPACE 

 We have shown in Chapter  5  that the approximation subspaces  A   n   are nested 
so that the subspace  A   ∞      =     L  2 ,  A  −     ∞      =    { 0 } and  A   n      ⊂     A   n    + 1  for any  n     ∈     Z . For 
an arbitrary fi nite energy signal  x ( t ) there is no guarantee that this signal is in 
any of these approximation subspaces. That is, we may not be able to fi nd a 
coeffi cients  a k   ,   s   such that

    x t a t k sk s
s

k

( ) = −( )
∈
∑ , .ψ 2 for some

Z
    (7.23)   

 To make use of the two - scale relations for processing, a signal must be in 
one of these nested approximation subspaces. One way to meeting this 
requirement is by projecting the signal into one of the  A   s   for some  s . This is 
particularly important if one only knows the sampled values of the signal at 
  x t k ks= ∈( )2 , Z  for some large value of  s . 

 Assuming that the signal  x ( t ) is not in the approximation  A   s  , we wish to 
fi nd  x s  ( t )    ∈     A   s   such that

    x t x t a t a t ks k s k s k s
s

k k

( ) ≅ ( ) = ( ) = −( )∑ ∑, , ,φ φ 2     (7.24)  

where  a k   ,   s   are the scaling function coeffi cients to be computed from the signal 
samples. We will show how one can determine  a k   ,   s   from the sample data 
  x t k s=( )2  using the orthogonal projection of  x ( t ) on to the  A   s   space. 

 Since  A   s   is a subspace of  L  2  and  x ( t )    ∈     L  2 , we consider  x s  ( t ) as the orthogo-
nal projection of  x ( t ) onto the  A   s   subspace. Then,  x ( t )    −     x s  ( t ) is orthogonal to  
  A   s  , and therefore orthogonal to the basis function   ϕ   �    ,   s  

    x t x ts s( ) − ( )( ) = ∀ ∈, , .,φ� �0 Z     (7.25)   

 Consequently, the coeffi cients are determined from the equation

    x t x t a t ts s s k s k s s

k

( ) = ( ) = ( ) ( )∑, , , ., , , , ,φ φ φ φ� � �     (7.26)   

 We expand the last equality yielding

     FIGURE 7.6:     Interpolation followed by convolution.  
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2 2 2 2 22
s

s s
k s

s sx t t dt a t k t dt
k

( ) −( ) = −( ) −( )⎡
⎣⎢

⎤
⎦⎥−∞

∞

−∞

∞

∫ ∫∑φ φ φ� �,

== ( ) −( )⎡
⎣⎢

⎤
⎦⎥−∞

∞

∫∑a t t m dtm s

m
, φ φ     (7.27)  

where we have made a change of index  m     =      �      −     k . The matrix form of 
 (7.27)  is

    

⋅
⋅ ⋅

⋅
⋅

⋅
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⎢
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⎥
⎥
⎥
⎥
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⋅

⋅
⋅
⋅
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⎣

⎢
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⎢
⎢
⎢
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⎤

⎦

⎥
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α α α
α α

α

1 0 1

0 1

0

am s, ⎥⎥
⎥
⎥
⎥
⎥

=

⋅
⋅

( )
⋅
⋅
⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

x t m s, ,φ
    (7.28)  

where

   α φ φ αm mt t m dt= ( ) −( ) = −
−∞

∞

∫  

is the autocorrelation of the scaling function   ϕ  ( t ). If the scaling function is 
compactly supported, the autocorrelation matrix is banded with a fi nite size 
diagonal band. If the scaling function and its translates form an orthonormal 
basis, then

   α δm m= ,0.   

 By assuming orthonormal basis, the autocorrelation matrix is the identity 
matrix and the coeffi cients are obtained by computing the inner product

    a x tm s m s, ,,= ( ) φ     (7.29)   

 If we are given only the sample values of the signal  x ( t ) at   x t k s=( )2 , we can 
approximate the integral by a sum. That is,

    

a x t t m dt

x
k

k m

m s

s
s

s

s
k

,

.

= ( ) −( )

≅ ⎛
⎝

⎞
⎠ −( )

−∞

∞

∫
∑−

2 2

2
2

2

2

φ

φ     (7.30)   

 This equation demonstrates the difference between the scaling function 
coeffi cients and the sample values of the signal. The former are expansion 
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WAVELET DECOMPOSITION ALGORITHM  157

coeffi cients of an analog signal while the latter are samples of a discrete - time 
signal. For representation of a given discrete signal in terms of a spline series 
of order 2 and 4, we have given formulas in Section  5.6 .  

   7.3    WAVELET DECOMPOSITION ALGORITHM 

 Let us rewrite the expression of the CWT of a signal  x ( t )

    W x b a
a

x t
t b

a
dtψ ψ( )( ) = ( ) −⎛

⎝
⎞
⎠−∞

∞

∫, .
1

    (7.31)   

 Let us denote the scale  a     =    1/2  s   and the translation  b     =     k /2  s  , where  s  and  k  
belong to the integer set  Z , the CWT of  x ( t ) is a number at   k s s2 1 2,( ) on the 

time - scale plane. It represents the correlation between  x ( t ) and   ψ t( ) at that 
time - scale point. We call this the discrete wavelet transform (DWT) that gen-
erates a sparse set of values on the time - scale plane. We use

    w W x
k

x t
t

k

dtk s s s

s

s

, ,= ( )⎛⎝
⎞
⎠ = ( )

−⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟−∞

∞

∫ψ ψ
2

1
2

2
1
2

    (7.32)  

to represent the wavelet coeffi cient at   b k as s= =( )2 1 2, . A discrete time - scale 

map representing the signal  x ( t ) may look like Figure  7.7 .   

     FIGURE 7.7:     A typical time - scale grid using the decomposition algorithm.  
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158  DWT AND FILTER BANK ALGORITHMS 

 It is known that the CWT generates redundant information about the signal 
on the time - scale plane. By choosing   b k as s= =( )2 1 2, , it is much more effi -
cient using DWT to process a signal. It has been shown that DWT keeps 
enough information of the signal such that it reconstructs the signal perfectly 
from the wavelet coeffi cients. In fact, the number of coeffi cients needed for 
perfect reconstruction is the same as the number of data samples. This is 
known as critical sampling, which minimizes redundant information. 

 The decomposition (analysis) algorithm is used most often in wavelet signal 
processing. It is used in signal compression as well as in signal identifi cation, 
although in the latter case, the reconstruction of the original signal is not 
always required. The algorithm separates a signal into components at various 
scales corresponding to successive octave frequencies. Each component can 
be processed individually by a different algorithm. In echo cancellation, for 
example, each component is processed with an adaptive fi lter of a different 
fi lter length to improve convergence. The important issue of this algorithm is 
to retain all pertinent information so that the user may recover the original 
signal (if needed). The algorithm is based on the decomposition relation in 
MRA discussed in Chapter  5 . We rewrite several of these relations here for 
easy reference. 

 Let

   x t x t a ts s s k s k s

k
+ + + + +( ) ∈ ⇒ ( ) = ( )∑1 1 1 1 1A , , ,φ  

   x t x t a ts s s k s k s

k

( ) ∈ ⇒ ( ) = ( )∑A , , ,φ  

   y t y t w ts s s k s k s

k

( ) ∈ ⇒ ( ) = ( )∑W , ., ,ψ   

 Since the MRA requires that

    A A Ws s s+ = +1 ,     (7.33)  

we have

    

x t x t y t

a t a t w

s s s

k s k s k s k s k s k

k k

+

+ +

( ) = ( ) + ( )
( ) = ( ) +∑ ∑

1

1 1, , , , , ,φ φ ψ ss t
k

( )∑ .     (7.34)   

 We substitute the decomposition relation

    φ φ ψ2 2 2 2 21
0 1

s s st h k t k h k t k
k

+ −( ) = −[ ] −( ) + −[ ] −( ){ }∑� � �     (7.35)  
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RECONSTRUCTION ALGORITHM  159

into  (7.34)  to yield an equation in which all bases are at the resolution  s . After 
interchanging the order of summations and comparing the coeffi cients of 
  ϕ  k   ,   s  ( t ) and   ψ  k   ,   s  ( t ) on both sides of the equation, we obtain

   a h k ak s s, ,= −[ ]∑ +

�
� �0 12  

   w h k ak s s, , .= −[ ] +∑ 1 12 � �

�
 

where the right side of the equations correspond to decimation by 2 after 
convolution (see Section  7.1.3 ). These formulas relate the coeffi cients of the 
scaling functions and wavelets at any scale to coeffi cients at the next higher 
scale. By repeating this algorithm, one obtains signal components at various 
frequency octaves. This algorithm is depicted Figure  7.8  where we have used 
the vector notation

    a w h hs k s s k sa w h k h k= { } = { } = [ ]{ } = [ ]{ }, ,, , , :0 0 1 1and     (7.36)  

with  k     ∈     Z . This decomposition bloc can be repeatedly applied to the scaling 
function coeffi cients at lower resolution to build a wavelet decomposition tree 
as shown in Figure  7.9 .   

 The reader should note that the wavelet decomposition tree is not sym-
metric since only the scaling function coeffi cients are further decomposed to 
obtain signal components at lower resolutions. A symmetric tree may be con-
struct by decomposing the wavelet coeffi cients as well. This is the wavelet 
packet tree that will be discussed in Chapter  9 .  

   7.4    RECONSTRUCTION ALGORITHM 

 It is important for any transform to have a unique inverse such that the original 
data can be recovered perfectly. For random signals, some transforms have 
their unique inverses in theory, but cannot be implemented in reality. There 

     FIGURE 7.8:     Single - level wavelet decomposition process.  
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exists a unique inverse discrete wavelet transform (or the synthesis transform) 
such that the original function can be recovered perfectly from its components 
at different scales. The reconstruction algorithm is based on the two - scale 
relations of the scaling function and the wavelet. We consider a sum of these 
components at the  s th resolution

    x t y t a t w t x ts s k s k s k s k s s

k k

( ) + ( ) = ( ) + ( ) = ( )∑ ∑ +, , , , .φ ψ 1     (7.37)   

 By a substitution of the two - scale relations into  (7.37)  one obtains

    

a g t k w g t k

a

k s
s

k s
s

s

k k
, ,

,

∑ ∑ ∑ ∑[ ] − −( ) + [ ] − −( )

=

+ +
0

1
1

12 2 2 2� � � �
� �

�

φ φ

++
+ −( )∑ 1

12φ s t �
�

.     (7.38)   

 Comparing the coeffi cients of   ϕ  (2  s    + 1  t     −      �  ) on both sides of  (7.38)  yields

    a g k a g k ws k s k s

k
� � �, , ,+ = −[ ] + −[ ]{ }∑1 0 12 2     (7.39)  

where the right - side of the equations corresponds to interpolation followed 
by convolution as discussed in 7.1.4. The reconstruction algorithm of  (7.39)  is 
graphically shown in Figure  7.10 .   

 We emphasize here that although the mechanics of computation is carried 
out in digital signal processing fashion, the decomposition and reconstruction 
algorithms are actually processing analog signals. The fundamental idea is to 
represent an analog signal by its components at different scale for effi cient 
processing.  

     FIGURE 7.9:     Wavelet decomposition tree.  
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   7.5    CHANGE OF BASES 

 The algorithms discussed in previous section apply to all types of scaling 
functions and wavelets, including orthonormal, semiorthogonal, and bior-
thogonal systems. We have seen in Chapter  6  that the processing sequences 
{ g  0 [ k ],  g  1 [ k ]}, and { h  0 [ k ],  h  1 [ k ]} are fi nite and equilength sequences for com-
pactly supported orthonormal wavelets. In the case of semiorthogonal wave-
lets, such as compactly supported  B  - spline wavelets, the processing sequences 
{ h  0 [ k ],  h  1 [ k ]} are infi nitely long. Truncation of the sequences is necessary for 
effi cient processing. To avoid using the infi nite sequences, it is better to map 
the input function into the dual spline space and process the dual spline coef-
fi cients with  g  0 [ k ] and  g  1 [ k ] that have fi nite lengths. This and the next 
two sections are devoted to the modifi cation of the algorithm via a change of 
bases. 

 We have shown in Chapter  6  that the  m th order spline   ϕ  m      =     N m   and the 
corresponding compactly supported spline wavelets   ψ  m   are semiorthogonal 
bases. To compute the expansion coeffi cients of a spline series or a spline 
wavelet series, it is necessary to make use of the dual spline   �φm or the 
dual spline wavelet   �ψm. In semiorthogonal spaces, all these bases span the 
same spline space  S   m  . For certain real - time applications in wavelet signal 
processing, it is more desirable to use fi nite length decomposition sequences 
for effi ciency and accuracy. Therefore, it is necessary to represent the 
input signal by dual splines of the same order before the decomposition 
process. 

 Let us recall the formulation of the multiresolution analysis, in which we 
have the approximation subspace as an orthogonal sum of the wavelet 
subspaces

    

A W A

W W W A
M s M M

M
s M M

M M M M M M

= ⊕ +
= ⊕ ⊕ ⊕ ⊕

= − ′
−

− ′

− − − ′ − ′

1

1 2 …     (7.40)  

     FIGURE 7.10:     Signal reconstruction from scaling function and wavelet coeffi cients.  
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162  DWT AND FILTER BANK ALGORITHMS 

for any positive integer  M  ′ . Consequently, any good approximant  x M      ∈     A   M   of 
a given function  x     ∈     L  2  (for suffi ciently large  M ) has a unique (orthogonal) 
decomposition

    x y xM M n M M

n

M

= +− − ′
=

′

∑
1

,     (7.41)  

where  x s      ∈     A   s   and  y s      ∈     W   s  . Since   ϕ  m   and   �φm generate the same MRA while   ψ  m   
and   �ψm generate the same wavelet subspace (a property not possessed by 
biorthogonal scaling functions and wavelets that are not semiorthogonal), we 
write

    
x t a t k a t k

y t w t k

s k s
s

k s
s

s k s
s

k k

k

( ) = −( ) = −( )
( ) = −( )
∑ ∑
∑

, ,

,

;φ φ

ψ

2 2

2

� �

== −( )

⎧
⎨
⎪

⎩⎪ ∑ � �w t kk s
s

k
, ,ψ 2

    (7.42)  

for each  s     ∈     Z . We have not included the normalization factor 2  s   /2  in order to 
simplify the implementation. 

 If we apply the decomposition formula  (7.36)  to the scaling function coef-
fi cients, we have

    
a h k a

w h k a

k s s

s k s

, ,

, ,

;

.

= −[ ]

= −[ ]

⎧
⎨
⎪

⎩⎪

+

+

∑
∑

0 1

1 1

2

2

�

�

�

�

�

�

    (7.43)   

 Since sequences { h  0 [ k ]} and { h  1 [ k ]} are infi nitely long for semiorthogonal 
setting, it will be more effi cient to use sequences { g  0 [ k ]} and { g  1 [ k ]} instead. 
This change of sequences is valid from the duality principle, which states that 
{ g  0 [ k ],  g  1 [ k ]} and { h  0 [ k ],  h  1 [ k ]} can be interchanged, in the sense that

    

1
2
1
2

0 0

1 1

g k h k

g k h k

[ ]↔ −[ ]

[ ]↔ −[ ]

⎧

⎨
⎪⎪

⎩
⎪
⎪

;

,
    (7.44)  

when   ϕ  m   and   ψ  m   are replaced by   �φm and   �ψm . With the application of duality 
principle, we have

    
� � �

� � �

�

�

�

�

a g k a

w g k a

k s s

k s s

, ,

, ,

;

.

= −[ ]

= −[ ]

⎧
⎨
⎪

⎩⎪

+

+

∑
∑

0 1

1 1

2

2
    (7.45)   

 However, to take advantage of the duality principle, we need to transform the 
coeffi cients { a k   ,   s  } to {  �ak s, }. We recall that both   ϕ   and   �φ  generates the same  A   s   
space so that   ϕ   can be represented by a series of   �φ
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    φ φt r t kk

k

( ) = −( )∑ �     (7.46)  

for some sequence { r k  }. We observe that this change - of - bases sequence is a 
fi nite sequence, if the scaling function has compact support. Indeed, by the 
defi nition of the dual, we have

    r t t k dtk = ( ) −( )
−∞

∞

∫ φ φ .     (7.47)   

 Therefore, at the original scale of approximation, with  s     =     M , an application 
of  (7.46)  yields

    � � �

�
a r ak M k M, , ,= −∑     (7.48)  

which is an FIR operation. Observe that if we take splines as scaling functions —
 that is,   ϕ  ( t )    =     N m  ( t ), then  r k      =     N  2   m  ( m     −     k );  k     =    0,  ± 1,  …  ,  ±  m     −    1  [1] . As we have 
seen in previous discussions, the sequences { g  0 [ k ]} and { g  1 [ k ]} in the decompo-
sition algorithm are fi nite sequences. 

 We can summarize our computation scheme as in Figure  7.11 . The com-
putation of   �wk s, ,  s     =     M     −    1,  …  ,  M     −     M  ′  using  a   M   as the input sequence requires 
2 M  ′  FIR fi lters. The importance of the coeffi cients   �wk s,  is that they constitute 
the CWT of  x M   relative to the analyzing wavelet   ψ  m   at certain dyadic 
points — namely

    �w W x
k

M M s M kk s

s

M s s, , , , .= ( )⎛⎝
⎞
⎠ − ′ ≤ < ∈2

2
1
2

2 ψ Z     (7.49)      

     FIGURE 7.11:     Standard wavelet decomposition process implemented with change of 
bases.  
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   7.6    SIGNAL RECONSTRUCTION IN SEMIORTHOGONAL SUBSPACES 

 The algorithm described in Section  7.4  concerns the recovery of the original 
data. In that case, the original data are the set of scaling function coeffi cients 
{ a  �    ,   M  } at the highest resolution. Since the original input signal is an analog 
function   x t x t a tM M

M( ) ≈ ( ) = ∑ −( )� � �, 2 ,φ  it is necessary to recover the signal 
by performing the summation. Recall that the decomposition algorithm dis-
cussed in Section  7.5  produces the spline and wavelet coeffi cients in the dual 
spaces — namely ({  �ak s, }, {  �wk s, }). To use fi nite length two - scale sequences for the 
reconstruction, we must express the coeffi cients in dual spaces in terms of 
({ a k   ,   s  }, { w k   ,   s  }) in the spline and wavelet spaces. In addition, if the user needs to 
see the signal component at any intermediate steps in the decomposition, he 
or she would have to use the dual spline and dual wavelet series. In both cases, 
one can simplify the problem by a change of basis that maps the dual sequences 
back to the original space  [2] . Since the sequences do not depend on the scale, 
the second subscript of the coeffi cients can be arbitrary. Such sequences are 
applicable to mapping between any two different scales. 

   7.6.1    Change of Basis for Spline Functions 

 Our objective is to write

    s t a N t k a N t kk m k m

k k

( ) = −( ) = −( )∑ ∑� �     (7.50)   

 By taking the Fourier transform of  (7.50) , we get

    � �A e N A e Nj
m

j
m

ω ωω ω( ) ( ) = ( ) ( )ˆ ˆ ,     (7.51)  

where, as usual, the hat over a function implies its Fourier transform and 
 A ( e j ω   ) and   �A e jω( ) are the symbols of { a k  } and {  �ak} respectively, defi ned as

    � �A e a e A e a ej
k

jk j
k

jk

k k

ω ω ω ω( ) = ( ) =∑ ∑: ; : .     (7.52)   

 The dual scaling function   �Nm is given by

    �̂
ˆ

,N
N

E z
z em

m

N

j

m

ω ω ω( ) = ( )
( ) =2

2     (7.53)  

where   E z N kNm m
2 2

2 0( ) = +( ) ≠ˆ ω π  for almost all   ω   since { N m  ( ·     −     k )} is a stable 
or Riesz basis of  A  0 . As discussed in Chapter  6 ,   ENm ω( ) is the Euler - Frobenius 
Laurent series and is given by
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E z N k

N m k z

N m

m
k

m

k m

m

2 2

2
2

2

1

1

( ) = +( )

= +( )
=− +

−

∑

ˆ

.

ω π

    (7.54)   

 It is clear that by multiplying  (7.54)  by  z m    − 1 , we can get a polynomial of degree 
2 m     −    1 in  z . The last equality in  (7.54)  is a consequence of the relation

    ˆ .f k f t k f t dt e
k k

jkω π ω+( ) = +( ) ( )⎧
⎨
⎩

⎫
⎬
⎭=−∞

∞

−∞

∞

=−∞

∞

∑ ∫∑2
2

    (7.55)   

  Proof for  (7.55) .     Using Parseval identity, we have

    

F f t f t dt

f e d

f e

j

j

� �

�

�

( ) = +( ) ( )

= ( )

= ( )

−∞

∞

−∞

∞
∫
∫ −

−
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1
2

1
2

2

2

π
ω ω

π
ω

ω

ω

ˆ

ˆ dd

f k e d

k

k

k

k

j

ω

π
ω π ω

π

π

π
ω

2

2 1

0

21
2

2 .
2

+

=−∞

∞

=−∞

∞

( )

−

∫∑

∑∫= +( )ˆ �     (7.56)   

 It is clear the  F (  �  ) is the   �  th Fourier coeffi cient of a 2  π   - periodic function   

∑ +( )=−∞
∞
k f kˆ ω π2

2
. With this relation  (7.55)  follows directly. It is easy to show 

that

    N t k N t dt N m km m m+( ) ( ) = +( )
−∞

∞

∫ 2     (7.57)  

with  supp N  2   m  ( t )    =    [0, 2 m ]. 
 Combining  (7.51) ,  (7.53) , and  (7.54)  and taking the inverse Fourier trans-

form, we get

    a a p n kk n= { }∗ [ ]( )( )�     (7.58)  

where

    
1

1
E z

p k z z
N

k

m k
( )

= [ ] =∑ , .     (7.59)   

 It can be shown that
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    p k u km i i
k pm

i

pm

[ ] = ≥+

=
∑Λ λ

1

0, ;     (7.60)  

where

    Λi

i i j
j j i

pm
=

−( )
= ≠∏

1

1

2
λ λ λ

,

    (7.61)  

and   λ  i     :    i     =    1,  …  , 2 p m   are the roots of  (7.54)  with |  λ  i  |    <    1 and   λ λi pm i2 1 1+ − =  for 
 i     =    1,  …  ,  p m  . Here  u m      =    (2 m     −    1)! and  p m      =     m     −    1. Observe from  (7.54)  and 
 (7.59)  that

    p k
E N m kk

k m

m
N

m
m

[ ] = ( )
=

+( )
=∑

∑ =− +

−
1

1
1

1
2

1

1 ,     (7.62)  

where the last equality is a consequence of the partition of unity property of 
cardinal  B  - splines, described in Chapter  5 . 

 Roots   λ  i   for linear and cubic splines are given below. The coeffi cients { p [ k ]} 
are given in Tables  7.1  and  7.2 . The coeffi cients  p [ k ] have better decay than 
{ h  0 [ k ]} (Figure  7.12 ).      

  Linear Spline ( m     =    2)     

    λ
λ1

2
2 3

1= − + = ,     (7.63)  

    p k k k[ ] = −( ) −( )1 3 2 3 .     (7.64)    

  TABLE 7.1:    Coeffi cients {  p [ k ]} for Linear Spline Case (  p [ k ]    =     p [ −  k ]) 

    k       p [ k ]      k       p [ k ]  

  0    1.7320510    8    0.46023608    ×    10  − 4   
  1     − 0.46410170    9     − 0.12331990    ×    10  − 4   
  2    0.12435570    10    0.33043470    ×    10  − 5   
  3     − 0.33321008    ×    10  − 1     11     − 0.88539724    ×    10  − 6   
  4    0.89283381    ×    10  − 2     12    0.23724151    ×    10  − 6   
  5     − 0.23923414    ×    10  − 2     13     − 0.63568670    ×    10  − 7   
  6    0.64102601    ×    10  − 3     14    0.17033177    ×    10  − 7   
  7     − 0.17176243    ×    10  − 3     15     − 0.45640265    ×    10  − 8   
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  Cubic Spline ( m     =    4)     
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    (7.65)     

     FIGURE 7.12:     Plots of  h  0 [ k ],  h  1 [ k ],  p [ k ], and  q [ k ] versus  k  for (a) linear and (b) cubic 
spline cases.  

  TABLE 7.2:    Coeffi cients {  p [ k ]} for Cubic Spline case (  p [ k ]    =     p [ −  k ]) 

    k       p [ k ]      k       p [ k ]  

  0    0.4.9647341    15     − 0.51056378    ×    10  − 3   
  1     − 0.3.0910430    16    0.27329483    ×    10  − 3   
  2    0.1.7079600    17     − 0.14628941    ×    10  − 3   
  3     − 0.92078239    18    0.78305879    ×    10  − 4   
  4    0.49367899    19     − 0.41915609    ×    10  − 4   
  5     − 0.26435509    20    0.22436609    ×    10  − 4   
  6    0.14151619    21     − 0.12009880    ×    10  − 4   
  7     − 0.75752318    ×    10  − 1     22    0.64286551    ×    10  − 5   
  8    0.40548921    ×    10  − 1     23     − 0.34411337    ×    10  − 5   
  9     − 0.21705071    ×    10  − 1     24    0.18419720    ×    10  − 5   

  10    0.11618304    ×    10  − 1     25     − 0.98597172    ×    10  − 6   
  11     − 0.62190532    ×    10  − 2     26    0.52777142    ×    10  − 6   
  12    0.33289378    ×    10  − 2     27     − 0.28250579    ×    10  − 6   
  13     − 0.17819155    ×    10  − 2     28    0.15121984    ×    10  − 6   
  14    0.95382473    ×    10  − 3     29     − 0.80945043    ×    10  − 7   
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   7.6.2    Change of Basis for Spline Wavelets 

 Here our objective is to write

    r t w t k w t kk m k m

k k

( ) = −( ) = −( )∑ ∑� �ψ ψ .     (7.66)   

 Replacing  N m   by   ψ  m   in  (7.53)  we get the relationship between   ψ  m   and   �ψm. 
Proceeding in the same way as before, we get

    w w q n kk n= { }∗ [ ]( )( )�     (7.67)  

where

    
1

2 2ˆ
.

ψ ω π
ω

m

j k

k
q k e

k k+( )
= [ ]

∑ ∑ −     (7.68)   

 Furthermore, we have

    ˆ , .ψ ω πm N N Nk E z E z E z z
k

m m m+( ) = ( ) ( ) −( ) =∑ 2 12 2     (7.69)   

  Proof for  (7.69) .     With the help of two - scale relation, we can write

    ˆ exp ˆψ ω π ω π ω π
m mk G j

k
N

k

k k

+( ) = +⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

+⎛
⎝

⎞
⎠∑ ∑2

2
2

2
2

2
1

2

    (7.70)  

with

    G e g k ej jk

k
1

2
1

21
2

ω ω( ) = [ ]∑ .     (7.71)   

 Now separating the right - hand side of  (7.70)  into parts with even  k  and odd 
 k  and making use of the relation  (7.54) , we can write

    ˆ .ψ ω πm N Nk G z E z G z E z
k

m m+( ) = ( ) ( ) + −( ) −( )∑ 2 2
1

2
1

2     (7.72)   

 From the relation   G z G z E zNm1 0( ) = −( ) −( ) , with  G  0 ( z ) defi ned in a similar 
way as in  (7.71)  with  g  1 [ k ] replaced by  g  0 [ k ], we can write
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ˆ .ψ ω πm N N N Nk G z E z G z E z E z E z
k

m m m m+( ) = −( ) −( ) + ( ) ( ){ } ( ) −( )∑ 2 2
0

2
0

2

  
   (7.73)   

 Following the steps used to arrive at  (7.72) , it can be shown that

    G z E z G z E z E zN N Nm m m0
2

0
2 2−( ) −( ) + ( ) ( ) = ( ).     (7.74)  

which, together with  (7.72) , gives the desired relation  (7.69) . 
 The expression for  q [ k ] has the same form as that of  p [ k ] with 

 u m      =     − ((2 m     −    1)!) 3 ,  p m      =    2 m     −    2, and   λ  i   being the roots of  (7.69) . Observe from 
 (7.68)  and  (7.69)  that

    q k
E

k Nm

[ ] =
−( )∑ 1

1
    (7.75)  

since   ENm 1 1( ) = . Roots   λ  i   and   ∑ [ ]kq k  for linear and cubic splines are given 
below. The coeffi cients are given in Tables  7.3  and  7.4 . The coeffi cients  q [ k ] 
have better decay than { h  1 [ k ]} of (Figure  7.12 ).    

  Linear Spline ( m     =    2)     

    
λ λ
λ λ

1
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2 3

7 1796767 10 1

0 2679492 1

= × =
= − =

−.

.
    (7.76)  

    q k
k

[ ] =∑ 3 0. .     (7.77)    

  TABLE 7.3:    Coeffi cients { q [ k ]} for Linear Spline Case ( q [ k ]    =     q [ −  k ]). 

    k       q [ k ]      k       q [ k ]  

  0    4.3301268    8    0.92047740    ×    10  − 4   
  1     − 0.86602539    9     − 0.24663908    ×    10  − 4   
  2    0.25317550    10    0.66086895    ×    10  − 5   
  3     − 0.66321477    ×    10  − 1     11     − 0.17707921    ×    10  − 5   
  4    0.17879680    ×    10  − 1     12    0.47448233    ×    10  − 6   
  5     − 0.47830273    ×    10  − 2     13     − 0.12713716    ×    10  − 6   
  6    0.12821698    ×    10  − 2     14    0.34066300    ×    10  − 7   
  7     − 0.34351606    ×    10  − 3     15     − 0.91280379    ×    10  − 8   
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  TABLE 7.4:    Coeffi cients { q [ k ]} for Cubic Spline Case ( q [ k ]  =  p [ −  k ]). 

    k       q ] k ]      k       q [ k ]  

  0    33.823959    18    0.39035085    ×    10  − 3   
  1     − 13.938340    19     − 0.20894629    ×    10  − 3   
  2    9.0746698    20    0.11184511    ×    10  − 3   
  3     − 4.4465132    21     − 0.59868424    ×    10  − 4   
  4    2.5041881    22    0.32046413    ×    10  − 4   
  5     − 1.3056690    23     − 0.17153812    ×    10  − 4   
  6    0.70895731    24    0.91821012    ×    10  − 5   
  7     − 0.37662071    25     − 0.49149990    ×    10  − 5   
  8    0.20242150    26    0.26309024    ×    10  − 5   
  9     − 0.10811640    27     − 0.14082705    ×    10  − 5   

  10    0.57940185    ×    10  − 1     28    0.75381962    ×    10  − 6   
  11     − 0.30994879    ×    10  − 1     29     − 0.40350486    ×    10  − 6   
  12    0.16596500    ×    10  − 1     30    0.21598825    ×    10  − 6   
  13     − 0.88821910    ×    10  − 2     31     − 0.11561428    ×    10  − 6   
  14    0.47549186    ×    10  − 2     32    0.61886055    ×    10  − 7   
  15     − 0.25450843    ×    10  − 2     33     − 0.33126394    ×    10  − 7   
  16    0.13623710    ×    10  − 2     34    0.17731910    ×    10  − 7   
  17     − 0.72923984    ×    10  − 3     35     − 0.94915444    ×    10  − 8   

  Cubic Spline ( m     =    4)     
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    (7.78)  

   q k
k

[ ] =∑ 18 5294121. .      

   7.7    EXAMPLES 

 Figure  7.13  shows decomposition of a music signal with some additive noise. 
Here the music data are considered to be at integer points. Intermediate 
approximate functions  s j   and detail functions  r j   have been plotted after 
mapping the dual spline and wavelet coeffi cients into the original space with 

c07.indd   170c07.indd   170 11/9/2010   10:16:28 AM11/9/2010   10:16:28 AM



EXAMPLES  171

the help of coeffi cients  p [ k ] and  q [ k ] derived in this chapter. To illustrate the 
low - pass and band - pass characteristics of splines and wavelets, respectively, we 
show in Figure  7.14 , the magnitude spectra of the decomposed signals at 
various scales. Reconstruction process is shown in Figure  7.15  using the same 
sequences ({ g  0 [ k ]}, { g  1 [ k ]}) as were used for the decomposition. The original 
signal  s ( t ) is also plotted next to the reconstructed signal  s  0 ( t ) for the purpose 
of comparison.   

 To further expound the process of separating a complicated function into 
several simple one with the help of wavelet techniques, we consider a function 
composed of three sinusoids with different frequencies. These frequencies are 
chosen such that they correspond to octave scales. As can be seen from Figures 
 7.16  and  7.17 , standard wavelet decomposition separates the frequency com-
ponents fairly well.    

     FIGURE 7.13:     Decomposition of music signal with noise.  
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     FIGURE 7.14:     Magnitude spectrum of the decomposed music signal indicating the 
low - pass and band - pass fi lter characteristics of scaling functions and wavelets, 
respectively.  

   7.8    TWO - CHANNEL PERFECT RECONSTRUCTION FILTER BANK 

 Many applications in digital signal processing require multiple band - pass 
fi lters to separate a signal into components whose spectra occupy different 
segments of the frequency axis. Examples of these applications include fi lter 
bank for Doppler frequencies in radar signal processing and tonal equalizer 
in music signal processing. Figure  7.18  demonstrates the concept of multiband 
fi ltering. In this mode of multiband fi ltering, the spectral bands corresponding 
to components of the signal may be processed with a different algorithm to 
achieve a desirable effect on the signal. In the case of Doppler processing and 
tonal equalizer, there is no need to reconstruct the original signal from the 
processed components. However, there is another form of fi ltering that requires 
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     FIGURE 7.15:     Reconstruction of the music signal after removing the noise.  

the original signal to be recovered from its components: the subband fi lter 
banks. The major applications of subband fi ltering is in signal compression in 
which the subband components are coded for archiving or transmission 
purpose. The original signal can be recovered from the coded components with 
various degrees of fi delity.   

 We use a basic two - channel PR fi lter bank to illustrate the main features 
of this algorithm. Filter bank tree structures can be constructed using this basic 
two - channel fi lter bank. A two - channel fi lter bank consists of an analysis 
section and a synthesis section, each consists of two fi lters. The analysis section 
includes high - pass and low - pass fi lters that are complementary to each 
other so that information in the input signal is processed by either one of the 
two fi lters. The block diagram for a two - channel PR fi lter bank is shown in 
Figure  7.19 .   
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     FIGURE 7.16:     Decomposition of a signal composed of three sinusoids with different 
frequencies corresponding to octave scales.  

 The perfect reconstruction condition is an important condition in fi lter bank 
theory. It establishes the unique relationship between the low - pass and high -
 pass fi lters of the analysis section. Removal of the aliasing caused by decima-
tion defi nes the relations between the analysis and synthesis fi lters. We will 
elaborate these conditions in much greater detail below. 

 The fi lters in a two - channel PR fi lter bank is specially designed so that the 
component signals may be reconstructed perfectly with no loss of information. 
The output of the fi lter bank is simply a delayed version of the input signal. 
For a two - channel fi lter bank, the fi ltering operation is exactly the same as the 
wavelet algorithm. Because of the PR condition and the need to remove the 
aliasing components in the output, one needs to design only one of the four 
fi lters. For further details on fi lter banks and how they relate to wavelet 
theory, readers are referred to Refs.  3 – 7 . 
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     FIGURE 7.17:     Decomposition of a signal with three frequency components (continued 
from Figure  7.16 ).  

     FIGURE 7.18:     Multiband fi lter bank.  
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   7.8.1    Spectral - Domain Analysis of a Two - Channel PR Filter Bank 

 Let a discrete signal  X ( z ) be the input to a two - channel PR fi lter bank as 
shown in Figure  7.19  in terms of  z  - transforms with intermediate output signals. 
The analysis section of the fi lter bank consists of a low - pass fi lter  H  0 ( z ) and a 
high - pass fi lter  H  1 ( z ). The convolved output of the low - pass fi lter  H  0 ( z ) fol-
lowed by a two - point decimation ( ↓ 2) is

    U z X z H z X z H z( ) =
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
+ −

⎛

⎝⎜
⎞

⎠⎟
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    (7.79)  

while the high - pass fi lter  H  1 ( z ) with decimation yields

    V z X z H z X z H z( ) =
⎛
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.     (7.80)   

 For analysis purposes, we assume the outputs of the analysis bank are not 
processed so that the outputs of the processor labeled  U  ′ ( z ) and  V  ′ ( z ) are

   ′ ( ) = ( )U z U z  

   ′ ( ) = ( )V z V z .   

 After the interpolator ( ↑ 2) and the synthesis fi lter bank  G  0 ( z ) and  G  1 ( z ), the 
outputs of the fi lters are

    ′′ ( ) = ( ) ( ) ( ) + −( ) −( ) ( )[ ]U z X z H z G z X z H z G z
1
2

0 0 0 0     (7.81)  

and

    ′′ ( ) = ( ) ( ) ( ) + −( ) −( ) ( )[ ]V z X z H z G z X z H z G z
1
2

1 1 1 1 .     (7.82)   

     FIGURE 7.19:     Two - channel perfect reconstruction fi lter bank.  
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 These outputs are combined synchronously so that the processed output  
X  * ( z ) is

    

X z U z V z

X z H z G z H z G z

X z H

*( ) = ′′ ( ) + ′′( )

= ( ) ( ) ( ) + ( ) ( )[ ]

+ −( )

1
2

1
2

0 0 1 1

00 0 1 1−( ) ( ) + −( ) ( )[ ]z G z H z G z .     (7.83)   

 The second term of the expression contains the alias version of the input signal 
[one that contains  X ( −  z )]. For perfect reconstruction, we may choose the fi lters 
 G  0 ( z ) and  G  1 ( z ) to eliminate the aliasing component. We obtain the aliasing 
free condition for the fi lter bank

    G z H z

G z H z
0 1

1 0

( ) = ± −( )
( ) = −( )

,

.∓
    (7.84)   

 Once the analysis fi lters have been designed, the synthesis fi lters are deter-
mined automatically. Choosing the upper signs in  (7.84) , the output of the 
fi lter bank becomes

    X z X z H z H z H z H z*( ) = ( ) ( ) −( ) − ( ) −( )[ ]1
2

0 1 1 0 .     (7.85)   

 The perfect reconstruction condition requires that  X  * ( z ) can only be a delayed 
version of the input  X ( z ) (i.e.,  X  * ( z )    =     X ( z ) z   −    m   for some integer  m ). We obtain 
the following relations:

    H z G z H z G z H z H z H z H z0 0 1 1 0 1 1 0( ) ( ) + ( ) ( ) = ( ) −( ) − ( ) −( )     (7.86)  

    = ( ) ( ) − −( ) −( )H z G z H z G z0 0 0 0     (7.87)  

    = −2z m.     (7.88)   

 We defi ne the transfer function of the fi lter bank

   
T z

X z
X z

H z G z H z G z

z m

( ) = ( )
( )

= ( ) ( ) + ( ) ( )[ ]

= −

*

.

1
2

0 0 1 1
  

 To simplify the analysis, let us also defi ne composite fi lters  C  0 ( z ) and  C  1 ( z ) as 
product fi lters for the two fi ltering paths respectively,
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C z H z G z H z H z

C z H z G z H z H z
0 0 0 0 1

1 1 1 1 0

( ) = ( ) ( ) = − ( ) −( )
( ) = ( ) ( ) = ( ) −( )
= −− −( ) −( )
= − −( )

H z G z

C z
0 0

0     (7.89)  

where we have made use of the aliasing free condition. In terms of the com-
posite fi lters, the PR condition becomes

    C z C z z m
0 0 2( ) − −( ) = −     (7.90)  

and

    T z C z C z( ) = ( ) − −( )[ ]1
2

0 0 .     (7.91)   

 If we design the composite fi lter  C  0 ( z ) that satisfi es the condition in  (7.90) , the 
analysis fi lters  H  0 ( z ) and  G  0 ( z ) can be obtained through spectral factorization. 
We will have numerical examples to demonstrate this procedure in later 
sections. 

 We note that the transfer function  T ( z ) is an odd function since

    

T z C z C z

T z

−( ) = −( ) − ( )[ ]

= − ( )

1
2

0 0

.     (7.92)   

 The integer  m  in  (7.90)  must be odd, which implies that  C  0 ( z ) must contain 
only even - indexed coeffi cients except  c m      =    1, where  m  is odd. Finding  H  0 ( z ) 
and  H  1 ( z ) [or  H  0 ( z ) and  G  0 ( z )] to meet the PR requirement is the subject of 
fi lter bank design. Two basic approaches emerged in the early development 
of PR fi lter bank theory: (1) quadrature mirror fi lter (QMF) approach and 
(2) half - band fi lter (HBF) approach. In this section, we discuss the fundamen-
tal ideas in these two approaches. 

   7.8.1.1    Quadrature Mirror Filter (QMF) Approach.     Let us choose  H  1 ( z )    =     
H  0 ( −  z ). We have, in the spectral domain,

    

H e H e

H e

j j

j

1 0

0

ω ω

ω π

( ) = −( )
= ( )+( ) .     (7.93)   

 The spectrum of the highpass fi lter  H  1 ( e j ω    ) is the mirror image of that of the 
low - pass fi lter with the spectral crossover point at   ω π= /2 as shown in Figure 
 7.20 . The transfer function becomes  
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     FIGURE 7.20:     Spectral characteristic of quadrature mirror fi lter.  

    T z H z H z H z H z z m( ) = ( ) − ( )⎡⎣ ⎤⎦ = ( ) − −( )⎡⎣ ⎤⎦ =
−1

2
1
20

2
1
2

0
2

0
2 .     (7.94)   

 Suppose  H  0 ( z ) is a linear phase  *   FIR fi lter of order  N  so that

   H e e H ej j N j
0 2

1
0

ω
ω

ω( ) = ( )− −( )  

   H e e H ej j N j
1 2

1
0

ω
ω π

ω π( ) = ( )− + −( ) +( ) .   

 The spectral response of the transfer function becomes

    T e e H e H ej j N j N jω
ω

ω ω( ) = ( ) − −( ) ( )⎡
⎣

⎤
⎦

− −( ) −1
2

12
1

0
2 1

1
2

.     (7.95)   

 If ( N     −    1) is even,  T ( e j ω   )    =    0 at the crossover point   ω π= /2! The transfer func-
tion produces severe amplitude distortion at this point and that violates the 
PR requirement. Therefore,  N  must be even. If we wish to eliminate all ampli-
tude distortion for even  N , we must have the spectral amplitude of  H  0 ( z ) and 
 H  1 ( z ) satisfying

     *   A function  f     ∈     L  2 ( R ) has  linear phase  if

   ˆ ˆf f e jaω ω ω( ) ± ( ) −=  

where  a  is some real constant. The function  f  has  generalized linear phase  if

   ˆ ˆf g e ja bω ω ω( ) ( ) − +=  

where   ̂g ω( ) is a real - valued function and constants  a  and  b  are also real valued. To avoid distor-
tion in signal reconstruction, a fi lter must have linear or generalized linear phase.  
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    H e H ej j
0

2
1

2
2ω ω( ) + ( ) = .     (7.96)   

 Observe that the condition  (7.96)  differs from the normalized form by a factor 
of 2 on the right - hand side. This happens because previously we used a nor-
malizing factor in the defi nition of  z  - transform of the two - scale and decom-
position sequences. 

 The trivial solution to  (7.96)  is the sine and cosine function for  H  0 ( e j ω    ) and 
 H  1 ( e j ω    ), which contradict to our initial assumption of FIR fi lter. Any nontrivial 
linear phase FIR fi lter  H  0  causes amplitude distortion. If the right - hand side 
of  (7.96)  is normalized to unity, the type of fi lters that satisfi es this normaliza-
tion is called power complementary fi lters. They are IIR fi lters that can be 
used in IIR - PR fi lter banks. 

 Returning to  (7.94) , if we restrict the fi lters to be FIR,  H  0 ( z ) can have at 
most two coeffi cients so that   H z0

2 ( ) has only one term with odd power of  z   − 1 . 
It is easy to see this solution leads to the Haar fi lters. We will discuss these 
fi lters further in orthogonal fi lter banks.  

   7.8.1.2    Half - band Filter Approach.     Observe from  (7.89)  that if we allow 
only causal FIR fi lters for the analysis fi lter bank, the composite fi lter  C  0  is 
also causal FIR with only one odd - indexed coeffi cient. To overcome this 
restriction, we can design anticausal or noncausal fi lters and then add a delay 
to make them causal. We fi rst simplify the analysis by adding an advance to 
the composite fi lter and by making use of the properties of a half - band fi lter, 
to be defi ned below. The composite fi lter  C  0  is advanced by  m  taps so that

    S z z C zm( ) = ( )0     (7.97)  

where  S ( z ) is a noncausal fi lter symmetric with respect to the origin. The PR 
condition becomes

    S z S z( ) + −( ) = 2     (7.98)  

since  S ( −  z )    =    ( −  z )  m C  0 ( −  z )    =     −  z m C  0 ( −  z ) for odd  m . All even - indexed coeffi -
cients in  S ( z ) are zero except  s (0)    =    1.  S ( z ) is a half - band fi lter satisfying the 
following conditions: 

  1.      s ( n )    =    0 for all even  n  except  n     =    0.  
  2.      s (0)    =    constant.  
  3.      s ( n )    =     s ( −  n ).  
  4.      S ( e j ω   )    +     S ( −  e   −    j ω    )    =    constant.    

 This half - band fi lter is capable to be spectral - factorized into a product of 
two fi lters. We will have discussions on the HBF with examples. 
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 To fi nd the solution to  (7.98) , let  H  1 ( z )    =     −  z m H  0 ( −  z   − 1 ), the transfer function 
becomes

    

T z H z H z H z H z

z H z H z Hm m

( ) = ( ) −( ) − ( ) −( )[ ]

= − ( ) ( ) −( ) +− − −

1
2
1
2

1

0 1 0

0 0
1

00 0
1−( ) −( )⎡⎣ ⎤⎦
−z H z .     (7.99)   

 In view of  (7.90) ,  m  must be odd. We have the expression

    T z z H z H z H z H zm( ) = ( ) ( ) + −( ) −( )⎡⎣ ⎤⎦
− − −1

2
0 0

1
0 0

1 .     (7.100)   

 The fi lter bank has been designed once the half - band fi lter has been designed. 
The resultant fi lters are listed as follow

    

S z H z H z

C z H z H z z

C z H z H z z

m

( ) = ( ) ( )
( ) = ( ) ( )
( ) = − ( ) ( )

−

− −

−

0 0
1

0 0 0
1

1 0 0
1 −−

− −( ) = − −( )
( ) = −( )
( ) = − −( )

( ) = ( ) +

m

mH z z H z

G z H z

G z H z

T z S z

1 0
1

0 1

1 0

1
2

SS z−( )[ ]

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪ .

    (7.101)   

 The low - pass fi lter  H  0 ( z ) comes from the spectral factorization of  S ( z ). 

   7.8.1.2.1    Example.     We use the derivation of the Daubechies  [5]  scaling func-
tion coeffi cients as an example. Let us recall the conditions on the half - band 
fi lter

   S z S z( ) + −( ) = 2   

 The simplest form of  S ( z ) other than the Haar fi lter is

    S z z z R z( ) = +( ) +( ) ( )−1 12 1 2
.     (7.102)   

 All even coeffi cients of  S ( z ) must be zero except at 0 where  s (0)    =    1. Let

   R z az b az( ) = + + −1  

be a noncausal symmetric fi lter so that  S ( z ) remains symmetric. By carrying 
out the algebra in  (7.102)  and using condition on  S ( z ), we have
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S a b

S S a b

0 1 8 6 1

2 2 0 4 0

( ) = ⇒ + =
( ) = −( ) = ⇒ + =

⎧
⎨
⎩

 

giving   a = −1 16/  and   b = 1 4/ . The symmetric fi lter  R ( z ) becomes

   
R z z z

z z

( ) = − + −

= ⎛⎝
⎞
⎠ + + −( )⎡⎣ ⎤⎦ + + −( )⎡⎣ ⎤

−

−

1
16

1
4

1
16

1

4 2
1 3 1 3 1 3 1 3

1

2
1

⎦⎦

  

 This expression is substituted into  (7.102)  so that we can factor  S ( z ) into a 
product of two fi lters  H  0 ( z ) and  H  0 ( z   − 1 ). The result of this spectral factoriza-
tion gives a causal fi lter

   

H z z z

z

0
1 2 11

4 2
1 1 3 1 3

1

4 2
1 3 3 3

( ) = ⎛⎝
⎞
⎠ +( ) + + −( )⎡⎣ ⎤⎦

= ⎛⎝
⎞
⎠ +( ) + +( )

− −

−11 2 3

1 2

3 3 1 3

0 4929 0 8365 0 2241 0 1294

+ −( ) + −( )⎡⎣ ⎤⎦

= + + −

− −

− −

z z

z z. . . . zz−3

  

 Note that these coeffi cients need to be multiplied by   2  to get the values 
given in Chapter  6 .   

   7.8.1.3    Biorthogonal Filter Bank.     A linear phase FIR fi lter bank is desirable 
because it minimizes phase distortion in signal processing. On the other hand, 
an orthogonal FIR fi lter bank is also desirable because of its simplicity. One 
has to design only one fi lter — namely,  H  0 ( z ), and all other fi lters in the entire 
bank are specifi ed. Biorthogonal fi lter banks are designed to satisfy the linear 
phase requirement. 

 Let us recall the PR condition and the antialiasing condition on the synthe-
sis and analysis fi lters. They are

   H z G z H z G z z m
0 0 1 1 2( ) ( ) + ( ) ( ) = −  

   G z H z G z H z0 0 1 1 0( ) −( ) + ( ) −( ) =   

 We can solve for the synthesis fi lters  G  0 ( z ) and  G  1 ( z ) in terms of the analysis 
fi lters  H  0 ( z ) and  H  1 ( z ). The result is

    
G z

G z
z

Tr

H z

H z

m
0

1

1

0

2( )
( )

⎡
⎣⎢

⎤
⎦⎥
=

[ ]
−( )

− −( )
⎡
⎣⎢

⎤
⎦⎥

−

det
    (7.103)  

where the transfer matrix is
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   Tr
H z H z

H z H z
[ ] = ( ) ( )

−( ) −( )
⎡
⎣⎢

⎤
⎦⎥

0 1

0 1
.   

 If we allow symmetric fi lters

   H z H z h n h n0 0
1

0 0( ) = ( )⇔ ( ) = −( )−  

and are not concern with causality at the moment, we may safely ignore the 
delay  z   −    m  . This is equivalent to designing all fi lters to be symmetric or antisym-
metric about the origin. We also recall the defi nitions of the composite fi lters

   C z H z G z0 0 0( ) = ( ) ( )  

   C z H z G z1 1 1( ) = ( ) ( ).   

 Using the result of  (7.103) , we write

    
C z H z G z H z H z Tr

C z H z G z H z
0 0 0 0 1

1 1 1 1

2

2

( ) = ( ) ( ) = ( ) −( ) [ ]
( ) = ( ) ( ) = −

det

(( ) −( ) [ ]H z Tr0 det .
    (7.104)   

 If we replace  −  z  for  z  in the second equation and note that

   det det ,Tr z Tr z−( )[ ] = − ( )[ ]   

 we have

    C z C z1 0( ) = −( ).     (7.105)   

 The fi nal result is

    C z C z0 0 2( ) + −( ) = .     (7.106)   

 We now have a half - band fi lter for  C  0 ( z ) from which we can use spectral fac-
torization to obtain  H  0 ( z ) and  G  0 ( z ). There are many choices for spectral 
factorization and the resulting fi lters are also correspondingly different. They 
may have different fi lter lengths for the synthesis and analysis banks. The 
resulting fi lters have linear phase. The user can make judicious choice to 
design the analysis bank or the synthesis bank to meet requirements of the 
problem on hand. We use the example in Ref.  3  to show different ways of 
spectral factorization to obtain  H  0 ( z ) and  G  0 ( z ). 

 Let the product fi lter

    

C z H z G z z Q z

z z z z

0 0 0
1 4

2 3 4 6

1

1
16

1 9 16 9

( ) = ( ) ( ) = +( ) ( )

= − + + + −( )

−

− − − − .     (7.107)   
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 Since the binomial (1    +     z   − 1 )  n   is symmetrical,  Q ( z ) must be symmetrical to 
make  C  0 ( z ) symmetrical. An advance of  z  3  makes  S ( z ) a half - band fi lter. The 
choices of spectral factorization include

    

1 1 1

2 1 1

0
1 0

0
1 4

0
1 1

0

.

.

H z z G z z Q z

H z z G z

( ) = +( ) ( ) = +( ) ( )

( ) = +( ) ( ) = +

− −

− zz Q z

H z z G z z Q z

z

−

− −

−

( ) ( )

( ) = +( ) ( ) = +( ) ( )

+( ) − −

1 3

0
1 2

0
1 2

1

3 1 1

1 2 3

.

or zz z z

H z z G z z Q z

− − −

− −

( ) +( ) + −( )
( ) = +( ) ( ) = +( ) ( )

1 1 3 1

0
1 3

0
1

1 2 3

4 1 1

or

.

55 1 2 3 1 2 30
1 2 1

0
1 2 1. H z z z G z z z( ) = +( ) − −( ) ( ) = +( ) + −( )

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪

− − − −

⎪⎪
⎪
⎪
⎪

    (7.108)   

 The last choice corresponds to Daubechies ’ s orthogonal fi lters, which do not 
have linear phase. The 3/5 fi lter in the upper line of (3) gives linear phase fi lter 
while the lower one does not.   

   7.8.2    Time - Domain Analysis 

 The development of the fi lter bank theory is primarily based on the spectral 
analysis, we discuss the time - domain equivalent of the theory for enhancement 
of the understanding of and for the digital implementation of the algorithm. 
Thus it suffi ces to illustrate the meaning of the terms, fi lter requirements, and 
the fi lter systems in terms of time domain variables. 

   7.8.2.1    Causality.     An FIR fi lter is causal if the impulse response

   h n n( ) = ∀ <0 0.   

 The  z  - transform of  h ( n ) is a right - sided polynomial of  z   − 1  

  H z h h z h z h m z m( ) = ( ) + ( ) + ( ) +…+ ( )− − −0 1 21 2 .   

 If  H ( z ) is a causal fi lter, then  H ( z   − 1 ) is anticausal since

   H z h h z h z h m zm−( ) = ( ) + ( ) + ( ) +…+ ( )1 20 1 2 .   

 which is a left - sided polynomial of  z . As a result,  H ( −  z   − 1 ) is also anticausal 
since the polynomial is the same as that of  H ( z   − 1 ) except the signs of odd 
coeffi cients have been changed

   H z h h z h z h m zm−( ) = ( ) − ( ) + ( ) −…− ( )−1 20 1 2 .   
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 The last term has a negative sign if we assume  m  is odd. To realize the anti-
causal FIR fi lter, we must delay the fi lter by the length of the fi lter to make it 
causal. Hence

   − −( ) = ( ) − −( ) + + ( ) − ( )− − − − + −z H z h m h m z h z h zm m m1 1 11 1 0...  

is a causal fi lter. If we choose

   H z H z0 ( ) = ( )  

   H z z H zm
1 0

1( ) = − −( )− −  

   G z H z0 1( ) = −( )  

   G z H z1 0( ) = − −( ),  

we have a fi lter bank consisting of causal fi lters.  

   7.8.2.2    PR Requirements.     Perfect reconstruction demands that

   S z S z( ) + −( ) = 2.   

 In terms of the low - pass fi lter  H  0 ( z ), the equation becomes

    H z H z H z H z0 0
1

0 0
1 2( ) ( ) + −( ) −( ) =− − .     (7.109)   

 Let us consider the PR condition in  (7.109) . In time domain we have

   

S z S z h n z h m z h n z h m zn m n n m m

n m n

( ) + −( ) = ( ) ( ) + ( ) −( ) ( )− − − +( )∑ ∑ ∑0 0 0 01
mm

n m n m

h n h m z z h n h m z zn m n m n m

∑
∑ ∑= ( ) ( ) + −( ) ( ) ( )

=

− − +( ) −
0 0 0 01

2
, ,

.
  

   (7.110)   

 Satisfaction of  (7.110)  requires ( m     +     n ) be even, and we have

    h n h m z zn m

n m
0 0 1( ) ( ) =−∑

,

.     (7.111)   

 The left side of  (7.111)  is the  z  - transform of the auto - correlation function of 
the sequence  h  0 ( n ). To show this relation, we denote

    κ κn h k h k n n
k

( ) = ( ) +( ) = −( )∑ 0 0     (7.112)  

be the autocorrelation function. Its  z  - transform is written as
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K z h k h k n z

h k h k n z

h k h m z

n

n

kn

k n

k

( ) = ( ) +( )

= ( ) +( )

= ( ) ( )

−

−

∑∑
∑ ∑
∑

0 0

0 0

0 0
−− −( )∑ m k

m

    (7.113)  

which implies

    κ n h n h n( ) = ( )∗ −( )0 0 .     (7.114)   

 Comparing  (7.113)  and  (7.110)  and making the substitution

   K z S z( )→ ( )  

   κ n s n( )→ ( ),  

we have

   S z h k h k n z n

kn

( ) = ( ) +( ) −∑∑ 0 0 .   

 From  (7.98)  and the fact that  s (2 n )    =    0 for all integer  n , we have the orthonor-
mality condition required for PR

    h k h k n
k

n0 0 02( ) +( ) =∑ δ , .     (7.115)   

 This implies the orthogonality of the fi lter on all its even translates. We apply 
the same analysis to the high - pass fi lter  h  1 ( n ) and get the same condition 
for  h  1 ( n )

    h k h k n
k

n1 1 02( ) +( ) =∑ δ ,     (7.116)  

    h k h k n
k

0 1 2 0( ) +( ) =∑ .     (7.117)   

 In terms of wavelet and approximation function basis, the orthonormality 
conditions given above are expressed as inner products

    

h k h k n

h k h k n

h k h k n

n

n

0 0 0

1 1 0

0 1

2

2

2 0

( ) +( ) =
( ) +( ) =
( ) +( ) =

,

,

,

,

,

δ
δ     (7.118)  
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where the approximation basis  h  0 ( k ) and the wavelet basis  h  1 ( k ) are ortho-
normal to their even translates. They are also orthogonal to each other. If we 
construct an infi nite matrix [ H  0 ] using the FIR sequence  h  0 ( n ) such that

    H

h h h h

h h h h

h

0

0 0 0 0

0 0 0 0

0

0 1 2 3 0 0 0

0 0 0 1 2 3 0

0 0 0 0

[ ] =

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ]] [ ] [ ]
[ ]

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

h h

h
0 0

0

1 2

0 0 0 0

0 0

0

0

,     (7.119)  

it is obvious that

    H H It
0 0[ ][ ] =     (7.120)  

using the orthonormality conditions in  (7.118) . Therefore, [ H  0 ] is an orthogo-
nal matrix. We defi ne [ H  1 ] in a similar way using the FIR sequence of  h  1 ( n ) 
and show that

    H H It
1 1[ ][ ] = .     (7.121)   

 In addition, the reader can also show that

    H H H Ht t
1 0 0 1 0[ ][ ] = [ ][ ] = [ ].     (7.122)   

 Equations in  (7.118)  constitute the orthogonal conditions imposed on the 
FIR fi lters. This type of fi lter bank is called the  orthogonal fi lter bank . 
The processing sequences for Haar scaling function and Haar wavelets are the 
simplest linear phase orthogonal fi lter bank. Indeed, if we denote

   h nH
0

1

2

1

2
( ) = { },  

and

   h nH
1

1

2

1

2
( ) = −{ }, ,  

these two sequences satisfy the orthogonal conditions in  (7.118) . We recall that 
linear phase FIR fi lters must be either symmetric or antisymmetric, a condition 
not usually satisfi ed by orthogonal fi lters. This set of Haar fi lters is the only 
orthogonal set that has linear phase.  
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   7.8.2.3    Two - Channel Biorthogonal Filter Bank in the Time - Domain.     We 
have shown in last section that the biorthogonal condition on the analysis and 
synthesis fi lters is

   C z C z H z G z H z G z0 0 0 0 0 0

2

( ) + −( ) = ( ) ( ) + −( ) −( )
= .

  

 Writing this equation in the time domain and using the convolution formula, 
yield the time - domain biorthogonal condition

    h k g k h k g k
k k

0 0 0 0 01 2( ) −( ) + −( ) ( ) −( ) =∑ ∑� ��
�δ , .     (7.123)   

 The equality holds only if  �  is even. This results in the biorthogonal relation 
between the analysis and synthesis fi lters

    

h k g n k h k g n k
k

n

0 0 0 0

0

2 2( ) −( ) = ( ) −( )

=

∑ ,

.,δ     (7.124)   

 The biorthogonal condition can also be expressed in terms of  H  1 ( z ) to yield

    

h k g n k h k g n k
k

n

1 1 1 1

0

2 2( ) −( ) = ( ) −( )

=

∑ ,

.,δ     (7.125)   

 The additional biorthogonal relations are

    

h k g n k

h k g n k
1 0

0 1

2 0

2 0

( ) −( ) =
( ) −( ) =

, ,

, .     (7.126)   

 If we consider the fi lters as discrete bases, we have

    �g k g km m( ) = −( ).     (7.127)   

 The biorthogonal relations become

    

h k g k n

h k g k n

h k g k n

h

n

n

0 0 0

1 1 0

1 0

2

2

2 0

( ) −( ) =
( ) −( ) =
( ) −( ) =

,

,

,

,

,

�

�
�

δ
δ

00 1 2 0k g k n( ) −( ) =, �

    (7.128)      
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   7.9    POLYPHASE REPRESENTATION FOR FILTER BANKS 

 Polyphase representation of a signal is an alternative approach to discrete 
signal representation other than in the spectral domain and the time 
domain. It is an effi cient representation for computation. Consider the pro-
cess of convolution and decimation by 2, we compute all the resulting 
coeffi cients and then cast out half of them. The polyphase approach decimates 
the input signal and then convolves with only half of the fi lter coeffi cients. 
This approach increases the computational effi ciency by reducing the 
redundancy. 

   7.9.1    Signal Representation in Polyphase Domain 

 Let the  z  - transform of a discrete causal signal separated into segments of  M  
points, be written as

    

X z x x z x z x z x M z

x M z x M

M

M

( ) = ( ) + ( ) + ( ) + ( ) + + −( )
+ ( ) +

− − − − +

−

0 1 2 3 11 2 3 1�

++( ) + +( ) +

+ ( ) + +( ) +

− +( ) − +( )

− − +( )
1 2

2 2 1 2

1 2

2 2 1

z x M z

x M z x M z x M

M M

M M

�

++( ) +

+ ( ) + +( ) +

− +( )

− − +( )
2

3 3 1

2 2

3 3 1

z

x M z x M z

M

M M

�

�

    (7.129)  

    = ( )−

=

−

∑ z X zM
M

�
�

� 0

1

,     (7.130)  

where  X   �  ( z M  ) is the  z  - transform of  x ( n ) decimated by  M  ( ↓   M ). The index  �  
indicates the number of sample shifts. For the case of  M     =    2, we have

    X z X z z X z( ) = ( ) + ( )−
0

2 1
1

2 .     (7.131)     

  7.9.2    Filter Bank in the Polyphase Domain 

 For a fi lter  H ( z ) in a two - channel setting, the polyphase representation is 
exactly the same as in  (7.131) 

    H z H z z H ze o( ) = ( ) + ( )−2 1 2     (7.132)  

where  H e  ( z  2 ) consists of the even samples of  h ( n ) and  H o  ( z  2 ) has all the odd 
samples. The odd and even parts of the fi lter are used to process the odd and 
even coeffi cients of the signal separately. To formulate the two - channel fi lter 
bank in the polyphase domain, we need the help of two identities:

    
1

2

.

. .

↓( ) ( ) = ( ) ↓( )
↑( ) ( ) = ( ) ↑( )

M G z G z M

M G z G z M

M

M
    (7.133)   
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 A fi lter  G ( z  2 ) followed by a two - point decimator is equivalent to a two - point 
decimator followed by  G ( z ). The second identity is useful for the synthesis 
fi lter bank. 

 Let us consider fi rst the time domain formulation of the low - pass branch 
of the analysis fi lter. Assuming causal input sequence and causal fi lter, the 
output  y ( n )    =    [ x ( n )    *     f ( n )]  ↓ 2  is expressed in matrix form as

    

⋅
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.     (7.134)   

 The output coeffi cients are separately represented by the odd and even 
parts as

   y n y n delay y ne o( )[ ] = ( )[ ]+ ( ) ( )[ ]  

where

    y n y n
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.     (7.135)   

 The even part of  y ( n ) is made up of the products of  f e  ( n ) with  x e  ( n ) and  f o  ( n ) 
with  x o  ( n ) plus a delay. The signal  x ( n ) is divided into the even and odd parts, 
and they are processed by the even and odd part of the fi lter, respectively. In 
the same way, the high - pass branch of the analysis section can be seen exactly 
as we demonstrate above. In the polyphase domain, the intermediate output 
from the analysis fi lter is given by
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(7.136)
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where [ H ] is the analysis fi lter in the polyphase domain. In the same 
manner, we obtain the reconstructed sequence  X  ′ ( z ) from the synthesis fi lter 
bank as

    ′ ( ) = ⎡⎣ ⎤⎦
( ) ( )
( ) ( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )−
2 2

X z z
G z G z

G z G z

U z

U
1 1 00

2
01

10
2

11
2

0

1 zz

z G
U z

U z

2

−

( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ⎡⎣ ⎤⎦[ ]
( )
( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 1 0
2

1
2

.

   

 (7.137)

   

 The PR condition for the polyphase processing matrices is [ H ][ G ]    =     I .   

   7.10    COMMENTS ON  DWT  AND  PR  FILTER BANKS 

 We have shown the parallel between the algorithms of the DWT and the two -
 channel fi lter bank. In terms of numerical computation, the algorithms of both 
disciplines are exactly the same. We would like to point out several funda-
mental differences between the two disciplines. 

  1.     Processing domain.     Let us represent an analog signal  f ( t )    ∈     L  2  by an ortho-
normal wavelet series

    f t w tk s k s

sk

( ) = ( )∑∑ , , .ψ     (7.138)   

 The coeffi cients  w k,s   are computed via the inner product

    w f t tk s k s, ,, .= ( ) ( )ψ     (7.139)   

 The wavelet series coeffi cients, much in the same way like the Fourier series 
coeffi cients, are time -  (or analog - ) domain entities. From this point of view, 
we see that the DWT is a fast algorithm to compute the CWT at a sparse 
set of points on the time - scale plane, much like the FFT is a fast algorithm 
to compute the discrete Fourier transform. The DWT is a time - domain 
transform for analog signal processing. On the other hand, the fi lter bank 
algorithms are designed from spectral domain consideration (i.e., the high -
 pass and low - pass design) for processing of signal samples (instead of 
coeffi cients).  

  2.     Processing goal.     We have shown that the wavelet series coeffi cients are 
essentially the components (from projection) of the signal in the direction 
of the wavelet   ψ   at the scale  a     =    2  −    s   and at the time point  b     =     k 2  −    s  . 
This concept of component is similar to the Fourier component. The 
magnitude of the wavelet series coeffi cient represents the strength of the 
correlation between the signal and the wavelet at that particular scale 
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192  DWT AND FILTER BANK ALGORITHMS 

and point in time. The processing goal of the fi lter bank is to separate the 
high - frequency and low - frequency components of the signal so that they 
may be processed or refi ned by different DSP algorithms. Although the 
DWT algorithms inherently have the same function, the focus of DWT is 
on fi nding the similarity between the signal and the wavelet at a given scale.  

  3.     Design origin.     A wavelet is designed primarily via the two scale relation 
to satisfy the MRA requirements. Once the two - scale sequences are found, 
the DWT processing sequences have been set. A wavelet can be con-
structed, and its time and scale window widths can be computed. In general, 
a fi lter bank is designed in the spectral domain via spectral factorization to 
obtain the processing fi lters. These sequences may or may not serve as the 
two - scale sequences for the approximation function and the wavelet. The 
time - scale or time - frequency characteristics of these fi lters may not be 
measurable.  

  4.     Application areas.     Most of signal -  and image - processing applications 
can be carried out either with DWT or with fi lter bank algorithms. In 
some application areas, such as non - Fourier magnetic resonance imaging 
where the processing pulse required is in the analog domain, wavelet is 
more suitable for the job because the data set is obtained directly via 
projection.  

  5.     Flexibility.     Since fi lter banks may be designed in the spectral domain via 
spectral factorization, a given half - band fi lter may result in several sets of 
fi lters, each having its own merit vis - a - vis the given signal. In this regard, 
the fi lter bank is much more adaptable to the processing need than the 
wavelets.    

 Wavelet or fi lter bank? The user must decided for himself or herself based 
on the problem on hand and the effi ciency and accuracy of using either one 
or the other!  

 7.11   EXERCISES 

       1 .   For a positive integer  M     ≥    2, set   w j k MM
k = ( )[ ]exp 2π /  for  k     =    1,  …  ,  M . 

Show that
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 Using this relation, prove that
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where   X z x k zk
k( ) = ∑ [ ]  and   Y z y k zk

k( ) = ∑ [ ]  are the  z  - transform of 
sequences { x [ k ]} and { y [ k ]}.   

    2 .   If the sequence { y [ k ]} is generated from { x [ k ]} by upsampling by  M :

    y k
x

k
M

k M
[ ] =

⎡
⎣⎢

⎤
⎦⎥

∈⎧
⎨
⎪

⎩⎪

if

otherwise,

Z

0
    (7.142)  

show that

    Y e X ej jM− −( ) = ( )( ω ω     (7.143)  

for the respective  z  - transforms.   

    3 .   In the QMF solution to the PR condition, it is found that the only solution 
that can satisfy the condition is Haar fi lters. Why don ’ t any other FIR fi lters 
satisfy the PR condition?   

    4 .   Use the antialiasing condition and the PR condition, fi nd the fi lter sequences 
 h  0 ( n ),  h  1 ( n ),  g  1 ( n ) if  g  0 ( n ) is the  D  2  sequence given the example of this 
chapter.   

    5 .   Show the validity of the identities given in Section  7.9.2 .      

   7.12    COMPUTER PROGRAM 

   7.12.1    Decomposition and Reconstruction Algorithm  

 % 
 % PROGRAM algorithm.m 
 % 
 % Decomposes and reconstructs a function using Daubechies ’  
 % wavelet (m  =  2). The initial coeffi cients are taken as 
 % the function values themselves. 
 % 

 % Signal 

 v1  =  100;                                             % frequency 
 v2  =  200; 
 v3  =  400; 
 r  =  1000;                                             %sampling rate 

 k  =  1:100; 
 t  =  (k - 1) / r; 
 s  =  sin(2 * pi * v1 * t)  +  sin(2 * pi * v2 * t)  +  sin(2 * pi * v3 * t); 
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 % Decomposition and reconstruction fi lters 

 g0  =  [0.68301; 1.18301; 0.31699;  - 0.18301]; 
 k  =  [0; 1; 2; 3]; 
 g1  =  fl ipud(g0). * ( - 1). ̂ k; 
 h0  =  fl ipud(g0) / 2; 
 h1  =  fl ipud(g1) / 2; 

 % Decomposition process 

 % First level decomposition 

 x  =  conv(s,h0); 
 a0  =  x(1:2:length(x));               %downsampling 
 x  =  conv(s,h1); 
 w0  =  x(1:2:length(x));               %downsmapling 

 % Second level decomposition 

 x  =  conv(a0,h0); 
 a1  =  x(1:2:length(x)); 
 x  =  conv(a0,h1); 
 w1  =  x(1:2:length(x)); 

 % Plot 

 subplot(3,2,1), plot(s) 
 ylabel( ’ Signal ’ ) 
 subplot(3,2,3), plot(a0) 
 ylabel( ’ a_0 ’ ) 
 subplot(3,2,4), plot(w0) 
 ylabel( ’ w_0 ’ ) 
 subplot(3,2,5), plot(a1) 
 ylabel( ’ a_{ - 1} ’ ) 
 subplot(3,2,6), plot(w1) 
 ylabel( ’ w_{ - 1} ’ ) 
 set(gcf, ’ paperposition ’ ,[0.5 0.5 7.5 10]) 

 % Reconstuction process 

 % Second level reconstruction 

 x  =  zeros(2 * length(a1),1); 
 x(1:2:2 * length(a1))  =  a1(1:length(a1)); 
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 y  =  zeros(2 * length(w1),1); 
 y(1:2:2 * length(w1))  =  w1(1:length(w1)); 

 x  =  conv(x,g0)  +  conv(y,g1); 
 a0_rec  =  x(4:length(x) - 4); 

 % First level reconstruction 

 y  =  zeros(2 * length(w0), 1); 
 y(1:2:2 * length(w0))  =  w0(1:length(w0)); 
 x  =  zeros(2 * length(a0_rec), 1); 
 x(1:2:2 * length(a0_rec))  =  a0_rec; 

 x  =  conv(x,g0); 
 y  =  conv(y,g1); 
 y  =  x(1:length(y)) + y; 
 s_rec  =  y(4:length(y) - 4); 

 % Plot 

 fi gure(2) 
 subplot(3,2,1), plot(a1) 
 ylabel( ’ a_{ - 1} ’ ) 
 subplot(3,2,2), plot(w1) 
 ylabel( ’ w_{ - 1} ’ ) 
 subplot(3,2,3), plot(a0_rec) 
 ylabel( ’ Reconstructed a_0 ’ ) 
 subplot(3,2,4), plot(w0) 
 ylabel( ’ w_0 ’ ) 
 subplot(3,2,5), plot(s_rec) 
 ylabel( ’ Reconstructed Signal ’ ) 
 set(gcf, ’ paperposition ’ ,[0.5 0.5 7.5 10])     
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  CHAPTER EIGHT 

Special Topics in Wavelets 
and Algorithms     

     In Chapter  7  we discussed standard wavelet decomposition and reconstruction 
algorithms. By applying an optimal - order local spline interpolation scheme as 
described in Section  5.6 , we obtain the coeffi cient sequence  a   M   of the desired 
 B  - spline series representation. Then, depending on the choice of linear or 
cubic spline interpolation, we apply the change - of - bases sequences (Section 
 7.5 ) to obtain the coeffi cient sequence   �aM of the dual series representation for 
the purpose of FIR wavelet decomposition. 

 A typical time - scale grid obtained by following the implementation scheme 
described in Chapter  7  is shown in Figure  7.7 . In other words, the IWT values 
of the given signal at the time - scale positions shown in Figure  7.7  can be 
obtained (in real time) by following this scheme. However, in many signal 
analysis applications, such as wide - band correlation processing  [1]  used in some 
radar and sonar applications, this information on the IWT of  f  on such a sparse 
set of dyadic points (as shown in Figure  7.7 ), is insuffi cient for the desired 
time - frequency analysis of the signal. It becomes necessary to compute the 
IWT at nondyadic points as well. By maintaining the same time resolution at 
all the binary scales, the aliasing and the time variance diffi culties associated 
with the standard wavelet decomposition algorithm can be circumvented. 
Furthermore, as will be shown in this chapter, computation only at binary scales 
may not be appropriate to separate all the frequency contents of a function. 

 An algorithm for computing the IWT with fi ner time resolution was intro-
duced and studied by Rioul and Duhamel  [2]  and Shensa  [3] . In addition, there 
have been some advances in fast computation of the IWT with fi ner frequency 
resolution, such as the multivoice per octave (mvpo) scheme, fi rst introduced 
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in [Ref.  4 ] (see also [Ref.  5 ]) and later improved with the help of FFT by Rioul 
and Duhamel  [2] . However, the computational complexity of the mvpo scheme, 
with or without FFT, increases with the number of values of the scale param-
eter  a . For example, in the FFT - based computational scheme, both the signal 
and the analyzing wavelet have to be sampled at the same rate, with the sam-
pling rate determined by the highest frequency content (or the smallest scale 
parameter) of the signal, and this sampling rate cannot be changed at the 
subsequent larger scale values for any fi xed signal discretization. Furthermore, 
even at the highest frequency level, where the width of the wavelet is the 
narrowest in the time domain, the required number of sampled data for the 
wavelet will be signifi cantly larger than the number of decomposition coeffi -
cients in the pyramid algorithm. 

 In this chapter, we will discuss the fast integral wavelet transform (FIWT). 
Other wavelets and algorithms such as ridgelets, curvelets, complex wavelets, 
and lifting algorithm are briefl y described.  

   8.1    FAST INTEGRAL WAVELET TRANSFORM 

 As mentioned before, in many applications it is important to compute wavelet 
transform on a dense set of points in the time - scale domain. A fast algorithm 
 [6 – 8]  is presented. 

   8.1.1    Finer Time Resolution 

 In this section, we will be concerned with maintaining the same time resolution 
on each scale by fi lling in the  “ holes ”  along the time axis on each scale — that 
is, we want to compute ( W  ψ   x M  )( n /2  M  , 1/2  s  ),  n     ∈     Z ,  s     <     M . Recall that the stan-
dard algorithms discussed in Chapter  7  gives the IWT values only at dyadic 
points   n n s Ms s2 1 2, ; ,∈ <{ }Z . For fi ner time resolution, we fi rst observe 
that for each fi xed  n , by introducing the notation

    x t x t
n
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 Now, since
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 Hence we observe from  (8.2) , that the IWT of  x M   at ( n /2  M  , 1/2  s  ) is the same 
as that of  x M   ,   n   at (0, 1/2  s  ). In general, for every  k     ∈     Z , we even have
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(8.5)

  

where  s     <     M . Hence for any fi xed  s  and  M  with  s     <     M , since every integer   �   
can be expressed as  k 2  M − s      +     n , where  n     =    0,  …  , 2  M − s      −    1 and  k     ∈     Z , we obtain 
all the IWT values

    W f wM M s
s

ss Mψ( )⎛
⎝⎜
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−
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1

2
2 2

2, : ,,     (8.6)   

 of  x M   at (  �  /2  M  , 1/2  s  ),   �      ∈     Z  and  s     <     M , by applying the standard wavelet decom-
position algorithm of Chapter  7  to the function  x M   ,   n  . The time - scale grid for 
 s     =     M     −    1,  M     −    2, and  M     −    3, but only   �      =    0,  …  , 3, is given in Figure  8.1 .   

 For implementation, we need notations

    w a a as k s k
s k s k

M Mw as M s M= { } = { } =− −
∈ ∈

� � �
2 2, , , ,

Z Z
and so that     (8.7)  

and the notation for the upsampling operations
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 As a consequence of  (8.2)  and  (7.45) , we have, for  s     =     M     −    1,
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 In a similar way it can be shown that

    � � �an M M n2 1, .− = ∗( )g a0     (8.11)   

 That is, in terms of the notations in  (8.7)  and  (8.8) , we have
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     FIGURE 8.1:     Filling in holes along the time axis.  
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 To extend this to other lower levels, we rely on the method given in  [3] , 
yielding the algorithm

    

a g a

w g w

s
M s

s

s
M s

s

s M M M M

−
−

−
−

= ( )∗

= ( )∗

= − − ′ +

1

1

1 1

s

s

�

�

…

0

1

,

,

, , , .with 

⎧⎧

⎨
⎪⎪

⎩
⎪
⎪

    (8.13)   

 A schematic diagram for implementing this algorithm is shown in Figure  8.2 .    

   8.1.2    Finer Scale Resolution 

 For the purpose of computing the IWT at certain interoctave scales, we defi ne 
an  interoctave parameter 

    α αn n N

N

N
N

n
N n= =

+
> = −, : , , , ,

2

2
0 1 2 1and �     (8.14)   

 which gives 2  N      −    1 additional levels between any two consecutive octave levels, 
as follows. 

 For each  k     ∈     Z ,  s     <     M  to add 2  N      −    1 levels between the ( s     −    1)  st   and  s th 
octaves, we introduce the notations

    
φ α φ α

ψ α ψ α

k s
n s

n
s

n

k s
n s

n
s

n

t t k

t t k

,

,

;

.

( ) = ( ) −( )
( ) = ( ) −( )

⎧

⎨
2 2

2 2

1
2

1
2

⎪⎪

⎩
⎪

    (8.15)   

 Observe that since 1/2    <      α  n      <    1, we have

    
supp supp supp

supp supp supp
k s k s

n
k s
n

k s k s
n

k s

φ φ φ
ψ ψ ψ

, , ,

, , ,

;⊂ ⊂
⊂ ⊂

−1

−−

⎧
⎨
⎪

⎩⎪ 1
n .

    (8.16)   

     FIGURE 8.2:     Wavelet decomposition process with fi ner time resolution.  
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 As a consequence of  (8.16) , the RMS bandwidths of   ̂ ,φ 0 0
n  and   ˆ ,ψ 0 0

n  are 

narrower than those of   φ̂  and   ψ̂  and wider than those of   ̂φ 2⋅( ) and   ψ̂ 2⋅( ), 
respectively. 

 The interoctave scales are described by the subspaces

    V ks
n

L k s
n= ∈clos 2 φ , : .Z     (8.17)   

 It is clear that for each  n , these subspaces also constitute an MRA of  L  2 . In 
fact, the two - scale relation remains the same as that of the original scaling 
function   ϕ  , with the two - scale sequence { g  0 [ k ]} — namely

    φ φ
α0 0 0 2, , .s

n
s

n

n
t g k t

k

k

( ) = [ ] −⎛
⎝⎜

⎞
⎠⎟∑     (8.18)   

 It is also easy to see that   ψk s
n

,  is orthogonal to   Vs
n. Indeed,

    φ ψ φ ψ� � �, , , ,, , , , ,s
n

k s
n

s k s k= = ∈0 Z     (8.19)   

 for any  s     ∈     Z . Hence the spaces

    W ks
n

L k s
n= ∈clos 2 ψ , : Z     (8.20)   

 are the orthogonal complementary subspaces of the MRA spaces  V s   ,   n  . In addi-
tion, analogous to  (8.18) , the two - scale relation of   ψ 0,s

n  and   φ0
s n,  remains the 

same as that of   ψ   and   ϕ    — namely

    ψ φ
α0 1 0 2s h

s
n

n
t g k t

k

k

,
, .( ) = [ ] −⎛
⎝⎜

⎞
⎠⎟∑     (8.21)   

 Since ({ g  0 [ k ]}, { g  1 [ k ]}) remain unchanged for any interoctave scale, we can use 
the same implementation scheme, as shown in Figure  7.11 , to compute the 
IWT values at   k s

n
s

n2 1 2α α,( ). However, there are still two problems. First,  

we need to map  x M   to  V M   ,   n  , and second, we need to compute the IWT values 

at   k M
n

s
n2 1 2α α,( ) instead of the coarser grid   k s

n
s

n2 1 2α α,( ). 
 Let us fi rst consider the second problem. That is, suppose that   x VM

n
M
n∈  has 

already been determined. Then we may write

    x a t k a t kM
n

k M
n M

n k M
n M

n

k k

= −( ) = −( )∑ ∑, ,φ α φ α2 2� �     (8.22)   

 for some sequences {  ak M
n

, } and   � �ak M
n

,{ } ∈ 2. Then the decomposition algorithm
as described by Figure  7.11  yields
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n s
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−∞
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∫
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2
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k
M
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s
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s
n

ψ α α
( )⎛⎝⎜

⎞
⎠⎟

, .

    (8.23)   

 Now by following the algorithm in  (8.13) , we can also maintain the same time 
resolution along the time axis on each interoctave scale for any fi xed  n . More 
precisely, by introducing the notations

    w a a as
n

k s
n

k
s
n

k s
n

k
M
n

M
nw as M s M= { } = { } =− −

∈ ∈
� � �

2 2, ,
,

Z Z
and so that ,,     (8.24)   

 we have the algorithm for computing the IWT at the interoctave scale levels 
as given below

    

a g a

w g a

s
n M s

s
n

s
n M s

s
n

s M M M
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−
−

= ( )∗
= ( )∗
= − − ′
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1
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, , ,with MM +

⎧

⎨
⎪⎪

⎩
⎪
⎪ 1.

    (8.25)   

 However, it is clear from  (8.23)  that the time resolution for each fi xed  n  is 
  1 2M

nα , which is less than the one for the original octave scales, in which case 
the time resolution is   1 2M. As has been discussed in Chapter  7 , the highest 
attainable time resolution in the case of the standard (pyramid) decomposition 
algorithm is 1/2  M    − 1 . It should be pointed out that the position along the time 
axis on the interoctave scales is not the same as the original octave levels — that 
is, we do not get a rectangular time - scale grid (see Figure  8.4   ). A diagram of 
 (8.25)  is shown in Figure  8.3 . If we begin the index  n  of  (8.14)  from 0, then 
 n     =    0 corresponds to the original octave level. Figure  8.4  represents a typical 
time - scale grid for  s     =     M     −    1,  M     −    2, and  M     −    3 with  N     =    2 and  n     =    0,  …  , 3.    

     FIGURE 8.3:     Wavelet decomposition process with fi ner time - scale resolution.  
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   8.1.3    Function Mapping into the Interoctave Approximation Subspaces 

 Now going back to the fi rst problem of mapping  x M   to   xM
n , we observe that 

since   V VM M
n≠ , we cannot expect to have   x xM

n
M=  in general. However, if the 

MRA spaces { V s  } contain locally all of the polynomials up to order  m  in the 
sense that for each   �  , 0    ≤      �      ≤     m     −    1,

    t a t kk

k

�
�= −( )∑ , ,φ     (8.26)   

 pointwise, for some sequence { a  �    ,   k  }  k    ∈  Z  , then it is clear that {  Vs
n} also possesses 

the same property. Consequently, the vanishing moment properties of the 
interoctave scale wavelets   ψ 0,s

n  are the same as those of the original   ψ  . Hence 
in constructing the mapping of  x M   to   xM

n , we must ensure that this transforma-
tion preserves all polynomials up to order  m . 

 For the case of linear splines, such mapping can be easily obtained based 
on the fact that the coeffi cients in the linear - spline representation of a function 
are the function values evaluated at appropriate locations. 

 From the points of symmetry of  N  2 (2  M t ) and  N  2 (2  M  α  n t ) we obtain the mag-
nitude of the shift   ξ   in the centers (Figure  8.5 )  

    ξ
α

= −⎛
⎝⎜

⎞
⎠⎟ = +

1

2

1
1

2M
n

M N

n
,     (8.27)  

and, therefore,   a M
n
0,  as

    a a aM
n M

M
M

M0 0 11 2 2, , , .= −( ) +ξ ξ     (8.28)   

     FIGURE 8.4:     Time - scale grid using the scheme described in Figure  8.3 .  
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 However, if the lowest index of  a   M   is other than zero, then   aM
n  will not start 

with the same index as that of  a   M  . To illustrate this situation, suppose  x ( t ) has 
been discretized beginning with  t     =    4.25 with 0.25 as the step size (mapping 
into  V  2 ). Then we have

    x t a N t k a N t kk k

k k
2 2 2

2
2

1
22

16
5

( ) = −( ) = −⎛
⎝⎜

⎞
⎠⎟∑ ∑, , ,     (8.29)   

 with  n     =    1,   N n= =2 4 5α / . As is clear from Figure  8.6 , the index for   a2
1 does 

not start with the same index as  a  2 . It should also be observed that some of 
the coeffi cients   ak

n
,2 will coincide with  c  �    ,2 . The next index,   ck

n
+1 2, , will then lie 

between  c  �     + 1,2  and  c  �     + 2,2 .   
 Taking all of these points into account, we can obtain   aM

n  from  a   M   by fol-
lowing these steps: 

     FIGURE 8.5:     Mapping { a k   ,   M  } to {  ak M
n

, }.  

     FIGURE 8.6:     The fi rst term of {  ak M
n

, } when { a k   ,   M  } starts with  k     ≠    0.  
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  1.     Based on the given discretized function data, determine the starting 
index of   aM

n . Let it be   ai M
n
, .  

  2.     Let   ai M
n
,  lie between  a s   ,   M   and  a s    + 1,   M  .  

  3.     Let   ai M
n
,  be shifted from  a s   ,   M   toward the right by   ξ   in time. Then starting 

with  r     =    0, compute

    a a ai M
n M

s r M
M

s r M, , , .= −( ) ++ + +1 2 2 1ξ ξ     (8.30)    

  4.     Increment  i ,  s  by 1 and   ξ   by   n M N2 + .  
  5.     Continue (3), (4) until 1    −    2  M  ξ      <    0. When 1    −    2  M  ξ      <    0, increment  r  by 1 

and reset   ξ   to   n M N2 + . Increment  i ,  s  by 1.  
  6.     Repeat steps (3) – (5) until  a s    + 1 +    r   ,   M   takes the last index of  a   M  .    

 For a general case, the mapping of  x M   to   xM
n  can be obtained following the 

method described in Sections  5.6  and  7.2 . For instance, to apply the linear 
spline interpolatory algorithm or the cubic spline interpolatory algorithm, we  
need to compute the function values of   x kM

M
n2 α( )⎡⎣ ⎤⎦ or   x kM

M
n2 1−( )⎡⎣ ⎤⎦α , 

 k     ∈     Z . These values can be easily determined by using any spline evaluation 
scheme. More precisely, we have the following: 

  (i)     For  m     =    2 (linear splines), it is clear that

    

x t a N t k

a x
k

M
n

k M
n M

n

k M
n

M M
n

k
( ) = −( )

=
+⎛

⎝⎜
⎞
⎠⎟

⎧

⎨
⎪

⎩
⎪

∑ ,

, .

2 2

1

2

α

α
with 

    (8.31)    

  (ii)     For  m     =    4 (cubic splines), we have

    x t a N t kM
n

k M
n M

n

k

( ) = −( )∑ , ,4 2 α     (8.32)   

 with

    a v x
n

k M
n

k n M M n
n k

k

, ,= ⎛
⎝⎜

⎞
⎠⎟+ − −

= −

+

∑ 2 2 122

6

α     (8.33)  

where the weight sequence { v n  } is given in Section  5.6 .    
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 Finally, to obtain the input coeffi cient sequence {  �ak M
n

, } from {  ak M
n

, } for the 
interoctave scale algorithm  (8.19) , we use the same change - of - bases sequence 
 r  as in  (7.47) .  

   8.1.4    Examples 

 In this section, we present a few examples to illustrate the FIWT algorithm 
discussed in this chapter. The graphs shown are the centered integral wavelet 
transform (CIWT) defi ned with respect to the spline wavelet   ψ  m   as

    W f b a a f t
t b

a
t dtm mψ ψ( )( ) = ( ) −

+⎛
⎝⎜

⎞
⎠⎟

−

−∞

∞

∫, : ,
1
2 *     (8.34)  

where

    t
m

* .=
−2 1

2
    (8.35)   

 Observe that the IWT as defi ned by  (4.32)  does not indicate the location 
of the discontinuity of a function properly since the spline wavelets are 
not symmetrical with respect to the origin. The CIWT circumvents this 
problem by shifting the location of the IWT in the time axis by  at  *  toward the 
right. 

 The integral wavelet transform of a function gives local time - scale informa-
tion. To get the time - frequency information, we need to map the scale param-
eter to frequency. There is no general way of doing so. However, as a fi rst 
approximation, we may consider the following mapping,

    a f
c
a

� : ,=     (8.36)  

where  c     >    0 is a calibration constant. In this book, the constant  c  has been 
determined based on the one - sided center (  ω+*) and one - sided radius (  Δψ̂+) 
of the wavelet   ψ̂ ω( ), which are defi ned in Chapter  4 . 

 For the cubic spline wavelet we get   ω+ =* 5.164 and   Δ ˆ .ψ+ = 0 931. The cor-
responding fi gures for the linear spline wavelet are 5.332 and 2.360, respec-
tively. Based on these parameters, we choose values of  c  as 1.1 for cubic spline 
and 1.5 for linear spline cases. It is important to point out that these values of 
 c  may not be suitable for all cases. Further research in this direction is required. 
We have chosen  c  by taking the lower cut - off frequency of   ψ̂ ω( ). 

   8.1.4.1    IWT of a Linear Function.     To compare the results obtained by the 
method presented in this chapter with the results obtained by evaluating the 
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integral of  (8.34) , we fi rst take the linear function, which changes slope as 
shown in Figure  8.7 . The function is sampled with 0.25 as the step size. So for 
linear splines, it means that the function is mapped into  V  2 , whereas for the 
cubic splines, the function is mapped into  V  3 . We choose  N     =    1, which gives 
one additional scale between two consecutive octaves. It is clear from Figures 
 8.8  and  8.9  that both the FIWT algorithm and direct integration give identical 
results for wavelet coeffi cients for octave levels, but there are errors in the 
results for inter - octave levels as discussed before.   

 The importance of the moment property becomes clear from Figures  8.8  
and  8.9 . In both the linear and cubic cases, when the wavelet is completely 
inside the smooth region of the function, the WC are close to zero since the 
function is linear. Wherever the function changes the slope, the WCs have 
larger magnitudes. We also observe the edge effects near  t     =    0 and  t     =    50. The 
edge effects can be avoided by using special wavelets near the boundaries. 
Such boundary wavelets will be discussed in Chapter  10 . If we use the IWT 
instead of the CIWT, then the whole plot will be shifted toward the left, and 
the shift will continue to become larger for lower levels. For Figures  8.8  and 
 8.9 , the direct evaluation of  (8.34)  is done with  f  2 ( t ) and  f  3 ( t ), respectively. In 
Figure  8.10 , the direct integration is done with  f  3,1 ( t ), which indicates that for 
interoctave levels also, the FIWT algorithm gives identical results if compared 
with the corresponding approximation function.   

     FIGURE 8.7:     Linear function whose WT is shown in Figures  8.8 – 8.10 .  
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     FIGURE 8.8:     IWT of the function shown in Figure  8.7 , using the linear spline wavelet 
for  a     =    0.50 and  a     =    0.75. Direct integration is performed with  f  2 ( t ).  
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     FIGURE 8.9:     IWT of the function shown in Figure  8.7  using the cubic spline wavelet 
for  a     =    0.50 and  a     =    0.75. Direct integration is performed with  f  3 ( t ).  
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 For Figure  8.9 , 440 wavelet coeffi cients have been computed. The direct 
integration takes about 300 times the cpu time of the FIWT algorithm. We 
wish to emphasize that the ratio of 300   :   1 is minimal, since with the increase 
in scale parameter  a , the complexity of the direct integration method increases 
exponentially, while for the FIWT it remains almost constant. Furthermore, in 
the FFT - based algorithm also, the complexity increases with  a .  

   8.1.4.2    Crack Detection.     As a further example to highlight the importance 
of the IWT in identifying the change in function behavior, we consider the 
following function: 

 For  y    : =    2 t     −    1

    f t
y y y t

y y y t
( ) =

− + +( ) ∈[ ]

− −( ) −( ) ∈( ]

⎧

⎨
⎪

:
,

, .

3
117

4 16 13 0 1 2

1
6

1 2 1 2 1

2

⎪⎪

⎩
⎪
⎪

    (8.37)   

 Figure  8.11  shows the function and its WC for linear and cubic spline cases. 
The edge effect has not been shown. Once again, here we observe that for the 
cubic spline case, the WC are close to zero in the smooth region of the func-
tion; however, for the linear spline case, the WC are nonzero in this region 
since the function is of degree three in both intervals. This example shows that 
even a physically unnoticeable discontinuity can be detected using the wavelet 
transform.    

     FIGURE 8.10:     IWT of the function shown in Figure  8.15  the using cubic spline wavelet 
for  a     =    0.75. Direct integration is performed with  f  3,1 ( t ); the approximation of the func-
tion of Figure  8.7  is  s     =    3,  n     =     N     =    1.  
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     FIGURE 8.11:     The function given by  (8.37)  and its IWT using linear and cubic spline 
wavelets for  a     =    1/128.  
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   8.1.4.3    Decomposition of Signals with Nonoctave Frequency Components.     
To further emphasize the importance of FIWT algorithm, we consider 
a similar composite function as was used in Chapter  7 , but with slightly 
different frequencies that do not correspond to octave scales. Figures  8.12  
and  8.13  indicate the inability of the standard decomposition algorithm 
of Chapter  7  to separate those frequencies that do not correspond to 
octave scale. Figures  8.14  and  8.15  show, on the other hand, that by properly 
selecting the values of  n  and  N , we can separate any frequency band that we 
desire.    

   8.1.4.4    Perturbed Sinusoidal Signal.     Figure  8.16  gives the time - frequency 
representation of a function that is composed of two sinusoids and two delta 

     FIGURE 8.12:     Decomposition of a signal composed of three sinusoids with different 
frequencies corresponding to nonoctave scales using the standard algorithm of 
Chapter  6 .  
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functions, represented as sharp changes in some data values. Observe that two 
sinusoids appear as two bands parallel to the time axis whereas the delta func-
tions are indicated by two vertical bands parallel to the frequency axis. As 
discussed in Chapter  4 , the frequency spread is due to fi nite window width of 
the wavelets.    

   8.1.4.5    Chirp Signal.     Figures  8.17  and  8.18  show the CIWT of a chirp signal 
with respect to linear and cubic spline wavelets, respectively. In Figure  8.19 , 
we have shown the CIWT of a chirped signal by applying the standard wavelet 
decomposition algorithm. Here the interoctave scales have been fi lled with 
values at the previous octave scales. Similarly, on the time axis,  “ holes ”  are 
fi lled with values from the previous locations.    

     FIGURE 8.13:     Decomposition of a signal with three frequency components (continued 
from Figure  8.12 ).  
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   8.1.4.6    Music Signal with Noise.     In Figure  8.20  we show the CIWT of a 
portion of a music signal with additive noise using the cubic spline wavelet as 
the analyzing wavelet. Here the music data have been assumed to be at the 
integer points.    

   8.1.4.7    Dispersive Nature of Waveguide Mode.     As a fi nal example, we fi nd 
the wavelet transform of experimental data obtained for the transmission 
coeffi cient of an X - band rectangular waveguide. The waveguide is excited by 
a coaxial - line probe inserted through the center of the broad side of the wave-
guide. The scattering parameter  S  21  of the waveguide is measured using an 
HP - 8510 network analyzer by sweeping the input frequency from 2 to 17   GHz. 
The time - domain waveform is obtained by inverse Fourier - transforming the 
frequency domain data. The time response (up to a constant multiplier) and 

     FIGURE 8.14:     Decomposition of a signal composed of three sinusoids with different 
frequencies corresponding to nonoctave scales using the FIWT algorithm with  n     =    1, 
and  N     =    2.  
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the magnitude (in dB) of the frequency response are shown in Figure  8.21 . It 
should be pointed out here that several low - amplitude impulses appeared in 
the negative time axis, but they have not been taken into account while per-
forming the wavelet decomposition since they represent some unwanted 
signals and can be removed from the plot by proper thresholding. Furthermore, 
such an omission will not have any signifi cant effect on the WC plot of Figure 
 8.21  because of the local nature of wavelet analysis.   

 The cut - off frequency and dispersive nature of the dominant TE 10  is well 
observed from its time - frequency plot. Because of the guide dimension and 
excitation, the next higher - order degenerate modes are TE 11  and TM 11  with 
the cut - off frequency 16.156   GHz. This does not appear on the plot. The plot 
indicates some transmission taking place below the lower frequency 
operation. There is a short pulse at  t     =    0, which contains all the frequency 

     FIGURE 8.15:     Decomposition of a signal with three frequency components (continued 
from Figure  8.14 ).  
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     FIGURE 8.16:     CIWT of a compositve signal with some perturbed data (cubic spline).  

     FIGURE 8.17:     CIWT of a chirp signal (linear spline).  217
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     FIGURE 8.18:     CIWT of a chirp signal (cubic spline).  

     FIGURE 8.19:     CIWT of a chirp signal using standard wavelet decomposition algorithm 
(cubic spline).  

218
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     FIGURE 8.20:     CIWT of a music signal with additive noise (cubic spline).  

     FIGURE 8.21:     CIWT of the experimental data for the transmission coeffi cient of 
an X - band rectangular waveguide (cubic spline).  219
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components and is almost nondispersive. These can be attributed to the system 
noise. No further attempt has been made to isolate the effects of various transi-
tions used in the experiment. The thresholding for Figure  8.21  has been done 
with respect to the relative magnitude (in dB) of the local maximum of each 
frequency and the global maximum. Finally the magnitude of the wavelet 
coeffi cients has been mapped to eight - bit gray scale levels. Readers are referred 
to [Refs.  9  and  10 ] for more applications of continuous wavelet transform to 
electromagnetic scattering data.    

   8.2    RIDGELET TRANSFORM 

 One - dimensional wavelet transforms are very good in detecting point 
discontinuities (Figure  8.11 ) in the sense that wavelet coeffi cients near the 
discontinuity are signifi cantly higher than those at the smooth region. For a 
two - dimensional function — an image, for instance — discontinuities are repre-
sented by edges. We can construct a two - dimensional wavelets by simply 
taking the tensor product (more on edges and two - dimensional wavelets in 
the next chapters) and compute wavelet coeffi cients. However, these edges, 
while separating smooth regions, are themselves smooth curves. As a result, a 
direct applications of 2D wavelets will not be able to localize coeffi cients near 
the edges as a 1D wavelet transform does. 

 To overcome the diffi culties of wavelets in effectively localizing edges in 
higher dimensions, ridgelet and curvelet transforms  [11 – 14]  have been devel-
oped. Ridgelet transform essentially projects a line discontinuity into a point 
discontinuity and then takes its wavelet transform. For a 2D smooth function 
 f ( x ,  y ), the continuous ridgelet transform,  C f   ( b ,  a ,   θ  ), is defi ned by

    C b a f x y x y dx dyf b a, , : , ,, ,θ ψ θ( ) = ( ) ( )
−∞

∞

−∞

∞

∫∫     (8.38)  

where the ridgelets,   ψ  b   ,   a   ,    θ   ( x ,  y ), are defi ned in terms of wavelet functions as

    ψ ψ θ θ
θb a x y

a

x y b
a

, , , :
cos sin

.( ) = + −⎛
⎝⎜

⎞
⎠⎟

1
    (8.39)   

 Figure  8.22  shows an example of ridgelets. The expression in  (8.38)  can be 
thought of as a combination of Radon transform, and the wavelet transform 
in 1D. Radon transform is an integral transform that gives projection of a 2D 
function along a straight line at a desired angle. It ’ s widely used in tomography. 
It has also been extended to higher - dimensional space. The Radon transform 
of a function  f ( x ,  y ) is given by  

    R t f x y x y t dx dyf , , cos sin .θ δ θ θ( ) = ( ) + −( )
−∞

∞

−∞

∞

∫∫     (8.40)   
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     FIGURE 8.22:     An example of a ridgelet using Daubechies wavelet.  
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 By combining  (8.38)  and  (8.40)  it is easy to verify that

    C b a R t t dtf f b a, , , ,,θ θ ψ( ) = ( ) ( )
−∞

∞

∫     (8.41)  

where as before,   ψ  b   ,   a  ( t )    =     a   − 1/2   ψ  (( t     −     b )/ a ). Therefore, ridgelet transform is 
obtained by applying a 1D wavelet transform to the slices or projections of a 
2D function obtained via Radon transform. We notice that the ridgelet is 
constant along lines that satisfy

    x y constcos sin ,θ θ+ =     (8.42)  

whereas the direction orthogonal to the line contains a 1D wavelet   ψ  . The 
ridgelet transform is the wavelet transform applied in the direction orthogonal 
to the lines. By setting the angle   θ      =    0, the ridgelet transform is reduced to the 
wavelet transform

    C b a W f b a
a

f x y
x b

a
dxf , , , , .θ ψψ=( ) = ( ) = ( ) −⎛

⎝⎜
⎞
⎠⎟−∞

∞

∫0
1

0     (8.43)   

 Hence, by varying the angle   θ   and the parameter  b  and by applying the ridgelet 
transform over the 2D plane, the higher ridgelet coeffi cients indicate locations 
of line singularities of the function  f ( x , y ). 

 The 2D function  f ( x , y ) is uniquely recovered by the inverse transform 
involving a triple integral

   f x y
a

C b a
x y b

a
d daf, , ,

cos sin( ) = ( ) × + −⎛
⎝⎜

⎞
⎠⎟∫∫∫

∞

−∞

∞1

4 3 0

2

0π
θ ψ θ θ θ

π
ddb.     (8.44)   
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 Computation of the integral ridgelet transform is very cumbersome and 
ineffi cient. Analogous to the discrete wavelet transform (DWT) we have 
discrete ridgelet transform (DRT) to effi ciently implement the continuous 
ridgelet transform using discrete samples. Several approaches have been pro-
posed with different degrees of effi ciency and accuracy, depending on the 
discretization of the 2D image into a polar grid for the DRT. We give a brief 
outline of a method based on projection, transformation, and FFT. 

  1.     Use 2D FFT to transform the image in frequency domain.  
  2.     Change the grid point locations into polar coordinates using rectangle -

 to - polar conversion.  
  3.     Determine the equidistance grid points along a radial line at different 

angle using an interpolation scheme. The number of angular directions 
give the number of projections; the number of points along a radial 
direction correspond to the number of shifts in the wavelet transform.  

  4.     Compute the 1D inverse FFT along the radial direction; this gives the 
Radon transform of the image along that radial direction.  

  5.     Take the 1D DWT to obtain the ridgelet transform.    

 Improvements can be made in the steps of this algorithm such as choosing 
the rectangular grid points to simplify the interpolation and choosing a band -
 limited wavelet so that the ridgelet transform can be directly computed in the 
Fourier space instead of the Radon space.  

   8.3    CURVELET TRANSFORM 

 Since edges in an image are usually not straight lines, it is diffi cult to apply 
the ridgelet directly to an image with curvilinear objects and expect good 
detection results. However, the curve edge can be subdivided into smaller 
segments that can be approximated by straight edges. The fi rst - generation 
curvelet algorithm starts with an overcomplete wavelet transform (that is 
without down - sampling) that produces  J     +    1 size  n     ×     n  subimages given by

   f j k a j k w j kJ m

m

J

, , , ,( ) = ( ) + ( )
=
∑

1

 

where the  a J  ( j ,  k ) is the coarse image after being low - pass fi ltered  J  times and 
 w n  ( j ,  k ) is the  n th wavelet (high - pass) fi ltered image. That is

   a j k a j k w j k� � �, , ,( ) − ( ) = ( )− −1 1 .   

 Each of these collection of subimages are partitioned into small block 
images, where the discrete ridgelet transform (DRT) is applied to locate the 
 “ approximately straight ”  edges. The results are then combined to obtain the 
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     FIGURE 8.23:     Examples of curvelets at different scales, orientations, and locations. 
 (Reprinted with permission from  [13] , copyright  ©  2002 by IEEE.)   
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curvelet transform of an image. Typical curvelets constructed by Starck, 
Candes, and Donoho  [13]  are shown in Figure  8.23 .   

 The fi rst - generation curvelet is based on the extension of ridgelet transform 
in the blocks of subband images of the original image. It requires an intricate 
combination and overlapping blocks to extract the ridges in the original image. 
As a result, it has limited application to image analysis. A second - generation 
curvelet has recently been developed to simplify the application procedure. 
Similar to a 2D scaling function, its support is approximately a curvilinear 
rectangle on a polar grid. 

 Following Fadili and Starck  [14] , the second - generation curvelets are triple -
 indexed basis functions — namely,   ψ ψ θj j

jR, ,
,

� �
�

k kx x x( ) = −( )⎡⎣ ⎤⎦ at resolution  j ,
angular rotation   θ   �   , and the position

   xk
j j jR k k, , ,�

�
= ( )− − −

θ
1

1 22 2  

where   Rθ�  corresponds to the rotation by   θ   �    radians, and   θ π� �= × −2 2 2j/  is the 
equally spaced sequence of angles. The index  k     =    ( k  1 ,  k  2 ) is the translation 
indices. The curvelet   ψ  j   is defi ned by its Fourier transform

    ˆ , , ,ψ θ θ
π

θj
j j

j

r W r V r( ) = ( ) ⎛
⎝⎜

⎞
⎠⎟

( ) ∈− −2 2
2

2
3 4

2
2R     (8.45)  

where ( r ,   θ  ) are the polar coordinates. It can be seen that the support of the 
function   ψ̂ j is a wedge shape on the 2D polar plane, defi ned by the support 
of  W (2  −    j   · )    =    [2   j    − 1 , 2   j    + 1 ] and the support of  V (2 |   j   /2|  · )    =    [ − 2  − [    j   /2] , 2  − [    j   /2] ]. The trans-
forms  W  and  V  must also satisfy the partition of unity. 
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224  SPECIAL TOPICS IN WAVELETS AND ALGORITHMS 

 In continuous space domain, the curvelet coeffi cients are obtained by inner 
product, which can be computed from the spectral domain

    c f f R j dj j j
j

, , , ,
,, exp .� �
�

�k k kx x= ( ) = ( ) ( ) ⎡⎣ ⎤⎦∫ψ ψ θ
ˆ ˆw w w w     (8.46)    

   8.4    COMPLEX WAVELETS 

 As mentioned in Chapter  6 , continuous real - valued compactly supported 
orthonormal wavelets do not have linear phases — that is, they do not have any 
symmetry or antisymmetry. In addition, all wavelets and wavelet algorithms 
that we have discussed thus far suffer from four major drawbacks: (1) shift 
variance — as a result of which wavelet coeffi cients of a shifted signal differs 
signifi cantly compared with the original one (in Fourier transform, such shifts 
appear simply as a phase shift in the transformed domain); (2) aliasing due to 
up -  and down - sampling; (3) directional infl exibility of the tensor product 2D 
wavelets for image processing, especially for detecting edges and ridges; and 
(4) the oscillatory property of the wavelet complicates the detection of singu-
larity. Complex wavelets seem to address these issues effectively. A detailed 
discussion on complex wavelets is beyond the scope of this book. In this 
section we give brief introduction of the topic; readers may refer to [ 15 – 18 ] 
for further details. 

 Similar to the Fourier transform kernel ( e j ω t      =    cos     ω t     +     j    sin     ω t ), consider a 
complex wavelet with real and imaginary parts as

    ψ ψ ψc r it t j t( ) = ( ) + ( ),     (8.47)  

where   ψ  r   is an even and   ψ  i   is an odd function of  t . Complex scaling function 
is defi ned in a similar way. 

 Let us recall from the DWT that a signal  x ( t ) may be decomposed into 
components using the scaling function   ϕ  ( t ) and its associated wavelet   ψ  ( t ) as

    x t a k t k w n s t ns s

k ns

( ) = ( ) −( ) + ( ) −( )
=−∞

∞

=−∞

∞

=

∞

∑ ∑∑φ ψ2 22

0

, ,     (8.48)  

where  a ( k ) and  w (  n ,  s ) are scaling - function and wavelet coeffi cients, respec-
tively. In complex wavelet analysis, the coeffi cients

   
w n s w n s jw n s

x t t n j t n dt

r i

s
r

s
i

s

, , ,( ) = ( ) + ( )

= ( ) −( ) + −( )⎡⎣ ⎤⎦−
2 2 22 ψ ψ

∞∞

∞

∫ ,
  

 are complex with magnitude and phase as in the Fourier transform. To mimic 
the Fourier transform, the complex wavelet must be an analytic signal so that 
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the imaginary part is the Hilbert transform of the real part. The Hilbert trans-
form converts a real - valued signal into a complex signal so that it has no nega-
tive frequency component. 

 The Hilbert transform of a signal  s ( t ) produces a signal  s h  ( t ) that is orthogo-
nal to  s ( t ). Let   ̂s ω( ) represent the Fourier transform of a real - valued signal 
 s ( t ). A typical magnitude spectrum of  s ( t ) is shown in Figure  8.24 . We can 
construct a signal  s   +  ( t ) that contains only positive frequencies of  s ( t ) by mul-
tiplying its spectrum   ̂s ω( )  with a unit step function as  

    ˆ ˆ ˆ ,s s u+ ( ) = ( ) ( )ω ω ω     (8.49)  

where   û ω( ) is the unit step function, defi ned in the usual way as

    ˆ
.

u ω
ω

( ) =
≥⎧

⎨
⎩

1 0

0 otherwise
    (8.50)   

 From  (8.49)  we have

    
2 1ˆ ˆ sgn ˆ sgn ˆ

ˆ

s s s j j s
sh

+

( )

( ) = ( ) + ( )[ ] = ( ) + − ( ) ( )[ ]ω ω ω ω ω ω
ω

� ��� 	���     (8.51)  

where sgn(  ω  ) is the signum function defi ned as

    sgn

.

ω
ω
ω
ω

( ) =
>
=

− <

⎧
⎨
⎪

⎩⎪

1 0

0 0

1 0
    (8.52)   

 In  (8.51) ,  s h  ( t ) is the Hilbert transform of  s ( t ), defi ned as

    s t j s
s
t

dh ( ) = − ( ) ( ){ } = ( )
−

−

−∞

∞

∫F 1 1
sgn ω ω

π
τ
τ

τˆ     (8.53)  

     FIGURE 8.24:     A typical magnitude spectrum of a signal.  
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where  F    − 1  represents inverse Fourier transform. It is easy to verify that 
 〈  s ( t ),  s h  ( t ) 〉     =    0    ⇒     s h  ( t )    ⊥     s ( t ). 

 There are broadly two approaches to implementing discrete complex wave-
lets. In the fi rst,   ψ  c   forms an orthonormal or biorthogonal basis  [15 – 16] . Such 
constraints on orthonormality, however, prevent the complex wavelet trans-
form to overcome the shortcomings of DWT, as outlined before. In the other 
approach,   ψ  r   and   ψ  i   individually form orthonormal or biorthogonal bases. This 
latter approach leads to a redundant dual - tree complex wavelets, which is 
based on two fi lter bank trees and thus two bases  [17 – 18] . Essentially, dual - tree 
complex wavelets employ two real DWTs to produce the real and imaginary 
parts of the transform. Figure  8.25  illustrates decomposition and reconstruc-
tion using dual - tree complex wavelets (compare this with Figure  7.19 ). Since 
there are two DWT - type processings, we have two pairs of low - pass { g  0 ,  h  0 } 
and band - pass { g  1 ,  h  1 } fi lters along with their duals.   

 It can be shown that a compactly supported wavelet (time - limited function) 
can only have an approximate Hilbert transform. Hence complex wavelets 
cannot entirely eliminate the shortcomings of real - valued wavelets mentioned 
previously; they can only reduce them. The key challenge in dual - tree wavelet 

     FIGURE 8.25:     Decomposition and reconstruction of a signal using complex wavelets; 
  x′ ( )n  should ideally be exactly same as  x ( n ).  
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design is the joint design of its two fi lter banks to yield a set of complex wavelet 
and scaling functions that are as close as possible to be analytic. 

 The fi lter sets { h  0 ( n ),  h  1 ( n )} and { g  0 ( n ),  g  1 ( n )} individually satisfy the perfect 
reconstruction (PR) condition. They are the processing fi lters for the wavelet 
  ψ  h  ( t ) and   ψ  g  ( t ), respectively. The fi lters are jointly designed such that the 
complex wavelet

    ψ ψ ψc h gt t j t( ) = ( ) + ( )     (8.54)   

 is approximately analytic — that is,   ψ  g  ( t ) is approximately the Hilbert transform 
of   ψ  h  ( t ). The dual - tree approach comes very close to mirroring the properties 
of the Fourier transform. 

 The fi lters are all real-valued so that there is no complex processing in the 
implementation of complex wavelet transform. The complexity is exactly twice 
that of a 1D real - valued DWT. 

 It has been shown  [17]  that the following conditions should be satisfi ed at 
least approximately by the fi lter banks: 

  1.     The low - pass fi lters  h  0  and  g  0  should be approximately a half - sample shift 
of each other. That is

    g n h n0 0 0.5( ) ≈ −( )     (8.55)  

which implies that   ψ  g  ( t ) is approximately the Hilbert transform of   ψ  h  ( t ). 
In the spectral domain, the condition  (8.55)  is equivalent to the 
requirement

    
G z H z z e

G z H z

j
0 0

0 0

( )

( ) 0.5
.

= ( ) =
∠ = ∠ ( )−

⎫
⎬
⎭

; ω

ω
    (8.56)    

  2.     PR condition must be satisfi ed by the fi lter banks.  
  3.     Finite impulse response fi lters must be of approximately the same length.  
  4.     There must be good stop - band behavior.    

 There are three approaches  [17]  to designing these fi lter banks. 

   8.4.1    Linear Phase Biorthogonal Approach 

 The fi lter  h  0  and  g  0  are symmetric FIR, with odd and even lengths, 
respectively

   h n h N n0 0 1( ) = − −( ),  

   g n g N0 0 1( ) = −( ),  
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where  N  is an odd number so that the half - delay condition is met. This satisfi es 
the phase condition of  (8.56) ; however, the fi lters should be designed such that 
spectral amplitudes are approximately the same.  

   8.4.2    Quarter - Shift Approach 

 In the quarter - shift (q - shift) method, the fi lter length  N  of  h  0 ( n ) is chosen as 
even and  g  0 ( n ) is set to be

    g n h N n0 0 1 .( ) = − −( )     (8.57)   

 This choice clearly satisfi es the magnitude condition of  (8.56) ; however, the 
fi lters should be designed such that both have approximately the same phase 
characteristics. Figure  8.26  show complex wavelets designed using q - shift 
approach (N    =    14).    

   8.4.3    Common Factor Approach 

 By choosing a common factor and introducing it into the low - pass fi lters

   h n F n A n0 ( ) = ( )∗ ( )  

   g n F n A L n0 ( ) = ( )∗ −( )   

 the amplitude requirement of  (8.56)  is satisfi ed. The phase requirement can 
be approximately satisfi ed if the phase of  A ( n ) is chosen as a fractional delay 
allpass fi lter. Figure  8.27  show complex wavelets designed using common 
factor approach.     

     FIGURE 8.26:     Complex wavelets using the q - shift approach ( N     =    14).  (Reprinted with 
permission from  [17] , copyright  ©  2005 by IEEE.)   
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LIFTING WAVELET TRANSFORM  229

   8.5    LIFTING WAVELET TRANSFORM 

 The lifting scheme  [19]  is an alternative approach to constructing wavelets and 
computing wavelet transform. Unlike the classical wavelet construction 
methods demonstrated in previous chapters that rely heavily on the Fourier 
transform, the lifting procedure for discrete wavelet transform and for wavelet 
construction is carried out entirely in the time domain. Instead of using the 
fi lter banks for decomposition and reconstruction of a signal, the lifting pro-
cedure uses three steps — namely, the split [S], the predict [P] and the update 
[U] to decompose a signal into approximation and wavelet coeffi cients  a k   ,   s   and 
 w k   ,   s  . It eliminates the need for performing the convolution followed by deci-
mation or interpolation followed by convolution in wavelet analysis of a signal. 
Instead of using the synthesis fi lters  g  0 [ k ] and  g  1 [ k ] to derive the analysis fi lters 

     FIGURE 8.27:     Complex wavelets using the common factor approach.  (Reprinted with 
permission from  [17] , copyright  ©  2005 by IEEE.)   
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 h  0 [ k ] and  h  1 [ k ], as shown in Chapter  6 , the lifting algorithm can be used to 
construct the wavelet from coeffi cients resulting from the lifting process. 

 The advantage of the lifting procedure is that the coeffi cients can be com-
puted in place to minimize the storage requirement and the reconstruction 
phase can be carried out by running the decomposition process backward. The 
procedure eliminates the need for the Fourier transform as in the classical 
method for signal processing, and new wavelets are constructed out of the 
lifting process. 

 In this section, we use the Haar wavelet to illustrate the decomposition of 
a signal. It proceeds in simple steps, with each step moving toward one - level 
lower in resolution. It computes the average and difference of adjacent signal 
values. Let { x ( k )} be a signal that has 2  n   points. At some resolution   �      +    1, one 
decomposition step using Haar wavelet computes the average and difference 
of the adjacent signal value.

   a
a a

k
k k

,
, , ,�
� �=

++ + +2 1 2 1 1

2
 

   w a ak k k, 2 1 1 2 1.� � �= −+ + +, ,   

 As this step is repeated, it generates the approximation coeffi cient (the 
average) and wavelet coeffi cients (the difference) of the next lower 
resolution. 

 It is easy to see that if we wish to reconstruct the signal from level   �   to 
(  �      +    1), we simply solve for the values of  a  2   k, �     + 1  and  a  2   k    + 1   , �     + 1 , using the above 
equations to obtain

    a a
w

k k
k

2 1 1
2

+ + = +, ,
, ,� �
�     (8.58)  

    a a
w

k k
k

2 1
2

, ,
, .� �
�

+ = −     (8.59)   

 Rewriting  (8.59) ,

    a a
w

k k
k

, ,
, ,� �
�= ++2 1

2
    (8.60)   

 we observe that the approximation coeffi cient of the lower resolution can be 
computed from the corresponding approximation coeffi cients of the higher 
resolution — namely the even coeffi cient plus half of the difference between 
its adjacent coeffi cients. Instead of computing the average and difference 
simultaneously, we compute the difference ( odd – even ) fi rst and then the 
average:
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w a a
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w
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k k
k
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, ,
,

� � �

� �
�

= −

= +

⎧
⎨
⎪

⎩⎪

+ + +

+

2 1 1 2 1

2 1
2

.
    (8.61)   

 This is the lifting approach for the Haar wavelet transform of a one - dimensional 
signal. The process can be summarized in three simple steps: 

  1.     The  S - step  splits (or unzips) the signal into an even and an odd sample 
paths.

   x k a
Even path a

Odd path am n
k n

k n
( ) =

→
→

⎧
⎨
⎩ +

,
,

,
�

2

2 1 .
 

Notice that each path carries only half of the total number of samples in 
the original signal.  

  2.     The  P - step  predicts the odd samples based on the even samples. At certain 
(  �      +    1)  st   resolution of the Haar wavelet analysis, the lifting scheme assumes 
the predicted odd value to be the same as its preceding even value.

  � � �a ak k2 1 1 2 1+ + +=, , .  

 At this point, the wavelet coeffi cients (difference) of the next lower resolu-
tion is computed by

  w a a a ak k k k k, , , , , .� � � � ��= − = −+ + + + + + +2 1 1 2 1 1 2 1 1 2 1   

  3.     The  U - step  updates the even value based on the difference obtained in the 
P - step to compute the approximation coeffi cients of the next lower 
resolution.

  
a a wk k k, , ,� � �= ++2 1 2.

    

 From here on, the next level of signal decomposition starts with  a k, �    and 
repeats the prediction and updating procedures with the same predictor and 
updator. It is important to note that the design of the predictor and updator 
must keep the average value of the signal level to be the same to preserve the 
zeroth order moment:

    
1
2

.
0

2 1

0

2 1

1

1

a ak n k n

k k

n n

, ,

=

−

=

−

∑ ∑= −

−

    (8.62)   
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 This condition is shown to be true as

    
a a w a ak n k n k n k n k n

k k

n n

, , , , ,− − +

=

−

=

−− −

∑ ∑= +[ ] = +( )1 2 1 2 2 1

0

2 1

0

2 11 1

2 22
1
2

.
0

2 1

0

2 11

k k

n n

ak n

=

−

=

−−

∑ ∑= ,

   
   (8.63)   

 The reconstruction phase of the DWT is carried out by simply running the 
decomposition algorithm  backward!  That is, we apply  (8.61)  in the reverse 
direction:

    a a wk k k2 1 2,, , ,� � �+ = −     (8.64)  

    a w ak k k2 1 1 2 .+ + = +, , ,� � �     (8.65)   

 The coeffi cients are merged (zipped) together to form the next higher resolu-
tion signal.

   a

a
merge a

k

k
k

2 1

2 1 1
1

,

,
,

�

�
�

+

+ +
+}→   

 This process is repeated for every level of resolution until all the wavelet 
coeffi cients at each level have been used in the reconstruction process 
and the fi nal sequence of samples will be the original signal  x ( k ). The general 
lifting stages for decomposition and reconstruction of a signal are given in 
Figure  8.28 .   

     FIGURE 8.28:     Lifting wavelet algorithm.  
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 One sees the advantages of the lifting scheme as follows: (1) Fourier tech-
niques are not required, (2) the transform can be carried out without a fi xed 
form for the  P  and  U  operators, (3) the computation of the inverse transform 
is straightforward, and (4) there are many variations on the operators  P  and 
 U  that generate various wavelets. 

   8.5.1    Linear Spline Wavelet 

 The complexity of the lifting scheme is increased slightly when we use the 
linear prediction for the odd samples of the signal. The predictor ( P ) uses the 
average of the two adjacent even samples to predict the in - between odd 
sample

    � � � �a a ak k k2 1 1 2 1 2 2 1=
1
2

+ + + + ++( ), , , .     (8.66)   

 The prediction error (difference) forms the wavelet coeffi cient

    w a a a a ak k k k k k, , , , , ,� � � � � ��= − = − −( )+ + + + + + + + +2 1 1 2 1 1 2 1 1 2 1 2 2 1
1
2

2 ..     (8.67)   

 To preserve the zeroth and fi rst order moments for all resolution, we have

    a ak n k n

k k

n n

, ,−

=

−

=

−−

∑ ∑=1

0

2 1

0

2 11
1
2

;     (8.68)  

    ka kak n k n

k k

n n

, ,−

=

−

=

−−

∑ ∑=1

0

2 1

0

2 11
1
2

.     (8.69)   

 The updator ( U ) is found to be

    a a w wk k k k, , , ,� � � �= + +( )+ −2 1 1
1
4

.     (8.70)   

 The inverse transform is computed in a reverse manner by

    a a w wk k k k2 1 1
1
4

, , , ,� � � �+ −= − +( )     (8.71)  

    a w a ak k k k2 1 1 2 1 2 2 1
1
2

+ + + + += + +( ), , , , .� � � �     (8.72)   

 These coeffi cients are zipped back together by the merger to form the signal 
at the next higher resolution.  
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   8.5.2    Construction of Scaling Function and Wavelet from Lifting Scheme 

 Thus far we have described the lifting algorithm as a means to obtain the 
average and the difference from a given set of data. From the DWT point of 
view, these data streams correspond to the approximation coeffi cients and the 
wavelet coeffi cients for the next lower level of resolution. However, the pre-
dicting and updating schemes are user designed, and therefore, there are 
no known scaling function and wavelet bases associated with the schemes. They 
will have to be constructed based on the schemes. Unlike the classical wavelet 
construction where the Fourier analysis is used extensively, in lifting schemes, 
subdivision algorithms are often used in the literature. These are important 
techniques in computer - aided curve and surface designs. A detail exposition on 
the topic is beyond the scope of this section. We will use only the elementary 
ones to demonstrate the procedure of wavelet construction from lifting.  

   8.5.3    Linear Interpolative Subdivision 

 Subdivision is a method of refi ning a set of original data (i.e., to increase the 
number of data points by suitably inserting data in between two original data 
points). Interpolative subdivision means that the original data points are not 
changed by running the algorithm. One simple way to subdivide data is by 
using the average of the adjacent value as the new (inserted) data value. Let 
{ a k   ,0 } be the original data set. We compute the expanded set by

    a ak j k j2 1, ,+ =     (8.73)  

    a a ak j k j k j2 1 1 1
1
2

+ + += +( ), , , .     (8.74)   

 The new data points are inserted halfway between two adjacent old data 
points. Its value is the linear interpolation of the two adjacent old values. If 
the original data values are samples from linear functions, this linear subdivi-
sion algorithm will reproduce the linear functions. 

 More sophisticated algorithms are available for interpolative subdivision. 
One can use more known values (original data values) adjacent to the desir-
able data point location to compute its value. If we use four - points ( a k    − 1,    j  ,  a k   ,   j  , 
 a k    + 1,   j  ,  a k    + 2,    j  ) and use a cubic interpolation to compute the value of  a  2   k    + 1,   j    + 1 , the 
resulting value is a weighting of the 4 original values

    a a a a ak j k j k j k j k j2 1 1 1 1 2
1

16
9

16
9

16
1

16
.+ + − + +=

−
+ + +

−
, , , , ,     (8.75)   

 This is known as the four - point scheme in computer graphics. 
 The interpolative subdivision is a very simple yet powerful algorithm to 

refi ne a set of data. A new sample value at a given location is computed via 
an interpolating polynomial constructed by using near by sample values. If the 
samples are equidistant, the weights for the polynomial need to be computed 
only once. Since equidistant sample is not a requirement for subdivision, it can 
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be used for defi ning approximation basis and wavelet basis on irregular grid 
points. 

 Another scheme for subdivision is the interpolating average algorithm. The 
simplest algorithm for the new value at the higher resolution is

   a ak j j k2 1, ,+ =  

   a ak j j k2 1 1 .+ + =, ,   

 A slightly more complicated one will be using a quadratic polynomial. We 
need to defi ne a quadratic polynomial  q ( x ) such that
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.     (8.76)   

 The resulting quadratic polynomial will be used to compute the unknown 
values at 2  j    + 1  level so that

    

a q x dx

a q x dx

k j

k j

j k

j k

j k

kj

2 1

1

2

2

2

2 1 2

2 1 2

2 1

,

,

+
( )
( )

+
( )
( )

= ( )

= ( )

+

+

+

∫

∫∫

⎧

⎨

⎪
⎪

⎩

⎪
⎪

.     (8.77)   

 For two - interval average, the coeffi cients are   1 2 1 2/ /,{ },while the quadratic 
polynomial results in   − −{ }1 8 1 8 1 1 1 8 1 8/ / / /, , , , , . The graphs for these two scaling
functions are shown in Figure  8.29 .   

 For the construction of wavelet basis function, we need to recall that the 
wavelet space  W j    − 1  is a subspace complementary to the  V j    − 1  in  V j  . If a function 
 f j  ( t ) is expressed as

    f x a xj k j k j( ) = ( )∑ , ,φ ,     (8.78)   

 a similar expression can be obtained for  f j    − 1 ( x ). Since the multiresolution space 
requires  f j    − 1 ( x )    +     g j    − 1 ( x )    =     f j  ( x ), the  g j    − 1 ( x ) represents the contribution from the 
wavelet subspace. Hence if the reconstruction process is carried out from 
( j     −    1) level to  j th level with only one detail coeffi cient  d  0,0     =    1 and the rest of 
the  d  coeffi cients set to zero, we will obtain the coeffi cients connecting the 
scaling function and the wavelet as  q k  

   ψ φ0 0 1, , .x q xk k( ) = ( )∑   

 Wavelets from interpolative subdivision and average subdivision are shown in 
Figure  8.30 .   
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     FIGURE 8.29:     Lifting scaling function.  
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     FIGURE 8.30:     Lifting wavelets.  
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 The lifting scheme opens a new way of constructing many new wavelets. 
The key to the construction lies in the designs of the predictor and the updator 
as well as the choice of subdivision algorithm. Various ways to design the 
predictor have been thoroughly investigated in the mathematics literature. 
Subdivision algorithms have found many interesting and useful wavelets.   
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  CHAPTER NINE 

Digital Signal Processing 
Applications     

     The introduction of wavelets to signal and image processing has provided 
engineers with a very fl exible tool to create innovative techniques for solving 
various engineering problems. A survey of recent literature on wavelet 
signal processing shows the focus on using the wavelet algorithms for pro-
cessing one - dimensional (1D) and two - dimensional (2D) signals. Acoustic, 
speech, music, and electrical transient signals are popular in 1D wavelet 
signal processing. The 2D wavelet signal processing mainly involves image 
compression and target identifi cation. Problem areas include noise reduction, 
signature identifi cation, target detection, signal and image compression, and 
interference suppression. We make no attempt to detail techniques in 
these areas; neither are we trying to provide the readers with processing tech-
niques at the research level. Several examples are given in this chapter to 
demonstrate the advantages and fl exibility of using wavelets in signal and 
image processing. 

 In these examples, wavelet algorithms are working in synergy with other 
processing techniques to yield a satisfactory solution to the problem. Wavelet 
decomposition plays the vital role in separating the signal into components 
before other DSP techniques are applied. Algorithms include wavelet tree, 
wavelet - packet tree decomposition, 2D wavelet or wavelet - packet tree decom-
position, and pyramid or direction decomposition. In signature recognition 
and target detection, the corresponding reconstruction algorithm is not needed 
since the signal components are either destroyed or rendered useless after 
processing. In the last two examples, the orthogonality between wavelet 
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240  DIGITAL SIGNAL PROCESSING APPLICATIONS

packets is applied to multicarrier communication systems, and the wavelet 
algorithms are extended to the third dimension for 3D medical image visual-
ization. We discuss the extension of the wavelet algorithms to wavelet - packet 
algorithms and their 2D versions before we discuss various application 
examples.  

   9.1    WAVELET PACKET 

 Because of the two - scale relation and the choice of the scale parameter  a     =    2  s  , 
the hierarchical wavelet decomposition produces signal components whose 
spectra form consecutive octave bands. Figure  9.1  depicts this concept graphi-
cally. In certain applications, the wavelet decomposition may not generate 
a spectral resolution fi ne enough to meet the problem requirements. One 
approach is to use the CWT for obtaining the necessary fi ner resolution by 
changing the scale parameter  a  with a smaller increment. This approach 
increases the computation load by orders of magnitude. Another approach 
was discussed in Chapter  8 . The use of wavelet packets also helps avoid this 
problem. A wavelet packet is a generalization of a wavelet in that each octave 
frequency band of the wavelet spectrum is further subdivided into fi ner fre-
quency bands by repeatedly using the two - scale relations. In other words, the 
development of wavelet packets is a refi nement of wavelets in the frequency 
domain and is based on a mathematical theorem proven by Daubechies  [1]  
( splitting trick ). The theorem is stated as follows:   

     FIGURE 9.1:     Constant Q spectra for wavelets at different resolutions.  
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 If  f ( ·     −     k )|  k    ∈  Z   forms an orthonormal basis and

    F x g k f x k
k

1 0( ) = [ ] −( )∑     (9.1)  

    F x g k f x k
k

2 1( ) = [ ] −( )∑ ,     (9.2)   

 then { F  1 ( ·     −    2 k ),  F  2 ( ·     −    2 k );  k     ∈     Z } are orthonormal bases of  E     =     span { f ( ·     −     n ); 
 n     ∈     Z }. 

 This theorem is obviously true when  f  is the scaling function   ϕ   since the 
two - scale relations for   ϕ   and the wavelet   ψ   give

   Aj
j jt g k t k

k

�φ φ2 20
1( ) = [ ] −( )+∑  

   Wj
j jt g k t k

k

�ψ φ2 21
1( ) = [ ] −( )+∑ .   

 If we apply this theorem to the  W   j   spaces, we generate the wavelet packet 
subspaces. The general recursive formulas for wavelet packet generation are

    μ μ2 0 2� �t g k t k
k

( ) = [ ] −( )∑     (9.3)  

    μ μ2 1 1 2� �+ ( ) = [ ] −( ) ∈∑t g k t k k
k

Z,     (9.4)  

where   μ   0     =      ϕ   and   μ   1     =      ψ   are the scaling function and the wavelet, respectively. 
For   �      =    1, we have the wavelet packets   μ   2  and   μ   3  generated by the wavelet 
  μ   1     =      ψ  . This process is repeated so that many wavelet packets can be generated 
from the two - scale relations. The fi rst eight wavelet packets for the Haar func-
tion and   ϕ  D   ;2  (also referred to as  D  3 ) together with their spectra are shown in 
Figures  9.2 – 9.5 . The translates of each of these wavelet packets form an orthog-
onal basis and the wavelet packets are orthogonal to one another within the 
same family generated by a orthonormal scaling function. We can decompose 
a signal into many wavelet packet components. We remark here that a signal 
may be represented by a selected set of wavelet packets without using every 
wavelet packet for a given level of resolution. An engineering practitioner may 
construct an algorithm to choose the packets for optimizing a certain measure 
(such as energy, entropy, and variance). Best - basis and best - level are two 
popular algorithms for signal representations. The reader can fi nd these algo-
rithms in Ref.  2 .    
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     FIGURE 9.2:     Wavelet packets of Haar scaling function.  
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     FIGURE 9.3:     Magnitude spectra of Haar wavelet packets.  
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   9.2    WAVELET - PACKET ALGORITHMS 

 The decomposition tree for wavelet packets uses the same decomposition block 
of two parallel fi ltering channels followed by decimation by two ( ↓ 2), as in the 
wavelet algorithm. Any coeffi cient set in the tree may be processed by this 
block. In the wavelet decomposition tree, only the approximation coeffi cient 
sets { a } in Figure  7.9  are processed for different resolutions  z , while the wavelet 
coeffi cient sets { w } are outputs of the algorithm. In wavelet packet decomposi-
tion, the wavelet coeffi cient sets { w } are also processed by the same building 
block to produce wavelet packet coeffi cient sets {  π  }. We see from Figure  9.6  that 
for each set of  N  coeffi cients, we obtain two coeffi cient sets of   N/2 length after 
processing by the decomposition block. The number of coeffi cient sets is 2  m   if 
the original coeffi cient set is processed for  m  resolutions. Figure  9.6  demon-
strates the wavelet packet tree for  m     =    3.   

 It is important to keep track of the indices of the wavelet packet coeffi cients 
in the decomposition algorithm. To achieve perfect reconstruction, if a coef-
fi cient set has been processed by  h  0 [ n ] and ( ↓ 2), the result should be processed 
by  g  0 [ n ] and ( ↑ 2). The same order is applicable to  h  1 [ n ] and  g  1 [ n ]. For example, 
if we process a set of data fi rst by  h  0 [ n ] and ( ↓ 2) followed by  h  1 [ n ] and ( ↓ 2), 
the resulting signal must be processed by ( ↑ 2) and  g  1 [ n ] and then followed by 
( ↑ 2) and  g  0 [ n ] to achieve perfect reconstruction. Thus signal processing using 
wavelet packets requires accurate bookkeeping of different orders of digital 
fi ltering and sampling rate changes.  
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     FIGURE 9.4:     Wavelet packets of Daubechies 3 scaling function.  
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     FIGURE 9.5:     Magnitude spectra of Daubechies 3 wavelet packets.  
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     FIGURE 9.6:     A block diagram for the decomposition and reconstruction algorithms 
for wavelet packets.  
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   9.3    THRESHOLDING 

 Thresholding is one of the most commonly used processing tools in wavelet 
signal processing. It is widely used in noise reduction, signal and image com-
pression, and sometimes in signal recognition. We consider three simple thre-
sholding methods  [3]  here: (1) hard thresholding, (2) soft thresholding, 
and (3) percentage thresholding. The choice of thresholding method depends 
on the application. We discuss each type here briefl y. 

   9.3.1    Hard Thresholding 

 Hard thresholding is sometimes called  gating . If a signal (or a coeffi cient) 
value is below a preset value, it is set to zero:

    y
x x

x
=

≥
<

⎧
⎨
⎩

,

,

for

for

σ
σ0

    (9.5)  

where   σ   is the threshold value or the gate value. A representation of the hard 
threshold is shown in Figure  9.7 . Notice that the graph is nonlinear and dis-
continuous at  x     =      σ  .    

   9.3.2    Soft Thresholding 

 Soft thresholding is defi ned as

    
y sgn x f x x

x

= ( ) −( ) ≥
= <

σ σ
σ

,

, .

for

for0
    (9.6)   

     FIGURE 9.7:     Hard thresholding.  
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 The function  f ( x ) is generally a linear function (a straight line with slope to 
be chosen; Figure  9.8 ). However, spline curves of the third or fourth order 
may be used to effectively weight the values greater than   σ  . In some signal 
compression applications, using a quadratic spline curves of order  m     >    2 may 
affect the compression ratio by a small amount.    

   9.3.3    Percentage Thresholding 

 In certain applications such as image compression where a bit quota has been 
assigned to the compressed fi le, it is more advantageous to set a certain per-
centage of wavelet coeffi cients to zero to satisfy the quota requirement. In this 
case, the setting of the threshold value   σ   is based on the histogram of the 
coeffi cient set and the total number of coeffi cients. The thresholding rule is 
the same as hard thresholding once we have determined the threshold   σ  .  

   9.3.4    Implementation 

 Implementations of the hard, soft, and percentage thresholding methods are 
quite simple. One simply subtracts the threshold value from the magnitude of 
each coeffi cient. If the difference is negative, the coeffi cient is set to zero. If 
the difference is positive, no change is applied to the coeffi cient. To implement 
the soft thresholding by using a linear function of unit slope, the thresholding 
rule is

    y
sgn x x x

x
=

( ) −( ) − ≥
− <

⎧
⎨
⎩

σ σ
σ

, ,

.

if

if

0

0 0
    (9.7)     

     FIGURE 9.8:     Soft thresholding.  
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   9.4    INTERFERENCE SUPPRESSION 

 The Wigner - Ville distribution and other nonlinear time - frequency distribu-
tions are often used in radar signal processing. Although they are not linear 
transformations, they have an advantage in that a linear chirp signal appears as 
a straight line on the time - frequency plane (see Chapter  4 ). However, the non-
linear distribution of a multicomponent signal produces interference that may 
have a high amplitude to cover up the signal. This example combines the 
Wigner - Ville distribution decomposition and the wavelet packets to suppress 
the interference  [4] . We take the signal with interference and decompose it 
optimally into frequency bands by a best basis selection  [2] . We then apply the 
WVD decomposition to each of the wavelet packet signals. The cross terms are 
deleted in the distribution before reconstruction. This approach keeps the high 
resolution of WVD yet reduces the cross - term interference to a minimum. 

 From the viewpoint of time - frequency analysis, an orthonormal (o.n.) 
wavelet   ψ   generates an o.n. basis {  ψ  k   ,   j  },  j ,  k     ∈     Z , of  L  2 ( R ) in such a way that 
for each  j     ∈     Z , the subfamily {  ψ  k   ,   j     :    k     ∈     Z } is not only an o.n. basis of  W j   but is 
also a time - frequency window for extracting local information within the  s th 

octave band   Hj
j j: 2 , 21 2= ( )+ + + +Δ Δ

ˆ̂ ˆ̂ψ ψ
, where   Δ

ˆ̂ψ
+  is the RMS bandwidth of the 

wavelet. Unlike wavelets for which the width of the frequency band  H s   
increases with the frequency ranges, wavelet packets are capable of partition-
ing the higher - frequency octaves to yield better frequency resolution. Here,  

 Δ
ˆ̂ψ
+  as discussed in Chapter  4 , is the standard deviation of   ψ̂  relative to the 

positive frequency range (0,  ∞ ). Let {  μ  n  } be a family of wavelet packets cor-
responding to some o.n. scaling function   μ   0     =      ϕ  , as defi ned in Section  8.1 . Then 
the family of subspaces   U k kn

n0 = ⋅−( ) ∈μ : Z ,  n     ∈     Z   +  , is generated by {  μ  n  }, and 
 W j   can be expressed as

    W U U Uj
j j j

= ⊕ ⊕ ⊕+ −+
0
2

0
2 1

0
2 11

� .     (9.8)   

 In addition, for each  m     =    0,  …  , 2  j      −    1, and  j     =    1, 2  …  , the family

    μ2 j m k k Z+ ⋅ −( ) ∈{ }:     (9.9)   

 is an orthonormal basis of   U
j m

0
2 + . The  j th frequency band  H j   is therefore par-

titioned into 2  j   subbands:

    H mj
m j; , , .= −0 2 1…     (9.10)   

 Of course, the o.n. basis in (3) of   U
j m

0
2 +  provides time - localization within 

the subband   Hj
m. Any function  s ( x )    ∈     L  2 ( R ) has a representation

    s t d t n s tn
j m

m j mj

n j mmj

j

( ) = −( ) = ( )+
=−∞

∞

=

−

=

∞

∑ ∑∑∑ ,
,

,

,μ2
0

2 1

1

    (9.11)  
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where   d s t t nn
j m

mj
, ,= ( ) −( )+μ2 , and the component

    s t d t nj m n
j m

mj

n
,

,( ) = −( )+∑ μ2     (9.12)   

 represents the signal content of  s ( t ) within the  m th subband of the  j th band. 
 Let us rewrite the WVD for a multicomponent signal,

    

WVD t f WVD t f

WVD t f

s s

s s

j m

j m k n

j m

j m k n m n j

, ,

,

,

, ,

,

, , , ; ;
,

( ) = ( )

+ ( )

∑

≠
2

≠≠
∑

k

.     (9.13)   

 Equation  (9.13)  partitions the traditional WVD into two subsets. The fi rst 
summation in  (9.13)  represents the autoterm whereas the second summation 
represents the cross - terms between components in each subband to be con-
sidered as interference. By removing this interference, we obtain the wavelet -
 packet based cross - term deleted representation ( WPCDR), given by

    WPCDR t f WVD t fs sj m

j m

, , .,

,

( ) = ( )∑     (9.14)   

 We remark here that the WPCDR actually gives the auto WVD of the signal 
components within each subband; therefore, it is quite effective and is perhaps 
the best choice for analyzing a multicomponent signal. In addition, the 
WPCDR is computationally advantageous, since both decomposition and rep-
resentation can be implemented effi ciently. 

   9.4.1    Best Basis Selection 

 Equation  (9.8)  is actually a special case of

    W U U Uj j k j k j k
k k k

= ⊕ ⊕ ⊕− −
+

−
−+2 2 1 2 11

�     (9.15)   

 when  k     =     j  Equation  (9.15)  means that the  j th frequency band  H j   can be par-
titioned into 2  k  ,  k     =    0, 1,  …  ,  j , subbands

    H mj
k m k, , , , .= −0 2 1…     (9.16)   

 The uniform division of the frequency axis and the logarithmic division for 
wavelets are just two extreme cases, when  k  in  (9.16)  takes on the values of 
 j  and 0, respectively. In fact,  k  is allowed to vary among  H j  ,  j     =    1, 2,  …  , so that 
the subbands adapt to (or match) the local spectra of the signal and thereby 
yield the best representation or the best basis of the signal. The best basis can 
be obtained by minimizing the global cost functional or entropy. Specifi cally, 
the following algorithm is used in  [2]  to fi nd the adapted frequency subband 
or the equivalent best basis
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    (9.17)  

where   �Hj
k m,  represents the adapted frequency subband, and   E Hj

k m,( ) denotes 

the entropy of the local spectrum of the signal restricted to the   Hj
k m, . 

 Although the minimum entropy - based best basis is useful for applications 
to segmentation in speech processing, it is not effective in our case, since the 
resultant distribution yields interference. We modify the algorithm to yield

   �
� ∪ �

H
H Var H

H H
j
k m j

k m
j
k m

j
k m

j
k m

,
, ,

, , ,
=

( ) <⎧
+ + +

if

otherwise

σ
1 2 1 2 1⎨⎨

⎪

⎩⎪
 

where   Var Hj
k m,( ) denotes the variance of the local spectrum, and   σ   is a preset 

threshold. The idea behind this algorithm is that a narrow analysis band should 
be used when the local spectrum is well concentrated or when a small variance 
is obtained, while a wide band should be used when the local spectrum is spread 
or variance is large. We note in passing that a best basis is usually obtained 
between the third layer and the fourth layer, since deeper layers may yield 
some adverse effects due to the amplitude increase in their spectral sidelobes. 

 Once we have chosen a best basis, the signal is readily expressed as

    

s t d t n

s t

n
j k m

m
j k

j m

k

nmj

j m

k

( ) = −( )

= ′ ( )

+
−

=−∞

∞

=

−

=

∞

∑∑∑
∑

; ,

,

,

μ2 2
0

2 1

1

,,     (9.18)  

where   d s t t nn
j m

m
j k

k
, ,= ( ) −( )+

−μ2 2  and

    ′ ( ) = −( )+
−∑s t d t nj m n

j k m
m

j k
k

n
,

; , .μ2 2     (9.19)   

 The WPCDR with a best basis selection is given by

    WPCDR t f WVD t fs sj m

j m

, , .,

,

( ) = ( )′∑     (9.20)   

 We apply this algorithm to a bicomponent signal consisting of a sinusoid and 
a linear chirp signal. When compared with the WVD (see Figure  9.9 ), the 
WPCDR of the same signal shown in Figure  9.10 , the interference is sup-
pressed. Figure  9.11  shows the WPCDR with a best basis selection produces 
the highest resolution on the time - frequency plane.     
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     FIGURE 9.9:     WVD of a bicomponent signal.  (Reprinted with permission from Ref.  4 ; 
copyright  ©  1998 by Wiley.)   
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     FIGURE 9.10:     WPCDR of a bicomponent signal.  (Reprinted with permission from 
Ref.  4 ; copyright  ©  1998 by Wiley.)   
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   9.5    FAULTY BEARING SIGNATURE IDENTIFICATION 

   9.5.1    Pattern Recognition of Acoustic Signals 

 Acoustic signal recognition has gained much attention in recent years. It is 
applicable to the recognition of ships from sonar signatures, cardiopulmonary 
diagnostics from heart sounds, safety warnings and noise suppression in fac-
tories, and recognition of different types of bearing faults in the wheels of 
railroad cars. The basic goal of acoustic signal recognition is to identify an 
acoustic signal pattern from a library of acoustic signatures. Practically all 
acoustical signature patterns are statistical in nature, and they are also highly 
nonstationary. Using wavelets to extract feature signals for recognition has 
great potential for success. 

 To reliably recognize an acoustic pattern, it is necessary to have a set of 
distinctive features forming a feature vector for each pattern. These feature 
vectors from different patterns are obtained by applying many data sets 
belonging to a particular event to train a recognition algorithm such as an 
artifi cial neural network (ANN). After we obtain the feature vectors through 
training, they are stored in a library and used to compare with feature vectors 
from unknown events. 

 In this example  [5] , we apply wavelet techniques and an ANN to identify 
several different types of faults in the wheel bearings of railroad cars. For 

     FIGURE 9.11:     Best - basis WPCDR of a bicomponent signal.  (Reprinted with permis-
sion from Ref.  4 ; copyright  ©  1998 by Wiley.)   
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information purposes, we show the acoustic signal and its spectrum of a data 
set with a known bearing defect (Figure  9.12 ).   

 The American Association of Railroads (AAR) provides us with acoustic 
signals of 18 different types of bearing faults in two classes of sizes, the E - class 
and the F - class. Each data set is about 0.5 megabites sampling at greater than 
260   KHz. Each bearing was tested under two different load conditions, and 
the wheel was rotating at equivalent train speeds of 30 – 80   mph. Only 25 
percent of each data set was used for training the feature vector in every case. 
The recognition algorithm is given in Figure  9.13 .    

     FIGURE 9.12:     (a) An acoustic signal emitted from a faulty bearing and (b) its 
spectrum.  
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254  DIGITAL SIGNAL PROCESSING APPLICATIONS

   9.5.2    Wavelets, Wavelet Packets, and  FFT  Features 

 The number of samples in each training data is 2 12 . The formation of the 
feature vectors for each technique is given as follows: 

 Wavelet Feature Extraction 

  1.     Perform the discrete wavelet decomposition on the signal (DWT) to the 
12th level of resolution.  

  2.     From the wavelet coeffi cients of each of the 12 resolution and approxima-
tion coeffi cients, compute the average energy content of the coeffi cients at 
each resolution. There are a total of 13 subbands (12 wavelet subbands and 
one approximation subband) from which features are extracted. The  i th 
element of a feature vector is given by

    v
n

w ii
dwt

i
i j

j

ni

= =
=
∑1

1 2 132

1
, , , , , ,…     (9.21)  

where  n  1     =    2 11 ,  n  2     =    2 10 ,  n  3     =    2 9 ,  …  ,  n  12     =    2 0 ,  n  13     =    2 0 ;   vi
dwt  is the  i th feature 

element in a DWT feature vector;  n i   is the number of samples in individual 

     FIGURE 9.13:     A block diagram of faulty bearing detection algorithm.  
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subband; and   wi j,
2  is the  j th coeffi cient of the  i th subband. As a result, a DWT 

feature vector is formed as given by

    vdwt dwt dwt dwt t
v v v= { }1 2 13, , , .…     (9.22)     

  Wavelet Packet Feature Extraction 

  1.     Perform the wavelet packet multiresolution analysis to the fi fth level of 
resolution to obtain 32 subbands. Each subband contains a total of 128 
wavelet packet coeffi cients.  

  2.     From each subband at the fi fth level of resolution, compute the average 
energy content in the wavelet packet coeffi cients such that

    v
n

p ii
wp

i
i j

j

ni

= = = ∀
=
∑1

1 2 32 1282

1
, , , , , , , ,… and n ii     (9.23)  

where   vi
wp is the  i th feature in a wavelet packet feature vector;  n i   is the 

number of sample in each subband; and  p i   ,   j   is the  j th wavelet packet coef-
fi cient in the  i th subband. The WP feature vector is represented as follows:

    vwp wp wp wp t
v v v= { }1 2 13, , ,…     (9.24)     

  Spectral Feature Extraction 

  We also use the traditional FFT approach to solve this problem for the sake 
of comparison. The FFT feature vectors are constructed following the same 
pattern. 

   1.     From the 2 12  data points, we compute the FFT and take only the positive 
frequency information represented by 2 12  spectral coeffi cients.  

  2.     We divide the spectrum into 32 nonoverlapping bands with equal width. 
From each band, we compute the average energy contained in the coeffi -
cients. The feature element becomes

    v
n

s i ni
fft

i
i j i

j

ni

= = = ∀
=
∑1

1 2 32 1282

1
, , , , , , , ,… and i     (9.25)  

where   si j,
2  is the  j th FFT coeffi cient in the  i th subband. Consequently the 

feature vector become

    v fft fft fft fft t
v v v= { }1 2 13, , , .…     (9.26)      

  After the feature vectors have been obtained, we apply the feature vector 
normalization to separate the vectors farther apart to improve performance of 
recognition. These vectors are used to train an ANN. There are three hidden 
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neurons in this ANN. Details of construction and training of the ANN are 
beyond the scope of this text, and we refer the interested reader to Ref.  6 .    

  Results:     The recognition results obtained using the wavelet techniques com-
bined with the ANN are astounding. Every fault in every class is identifi ed 
using the unused (not for training) portion of each data set. In fact, the two 
mystery (unknown) bearings containing more than one fault are all identifi ed. 
Although the traditional FFT approach produces roughly the same results as 
the wavelet approach, it fails to recognize the unknown bearing by missing 
one of the two faults. We conclude that the new feature extraction methods 
using DWT and WP are comparable if not superior to the FFT approach. The 
FFT lacks the time - domain information and thus misses some of the more 
localized faults. 

 The feature vector normalization and conditioning play a key role in the 
convergence of the neural network while training. Without the normalization, 
the network does not converge to the desired network error. Convergence of 
the network produces the biases and the weights necessary for the testing of 
the real data. Three hidden layers are used to improve the convergence. The 
results are collectively given in Table  9.1 .      

   9.6    TWO - DIMENSIONAL WAVELETS AND WAVELET PACKETS 

   9.6.1    Two - Dimensional Wavelets 

 When the input signal is 2D, it is necessary to represent the signal components 
by two - dimensional wavelets and a two - dimensional approximation function. 
For any scaling function   ϕ   with its corresponding wavelet   ψ  , we construct three 

  TABLE 9.1:    Overall Performance of the Network for F, E, and F and 
E Class Bearings 

   Value (%)     FFT     CWT     DWT     WP  

          F Class Bearings          
  Correct decision    96.06    95.70    92.37    92.87  
  Misclassifi cation    1.67    1.69    4.56    2.49  
  Miss    2.26    2.61    3.07    4.64  

          E Class Bearings          
  Correct decision    95.96    94.16    87.50    93.76  
  Misclassifi cation    1.28    2.35    7.05    2.50  
  Miss    2.76    3.50    5.45    3.74  

          F and E Class Bearings          
  Correct decision    95.18    94.22    87.61    92.41  
  Misclassifi cation    0.93    2.35    8.88    3.19  
  Miss    3.89    3.42    3.51    4.40  
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TWO-DIMENSIONAL WAVELETS AND WAVELET PACKETS  257

different 2D wavelets and one 2D approximation function using the tensor -
 product approach. We write the 2D wavelets as

    Ψi j x y x i y j, , ,1[ ]( ) = −( ) −( )φ ψ     (9.27)  

    Ψi j x y x i y j, , ,2[ ]( ) = −( ) −( )ψ φ     (9.28)  

    Ψi j x y x i y j, , ,3[ ]( ) = −( ) −( )ψ ψ     (9.29)  

and the 2D scaling function as

    Φi j x y x i y j, , .( ) = −( ) −( )φ φ     (9.30)   

   Ψi j x y, ,1[ ]( ),   Ψi j x y, ,2[ ]( ), and   Ψi j x y, ,3[ ]( ) are all wavelets since they satisfy

   Ψi j
j x y dxdy j, , , , , .[ ]( ) = =

−∞

∞

−∞

∞

∫∫ 0 1 2 3for   

 The 2D approximation function and wavelets of the compactly supported   φD2 
are shown in Figure  9.14 . In the spectral domain, each of the wavelets and the 

     FIGURE 9.14:     Two - dimensional scaling function and the corresponding wavelets.  
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258  DIGITAL SIGNAL PROCESSING APPLICATIONS

     FIGURE 9.15:     Regions on the 2D spectral plane occupied by the 2D scaling functions 
and wavelets.  

scaling function occupy a different portion of the 2D spectral plane. The spec-
tral distributions of each of the four 2D functions are shown in Figure  9.15 . 
The spectral bands that are labeled low - high (LH), high - low (HL), and high -
 high (HH) correspond to the spectra of the wavelets   Ψi j

M x y, ,[ ]( ),  M     =    1, 2, 3. 
The low - low (LL) band corresponds to the 2D approximation function. The 
terms  low  and  high  refer to whether the processing fi lter is low - pass or high -
 pass. The decomposition of a 2D signal results in the well - known hierarchical 
pyramid. Due to the downsampling operation, each image is decomposed into 
four subimages. The size of each subimage is only a quarter of the original 
image. An example of hierarchical decomposition of a gray - scale image is 
given in Figure  9.16 .    

   9.6.2    Two - Dimensional Wavelet Packets 

 Two - dimensional wavelet packets are refi nements of the 2D wavelets, similar 
to the 1D case. Using the notation   μ  k  ( x ) to represent the  k th wavelet packet 
belonging to the approximation function   μ   0 ( x )    =      ϕ  ( x ), a tensor product of any 
two wavelet packets generates a 2D wavelet packet:

    μ μ μk kx y x y, , .� �( ) = ( ) ( )     (9.31)   
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TWO-DIMENSIONAL WAVELETS AND WAVELET PACKETS  259

 Consequently, there are many 2D wavelet packets that can be chosen to form 
bases in  L  2  for signal representation. For example in the 1D case, we use the 
two - scale relations for three levels resulting in 2 3     =    8 wavelet packets including 
the LLL components of the approximation function. Taking the tensor product 
of any two packets, we obtain 64 different 2D wavelet packets including the 
2D approximation functions

    μ μ μ0 0 0 0, , .x y x y( ) = ( ) ( )     (9.32)   

 There are too many 2D wavelet packets to be shown individually. Two exam-
ples of 2D wavelet packets are shown in Figure  9.17 .    

   9.6.3    Two - Dimensional Wavelet Algorithm 

 We have discussed in previous sections that the 2D wavelets are tensor prod-
ucts of the 1D scaling function and the wavelet. Corresponding to the scaling 
function   ϕ   and the wavelet   ψ   in one dimension are three 2D wavelets and one 
2D scaling function at each level of resolution. As a result, the 2D extension 

     FIGURE 9.16:     A two - dimensional wavelet decomposition of an image.  
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of the wavelet algorithms is the 1D algorithm applied to both the  x  and  y  
directions of the 2D signal. Let us consider a 2D signal as a rectangular 
matrix of signal values. In the case where the 2D signal is an image, we 
call these signal values PIXEL values corresponding to the intensity of the 
optical refl ection. Consider the input signal  c j  ( m ,  n ) as an  N     ×     N  square matrix. 
We may process the signal along the  x  direction fi rst. That is, we decompose 
the signal row - wise for every row using the 1D decomposition algorithm. 
Because of the downsampling operation, the two resultant matrices are 
rectangular of size   N N× ( )/2 . These matrices are then transposed, and they 
are processed row - wise again to obtain four   N N/ /2 2( ) × ( )  square matrices — 
namely,  c j    − 1 ( m ,  n ),   d m nj

1
1− ( ), ,   d m nj

2
1− ( ), , and   d m nj

3
1− ( ), . The subscripts of the 

 d  matrices correspond to the three different wavelets. The algorithm for 2D 
decomposition is shown in Figure  9.18 . This procedure can be repeated for an 
arbitrary number of times to the  c  �   ( m ,  n ) matrix (or the LL component), and 
the total number of coeffi cients after the decomposition is always equal to the 

     FIGURE 9.17:     Two - dimensional Haar wavelet packets at different scales.  
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     FIGURE 9.18:     Block diagram of the two - dimensional wavelet decomposition 
algorithm.  
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     FIGURE 9.19:     A two - dimensional hierarchical decomposition of an image.  

initial input coeffi cient  N  2 . An example of the decomposition is shown in 
Figure  9.19 .   

 If the coeffi cients are not processed, the original data can be recovered 
exactly through the reconstruction algorithm. The procedure is simply the 
reverse of the decomposition except that the sequences are { g  0 [ k ],  g  1 [ k ]} 
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instead of { h  0 [ k ],  h  1 [ k ]}. Care should be taken to remember upsampling before 
convolution with the input sequences. The perfectly reconstructed image is 
identical to the original image in Figure  9.20 .    

   9.6.4    Wavelet Packet Algorithm 

 The 2D wavelet packet algorithm mimics the 1D case. It simply repeats the 
algorithms fi rst along the  x  direction and then the  y  direction. Not only is the 
LL component (the approximation function component) decomposed to 
obtain further details of the image but the other wavelet components (LH, 
HL, HH) are also further decomposed. For example, starting with an original 
image with size 256    ×    256, a 2D wavelet decomposition of this image will result 
in four subimages of size 128    ×    128. Continuing the decomposition, one gets 
16 2D wavelet packet subimages of size 64    ×    64. The computational algorithm 
for 2D wavelet packets is no more diffi cult than that for the 2D wavelets. It 
requires orderly bookkeeping to keep track of the directions ( x  or  y ), and the 
fi lters that have been used in processing. It is necessary to reverse the order 
to reconstruct the image from its wavelet packet components. An example of 
2D wavelet packet decomposition of an image and its reconstruction is shown 
in Figures  9.21 – 9.22 .     

     FIGURE 9.20:     Perfect reconstruction from components shown in Figure  9.19 .  

c09.indd   262c09.indd   262 11/9/2010   10:18:11 AM11/9/2010   10:18:11 AM



TWO-DIMENSIONAL WAVELETS AND WAVELET PACKETS  263

     FIGURE 9.21:     A 2D wavelet packet decomposition of an image.  

     FIGURE 9.22:     Perfect reconstruction from wavelet packet components shown in 
Figure  9.21 .  
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   9.7    EDGE DETECTION 

 An edge is defi ned as a set of connected pixels that lie on the boundary 
between two regions of relatively uniform intensity. Edge detection is a disci-
pline of great importance in digital image analysis. It locates object boundaries 
that are useful for image segmentation, image registration, and object/shape 
identifi cation. An edge detected in an image often outlines the framework of 
the scene/object. It signifi cantly reduces the data storage requirement by fi lter-
ing out the unnecessary information. 

 There are many algorithms for detecting edges  [7 – 10]  in a digital image. 
However, they can be largely classifi ed into two categories: the gradient (fi rst 
derivative of the signal) approach and the Laplacian (second derivative of the 
signal) approach. We will consider some representative algorithms of these 
two classes as well as wavelet -  and curvelet - based approaches. 

 An ideal edge should be like a step function, but in practice, edges are 
blurred and are closely modeled as ramp functions (Figure  9.23 ). A blurred 
edge can be modeled mathematically at  x     =    0 by an error function given by  

    f x
I I x

Ix x
x( ) = − ⎛

⎝
⎞
⎠ +⎡

⎣⎢
⎤
⎦⎥
+> <

<
0 0

0
2 2

1erf
σ

    (9.33)  

where the error function   erf /y e du
y u( ) = ( )∫ −2 0

2
π  is bounded by  ± 1 as the vari-

able  y     →     ±  ∞ . Another model for an edge is

    f x x( ) = + ( )1 tanh β     (9.34)   

 which has similar behavior as the error function model. The steepness of the 
edge is controlled by the parameter   β  . 

 It is easy to see that the fi rst derivative of these models at  x     =    0 attains a 
maximum such that the second derivative for these modeling function becomes 
0 at  x     =    0, which is the center of the edge. 

     FIGURE 9.23:     Ideal (left) and blurred (right) edge.  
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EDGE DETECTION  265

   9.7.1    Sobel Edge Detector 

 For the gradient approach, the methods usually compute and search for the 
maximum of the fi rst - order derivative of the image in both directions. The 
strength of the gradient

    ∇ = ∂
∂

⎛
⎝

⎞
⎠ + ∂

∂
⎛
⎝⎜

⎞
⎠⎟

f
f
x

f
y

2 2

    (9.35)   

 indicates the sharpness of the edge. It can be approximated by computing

    ∇ ≈ ∂
∂

+ ∂
∂

f
f
x

f
y

.     (9.36)   

 The Sobel edge detector approximates this equation by creating a pair of 3    ×    3 
image fi lters to be convolved with the image:

   G Gx y→
−
−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
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;    

   9.7.2    Laplacian of Gaussian Edge Detector 

 Laplacian of Gaussian (LoG) approach — as in Marr - Hildreth method —
 employs a Gaussian fi lter for smoothing before the Laplacian is taken over all 
the image. The location of the edge is indicated by the zeros of the following 
equation:

    ∇ ∗ ( )[ ] =2 0G f x y, ,     (9.37)  

where G is the two - dimensional Gaussian function

    G x y
x y

, exp .( ) = − +⎛
⎝⎜

⎞
⎠⎟

1
2 22

2 2

2πσ σ
    (9.38)   

 A 5    ×    5 mask of an LoG operator is shown below
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.     (9.39)    

c09.indd   265c09.indd   265 11/9/2010   10:18:12 AM11/9/2010   10:18:12 AM
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   9.7.3    Canny Edge Detector 

 The Canny detector is an optimized form of the Marr - Hildreth detector by 
fi nding the direction of the edge as well as its gradient. Canny detector uses 
the second derivative of the image along the direction of the edge  [7] ,

    D f
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f
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f
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and that of the gradient
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 The procedure for locating the edge points is as follows: 

  1.     Smooth the image with a Gaussian function.  
  2.     Compute the gradient of the result of step 1.  
  3.     If the gradient is not zero, compute the function   D fG f

G f

∇ ∗( )
∇ ∗( ) 2

.  

  4.     Search the edge points by the location of sign change of step 3.     

   9.7.4    Wavelet Edge Detector 

 As mentioned in previous chapters, wavelets acts in some sense as differential 
operators (band - pass fi lters). The simplest example is the Haar wavelet, which 
gives the fi rst difference of a function. 

 Wavelet edge detection is based on two - dimension wavelet transform of 
the image. Recall from Section  9.6  that at any resolution level, 2D wavelet 
transform provides four components of an image — LL, which results from 
convolving with scaling functions (low - pass) along both  x  and  y  directions; LH 
(scaling function along  x  and wavelets along  y ); HL (wavelets along  x  and 
scaling function along  y ); and HH (wavelets along both directions). Component 
LL represent the image at lower resolution, whereas the other three combined 
together gives the edges. 

 As described in Chapter  6 , wavelets are very good in detecting point dis-
continuity. Edges, on the other hand, represent discontinuity along a line. For 
edge detection, therefore, ridgelet transforms are better suited. However 
evaluation of ridgelet transform takes considerably more computation time. 
Figure  9.24  shows edges detected using wavelets and ridgelet transforms. 
Ridgelet data are taken from [ 10 ].     
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   9.8    IMAGE COMPRESSION 

   9.8.1    Basics of Data Compression 

 Signals such as music, voice, graphics, images, and movies are either stored 
for later usage or transmitted via networks to their ultimate users. Before the 
digital era, magnetic tapes, photographs, and fi lms were the popular means 
for signal storage. Telephone and television were the usual transmission media 
for voice and image. Since the 1980s, the digital revolution has transformed 
the modes and means of signal storage and transmission. A 2 - h - long movie 
can easily be stored in a DVD that takes up about 1/5000 of the physical space 
of two to three reels of fi lm negatives. 

 Nowadays, most signals, such as computed tomography (CT), magnetic 
resonance imaging (MRI), photographs, music, and voice, are already gener-
ated in digital format. Analog signals from antiquated documents, photo-
graphs, and phonographs can be converted to digital format through powerful 
digitizers, quantizers, and scanners. The size for some of these signals may be 
quite large so as to preserve the fi delity of the signal. The challenge is to 
manipulate the fi les in the digital domain to reduce the sizes for convenient 
storage and/or effi cient transmission. Many 1D, 2D, and 3D signal - compression 
schemes have been developed. We will briefl y explain the classifi cation and 
approaches of these schemes. 

 Compression ratio and distortion or fi delity (the difference between the 
original and the reconstructed signal) are two main measures for evaluating a 
compression algorithm. Generally, such algorithms are either lossless, meaning 

     FIGURE 9.24:     Original image (top) and edges detected using wavelets (middle) and 
ridgelet transform (bottom).  
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perfect reconstruction, or lossy, in which some information is lost during 
reconstruction. From Shannon ’ s information theoretic approach we know that 
the highest achievable lossless compression is to encode the output of a source 
with an average number of bits equal to the entropy  *   of the source. The objec-
tive, therefore, is to devise a scheme that will reduce the entropy and increase 
the compression ratio. Messages made up of strings of English alphabets 
can be recovered without loss using Morse code. Huffman code, run - length 
code, bit plane coding, predictive coding, arithmetic coding, and dictionary 
techniques, such as LZ77 and LZW, are some of the lossless coding schemes. 
The compression ratio achieved through lossless algorithms are usually small 
(typically 10 or less). 

 In this chapter, we discuss lossy compression in which, as mentioned before, 
the signal is not exactly recoverable. Transform coding, subband (multiresolu-
tion) coding, scalar quantization, and vector quantization are examples of 
lossy compression schemes. 

 Several 1D signal compression schemes are available for voice and music. 
They are the pulse code modulation (PCM), differential pulse code modula-
tion (DPCM), adaptive DPCM (ADPCM), audio CODEC coder - decoder 
(CODEC) manager (ACM), waveform data (WAV), and MP3. MP3 stands 
for MPEG - 1 audio layer 3 and it is a lossy form of data compression. Currently, 
it is the most popular format for audio storage. Digital voice recorders and 
portable music players also use this format. The compression scheme by 
reducing/removing certain signal samples that are not perceptible by most 
people is known as perceptual coding. It uses psychoacoustic approach in 
discarding the unperceptible information and retaining the useful information 
in an effi cient manner. For still images, JPEG format is widely used. 

   9.8.1.1    Transform Coding.     In transform coding, input sequences are trans-
formed into other sequences in which most of the information is contained in 
a few elements. Consider input sequences { x   0  ;  x   1  } as given in Figure  9.25  and 
transform them to sequences { y   0  ;  y   1  } using a rotation transformation:  
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θ     (9.42)   

 As we can see in the transformed domain, most of the information is con-
tained in  y   0  . We can remove half the data    —    that is, set  y   1      =    0    —    and still be 
able to recover the original sequence with little distortion. Transform coding 
steps can be summarized as follows. 

  1.     Divide input sequence { x i  } in blocks of size  N  and transform them to 
sequence { y i  }.  

    *  Entropy of a system of independent events   x P x P xi i i i{ } −∑ ( ) ( )= ln  where  P ( x i  ) is the probabil-
ity that the event  x i   will occur.  
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  2.     Quantize the transformed sequence { y i  }.  
  3.     Encode the quantized data.    

 Some of the transformation techniques used are  [11]  Karhunen - Lo é ve 
Transform (KLT), Discrete Cosine Transform (DCT), Discrete Walsh -
 Hadmard Transform (DWHT), and wavelet transform. Recall that in wavelet 
transform, wavelet coeffi cients in  “ smooth ”  regions are close to zero because 
of vanishing moment property. 

 Subband coding is similar to transform coding except that the transforma-
tion is applied at various scales. A series of low - pass and band - pass fi lters 
(similar to scaling and wavelets) are used to reduce quantization error and 
achieve higher compression ratio than can be typically achieved through 
lossless compression.  

   9.8.1.2    Differential Pulse Code Modulation ( DPCM ).     The differential pulse 
code modulation algorithm is based on the understanding that for most images, 
the values of adjacent pixels are highly correlated. Instead of coding the pixel 
value, which may be large, the method requires a predictor for predicting each 
pixel value and a code for the   difference between the actual and the predicted 
values. The user has the freedom to choose the predictor by some forms of 
linear prediction. A good predictor will result in smaller errors, which will 
increase the compression performance. The histogram of the code value can 
be used to measure the compression performance. The code value histogram 
for the DPCM on the Lena image (Figure  9.28 ) varies between  ± 25, while the 
code values for the original image are between 0 and 240.    

   9.8.1.3    Vector Quantization ( VQ ).     Vector quantization is a popular 
scheme for image compression. The process can be carried out on the image 
plane or after transformation. The procedure may be put into several sequen-
tial steps: 

     FIGURE 9.25:     Example of transform coding.  

Original sequence (x)

40 60 100x0 50

90

75

130

100

170

80

140

60

100 70

70

120 100 160

85

150x1

Transformed sequence y = Ax

y0 102.9

1.7

150.1

0

197.2

–1.6

161.2

0.7

116.6

–2

80.6

0.4

138.9

–0.6

188.6

–6.6

172.4

1.4y1

Reconstructed sequence after setting y1 = 0

x′0 51.5

89.1

75.1

130

98.6

170.8

80.6

139.6

58.3

101

40.3

69.8

69.45

120.3

116.6

–2

58.3

101

94.3

163.3

86.2

149.3x′1

c09.indd   269c09.indd   269 11/9/2010   10:18:12 AM11/9/2010   10:18:12 AM



270  DIGITAL SIGNAL PROCESSING APPLICATIONS

  1.     Divide the image into many  n  - dimensional vectors. This may be done 
by choosing a rectangular block of  m     ×     l     =     n  and the vector is formed by 
reading the pixel value row - wise.  

  2.     A code book of size  N  is prepared beforehand with codevector   Xi
�,  i     =    1, 

2,  …  ,  N . The size of the codevector is also  n .  
  3.     Each vector  X  from the image block is compared with the codevector 

using the  MSE  as a measure to determine which codevector has the 
smallest distance from the block vector  X .

    MSE
n

x xi i

i

k

= −( )
=
∑1 2

1

�     (9.43)    

  4.     Once the codevector  k  is selected from the  MSE  computation, the index 
 k  is transmitted to the receiver.  

  5.     The receiver, having received the index  k , uses a table look - up method 
to fi nd the codevector   �Xk from a duplicate codebook.    

 There are different algorithms for generating the VQ code book. These 
discussions are beyond the scope of this section. For more details, the reader 
is referred to an excellent tutorial in Ref.  12 . VQ can be applied to the 
transformation of an image. Transforms like the cosine transform and 
wavelet/wavelet packet transforms are good candidates for this scheme. VQ 
can also be combined with other schemes, such as DPCM, to compress an 
image. Figure  9.26  shows a composite DWT - DPCM - VQ scheme for image 
compression.     

     FIGURE 9.26:     Composite DWT - DPCM - VQ compression algorithm.  
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     FIGURE 9.27:     Spatial correlation and parent - child relationship among wavelet coef-
fi cients at different resolutions.  

   9.8.2    Wavelet Tree Coder 

 In general, tree coders  [13]  use a tree structure, which takes advantage of the 
correlation between the discrete wavelet coeffi cients (DWCs) in each of 
the three spatial directions (HL, LH and HH), as shown in Figure  9.27 . That 
means, if a DWC at a higher decomposition level is smaller than a specifi ed 
threshold, there is a great possibility that all of its children and grandchildren 
are smaller than the threshold. Thus all of these  insignifi cant  DWCs can be 
encoded with one symbol. The encoding of a  signifi cant  DWC may need 
more bits. Many tree structures have been developed for improving the effi -
ciency of encoding the  locations  of the correlated DWCs, such as EZW, SOT, 
and GST.   

 A brief description of a generic tree coder is given here: 

   •      The DWCs are selected in groups with decreasing thresholds such that 
larger DWCs are encoded earlier.  

   •      The fi rst threshold is selected to be an integer  T  0     =    2  j  , where  j  is the 
nearest integer  ≤ log    2  max | DWC | and the  k th threshold is  T k      =     T  0 /2  k   — that 
is, the uniform quantization.  

   •      Choosing the threshold  T k  , all the  locations  of this group of DWCs,  C i   ,   j   with 
 T k      ≤    | C i   ,   j  |    <     T k    − 1 , are encoded with a tree structure, and signs of these 
encoded DWCs are also appended. This process is called the  dominant 
pass .  
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   •      Those  C i   ,   j   encoded in previous higher thresholds are refi ned to a better 
accuracy by appending the bit corresponding to  T k  . This process is called 
the  subordinate pass .  

   •      With decreasing thresholds, the leading  zero  bits of encoded DWCs are 
saved to achieve compression.  

   •      The number of bits in the coded bit stream from a tree coder can be 
further reduced using a lossless entropy coder — for example, an arithme-
tic coder  [12] .     

   9.8.3     EZW  Code 

 Initiated by Shapiro  [14] , the zerotree structure combined with bit plane 
coding is an effi cient compression scheme for the discrete wavelet transforma-
tion. The  embedded zerotree wavelet  (EZW) coding scheme has proven its 
effi ciency and fl exibility in still image coding in terms of image quality and 
computation simplicity. Also, the EZW image coding algorithm generates an 
embedded bitstream in which information is sent to the decoder in the 
order of its importance; importance is judged by how much the information 
reduces the distortion of the reconstructed image. This embedded technique 
has two important advantages. First, the bit rate control allows one to stop 
the coding process at any point. Second, the image can be reconstructed from 
a point at which the encoded bitstream has been disrupted, even with reduced 
quality. 

 As an entropy coder, the zerotree coder takes advantage of the correlation 
between interlevel subbands of DWCs. Four symbols,  ZTR ,  POS ,  NEG , and 
 IZ , are used in the zerotree. A  ZTR , zerotree root, represents a DWC and all 
of its descendants if they are insignifi cant, and it is the symbol that gets most 
of the compression. A  POS  or  NEG  symbol stands for a signifi cant DWC with 
a positive or negative sign, respectively. An  IZ  represents an insignifi cant 
DWC with at least one signifi cant descendent. It is this symbol that reduces 
the compression since more symbols are needed for encoding its descendants. 
With these defi nitions, two bits per symbol on average are needed for each of 
the four symbols. Without a good follow - up entropy coder for those symbols, 
zerotree cannot get good compression results. Also, all of the encoded symbols 
must be  reordered  so that the entropy coder can achieve compression on them. 
Both of these procedures increase the computation overhead.  

   9.8.4     EZW  Example 

 We use a well - designed example similar to the one appearing in Shapiro ’ s 
original paper  [14]  to demonstrate the procedure. The EZW is a successive 
approximation algorithm. It uses the  dominant pass  and the  subordinate pass  
recursively to achieve the approximation. The coeffi cient map of this example is 
shown as follows:
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58 41 44 17 8 13 5 8

29 47 42 13 3 4 1 10

22 14 25 9 35 11 6 7

9 11 16 12

− − −
− − −
− − −

− − − −− −
− − −

− − − −
− − −

− −

3 6 14 1

13 2 0 11 0 30 15 7

10 5 9 4 7 1 9 0

22 4 13 3 6 8 11 5

9 1 9 12 2 55 9 3−

  

 Following the steps outlined in Section  9.8.3 , we fi nd the largest value to be 
coded is  M     =    58. The nearest power - of - two integer   2 58 2 29j ≥ =/  is 2 5     =    32. We 
set the initial threshold value  T  0     =    32    =    2 5 . We then use this threshold and 
compare it with all of the coeffi cients in a dominant pass (to be described 
below). 

 In wavelet - tree coding, not only do the values of the coeffi cients need to be 
coded but the location of the coeffi cients must also be known to the decoder. The 
EZW makes use of the parent - children relationship between coeffi cients in adja-
cent coeffi cient maps to record the location of a given coeffi cient. This relation-
ship is embedded in the EZW code to reduce the coding overhead. This relationship 
is best shown in Figure  9.27 . The coding procedure is listed as follows. 

  1.     For the fi rst dominant pass, the threshold is set at 32, and the results of 
the code assignment are given in the following table. We assign a symbol 
to each of the codeble values:       

   Value     Symbol  
   Reconstructed 

Value     Value     Symbol  
   Reconstructed 

Value  

  58    P    48     − 16    ZTR    0  
  41    P    48    12    ZTR    0  
  29    ZTR    0     − 8    Z    0  

   − 47    N     − 48    13    Z    0  
   − 44    N     − 48    3    Z    0  

  17    ZTR    0    4    Z    0  
  42    P    48    35    P    48  

   − 13    ZTR    0     − 11    Z    0  
  25    ZTR    0     − 3    Z    0  
   − 9    ZTR    0    6    Z    0  

  2.     After the fi rst dominant pass has been completed, the fi rst subordinate 
pass refi nes the coded values. Only those signifi cant values ( P  and  N ) 
are coded in this pass. The symbol  P  in the fi rst subordinate pass states 
that the value lies in the interval (64, 32], and the symbol  N  for 
the interval ( − 64, − 32]. The subordinate pass refi nes these values by 
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narrowing the interval from (64,32] to (64,48] and (48,32]. If the value is 
in the upper interval, the subordinate pass appends a 1 to the code, and 
a 0 if the value lies in the lower interval. The six signifi cant values now 
have the following code fi le:         

   Coeffi cient 
Magnitude     Symbol  

   Reconstructed 
Magnitude  

   Binary 
Representation  

  58    1    56    1 1 1010  
  41    0    40    1 0 1001  
  47    0    40    1 0 1111  
  44    0    40    1 0 1100  
  42    0    40    1 0 1010  
  35    0    40    1 0 0011  

 This completes the fi rst iteration of both passes. The user has to remem-
ber that in the subordinate pass, if a 1 is appended to the code, one has 
to subtract the refi nement amount — 16 in this case — from the value that 
is over the threshold for this pass. For example, the coeffi cient 58 has 
58    −    32    −    16    =    10 yet to be refi ned by the next iteration. In addition, one 
should also remember that the coded values are now replaced by zero 
in the coeffi cient map and will not be coded from later iterations. 

  3.     We repeat step 1 with the second dominant pass with a threshold  T  1     =    16. 
We have the following codes from this pass.       

   Coeffi cient 
Value     Symbol  

   Reconstructed 
Value  

   Coeffi cient 
Value     Symbol  

   Reconstructed 
Value  

  29    P    24     − 11    Z    0  
   − 17    N     − 24     − 3    Z    0  
   − 13    ZTR    0    6    Z    0  

  22    P    24     − 13    Z    0  
   − 14    ZTR    0    2    Z    0  

   − 9    IZ    0    10    Z    0  
   − 11    ZTR    0     − 5    Z    0  

  25    P    24     − 22    N     − 24  
   − 9    ZTR    0    4    Z    0  

   − 16    N     − 24    9    Z    0  
  12    ZTR    0     − 1    Z    0  
   − 8    Z    0    0    Z    0  
  13    Z    0     − 30    N     − 24  
  3    Z    0     − 7    Z    0  
  4    Z    0     − 1    Z    0  
  5    Z    0    6    Z    0  
  8    Z    0     − 8    Z    0  

   − 1    Z    0    2    Z    0  
  10    Z    0    5    Z    0  
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   Coeffi cient 
Magnitude     Symbol  

   Reconstructed 
Magnitude  

   Binary 
Representation  

  58    1    60    11 1 010  
  41    1    44    10 1 001  
  47    1    44    10 1 111  
  44    1    44    10 1 110  
  42    1    44    10 1 010  
  35    0    36    10 0 011  
  29    1    28    01 1 101  
  17    0    20    01 0 001  
  22    0    20    01 0 110  
  25    1    28    01 1 001  
  16    0    20    01 0 000  
  22    0    20    01 0 001  
  30    1    28    01 1 110  

  4.     The second subordinate pass will separate the intervals more fi nely by 
dividing all intervals at their midpoints. Hence we have intervals (64,56], 
(56,48], (40,32], (32,24], and (24,16]. This pass also updates all previous 
code fi les. The value to be compared with in this pass is 8. The updated 
code fi le becomes         

 The passes are repeated by cutting the threshold by half each time. If all 
the coeffi cients are coded, we have a lossless code. The compression ratio 
achieved in this manner is limited. The user may stop coding at any time or 
when the bit budget is exhausted. We have a lossy compression scheme 
wherein the user may control the bit budget, but he or she cannot control the 
compression ratio. An original image and the recovered image from EZW 
coding are shown in Figures  9.28  and  9.29 .    

   9.8.5    Spatial Oriented Tree ( SOT ) 

 Said and Pearlman  [15, 16]  discovered set partitioning principles to improve 
the performance up to 1.3   dB over that of the zerotree method. They observed 
that there is a spatial self - similarity between subbands, and the discrete wavelet 
coeffi cients (DWCs) are expected to be better magnitude ordered if one 
moves downward in the pyramid following the same spatial orientation. Based 
on this observation, a tree structure called a  spatial orientation tree  (SOT) is 
used to defi ne the spatial relationship of the DWCs in the hierarchical struc-
ture. Three main concepts are proposed by Said and Pearlman to adapt the 
SOT to obtain a better performance in image coding: (1) partial ordering of 
the transformed image by magnitude and transmission of coordinates via a 
subset partitioning algorithm, (2) ordered bit - plane transmission of refi nement 
bits, and (3) exploitation of the self - similarity of the DWCs across the different 
scales. 
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     FIGURE 9.29:     Decoded image at compression of 30   :   1.  

     FIGURE 9.28:     Original image for EZW image coding.  
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 For the SOT  [15 – 17] , only two symbols  zero  and  one  are used, and each 
symbol has a different meaning at a different part of the tree. The symbol  one  
may represent (1) a signifi cant DWC, (2) the negative sign of a signifi cant 
DWC, (3) the case that any one of the four children is signifi cant, or (4) 
the case that any of the grandchildren is signifi cant. The symbol  zero  could 
indicate (1) an insignifi cant DWC, (2) the positive sign of a signifi cant DWC, 
(3) the case that all four children are insignifi cant, or (4) the case that all 
grandchildren are insignifi cant. To maintain the SOT for the DWCs along with 
the different scales, three lists are used as follows: 

  1.     List of insignifi cant sets (LIS) is a list of the roots of a tree for further 
tracing, and type A and B of the roots of the tree are used interchange-
ably to obtain better adaptability.  

  2.     List of insignifi cant pixels (LIP) is a list of the DWCs that are not 
roots of the tree currently but are the candidates to be placed into the 
LSP.  

  3.     List of signifi cant pixels (LSP) is a list of the DWCs that have been 
encoded and are to be further refi ned.     

   9.8.6    Generalized Self - Similarity Tree ( GST ) 

 Based on the SOT, a generalized self - similarity tree (GST) coding algorithm 
has been constructed that can handle images of any size and any gray level 
 [18] . In the GST, the wavelet decomposition/reconstruction algorithm with 
boundary refl ection techniques is used so that perfect reconstruction can be 
achieved. Analysis of the GST coder shows results comparable to the original 
SOT coder for images of dyadic size, and it even outperforms the SOT for 
images of nondyadic size.   

   9.9    MICROCALCIFICATION CLUSTER DETECTION 

 The majority of early breast cancers are indicated by the presence of one or 
more clusters of microcalcifi cations on a mammogram. Although breast cancer 
can be fatal, women have one of the highest chances of survival among cancer 
types if the tumors can be detected and removed in an early stage. Thus the 
detection of microcalcifi cations with minimal false positive rates is critical to 
screening mammograms. Microcalcifi cations are small deposits of calcium 
phosphate hydroxide in breast tissue with sizes raging from .05 to 1.0 mm in 
diameter that appear as bright specks on photonegative x - ray fi lm  [19] . They 
are diffi cult to detect because they vary in size and shape and are embedded 
in parenchymal tissue structures of varying density  [20] . 

 Screening mammograms have been one of the main thrusts in the health-
care program of the United States. However, even partial compliance with the 
rule set by the ACR would produce a huge volume of data to be read by a 
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limited number of radiologists. Consequently, human error can run the 
percentages of false negatives (a true target missed) up to 20%  [21] . If a 
computer - aided diagnostic (CAD) algorithm were designed and constructed, 
it could serve as a second opinion to help the radiologist by pointing out suspi-
cious regions in the mammogram needing a more detailed diagnostic screen-
ing. This application example attempts to show how a 2D wavelet pyramid 
algorithm working in conjunction with other image - processing techniques can 
identify the microcalcifi cations in mammograms and localize the suspicious 
regions. 

   9.9.1     CAD  Algorithm Structure 

 Success in signature recognition greatly depends on the features one can 
extract from a signature. The more distinct the features, the higher the success 
rate for making a positive identifi cation. The most important objective in the 
detection and recognition of microcalcifi cations is to remove the background 
noise and enhance the object to be identifi ed. We use several traditional 
image - processing techniques to work with the wavelet decomposition algo-
rithm to achieve this objective. Decision - making rules in some of these algo-
rithms are goal oriented and therefore are problem dependent. Parameter 
choices often depend on the data to be analyzed. The CAD algorithm for 
microcalcifi cation cluster detection in a highly textured and cluttered back-
ground is illustrated in Figure  9.30 . The image - processing techniques used in 
this CAD algorithm include nonlinear image enhancement, wavelet pyramidal 
and directional image decomposition and reconstruction, wavelet coeffi cient 
domain operations, dark pixel removal, constant false alarm rate (C - FAR) 
type adaptive thresholding, adaptive resonance theory clustering, and false 
cluster discrimination.    

   9.9.2    Partitioning of Image and Nonlinear Contrast Enhancement 

 We partition the mammogram to be analyzed by simply dividing the image 
into a number of equal - size subimages. In this case, the size of the mammo-
gram is 1024    ×    1024, and we divide it up in to 64 subimages of size 128    ×    128. 
Each partitioned subimage is separately processed to bring out locally signifi -
cant details of the input image with image contrast enhancement. This step 
provides better localization for detection of the targets. Since wavelet process-
ing is known to handle the image boundary better than DCT, we are ensured 
that information is not lost in the partitioning. We use a cubic mapping to 
suppress pixels with low gray scale values and enhance pixels with large gray 
scale values.  

   9.9.3    Wavelet Decomposition of the Subimages 

 We decompose each subimage using the wavelet decomposition algorithm so 
that the high frequency components of the subimage are singled out. There 

c09.indd   278c09.indd   278 11/9/2010   10:18:13 AM11/9/2010   10:18:13 AM



MICROCALCIFICATION CLUSTER DETECTION  279

are many choices of wavelets in this applications. We chose the Haar wavelet 
after examining all of Daubechies ’  orthogonal and biorthogonal wavelets and 
the Coifl ets, because the spatial domain window of the Haar wavelet is very 
small for better spatial localization. Higher - order wavelets tend to average and 
blur the high - frequency information to produce a low - amplitude wavelet 
coeffi cient. 

 Two types of wavelet MRA tree decompositions are applied simultaneously 
to the same subimage — namely, the pyramidal and directional decompositions. 
The pyramidal MRA decomposes only the subband image obtained through 
the LL - suband in the column and row direction at each level of resolution 
(LOR). The directional MRA, on the other hand, decomposes images in only 
one direction. The decomposition wavelet coeffi cient maps of these two MRA 
trees are shown in Figures  9.31  and  9.32 .    

   9.9.4    Wavelet Coeffi cient Domain Processing 

 Once we have the wavelet coeffi cients computed as shown in preceding section, 
the goal of processing these coeffi cients is to retain only the signifi cant wavelet 

     FIGURE 9.30:     Block diagram of the microcalcifi cation cluster detection algorithm.  
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     FIGURE 9.32:     Directional wavelet decomposition of a segmented mammogram.  

     FIGURE 9.31:     Hierarchical wavelet decomposition of a segmented mammogram.  

coeffi cients that pertain to microcalcifi cations and other high - frequency infor-
mation. Processing these coeffi cients includes removal, thresholding, and 
amplifi cation. These are operations without user interface; we must generate 
rules and parameters to guide these operations. 

c09.indd   280c09.indd   280 11/9/2010   10:18:13 AM11/9/2010   10:18:13 AM



MICROCALCIFICATION CLUSTER DETECTION  281

 To retain high - frequency information that contains microcalcifi cations and 
other high - frequency noise, the wavelet coeffi cients in the lower - resolution 
subbands are removed. For each partitioned subimage, we compute the global 
(all wavelet coeffi cients in the subimage) standard deviation to mean ratio 
(GSMR) and local (wavelet coeffi cients in one subband of the subimage) 
standard deviation to mean ratio (LSMR) for the removal of coeffi cients 
containing low - frequency or insignifi cant high - frequency information. Let us 
denote   γ  g   ,   k   and   γ  j   ,   k   as the GSMR and LSMR computed from the wavelet coef-
fi cients of the  k th subimage. The wavelet coeffi cients  w j   ,   k  ( · ) are set to zero 
according to the following rules:

    
wj k, , ,, ;⋅( ) = >0 for coefficients in subband j if

retain 
g k j kγ γ

iin subband j for further processing if g k j k, ., ,γ γ≤
⎧
⎨
⎩

    (9.44)   

 We use the mean and standard deviation,   μ  j   ,   k   and   σ  j   ,   k  , from each subband to 
set the thresholding and amplifi cation criterion. The rule is stated as follow:

    
w

w abs

j k

j k
j k

j k

, , , ,

,
,

,

, . ;⋅( ) = ⋅( ) ≤ + ×

⋅( ) = ⎡

⎣
⎢

⎤

⎦

0 2 5if wj k j k j kμ σ

σ
μ ⎥⎥ × ⋅( )

⎧

⎨
⎪

⎩
⎪ wj k, , .otherwise

    (9.45)   

 After the operations in the wavelet coeffi cient maps have been completed, we 
reconstruct the image using the remaining subband coeffi cients. The recon-
structed images have a dark background with white spots representing the 
microcalcifi cations and high - frequency speckle noise. To differentiate the 
microcalcifi cations and noise, we use histogram thresholding and dark pixel 
removal.  

   9.9.5    Histogram Thresholding and Dark Pixel Removal 

 Since the reconstructed images also contain information that is not relevant 
to the microcalcifi cations, we need to fi lter out this erroneous information. 
The histogram threshold requires the peak value of the histogram of a given 
gray scale  g peak  . We formulate the following thresholding rule:

    
v x y

v x y
r

r

, 0, , 1 0.5 ;

,

( ) = ( ) ≤ +( ) + ×
( )

if v x y g

remain uncha
r peak nz

rσ
nnged for further processing,

⎧
⎨
⎩

    (9.46)  

where   σnz
r  and   μnz

r  are the standard deviation and mean obtained from all 
nonzero ( nz ) pixels in the reconstructed images; and  v r  ( x , y ) is the value of the 
( x , y )th pixel in the reconstructed image. After this step, the CAD algorithm 
adds the two images together in a spatially coherent fashion to form a com-
posite image in which all microcalcifi cation information is contained. 
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 We now refer back to the original image. Since the pixel intensity from the 
microcalcifi cation is greater than 137 in an 8 - bit (256 levels) linear gray scale, 
we make use of this information to formulate a dark pixel removal threshold 
as follows:

    

v x y

v x y
r

r

, = 0, , = 0;

, = 0, , 0, ,

( ) ( )
( ) ( ) ≠ ( ) ≤

if v x y
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, = , , , 0, , > 0

σ
μ
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r orgif v x y and u x yv x y v x yr nz nz r ..5×

⎧
⎨
⎪

⎩⎪ σorg

    (9.47)  

where   μ  org  ,   γ  org   are the mean and standard deviations obtained using nonzero 
pixels in the original input mammogram.  u ( x , y ) is the pixel value of the 
( x , y )th pixel in the original image. 

 After the dark pixels are set to zero, potential microcalcifi cation regions 
(PMR) are identifi ed in the enhanced image. The nonzero pixel locations 
indicate potential sites of microcalcifi cations. These sites are then made the 
centers of 5    ×    5 pixel PMRs. Each of these PMRs must go through a CFAR -
 like detector to reduce the number of PMRs to a manageable level. The 
CFAR acts like a probabilistic discriminator. The PMRs with high probabili-
ties are retained for further analysis. Hence the 5    ×    5 pixel region acts like a 
window through which an adaptive rule is set up to determine its probability 
as a microcalcifi cation. To evaluate the CFAR threshold, one needs the mean 
and standard deviation from the PMR, an a priori probability distribution, and 
a desired false alarm rate. The detailed theory of CFAR is beyond the scope 
of this text, the interested reader may refer to [ 22 ].  

   9.9.6    Parametric  ART 2 Clustering 

 The suspicious regions are formed by using adaptive resonance theory (ART) 
 [5]  with a vigilance factor,   ρ  v  , or 25 pixels. In this example application, we 
choose the search region to be an area corresponding to 1    ×    1   cm, which 
has approximately 50    ×    50 pixels of the image. Once an initial clustering is 
completed, each cluster must be tested for false alarm discrimination. Each 
cluster must have at least three microcalcifi cations whose individual size must 
not exceed 5    ×    5 pixels. If an initial cluster does not meet this criterion, it is 
declared a false positive (FP) cluster and removed from the list of suspicious 
regions.  

   9.9.7    Results 

 We have applied this CAD algorithm to 322 mammograms obtained from 
the MIAS MiniMammographic Database of England. We found 150 truly 
suspicious regions and 1834 false alarms with 37 undeterminable regions. 
When we compare the results from the algorithm with the biopsy results (came 
with the data set), all 31 true positives (TP) were correctly recognized with 
one false negative (FN). There were 119 FPs. In terms of sensitivity, the CAD 
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achieved between 87% and 97% accuracy. In terms of the number of FPs, it 
attains 0.35 to 5 per image, with .04 to .26 FNs per image. These results 
compare favorably with respect to results from other CAD algorithms as 
well as statistics from the radiological community. An original mammogram 
and the algorithm output of the same mammogram are shown in Figures  9.33  
and  9.34 .     

     FIGURE 9.33:     Detected clusters in a segmented mammogram.  

     FIGURE 9.34:     Comparison between detected clusters with true positive.  
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   9.10    MULTICARRIER COMMUNICATION SYSTEMS ( MCCS ) 

 Multicarrier modulation is the principle of transmitting data by dividing the 
data stream into several parallel bitstreams, each of which has a much lower 
bit rate. Each of these substreams modulates an individual carrier. Figure  9.33  
shows the block diagram of the transmitter of a multicarrier communication 
system. A serial - to - parallel buffer segments the information sequences into 
frames of  N f   bits. The  N f   bits in each frame are parsed into  M  groups, where 
the  i th group is assigned  n i   bits so that

    n Ni f

i

M

=

−

∑ =
0

1

.     (9.48)   

 It is convenient to view the multicarrier modulation as having  M  independent 
channels, each operating at the same symbol rate   1/T . The data in each channel 
are modulated by a different subcarrier. We denote the signal input to the 
subchannels by  S i  ,  i     =    0,  …  ,  M     −    1. To modulate the  M  subcarriers, we use an 
orthogonal basis   Φ = { } =

−φ k
M

0
1, such that

   φ φ εδm m, .,� �=   

   9.10.1     OFDM  Multicarrier Communication Systems 

 Orthogonal frequency division multiplexing (OFDM) is a special form of 
MCCS with densely spaced subcarriers and overlapping spectra. It abandons 
the use of steep bandpass fi lters that completely separate the spectra of indi-
vidual subcarriers. Instead, OFDM time - domain waveforms are chosen such 
that mutual orthogonality is ensured, even though subcarrier spectra may 
overlap. OFDM is more robust against time - domain impulse interference due 
to its long symbol time, which tends to average out the effects. OFDM subcar-
riers may lose their mutual orthogonality if high - frequency errors occur in the 
channel. As shown in Figure  9.35 , the operating principle is simple. The data 
are transmitted on several subcarriers. The spectra of the subcarriers may 
overlap, but the mutual orthogonality is ensured. These subcarrier are summed 
together and transmitted over the channel. On the receiver end of the channel, 
the received signal is sent in parallel to the matched fi lters in each subchannel. 
The output of the matched fi lter is sampled before the decision is made on 
the signal. In general, each subchannel uses the binary phase - shift key (BPSK) 
scheme  [23]  to represent the signal.   

 When the channel behaves well and does not introduce frequency disper-
sion, the bit error rate ( P e  ) is very small. The imperfection may be due to noise 
in the channel. On the other hand, when frequency dispersion is present due 
to time variation of the channel parameter, the  P e   increases. Phase jitters and 
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receiver frequency offsets introduce interchannel interferences that degrade 
the  P e  .  

   9.10.2    Wavelet Packet – Based  MCCS  

 Instead of sine or cosine functions used in the OFDM, the WP - based 
MCCS uses different wavelet packets as the time - domain waveforms. If the 

     FIGURE 9.35:     A multicarrier communication system: (a) transmitter, (b) receiver.  
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     FIGURE 9.36:     A WP multicarrier communication system: (a) transmitter, (b) receiver.  

approximation function   ϕ   generates an orthonormal set in the  L  2  space, 
the corresponding wavelet packets are guaranteed to be orthogonal. The 
subcarriers are now wavelet packets, and the matched fi lters in the receiver 
are designed accordingly (Figure  9.36 ). Since there are a large number 
of wavelet packets to be chosen for the subcarriers, our experiment chooses 
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those whose spectra are very close to those of the OFDM. Under this con-
dition, we can make a fair comparison between the results of these two 
systems.   

 The curves in Figure  9.37  represent the  P e   verse symbols/s. Without any 
frequency offsets, all system performances are very close to being the same. 
When the frequency offset is 10%, the wavelet packet system performs slightly 
better than the OFDM. When we stress the system by allowing 25% offset, 
the WP system works far better than the OFDM. In particular, the Daubechies 
 D  3  orthogonal WP system seems to be the best. Comparing the spectra of the 
subcarriers in both systems, they are very similar. However, there appears to 
be an optimal set of wavelet packets through which the system produces the 
best performance under a highly stressed system.     

   9.11    THREE - DIMENSIONAL MEDICAL IMAGE VISUALIZATION 

 Medical image visualization is becoming increasingly popular for planning 
treatment and surgery. Medical images captured by various instruments are 
two - dimensional gray - level signals. A 3D image reconstructed from 2D slices 
provides much more information about surfaces and localization of objects in 
a 3D space. The medical community has increasingly taken advantage of 

     FIGURE 9.37:     Probability of error vs. signal to noise ratio for the 3D wavelet - packet 
multicarrier communication system for different frequency offsets.  
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recent advances in communication and signal - processing technology to 
improve diagnostic accuracy and treatment planning. Through teleradiology, 
it is now possible to have surgeons making diagnoses and plan treatments 
for a patient who lives at a remote location. This is possible by transmitting 
2D images of the infected region of the patient and reconstructing the 
image in 3D at a place where a group of experts can make an accurate diag-
nosis of the disease. Problems that have hindered the progress of this work 
include 

  1.     Large storage requirements. The 3D data sets occupy huge memory 
space, and storing them for easy retrieval is an important issue.  

  2.     Low transmission rate. Channel bandwidths for telephone lines or ISDN 
lines are small, thus slowing down the transmission speed.  

  3.     Low speed image reconstruction. Rendering algorithms is complex, and 
it takes time to maneuver these huge sets of data.    

 We use a 3D wavelet decomposition and reconstruction algorithm for com-
pression of 3D data sets. For region of interest (ROI) volume compression, 
the advantages of using wavelets are 

  1.     Upon reconstruction from a spectral - spatial localized representation of 
a highly correlated 3D image data, a more natural and artifact - free 3D 
visualization is produced, even at high compression rates.  

  2.     The localized nature of the transform in the space and frequency domains 
allows for an ROI transmission of data.    

   9.11.1    Three - Dimensional Wavelets and Algorithms 

 Similar to the 2D wavelet, the 3D wavelet decomposition can be per-
formed for discrete volume data by a fi ltering operation, as shown in 
Figure  9.38 .   

 After a single 3D level wavelet transform, the volume data would be 
decomposed into eight blocks, as shown in Figure  9.39 . The 3D volume can 
be approximated by using  

   a x y z a x n y m z lj
n m l
j j j j

n m l

+ ( ) = − − −( )∑1 2 2 2, , , ,
, ,

, , φ  

where   ϕ  ( x ,  y ,  z )    =      ϕ  ( x )  ϕ  ( y )  ϕ  ( z ) and   an m l
j
, ,  is the scaling function coeffi cients. 

We can add the  details  by adding the 3D wavelet functions at the resolu-
tion 2  j   such as
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     FIGURE 9.38:     Block diagram of a three - dimensional hierarchical wavelet decomposi-
tion algorithm.  
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where   wj
1 through   wj

7 are the wavelet coeffi cients. We can reconstruct the 
original 3D function volume to any refi nement by adding some of the  details  
listed above.  

   9.11.2    Rendering Techniques 

 Rendering is the process of generating images using computers. In data visu-
alization, our goal is to transform numerical data into graphical data, or 
 graphical primitives,  for rendering. 

 Traditional techniques assumed that when an object was rendered, the 
surfaces and their interactions with light were viewed. However, common 
objects such as clouds and fog are translucent and scatter light that passes 
through them. Therefore, for proper rendering, we need to consider the chang-
ing properties inside the object. 

 When we render an object using surface rendering techniques, we mathe-
matically model the object with a surface description such as points, lines, 
triangles, polygons, or surface splines. The interior of the object is not described 
or is only implicitly represented by the surface representation. 

 One of the key developments in volume visualization of scalar data was the 
marching cubes algorithm of Lorenson and Cline  [24] . The basic assumption 
of this technique and its higher - dimension counterparts is that a contour can 
pass through a cell in only a fi nite number of ways. A case table is constructed 
that enumerates all possible topological states of a cell, given combinations of 
scalar values at the cell points. The number of topological states depends on 
the number of cell vertices, and the number of inside/outside relationships a 
vertex can have with respect to the contour value. A vertex is considered to 
be inside a contour if its scalar value is larger the scalar value of the contour 
line. Vertices with scalar values less than the contour value are said to be 
outside the contour. For example, if a cell has four vertices and each vertex 
can be either outside or inside the contour, there are 2 4     =    16 possible ways 
that contour lines can pass through the cell. There are 16 combinations for a 
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square cell, but these can be reduced to four cases by using symmetry (Figure 
 9.40 ). Once the proper case is selected, the location of the contour - cell edge 
intersection can be calculated using interpolation. The algorithm processes a 
cell and then moves or  marches  to the next cell. After all cells are visited, the 
contour will be complete. (Note: The dotted line in Figure  9.40  indicates a 
contouring ambiguity.)   

 In summary, the marching algorithm proceeds as follows: 

  1.     Select a cell.  
  2.     Calculate the inside/outside state of each vertex of the cell.  
  3.     Create an index by storing the binary state of each vertex in a separate 

bit.  
  4.     Use the index to look up the topological state of the cell in a case table.  
  5.     Calculate the contour locations for each edge in the case table.     

   9.11.3    Region of Interest 

 Due to the localized nature of wavelets in frequency and space domains, 
Region of interest refi nement can be achieved by adding details in only the 
regions required. Figure  9.41  shows the ROI in the original image and in the 
wavelet domain for two levels of decomposition. Thus wavelets can be useful 
tool for compression as the image can be approximated by fi rst reconstructing 
the low - pass coeffi cients and the detail can be restored to the ROI solely by 
transmitting the appropriate high - pass coeffi cients in the ROI. The results of 
this volume rendering using a 3D wavelet algorithm are shown in Figures 
 9.42 – 9.44 .    

   9.11.4    Summary 

 The 3D wavelet decomposition and reconstruction algorithm is useful for 3D 
image visualization. It improves the speed of rendering algorithm and achieves 
data compression by using a region of interest approach.   

     FIGURE 9.40:     Inside/outside relationship of a square whose vertices have numerical 
value either higher or lower than a set threshold.  

= Less than iso-value of interest

= Greater than iso-value of interest
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     FIGURE 9.41:     The Region of interest (ROI) (a) in the original image and (b) in 
subimages.  

     FIGURE 9.42:     Multiresolution rendering of 93 slices of 64    ×    64, 8 - bit image using 
iso - surfacing with the marching cubes algorithm.  

     FIGURE 9.43:     Low resolution rendering except for the ROI (nose portion of the 
head).  
292
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   9.12    GEOPHYSICAL APPLICATIONS 

 Geophysical applications include characterization of subsurface geological 
structure; location, and identifi cation of subsurface objects; and estimation, 
mapping, and monitoring of material properties. A comprehensive discussion 
is beyond the scope of this book. We will, instead, concentrate on a few appli-
cations related to oil and gas exploration and production. 

 The primary goal of oilfi eld exploration is to identify, quantify, produce, and 
monitor oil and gas (in general, hydrocarbons) reserves. Hydrocarbons reside 
in rocks that are porous in nature. Earth formation can be viewed as a layered 
medium with each layer having its own properties. Some of these properties 
are conductivity, permittivity, density, elasticity, porosity,   †    and permeability.   ‡    

 Two main data acquisition techniques are seismic and well logging. A 
seismic source generates acoustic or elastic waves that propagate through the 
earth formation. Refl ections from various layers are recorded in receivers 
(geophones for land seismic or hydrophones for marine). The amount of 
data to be processed is huge. Seismic images are basically maps of acoustic 

     FIGURE 9.44:     Low resolution rendering except for the ROI (left side ear portion of 
the head).  

    †    Porosity represents the storage capacity of a rock. It is the ratio of void space to the total volume 
of the rock.  
    ‡    Permeability, not to be confused with magnetic permeability   μ  , is a measure of connectedness 
of pores in the rock. It represents how well fl uid residing in pore spaces can fl ow under pressure 
gradient.  
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impedance. These images can provide valuable information on oilfi eld reserve. 
Well logging, on the other hand, gives higher spatial resolution data. In a 
typical exploration environment, a wellbore (15 to 30   cm in diameter) is drilled 
to a depth that may extend to a few kilometers. Formation properties are 
measured using a combination of sensors (electromagnetic, nuclear, acoustic, 
optical, etc.) that move along the wellbore trajectory. Material properties as a 
function of depth are known as a  “ log. ”  

 Wavelet analysis has been used extensively in seismic data analysis, fl uid 
identifi cation, well log data processing and interpretation, upscaling, denois-
ing, detection of abnormalities, processing of nonstationary pressure transient 
signals, long - term downhole signals, and many others  [25 – 50] . In fact, it was 
the work of Morlet et al.  [25, 26]  in 1980s on problems related to seismic signal 
that revived the interest in wavelets. A few applications of wavelets are briefl y 
described in the next sections. 

   9.12.1    Boundary Value Problems and Inversion 

 Most applications of wavelets are in geophysical data analysis and interpreta-
tion. There are, however, some limited work in applying wavelets to boundary 
value problems and inversions in geophysics. Moridis et al.  [27] , for instance, 
have applied wavelets to solve the Buckley - Leverett nonlinear partial differ-
ential equation (PDE) arising from two - phase fl ow in one dimension. The 
equation can be represented as

    R x t
S
t

u
f S

x
, ,( ) = ∂

∂
+

∂ ( )
∂

= 0     (9.50)  

where  S  is the water saturation, ( x ,  t ) are space and time variables respectively, 
 u  is a parameter relating the porosity, the cross - section and the injection rate. 
The term  f ( S ) is a nonlinear function that depends on the mobilities of oil and 
water and the corresponding irreducible saturations. 

 Two classes of wavelet bases (Daubechies and Chui - Wang) and two methods 
(Galerkin and collocation) are reported in the paper by Moridis 
et al.  [27] . (See Chapter  10  for details on wavelets in boundary value prob-
lems.) The paper concludes that the Chui - Wang wavelets and a collocation 
method provide the optimum wavelet solution for the problem. 

 For many inverse problems, accounting for model uncertainty is an 
important issue, and Bayesian model averaging is commonly used for such 
purposes. This, however, requires choosing many model parameterizations 
and computing the posterior distribution for each model from scratch. For a 
1D seismic problem and generally for linear inverse problems, Bennett 
and Malinverno  [38]  show how wavelets provide a multiresolution family of 
model parameterizations and further give a fast algorithm for converting 
the posterior distribution for one model to another when changing its 
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local resolution. Gholami and Siahkoohi  [50]  have applied wavelets to solve 
linear and nonlinear inverse problems by constraining the solution to 
have sparse representations in two appropriate transformation domains simul-
taneously. They verifi ed the effectiveness of the method by applying it to 
synthetic examples as well as fi eld data from seismic travel time. Lu and 
Horne  [33]  have also applied wavelets and inverse problem theory to many 
issues related to reservoir modeling and simulation, such as system parameter-
ization, resolution and uncertainty tradeoff, and preservation of geological 
structures.  

   9.12.2    Well Log Analysis 

 There are numerous examples of application of wavelets to analyze individual 
well log or a combinations thereof. These applications include feature extrac-
tion, fl uid identifi cation, data compression, and image analysis. 

 Defi nition and interpretation of sedimentary facies often involve examina-
tion of well logs to assess values, trends, cycles, and sudden changes. The 
detection of cyclicity in sedimentary strata may point to the factors controlling 
sediment deposition. Cycles in rock successions may indicate depositional 
processes of varying complexity and origin. These characteristics may vary 
over a wide range of scales and cannot be easily identifi ed from the logs using 
traditional means. 

 Recent developments on wavelet analysis for well logs provide a visual 
representation of signals for interpretation and good supports for stratigraphic 
analyses. Wavelets make easy detection of cyclicities, transitions, unconformi-
ties, and other sudden changes in sedimentary successions. The continuous 
wavelet transform provides a space - scale analysis of the signal. Revera et al. 
 [39]  have used the CWT to evaluate the well log and core data from the 
Sherwood Sandstone Group, Irish Sea. The wavelet features extracted from 
several logs are processed and combined to form a feature vector. As a result, 
one can automatically identify boundaries separating the sabkha, dune, and 
fl uvial intervals. The cyclic behavior within each interval, representing differ-
ent depositional episodes, can also be identifi ed. Use of neural network and 
genetic algorithm have been applied in conjunction with wavelet analysis for 
zone detection and classifi cation  [35] . Yue et al.  [43]  have demonstrated that 
by proper depth - scale (similar to time - frequency) analysis of well log data, one 
could identify various zones with different types of fl uid (Figure  9.45 ). It 
should be noted here that the vertical axis in Figure  9.45  is relative depth, not 
the absolute which may be in the thousands of feet.   

 Another area where wavelet has been effective is in data compression. In 
measurement while drilling (MWD) applications, measured data are stored 
in the measuring instrument itself. Because of the drilling environment, 
there is no electrical connection to the surface for data transmission. A low - 
bit - rate telemetry system severely limits real - time data processing, inter-
pretation, and operational decision making at the surface. To reduce the 
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amount of data to be transmitted, yet maintain good fi delity, data compression 
becomes necessary. Bernasconi et al.  [30]  have investigated a lossy data com-
pression algorithm based on the wavelet transform suitable for downhole 
implementation and may be successfully applied to both online and off - line 
solutions. 

 To illustrate the effectiveness of data compression, a hierarchical decom-
position of a resistivity log from a deviated well is shown in Figure  9.46   [48] . 
For each level of decomposition, the number of data points is roughly halved. 
For example, the original log, shown in the top of Figure  9.46 , has 2991 data 
points. The lengths of  a  1 ,  a  2 ,  a  3 , and  a  4  are 1497, 750, 377, 190, respectively. The 
high - pass components,  w  1 ,  w  2 ,  w  3 , and  w  4 , represent differences at respective 
levels. The signal  a  4 , although much smaller in size, preserves the essential 
elements of the original signal.  

   9.12.3    Reservoir Data Analysis 

 Reservoir properties are measured by many sensors and at different resolu-
tions, resulting in a large volume of data that need to be analyzed. Such analy-
sis is important for better reservoir characterization, management, risk 
assessment, and key business decision. Conventional Fourier - based methods 

     FIGURE 9.45:     Wavelet - based depth - scale analysis of electrical logs to identify fl uid 
type  [43] .  
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     FIGURE 9.46:     Hierarchical decomposition of log data in highly deviated well. The 
horizontal axis is measured depth (feet); the vertical axis is resistivity in  Ω     −     m . 
 (Reprinted with permission from  [48] , copyright  ©  2008 by SPWLA, Petrophysics.)   
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such as spectral and geostatistical methods prove to be ineffective because 
they lack the properties for localizing the isolated discontinuities such as 
faults, fractures, high - permeability streaks, and changes in geologic facies in 
reservoir rocks. Since the wavelet transforms provide localization in spatial 
and spatial frequency domains, they are well suited for analyzing nonstation-
ary data. A discrete data set may be transformed into a family of data sets 
at different resolutions and spectral bands. They provide information of 
the structure at different scales and show the locations of sharp change in 
the data. 

 As mentioned before, rock properties are measured by different sensors 
and resolutions. One problem that is often encountered in reservoir model is 
estimating rock properties from geological data at fi ne scale. Reservoirs are 
inherently heterogeneous with multiphase fl uid. Wavelet methods provide 
a computationally effi cient and accurate approach for generating equivalent 
rock and fl uid properties under various geological and fl ow conditions 
 [29] . Panda et al.  [32]  have addressed the issues of data parameter estimation 
and scale change in reservoir characterization. They have considered both 1D 
and 2D data using the discrete wavelet transform as well as wavelet packet 
transform to compare results. Wavelet transform is applied to permeability 
data to demonstrate scaling of permeability, removal of noise, and edge 
detection. 

 In reservoir description, history matching can lead to nonunique and geo-
logically unrealistic property distribution. Shani and Horne  [41]  have pro-
posed a wavelet - based algorithm that integrates information from various 
sources to improve reservoir description.  

   9.12.4    Downhole Pressure Gauge Data Analysis 

 Downhole gauges for pressure and temperature are commonly used in oil and 
gas wells to understand dynamic behavior of the fi eld and to monitor reservoir 
condition and performance. Long - term data from permanent gauges are dif-
ferent from short - term pressure transient data in several aspects. Long - term 
data give insights on changes of reservoir behavior as the reservoir is pro-
duced. It provides a four - dimensional look at the reservoir information instead 
of a glimpse in time. These long - term data require special handling and inter-
pretation. A number of papers  [31, 34, 36, 45, 47, 49]  deal with application of 
wavelets to downhole pressure data. Most of these methods involve following 
major steps: 

  1.     Outlier removal.     Outliers in long - term data can be detected and 
effectively removed using denoising techniques. The outlier detection 
framework can be applied to any type of data, such as geostatistical 
data.  
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  2.     Denoising.     The wavelet thresholding method is useful for data denois-
ing. Data should be denoised before identifying the transients. Results 
using denoised data appear to be more reliable and robust.  

  3.     Transient identifi cation.     The transient identifi cation algorithm can effec-
tively locate the start of new transients. The approach is to identify the 
intermediate resolutions at which the noise singularities have disap-
peared while the signal singularity is still present.  

  4.     Data reduction.     Permanent pressure gauge data are usually enormous 
due to the long recording time. The pressure data may not change for a 
long period of time. The data reduction algorithm selects only the data 
that exceed a predetermined threshold.  

  5.     Flow history reconstruction.     Using a nonlinear regression model, the 
fl ow rate history is successfully reconstructed by assuming unknown 
model parameters and matching the pressure response constrained to 
known fl ow rates and production data.  

  6.     Behavioral fi ltering.     The behavioral fi ltering process intends to elimi-
nate aberrant transients from the data. It can be very effective in reduc-
ing the uncertainties in the nonlinear regression. Filtering can be carried 
out by comparing the variance aberrant transients to the average vari-
ance of the overall data.  

  7.     Data interpretation:     Due to the variation of the reservoir properties over 
long duration of the monitoring, a constant data window for analysis 
may not fi t the acquired data. A moving window analysis can account 
for gradual changes in reservoir parameters. Otherwise, the estimates of 
model parameters in that data region may not be accurate. The moving 
window analysis provides parameter distributions that capture some of 
the uncertainties that may be useful in assessing uncertainties in subse-
quent analysis and predictions. It can also be used in reservoir 
characterization.      

   9.13    COMPUTER PROGRAMS 

   9.13.1    Two - Dimensional Wavelet Algorithms  

 % 
 % PROGRAM            algorithm2D .m 
 % 
 % Decomposes and reconstructs a 256x256 image using Daubechies ’  

 % wavelet (m  =  2). The initial coeffi cients      are taken as      the 
 % function values themselves. 

 % test image 
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 picture  =  256       *       ones(256); 
 for i  =  1:256 
       picture(i,i)       =       0; 
       picture(i,257 - i)  =  0; 
 end 

 image(picture) 
 title( ’ Original      Image ’ ) 

 % Decomposition and      reconstruction fi lters 

 g0  =  [0.68301; 1.18301; 0.31699;  - 0.18301]; 
 k  =  [0; 1; 2; 3]; 
 g1  =  fl ipud(g0). * ( - 1). ̂ k; 
 h0  =  fl ipud(g0) / 2; 
 h1  =  fl ipud(g1) / 2; 

 % Decomposition process 

 % First      level decomposition 

 for k = 1:256 
          s = [0; 0; picture(:,k);      0; 0]; 
          x = conv(s,h0); 
          a = x(1:2:length(x));                        %downsampling 
          x = conv(s,h1); 
          w = x(1:2:length(x));                           %downsmapling 
          C(:,k) = [a;      w]; 
 end 

 for k = 1:256 + 8 
          s = rot90([0 0      C(k,:) 0      0],3); 
          x = conv(s,h0); 
          a = x(1:2:length(x));      %downsampling 
          x = conv(s,h1); 
          w = x(1:2:length(x));         %downsmapling 
          CC(k,:) = rot90([a; w]); 
 end 

 LL = CC(1:132,1:132); 
 HL = CC(133:264,1:132); 
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 LH = CC(1:132,133:264); 
 HH = CC(133:264,133:264); 

 fi gure(2) 
 %colormap(gray(256)) 
 axes( ’ position ’ ,[0.1 0.5         0.3         0.3]) 
 image(LL) 
 title( ’ LL ’ ) 
 axes( ’ position ’ ,[0.5 0.5         0.3         0.3]) 
 image(LH) 
 title( ’ LH ’ ) 
 axes( ’ position ’ ,[0.1 0.1         0.3         0.3]) 
 image(HL) 
 title( ’ HL ’ ) 
 axes( ’ position ’ ,[0.5 0.1         0.3         0.3]) 
 image(HH) 
 title( ’ HH ’ ) 

 clear C 
 clear CC 

 % Second      level      decompostion 

 for k = 1:132 
          s = LL(:,k); 
          x = conv(s,h0); 
          a = x(1:2:length(x));         %downsampling 
          x = conv(s,h1); 
          w = x(1:2:length(x));            %downsmapling 
          C(:,k) = [a;      w]; 
 end 

 for k = 1:128 + 8 
          s = rot90(C(k,:),3); 
          x = conv(s,h0); 
          a = x(1:2:length(x));         %downsampling 
          x = conv(s,h1); 
          w = x(1:2:length(x));            %downsmapling 
          CC(k,:) = rot90([a; w]); 
 end; 

 LL_LL = CC(1:68,1:68); 
 HL_LL = CC(69:136,1:68); 
 LH_LL = CC(1:68,69:136); 
 HH_LL = CC(69:136,69:136); 
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 clear      C 
 clear CC 

 % Reconstruction Process 

 % Second      level reconstruction 

 s = [LL_LL LH_LL; HL_LL      HH_LL]; 
 for k = 1:136 
          x = zeros(136,1); 
          x(1:2:136) = rot90(s(k,1:68),3); 
          y = zeros(136,1); 
          y(1:2:136) = rot90(s(k,69:136),3); 

          x = conv(x,g0) + conv(y,g1); 
          C(k,:) = rot90(x(4:length(x) - 4)); 
 end 

 s = C; 
 clear C 

 for k = 1:132 
          x = zeros(136,1); 
          x(1:2:136) = s(1:68,k); 
          y = zeros(136,1); 
          y(1:2:136) = s(69:136,k); 

          x = conv(x,g0) + conv(y,g1); 
          C(:,k) = x(4:length(x) - 4); 
 end 
 LL_rec = C; 
 clear C 

 % First level reconstruction 

 s = [LL_rec LH; HL      HH]; 
 for k = 1:264 
          x = zeros(264,1); 
          x(1:2:264) = rot90(s(k,1:132),3); 
          y = zeros(264,1); 
          y(1:2:264) = rot90(s(k,133:264),3); 
          x = conv(x,g0) + conv(y,g1); 
          C(k,:) = rot90(x(4:length(x) - 4)); 
 end 
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 s = C; 
 clear C 

 for k = 1:260 
          x = zeros(264,1); 
          x(1:2:264) = s(1:132,k); 
          y = zeros(264,1); 
          y(1:2:264) = s(133:264,k); 

          x = conv(x,g0) + conv(y,g1); 
          C(:,k) = x(4:length(x) - 4); 
 end 

 picture_rec = C(3:258,3:258); 
 fi gure(3) 
 image(picture_rec) 
 title( ’ Reconstructed      Image ’ )   

   9.13.2    Wavelet Packet Algorithms  

 % 
 % PROGRAM            waveletpacket.m 
 % 
 % Wavelet      packet      decomposition and      reconstruction of      a      function 

 % using Daubechies ’  wavelet (m  =  2). The initial      coeffi cients 
 % are taken as      the function values themselves. 
 % 

 % Signal 

 v1  =  100;                                       % frequency 
 v2  =  200; 
 v3  =  400; 
 r  =  1000;                                       %sampling      rate 

 k  =  1:100; 
 t  =  (k - 1) / r; 
 s  =  sin(2 * pi * v1 * t)  +  sin(2 * pi * v2 * t)  +  sin(2 * pi * v3 * t); 

 % Decomposition and      reconstruction fi lters 

 g0  =  [0.68301; 1.18301; 0.31699;  - 0.18301]; 
 k  =  [0; 1; 2; 3]; 
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 g1  =  fl ipud(g0). * ( - 1). ̂ k; 
 h0  =  fl ipud(g0) / 2; 
 h1  =  fl ipud(g1) / 2; 

 % Decomposition process 

 % First      level decomposition 

 x = conv(s,h0); 
 a = x(1:2:length(x));               %downsampling 
 x = conv(s,h1); 
 w = x(1:2:length(x));               %downsmapling 

 %second level      decomposition 
 x = conv(a,h0); 
 aa = x(1:2:length(x)); 
 x = conv(a,h1); 
 aw = x(1:2:length(x)); 

 x = conv(w, g0); 
 wa = x(1:2:length(x)); 
 x = conv(w, g1); 
 ww = x(1:2:length(x)); 

 % Reconstruction process 

 % Second      level reconstruction 

 x = zeros(2 * length(aa),1); 
 x(1:2:2 * length(aa)) = aa(1:length(aa)); 
 y = zeros(2 * length(aw),1); 
 y(1:2:2 * length(aw)) = aw(1:length(aw)); 
 x = conv(x,g0) + conv(y,g1); 
 a_rec = x(4:length(x) - 4); 

 x = zeros(2 * length(wa),1); 
 x(1:2:2 * length(aw)) = wa(1:length(wa)); 
 y = zeros(2 * length(ww),1); 
 y(1:2:2 * length(ww)) = ww(1:length(ww)); 
 x = conv(x, h0) + conv(y,h1); 
 w_rec = x(4:length(x) - 4); 

 % First level reconstruction 
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 y = zeros(2 * length(w_rec), 1); 
 y(1:2:2 * length(w_rec)) = w_rec(1:length(w_rec)); 
 x = zeros(2 * length(a_rec), 1); 
 x(1:2:2 * length(a_rec)) = a_rec; 

 x = conv(x,g0);  
 y = conv(y,g1);  
 y = x(1:length(y)) + y; 
 s_rec = y(4:length(y) - 4);     
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  CHAPTER TEN 

Wavelets in Boundary 
Value Problems     

     All of the applications discussed so far deal with processing a given function 
(signal, image, etc.) in the time, frequency, and time - frequency domains. We 
have seen that wavelet - based time - scale analysis of a function can provide 
important additional information that cannot be obtained by either time or 
frequency domain analyses. There is another class of problems that we quite 
often come across involve solving boundary value problems (BVPs). In BVPs 
functions are not known explicitly; some of their properties along with 
function values are known at a set of certain points in the domain of interest. 
In this chapter we discuss the applications of wavelets in solving such 
problems. 

 Much of the phenomena studied in electrical engineering can be described 
mathematically by second - order partial differential equations (PDEs). Some 
examples of PDEs are the Laplace, Poisson, Helmholtz, and Schr ö dinger 
equations. Each of these equations may be solved analytically for some but 
not for all cases of interest. These PDEs can often be converted to integral 
equations. One of the attractive features of integral equations is that boundary 
conditions are built - in and, therefore, do not have to be applied externally  [1] . 
Mathematical questions of existence and uniqueness of a solution may be 
handled with more ease with the integral form. 

 Either approach, differential or integral equations, to represent a physical 
phenomenon can be viewed in terms of an operator operating on an unknown 
function to produce a known function. In this chapter we deal with the linear 
operators. The linear operator equation is converted to a system of linear 
equations with the help of a set of complete bases, which is then solved for 
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the unknown coeffi cients. The fi nite element and fi nite difference techniques 
used to solve PDEs result in sparse and banded matrices, whereas integral 
equations almost always lead to a dense matrix. An exception is when the 
basis functions, chosen to represent the unknown functions, happen to be the 
eigen functions of the operator. 

 Two of the main properties of wavelets vis -  à  - vis boundary value problems 
are their hierarchical nature and the vanishing moments properties. Because 
of their hierarchical (multiresolution) nature, wavelets at different resolutions 
are interrelated, a property that makes them suitable candidates for multigrid -
 type methods in solving PDEs. On the other hand, the vanishing moment 
property by virtue of which wavelets, when integrated against a function of 
certain order, make the integral zero, is attractive in sparsifying a dense matrix 
generated by an integral equation. 

 A complete exposition of the application of wavelets to integral and dif-
ferential equations is beyond the scope of this chapter. Our objective is to 
provide readers with some preliminary theory and results on the application 
of wavelets to boundary value problems and give references where more 
details may be found. Since most often in electrical engineering problems we 
encounter integral equations, we emphasize their solutions using wavelets. We 
give a few examples of commonly occurring integral equations. The fi rst and 
the most important step in solving integral equations is to transform them into 
a set of linear equations. Both conventional and wavelet - based methods in 
generating matrix equations are discussed. Both the methods fall under the 
general categories of method of moments (MoM). We call methods with con-
ventional bases (pulse, triangular, piecewise sinusoid, etc.)  conventional MoM , 
while methods with wavelet bases will be referred to as  wavelet MoM . Some 
numerical results are presented to illustrate the advantages of the wavelet -
 based technique. We also discuss wavelets on a bounded interval. Some of the 
techniques applied to solving integral equations are useful for differential 
equations as well. At the end of this chapter we briefl y describe the applica-
tions of wavelets in PDEs, particularly the multiresolution time domain 
(MRTD) method, and provide references where readers can fi nd further 
information.  

   10.1    INTEGRAL EQUATIONS 

 Consider the following fi rst - kind integral equation

    f x K x x dx g x
a

b
′( ) ′( ) ′ = ( )∫ , ,     (10.1)  

where  f  is the unknown function, and the kernel  K  and the function  g  are 
known. This equation, depending on the kernel and the limits of integration, 
is referred to by different names, such as Fredholm, Volterra, convolution, 
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Laplace, Fourier, Hankel, Mellin, and Wiener - Hopf integral equation. Such 
integral equations appear frequently in practice  [2] ; for instance, in inverse 
problems in which the objective is to reconstruct the function  f  from a set of 
known data represented in the functional form of  g , one encounters the fi rst -
 kind integral equations. In some electromagnetic scattering problems, dis-
cussed next, the current distribution on the metallic surface is related to the 
incident fi eld in the form of an integral equation of type (10.1), with Green ’ s 
function as the kernel. Observe that solving for  f  is equivalent to fi nding 
the inverse transform of  g  with respect to the kernel  K ; in particular, if 
 K ( x ,  x  ′ )    =     e   −    jxx    ′  , then  f  is nothing but the inverse Fourier transform of  g . We 
assume that (10.1) has a unique solution. Although we discuss solutions of 
fi rst - kind integral equations only, the method can be extended to second - kind 
 [3, 4]  and higher - dimension integral equations  [5]  with little additional work. 

 As an example of (10.1), consider that an infi nitely long metallic cylinder 
is illuminated by a TM (Transverse Magnetic) plane wave, as shown in Figure 
 10.1 . An integral equation relating the surface current distribution and the 
incident fi eld can be formulated by enforcing the boundary condition  

    ˆ ˆ [ ] ; ,n E n E E Si s× ( ) = × ( ) + ( ) = ∈r r r r0     (10.2)  

where  E ,  E   i  , and  E   s   are the total, incident and scattered electric fi elds, respec-
tively. The surface of the cylinder is represented by  S . For the TM plane wave 
incident fi eld,

    E z H J z Ji z
i

i
i

szE H= = =ˆ , , ˆ ,�� � and     (10.3)  

where, as usual,  H   i   is the incident magnetic fi eld and  J  is the induced electric 
current on the surface of the cylinder. This electric current is related to the 
incident fi eld and the Green ’ s function by an integral equation

     FIGURE 10.1:     Cross - section of an infi nitely long metallic cylinder illuminated by a TM 
plane wave.  
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    j J G d Esz z
i

C
ωμ0 ′( ) ′( ) ′ = ( )∫ � � � � �, ,     (10.4)  

where

    G
j

H k� � � �, ,′( ) = ( ) − ′( )( )( )1
4 0

2
0 ρ ρ     (10.5)   

 with  k  0     =    2  π  /  λ    0 , and   λ    0  denoting the wavelength.   Ez
i  is the  z  – component of the 

incident electric fi eld and   H0
2( ) is the second - kind Hankel function of order 0. 

Here, the contour of integration has been parameterized with respect to the 
chord length. The fi eld component   Ez

i  can be expressed as

    E E j k x yz
i

i i� � �( ) = ( ) + ( )( )[ ]0 0exp cos sin ,φ φ     (10.6)  

where   ϕ  i   is the angle of incidence. 
 It is clear that (10.4) is of the form of equation  (10.1) . Our objective is to 

solve (10.4) for the unknown current distribution  J sz   and compute the radar 
cross - section (RCS); the latter being given by

    
RCS

0λ
ρ

η
π φ= =k

E

E

k
F

z
s

z
i

0

2

2
0
2

0
2

2

8
,     (10.7)  

where   η μ ε0 0 0=  is a known constant and

    F j k x y J dsz
C

φ φ φ= ′( ) + ′( )( )[ ] ′( ) ′∫ exp cos sin .0 � � � �     (10.8)   

 Scattering from a thin perfectly conducting strip, as shown in Figure  10.2 a, 
gives rise to an equation similar to (10.4). For this case, we have  

    J z G z z dz E zsy y
i

h

h
′( ) ′( ) ′ = ( )

−∫ ,     (10.9)  

where  G ( z ,  z  ′ ) is given by (10.5) 
 As a fi nal example, consider the scattering from a thin wire shown in Figure 

 10.2 b. Here the current on the wire and the incident fi eld are related to each 
other as

    I z K z z dz E zw
i′( ) ′( ) ′ = − ( )

−∫ ,
�

�
    (10.10)  

where the kernel  K w   is given by
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K z z
j

jk R
R

jk R R a k a R

w ,
exp

′( ) = −( )

× +( ) × −( ) +⎡⎣ ⎤

1
4

1 2 3

0

0
5

0
2 2

0
2 2 2

π ω ε

⎦⎦     (10.11)  

    E z E jk zi ( ) = ( )0 0sin exp cos .θ θ     (10.12)   

 This kernel is obtained by interchanging integration and differentiation 
in the integrodifferential form of Pocklington ’ s equation and by using 
the reduced kernel distance  R     =    [ a  2     +    ( z     −     z  ′ ) 2 ] 1/2  where  a  is the radius of the 
wire  [6] . 

 The fi rst step in solving any integral or differential equation is to convert 
these into a matrix equation which is then solved for the unknown coeffi cients. 
Let us rewrite (10.1) as  L K f     =     g  where

    L f f x K x x dxK
a

b
= ′( ) ′( ) ′∫ , .     (10.13)   

 The goal is to transform equation  (10.1)  to a matrix equation

    Ac b=     (10.14)  

     FIGURE 10.2:     (a) A thin half - wavelength long metallic strip illuminated by a TM wave. 
(b) A thin wire of length   λ   /2 and thickness   λ   /1000 illuminated by a plane wave.  
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where  A  is a two - dimensional matrix, sometimes referred to as impedance 
matrix,  c  is the column vector of unknown coeffi cients, and  b  is another 
column vector related to  g . Computation time depends largely on the way we 
obtain and solve (10.14). In the following sections, we describe conventional 
and wavelet basis functions that are used to represent the unknown 
function.  

   10.2    METHOD OF MOMENTS 

 Method of moments  [7]  is probably the most widely used technique for solving 
integral equations in electromagnetics. In conventional MoM, the boundary 
of integration is approximated by discretizing it into many segments. Then the 
unknown function is expanded in terms of known basis functions with unknown 
coeffi cients. These bases may be  “ global ”  (entire domain), extending the 
entire length [ a ,  b ], or they may be  “ local ”  (subdomain), covering only a small 
segment of the interval, or a combination of both. Finally, the resultant equa-
tion is tested with the same or different functions, resulting in a set of linear 
equations whose solution gives the unknown coeffi cients. 

 The unknown function  f ( x ) can be written as

    f x c xn n

n

( ) = ( )∑ Λ     (10.15)  

where { Λ   n  } form a complete set of basis functions. For an exact representation 
of  f ( x ) we may need an infi nite number of terms in the above series. However, 
in practice, a fi nite number of terms suffi ces for a given acceptable error. 
Substituting the series representation of  f ( x ) into the original equation  (10.1) , 
we get

    c L gn K n

n

N

Λ
=
∑ ≈

1

.     (10.16)   

 For the present discussion we will assume  N  to be large enough so that the 
above representation is exact. Now by taking the inner product of (10.16) with 
a set of  weighting functions  or  testing functions  {  ξ  m     :    m     =    1,  …  ,  M } we get a set 
of linear equations

    c L g m Mn m K n m

n

N

ξ ξ, , ; , ,Λ
=
∑ = =

1

1 …     (10.17)   

 which can be written in the matrix form as

    A c bmn n m[ ][ ] = [ ]     (10.18)  
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where

   A L m M n Nmn m K n= =ξ , ; 1, , ; = 1, ,Λ … …  

   b g m Mm m= =ξ , ; 1, ,… .   

 Solution of the matrix equation gives the coeffi cients { c n  } and thereby the 
solution of the integral equations. Two main choices of the testing functions 
are (1)   ξ  m  ( x )    =      δ  ( x     −     x m  ), where  x m   is a discretization point in the domain, and 
(2)   ξ  m  ( x )    =     Λ   m  ( x ). In the former case the method is called  point matching  
whereas the latter method is known as  Galerkin method . Observe that the 
operator  L K   in the preceding paragraphs could be any linear operator —
 differential as well as integral operator.  

   10.3    WAVELET TECHNIQUES 

 Conventional bases (local or global) when applied directly to the integral 
equations, generally lead to a dense (fully populated) matrix  A . As a result, 
the inversion and the fi nal solution of such a system of linear equations are 
very time consuming. In later sections, it will be clear why conventional bases 
give a dense matrix while wavelet bases produce sparse matrices. Observe that 
conventional MoM is a single - level approximation of the unknown function 
in the sense that the domain of the function ([ a ,  b ], for instance), are dis-
cretized only once, even if we use nonuniform discretization of the domain. 
Wavelet - MoM as we will discuss, on the other hand, is inherently multilevel 
in nature. 

 Beylkin et al.  [8]  fi rst proposed the use of wavelets in sparsifying an integral 
equation. Alpert et al.  [3]  used wavelet - like basis functions to solve second -
 kind integral equations. In electrical engineering, wavelets have been used 
to solve integral equations arising from electromagnetic scattering and 
transmission line problems  [5, 9 – 28] . In the following sections, we briefl y 
describe four ways in which wavelets have been used in solving integral 
equations. 

   10.3.1    Use of Fast Wavelet Algorithm 

 In the fast wavelet algorithm method, the impedance matrix  A  is obtained 
via the conventional method of moments using basis functions such as trian-
gular functions, and then wavelets are used to transform this matrix into a 
sparse matrix  [9, 10] . Consider a matrix  W  formed by wavelets. The transfor-
mation of the original MoM impedance matrix into the new wavelet basis is 
obtained as

    WAW W c WbT T⋅( ) =
−1

,     (10.19)   
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 which can be written as

    A c bw w w⋅ = ,     (10.20)  

where  W T   represents the transpose of the matrix  W . The new set of wavelet 
transformed linear equations are

    

A WAW

c W c

b Wb

w
T

w
T

w

=

= ( )
=

−1

.     (10.21)   

 The solution vector  c  is then given by

   c W WAW WbT T= ( )−1
.   

 For orthonormal wavelets  W T      =     W    − 1  and the transformation (10.19) is unitary 
similar  . It has been shown  [9, 10]  that the impedance matrix  A w   is sparse, which 
reduces the inversion time signifi cantly. Discrete wavelet transform (DWT) 
algorithms can be used to obtain  A w   and fi nally the solution vector  c .  

   10.3.2    Direct Application of Wavelets 

 In another method of applying wavelets to integral equations, wavelets are 
directly applied — that is, fi rst the unknown function is represented as a super-
position of wavelets at several levels (scales) along with the scaling function 
at the lowest level, before using Galerkin ’ s method described before. 

 Let us expand the unknown function  f  in (10.1) in terms of the scaling func-
tions and wavelets as

    f x w x a xk s k s k s k s

k K

K s

k K

K s

s s

su
( ) = ( ) + ( )

= ==

( ) ( )

∑ ∑∑ , , , , .ψ φ
1 1

0

0

0 0     (10.22)   

 It should be pointed out here that the wavelets {  ψ  k   ,   s  } by themselves form a 
complete set; therefore, the unknown function could be expanded entirely in 
terms of the wavelets. However, to retain only a fi nite number of terms in the 
expansion, the scaling function part of (10.22) must be included. In other 
words, {  ψ  k   ,   s  }, because of their band - pass fi lter characteristics, extract succes-
sively lower and lower frequency components of the unknown function with 
decreasing values of the scale parameter  s , while   φk s, 0, because of its low - pass 
fi lter characteristics, retains the lowest frequency components or the coarsest 
approximation of the original function. 

 In Equation  (10.22) , the choice of  s  0  is restricted by the order of 
wavelet, while the choice of  s u   is governed by the physics of the problem. In 
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applications involving electromagnetic scattering, as a rule of thumb, the 
highest scale  s u   should be chosen such that   1 2 1su+  does not exceed 0.1  λ    0 . 

 The expansion of  f  given by (10.22) is substituted in (10.1), and the resultant 
equation is tested with the same set of expansion functions. This result gives 
a set of linear equations as

    
A A

A A

a

w

Ek s k

n s n s

z
i

φ φ φ ψ

ψ φ ψ ψ

, ,

, ,

,

, ,

,[ ] [ ]
[ ] [ ]
⎡

⎣
⎢

⎤

⎦
⎥

[ ]
[ ]
⎡

⎣
⎢

⎤

⎦
⎥ =

0
φφ

ψ
′ ′

′ ′ ′ ′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

k s k

z
i

n s n s
E

,

, ,
,

,
0

    (10.23)  

where

    A Lk s K k s k kφ φ φ φ, , , ,: ,[ ] = ( )′ ′0 0     (10.24)  

    A Lk s K n s k n sφ ψ φ ψ, , , , ,: ,[ ] = ( )′ ′0     (10.25)  

    A Ln s K k s k n sψ φ ψ φ, , , , ,: ,[ ] = ( )′ ′ ′ ′0     (10.26)  

    A Ln s K n s n s n sψ ψ ψ ψ, , , , , ,: ,[ ] = ( )′ ′ ′ ′    (10.27)  

    f g f x g x dx
a

b
, : ,= ( ) ( )∫     (10.28)  

    L f x f x K x x dxK
a

b
( )( ) = ′( ) ′( ) ′∫: , .     (10.29)   

 In (10.23), [ w n   ,   s  ]  n   ,   s   is a one - dimensional vector and should not be confused 
with a two - dimensional matrix. Here the index  n  is varied fi rst for a fi xed 
value of  s . 

 We can explain the denseness of the conventional MoM and the sparseness 
of the wavelet MoM by recalling the fact that unlike wavelets, the scaling 
functions discussed in this book do not have vanishing moments properties. 
Consequently, for two pulse or triangular functions   ϕ   1  and   ϕ   2  (usual bases for 
the conventional MoM and suitable candidates for the scaling functions), even 
though  〈   ϕ   1,    ϕ   2  〉     =    0 for nonoverlapping supports,  〈   ϕ   1,   L k  ϕ   2  〉  is not very small 
since  L k  ϕ   2  is not small. On the other hand, as is clear from the vanishing 
moment property — namely

    t t dt p mp
mψ ( ) = = −

−∞

∞

∫ 0 0 1; , ,…     (10.30)   

 that the integral vanishes if the function against which the wavelet is being 
integrated behaves as a polynomial of a certain order locally. Away from the 
singular points the kernel usually has a locally polynomial behavior. 
Consequently, the integrals such as ( L K  ψ  n   ,   s  ) and the inner products involving 
the wavelets are very small for nonoverlapping supports. 

 Because of its total positivity property, the scaling function has a smoothing 
or variation diminishing effect on a function against which it is integrated. The 
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smoothing effect can be understood as follows. If we convolve two pulse func-
tions, both of which are discontinuous but totally positive, the resultant func-
tion is a linear  B  - spline that is continuous. Likewise, if we convolve two linear 
 B  - splines, we get a cubic  B  - spline that is twice continuously differentiable. 
Analogous to these, the function   LK k sφ , 0 is smoother than the kernel  K  itself. 
Furthermore, because of the MRA properties that give

    φ ψk s s s s, ,, , ,� ′ = ≤ ′0     (10.31)   

 the integrals   φ ψ′ ( )k s K n sL, 0 ,,  and   ψ φ′ ′ ( )n s K k sL, ,, 0  are quite small. 
 Although diagonally dominant, the [ A  ϕ   ,   ϕ   ] portion of the matrix usually does 

not have entries that are very small compared to the diagonal entries. In the 
case of the conventional MoM, all the elements of the matrix are of the form 
 〈   ϕ  k    ′ ,   s  , ( L K  ϕ  k   ,   s  ) 〉 . Consequently, we cannot threshold such a matrix to sparsify it. 
In the case of the wavelet MoM, the entries of [ A  ϕ   ,   ϕ   ] occupy a very small 
portion (5    ×    5 for linear and 11    ×    11 for cubic spline cases) of the matrix, while 
the rest contain entries whose magnitudes are very small compared to the 
largest entry, hence a signifi cant number of entries can be set to zero without 
affecting the solution appreciably.  

   10.3.3    Wavelets in Spectral Domain 

 In the preceding chapters, we have used wavelets in the time (space) domain. 
In previous sections, the local support and vanishing moment properties of 
wavelet bases were used to obtain a sparse matrix representation of an integral 
equation. In some applications, particularly in the spectral domain methods in 
the electromagnetic problems, wavelets in the spectral domain may be quite 
useful. Whenever we have a problem in which the unknown function is 
expanded in terms of the basis function in the time domain while the numeri-
cal computation takes place in the spectral domain, we should look at the 
time - frequency window product to determine the effi ciency of using the par-
ticular basis function. Because of the nearly optimal time (space - frequency 
wave number) window product of the cubic spline and the corresponding 
semiorthogonal wavelet, the double integral appearing in the transmission line 
discontinuity problems can be evaluated effi ciently. In this section we consider 
an example from a transmission line discontinuity to illustrate the usefulness 
of wavelets in the spectral domain. 

 Transmission line confi gurations are shown in Figure  10.3 . Formulation of 
the integral equation for these confi gurations is not the purpose of this section. 
Readers may refer to [ 5 ,  29 ,  30 ] for details on such formulation. The integral 
equation obtained is  

    Λ( , ) ( ) ( ) 0k k f k k dk dkx y y y k y x y
ˆ φ̂ − =∫     (10.32)   
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 with

    Λ( , ) ( , ) ( )
( )

( ),0
2

2

2
k k G k k J k d

k p

k p
x y yy x y x

x

x
=

⎧
⎨
⎩

⎫
⎬
⎭

ˆ cos

sin
    (10.33)  

where  G yy   is the appropriate Green ’ s function and cos 2  ( k x p ) and sin 2  ( k x p ) 

refer to even and odd modes, respectively. The functions   ˆ , ˆf k ky y k y( ) ( )φ  are the 
Fourier transforms of the basis functions representing the  y  - dependence of 
the magnetic current. To fi nd the propagation constant,  k ye  , of any infi nite 

     FIGURE 10.3:     (a) Open coupled - microstrip and (b) short - circuited coupled slot line 
with uniaxial substrate.  
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transmission line, we assume that all the fi eld and current distributions have 
their  y  - dependence as   e jkyey− . It is easy, for this case, to arrive at

    ΛHM
x ye xk k dk, .( ) =

−∞

∞

∫ 0     (10.34)   

 Since the transverse dimensions of slots (strips) are very small compared 
with the wavelength, we assume that the current distribution, suffi ciently away 
from the discontinuity, is due to the fundamental mode only. Near the discon-
tinuity, in addition to the entire domain basis functions resulting from the 
fundamental mode, subdomain basis functions are used to expand the unknown 
current (magnetic or electric) to account for the deviation caused by the pres-
ence of higher - order modes generated by the discontinuity. We use three 
different sets of subdomain basis functions — (1) piecewise sinusoids (PWS), 
(2) cubic  B  - splines, and (3) combination of cubic  B  - splines and the corre-
sponding s.o. wavelets. 

 For cases (1) and (2), the longitudinal variation of current is given as

    f y s y s y a yy i r k k

k

K

( ) = ( ) ± ( ) + ( )
=
∑Γ φ

0

,     (10.35)  

where  K     >    0 and the plus and minus signs apply to transmission line confi gura-
tions with strips (Figure  10.3 a), and with slots (Figure  10.3 b), respectively. 
Ideally, the magnitude of the refl ection coeffi cient  Γ  should be 1; we will see, 
however, that | Γ |    <    1, indicating the pseudo nature of such terminations, shown 
in Figure  10.3 . The entire domain functions ( s i  ) and ( s r  ), representing incident 
and refl ected waves, respectively, are given below

    s y k y U y
k

j k y U yi ye
ye

ye( ) = ( ) − −
⎛
⎝⎜

⎞
⎠⎟
− ( ) −( ): cos sin ,

π
2

    (10.36)  

    

ˆ exps k j
k
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k

k k
j k k

i y
y

ye

ye

y ye
y ye

( ) = −
⎛
⎝⎜

⎞
⎠⎟
−

⎧
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⎫
⎬
⎭

×
−

+ −(

π

π δ

2

22 2 )) − +( )[ ]⎡

⎣
⎢

⎤

⎦
⎥δ k ky ye     (10.37)  

    s y k y U y
k

j k y U yr ye
ye

ye( ) = ( ) − −
⎛
⎝⎜

⎞
⎠⎟
+ ( ) −( ): cos sin ,

π
2

    (10.38)  
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r y
y
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where  k ye   is the propagation constant for the fundamental mode and  U ( y ) is 
the Heaviside function, defi ned in the usual way as

    U y
y

y
( ) =

≥
<

⎧
⎨
⎩

1 0

0 0

;

.
    (10.40)   

 The subdomain basis function   ϕ  k   for the piecewise sinusoid case is

    φ τk y y k( ) = + +( )( ): ∩ 1     (10.41)  

    ∩ y

k y

k
yye
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−( )( )

( ) ≤⎧
⎨
⎪

⎩⎪
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, ,
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τ
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    (10.42)  

    ˆ
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τ τ
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k e
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k k

k k

k
y( ) =

−
× ( ) − ( )

(
− +( )1

2 2

2

)) ,     (10.43)   

 with   0 2< <τ π / kye. For the cubic  B  - spline case,

    φ
τk y N
y

k( ) = + +⎛
⎝

⎞
⎠: 4 4     (10.44)  
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j k k y
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y( ) = ( )⎛
⎝⎜

⎞
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− +( )2
4

2
2

    (10.45)   

 For the third choice of basis function, we have the following representation 
of  f y  ( y )

    f y s y s y w y a yy i r n s n s k k s

n

N s

k

K s

( ) = ( ) ± ( ) + ( ) + ( )
= =

( ) ( )

∑ ∑Γ , , ,ψ φ
0 0

0

0

,,
s s=
∑

0

0

    (10.46)  

where  N ( s ),  K ( s  0 )    ≥    0,  s  0     ≤    0, and

    φ
τk s

s

N
y

k, := + +
⎛
⎝⎜

⎞
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2
4     (10.47)  

    ψ ψ
τk s

s y
k, := + +

⎛
⎝⎜

⎞
⎠⎟4

2
7     (10.48)  
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    (10.49)  

    
Q k k k k

k

y y y y( ) = ( ) − ( ) + ( ) −

×

: [cos cos cos ]
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1
2520

3 2 120 1191 2 1208

4
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   (10.50)   
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 Observe that the defi nitions of   ϕ  k   ,   s   and   ψ  k   ,   s   are slightly different from the ones 
used in previous chapters. The time - frequency window products of PWS, cubic 
spline, and the cubic spline wavelet are 0.545, 0.501, and 0.505, respectively. 
Observe that the product for the linear spline is 0.548; therefore, the double 
integral as discussed before will take about the same time to compute in both 
cases. 

 Application of the Galerkin method with the basis functions previously 
described leads to a set of linear equations, the solution of which gives the 
desired value of the refl ection coeffi cient  Γ . For the fi rst two, we have

    A A
c

Bp p q
k

p, , ,1[ ] [ ][ ] [ ]
⎡
⎣⎢

⎤
⎦⎥
= [ ]Γ

    (10.51)  

where, in the case of cubic splines, the matrix elements take the form of
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 with  p     =    1,  …  ,  M     +    2 and  q     =    2,  …  ,  M     +    2. Matrix elements for the PWS can 
be written in a similar way. In both cases, we observe that

    A A p Mp q q p, , ; , , ,= = +− +1 1 1 1…     (10.54)  

    A A p M q Mp q p q, , ; , , ; , , ,= = + = +− −1 1 2 2 3 2… …     (10.55)   

 indicating the symmetry and Toeplitz nature of the major portion of the 
matrix. 

 For the discontinuity problem, we fi nd that the third representation (10.46), 
does not give much advantage over the second one. Unlike the scattering 
problem in which the domain of the unknown function may be several wave-
lengths long, for most of the discontinuity problems, the domain of unknown 
is approximately one wavelength, since the effect of discontinuity on the 
current distribution is localized. The size of the matrix in the case of the dis-
continuity problems is usually small compared with the scattering problem. 
Consequently, achieving sparsity of the matrix may not be a major concern. 
On the other hand, the spectral integrals associated with each matrix element 
in the case of the discontinuity problems usually takes a considerably large 
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322  WAVELETS IN BOUNDARY VALUE PROBLEMS 

amount of CPU time. Faster computations of these integrals are achieved 
using cubic splines due to their decay property which is better than that of 
PWS [see (10.43), (10.45)]. For further details on the numerical results for the 
refl ection coeffi cients, the reader is referred to [ 5 ,  29 ,  30 ].  

   10.3.4    Wavelet Packets 

 Recently, discrete wavelet packet (DWP) similarity transformations has been 
used to obtain a higher degree of sparsifi cation of the matrix than is achievable 
using the standard wavelets  [21] . It has also been shown that DWP method 
gives faster matrix - vector multiplication than some of the fast multipole 
methods. 

 In the standard wavelet decomposition process, fi rst we map the given func-
tion to a suffi ciently high resolution subspace ( V M  ) and obtain the approxima-
tion coeffi cients { a k   ,   M  } (see Chapter  7 ). The approximation coeffi cients { a k   ,   M    − 1 } 
and wavelet coeffi cients { w k   ,   M    − 1 } are computed from { a k   ,   M  }. This process 
continues — that is, the coeffi cients for the next lower level  M     −    2 are obtained 
from { a k   ,   M    − 1 }, and so on. Observe that in this scheme, only approximation coef-
fi cients { a k   ,   s  } are processed at any scale  s ; the wavelet coeffi cients are merely 
the outputs and remain untouched. In a wavelet packet, the wavelet coeffi -
cients are also processed, which, heuristically, should result in higher degree 
of sparsity since in this scheme, the frequency bands are further divided com-
pared with the standard decomposition scheme.   

   10.4    WAVELETS ON THE BOUNDED INTERVAL 

 In the previous chapters we described wavelets and scaling functions defi ned 
on the real line. If we use these functions directly to expand the unknown 
function of an integral equation, then some of the scaling functions and wave-
lets will have to be placed outside the domain of integration, thus necessitating 
the explicit enforcement of the boundary conditions. In signal processing, uses 
of these wavelets lead to undesirable jumps near the boundaries (see Figures 
 8.8  –  8.10 ). We can avoid this diffi culty by periodizing the scaling function 
as  [31] 

    φ φk s
p

k s x, ,: ;= +( )∑ �
�

    (10.56)  

where the superscript  p  implies periodic case. Periodic wavelets are 
obtained similarly. It is easy to show that if   ˆ ,φ π δ2 0k k( ) = , which is generally 
true for the scaling functions, then   ∑ −( ) ≡k x kφ 1. If we apply the last relation, 
which (as discussed in Chapter  5 ) is also known as the partition of unity to 
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(10.56), we can show that   φ ψ0 0 , ; : 0 1 2 , 0 2 1, , , , , ,p
k s
p ss k{ } ∈ = { } = −{ }+∪ � … …  

generates  L  2 ([0, 1]). 
 The idea of periodic wavelets has been used  [18 – 20] . However, as men-

tioned in  [31] , unless the function that is being approximated by the periodized 
scaling functions and wavelets is already periodic, we still have edge problems 
at the boundaries. Therefore, we follow a different approach to account for 
the boundary effects. We apply the compactly supported s.o. spline wavelets 
[ 23 ,  32 ,  33 ], which are specially constructed for the bounded interval [0, 1]. 
Other ways of obtaining intervallic wavelets are described in [ 34 ,  35 ]. 

 As we discussed in Chapter  5 , splines for a given simple knot sequence can 
be constructed by taking piecewise polynomials between the knots and joining 
them together at the knots in such a way as to obtain a certain order of overall 
smoothness. For instance, consider a knot sequence {0, 1, 2, 3, 4}. With this 
sequence we can construct the cubic spline ( m     =    4) by taking polynomials of 
order 4 between knots, such as [0, 1), [1, 2),  …  , and joining them together at 
1, 2, and 3 so that the resultant function (cubic spline) is in  C   2  — that is, up to 
its second derivative is continuous in [0, 4). In general, cardinal  B  - splines 
of order  m  are in  C m    − 2 . However, if we have multiple knots, say for example 
{0, 0, 1, 2, 3}, then the smoothness at the point with multiple knots decreases. 
It is easy to verify that the smoothness decreases by  r     −    1 at a point 
with  r  – tuple knots. Observe that at the boundary points 0 and 1, the knots 
coalesce and form multiple knots. Inside the interval, though, the knots are 
simple, and hence the smoothness remains unaffected. 

 For  s     ∈     Z   +  , let   tk
s

k m

s m{ } =− +
+ −

1

2 1
 be a knot sequence with  m  - tuple knots at 0 and 1, 

and simple knots inside the unit interval:
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    (10.57)   

 For the knot sequence (10.57) we defi ne the  B  - spline ( m     ≥    2) as  [36] 

    B x t t t t t t xm k s k m
s

k
s

k
s

k
s

k m
s

t
m

, , : , , , ,( ) = −( ) × ⎡⎣ ⎤⎦ −( )+ + + +
−

1
1…     (10.58)  

where   t tk
s

k m
s

t
, ,… +⎡⎣ ⎤⎦ , is the  m th order divided difference of   t x m−( )+

−1 with 
respect to  t  and ( x )  +     : =    max(0,  x ). Wavelets can be obtained from the corre-
sponding spline scaling functions. Instead of going into the details of construc-
tion of scaling functions and wavelets on bounded interval, we provide their 
explicit formulas in Section  10.9 . Interested readers may fi nd details in [ 23 , 
 32 ,  33 ]. 

 The support of the inner (without multiple knots)  B  - spline occupies  m  seg-
ments and that of the corresponding s.o. wavelet occupies 2 m     −    1 segments. 
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At any scale  s  the discretization step is 1/2  s   which, for  s     >    0, gives 2  s   number 
of segments in [0, 1]. Therefore, to have at least one inner wavelet, the follow-
ing condition must be satisfi ed:

    2 2 1s m≥ − .     (10.59)   

 Let  s  0  be the scale for which the condition (10.59) is satisfi ed. Then for each 
 s     ≥     s  0 , let us defi ne the scaling functions   ϕ  m   ,   k   ,   s   of order  m  as

    φm k s

m k s
s s

m m k s
s sx

B x k m

B s, ,

, ,

, ,:

, , , ;
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    (10.60)  

and the wavelets   ψ  m   ,   k   ,   s   as
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    (10.61)   

 Observe that the inner scaling functions ( k     =    0,  …  , 2  s      −     m ) and the wavelets 
( k     =    0,  …  , 2  s      −    2 m     +    1) are the same as those for the nonboundary case. There 
are  m     −    1 boundary scaling functions and wavelets at 0 and 1, and 2  s      −     m     +    1 
inner scaling functions and 2  s      −    2 m     +    2 inner wavelets. Figure  10.4  shows all 
the scaling functions and wavelets for  m     =    2 at the scale  s     =    2. All the scaling 
functions for  m     =    4 and  s     =    3 are shown in Figure  10.5 a, while Figure  10.5 b 
gives only the corresponding boundary wavelets near  x     =    0 and one inner 
wavelet. The rest of the inner wavelets can be obtained by simply translating 
the fi rst one whereas the boundary wavelets near  x     =    1 are the mirror images 
of ones near  x     =    0.    

   10.5    SPARSITY AND ERROR CONSIDERATIONS 

 The study of the effects of thresholding the matrix elements on the sparsity 
and error in the solution is the objective of this subsection. By  thresholding , 
we mean setting those elements of the matrix to zero that are smaller (in 
magnitude) than some positive number   δ   (0    ≤      δ      <    1), called the  threshold 
parameter , times the largest element of the matrix. 

 Let  A  max  and  A  min  be the largest and the smallest elements of the matrix 
in (10.23). For a fi xed value of the threshold parameter   δ  , defi ne percent rela-
tive error ( ε    δ   ) as

    εδ
δ: ,=

−
×

f f

f
0 2

0 2

100     (10.62)  
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and percent sparsity ( S  δ   ) as

    S
N N

N
δ

δ: .= − ×0

0
100     (10.63)   

 In the above,  f  δ    represents the solution obtained from (10.23) when the 
elements whose magnitudes are smaller than   δ A  max  have been set to 

     FIGURE 10.4:     (a) Linear spline ( m     =    2) scaling functions on [0, 1], (b) Linear spline 
wavelets on [0, 1]. The subscripts indicate the order of spline ( m ), scale ( s ), and the 
position ( k ), respectively.  Reprinted with permission from [ 23 ]; copyright  ©  1995 by 
IEEE .  
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zero. Similarly,  N  δ    is the total number of elements left after thresholding. 
Clearly,  f  0 ( x )    =     f ( x ) and  N  0     =     N  2 , where  N  is the number of unknowns. If 
we use the intervallic wavelets of Section  10.4  in solving (10.1), then 
number of unknowns ( N ) in (10.23), interestingly, does not depend on  s  0 . This 
number  N  is

    N msu= + −+2 11 .     (10.64)   

     FIGURE 10.5:     (a) Cubic spline ( m     =    4) scaling functions on [0, 1], (b) Cubic spline 
wavelets on [0, 1]. The subscripts indicate the order of spline ( m ), scale ( s ), and the 
position ( k ), respectively.  Reprinted with permission from [ 23 ]; copyright  ©  1995 by 
IEEE .  
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 Table  10.1  gives an idea of the relative magnitudes of the largest and the 
smallest elements in the matrix for conventional and wavelet MoM. As is 
expected, because of their higher vanishing moment property, cubic spline 
wavelets give the higher ratio  A  max / A  min .   

 With the assumption that the [ A  ϕ    ,    ϕ   ] part of the matrix is unaffected by the 
thresholding operation, a fairly reasonable assumption, it can be shown that

    S
N

m m

N

s s

δ ≤ − −
+ −( ) + −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
×1

1 2 1 2 2
100

0 0

2 ,     (10.65)  

where  N  is given by (10.64). 
 As mentioned before [see  (10.64) ], the total number of unknowns is inde-

pendent of  s  0 , the lowest level of discretization. However, it is clear from 
(10.65) that the upper limit of  S  δ    increases with the decreasing values of  s  0 . 
Therefore, it is better to choose  s  0     =     ⎡ log 2 (2 m     −    1) ⎤ , where  ⎡  x  ⎤  represents the 
smallest integer that is greater than or equal to  x .  

   10.6    NUMERICAL EXAMPLES 

 In this section we present some numerical examples for the scattering prob-
lems described in Section  10.1 . Numerical results for strip and wire problems 
can be found in [ 14 ]. For more applications of wavelets to electromagnetic 
problems, readers may refer to [ 22 ]. 

 The matrix equation  (10.23)  is solved for a circular cylindrical surface  [23] . 
Figures  10.6  and  10.7  show the surface current distribution using linear and 
cubic splines, respectively, for different sizes of the cylinder. The wavelet 
MoM results are compared with the conventional MoM results. To obtain the 
conventional MoM results, we have used triangular functions for both expand-
ing the unknown current distribution and testing the resultant equation. The 
conventional MoM results have been verifi ed with the series solution  [37] . 
Figure  10.8  gives the radar cross section for linear and cubic spline cases. The 
results of the conventional MoM and the wavelet MoM agree very well.   

  TABLE 10.1:    Relative Magnitudes of the Largest and the Smallest Elements of the 
Matrix for Conventional and Wavelet MoM.  a     =    0.1  λ   0  

     
   Conventional 

 MoM  
   Wavelet 

 MoM ( m     =    2)  
   Wavelet 

 MoM ( m     =    4)  

  Amax    5.377    0.750    0.216  
  Amin    1.682    7.684    ×    10  − 8     8.585    ×    10  − 13   
  Ratio    3.400    9.761    ×    10 6     2.516    ×    10 11   

  Source :   Reprinted with permission from [ 23 ]; copyright  ©  1995 by IEEE. 
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     FIGURE 10.6:     Magnitude and phase of the surface current distribution on a metallic 
cylinder using linear spline wavelet MoM and conventional MoM.  Reprinted with 
permission from [ 23 ]; copyright  ©  1995 by IEEE .  
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     FIGURE 10.7:     Magnitude and phase of the surface current distribution on a metallic 
cylinder using cubic spline wavelet MoM and conventional MoM.    

c10.indd   329c10.indd   329 11/9/2010   10:18:51 AM11/9/2010   10:18:51 AM



330  WAVELETS IN BOUNDARY VALUE PROBLEMS 

     FIGURE 10.8:     Radar cross - section of a metallic cylinder computed using linear ( m     =    2) 
and cubic ( m     =    4) spline wavelet MoM and conventional MoM.  
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 The effects of   δ   on the error in the solution and the sparsity of the matrix 
are shown in Figure  10.9 . The magnitude of error increases rapidly for the 
linear spline case. Figure  10.10  shows a typical matrix obtained by applying 
the conventional MoM. A darker color on an element indicates a larger 
magnitude. The matrix elements with   δ      =    0.0002 for the linear spline case are 

     FIGURE 10.9:     Error in the solution of the surface current distribution as a function of 
the threshold parameter   δ  .  Reprinted with permission from [ 23 ]; copyright  ©  1995 by 
IEEE .  

     FIGURE 10.10:     A typical gray - scale plot of the matrix elements obtained using con-
ventional MoM. The darker color represents larger magnitude.  
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shown in Figure  10.11 . In Figure  10.12 , we present the thresholded matrix 
(  δ      =    0.0025) for the cubic spline case. The [ A  ψ    ,    ψ   ] part of the matrix is almost 
diagonalized. Figure  10.13  gives an idea of the point - wise error in the solution 
for linear and cubic spline cases.   

 It is worth pointing out here that regardless of the size of the matrix, only 
5    ×    5 in the case of the linear spline and 11    ×    11 in the case of the cubic splines 
(see the top - left corners of Figures  10.11  and  10.12 ) will remain unaffected by 

     FIGURE 10.11:     A typical gray - scale plot of the matrix elements obtained using linear 
wavelet MoM. The darker color represents larger magnitude.  Reprinted with permis-
sion from [ 23 ]; copyright  ©  1995 by IEEE .  

     FIGURE 10.12:     A typical gray - scale plot of the matrix elements obtained using cubic 
wavelet MoM. The darker color represents larger magnitude.  Reprinted with permis-
sion from [ 23 ]; copyright  ©  1995 by IEEE .  
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     FIGURE 10.13:     The magnitude of the surface current distribution computed 
using linear ( m     =    2) and cubic ( m     =    4) spline wavelet MoM for different values of the 
threshold parameter   δ  .  Reprinted with permission from [ 23 ]; copyright  ©  1995 by 
IEEE .  
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  TABLE 10.2:    Effect of Wavelet Transform Using Semiorthogonal and Orthonormal 
Wavelets on the Condition Number of the Impedance Matrix   a    

   Basis and 
Transform  

   Number 
of 

Unknowns  
   Octave 
Level       δ        S  δ          ε   δ     

   Condition Number   κ    

   Before 
Threshold  

   After 
Threshold  

  Pulse and 
none  

  64     NA      NA     0.0    2.6    ×    10  − 5     14.7     —   

  Pulse and 
s.o.  

  64    1    7.2    ×    10  − 2     46.8    0.70    16.7    16.4  

  Pulse and 
o.n.  

  64    1    7.5    ×    10  − 3     59.7    0.87    14.7    14.5  

     a  Original impedance matrix is generated using pulse basis functions.   

thresholding; a signifi cant number of the remaining elements can be set to zero 
without causing much error in the solution.  

   10.7    SEMIORTHOGONAL VERSUS ORTHOGONAL WAVELETS 

 Both semiorthogonal and orthogonal wavelets have been used for solving 
integral equations. A comparative study of their advantages and disadvantages 
has been reported in [ 14 ]. The orthonormal wavelet transformation, because 
of its unitary similar property, preserves the condition number (  κ  ) of the origi-
nal impedance matrix  A ; semiorthogonal wavelets do not. Consequently, the 
transformed matrix equation may require more iterations to converge to the 
desired solution. Some results comparing the condition number of matrices 
for different cases are given in Table  10.2   [17] .   

 In applying wavelets directly to solve integral equations, one of the most 
attractive features of semiorthogonal wavelets is that closed - form expressions 
are available for such wavelets. Most of the continuous o.n. wavelets cannot 
be written in closed form. One thing to be kept in mind is that, unlike signal 
processing applications where one usually deals with a discretized signal and 
decomposition and reconstruction sequences, here in the boundary value 
problem we often have to compute the wavelet and scaling function values at 
any given point. For a strip and thin wire case, a comparison of the computa-
tion time and sparsity is summarized in Tables  10.3  and  10.4   [14] .   

 As discussed in the previous chapters, semiorthogonal wavelets are sym-
metric and hence have a generalized linear phase, an important factor in func-
tion reconstruction. It is well known  [31]  that symmetric or antisymmetric, 
real - valued, continuous, and compactly supported o.n. scaling functions and 
wavelets do not exist. Finally, in using wavelets to solve spectral domain prob-
lems, as discussed before, we need to look at the time - frequency window 
product of the basis. Semiorthogonal wavelets approach the optimal value of 
the time - frequency product, which is 0.5, very fast. For instance, this value for 
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the cubic spline wavelet is 0.505. It has been shown  [38]  that this product 
approaches to  ∞  with the increase in smoothness of o.n. wavelets.  

   10.8    DIFFERENTIAL EQUATIONS 

 An ordinary differential equation (ODE) can be represented as

    Lf x g x x( ) = ( ) ∈[ ]; ,0 1     (10.66)   

 with

    L a x
d
dx

j

j

j
j

m

= ( )
=
∑

0

    (10.67)  

and some appropriate boundary conditions. If the coeffi cients { a j  } are indepen-
dent of  x  then the solution can be obtained via a Fourier method. However 

  TABLE 10.3:    Comparison of  CPU  Time per Matrix Element for Spline, 
Semiorthogonal, and Orthonormal Basis Function 

        Wire     Plate  

  spline    0.12   s    0.25    ×    10  − 3    s  
  s.o. wavelet    0.49   s    0.19   s  
  o.n. wavelet    4.79   s    4.19   s  

  Source :   Reprinted with permission from [ 14 ]; copyright  ©  1997 by IEEE. 

  TABLE 10.4:    Comparison of Percentage Sparsity (  S     δ   ) and Percentage Relative Error 
(  ε   δ   ) for Semiorthogonal and Orthonormal Wavelet Impedance Matrices as a 
Function of Threshold Parameter (  δ  ) 

   Scatterer 
Octave 
Levels  

   Number of 
Unknowns  

  Threshold  

   Sparsity     Relative Error  

   s.o.     o.n.       δ    

    S  δ          ε   δ     

   s.o.     o.n.     s.o.     o.n.  

  Wire/ j     =    4    29    33    1    ×    10  −  6    34.5    24.4    3.4    ×    10  −  3    4.3    ×    10  −  3  
  5    ×    10  −  6    48.1    34.3    3.9    1.3    ×    10  −  3  
  1    ×    10  −  5    51.1    36.5    16.5    5.5    ×    10  −  2  

  Plate/
 j     =    2, 3, 4  

  33    33    1    ×    10  −  4    51.6    28.1    1    ×    10  −  4    0.7  
  5    ×    10  −  4    69.7    45.9    4.7    5.2  
  1    ×    10  −  3    82.4    50.9    5.8    10.0  

  Source :   Reprinted with permission from [ 14 ]; copyright  ©  1997 by IEEE. 
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in ODE case, with nonconstant coeffi cients, and in PDEs, we generally use 
fi nite element or fi nite difference type methods. In this section we describe 
wavelet - based method to solve differential equations and give a few examples 
illustrating such applications. 

   10.8.1    Multigrid Method 

 In the traditional fi nite element method (FEM), local bases are used to rep-
resent the unknown function and the solution is obtained by Galerkin ’ s 
method, similar to the approach described in previous sections. For the dif-
ferential operator, we get sparse and banded stiffness matrices that are gener-
ally solved using iterative techniques, the Jacobi method for instance. 

 One of the disadvantages of conventional FEM is that the condition 
number (  κ  ) of the stiffness matrix grows as  O ( h   − 2 ) where  h  is the discretiza-
tion step. As a result, the convergence of the iterative technique becomes slow 
and the solution becomes sensitive to small perturbations in the matrix ele-
ments. If we study how the error decreases with iteration in iterative tech-
niques, such as the Jacobi method, we fi nd that the error decreases rapidly for 
the fi rst few iterations. After that, the rate at which the error decreases slows 
down  [39] . Such methods are also called  high - frequency methods  since these 
iterative procedures have a  “ smoothing ”  effect on the high - frequency portion 
of the error. Once the high - frequency portion of the error is eliminated, con-
vergence becomes quite slow. After the fi rst few iterations, if we could redis-
cretize the domain with coarser grids and thereby go to lower frequency, the 
convergence rate would be accelerated. This leads us to a multigrid - type 
method. 

 Multigrid or hierarchical methods have been proposed to overcome the 
diffi culties associated with the conventional method  [39 – 55] . In this technique, 
one performs a few iterations of the smoothing method (Jacobi - type) and then 
the intermediate solution and the operator are projected to a coarse grid. The 
problem is then solved at the coarse grid and by interpolation one goes back 
to the fi ner grids. By going back and forth between fi ner and coarser grids, the 
convergence can be accelerated. It has been shown for elliptic PDEs, that for 
wavelet - based multilevel methods, the condition number is independent of 
discretization step, that is,   κ      =     O (1)  [50] . The multigrid method is too involved 
to be discussed in this book. Readers are encouraged to look at the references 
provided at the end of this chapter. 

 Multiresolution aspects of wavelets have also been applied in evolution 
equations  [54 – 69] . In evolution problems, the space and time discretization 
are interrelated to gain a stable numerical scheme. The time - step must be 
determined from the smallest space discretization. This makes the computa-
tion quite complex. A space - time adaptive method has been introduced in [ 55 ], 
where wavelets have been used to adjust the space - time discretization steps 
locally. The rest of the discussion and results in this section are primarily 
derived from [ 69 ].  
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   10.8.2    Multiresolution Time Domain ( MRTD ) Method 

 The explosive growth in wireless communications (3G cellular systems, 802.11 
WLANs) has spawned a great deal of research in electronic packaging for 
high - performance devices. In addition, advances in device processing are 
enabling the creation of increasingly compact microwave circuits. These cir-
cuits incorporate a high degree of functionality through the combination of 
many microwave components in close proximity. These advanced devices 
often use geometries with high aspect ratios, small feature size, and moving 
parts. The simulation of these complex devices requires the use of extremely 
small elements or cells, which can tax many simulation tools beyond their 
limits. This has led to the use of a combination of methods, such as full - wave 
simulation and microwave circuit simulation, or, if higher numerical effi ciency 
and accuracy are required, the use of a parallel full - wave simulator on special-
ized hardware. Time - domain full - wave techniques demonstrate numerous 
advantages since they are robust and easy to program. Furthermore, they can 
use wideband excitations that allow for one simulation to cover the entire 
frequency band of interest and can be easily parallelized on relatively inex-
pensive hardware making it possible to simulate large structures. 

 The fi nite difference time domain (FDTD)  [70, 71]  method is one of the 
most mature and versatile time - domain numerical techniques, and it has been 
used for a wide variety of structures. The use of variable gridding along with 
effective parallelization approaches allows fi ne details of large structures to 
be modeled. Curves and diagonal elements can be modeled using stair step-
ping. The multiresolution time - domain technique  [54, 57]  is an adaptive gen-
eralization of the FDTD technique based on the principles of multiresolution 
analysis. It makes use of wavelets to alleviate the computational burdens of 
FDTD for complex or large structures, such as multilayer packages or micro-
electromechanical systems (MEMS), where the position of the boundaries is 
time - changing and the membrane thickness is much smaller than any other 
detail in the transverse direction. The MRTD technique allows the cell resolu-
tion to vary with both time and position. The wavelets can be used to represent 
higher levels of detail along with higher frequency content. As fi elds propagate 
through the structure the resolution can be varied to allow for the rapidly 
changing fi elds. 

 The multiresolution time - domain technique uses wavelet discretization of 
Maxwell ’ s equations to provide a time -  and space - adaptive electromagnetic 
modeling scheme. The advantage of this method is that it can use much larger 
cells than similar methods  [56] , such as FDTD. The number of basis functions 
used in each cell can be varied as a function of space and time  [60] . In this 
way, grids of complex structures can use high - resolution cells in areas of large 
fi eld variation and lower - resolution cells elsewhere. 

 In the application of the method, the electric and magnetic fi elds are 
expanded into a scaling and wavelet functions and then inserted into Maxwell ’ s 
equations. The method of moments is then applied to these equations. This 
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leads to a time - marching scheme much like the FDTD technique. The advan-
tage of this technique over other methods is that wavelets can be added or 
subtracted during the simulation at any point in the grid. In this way the grid 
can react to both complex geometry and rapid changes in the fi eld as it propa-
gates through the grid. The choice of wavelet basis functions determines the 
characteristics of the MRTD scheme. The Battle - Lemari é , Daubechies and 
other wavelet basis (e.g., biorthogonal wavelets  [61] ) have been successfully 
applied and demonstrated signifi cant savings in memory and execution time 
requirements by one and two orders of magnitude respectively  [62 – 66]  com-
pared with FDTD technique. The stability and dispersion performance of 
entire - domain (e.g., Battle - Lemari é ) MRTD schemes have been investigated 
for different stencil sizes  [67] . Analytical expressions for the maximum stable 
time step have been derived. Larger stencils decrease the numerical phase 
error, making it signifi cantly lower than FDTD for low and medium discretiza-
tions. Stencil sizes greater than 10 offer a smaller phase error than FDTD even 
for discretizations close to 50 cells/wavelength. The enhancement of wavelets 
further improves the dispersion performance for discretizations close to the 
Nyquist limit (23 cells/wavelength), making it comparable to that of much 
denser grids (10 – 15 cells/wavelength), though it decreases the value of the 
maximum time step guaranteeing the stability of the scheme. 

 The fi nite - domain Haar basis functions provide a convenient tool for 
the transition from FDTD to MRTD due to their compact support and their 
similarity with the FDTD pulse basis, thus providing an effective demonstra-
tion tool for this section. The Haar wavelet family is in many ways one of 
the simplest; however, it has many properties that make its application to 
practical structures favorable  [56] . Most importantly, it has fi nite domain 
and when reconstructed leads to fi nite areas of constant fi eld value (equiva-
lent grid points  [58] ). Using this property, it is possible to apply pointwise 
effects in the MRTD grid when an arbitrary level of Haar wavelets is 
used. To clearly present the MRTD method, a brief derivation of 2D Haar -
 MRTD is presented. The extension to 3D and other basis functions is 
straightforward.  

   10.8.3    Haar -  MRTD  Derivation 

 Haar scaling functions and wavelets are based on pulses in space. As described 
in previous chapters, for this case, the inner product of any wavelet with any 
other wavelet at any resolution level, or with the scaling function, is 0. We 
assume that the highest resolution level is  r  max . Electromagnetic fi elds are 
expanded as linear combinations of scaling functions and wavelets. The recon-
struction of the wavelets yields some interesting properties. When the coef-
fi cients of the expansion are summed to determine fi eld values, the function 
appears as a pulse train. The pulses have the domain of half of the highest 
resolution wavelet. Furthermore, these pulses overlap the constant valued 
sections of the highest resolution wavelets. A linear combination of the 
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wavelet/scaling functions has as many degrees of freedom as the number of 
coeffi cients used. There are   2 1rmax+  functions used per level, and any fi nite real 
value can be represented at the center of each half of the  r  max  level wavelets. 

 The effect of the variable grid when it is used to represent electromagnetic 
fi elds can be easily seen. If the fi eld value can be approximated as constant 
across the half - domain of the highest resolution wavelet, there is no need for 
increasing resolution. If the fi eld has more rapid variation, each increase in 
resolution doubles the effective resolution of the cell. High - resolution cells 
can be used to represent rapid fi eld variation (such as impressed currents and 
discontinuity effects) while low - resolution cells can be used elsewhere. 

 The equations

    
dE
dt
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x z= 1
ε

    (10.68)  
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    (10.70)   

 represent the 2D TE  z   mode of Maxwell ’ s equations for source - free, lossless, 
isotropic media. The expansion of the  E x   fi eld in (10.68) in terms of Haar 
scaling and wavelet functions is
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    (10.71)  

where   n i j
xE ,

,φφ  is the coeffi cient corresponding to scaling function in  x  and  y  
that represents the electric fi eld in the  i ,  j  cell at time step  n ;   ψ j p

r
,  denotes a 

wavelet of resolution  r  at the  p  - position [( p     −    0.5)/2  r  ] of the  j  cell. Other coef-
fi cients have similar defi nitions. The time dependence is assumed to be con-
stant for each time step using the pulse  h n  ( t ), though efforts have been 
published showing wavelets used in the time domain as well  [64] . 

c10.indd   339c10.indd   339 11/9/2010   10:18:52 AM11/9/2010   10:18:52 AM



340  WAVELETS IN BOUNDARY VALUE PROBLEMS 

     FIGURE 10.14:     Two - dimensional Haar coeffi cients for  r  max     =    0.  
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 In a 2D expansion, wavelets and scaling functions are used in both the  x  
and  y  directions. The terms in (10.71) represent the products of the basis func-
tions in both directions. Each of these products produces one coeffi cient. 
The four groups of coeffi cients represent the scaling -  x /scaling -  y , wavelet -  x /
scaling -  y , scaling -  x /wavelet -  y , and wavelet -  x /wavelet -  y  coeffi cients. There are 
  22 1rmax+( ) wavelets for a maximum resolution  r  max . For a maximum resolution 
level  r  max     =    0, the four coeffi cients in 2D (one for each product term in (10.71) 
are presented in Figure  10.14 .   

 When the E and H fi eld expansions are inserted into (10.68) – (10.70) the 
method of moments can be applied to determine update equations for each 
of the wavelet/scaling coeffi cients  [57] . It has been shown  [57, 58]  that the 
offset between the E and H fi elds in this expansion yields the best dispersion 
properties and locates the equivalent grid points in the same pattern as the 
FDTD - Yee cell  [70] . In the 2D case, like the previously presented 1D case, 
the equivalent grid points are at the center of the constant valued sections of 
the highest resolution wavelets. In Figure  10.14  these are the locations of the 
 +  and    −    in the   ψ  x  ψ  y   function. 

 The update equations for this case are

    n i j
x

n i j
x

E n i j
z

E n i j
zt

y x xE E U H U H, , , ,= + +( )− − − −1 1 1 11 2
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    (10.73)  
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 These equations are written in a matrix form similar to  [57] , where, for example, 
each   n i j

xE ,  is the vector of the scaling and wavelet coeffi cients that represent 
the electric fi eld in the  i ,  j  cell at time step  n . The U matrices are the results 
of the inner products from the method of moments. Equations  (10.72) – (10.74)  
form an explicit set of equations which can be used in a time marching scheme 
similar to the FDTD method  [70] . The resolution can be varied on a cell by 
cell basis, and can also be changed as a function of time  [56] . The time step for 
this method
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    (10.75)   

 is the same as FDTD for a cell spacing equal to the equivalent grid point 
spacing  [56, 57] .  

   10.8.4    Subcell Modeling in  MRTD  

 The method presented in the previous section allows a time and space variable 
grid to be used to model Maxwell ’ s equations. It is also possible to continu-
ously vary the dielectric constant through a cell  [59,66] . Using this method, 
arbitrary structures consisting of only dielectrics can be modeled effi ciently. 
However, the addition of PEC structures adds diffi culties. A novel technique 
has been introduced that allows for the intracell modeling of multiple PEC ’ s 
 [68]  using MRTD grids. 

 The PEC boundary condition requires that electric fi elds tangential to 
PECs are set to zero. In (10.72) – (10.74) update equations are presented that 
allow the determination of wavelet/scaling coeffi cients at a future time step 
based on the wavelet/scaling coeffi cients of the surrounding fi elds at previous 
time steps. If the PEC structure is the size of an MRTD cell, all of the scaling/
wavelet coeffi cients can be zeroed to apply the boundary condition. If the PEC 
structure is smaller than the cell, however, the scaling/wavelet coeffi cients 
must be modifi ed such that the fi eld values at non - PEC locations are unchanged 
while the fi eld values at PEC locations are zeroed. 

 One way to determine the scaling/wavelet coeffi cients that zero selected 
fi elds while leaving other fi elds unchanged is to use the reconstruction matrix. 
For example, the   n i j

xE ,  matrices in (10.72) – (10.74) can be transformed into fi eld 
values by multiplying with a matrix that represents the summation of the fi elds 
at the appropriate equivalent grid points. In this case,
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    E RER W=     (10.76)  

where  E R   is the reconstructed fi elds,  E W   is the wavelet coeffi cients, and  R  is 
the reconstruction matrix. It was previously noted that there are as many 
independent points that can be reconstructed in  E R   as there are coeffi cients 
in  E W   Thus  R  is square. For the case of  r  max     =    0, (10.76) can be expanded as
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 if the coordinates for the reconstructed fi elds are given as in Figure  10.15 .   
 Just as  R  can be used to reconstruct the fi eld coeffi cients from their scaling/

wavelet values,  R   − 1  can be used to decompose the fi eld values to scaling/
wavelet coeffi cients. Thus the application of a PEC boundary condition to an 
individual equivalent grid point can be accomplished by reconstructing the 
fi elds, zeroing the fi elds tangential to PECs, and then decomposing back to 
scaling/wavelet coeffi cients. However, a more effi cient method results when 
the reconstruction/decomposition matrices are applied directly to the MRTD 
update equations. 

 By using the reconstruction/decomposition matrices directly on (10.72) –
 (10.74) a pointwise update equation results. For example, multiplying (10.72) 
by  R , using   H R RHi j

z
i j
z

, = −1
, , and defi ning  U     =     RU R   − 1  yield
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Δ
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    (10.78)   

 which gives the update of the electric fi eld points in terms of the magnetic 
fi eld points. 

     FIGURE 10.15:     Coordinates for reconstructed fi elds.  (Reprinted with permission 
from  [69] , copyright  ©  2005 by Wiley.)     

(1,2) (2,2)

(1,1) (2,1)
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 Using this equation, it is possible to zero the fi eld points that are tangential 
to PECs by multiplying with a matrix  I   p  , which is the identity matrix with zeros 
in the rows corresponding to PEC locations. As (10.78) is an update equation 
and the initial values of all fi elds are 0, multiplying the electric fi eld vectors in 
(10.78) with  I   p   is redundant. 

 The new update equation with PEC locations zeroed is

    R E R E I U R H I U R Hn i j
x

n i j
x

p E n i j
x

p E n i j
zt

y x x, , , ,= + ′ + ′− − − −1 1 1 11 2

Δ
Δε (( ),     (10.79)   

 By multiplying (10.79) with  R   − 1  and defi ning  U   p      =     R   − 1  I   p   U ′ R  the PEC MRTD 
update equation becomes

    n i j
x

n i j
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E n
p

i j
x

E n
p

i j
zt

y x x
E E U H U H, , , , .= + +( )− − − −1 1 1 11 2

Δ
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    (10.80)   

 This equation is the same as (10.72) except for the use of the  U   p   matrices. Thus, 
it is possible to implement subcell PEC modeling in MRTD simply by chang-
ing the inner product matrices. This method does not increase computational 
overhead; it only requires the additional memory to store the U matrices.  

   10.8.5    Examples 

   10.8.5.1     CPW  - Microstrip Transition.     The coplanar waveguide (CPW) -
 microstrip transition is shown in Figure  10.16 . The loss of this transition can 
be optimized over a wide frequency range with the use of FDTD and design 
curves for various packaging specifi cations can be derived. The plot in Figure 
 10.17  shows  S  21  of this transition for a variety of lengths of the central straight 
section from 10 to 20   GHz. These data were obtained using time - domain 
voltage probes at the input ( V  1 ) and output ( V  2 ) of the transition, converting 
them to frequency domain through the use of a discrete Fourier transform and 

     FIGURE 10.16:     CPW - microstrip transition; E - fi eld distribution.  (Reprinted with per-
mission from  [69] , copyright  ©  2005 by Wiley.)   
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identifying the refl ected voltage through the use of a reference input voltage 
( V  ref ) derived by the simulation of a through CPW line  [69] . In addition, the 
use of the full - wave FDTD, that provides the values of all electromagnetic 
components throughout the geometry, offers a more intuitive visualization of 
the circuit. For example, in the transition zone the electric fi elds have to change 
smoothly from a coplanar waveguide mode to a microstrip mode, to minimize 
the local refl ections. Thus in the design process it is desirable to identify where 
this transition takes place and optimize the tapering. Figure  10.16  is a plot of 
total electric fi eld for a transverse cross - section of the transition. It can be seen 
that at the position of this cross - section, the fi eld is mostly in a CPW mode, 
though a microstrip mode has started developing below and at the edges of 
the signal line there. The relative amplitudes of the E - fi eld could provide an 
intuitive design rule for the spacing between the CPW ground and signal line, 
so as not to suppress the microstrip mode.    

   10.8.5.2    Microstrip - Line Coupling.     Embedded transmission lines are com-
monly used in multilayer packages, where the use of noncontinuous grounds 
could lead to increased cross - talk effects. The FDTD technique is used to 
estimate the coupling of fi nite - ground microstrip lines of Figure  10.18   [69] . The 
results presented in [ 69 ] for different line spacing and for a ground connecting 
via (optimized design) are obtained by combining two simulations, an even 
and an odd mode excitation. In addition, to reduce the unwanted cross - talk, 
the electric and the magnetic fi eld distributions are also calculated. It is shown 
that most of the coupling is through the magnetic fi eld lines, leading to the 
design conclusion that attempts to reduce the coupling should focus on mag-
netic shielding.    

     FIGURE 10.17:      S  21  for various central line widths.  (Reprinted with permission 
from  [69] , copyright  ©  2005 by Wiley.)   
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     FIGURE 10.19:     MEMS switch feeding capacitive stub.  (Reprinted with permission 
from  [69] , copyright  ©  2005 by Wiley.)   

     FIGURE 10.18:     Embedded fi nite - ground microstrip lines.  (Reprinted with permission 
from  [69] , copyright  ©  2005 by Wiley.)   
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   10.8.5.3     MEMS  Capacitive Switch.     One example of a MEMS structure that 
benefi ts from simulation in MRTD is the MEMS capacitive switch shown in 
Figure  10.19 . The gap between the plates in the switch is 1/175th of the sub-
strate thickness. The simulation of this device in FDTD is tedious and slow 
because of the large number of cells that must be used to accurately represent 
the very small gap and substrate.   

 In MRTD, the number of cells can be reduced by using the built - in adaptive 
gridding capability of the method. In addition, further effi ciencies can be 
obtained in large simulations featuring this structure by allowing fewer cells 
to be used when the electric fi eld variation near the cell is low. 

 These examples demonstrate the strength of MRTD in the calculation of 
the scattering parameters as well as in the estimation of the packaging effects 
and of the parasitic crosstalk between neighboring geometries. In addition, its 

c10.indd   345c10.indd   345 11/9/2010   10:18:53 AM11/9/2010   10:18:53 AM



346  WAVELETS IN BOUNDARY VALUE PROBLEMS 

inherent capability of global electromagnetic fi eld calculation as well as 
MRTD ’ s multi - PEC cell allows for the identifi cation of  “ hot spots ”  of high 
fi eld concentration and for the derivation of physics - driven solutions for the 
improvement of the overall system - on - package effi ciency. The time -  and 
space - adaptive grid of MRTD allows it to be used to model fi nely detailed 
structures. Areas of the grid containing small features can use increased reso-
lution, while homogenous areas can use low resolution. It is important to note 
that this technique can be used to model structures with multiple PEC and 
dielectric regions per cell.    

   10.9    EXPRESSIONS FOR SPLINES AND WAVELETS 

 We provide formulas for the scaling functions  B m   ,0,   k  ( x ) and the wavelets 
  ψ  m   ,   k   ,0 ( x ) for  k     =     −  m     +    1,  …  , 0 and  m     =    2, 4. Formulas at the scale  s  0  can be 
obtained by replacing  x  by   2 0s x  and scaling the intervals accordingly.

    B x
x x

m m

m

, ,
, ,

.
− +

−
( ) = −( ) ∈[ )⎧

⎨
⎩

1 0

11 0 1

0 otherwise
    (10.81)  

    B x

x x

x x2 0 0

0 1

2 1 2

0
, ,

, ,

,

.

( ) =
∈[ )

− ∈[ )
⎧
⎨
⎪

⎩⎪ otherwise

    (10.82)   

 Formulas for cubic spline scaling functions except for  B  4, − 3,0 , are given in Table 
 10.5 . Formulas for  B  2, − 1,0  and B 4, − 3,0  can be obtained from (10.81). Tables 
 10.6 – 10.8  contain the formulas for the wavelets. Functions are zero outside 
the intervals given in the tables. An empty entry indicates that the function is 
zero in the interval.   

 It should be pointed out that the scaling functions and wavelets described 
in this book can also be computed from their Bernstein polynomial represen-
tations  [72]  and  [73] ; however, the formulas presented here are direct and easy 
to implement.  

  TABLE 10.5:    Cubic Spline Scaling Functions   B   4, k ,0  for Different Values of  k    a    

   Interval      k     =     − 2      k     =     − 1      k     =    0  

  [0, 1)    0, 18,  − 27, 21/2    0, 0, 9,  − 11/2    0, 0, 0, 1  

  [1, 2)    12,  − 18, 9,  − 3/2     − 9, 27,  − 18, 7/2    4,  − 12, 12,  − 3  

  [2, 3)        27,  − 27, 9,  − 1     − 44, 60,  − 24, 3  

  [3, 4)            64,  − 48, 12,  − 1  

     a  Note:   6 4 0 0
3× ( ) = ∑ =B x a xk i i

i
, , . Here are  a  0 ,  a  1 ,  a  2 ,  a  3  for different intervals.  

    Source :   Reprinted with permission from [ 23 ]; copyright  ©  1995 by IEEE.    
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  TABLE 10.6:    Linear Spline Wavelet   ψ   2, k ,0  for Different 
Values of  k    a    

   Interval      k     =     − 1      k     =    0  

  [0.0, 0.5)     − 6, 23    0, 1  

  [0.5, 1.0)    14,  − 17    4,  − 7  

  [1.0, 1.5)     − 10, 7     − 19, 16  

  [1.5, 2.0)    2,  − 1    29,  − 16  

  [2.0, 2.5)         − 17, 7  

  [2.5, 3.0)        3,  − 1  

     a  Note: 6    ×      ψ   2, k ,0 ( x )    =     a  0     +     a  1  x . Here are  a  0 ,  a  1  for different 
intervals.  

    Source :   Reprinted with permission from [ 23 ]; copyright  ©  1995 by 
IEEE.    

  TABLE 10.7:    Cubic Spline Wavelet   ψ   4,   k   ,0  for  k     =     − 3,  − 2.   5040 4 0 0
3¥ ( )y , ,k i i

ix a x= =∑    a    

   Interval      k     =     − 3      k     =     − 2  

  [0.0, 0.5)     − 5097.9058, 75122.08345, 
 − 230324.8918, 191927.6771  

  1529.24008,  − 17404.65853, 
39663.39526,  − 24328.27397  

  [0.5, 1.0)    25795.06384,  − 110235.7345, 
140390.7438,  − 55216.07994  

  96.3035852,  − 8807.039551, 
22468.15735,  − 12864.78201  

  [1.0, 1.5)     − 53062.53069, 126337.0492, 
 − 96182.03978, 23641.5146  

   − 37655.11514, 104447.2167, 
 − 90786.09884, 24886.63674  

  [1.5, 2.0)    56268.26703,  − 92324.54624, 
49592.35723,  − 8752.795836  

  132907.7898,  − 236678.5931, 
136631.1078,  − 25650.52030  

  [2.0, 2.5)     − 31922.33501, 39961.3568, 
 − 16550.59433, 2271.029421  

   − 212369.3156, 281237.0648, 
 − 122326.7213, 17509.11789  

  [2.5, 3.0)    8912.77397,  − 9040.773971, 
3050.25799,  − 342.4175544  

  184514.4305,  − 195023.4306, 
68177.47685,  − 7891.441873  

  [3.0, 3.5)     − 904, 776,  − 222, 127/6     − 88440.5, 77931.5,  − 22807.5, 
2218  

  [3.5, 4.0)    32/3,  − 8, 2,  − 1/6    21319.5,  − 16148.5, 4072.5, 
 − 342  

  [4.0, 4.5)         − 11539/6, 1283.5,  − 285.5, 
127/6  

  [4.5, 5.0)        125/6,  − 12.5, 2.5,  − 1/6  

     a  Here are  a  0 ,  a  1 ,  a  2 ,  a  3  for different intervals.  

    Source :   Reprinted with permission from [ 23 ]; copyright  ©  1995 by IEEE.    
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pyramid decomposition, 239
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Correlation function, 86
CPW, 344
Crack detection, 211
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Digital signal processing, 239
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Direction decomposition, 239
Direct-sum decomposition, 96
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Discrete-time Fourier transform, 54
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Duality, 98

bindex.indd   354bindex.indd   354 11/9/2010   10:11:09 AM11/9/2010   10:11:09 AM



INDEX  355

Duality principle, 162
Dual scaling function, 164
Dual spline, 164
Dual wavelet, 98
DWT, 71, 254
Dyadic points, 163, 197

Edge Detection, 264
Sobel, 265
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Filter bank algorithms, 191
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fi lter bank, 226
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perfect reconstruction, 185
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Fourier transform, 34
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Multigrid, 336
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Noise reduction, 239
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Plane wave, 310

Point matching, 314
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Polyphase representation, 189
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Predictive coding, 268
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Quadratic superposition principle, 86
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Quarter-shift approach, 228
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Radar imaging, 87
Radon transform, 220
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Reconstruction, 159, 193, 117, 172
Reconstruction process, 171
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Refi nement equation, 96
Region of convergence, 29
Rendering techniques, 290
Reservoir data analysis, 296
Ridgelet transform, 220
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Riesz lemma, 133
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Runlength code, 268
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Sampling theorem, 39, 51
Scalar product, 9
Scaling function, 101
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Second-kind integral equations, 310
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Semiorthogonal decomposition, 97
Semiorthogonal spline wavelets, 119
Semiorthogonal subspaces, 164
Shannon function, 15
Shannon wavelet, 141
Shift-invariant systems, 26
Short-time Fourier transform, 90
Signal representation, 155
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Singular matrix, 21
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Smoothing fi lter, 27
Smoothing function, 126
Sobel edge detector, 265
Soft thresholding, 246
SOT, 275
Space-time adaptive method, 336
Sparse matrices, 314
Sparsity, 324
Spatial oriented tree, 275
Spectral-domain analysis, 176
Spectral domain methods, 317
Spectral feature extraction, 255
Spectral method, 139
Spline functions, 103
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computer programs, 112
cubic, 109, 167
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properties, 107

Spline wavelets, 119
Splitting method, 240
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Stable numerical scheme, 336
Standard wavelet decomposition, 163, 
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Strang-Fix condition, 107
Strips, 319
Subcell modeling,
Subdomain basis, 319
Surface current distribution, 310
Synthesis transform, 160
Synthesis wavelet, 100

Target detection, 239
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Testing functions, 213
Thin strip, 270
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Three-dimensional wavelets, 288
Thresholding, 246, 281, 324, 334

hard, 246
histogram, 281
percentage, 247
soft, 246

Time-domain analysis, 184
Time-domain biothogonal condition, 179
Time-frequency analysis, 61

continuous wavelet transform, 71
discrete Gabor representation, 70
discrete short-time Fourier transform, 

68
discrete wavelet transform, 71, 76
Gabor transform, 66
integral wavelet transform, 71
short-time Fourier transform, 90
time-frequency window, 64, 66
time-frequency window product, 75, 

334
uncertainty principle, 64
wavelet series, 71

Time-frequency window, 64, 66
Time-frequency window product, 75, 334
Time-scale analysis, 73
Time-scale grid, 157
Time-scale map, 157
Time scaling, 41
Time shifting, 41
Tonal equalizer, 172
Total positivity, 107, 316
TP, 282
Transform

curvelet, 222
discrete Walsh-Hadmard, 269
discrete wavelet, 76
Fourier, 39
Gabor, 66
Hilbert, 225
integral wavelet, 71
Karhunen-Loeve transform, 269
lifting wavelet, 229
Radon, 220
ridgelet, 220
short time Fourier, 64

Translation, 73
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Transmission line, 314
Transmission line discontinuity, 317
Transpose, 20
Transverse magnetic, 310
True positives, 282
Two-channel biorthogonal fi lter bank, 
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Two-channel perfect reconstruction, 172
Two-dimensional wavelet packets, 243, 

256, 262
Two-dimensional wavelets, 256, 259, 299
Two-scale relations, 101, 115

Uncertainty principle, 60
Unitary matrix, 24
Unitary similar, 315

Vanishing moments, 73, 309, 316
Vector spaces, 8

Waveguide, 215
Wavelet coeffi cient, 157, 243
Wavelet decomposition, 157, 243
Wavelet feature extraction, 254
Wavelet MoM, 309
Wavelet packet algorithms, 243, 303
Wavelet packet based cross-term deleted 

representation, 220
Wavelet packet feature extraction, 255
Wavelet packets, 88, 159, 240, 243, 254, 
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Wavelet packet tree decomposition, 239
Wavelets

Battle–Lemarie, 129
biorthogonal, 114, 136
boundary, 322
Chui–Wang, 119
Cohen, Daubechies, and Feaveau, 136
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intervallic, 322
lifting wavelet, 233
Meyer, 126
Morlet, 75
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periodic, 322
Shannon, 15, 124
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three-dimensional, 288
two-dimensional, 256, 259, 299

Wavelet edge detector, 266
Wavelet series, 77
Wavelet subspaces, 161
Wavelet techniques, 314
Wavelet tree coder, 271
Weighting functions, 313
Well log analysis, 295
Wideband correlation processing, 187
Wigner–Ville distribution, 80, 83–84, 91, 

248
auto term, 86
computer programs, 91
cross term, 86, 248
properties, 83
wavelet packet based cross-term 

deleted representation, 249
WPCDR, 249

Window function, 63
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time–frequency window, 64
time–frequency window product, 75
uncertainty principle, 64
width, 59
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WS, 71

Zero-tree algorithm, 272
ZTR, 272
z-transform, 28

inverse z-transform, 28
region of convergence, 29
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