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Abstract. An accurate image registration of MRI to CT data is of
great benefit for prostate treatment planning in image-guided radiother-
apy. However, prostate motion with respect to surrounding structures
and absence of clear structures in and of the prostate in the CT image,
complicate this registration. Therefore, we developed a semi-automatic
method for a robust, accurate and time efficient image registration of
MRI to CT data of the prostate, making use of gold markers, that are
inserted in the prostate, as fiducials. The gold markers, as they appear
on both images, are segmented using a thresholding technique. The reg-
istration deals with a rigid transformation and is based on the iterative
closest point algorithm that acts onto the surfaces of the segmented gold
markers. The method is clinically tested and uncertainties of 0.4-0.5 mm
and 0.7-1.4 mm are obtained at the centre and at the rim of the prostate,
respectively.

1 Introduction

Modern medicine frequently employs several imaging techniques within a sin-
gle patient’s case. These different modalities show different, complementary and
(or) partially overlapping aspects of the anatomy examined, or show functional
aspects, giving few anatomical pointers. Consequently, several medical special-
ities might benefit from combining images stemming from two or even more
modalities.

In many cases, proper integration of different information facilitates correct
clinical diagnosis or treatment, see, e.g., [1L2] . The determination of the geo-
metrical transformation of one of the acquired images to fit another one, i.e.,
registration, is the first step in this integration process. The second step of the
integration is the fusion, required for the integrated display of the data involved.
This mainly concerns an adequate visualization.

Since the use of intensity modulated radiation therapy (IMRT), precise ex-
ternal beam radiotherapy treatments can be given to patients [3l[4]. In case of the
prostate, functional magnetic resonance imaging (MRI), by means of dynamic
contrast enhanced MRI (DCE-MRI), using an endo-rectal coil with balloon, H-
MR Spectroscopic Imaging (MRSI) and a combination of these two modalities,
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have been shown to give precise tumor localization [B,678,9IT0,TT]. Functional
MRI can thus be used for treatment planning in image-guided radiotherapy.
However, to do so, functional MRI data have to be integrated with computed
tomography (CT) data, since CT-density information is used to calculate the
dose distribution during the treatment planning.

The accuracy required from the image registration procedure can be derived
from a consideration of the role of geometrical uncertainties in all steps of the
radiotherapy process [I2l[13], e.g., uncertainties due to prostate position varia-
tions and due to patient set-up variations. To account for these uncertainties in
the radiotherapy process, a margin is chosen around the clinical target volume.
The accuracy of the registration should thus be such that no noticeable mar-
gin increase is necessary. Investigation of the patient set-up variations [14] and
prostate position variations by means of daily portal imaging of implanted fidu-
cial gold markers [15], led to an accuracy requirement for the image registration
of about 2 mm [I5]. Furthermore, the geometrical accuracy required in treat-
ment planning and dose delivery of IMRT is also typically 2 mm [16]. Therefore,
the accuracy of the registration should be well below this value.

Since prostate motion with respect to surrounding structures is present [17]
18[19], such an accurate registration of MRI to CT data of the prostate, using
these surrounding structures, e.g., bony structures, is not available. Therefore,
a registration method of MRI to CT data of the prostate is wanted that does
not make use of surrounding structures. The main difficulty, however, is the
absence of clear structures in the CT image of and in the prostate. In [15], a
clinically tested three-dimensional image registration of MRI to CT data of the
prostate is presented, making use of gold markers, that were inserted in the
prostate, as fiducials. Using these markers for the registration of CT and MRI
images in the radiation treatment planning of localized prostate cancer, was
also suggested by [20]. The registration performed in [I5] is based on manually
segmented markers giving accurate results, i.e., uncertainties less than about 2
mm, in most cases. However, in some cases big outliers of about 5 to 15 mm are
observed. Furthermore, the manual segmentation is time consuming.

Therefore, we developed a semi-automatic three-dimensional image registra-
tion of MRI to CT data of the prostate, also making use of gold markers, as
fiducials. With the limited user interaction we want to improve the accuracy
and robustness of the registration and make it more time efficient.

To perform the registration and test its performance, a database of 20 pa-
tients is used. A comparison is made to the results of [15].

2 Materials

In this study, similar materials are being used as in the study of [15]. The
database consists of images of 20 consecutive patients with histologically con-
firmed prostate cancer.

Gold markers that were inserted in the prostate serve to measure and to
correct the prostate position during all fractions of the radiotherapy treat-
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Table 1. Specifications of the CT and the anatomic MRI scans. For all types the pixel
size (PS) in the sagittal-coronal plane, slice thickness (ST) in the axial direction, and
field of view (FOV) are given. For the CT scan, the X-ray high voltage peak (V) and
the dose rate (R) are given; For the MRI scans the repetition time (TR), echo time
(TE) and flip angle (FA) are given. When there is no unique value, a range is given.

modality |PS (mm?)|ST (mm)|FOV (mm)| V (kVp) ‘ R (mAs)
CT 0.69-0.95 3 354-486 130-140 ‘ 150-170
modality |PS (mm?)[ST (mm)|FOV (mm)| TR (ms) |[TE (ms)|FA (deg)
MRI T2 0.55 5 280 3500-4400| 132 180
MRI T2*| 0.56-0.78 3 200-285 | 699-1100 | 18-25.8 30

ment [19121]. Gold markers were chosen, since they can be visualized in the
portal images made during radiotherapy treatment using the transmitted high-
energy photon beam of the linear accelerator. About two weeks before perform-
ing the imaging studies, on average four gold markers, but not more than five
or less than three, with a length of 5 or 10 mm and a thickness of 1 mm, were
inserted through trans-rectal ultrasound guidance by an urologist. Usually, two
gold markers were inserted at the base, one at the apex and one at the centre
of the prostate. In this study, the markers were used as fiducials for the image
registration.

The imaging protocol consisted of two examinations. Firstly, CT was per-
formed using a multi-slice spiral CT scanner (Marconi AcQsim, Cleveland, USA)
with specifications as given in Table[Il In twelve patients an endo-rectal coil with
balloon, with a similar design as the commercially available MRI endo-rectal coil
(Medrad, Pittsburgh, US), was inserted and inflated with 80 cc of air, before the
CT scan was taken.

Secondly, MRI was conducted using a 1.5 T scanner (Siemens Sonata, Erlan-
gen, Germany). T2-weighted turbo spin echo (TSE) sequences in three planes
were acquired. A T2*-weighted sequence (a multi-echo data image combination
(MEDIC)) was acquired at the same slice location as the axial T2-weighted TSE
sequence. Specifications of the these anatomical MRI scans can be found in Ta-
ble M Apart from the anatomical MRI scans, functional MRI scans were taken.
Magnetic resonance spectroscopic imaging was performed using the 3D-PRESS
sequence. A multi-slice T1-weighted gadolinium-enhanced FLASH sequence was
also performed. For all patients the endo-rectal coil with balloon was inserted
before the MRI scans were taken. Using this endo-rectal coil, the MRI image
quality improved due to a significant increase of the signal-to-noise ratio. The
total examination time took about 60 minutes. Since no significant motion arte-
facts were observed in this time, it is assumed that accurate matches can be
obtained between the functional and anatomic MRI images.

Imaging data were transferred to a PC for post-processing. Using image view-
ing and registration software, based on Tcl/Tk [22] and the visualization toolkit
VTK [23], the gold markers, as they appear on the CT scan as hyper dense and
on the T2*-weighted MRI images as low signal intensity areas, were used for
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Fig.1. An MRI and a CT slice of the prostate after thresholding, where three markers
are clearly visible.

semi-automatic segmentation and subsequently registration. Due to the length
of the markers, their orientation and the slice thickness of both images, the
markers are visible in at least one slice, but in most cases in two or three slices.

3 Methods

To achieve a successful registration, first a segmentation of the prostate markers
is performed. The semi-automatic segmented markers are used for the registra-
tion, where the ICP algorithm is applied onto the surfaces of those segmented
markers. The registration is based on a rigid transformation, i.e., based on three
translation and three rotation parameters.

3.1 Segmentation

Firstly, the user indicates the centre of the markers, denoted by seeds, s,,, where
m represents the seed number, as good as possible, on both the MRI and CT
images. Since the gold markers are easy to find on the CT image, but less easy
on the MRI image, the user can manually align the MRI and the CT image. This
will assist him to identify the markers on the MRI image. Both on the MRI as
on the CT image, an equal number of seeds is indicated.

Secondly, a binary thresholding is performed on both images. The markers
can then be identified by isolated clusters of voxels, with dimensions of about
1.0 x 0.3 x 0.3 cm and with grey values below a threshold Tygr; for the MRI
image and above a threshold T¢r for the CT image. Figure [l shows an example
of an MRI and a CT slice after thresholding, where three markers are clearly
visible.

Next, only information is considered within those ellipsoids with centres given
by s,, and radii of 1.5 cm in the axial (z) direction and 0.5 ¢cm in both the sagittal
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(z) and coronal (y) direction. The set of volumes given by the voxels within the
ellipsoids is denoted by V. This mask avoids voxels that are relatively far from
the markers, but having about the same grey value as those that compose the
marker, to be used in the segmentation.

To obtain the segmented markers, the voxels within the same grey value
range (below Tyry for the MRI and above Ter for the CT image) and those
that are connected (via neighbouring voxels within the same grey value range)
to the user supplied seeds, s,,, are marked. Clusters, C,,, of these marked voxels,
Um,n (With n the voxel number), then represent the markers, i.e.,

Cm =A{vmnltmn €V} . (1)

Next, triangulated iso surfaces are determined using the boundary value of the
clusters as the contour value. Finally, normals are computed for these surfaces,
for each of the polygonal facets. The normals are computed via the cross product
[v1 — V2] X [vg —v3], where vy, vy and vz are three vertices of the polygon, and are
averaged at shared points. Using these normals, a faceted shading of the surface
is obtained, that will be used as an input of the ICP algorithm. The iso surfaces
and the normals are computed using the VI'K methods vtkContourFilter and
vtkPolyDataNormals [23], respectively.

3.2 Registration

To achieve a successful registration, it is important that first an initial estimate
of the relative pose of the two prostate images is given. This is done by roughly
aligning the two images, in the region of the prostate, manually. Then, the ICP
algorithm performs the final registration step, automatically.

The iterative closest point algorithm [241[25[26] is a method for the registra-
tion of three-dimensional shapes. It works in terms of registration of collected
data, which are converted to a point set P = {p;}, of image 1, to model shape
data X, which remain in their original representation, of image 2. In this paper,
P is a point set located onto the surface of the segmented MRI markers and X
is the surface of the segmented CT markers.

The algorithm has three stages and iterates. The first step is finding the
closest model point x; € X with respect to p; for all i. The point x; € X for
which the distance d(p;, X) between p; and x; is minimum, can be derived from

d(pi, X) = Jnin le; — pil . (2)

For a triangulated surface - the model representation of the image data that is
being used - the model X comprises a set of triangles T' = {t;}. If triangle ¢
has vertices 71 ; (j = 1,2,3), then the minimum distance between p; and t;, is

d(pi, t) = min_ lurp 1 +vrg s +wrys —pi|l (3)

u+v+

where u, v and w are in [0, 1]. Thus, the closest distance between the point p;
and the triangle set T is given by

d(p;,T) = mkin d(pi,tr) - (4)
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Fig. 2. Four segmented markers in both MRI (dark) and CT (light) images, in 3D,
before (left) and after (right) applying the ICP method.

The closest model point to the data point p; is then given by x; = (urg 1, V7,2,
wry,3), where 7y ; are the vertices of t;, that satisfies Equation ().

Secondly, a least square registration between the points {p;} and {x;} can
be carried out by minimizing

1

fla) = EZIxi—R(qR)pi —qr* . (5)

where N, is the number of point pairs being used, R(ggr) is a rotation matrix
and ¢ = (gr, gr), resulting from arg ming f(q), is the transformation vector
consisting of three rotation parameters gr = (a1, a9, @3) and three translation
parameters qr = (T, Ty, T.). The function f(q) is a measure of the accuracy of
the method: the value of \/f(q) could be interpreted as a standard deviation,
giving a measure of the uncertainty of the matching.

Thirdly, the set of data points {p;} is then transformed to {p/} using the
calculated rigid body transformation. Then, the iteration procedure starts by
redetermining the closest point set using {p/} and X. The algorithm terminates
when the change in f(g) between two successive iterations falls below a threshold.
In this analysis this change is set to 0.0001 mm. It also terminates when the
number of iterations exceeds 3000. Furthermore, N, is set to 5000.

An example of the performance of the ICP method is shown in Figure
four segmented markers in both MRI and CT images, in 3D, before and after
applying the ICP method are visualized. Typically, the ICP registration takes a
few seconds.

3.3 Evaluation

For each patient, the computed ICP registration transformation, M, consisting
of three rotation and three translation parameters, is applied onto two points
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in the MRI image. The first point, ¢, is the average value of the centre-of-mass
points of the segmented MRI markers. This point, which is determined by one
user, estimates the centre of the prostate. The second point, 7, is defined as
being 2 cm back and down and to the left, with respect to ¢, which would
be in the rectum wall region. The resulting points ¢ = (cg, ¢y, c;) = Mé and
r = (rg,ry,7,) = M#% are thus estimations of the centre and the rim of the
prostate after applying the ICP registration.

Inter- and intra-operator variability of the parameter values ¢; and r; (i =
x,y, z) were determined, in order to get a measure of the registration uncertainty
around the centre and the rim of the prostate. This measure assumes that a rigid
transformation is sufficient to register the segmented MRI markers onto the seg-
mented CT markers. Variability can be expected on the basis of the user input:
how many and which markers does the user select and what threshold values
does he use for the segmentation. One operator performed the segmentation and
registration five times for five data sets in order to obtain the intra-operator
variability. Variability in the registration between three different operators (the
inter-operator variability) was measured via a multivariate analysis of variance
(MANOVA) test [29]. Furthermore, the effect of using an endo-rectal balloon in
the CT images was investigated. All variabilities are obtained via R [30], a freely
available language and environment for statistical computing and graphics.

4 Results

The threshold values that are used in the segmentation are set to Tyrr = 150
and Tecr = 900, with a possible change by the user of +50 and +400, respectively.
Experimentally, these are found to be good values to isolate the gold markers
and thus to perform a marker segmentation in both the MRI and CT images.

Studying the variability of the registration results, the MANOVA test sug-
gests that contributions to the variability of intra-operator and balloon effects
are not statistically significant. There is a slight effect (p < 0.08) due to re-
peated registrations by different operators. The contribution of inter-operator
variability, however, is small.

Figure [3 shows box plots of the total variability of the coordinates ¢; and r;
(i = x,y, z) after normalization with respect to the mean, per patient.

The three patients in which the biggest variations are observed are patients
3, 5 and 14. The variations are caused by having missed one marker by one
user on the MRI image (patients 3 and 14) and by difficulties in getting a good
segmentation of hardly visible MRI markers (patient 5).

The estimated total standard deviations at the centre and at the rim of the
prostate are given in Table[2l The uncertainties of [15] are also shown.

Our results indicate that the uncertainties are well below the required limit
of 2 mm. Furthermore, they are slightly better than the results, excluding the
outliers, of [15]. When the outliers observed in [15] are not excluded, our results
are much more accurate.

The limited user interaction in our method prevents big outliers to occur and
thus makes the method robust and accurate. Moreover, it results in a time effi-
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Fig. 3. Box plots of the variability of the coordinates ¢; and r; (i = z,y,z) after
normalization with respect to the mean, per patient.

Table 2. Uncertainties, in mm, at the centre, (cz,cy,c:), and at the rim, (rg,ry,72),
of the prostate. Our results and those of [I5] are given.

reference Cx Cy Cs T Ty T,

our results 0.5 0.5 0.4 0.9 1.4 0.7

[15] without outliers| 0.4 0.6 0.5 1.3 1.5 0.8
[15] with outliers 1.5 2.9 0.9 1.7 3.0 1.1

cient registration: on average, the registration time, from the moment of loading
the images till the moment of saving the registration, took about 8 minutes, a
factor three less than the time given in [I5]. Most likely, the gain in time is due
the automation of the segmentation.

5 Conclusions and Discussions

In this paper a semi-automatic method for image registration of MRI to CT
data of the prostate is presented, making use of gold markers, that are inserted
in the prostate, as fiducials.

The method is clinically tested and uncertainties of 0.4-0.5 mm and 0.7-1.4
mm are obtained at the centre and at the rim of the prostate, respectively. These
results are well within the clinical required accuracy for treatment planning in
image-guided radiotherapy.

The limited user interaction results in a time efficient registration and pre-
vents big outliers to occur and therefore makes the method robust and accurate.
In particular, this is true when comparing to [15], where a similar analysis is
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Fig.4. An extreme example of an MRI and a CT slice of the prostate after ICP
registration, where a rigid transformation clearly does not suffice (left), but where an
affine transformation gives a much better result (right). The window level of the CT
image is such that only the gold markers (indicated by three grey bounded areas) are
visible.

performed, but, where the segmentation of the gold markers is performed man-
ually.

In this paper, the assumption is made that a rigid transformation can register
the segmented MRI markers onto the segmented CT markers. Thus, it is assumed
that imaging artefacts, differences in deformations of the prostate and changes in
distance between the markers on CT and MRI images due to marker migration,
are negligible and consequently do not affect the registration. This is a strong
assumption and found not to be valid for at least some of the patient’s images.
This is illustrated by the extreme example of Figurelwhere an MRI and CT slice
of an image volume of the prostate are shown after applying the ICP registration
based on a rigid transformation. A rigid transformation clearly does not suffice
here. In 4 (out of 20) patients, we visually observe that a rigid transformation
is not able to match the MRI and CT markers. Using an affine transformation,
however, where we add three scaling parameters in the transformation, i.e., where
we replace gr of Equation (@) by a vector consisting of 6 elements (three for
rotation and three for scaling), we visually observe a much better result. This is
also shown in Figure @

It has to be investigated further what the registration uncertainties are, quan-
titatively, as a consequence of assuming that a rigid transformation can register
the segmented MRI markers onto the segmented CT markers. Next, it needs to
be investigated how non-rigid transformations can improve the registration.
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