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Introduction

There is general agreement on the rudiments of algebraic topology, the things
that every mathematician should know. This material might include the fun-
damental group; covering spaces; ordinary homology and cohomology in
its singular, cellular, axiomatic, and represented versions; higher homotopy
groups and the Hurewicz theorem; basic homotopy theory including fibra-
tions and cofibrations; Poincaré duality for manifolds and for manifolds with
boundary. The rudiments should also include a reasonable amount of cate-
gorical language and at least enough homological algebra for the universal
coefficient and Kinneth theorems. This material is treated in such recent
books as (3, 34, 36,59, 93] and many earlier ones. What next? Possibly K-theory,
which is treated in [3] and, briefly, [93], and some idea of cobordism theory
[36,93]. None of the most recent texts goes much beyond the material just men-
tioned, all of which dates atlatest from the early 1960s. Regrettably, only one of
these texts, [34], includes anything about spectral sequences, but [79, 98, 123]
help make up for that.

The subject of algebraic topology is very young. Despite many precursors
and earlier results, firm foundations only date from the landmark book of
Eilenberg and Steenrod [45], which appeared in 1952. Itis not an exaggeration
to say that even the most recent published texts do not go beyond the first
decade or so of the serious study of the subject. For that reason, people outside
the field very often know little or nothing about some of its fundamental
branches that have been developed over the past half century. A partial list of
areas a student should learn is given in the suggestions for further reading
of [93], and a helpful guide to further development of the subject (with few
proofs) has been given by Selick [123].

It seems to us that the disparity between the lack of accessibility of the pub-
lished sources and the fundamental importance of the material is nowhere
greater than in the theory of localization and completion of topological

xi



xii / INTRODUCTION

spaces.! It makes little more sense to consider modern algebraic topology
without localization and completion of spaces than it does to consider modern
algebra without localization and completion of rings. These tools have been
in common use ever since they were introduced in the early 1970s. Many
papers in algebraic topology start with the blanket assumption that all spaces
are to be localized or completed at a given prime p. Readers of such papers are
expected to know what this means. Experts know that these constructions can
be found in such basic 1970s references as [21, 62, 133]. However, the stan-
dard approaches favored by the experts are not easily accessible to the novices,
especially in the case of completions. In fact, these notions can and should
be introduced at a much more elementary level. The notion of completion is
particularly important because it relates directly to mod p cohomology, which
is the invariant that algebraic topologists most frequently compute.

In the first half of this book, we set out the basic theory of localization
and completion of nilpotent spaces. We give the most elementary treatment
we know, making no use of simplicial techniques or model categories. We
assume only a little more than a first course in algebraic topology, such as can
be found in [3, 34, 36, 59, 93]. We require and provide more information about
some standard topics, such as fibration and cofibration sequences, Postnikov
towers, and homotopy limits and colimits, than appears in those books, but this
is fundamental material of independent interest. The only other preliminary
that we require and that cannot be found in most of the books cited above is
the Serre spectral sequence. There are several accessible sources for that, such
as [34, 79, 98, 123], but to help make this book more self-contained, we give
a concise primer on spectral sequences in Chapter 24; it is taken from 1960s
notes of the first author and makes no claim to originality.

The second half of the book is quite different and consists of two parts that
can be read independently of each other and of the first half. While written
with algebraic topologists in mind, both parts should be of more general inter-
est. They are devoted to topics in homotopical algebra and in pure algebra
that are needed by all algebraic topologists and many others. By far the longer
of these parts is an introduction to model category theory. This material can
easily be overemphasized, to the detriment of concrete results and the nu-
ances needed to prove them. For example, its use would in no way simplify
anything in the first half of the book. However, its use allows us to complete
the first half by giving a conceptual construction and characterization of local-
izations and completions of general, not necessarily nilpotent, spaces. More

1. These topics are not mentioned in [3, 36, 59).
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fundamentally, model category theory has become the central organizational
principle of homotopical algebra, a subject that embraces algebraic topology,
homological algebra, and much modern algebraic geometry. Anybody inter-
ested in any of these fields needs to know model category theory. It plays a
role in homotopical algebra analogous to the role played by category theory in
mathematics. It gives a common language for the subject that greatly facilitates
comparisons, and it allows common proofs of seemingly disparate results.

The short last part of the book is something of a bonus track, in that it is
peripheral to the main thrust of the book. It develops the basic theory of bi-
algebras and Hopf algebras. Its main point is a redevelopment of the structure
theory of Hopf algebras, due originally to Milnor and Moore [104] but with an
addendum from [85]. Hopf algebras are used in several places in the first half
of the book, and they are fundamental to the algebra of algebraic topology.

We say a bit about how our treatments of these topics developed and how
they are organized. The starting point for our exposition of localization and
completion comes from unpublished lecture notes of the first author that date
from sometime in the early 1970s. That exposition attempted a synthesis in
which localization and completion were treated as special cases of a more
general elementary construction. The synthesis did not work well because it
obscured essential differences. Those notes were reworked to a more acces-
sible form by the second author and then polished to publishable form by
the authors working together. There are some new results, but we make little
claim to originality. Most of the results and many of the proofs are largely the
same as in one or another of Bousfield and Kan [21], Sullivan [133], and Hilton,
Mislin, and Roitberg [62].

However, a central feature of the subject is the fracture theorems for the
passage back and forth between local and global information. Itis here that the
treatments of localization and completion differ most from each other. The rel-
evant material has been reworked from scratch, and the treatment in the first
author’s 1970s notes has largely been jettisoned. In fact, the literature in this
arearequires considerable clarification, and we are especially concerned to give
coherent accounts of the most general and accurate versions of the fracture
theorems for nilpotent spaces. These results were not fully understood at the
time the primary sources [21, 62, 133] were written, and there are seriously
incorrect statements in some of the important early papers. Moreover, gener-
alizations of the versions of these results that appear in the primary sources
were proven after they were written and can only be found in relatively obscure
papers that are known just to a few experts. We have introduced several new
ideas that we think clarify the theorems, and we have proven some results that
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are essential for full generality and that we could not find anywhere in the
literature.

The first half of the book is divided into three parts: preliminaries, localiza-
tions, and completions. The reader may want to skim the first part, referring
back to it as needed. Many of the preliminaries are essential for the later parts,
but mastery of their details is not needed on a first reading. Specific indications
of material that can be skipped are given in the introductions to the first four
chapters. The first chapter is about cofibrations, fibrations, and actions by the
fundamental group. The second is about elementary homotopy colimits and
homotopy limits and lim! exact sequences. This both sets the stage for later
work and rounds out material that was omitted from [93] but that all algebraic
topologists should know. The third chapter deals with nilpotent spaces and
their approximation by Postnikov towers, giving a more thorough treatment
of the latter than can be found in existing expository texts. This is the most
essential preliminary to our treatment of localizations and completions.

The fourth chapter shows how to prove that various groups and spaces are
nilpotent and is more technical; although it is logically placed, the reader may
want to return to it later. The reader might be put off by nilpotent spaces and
groups at a first reading. After all, the vast majority of applications involve
simply connected or, more generally, simple spaces. However, the proofs of
some of the fracture theorems make heavy use of connected components of
function spaces F(X,Y). Even when X and Y are simply connected CW com-
plexes, these spaces are rarely simple, but they are nilpotent when X is finite.
Moreover, nilpotent spaces provide exactly the right level of generality for an
elementary exposition, and the techniques used to prove results for nilpotent
spaces are not very different from those used for simple spaces.

We say just a bit about the literature for spaces that are not nilpotent and
about alternative constructions. There are several constructions of localiza-
tions and completions of general spaces that agree when restricted to nilpotent
spaces. The most important of these is Bousfield localization, which we shall
construct model theoretically. These more general constructions are still not
well understood calculationally, and knowledge of them does not seem help-
ful for understanding the most calculationally important properties of locali-
zation and completion, such as their homotopical behavior and the fracture
theorems.

We construct localizations of abelian groups, nilpotent groups, and nilpo-
tent spaces in Chapter 5, and we construct completions of abelian groups,
nilpotent groups, and nilpotent spaces in the parallel Chapter 10. We char-
acterize localizations and describe their behavior under standard topological
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constructions in Chapter 6, and we do the same for completions in the paral-
lel Chapter 11. We prove the fracture theorems for localizations in Chapters 7
and 8 and the fracture theorems for completions in the parallel Chapters 12
and 13. In many cases, the same results, with a few words changed, are con-
sidered in the same order in the cases of localization and completion. This is
intentional, and it allows us to explain and emphasize both similarities and dif-
ferences. As we have already indicated, although these chapters are parallel, it
substantially clarifies the constructions and results not to subsume both under
a single general construction. We give a few results about rationalization of
spaces in Chapter 9.

We say a little here about our general philosophy and methodology, which
goes back to a paper of the first author [91] on “The dual Whitehead theorems”.
As is explained there and will be repeated here, we can dualize the proof of
the first theorem below (as given for example in [93]) to prove the second.

THEOREM 0.0.1. A weak homotopy equivalence e : Y —> Z between CW comp-
lexes is a homotopy equivalence.

THEOREM 0.0.2. An integral homology isomorphisme: Y —> Z between simple
spaces is a weak homotopy equivalence.

The argument is based on the dualization of cell complexes to cocell
complexes, of which Postnikov towers are examples, and of the Homotopy
Extension and Lifting Property (HELP) to co-HELP. Once this dualization is
understood, it becomes almost transparent how one can construct and study
the localizations and completions of nilpotent spaces simply by inductively
localizing or completing their Postnikov towers one cocell at a time. Our treat-
ment of localization and completion is characterized by a systematic use of
cocellular techniques dual to familiar cellular techniques. In the case of local-
ization, but not of completion, there is a dual cellular treatment applicable to
simply connected spaces.

We turn now to our treatment of model categories, and we first try to
answer an obvious question. There are several excellent introductory sources
for model category theory [43, 54, 65, 66, 113]. Why add another one? One
reason is that, for historical reasons, the literature of model category theory
focuses overwhelmingly on a simplicial point of view, and especially on model
categories enriched in simplicial sets. There is nothing wrong with that point
of view, but it obscures essential features that are present in the classical
contexts of algebraic topology and homological algebra and that are not present
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in the simplicial context. Another reason is that we feel that some of the
emphasis in the existing literature focuses on technicalities at the expense of
the essential conceptual simplicity of the ideas.

We present the basic general theory of model categories and their associated
homotopy categories in Chapter 14. For conceptual clarity, we offer a slight
reformulation of the original definition of a model category that focuses on
weak factorization systems (WFSs): a model category consists of a subcategory
of weak equivalences together with a pair of related WFSs. This point of view
separates out the main constituents of the definition in a way that we find illu-
minating. We discuss compactly generated and cofibrantly generated model
categories in Chapter 15; we shall describe the difference shortly. We also
describe proper model categories in Chapter 15. We give essential categorical
perspectives in Chapter 16.

To make the general theory flow smoothly, we have deferred examples to
the parallel Chapters 17 and 18. On a first reading, the reader may want to skip
directly from Chapter 14 to Chapters 17 and 18. These chapters treat model
structures on categories of spaces and on categories of chain complexes in
parallel. In both, there are three intertwined model structures, which we call
the h-model structure, the g-model structure, and the m-model structure.

The h stands for homotopy equivalence or Hurewicz. The weak equiva-
lences are the homotopy equivalences, and the cofibrations and fibrations are
defined by the HEP (Homotopy Extension Property) and the CHP (Covering
Homotopy Property). Such fibrations were first introduced by Hurewicz. The
q stands for Quillen or quasi-isomorphism. The weak equivalences are the
weak equivalences of spaces or the quasi-isomorphisms of chain complexes.
The fibrations are the Serre fibrations of spaces or the epimorphisms of chain
complexes, and the cofibrations in both cases are the retracts of cell complexes.

The m stands for mixed, and the m-model structures, due to Cole [33], com-
bine the good features of the h- and g-model structures. The weak equivalences
are the g-equivalences and the fibrations are the h-fibrations. The m-cofibrant
objects are the spaces of the homotopy types of CW complexes or the chain
complexes of the homotopy types of complexes of projective modules (at least
in the bounded below case). We argue that classical algebraic topology, over at
least the mathematical lifetime of the first author, has implicitly worked in the
m-model structure. For example, the first part of this book implicitly works
there. Modern approaches to classical homological algebra work similarly. We
believe that this trichotomy of model category structures, and especially the
precise analogy between these structures in topology and algebra, gives the best
possible material for an introduction to model category theory. We reiterate



INTRODUCTION [/ Xvii

that these features are not present in the simplicial world, which in any case
is less familiar to those just starting out.

The m-model structure can be viewed conceptually as a colocalization model
structure, which we rename a resolution model structure. In our examples,
it codifies CW approximation of spaces or projective resolutions of modules,
where these are explicitly understood as up to homotopy constructions. Colo-
calization is dual to Bousfield localization, and this brings us to another reason
for our introduction to model category theory, namely a perceived need for as
simple and accessible an approach to Bousfield localization as possible. This
is such a centrally important tool in modern algebraic topology (and algebraic
geometry) that every student should see it. We give a geodesic development
that emphasizes the conceptual idea and uses as little special language as
possible.

In particular, we make no use of simplicial theory and minimal use of
cofibrantly generated model categories, which were developed historically as a
codification of the methods Bousfield introduced in his original construction
of localizations [16]. An idiosyncratic feature of our presentation of model cat-
egory theory is that we emphasize a dichotomy between cofibrantly generated
model categories and compactly generated model categories. The small object
argument for constructing the WESs in these model structures is presented in
general, but in the most basic examples it can be applied using only cell com-
plexes of the familiar form colim X, without use of cardinals bigger than w.
Transfinite techniques are essential to the theory of localization, but we feel
that the literature focuses on them to an inordinate extent. Disentangling the
optional from the essential use of such methods leads to a more user-friendly
introduction to model category theory.

Although we make no use of it, we do describe the standard model structure
on simplicial sets. In the literature, the proof of the model axioms is unpleas-
antly lengthy. We sketch a new proof, due to Bousfield and the first author,
that is shorter and focuses more on basic simplicial constructions and less on
the intertwining of simplicial and topological methods.

The last part of the book, on bialgebras and Hopf algebras, is again largely
based on unpublished notes of the first author that date from the 1970s. Since
we hope our treatment has something to offer to algebraists as well as topolo-
gists, one introductory remark is obligatory. In algebraic topology, algebras are
always graded and often connected, meaning that they are zero in negative
degrees and the ground field in degree zero. Under this assumption, bialge-
bras automatically have antipodes, so that there is no distinction between Hopf
algebras and bialgebras. For this reason, and for historical reasons, algebraic
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topologists generally use the term “Hopf algebra” for both notions, but we will
be careful about the distinction.

Chapter 20 gives the basic theory as used in all subjects and Chapter 21
gives features that are particularly relevant to the use of Hopf algebras in alge-
braic topology, together with quick applications to cobordism and K-theory.
Chapters 22 and 23 give the structure theory for Hopf algebras in characteristic
zero and in positive characteristic, respectively. The essential organizing prin-
ciple of these two chapters is that all of the main theorems on the structure of
connected Hopf algebras can be derived from the Poincaré-Birkhoff-Witt the-
orem on the structure of Lie algebras (in characteristic zero) and of restricted
Lie algebras (in positive characteristic). The point is that passage to associated
graded algebras from the augmentation ideal filtration gives a primitively gen-
erated Hopf algebra, and such Hopf algebras are universal enveloping Hopf
algebras of Lie algebras or of restricted Lie algebras. This point of view is due
to [104], but we will be a little more explicit.

Our point of view derives from the first author’s thesis, in which the cited
filtration was used to construct a spectral sequence for the computation of
the cohomology of Hopf algebras starting from the cohomology of (restricted)
Lie algebras [84], and from his short paper [85]. This point of view allows us
to simplify the proofs of some of the results in [104], and it shows that the
structure theorems are more widely applicable than seems to be known.

Precisely, the structure theorems apply to ungraded bialgebras and, more
generally, to nonconnected graded bialgebras whenever the augmentation
ideal filtration is complete. We emphasize this fact in view of the current
interest in more general Hopf algebras, especially the quantum groups. A
cocommutative Hopf algebra (over a field) is a group in the cartesian monoidal
category of coalgebras, the point being that the tensor product of cocommuta-
tive coalgebras is their categorical product. In algebraic topology, the Hopf alge-
bras that arise naturally are either commutative or cocommutative. By duality,
one may as well focus on the cocommutative case. It was a fundamental insight
of Drinfel’d that dropping cocommutativity allows very interesting examples
with “quantized” deviation from cocommutativity. These are the “quantum
groups”. Because we are writing from the point of view of algebraic topology,
we shall not say anything about them here, but the structure theorems are
written with a view to possible applications beyond algebraic topology.

Sample applications of the theory of Hopf algebras within algebraic topol-
ogy are given in several places in the book, and they pervade the subject as a
whole. In Chapter 9, the structure theory for rational Hopf algebras is used to
describe the category of rational H-spaces and to explain how this information
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is used to study H-spaces in general. In Chapter 22, we explain the Hopf alge-
bra proof of Thom’s calculation of the real cobordism ring and describe how
the method applies to other unoriented cobordism theories. We also give the
elementary calculational proof of complex Bott periodicity. Of course, there is
much more to be said here. Our goal is to highlight for the beginner important
sample results that show how directly the general algebraic theorems relate to
the concrete topological applications.






Some conventions and notations

This book is perhaps best viewed as a sequel to [93], although we have tried
to make it reasonably self-contained. Aside from use of the Serre spectral
sequence, we assume no topological preliminaries that are not to be found in
[93], and we redo most of the algebra that we use.

To keep things familiar, elementary, and free of irrelevant pathology, we
work throughout the first halfin the category % of compactly generated spaces
(see [93, Ch. 5]). It is by now a standard convention in algebraic topology that
spaces mean compactly generated spaces, and we adopt that convention. While
most results will not require this, we implicitly restrict to spaces of the homo-
topy types of CW complexes whenever we talk about passage to homotopy.
This allows us to define the homotopy category Ho% simply by identifying
homotopic maps; it is equivalent to the homotopy category of all spaces in %,
not necessarily CW homotopy types, that is formed by formally inverting the
weak homotopy equivalences.

We nearly always work with based spaces. To avoid pathology, we assume
once and for all that basepoints are nondegenerate, meaning that the inclusion
x —> X is a cofibration (see [93, p. 56]). We write .7 for the category of
nondegenerately based compactly generated spaces, that is, nondegenerately
based spaces in %.! Again, whenever we talk about passage to homotopy, we
implicitly restrict to spaces of the based homotopy type of CW complexes. This
allows us to define the homotopy category Ho.7 by identifying maps that are
homotopic in the based sense, that is, through homotopies h such that each
h; is a based map. The category .7, and its restriction to CW homotopy types,
has been the preferred working place of algebraic topologists for very many

1. This conflicts with [93], where .7 was defined to be the category of based spaces in % (denoted
U here). That choice had the result that the “nondegenerately based” hypothesis reappears with
monotonous regularity in [93].
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years; for example, the first author has worked explicitly in this category ever
since he wrote [87], around forty years ago.

We ask the reader to accept these conventions and not to quibble if we do
not repeat these standing assumptions in all of our statements of results. The
conventions mean that, when passing to homotopy categories, we implicitly
approximate all spaces by weakly homotopy equivalent CW complexes, as we
can do by [93, §10.5]. In particular, when we use Postnikov towers and pass to
limits, which are not of the homotopy types of CW complexes, we shall implic-
itly approximate them by CW complexes. We shall be a little more explicit about
this in Chapters 1 and 2, but we shall take such CW approximation for granted
in later chapters.

The expert reader will want a model theoretic justification for working in 7.
First, as we explain in {17.1, the category % of based spaces in % inherits
an h-model, or Hurewicz model, structure from %. In that model structure,
all objects are fibrant and the cofibrant objects are precisely the spaces in .7.
Second, as we explain in §17.4, %, also inherits an m-model, or mixed model,
structure from % . In that model structure, all objects are again fibrant and the
cofibrant objects are precisely the spaces in .7 that have the homotopy types of
based CW complexes. Cofibrant approximation is precisely approximation of
spaces by weakly homotopy equivalent CW complexes in .7. This means that
working in .7 and implicitly approximating spaces by CW complexes is part
of the standard model-theoretic way of doing homotopy theory. The novice
will learn later in the book how very natural this language is, but it plays no
role in the first half. We believe that to appreciate model category theory, the
reader should first have seen some serious homotopical algebra, such as the
material in the first half of this book.

It is convenient to fix some notations that we shall use throughout.

NOTATIONS 0.0.3. We fix some notations concerning based spaces.

(i) Spaces are assumed to be path connected unless explicitly stated other-
wise, and we use the word connected to mean path connected from
now on. We also assume that all given spaces X have universal covers,
denoted X.

(ii) For based spaces X and Y, let [X, Y] denote the set of maps X — Y in
Ho.7; equivalently, after CW approximation of X if necessary, it is the
set of based homotopy classes of based maps X — Y.

(iii) Let F(X,Y) denote the space of based maps X — Y. It has a canonical
basepoint, namely the trivial map. We write F(X, Y)s for the component
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of a map f and give it the basepoint f. When using these notations, we
can allow Y to be a general space, but to have the right weak homotopy
type we must insist that X has the homotopy type of a CW complex.
The smash product X A'Y of based spaces X and Y is the quotient of
the product X x Y by the wedge (or one-point union) X v Y. We have
adjunction homeomorphisms

F(XAY,Z) = F(X,F(Y, Z))
and consequent bijections
X AY,Z] = [X, E(Y, Z)].

For an unbased space K, let K denote the union of K and a disjoint
basepoint. The based cylinder X A (L) is obtained from X x I by collaps-
ing the line through the basepoint of X to a point. Similarly, we have the
based cocylinder F(I, Y). Itis the space of unbased maps I —> Y based
at the constant map to the basepoint. These specify the domain and, in
adjoint form, the codomain of based homotopies, that is, homotopies
that are given by based maps h;: X —> Y fort € I.

We also fix some algebraic notations and point out right away some ways

that algebraic topologists think differently than algebraic geometers and others

about even very basic algebra.

NOTATIONS 0.0.4. Let T be a fixed set of primes and p a single prime.

@)

(i)

Let Zt denote the ring of integers localized at T, that is, the subring of Q
consisting of rationals expressible as fractions k/¢£, where ¢ is a product
of primes not in T. We let Z[T~!] denote the subring of fractions k/¢,
where £ is a product of primes in T. In particular, Z[p~'] has only p
inverted. Let Z () denote the ring of integers localized at the prime ideal
(p) or, equivalently, at the singleton set {p}.

Let Z, denote the ring of p-adic integers. Illogically, but to avoid conflict
of notation, we write Zr for the product over p € T of the rings Zy. We
then write Qr for the ring Zr ® Q; when T = {p}, this is the ring of p-adic
numbers.

Let F, denote the field with p elements and Fr denote the product over
p € T of the fields Fp. Let Z/n denote the quotient group Z/nZ. We
sometimes consider the ring structure on Z/n, and then Z/p = F,, for a
prime p.
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(iv) We write A(p) and Ap for the localization at p and the p-adic completion
of an abelian group A. Thus Zp is the underlying abelian group of the
ring Zy.

(v) We write At and Ar for the localization and completion of A at T; the
latter is the product over p € T of the Ap.

(vi) Let o7b denote the category of abelian groups. We sometimes ignore the
maps and use the notation /b for the collection of all abelian groups.
More generally, </ will denote any collection of abelian groups that
contains 0.

(vii) We often write ®, Hom, Tor, and Ext for ®z, Homz, Tor% ,and Ext%. We
assume familiarity with these functors.

WARNING 0.0.5. We warn the reader that algebraic notations in the literature
of algebraic topology have drifted over time and are quite inconsistent. The
reader may find Z, used for either our Z(y or for our Fy; the latter choice is
used ubiquitously in the “early” literature, including most of the first author’s
papers. In fact, regrettably, we must warn the reader that Z, means F, in
the book [93]. The p-adic integers only began to be used in algebraic topology
in the 1970s, and old habits die hard. In both the algebraic and topologi-
cal literature, the ring Z, is sometimes denoted Z,; we would prefer that
notation as a matter of logic, but the notation Z, has by now become quite
standard.

WARNING 0.0.6 (CONVENTIONS ON GRADED ALGEBRAIC STRUCTURES).

We think of homology and cohomology as graded abelian groups. For most
algebraists, a graded abelian group A is the direct sum over degrees of its homo-
geneous subgroups Ay, or, with cohomological grading, A". In algebraic top-
ology, unless explicitly stated otherwise, when some such notation as H** is
often used, graded abelian groups mean sequences of abelian groups A,. That
is, algebraic topologists do not usually allow the addition of elements of differ-
ent degrees. To see just how much difference this makes, consider a Laurent
series algebra k[x, x 1] over a field k, where x has positive even degree. To an
algebraic topologist, this is a perfectly good graded field: every nonzero ele-
mentis a unit. To an algebraist, itis not. This is not an esoteric difference. With
k = Fp, such graded fields appear naturally in algebraic topology as the coeffi-
cients of certain generalized cohomology theories, called Morava K-theories,
and their homological algebra works exactly as for any other field, a fact that
has real calculational applications.
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The tensor product A® B of graded abelian groups is specified by

(A®B)n= Y A,®B,.
pt+q=n

In categorical language, the category «7b, of graded abelian groups is a sym-
metric monoidal category under ®, meaning that ® is unital (with unit Z
concentrated in degree 0), associative, and commutative up to coherent nat-
ural isomorphisms. Here again, there is a difference of conventions. For an
algebraic topologist, the commutativity isomorphism y: AQ B—> B® A is
specified by

y(a®b) = (-1b®a

where deg(a) = p and deg(b) = q. A graded k-algebra with product ¢ is com-
mutativeif ¢ o y = ¢; elementwise, this means thatab = (—1)Pba. In the alge-
braicliterature, such an algebra is said to be graded commutative or sometimes
even supercommutative, butin algebraic topology this notion of commutativity
is and always has been the default (atleast since the early 1960s). Again, this is
not an esoteric difference. To an algebraic topologist, a polynomial algebra k[x]
where x has odd degree is not a commutative k-algebra unless k has character-
istic 2. The homology H, (2S"; k), n even, is an example of such a noncommu-
tative algebra.

The algebraist must keep these conventions in mind when reading the
material about Hopf algebras in this book. To focus on commutativity in the al-
gebraist’s sense, one can double the degrees of all elements and so eliminate
the appearance of odd degree elements.
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PART 1

Preliminaries: Basic homotopy
theory and nilpotent spaces






.I

COFIBRATIONS AND FIBRATIONS

We shall make constant use of the theory of fibration and cofibration
sequences, and this chapter can be viewed as a continuation of the basic the-
ory of such sequences as developed in [93, Ch. 6-8]. We urge the reader to
review that material, although we shall recall most of the basic definitions as
we go along. The material here leads naturally to such more advanced topics
as model category theory [65, 66, 97], which we turn to later, and triangulated
categories [94, 111, 138]. However, we prefer to work within the more elemen-
tary foundations of [93] in the first half of this book. We concentrate primarily
on just what we will use later, but we round out the general theory with sev-
eral related results that are of fundamental importance throughout algebraic
topology. The technical proofs in {3 and the details of {4 and {5 should not
detain the reader on a first reading.

1.1. Relations between cofibrations and fibrations

Remember that we are working in the category .7 of nondegenerately based
compactly generated spaces. Although the following folklore result was known
long ago, it is now viewed as part of Quillen model category theory, and its
importance can best be understood in that context. For the moment, we view
it as merely a convenient technical starting point.

LEMMA 1.1.1. Suppose that i is a cofibration and p is a fibration in the following
diagram of based spaces, in whichpog = f o1i.
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If either i or p is a homotopy equivalence, then there exists a map A such that the
diagram commutes.

This result is a strengthened implication of the definitions of cofibrations
and fibrations. As in [93, p. 41], reinterpreted in the based context, a map i is
a (based) cofibration if there is a lift A in all such diagrams in which p is the
map po: F(I4+,Y) — Y given by evaluation at 0 for some space Y. This is a
restatement of the homotopy extension property, or HEP. Dually, as in [93,
p-47], a map p is a (based) fibration if there is a lift A in all such diagrams
in which i is the inclusion ip: Y —> Y A I of the base of the cylinder. This
is the covering homotopy property, or CHP. These are often called Hurewicz
cofibrations and fibrations to distinguish them from other kinds of cofibra-
tions and fibrations (in particular Serre fibrations) that also appear in model
structures on spaces.

The unbased version of Lemma 1.1.1 is proven in Proposition 17.1.4, using
no intermediate theory, and the reader is invited to skip there to see it. The
based version follows, but rather technically, using Lemmas 1.3.3 and 1.3.4
below. The deduction is explained model theoretically in Corollary 17.1.2 and
Remark 17.1.3.

One can think of model category theory as, in part, a codification of the
notion of duality, called Eckmann-Hilton duality, that is displayed in the defi-
nitions of cofibrations and fibrations and in Lemma 1.1.1. We shall be making
concrete rather than abstract use of such duality for now, but it pervades our
point of view throughout. We leave the following dual pair of observations as
exercises. Their proofs are direct from the definitions of pushouts and cofi-
brations and of pullbacks and fibrations. In the first, the closed inclusion
hypothesis serves to ensure that we do not leave the category of compactly
generated spaces [93, p. 38].

EXERCISE 1.1.2. Suppose given a commutative diagram

f i

Y ~<~— X — Z

4 |

Y/%XHZ/

f/ H

in which i and i’ are closed inclusions and B8 and & are cofibrations. Prove that
the induced map of pushouts
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YUxZ — Y UxZ
is a cofibration. Exhibit an example to show that the conclusion does not hold

for a more general diagram of the same shape with the equality X = X replaced
by a cofibration X — X’. (Hint: interchange i’ and = in the diagram.)

EXERCISE 1.1.3. Suppose given a commutative diagram

f p

Y — X =— Z

4 |

Y — X ~— 7

f P
in which B and & are fibrations. Prove that the induced map of pullbacks
YxxZ — Y xxZ

is a fibration. Again, the conclusion does not hold for a more general dia-
gram of the same shape with the equality X = X replaced by a fibration
X — X

We shall often use the following pair of results about function spaces. The
first illustrates how to use the defining lifting properties to construct new
cofibrations and fibrations from given ones.

LEMMA 1.1.4. Leti: A —> X bea cofibration and Y be a space. Then the induced
map i*: F(X,Y) — F(A,Y) is a fibration and the fiber over the basepoint is
F(X/A, Y).

PROOF. To show that i*: F(X,Y) — F(A,Y) is a fibration it is enough to
show that there is a lift in any commutative square

f
z — F(X,Y)

7
i -
10 // i i*
-

ZAl, —> F(AY).
h

By adjunction, we obtain the following diagram from that just given.
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i
A —> F(I,F(Z,Y))

H _7
i - Po
-
-

e

X — = F(Z)Y)
f

Here h(a)(t)(z) = h(z, t)(a) and f(x)(z) = f (2)(x) where a € A, z € Z, x € X,
and t € I. Since i: A —> X is a cofibration there exists a lift H. The map
H: ZA Iy — F(X,Y) specified by H(z, t)(x) = H(x)(t)(z) forx € X, z € Z,
andt € I gives aliftin the original diagram. Thereforei*: F(X,Y) — F(A,Y)
is a fibration. The basepoint of F(A, Y) sends A to the basepoint of Y, and its
inverse image in F(X, Y) consists of those maps X — Y that send A to the
basepoint. These are the maps that factor through X/A, that is, the elements
of F(X/A, Y). 0

For the second, we recall the following standard definitions from [93, pp.
57, 59]. They will be used repeatedly throughout the book. By Lemmas 1.3.3
and 1.3.4 below, our assumption that basepoints are nondegenerate ensures
that the terms “cofibration” and “fibration” in the following definition can be
understood in either the based or the unbased sense.

DEFINITION 1.15. Letf: X —> Y be a (based) map. The homotopy cofiber
Cf of f is the pushout Y Uy CX of f and ip: X —> CX. Here the cone CX
is X A I, where [ is given the basepoint 1. Since iy is a cofibration, so is its
pushout i: Y — Cf [93, p. 42]. The homotopy fiber Ff of f is the pullback
X x¢ PY of f and p1: PY —> Y. Here the path space PY is F(I, Y), where I is
given the basepoint 0; thus it consists of paths that start at the basepoint of Y.
Since p; is a fibration (by Lemma 1.1.4), so is its pullback 7 : Ff — X [93, p.
47].

We generally abbreviate “homotopy cofiber” to “cofiber”. This is unambigu-
ous since the word “cofiber” has no preassigned meaning. Whenf: X — Yis
a cofibration, the cofiber is canonically equivalent to the quotient Y/X. We also
generally abbreviate “homotopy fiber” to “fiber”. Here there is ambiguity when
the given based map is a fibration, in which case the actual fiber f ~1(*) and
the homotopy fiber are canonically equivalent. By abuse, we then use which-
ever term seems more convenient.
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LEMMA 1.1.6. Let f: X —> Y be a map and Z be a space. Then the homo-
topy fiber Ff* of the induced map of function spaces f*: F(Y,Z) — F(X, Z)
is homeomorphic to F(Cf, Z), where Cf is the homotopy cofiber of f .

PROOF. The fiber Ff* is F(Y, Z) xfrx,z) PF(X, Z). Clearly PF(X, Z) is ho-
meomorphic to F(CX, Z). Technically, in view of the convention that I has
basepoint 0 when defining P and 1 when defining C, we must use the home-
omorphism I — I that sends ¢ to 1 — ¢ to see this. Since the functor F(—, Z)
converts pushouts to pullbacks, the conclusion follows. O

1.2. The fill-in and Verdier lemmas

In formal terms, the results of this section describe the homotopy category
Ho.J as a “pretriangulated category”. However, we are more interested in de-
scribing precisely what is true before passage to the homotopy category, since
some easy but little known details of that will ease our later work.

The following dual pair of “fill-in lemmas” will be at the heart of our theories
of localization and completion. They play an important role throughout homo-
topy theory. They are usually stated entirely in terms of homotopy commutative
diagrams, but the greater precision that we describe will be helpful.

LEMMA 1.2.1. Consider the following diagram, in which the left square commutes
up to homotopy and the rows are canonical cofiber sequences.

f i T
X Y cf X
[
o J/ \L B |y Yo
i
X' Y’ cf’ =X’
f/ i T

There exists a map y such that the middle square commutes and the right square
commutes up to homotopy. Ifthe left square commutes strictly, then there is a unique
y = Cl(a, B) such that both right squares commute, and then the cofiber sequence
construction gives a functor from the category of maps and commutative squares to
the category of sequences of spaces and commutative ladders between them.

PROOF. Recall again that Cf = Y Ux CX, where the pushout is defined with
respecttof: X —> Y and the inclusion ig: X —> CX of the base of the cone.
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Let h: X xI —> Y’ be a (based) homotopy from Bof to f'ow. Define
y(y) = B(y) for y e Y C Cf, as required for commutativity of the middle
square, and define

h(x, 2t) ifo<t<1/2

Y(x,t) = i
(@(x),2t—1) if1/2<t<1

for (x,t) € CX. The homotopy commutativity of the right square is easily
checked. When the left square commutes, we can and must redefine y on
CX by y (x,t) = (x(x), t) to make the right square commute. For functoriality,
we have in mind the infinite sequence of spaces extending to the right, as
displayed in [93, p. 57], and then the functoriality is clear. O

Exercise 1.1.2 gives the following addendum, which applies to the compar-
ison of cofiber sequences in which the left hand squares display composite
maps.

ADDENDUM 1.22. IfX = X/, « is the identity map, the left square commutes,
and B is a cofibration, then the canonical map y: Cf — Cf” is a cofibration.

It is an essential feature of Lemma 1.2.1 that, when the left square only
commutes up to homotopy, the homotopy class of y depends on the choice of
the homotopy and is not uniquely determined.

The dual result admits a precisely dual proof, where now the functoriality
statement refers to the infinite sequence of spaces extending to the left, as dis-
played in [93, p. 59]. Recall that Ff = X xy PY, where the pullback is defined
with respect to f : X —> Y and the end-point evaluation p;: PY — Y.

LEMMA 1.2.3. Consider the following diagram, in which the right square commutes
up to homotopy and the rows are canonical fiber sequences.

L s f
QY Ff Y
|
Qa [ l B l o
\
g
QY’ Ff’ X' Y’
L f/

There exists a map y such that the middle square commutes and the left square
commutes up to homotopy. If the right square commutes strictly, then there is a
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unique y = F(a, B) such that both left squares commute, hence the fiber sequence
construction gives a functor from the category of maps and commutative squares to
the category of sequences of spaces and commutative ladders between them.

ADDENDUM 124. If Y =Y/, « is the identity map, the right square com-
mutes, and g is a fibration, then the canonical map y: Ff — Ff’ is a fibra-
tion.

The addenda above deal with composites, and we have a dual pair of
“Verdier lemmas” that encode the relationship between composition and
cofiber and fiber sequences. We shall not make formal use of them, but every
reader should see them since they are precursors of the basic defining property,
Verdier’s axiom, in the theory of triangulated categories [94, 138].!

LEMMA 1.2.5. Leth be homotopicto g o f in the following braid of cofiber sequences
andletj” = Zi(f) o (g). There are mapsj andj’ such that the diagram commutes
up to homotopy, and there is a homotopy equivalence & : Cg —> Cj such that

§oj =i(j) andj" = m(j)o§.

7(f)

The square and triangle to the left of j and j commute; if h = gof, then there
are unique maps j and j' such that the triangle and square to the right of j and j'
commute.

1. In [138], diagrams like these are written as “octagons”, with identity maps inserted. For this
reason, Verdier’s axiom is often referred to in the literature of triangulated categories as the “octa-
hedral” axiom. In this form, the axiom is often viewed as mysterious and obscure. Lemmas 1.2.1
and 1.2.3 are precursors of another axiom used in the usual definition of triangulated categories,
but that axiom is shown to be redundant in [94].
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PROOF. Let H: gof >~ h. The maps j and j' are obtained by application of
Lemma 1.2.1 to H regarded as a homotopy g of >~ hoidx and the reverse of
H regarded as a homotopy idz oh > g o f. The square and triangle to the left
of j andj’ are center squares of fill-in diagrams and the triangle and square to
therightofjandj’ are right squares of fill-in diagrams. The diagram commutes
when h = gof andj andj’ are taken to be

j=gUid: YUr CX — ZU, CX and j =idUCf: ZU, CX — ZUg CY,
as in the last part of Lemma 1.2.1. Define & to be the inclusion
Cg = ZU, CY — (ZU}, CX)U; C(Y Uy CX) = ChU; CCf = G

induced by i(h): Z —> Ch and the map CY — C(Cf) obtained by applying
the cone functor to i(f): Y —> Cf. Then j” = 7 (j) o & since 7 (g) collapses
Z to a point, m(j) collapses Ch = ZU;, CX to a point, and both maps in-
duce Xi(f) on Cg/Z = XY. Using mapping cylinders and noting that j
and j' are obtained by passage to quotients from maps j: Mf — Mg and
j'+ Mg —> Mh, we see by a diagram chase that £ is an equivalence in general
if it is so when h = gof. In this case, we claim that there is a deformation
retraction r: Cj —> Cg so that ro& =id and roi(j) =j'. This means that
there is a homotopy k: Cj x I — Cj relative to Cg from the identity to a map
into Cg. In effect, looking at the explicit description of Cj, k deforms CCX
to CX C CY. The details are fussy and left to the reader, but the intuition be-
comes clear from the observation that the quotient space Cj/&(Cg) is homeo-
morphic to the contractible space CXX. O

REMARK 1.2.6. There is areinterpretation that makes the intuition still clearer
and leads to an alternative proof. We can use mapping cylinders as in [93, p. 43]
to change the spaces and maps in our given diagram so as to obtain a homotopy
equivalent diagram in which f and g are cofibrations and h is the composite
cofibration g o f. Asin [93, p. 58], the cofibers of f, g, and h are then equivalent
to Y/X, Z/Y, and Z/X, respectively, and the equivalence & just becomes the
evident homeomorphism Z/Y = (Z/X)/(Y/X).

LEMMA 1.2.7. Let f be homotopic to h o g in the following braid of fiber sequences
and letj” = 1(g) o Qp(h). There are mapsj and j' such that the diagram commutes
up to homotopy, and there is a homotopy equivalence & : Fj —> Fg such that

Jo& =p(j)andj’ =& ou(j).
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If f = hog, then there are unique maps j andj’ such that the diagram commutes,
and then & can be so chosen thatj' o & = p(j) andj’ = & o1(j).

1.3. Based and free cofibrations and fibrations

So far, we have been working in the category .7 of based spaces, and we usually
continue to do so. However, we often must allow the basepoint to vary, and
we sometimes need to work without basepoints. Homotopies between maps
of unbased spaces, or homotopies between based maps that are not required
to satisfy h;(*) = *, are often called free homotopies. In this section and the
next, we are concerned with the relationship between based homotopy theory
and free homotopy theory.

Much that we have done in the previous two sections works just as well in
the category % of unbased spaces as in the category .7. For example, using
unreduced cones and suspensions, cofiber sequences work the same way in
the two categories. However, the definition of the homotopy fiber Ff of a map
f: X —> Y requires the choice of a basepoint to define the path space PY. We
have both free and based notions of cofibrations and fibrations, and results
such as Lemma 1.1.1 apply to both. Itis important to keep track of which notion
is meant when interpreting homotopical results. For example, we understand
free cofibrations and free fibrations in the following useful result. It is the key
to our approach to the Serre spectral sequence, and we shall have other uses
for it. Recall that a homotopy h: X x I —> X is said to be a deformation if hg
is the identity map of X.
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LEMMA 13.1. Let p: E —> B be a fibration and i: A — B a cofibration. Then
the inclusion D = p~'(A) — E is a cofibration.

PROOF. As in [93, p. 43], we can choose a deformation h of B and a map
u: B —> I that represent (B, A) as an NDR-pair. By the CHP, we can find
a deformation H of E that covers h, po H = ho(p xid). Define a new de-

formation J of E by
H(x, 1) if t < u(p(x))
Jix,t) = ,
Hix,u(p(x))) ift = u(p(x)).
Then J and u o p represent (E, D) as an NDR-pair. O

One of the many motivations for our standing assumption that basepoints
are nondegenerate is that it ensures that based maps are cofibrations or fibra-
tions in the free sense if and only if they are cofibrations or fibrations in the
based sense. For fibrations, this is implied by the case (X,A) = (Y, %) of a
useful analogue of Lemma 1.1.1 called the Covering Homotopy and Extension

Property.

LEMMA 13.2 (CHEP). Leti: A — X be a free cofibration andp: E —> Bbea
free fibration. Let j: Mi =X x {0}UA x I —> X x I be the inclusion of the free
mapping cylinder Mi in the cylinder X x I. For any commutative square

fuh

Mi —— E

H 7
i 7
J P p
Ve

XxI —— B,
h

there is a homotopy H that makes the diagram commute.

PROOF. Here h: A x I —> E is a homotopy of the restriction of f: X — E
to A, and h is a homotopy of pf whose restriction to A is covered by h. The
conclusion is a special case of the free version of Lemma 1.1.1 proven in Propo-
sition 17.1.4 sincej is a cofibration and a homotopy equivalence by [93, p. 43]. O

LEMMA 133. Let p: E —> B be a map between based spaces. If p is a based
fibration, then p is a free fibration. If p is a free fibration and Y is nondegenerately
based, then p satisfies the based CHP with respect to homotopies Y A (I;) —> B.
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PROOF. For the first statement, we apply the based CHP to based homotopies
(Y x I)+ = Y4 A I —> Bto obtain the free CHP. For the second statement,
we must obtain lifts in diagrams of based spaces

g
Y — E

A 7
io // p
Ve

Y/\I+ — B
f

when Y is nondegenerately based, and these are supplied by the case
(X, A) = (Y, *) of the CHEP, with h constant at the basepoint of E. O

The following result, like the previous one, was stated without proof in
[93, pp. 56, 59]. Since its proof is not obvious (as several readers of [93] have
complained), we give it in detail. Unfortunately, the argument is unpleasantly
technical.?

LEMMA 13.4. Leti: A —> X be a map between based spaces. If i is a free cofibra-
tion, then i is a based cofibration. If A and X are nondegenerately based and i is a
based cofibration, then i is a free cofibration.

PROOF. The first statement is clear: since the basepoint is in A, free lifts
in Lemma 1.1.1 are necessarily based when the given maps are based. Thus
assume that i is a based cofibration and A and X are nondegenerately based.
The problem here is that the maps in a given test diagram for the HEP (as
in [93, p. 41]) need not preserve basepoints, and the based HEP only gives
information when they do. One might try to deform the unbased data into new
based data to which the based HEP applies, but we shall instead check a slight
variant of the NDR-pair criterion for i to be a free cofibration [93, p. 43].

Just as for free cofibrations, the fact that we are working with compactly
generated spaces ensures that i is a closed inclusion since the based map-
ping cylinder Mi is a retract of X A I;. It suffices to prove that (X, A) is an
NDR-pair. This means that there is a map u: X — I such that u=1(0) = A
and a deformation h of X relative to A, so that h(x,0) = x and h(a,t) = a,
such that h(x, 1) € A if u(x) < 1. Inspection of the proof of the theorem on
[93, p. 43] shows that if we start with a free cofibration i, then we obtain a

2. The proofs of Lemmas 1.3.3 and 1.3.4 are due to Strem [131, p. 14] and [132, p. 440].
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pair (h, u) with the stronger property that h(x, t) € Aif u(x) < t. It follows that
the characterization theorem for free cofibrations remains true if we rede-
fine NDR-pairs by requiring this stronger condition, and we use the stronger
condition throughout the proof that follows. We proceed in three steps.

Step (i). Let w: X —> I be any map such that w=1(0) = *. Then there is a
deformation k': X x I —> X relative to A and a map w': X —> I such that
W (x) < w(x), A= w)~1(0), and

13.5 K(x,t) € A if w'(x) < min(t, w(x)).

PROOF. Let MTi = XUpx (A x I) C X x I be the free mapping cylinder of i,
where X is identified with X x {0}. Define

M(w) = X U{(a, t)|t < w(a)} C MTi.

Thebasepointof A C X gives M (w) a basepoint. The reduced mapping cylinder
Miis obtained from M*iby collapsing theline {*} x I toa point. Define a based
map f: Mi — M(w) by f(x) = x for x € X and f(a,t) = (a, min(t, w(a))).
Since i is a based cofibration, f extends to a based map g: X A I —> M(w).
Define

K (x,t) = mg(x,t) and w'(x) = sup{min(t, w(x)) — m2g(x, 1) | t € I}

where 1 and 7, are the projections from M (w) to X and I. Clearly ¥'(x, 0) = x,
K(a,t)=a for ae A, w'(x) <w(x), and w'(a) =0 for ac A, so that
A C (w')~1(0). To see that this inclusion is an equality, suppose that w’ (x) = 0.
Then min(t, w(x)) < myg(x,t) for all t e I. If k'(x,t) ¢ A for any t, then
mg(x,t) =0, so that t=0 or w(x) =0. If w(x) =0, then x =% and
k' (x,t) = * € A. We conclude thatif t > 0, then k'(x, t) € A. Since A is closed
in X, it follows that k’(x,0) = x is also in A. Finally, (1.3.5) holds since
K (x,t) ¢ Aimplies mg(x,t) = 0 and thus w'(x) > min(t, w(x)). O

Step (ii). There is a representation (¢, z) of (X, %) as an NDR-pair such that

LA XI) C A.

PROOF. Let (kx,wx) and (ka, wa) represent (X, ) and (A, *) as NDR-pairs,
where kx(x,t) = x if wx(x) < t and ka(a,t) = xif wa(a) < t. Since i is a based
cofibration, we may regard k, as taking values in X and extend it to a based
map

ka: X AL — X
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such that ka(x, 0) = x. Construct (K, w') from wx as in step (i) and extend w
towa: X — I by

w'(x)
wx (x)

We interpret this as w'(x) when w'(x) = wx (x); in particular, since wx (%) = 0,

Wa(x) = <1 - ) wa (K (x, 1)) + w'(x).

w4 (*) = 0. The definition makes sense since k'(x,1) € A if w'(x) < wx(x),
by (1.3.5). We claim that ﬁ);l(O) = . Thus suppose that wa(x) = 0. Then
w'(x) = 0, so that x € A, and this implies that k'(x,1) = x and wa(x) = 0, so
that x = *. The required pair (£, z) is now defined by

[IEA(x, t/ia(x)) ift < a(x)
L(x,t) = -
kx(kA(x, 1),t— ﬁ/A(x)) ift > ﬁzA(x)
and

z(x) = min(1, Wa (x) + wx (ka(x, 1))).

To see that £(A x I) C A, recall that k4 and w4 extend k and wy and let x € A.
Clearly %A(x, t) € Aforallt. Ift > wa(x), thenws(x) < 1andthuska(x, 1) = *.
Therefore kx(ka(x,1),t —wa(x)) = * € A. Note that £(x, t) = xif z(x) < t. O

Step (iii). Completion of the proof. Constructh’: X x [ — Xandz': X—>1
by applying step (i) to z: X —> I. Then define

LW (x,t), min(t, 2/ (x)/z(x))) ifx # *

hix,t) =
) if x =
and
u(x) = Z'(x) — z(x) + sup{z(W (x, 1)) | t € I}.
Then (h, u) represents (X, A) as an NDR-pair (in the strong sense). O

1.4. Actions of fundamental groups on homotopy classes of maps

For based spaces X and Y, let [X, Y] denote the set of based homotopy classes
of based maps X — Y. For unbased spaces X and Y, let [X, Ylgee denote
the set of free homotopy classes of maps X — Y. If we choose basepoints
for X and Y and use them to define [X, Y], then we obtain a function
[X,Y] —> [X, Ylgee by forgetting the basepoints. There is a classical descrip-
tion of this function in terms of group actions, and we describe that and re-
lated material on group actions in homotopy theory in this section.
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We later consider varying basepoints in a given space, and we want them all
to be nondegenerate. Therefore, we tacitly restrict attention to spaces that have
that property. This holds for locally contractible spaces, such as CW complexes.

DEFINITION 1.4.1. Let X and Y be spaces. As usual, we assume that they
are connected and nondegenerately based. Let i: x —> X be the inclusion
of the basepoint and p: Y —> % be the trivial map. A loop « based at x € Y
and a based map f: X — Y giveamap fUa: Mi = XUI — Y. Applying
Lemma 1.3.2 to i, p, and f U, we obtain a homotopy h: X x [ — Y such
that ho = f and h(x,t) = «(t). Another use of Lemma 1.3.2 shows that the
(based) homotopy class of h1 depends only on the path class [«] and the homo-
topy class [ f]. With the usual conventions on composition of loops [93, p. 6],
the definition [«][ f] = [h1] gives a left action of 71 (Y, %) on the set [X, Y] with
orbit set [X, Y]/m1(Y, %). It is clear that two based maps that are in the same
orbit under the action of 71 (Y, *) are freely homotopic.

LEMMA 1.4.2. The induced function [X, Y]/71(Y) —> [X, Ylgee is a bijection.

PROOF. By HEP, anymap X —> Y is freely homotopic to a based map. If two
based maps f and g are freely homotopic via a homotopy h, then the restriction
of hto {*} x I gives aloop «, and [g] = [][ f] by the definition of the action. O

An H-space is a based space Y with a product u: Y x Y — Y, written x - y
or by juxtaposition, whose basepoint is a two-sided unit up to based homotopy.
That is, the maps y — -y and y + y - x are both homotopic to the identity
map. Equivalently, the composite of the inclusion YV Y — Y x Y and the
product is homotopic to the fold map V: YV Y — Y, which restricts to the
identity map on each wedge summand Y. Using our standing assumption that
basepoints are nondegenerate, we see that the given product is homotopic to
a product for which the basepoint of Y is a strict unit. Therefore, we may as
well assume henceforward that H-spaces have strict units.

PROPOSITION 1.4.3. Foran H-space Y, the action of w1 (Y, ) on [X, Y] is trivial
and therefore [X, Y] = [X, Yfee-

PROOF. For a map f: X —> Y and a loop « based at * € Y, the homo-
topy h(x,t) = «(t) - f(x) satisfies hy = f. Using this choice of homotopy in
Definition 1.4.1, as we may, we see that [¢][f] = [f]. O

The following definition hides some elementary verifications that we leave
to the reader.
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DEFINITION 1.4.4. Take X = S" in Definition 1.4.1. The definition then spe-
cializes to define an action of the group 71 (Y, *) on the group 7, (Y, *). When
n = 1, this is the conjugation action of 71 (Y, ) on itself. A (connected) space
Y is simple if 71 (Y, %) is abelian and acts trivially on (Y, %) for all n > 2.

COROLLARY 1.45. Any H-space is a simple space.

In the rest of this section, we revert to the based context and consider
extra structure on the long exact sequences of sets of homotopy classes of
(based) maps that are induced by cofiber and fiber sequences. These long exact
sequences are displayed, for example, in [93, pp. 57, 59]. As observed there, the
sets [X, Y] are groups if X is a suspension or Y is a loop space and are abelian
groups if X is a double suspension or Y is a double loop space. However, there
is additional structure at the ends of these sequences that will play a role in our
work. Thus, for a based map f: X —> Y and a based space Z, consider the
exact sequence of pointed sets induced by the canonical cofiber sequence of f:

(=f)* * i* I
[2Y, Z]——=([2X, Z|——[Cf, Z]——1Y, Z]——I[X, Z].

LEMMA 1.4.6. The following statements hold.

(i) The group [EX, Z] acts from the right on the set [Cf, Z].

(ii) w*: [£X, Z] —> [Cf, Z] is a map of right [XX, Z]-sets.
(i) 7*(x) = 7*(x) ifand only if x = (Zf)*(y) -« for some y € [ZY, Z].
(iv) i*(z) = i*(Z') ifand only if z = 2’ - x for some x € [ZX, Z].

(v) The image of [£%X, Z] in [ Cf, Z] is a central subgroup.

(In (iii) and (iv), we have used the notation - to indicate the action.)

PROOF. In (i), the action is induced by applying the contravariant functor
[—, Z] to the “coaction” Cf —> Cf vV XX of £X on Cf that is specified by
pinching X x {1/2} C Cf to a point (and of course linearly expanding the half
intervals of the resulting wedge summands homeomorphic to Cf and XX to
full intervals). Then (ii) is clear since the quotient map Cf — £ X commutes
with the pinch map. To show (iii), observe that since [£X, Z] is a group, (ii)
implies that 7*(x) = 7*(x') if and only if 7*(x - (x")~!) = *. By exactness, this
holds if and only if x - (x')~! = (Zf)*(y) and thus x = (Xf)*(y) - ¥’ for some
y € [XY, Z]. For (iv), if i*(2) = i*(2'), then the HEP for the cofibration i implies
that the homotopy classes zand 2’ can be represented by maps ¢ and ¢’ from Cf
to Z that restrict to the same map on Y. Then z = 2’ - x, where x is represented
by the map £X —» Z thatis obtained by regarding X as the union of upper



18 / COFIBRATIONS AND FIBRATIONS

and lower cones on X, using ¢’|cx with cone coordinate reversed on the lower
cone, and using c|cx on the upper cone.

Finally, for (v), let G = [ECf, Z] and let H C G be the image of [£%X, Z].
The suspension of the pinch map Cf — Cf v XX gives a right action * of
H on G, a priori different from the product in G. We may obtain the product,
gg’ say, on G from the pinch map defined using the suspension coordinate of
Y Cf. Then the usual proof of the commutativity of [£2X, Z] applies to show
that hg = gh for h € H and g € G. In detail, if 1 € H is the identity element,
then, forg,g’ € Gand h,h' € H,

1xh=h, gxl=g, and (gxh)(g k) = (gg') = (hh).
Therefore
gh = (gx1)(1xh) = (gl)* (Lh) = g xh
= (1g) * (1) = (Lxh)(g* 1) = hg. O

Dually, consider the exact sequence of pointed sets induced by the canonical
fiber sequence of f: X —> Y

(2f)« Lx Px S
[Z, 2X]——[Z, Y] [Z, Ff] [Z,X] [Z,Y].

Thisis of greatestinterestwhen Z = S0. Since [—, —] refers to based homotopy
classes, [S?, X] = mo(X) and the sequence becomes

ﬂ Ly Px f*
71 (X)——>771 () —> 710 (Bf ) ——> 710 (X) ——>110(¥).

LEMMA 1.4.7. The following statements hold.

(i) The group [Z, 2Y] acts from the right on the set [Z, Ff].

(i) 2 [Z,2Y] —> [Z, Ff]is a map of right [Z, QY ]-sets.
(i) te(y) = w(Y) if and only if y = (Qf )«(x) -y’ for some x € [Z, QX].
(iv) p«(2) = p«(2) if and only if z = 2/ -y for some y € [Z, QY.

(v) The image of [Z, Q*Y] in [Z, QFf] is a central subgroup.

1.5. Actions of fundamental groups in fibration sequences

It is more usual and more convenient to think of Lemma 1.4.7 in terms of
fibrations. That is, instead of starting with an arbitrary map f, in this section
we start with a fibration p: E —> B. We give some perhaps well-known (but
hard to find) results about fundamental group actions in fibrations.
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Observe that a fibration p: E —> B need not be sur]'ective,3 but either
every point or no point of each component of B is in the image of E. For
nontriviality, we assume that p is surjective. We may as well assume that B
is connected, since otherwise we could restrict attention to the components
of E over a chosen component of B. If we were given a general surjective
map p: E — B, we would replace E by its mapping path fibration Np (which
depends on a choice of basepoint in B) to apply the results to follow. That
is, we can think of applying the results to the fibration Np — B as applying
them to the original map p “up to homotopy”.

Although we have been working in the based context, we now think of p as
a free fibration and let the basepoint b € B vary. We choose a point ¢ € E
such that p(e) = b and we let F,, = p~!(b). Also let E, be the component of E
that contains e and F, be the component of F, that contains e. We view these
as based spaces with basepoint e (as recorded in the notation), retaining our
standing assumption that basepoints are nondegenerate. As in [93, p. 64], we
then have the exact sequence

1.5.1
Ly Px
e 7Tn(Fere) —_— 7Tn(Eexe) I ﬂn(B,b) — ﬂnfl(Feye) —_—

Px d Ly
- — mi(E,¢) —— m(B,b) —— mo(Fy,e) — mo(E,¢).

Notice that we have replaced E and Fj, by E, and F, in the higher homotopy
groups. Since the higher homotopy groups only depend on the component of
the basepoint this doesn’t change the exact sequence.

By [93, p. 52], there is a functor A = A(gy): [IB — Ho% that sends a
point b of the fundamental groupoid I1B to the fiber Fj,. This specializes to
give a group homomorphism (B, b) —> mo( Aut (F)). Here Aut (F}) is the
topological monoid of (unbased) homotopy equivalences of F;,. We think of
71(B, b) as acting “up to homotopy” on the space Fj,, meaning that an element
B € m1(B, b) determines a well-defined homotopy class of homotopy equiva-
lences F;, —> Fy,. (If p is a covering space, the action is by homeomorphisms,
asin[93, p. 29].) As we shall use later, it follows that 71 (B) acts on the homology
and cohomology groups of Fj,.

Observe that we can apply this to the path space fibration QY — PY - Y
of a based space Y. We thus obtain an action of m1(Y,*) on QY. Since
QY is simple, by Proposition 1.4.3, [QY,QY] = [QY, QY ]fee and we can

3.1In [93, p. 47], fibrations were incorrectly required to be surjective maps.
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view 71(Y, *) as acting through basepoint-preserving homotopy equivalences
of the fiber QY. There results another action of 71(Y,*) on m,(Y,*). We
leave it to the reader to check that this action agrees with that defined in
Definition 1.4.4.

We will need a more elaborate variant of the functor A = A(g ) : 1B — Ho%.
Here, instead of starting with paths in B, we start with paths in E and work
with components of the fibers and the total space, regarded as based spaces.
Thus let «: I —> E be a path from e to €. Let b = p(e) and b’ = p(¢/), and let
B = poua be the resulting path from b to b'. Consider the following diagram,
in which F = F, and t: F — E is the inclusion.

(U
Fx{0}u{e)x I ———= E
a P
|
FxI I B
9] B

The CHEP, Lemma 1.3.2, gives a homotopy & that makes the diagram com-
mute. At the end of this homotopy, we have a map @;: F, — Fy such that
@1(e) = €. By a slight variant of the argument of [93, p. 51], which again uses
the CHEP, the based homotopy class of maps &1 : (Fe,e) —> (Fe, €') such that
@1(e) = ¢ that are obtained in this way depends only on the path class [«].
That is, homotopic paths e —> ¢’ give homotopic maps &; for any choices of
lifts @. We define Ala] = [@1]. These arguments prove the first statement of
the following result.

THEOREM 1.5.2. There is a functor . = Mgp): [IE —> Ho.7 that assigns the
(based) component F, of the fiber Fy, to a point e € E with p(e) = b. The functor A
restricts to give a homomorphism m1(E, e) —> mo(Aut (Fp)) and thus an action
of m1(E,e) on m,(Fp,e). The following diagram commutes up to the natural
transformation UA(gp) —> A(B,p)Px given by the inclusions F; —> Fy.

123
[NE —— TIIB

MEp) l l MBp)

HoZ — Ho%
U

Here U is the functor obtained by forgetting basepoints.
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PROOF. It remains to prove the last statement.
By definition, forapath : b — V', Az p)[8] = [A1], where f is a homotopy
that makes the following diagram commute.

C
Fyx{0) ———— > E

l B/// \L
n - p
—~
~
—

FyxI —> | —> B

9) ﬂ

If b = p(e), we may restrict Fj, to its components F,. Letting ¢ = B(e, 1), 8
restricts on {e} x I to a path a: e —> ¢’. Then f; is a homotopy of the sort
used to define A gy la]. Turning the argument around, if we start with a
given path « and define 8 = p o @, then the map & used in the specification of
AEgpla] = [a@1] serves as a choice for the restriction to F, x I of a lift 5 in the
diagram above. This says that the restriction of A(p ) to the component F, is
AE pla], which is the claimed naturality statement. |

REMARK 1.53. In the argument just given, if 8 is a loop there need be no
choice of f such that f;(e) = e unless 7 : 71 (E., e) —> m1(B, b) is surjective.
Similarly, unless 7y : 71(Ee, €) —> m1(B, b) is injective, loops « in E, can give
non-homotopic action maps [«]: F, —> F, even though they have the same
image under p,.

The naturality and homotopy invariance statements proven for A(p y) in [93,
pp. 52-53] apply with obvious changes of statement to A (g ). We write r for the
trivial fibration r : Y — =« for any space Y. When p = r in the construction
above, the resulting action of 1 (Y, *) on m,(Y, ) agrees with that discussed
earlier. In effect, in the based context, taking X = Y in Definition 1.4.1 we see
that we used this construction to give our original definition of fundamental
group actions. The more concrete construction in Definition 1.4.4 is then
obtained via maps S* — Y.

PROPOSITION 1.5.4. The long exact sequence (1.5.1), ending at 71(B, b), is an
exact sequence of 1 (E, e)-groups and therefore of w1 (F, €)-groups. In more detail,
the following statements hold.

(i) Forj € m1(Fy,€) and x € my(Fy, €), jx = t4(j)%.
(ii) Forg € m1(E, ¢) and z € w,(B, b), gz = p«(g)z.
(iii) Forg € m1(E, €) and x € wy(Fy, €), t+(gx) = gt«(x).
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(iv) Forg € mi(E,e) andy € mu(E, €), p«(gx) = gp«(x).
(v) Forg € m(E,e) and z € m,(B, b), 3(gz) = go(2).

PROOF. We define the actions of 71 (E, ) on 7w, (Fp, €), 7u(E, €) and 7y, (B, b) to
be those given by A(g ), A(g,r) and A(p ) o px, respectively. We let 71 (F, ¢) act
on these groups by pullback along ¢, : 71(F,, ¢) —> m1(E, €). By (i) and inspec-
tion, this implies that its actions are given by A, ), A(E,r) © t«, and the trivial
action, respectively. The maps in the exact sequence are maps of m;(E, €)-
groups by (iii), (iv), and (v).

By restricting the construction of Ag ) to loops a: I — F, we see that
M(E,n)le] = A(gp)lt o a]. This implies part (i), and part (ii) is immediate from
the definition of the action of 71 (E, €) on 71 (B, b). Part (iv) holds by the natu-
rality of the action of 71 on 7,, which applies to any map, not just a fibration
such as p.

To prove (iii), we use the notations of the diagram on the previous page.
Since t: F — E is a cofibration, by Lemma 1.3.1, we can apply the CHEP to
the diagram

iduB
M ——— E

/7
i k ) l
// 14
—~

Ex] ——= ] —— B

b193 B

to obtain a deformation k: E x I — E. Since 1: F, — F, C E represents
ts 0 M(E,p)([]) and this mapis k1 o+, italsorepresents A g r) o t. Thisimplies (iii).

To prove (v), recall from [93, p. 64] that 9: 7,(B,b) —> m,—1(F, ¢) is the
composite of the inverse of the isomorphism p,: 7y, (E, F, e) —> m,(B, b) and
the boundary map of the pair (E, F), which is obtained by restricting represen-
tative maps (D", S"~!) —> (E, F) to S""! — F. Let @ be a loop at ¢ in E that
represents g and let p(e) = band poo = B. Let h: B x I —> B be a deforma-
tion (ho = id) such that h(b, t) = B(t). As in Definition 1.4.1, for a based map
f:X — B, [Bllf] = [h]. To describe this action in terms of the pair (E, F),
use the CHEP to obtain lifts j and k in the following diagrams.

Ua idyj
F,x {0}U{e} x I — = E and M —= E
i - ko -
I PR R
FXI/ I B ExI Bx1I B

2 B pxid h
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Then (k,j): (E, F) x I — (E, F) is a relative homotopy that restricts to j and
covers h. Precomposing with a map z: (D", S"~!) — (E, F) that represents
z € m1(B, b), the composite hiz represents [S]z, which is gz = p.(g)z. Its res-
triction to S"~! represents d(gz) and, by the first of the above pair of diagrams,
it also represents gd(z). O

REMARK 1.5.5. Consider (1.5.1). Lemma 1.4.7 implies that o (Fp, €) is a right
71(B, b)-setand d: m1(B, b) —> mo(Fy, €) is a map of 71 (B, b)-sets and therefore
of 1 (E, e)-sets. However, we are especially interested in the next step to the
left. Assume that the image of p,.: 71(E, ) —> 71(B, b) is a normal subgroup.
Then coker p, is a group contained in the based set o (Fj, ) of components
of Fy, with base component F, (later sometimes denoted [¢]). We denote this
group by 77o(F}, ¢) and have the exact sequence
P+ il b
m1(E, e)——=m1(B, b)——=7o(Fp, ) —*.

It is an exact sequence of 71 (E, ¢)-groups and thus of 71 (Fy, €)-groups, where
71(Fp, €) acts trivially on the last two groups.
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HOMOTOPY COLIMITS AND
HOMOTOPY LIMITS; lim!

The material of this chapter is again of general interest. We describe the
most basic homotopy colimits and limits, with focus on their precise algebraic
behavior. In particular, we develop the dual homotopical lim! exact sequences.
We shall not go into the general theory of homotopy colimits, but the material
here can serve as an introduction to such more advanced sources as [42, 65,
128]. In this book, homotopy limits, and especially homotopy pullbacks, will
play a central role in the fracture theorems of Chapters 8 and 13.

In §3 and §4, we describe the algebraic properties of the functor lim! and
give a concrete topological example where nontrivial lim! terms appear. In {5
and §6, we give some observations about the homology of filtered colimits and
sequential limits and advertise a kind of universal coefficient theorem for profi-
nite abelian groups. While §1 and §2 are vital to all of our work, the later sections
play a more peripheral role and need only be skimmed on a first reading.

2.1. Some basic homotopy colimits

Intuitively, homotopy colimits are constructed from ordinary categorical col-
imits by gluing in cylinders. These give domains for homotopies that allow us
to replace equalities between maps that appear in the specification of ordinary
colimits by homotopies between maps. There is always a natural map from
a homotopy colimit to the corresponding ordinary colimit, and in some but
not all cases there is a convenient criterion for determining whether or not
that natural map is a homotopy equivalence. Since homotopies between given
maps are not unique, not even up to homotopy, homotopy colimits give weak
colimits in the homotopy category in the sense that they satisfy the existence
but not the uniqueness property of ordinary colimits. We shall spell out the
relevant algebraic property quite precisely for homotopy pushouts (or double
mapping cylinders), homotopy coequalizers (or mapping tori), and sequential
homotopy colimits (or telescopes). We record the analogous results for the
24
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constructions Eckmann-Hilton dual to these in the next section. We work in
the based context, but the unbased analogues should be clear.

DEFINITION 2.1.1. The homotopy pushout (or double mapping cylinder)
M(f,g) of a pair of maps f: A — X and g: A —> Y is the pushout written
in alternative notations as

(XVY)UpvaAALs or XUp(AAL)U, Y.

It is the pushout defined with respect to fvg: AVA— X VY and the
cofibration (ip,i1): AVA — AN,

Explicitly, with the alternative notation, we start with X v (AA I1) V'Y and
then identify (a,0) with f(a) and (4, 1) with g(a). In comparision with the
ordinary pushout X U Y, we are replacing A by the cylinder A A ;. Except
that the line % x I through the basepoint should be collapsed to a point, the
following picture should give the idea.

AxI | . g(zD Y

PROPOSITION 2.1.2. For any space Z, the natural map of pointed sets
[M(f.g),Z] — [X,Z] x[a, 7)Y, Z]

is a surjection. Its kernel is isomorphic to the set of orbits of [ A, Z] under the right
action of the group [X, Z] X [XY, Z] specified by

ax(x,y) = (Zf)* ()" -a- (Sg)*(v)
forae[2A,Z], x € [£X,Z],andy € [2Y, Z].
PROOF. The pullbackin the statement is the set of homotopy classes ([«], [8])

in [X, Z] x [Y, Z] such that [«] and [B] have the same image in [A, Z], which
means that o of is homotopic to S og.
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We have an evident cofibration j: X VY — M(f,g). As in [93, p. 57], it
gives rise to an exact sequence of pointed sets

, %
* i* J

[EX,Z]x [ZY, Z]L>[Cj, Z1—=[M(f,g), Z1—=I[X, Z] x [Y, ZI.

Ifa: X — Z and B: Y —> Z are such that af ~ Bg, then any choice of
homotopy AA I —> Z determines a map y: M(f,g) —> Z that restricts
to o and B on X and Y. Thus j* induces a surjection onto the pullback in
the statement of the result. That is, for homotopy classes [«] and [B] such
that f*[«] = g*[B], there is a homotopy class [y ], not uniquely determined,
such thatj*[y] = ([«], [8]). This is what we mean by saying that the homotopy
colimit M(f, g) is a weak pushout of f and g in Ho.7.

By Lemma 1.4.6(iv), ker j* = im i* is the set of orbits of [£ A, Z] under the
actionof [£X, Z] x [ZY, Z] specified there. Since is a cofibration, the canon-
ical quotient map ¢ : Cj — XA is an equivalence ([93, p. 58]). A homotopy
inverse & to ¥ can be specified by

(f(a),1-3t)e CX if0<t<1/3
E@t)=1{(a,3t—-1) e AAIL if1/3<t<2/3
(g(a),3t—2) e CY if2/3<t<1.

The pinch map on Cj used to define the action in Lemma 1.4.6 pinches the
equators X x {1/2}and Y x {1/2} of CX and CY to the basepoint, so mapping
CitoXX Vv CjVv XY. If we firstapply € and then this pinch map on Cj, we obtain
the same result as if we first apply the pinch map XA — AV XAV S Athat
pinches A x {1/6} and A x {5/6} to a point and then apply &. Up to homotopy,
& restricts on the three copies of £A to —Xf, the identity, and Xg. There-
fore the action defined in Lemma 1.4.6 agrees with the action specified in the
statement. O

The following result is often called the “gluing lemma”.

LEMMA 2.1.3. Assume given a commutative diagram

f g
X A Y
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in which f and f' are cofibrations. If«, B, and y are homotopy equivalences, then
so is their pushout
XUpyY — X Uar Y’

PROOF. One can prove this directly by expanding on arguments about cofiber
equivalence given in [93, §4.5]. However, that would be fairly lengthy and
digressive. Instead we take the opportunity to advertise the model category
theory that appears later in the book, specifically in §15.4. The notion of a left
proper model category is specified in Definition 15.4.1, and it is proven in
Proposition 15.4.4 that a model category is left proper if and only if the conclu-
sion of the gluing lemma holds. This applies to a very large class of categories in
which one can do homotopy theory. By Theorem 17.1.1 and Corollary 17.1.2,
it applies in particular to the category of spaces and the category of based
spaces. a

COROLLARY 2.1.4. If f isacofibration and g is any map, then the natural quotient
map M(f,g) —> X Ua Y is a homotopy equivalence.

PROOF. An explicit proof of the unbased version is given in [93, p. 78], but
the conclusion is also a direct consequence of the previous result. To see that,
let Mf be the mapping cylinder of f and observe that M(f, g) is the pushout
of the canonical cofibration A — Mf and g: A — Y. Taking « and y to be
identity maps and B to be the canonical homotopy equivalence Mf — X, the
previous result applies. O

Observe that the fold map V: X Vv X — X is conceptually dual to the
diagonal map A: X — X x X.

DEFINITION 2.1.5. The homotopy coequalizer (or mapping torus) T(f,f’) of
apairof mapsf,f’: X —> Y isthehomotopy pushoutof (f,f"): X VX — Y
and V: XvX — X.

We have written the definition in a way that mimics the construction of
coequalizers from pushouts and coproducts in any category (see below). How-
ever, unravelling the definition, we see that (X A X) A I can be identified with
(X A L) V (X A Ly). The identification along V has the effect of gluing these
two cylinders into a single cylinder of twice the length. Therefore T(f,f’) is
homeomorphic to the quotient of Y v (X A I;) obtained by identifying (x, 0)
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with f(x) and (x, 1) with f(x). This gives the source of the alternative name.
We urge the reader to draw a picture.

The categorical coequalizer of f and f’ can be constructed as Y/~, where
f(x) ~ f'(x) for x in X. The required universal property ([93, p. 16]) clearly
holds. Equivalently, the coequalizer is the pushout of (f,f"): XvVX — Y
and V: X v X —> X. In principle, the map (f,f’) might be a cofibration, but
that almost never happens in practice. Since cofibrations must be inclusions, it
can only happen if the intersection of the images of f and f” is just the base-
point of Y, and that does not generally hold. The gluing lemma applies to
categorical coequalizers when it does hold, but there is no convenient generally
applicable analogue of the gluing lemma. For that reason, there is no conve-
nient general criterion that ensures that the natural map from the homotopy
coequalizer to the categorical coequalizer is a homotopy equivalence.

The equalizer E(«, B) of functions o, B: S —> U is {s|x(s) = B(s)} C S, as
we see by checking the universal property ([93, p. 16]). Equivalently, it is the
pullback of (&, 8): S—> Ux Uand A: U — U x U.

PROPOSITION 2.1.6. For any space Z, the natural map of pointed sets

[T(f.f), 2] — E(f*".f")

is a surjection, where f*, f'*: [Y, Z] —> [X, Z]. Its kernel is isomorphic to the set
of orbits of [ X, Z] under the right action of the group [£Y, Z] specified by

xxy = ()W) % (SF) )
forx € [EX,Z]andy € [ZY, Z].

PROOF. Abbreviate G =[XX,Z] and H =[XY, Z] and let 6 = (Xf)* and
0’ = (=f')*. By Proposition 2.1.2 and the definition of T(f,f),

[T(f.f), 2] — E(f".f")

is a surjection with kernel the set of orbits of G x G under the right action of
H x G specified by

(w, %) * (y,2) = (0y) 7", (0'y) " (w, %)(z.2) = ((Oy) w2, (0y) ' x2)

1 and

for w,x,z € G and y € H. Define u: Gx G — G by pu(w,x) = wx~
define v: H x G — H by v(y,2) = y. With H acting on G as in the state-
ment, p is v-equivariant and induces a bijection on orbits by an easy algebraic

verification. O
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DEFINITION 2.1.7. The homotopy colimit (or mapping telescope) tel X; of a
sequence of maps f;: X; —> X;,1 is the homotopy coequalizer of the iden-
tity map of Y = v;X; and v;f;: Y — Y. It is homeomorphic to the union
of mapping cylinders described in [93, p. 113], which gives the more usual
description.

The definition of lim! G; for an inverse sequence of abelian groups is given,
for example, in [93, p. 146]. It generalizes to give a definition for not nec-
essarily abelian groups. However, the result is only a set in general, not a
group.

DEFINITION 218. Let y;: G417 — G;, i >0, be homomorphisms of

groups. Define a right action of the group G = x;G; on the set S = x;G; by

(si) * (8i) = (g "sivi(8iv1))-

The set of orbits of S under this action is called lim! G;. Observe that lim G; is
the set of elements of G that fix the element (1) € S whose coordinates are the
identity elements of the G;. Equivalently, lim G; is the equalizer of the identity
map of Sand x;y;: S — S.

PROPOSITION 2.1.9. For any space Z, the natural map of pointed sets
[tel Xi: Z] e lim[Xi, Z]

is a surjection with kernel isomorphic to lim'[2X;, Z].

PROOF. With our definition of tel X; as a homotopy coequalizer, this is
immediate from Proposition 2.1.6. O

The following “ladder lemma” is analogous to the gluing lemma above.

LEMMA 2.1.10. Assume given a commutative diagram

fo fi
Xo X X; Xit1
g i l o1 \L o l dip1
X)X e e X X,

fo K
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in which the f; and f are cofibrations. If the maps «; are homotopy equivalences,
then so is their colimit

colim X; — colim X.

PRoOOF. This follows inductively from the proposition about cofiber homo-
topy equivalence given in [93, p. 44]. O

COROLLARY 2.1.11. Ifthemapsf,: X; —> X;. 1 are cofibrations, then the natural
quotient map tel X; — colim X; is a homotopy equivalence.

PROOF. The map in question identifies a point (x, t) in the cylinder X; A Iy
with the point (f;(x),0) in the base of the next cylinder X;,1 A I;. We may
describe tel X; as the colimit of a sequence of partial telescopes Y;, each of
which comes with a deformation retraction «;: Y; — X;. These partial tele-
scopes give a ladder to which the previous result applies. O

This applies in particular to the inclusions of skeleta of a CW complex X,
and we have the following important definition.

DEFINITION 21.12. Let X be a (based) CW complex with n-skeleton X". A
map f: X —> Z is called a phantom map if the restriction of f to X" is null
homotopic for all n.

WARNING 2.1.13. This is the original use of the term “phantom map”, but the
name is also used in some, but by no means all, of the more recent literature for
maps f : X —> Z such that f o g is null homotopic for all maps g: W — X,
where W is a finite CW complex. One might differentiate by renaming the
original notion “skeletally phantom” or renaming the new notion “finitely
phantom”. Skeletally phantom implies finitely phantom since any g as above
factors through X" for some n. Of course, the two notions agree when X has
finite skeleta.

The name comes from the fact that, with either definition, a phantom map
f: X — Z induces the zero map on all homotopy, homology, and cohomol-
ogy groups, since these invariants depend only on skeleta, and in fact only
on composites f o g, where g has finite domain. With the original definition,
Corollary 2.1.11 and Proposition 2.1.9 give the following identification of the
phantom homotopy classes.
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COROLLARY 2.1.14. The set of homotopy classes of phantom maps X — Z can
be identified with lim![zX", Z].

PROOF. By Corollary 2.1.11, the quotient map tel X" — X is a homotopy
equivalence, hence the conclusion follows from Proposition 2.1.9. O

In §2.3, we specify a simple algebraic condition, called the Mittag-Leffler
condition, on an inverse sequence {G;, y;} that ensures that lim! G; is a single
point. In the situation that occurs most often in topology, the G; are countable,
and then Theorem 2.3.3 below shows thatlim! G; is uncountable if the Mittag-
Leffler condition fails and a certain normality of subgroups condition holds.
In particular, the cited result has the following consequence.

COROLLARY 21.15. If the skeleta X" are finite, the homotopy groups m4(Z) are
countable, the groups [£X", Z] are abelian, and the Mittag-Leffer condition fails
for the inverse system {[£X", Z1}, then lim' [ X", Z] is an uncountable divisible
abelian group.

As a concrete example, this result applies to show that [C P>, S*] contains
an uncountable divisible subgroup. This is a result due to Gray [55] that we
shall explain in §2.4. Here the groups [SCP", S3] are abelian since S* is a
topological group. Although it is hard to specify phantom maps concretely on
the point-set level, their existence is not an exotic phenomenon.

2.2. Some basic homotopy limits

We gave the definitions and results in the previous section in a form that
makes their dualization to definitions and results about homotopy limits as
transparent as possible. We leave the details of proofs to the interested reader.
These constructions will be used later in the proofs of fracture theorems for
localizations and completions.

DEFINITION 22.1. The homotopy pullback (or double mapping path fibra-
tion) N(f,g) of a pair of maps f: X —> A and g: Y —> A is the pullback

written in alternative notations as
(X X Y) xaxa F(I4,A) or X xpF(I4,A)xgY.

It is the pullback defined with respect to f xg: X xY — A x A and the
fibration (po, p1): F(I4+,A) — Ax A.
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Explicitly, with the alternative notation, N(f,g) is the subspace of
X x F(I+, A) x Y that consists of those points (x, ®, y) such that w(0) = f(x)
and w(1) = g(y). Here (po,p1): F(I+,A) — A x A is a fibration by applica-
tion of Lemma 1.1.4 to the cofibration (ip,i1): AVA — AA L. Its fiber
over the basepoint is QA. Observe that pullback of this fibration along
fxg: XxY — AxA gives a fibration (po,p1): N(f,g) — X x Y with
fiber QA over the basepoint.

PROPOSITION 22.2. For any space Z, the natural map of pointed sets
[Z,N(f.g)] — [Z2,X] x(z,A[Z, Y]

is a surjection. Its kernel is isomorphic to the set of orbits of [ Z, QA] under the right
action of the group [Z, QX] x [Z, QY] specified by

ak(x,y) = (Qf)(x) " a- (28)«(y)
forae[Z,QA], x € [Z,Q2X],andy € [Z,QY].

The following consequence, which  uses the fibration
(po.p1): N(f,g) — X x Y and the exact sequence of [93, p. 64], will be
especially important in our study of fracture theorems.

COROLLARY 223. Letf: X — Aandg: Y —> A be maps between connected
spaces. There is a long exact sequence

s 1 (A) — TaN(frg) L X x (V) LS 7a(A)

— .. —> m1(A) — wN(f,g) — *

The space N(f,g) is connected if and only if every element of 71(A) is the prod-
uct of an element of fim1(X) and an element of g.71(Y). For n > 1, the natural
map

Ta(N(f8)) —> 7n(X) Xy (4) Tn(Y)

is an isomorphism if and only if every element of the abelian group mw,11(A) is the
sum of an element of fiwpy1(X) and an element of gu7wp1(Y).

Ifn = 1, the inaccurate notation f, — g, means the pointwise product f,g; ';
the additive notation is appropriate when n > 1. In both cases, the condition
on homotopy groups says that the relevant homomorphism f, — g, is an
epimorphism.
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LEMMA 2.2.4. Assume given a commutative diagram

f g
X A Y

X — A =— Y

f g

in which f and f' are fibrations. Ifa, B, and y are homotopy equivalences, then so
is their pullback
XxaY — X xaY.

PROOF. The model category theory that we give later is self-dual in the very
strong sense that results for a model category, when applied to its opposite
category, give dual conclusions. This lemma is an illustrative example. It is
the model theoretic dual of Lemma 2.1.3, and the proof of Lemma 2.1.3 that
we outlined above dualizes in this sense. The notion of a right proper model
category is specified in Definition 15.4.1, and by Proposition 15.4.4, a model
category is right proper if and only if the conclusion of this “cogluing lemma”
holds. By Theorem 17.1.1 and Corollary 17.1.2, the category of spaces and the
category of based spaces are both left and right proper, so the conclusions of
both Lemma 2.1.3 and this lemma hold in both categories. O

COROLLARY 225. If f isa fibration and g is any map, then the natural injection
X x4 Y —> N(f,g) is a homotopy equivalence.

DEFINITION 2.2.6. The homotopy equalizer (or double fiber) F(f,f’) of a pair
of mapsf, f': X — Y is the homotopy pullback of (f,f"): X — Y x Y and
A:Y — Y XxY.

Again, we have written the definition so as to mimic the categorical con-
struction of equalizers from pullbacks and products. Unraveling the definition,
we find that the space F(f,f’) is homeomorphic to the pullback of the natural
fibration N(f,f’) — X x X along A: X — X x X.

PROPOSITION 2.2.7. For any space Z, the natural map of pointed sets

(ZF(f.fN — E(fu.f"))

is a surjection, where f, f',: [Z,X] —> [Z, Y]. Its kernel is isomorphic to the set
of orbits of [Z, QY] under the right action of the group [Z, QX] specified by
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yrx = ()e(x) 7y (R )u(x)
forx € [Z,QX]andy € [Z,QY].

DEFINITION 2.28. The homotopy limit (or mapping microscope)! mic X; of
a sequence of maps f;: X;,1 —> X; is the homotopy equalizer of the identity
map of Y = x;X; and x; f;: Y — Y. It is homeomorphic to the limit of the
sequence of partial microscopes Y, defined dually to the partial telescopes in
[93, p. 113].

Explicitly, let mo: Yo = F(I4+, Xo) —> Xo be p1, evaluation at 1. Assume
inductively that 7r,,: Y, —> X, has been defined. Define Y,,;1 to be the pull-
back displayed in the right square of the following diagram. Its triangle defines
Tnt1: Yne1 —> Xut1, and the limit of the maps Y,41 —> Y, is homeo-
morphic to mic X;.

Yn+1 Yn

= -

Xpr1 <— F(l4, Xup1) —— X1 —— Xa
P Po fu

PROPOSITION 22.9. For any space Z, the natural map of pointed sets

[Z, micX;] — lim[Z, X;]

is a surjection with kernel isomorphic to lim'[Z, QX;]. In particular, there are

natural short exact sequences

0 — lim! 7,41 (X;) —> 7u(mic X;) —> lim 7,,(X;) —> 0.

LEMMA 2.2.10. Assume given a commutative diagram

i fo
- — Xin X; X1 Xo
i1 i \L o l o1 l o0
C— Xin X; X1 Xo
fi fo

1. This joke name goes back to 1970s notes of the first author.
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in which the f; and f;' are fibrations. If the a; are homotopy equivalences, then so is
their limit

limX; — limX;.

pRoOOF. This follows inductively from the proposition about fiber homotopy
equivalence given in [93, p. 50]. O

PROPOSITION 22.11. Ifthe mapsf;: X;\1 —> X; are fibrations, then the natu-
ral injection lim X; — mic X; is a homotopy equivalence.

2.3. Algebraic properties of lim!

The lim' terms that appear in Propositions 2.1.9 and 2.2.9 are an essential,
but inconvenient, part of algebraic topology. In practice, they are of little
significance in most concrete applications, the principle reason being that
they generally vanish on passage either to rationalization or to completion at
any prime p, as we shall see in {6.8 and §11.6. We give some algebraic feel for
this construction here, but only the Mittag-Leffler condition for the vanishing
of lim'G; will be relevant to our later work.

~We consider a sequence of homomorphisms y;: G;11 —> G;. Forj > i, let
yij = ViVity1 - ¥j-1: Gj —> Gjandlet GJi =im yij . We say that the sequence
{G;, v} satisﬁgs the Mittag-Leffler condition if for each i there exists j(i) such
that Gi.‘ = Gji(l) for all k > j(i). That is, these sequences of images eventually
stabilize. For example, this condition clearly holds if each y; is an epimorphism
or if each G; is a finite group.

The following results collect the basic properties of lim! G;. The main con-
clusion is that either the Mittag-Leffler condition holds and lim!' G; = 0 or,
under further hypotheses that usually hold in the situations encountered in
algebraic topology, the Mittag-Leffler condition fails and lim! G; is uncount-
able.

PROPOSITION 23.1. A short exact sequence
1} —{GL¥} — {Givi} — (G .y} — {1}
of towers of groups gives rise to a natural exact sequence of pointed sets

1 lim G} - lim G; — lim G > lim' G| — lim' G; — lim' G, — 1.



36 / HOMOTOPY COLIMITS AND HOMOTOPY LIMITS; lim!

Moreover, the group lim G;” acts from the right on the set lim' G/, & is a map of
right lim G;"-sets, and two elements of lim' G| map to the same element of lim! G;
if and only if they lie in the same orbit.

PROOF. The identity elements of groups are considered as their basepoints,
and sequences of identity elements give the basepoints necessary to the state-
ment. By an exact sequence of pointed sets, we just mean that the image in
each term is the set of elements that map to the basepoint in the next term.
We use square brackets to denote orbits and we regard G; as a subgroup of
G;. We define the right action of lim G;” on lim' G/ by letting

[s1(g)) = [g; 'sivilgisa)],

where (g/') is a point in lim G;”. Here g; € G; is any element that maps
to g’ € G/. Define g/ = g;lsg ¥i(gi+1)- Then g/ is in G} because the equality
g" = v/"(gi+1") implies that g/ maps to 1 in G;". Define § by 6(g”) = [11g”,
where [1] denotes the orbit of the sequence of identity elements of the Gg.
With these definitions, the verification is straightforward, if laborious. O

LEMMA 23.2. For any strictly increasing sequence { j(i)}, the diagram

Vi Yo
. > i+ (i) . J(1) 4(0)
Git1 G; Gy Gy
C — Gi+1 G; cee Gy Go
Vi Yo

induces an  isomorphism  lim GJI:(i) — 1limG; and a surjection
lim! GJi(L) — lim! G;. The latter function is a bijection if Gji(l) is a normal sub-
group of G; for each i.

PROOF. Since the sequence {j(i)} is strictly increasing, the isomorphism of
lim groups holds by cofinality. If (g;) is in lim G;, then g; maps to g; for each
Jj > i. In particular gj;) maps to g;. This shows that the map of lim groups is
surjective, and injectivity is clear. To see the surjectivity on lim!, let () € x;G;
and (g;) € x;G;. The definition of the right action given in Definition 2.1.8
shows that (t;) = (s;)(g;), where

si = gitivi(giv1) ' € Gi.
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If we choose
i(i _1jli)-1 _ ; 1.
gi — yij(l) (tj(l)) 1yi.](1) (tj(i)fl) 1 . yil+1 (ti+1) 1ti 17

then we find that s; = ﬂ(i)+l(5(i)+1) e yij(i+1)(tj(i+1)) isin GJ‘;(%). Thi; displays
the orbit [t;] € lim! G; as an element in the image of lim' GJL.(’). If Gji(l) is nor-
mal in G; for each i, then lim G;/ GJL:“) is defined, and it is the trivial group
since another cofinality argument shows that an element other than (e;)
would have to come from a nontrivial element of lim G;/lim GJi(L). Therefore

lim! Gjl:(i) — lim! G; is an injection by the exact sequence of Proposition 2.3.1. [J

THEOREM 2.33. lim! G; satisfies the following properties.

(i) If{G;, v;} satisfies the Mittag-Leffler condition, then lim! G; is trivial.

(ii) If GJI: is a normal subgroup of G; for each j > i and each G; is countable, then
either {G;, y;} satisfies the Mittag-Leffler condition or lim!' G; is uncount-
able.

(iii) If each G; is a finitely generated abelian group, then lim! G; is a divisible

abelian group.

PROOF. For (i), we may assume that Gf = G{:(i) for k > j(i), where the (i) form
a strictly increasing sequence. Let (t;) € xiGJl:(i). There are elements h; € G{(i)
such that t;, = h;lyi(hiﬂ). To see this, let hp =1 and assume inductively
that h, has been constructed for a < i. Then h;t; is in G{(i) = G{(iﬂ), say
hit; = J/ij(i+1)( iﬁifL Y(@). Then by, € Gjé(flrl) and hit; = y;(hit1),
as required. This implies that (t;) = (1)(h;), so that the orbit set lim! G{(i)
contains only the element [1]. By the surjectivity result of the previous lemma,

g). Lethiq =

this implies that lim! G; also contains only the single element [1].
For (ii), fix i > 0 and, letting j vary, consider the diagram

. - Gi+j+1 G“H G§+2 - s Gﬁ‘H

| |

G;

|

ST B H2 HL.

<~ O <—
o
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Here Hij = G/ G;ﬂ. By Proposition 2.3.1 and the fact that lim! is trivial on
constant systems, there results an exact sequence

i+j

¥ —> lim G/ — G; — lim H! — lim' G — «.

Applying Proposition 2.3.1 to the exact sequence
(1) — (kery/} — {Gj) — (G} — {1},

we see that we also have a surjection lim! G — lim! G;ﬂ CIflim H lJ is un-

countable, then so are lim! G:ﬂ (since G; is assumed to be countable) and
lim! Gj. Here the index runs over j > i for our fixed i, but lim? Gj is clearly

independent of i. The cardinality of lim H{ is the product over j > 1 of the
cardinalities of the kernels G:ﬂ / G:ﬂ 1 of the epimorphisms HiJ o HiJ.
i+j+1

Therefore lim Hij is countable if and only if Giﬂ /G,
for all but finitely many values of j, and the latter assertion (for all i) is clearly

has only one element

equivalent to the Mittag-Leffler condition. This proves (ii).
For (iii), let n > 1 and apply Proposition 2.3.1 to the spliced short exact
sequences

{n}
{0} — {kern} — {G} —————— {Gi} — {Gi/nGj} — {0}

NS

{nGi}

{0} {0}.

Since G;/nG; is finite, lim' G;/nG; = 0 by (i). Therefore, by the triangles in
the diagram, multiplication by n on lim! G; is the composite epimorphism

lim! G; — lim' nG; — lim' G;. O

2.4. An example of nonvanishing lim' terms

As promised, we here give an example due to Gray [55] that shows how easy
it can be to prove that the Mittag-Leffler condition fails.

LEMMA 2.4.1. Let X be a based CW complex such that 7;(X) = 0 for i < q and
74(X) = Z, where q > 2 is even. Assume that X is a CW complex with g-skeleton S1
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and give X the induced CW structure with (£X)" = X", Letf: S9t1 — ¥X
generate mgy1(XX) =Z. Suppose gof has degree zero for every map
g: X —> SITL. Then the sequence of groups [ZX", STH1] does not satisfy the
Mittag-Leffler condition.

PROOF. Forn > g, we have a cofiber sequence

jn kn
]n HX”*)XVHJ ,

where J, is a wedge of n-spheres, j, is given by attaching maps, and k, is the
inclusion. Suspending, these induce exact sequences

(Zjn)* (Zhn)*
[Z]s, ST <——[ZX", $9H ]<——[Z X1, 59+,

Since the functor [—, Z] converts finite wedges to finite products and thus
to finite direct sums when it takes values in abelian groups, [Z],, S9+1] is a
direct sum of homotopy groups m,41(S7*1). As we shall recall in 6.7, since g
is even, 1,1 1(S4*1) is finite for all n > q.

Since X7 = 59 and 74(X) = Z, j; must be null homotopic; if not, its homo-
topy class would be an element of 774 (X 1) that would map to zero in 7, (X). With
its cell structure induced from that of X, the g+ 1-skeleton of £ X1 is Si+1.
Let go: £X9 —> S be the identity. Since jj is null homotopic, so is Xjj.
Therefore (Xjg)*[go] = 0and [go] = (Zkq)*[g1] for some [g1] € [EX4TL, S4T1].
Inductively, starting with m; = 1, for n > 1 we can choose positive integers m,
and maps g,: EX9™" — S9! such that (Skyin—1)*(gs) = Mngs—1. Indeed,
for n > 2, (Zjg4n—1)*([gn—1]) is an element of a finite group, so is annihilated
by some my,, and then my[g,_1] is in the image of (Zkyyy—1)*.

Now suppose that the Mittag-Leffler condition holds. This means that, for
no large enough,

im[ZXI", ST — [=X4, $TT1] = im[Z X9, $TH1] — [xZ X4, S1T1]

for all n > ng. Then we can take m, = 1 for n > ng. By the surjectivity part
of the lim! exact sequence, there is a map g: X — S9+! whose restriction
to XXt is homotopic to g, for each n. Thinking of f: S97!1 — XX as the
composite of the identity map on the g + 1-skeleton composed with inclusions
of skeleta and thinking of g as the colimit of its restrictions to skeleta, we see
thatthe composite g o f has degree m - - - my,. This contradicts the assumption
that g o f has degree zero. O
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LEMMA 2.4.2. With q = 2, CP™ satisfies the hypotheses of Lemma 2.4.1.

PROOF. With the notations of Lemma 2.4.1, we must show that gof has
degree zero for any map g: XCP® — S3. Suppose that gof has degree
m # 0. Up to sign, g*(i) = mx in cohomology with any ring R of coefficients,
where i € H3(S?) is the fundamental class and x € H?(CP®) is the generator.
Taking R = F, where p is prime to m, we see that g* is an isomorphism in
degree 3. But the first Steenrod operation P! (see, e.g., [86, 130]) satisfies
Plx # 0, which by naturality contradicts P!(i) = 0. 0

COROLLARY 2.43. There are uncountably many phantom maps CP® —s S3.

We have just seen how easy it is to prove that phantom maps exist, but it is
very far from obvious how to write them down in any explicit form.

2.5. The homology of colimits and limits

It was observed in [93, p. 113] that homology commutes with sequential col-
imits of inclusions. The same holds more generally for suitably well-behaved
filtered colimits, which are defined to be colimits of diagrams defined on
filtered categories.

DEFINITION 25.1. A small category ¥ is filtered if

(i) For any two objects d and d’, there is an object e that admits morphisms
d—eandd —e.

(ii) For any two morphisms «, 8: d — e, there is a morphism y: e — f
such that ya = y8.

This definition suffices for many applications. However, we insert the
following more general definitions [11, p. 268] since they will later play a
significant role in model category theory. The reader may ignore the general-
ity now, but it will be helpful later to have seen an elementary example of how
these definitions are used before seeing such arguments in model category
theory. The union of a finite set of finite sets is a finite set, and we recall that
regular cardinals are defined to be those with the precisely analogous property.

DEFINITION 252. A cardinal is an ordinal that is minimal among those of
the same cardinality. A cardinal X is regular if for every set I of cardinality less
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than A and every set {S;|i € I} of sets S;, each of cardinality less than A, the
cardinality of the union of the S; is less than A.

DEFINITION 25.3. LetA bearegular cardinal. A small category & is A-filtered
if
(i) For any set of objects {d;|i € I} indexed by a set I of cardinality less than
A, there is an object e that admits morphisms d; — eforalli € I.
(ii) For any set of morphisms {«;: d — ¢|i € I} indexed by a set I of cardi-
nality less than A, there is a morphism y: e — f such that yo; = yo;
for all indices i and j in I.

In Definition 2.5.1, we restricted to the ordinal with two elements, but
by finite induction we see that our original definition of a filtered category
is actually the same notion as an w-filtered category. As with any category, a
filtered category & may or may not have colimits and a functor, or diagram,
defined on 2 may or may not preserve them. The precise meaning of the
assumptions on colimits in the following result will become clear in the proof.
By a sequential colimit, we just mean a colimit indexed on the nonnegative
integers, viewed as a category whose only nonidentity maps are m — n for
m < n.

PROPOSITION 25.4. Let X be the colimit of a diagram X.: 9 —> U of closed
inclusions of spaces, where 9 is L-filtered for some regular cardinal 1. If X > w,
assume in addition that 2 has sequential colimits and that X, preserves them. Let
K be a compact space. Then any map f : K —> X factors through some X;;.

PROOF. The colimit X has the topology of the union, so that a subspace is
closed if and only if it intersects each X; in a closed subset, and each Xj
is a closed subspace of X. Since we are working with compactly generated
spaces, f(K) is a closed compact subspace of X [93, p.37]. Assume that f
does not factor through any X;. Starting with any object dy, we can choose
a sequence of objects d, and maps ay,: dy—1 —> dy in Z and a sequence of
elements k;, in K such that f(k,) is in the complement of the image of X,
in Xj . Indeed, let n > 1 and suppose that d;, «;, and k; have been chosen for
0 < i < n.Thereis an element k, such that f (k,) isnotin X, _,. There mustbe
some object d;, _; such that f (k) is in Xy - There is an object d,, that admits
maps o : dy—1 —> dyand a;: d;,_; —> dy. Then f (k,) is in the image of the
inclusion Xy —> Xy, induced by o, but is not in the image of the inclusion
X

., —> X3, induced by a,.
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We may view the countable ordered set {d,} as a subcategory of 2. If
A = w, then {d,} is cofinal in & and X can be identified with colim Xj ; for
notational convenience, we then write X, = X (with no e in mind). If A > o,
then, by assumption, {dy} has a colimit e € Z and X, = colim Xj . Since X,
is one of the spaces in our colimit system, our hypotheses imply that X, is a
closed subspace of X. Therefore, in both cases f(K) N X, is a closed subspace
of the compact space f(K) and is again compact. Since compactly generated
spaces are T (points are closed), the set So = {f (kx)} and each of its subsets
Sm = {f(km+i)li = 0}, m > 0, is closed in f(K) N X,. Any finite subset of the
set {Sm} has nonempty intersection, but the intersection of all of the S, is
empty. Since f(K) N X, is compact, this is a contradiction.? O

EXAMPLE 255. The hypothesis on sequential colimits is essential. For a
counterexample without it, let X = [0, 1] C R, and observe that X is the col-
imit of its countable closed subsets X;, partially ordered under inclusion.
This gives an Ro-filtered indexing category. Obviously the identity map of
X does not factor through any Xj. For n > 0, let X, = {0} U{1/i|1 <i < n}.
As a set, the colimit of the X, is Xoo = {0} U{1/i|]i > 1}. Topologized as a
subspace of X, X is a countable closed subspace of X, so it qualifies as
the colimit of {X,} in our indexing category of countable closed subspaces.
However, its colimit topology is discrete, so our colimit hypothesis fails.
(Observe too that if we redefine the X;, without including {0}, then X, is not
closed in X, showing that our indexing category does not have all sequential
colimits.)?

COROLLARY 25.6. For X, and X as in Proposition 2.5.4,
H,(X) = colimgep Hy (Xy),

where homology is taken with coefficients in any abelian group. Similarly, when X,
takes values in .7, m(X) = colimyep 74 (Xy)-

PROOF. We can compute homology with singular chains. Since the simplex
A, is compact, any singular simplex f: A, — X factors through some Xj.
Similarly, for the second statement, any based map from S" or S" A 11 to X
factors through some Xj. O

2. This pleasant argument is an elaboration of a lemma of Dold and Thom [37, Hilfsatz 2.14].

3. This example is due to Rolf Hoyer.
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We need a kind of dual result, but only for sequential limits of based spaces.
The following standard observation will be needed in the proof. Recall the
notion of a g-equivalence from [93, p. 67].

LEMMA 25.7. A g-equivalence f: X —> Y induces isomorphisms on homology
and cohomology groups in dimensions less than q.

PROOF. Using mapping cylinders, we can replace f by a cofibration [93, p.
42]. Since weak equivalences induce isomorphisms on homology and coho-
mology, relative CW approximation [93, p. 76] and cellular approximation of
maps [93, p. 74] show that we can replace X and Y by CW complexes with the
same g-skeleton and can replace f by a cellular map that is the identity on the
g-skeleton. Since in dimensions less than g the cellular chains and thus
the homology and cohomology groups of a CW complex depend only on its
g-skeleton, the conclusion follows. O

DEFINITION 258. A tower (or inverse sequence) of spaces f,: Xpt+1 —> Xy
is convergent if for each g, there is an n4 such that the canonical map X — X,

is a g-equivalence for all n > n,.

PROPOSITION 259. Let X =limX,, where {X,} is a convergent tower of
fibrations. Then the canonical maps induce isomorphisms

To(X) Zlm m4(X), Ha(X) = lim Hy(X,), and H*(X) = colim H*(X,,).

PROOF. We may replace X by micX,. The inverse systems of homotopy
groups satisfy the Mittag-Leffler condition, so that the lim! error terms are
trivial, and the isomorphism on homotopy groups follows. The isomorphism
on homology and cohomology groups is immediate from Lemma 2.5.7. O

2.6. A profinite universal coefficient theorem

In this brief and digressive algebraic section, we advertise an observation about
cohomology with coefficients in a profinite abelian group. We view it as a kind
of universal coefficient theorem for such groups. For present purposes, we
understand a profinite abelian group B to be the filtered limit of a diagram { B;}
of finite abelian groups. Here filtered limits are defined in evident analogy with
filtered colimits. They are limits of diagrams that are indexed on the opposite
category 2°P of a filtered category 2, as specified in Definition 2.5.1.
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THEOREM 26.1. Let X be a chain complex of free abelian groups and let
B = lim By be a profinite abelian group. Then the natural homomorphism

H*(X; B) — lim H*(X; By)

is an isomorphism, and each H1(X; B) is profinite.

PROOF. Let A be any abelian group. We claim first that
Hom (A, B) = lim Hom (A, By)

and the derived functors lim” Hom (A, B,) are zero for all n > 0. It would be
altogether too digressive to develop the theory of derived functors here, and
we shall content ourselves by pointing out where the required arguments can
be found. When A is finitely generated, so that each Hom (A, By) is finite, the
claim follows from Roos [119, Prop. 1] or, more explicitly, Jensen [73, Prop.
1.1]. In the general case, write A as the filtered colimit of its finitely generated
subgroups A;, where i runs through an indexing set .#. By Roos [119, Thm.
3], there is a spectral sequence that converges from

Ey? = limlim! Hom (A;, By)

to the derived functors lim" of the system of groups {Hom (4;, By)} indexed
on.# x 2°P. Since all of these groups are finite, these lim" groups are zero for
n > 0, by a generalized version of the Mittag-Leffler criterion [119, cor. to Prop.
2], and the zeroth group is Hom (A, B). Since Eg’q =0forg > 0, E; = Ex and
the groups Eg © must be zero for p > 0. This implies the claim.

We claim next that

Ext (A, B) = lim Ext (A, By).
Write A as a quotient F/F’ of free abelian groups and break the exact sequence
0 — Hom (A, B;) —> Hom (F, B;) —> Hom (F/, By) —> Ext (A, By) —> 0

of diagrams into two short exact sequences in the evident way. There result two
long exact sequences of lim" groups, and the vanishing of lim" on the Hom
systems therefore implies both that lim" ( Ext (A, B)) = 0 for n > 0 and that
the displayed exact sequence remains exact on passage to limits. Our claim
follows by use of the five lemma.

Taking A to be a homology group Hy(X) and applying the universal coef-
ficient theorem to the calculation of H*(X; B) and the H*(X; By), we now see
by the five lemma that



2.6. A PROFINITE UNIVERSAL COEFFICIENT THEOREM / 45
H*(X; B) = lim H*(X; By).

Finally, to see that each H%(X; B) is profinite, write X = lim X;, where
X; runs through those subcomplexes of X such that each Hy(X)) is finitely
generated; write # for the resulting set of indices j. Then each H1(X;; By) is
a finite abelian group and Hy(X) = colim H(X)). The arguments just given
demonstrate that

H*(X; B) = lim H*(X;; By),

where the limit is taken over ¢ x 2°P. O



3

NILPOTENT SPACES AND POSTNIKOV
TOWERS

In this chapter, we define nilpotent spaces and Postnikov towers and explain
the relationship between them. We are especially interested in restrictions
of these notions that are specified in terms of some preassigned collection
«/ of abelian groups, and we assume once and for all that the zero group is
in any such chosen collection. We define </ -nilpotent spaces and Postnikov
o/ -towers, and we prove that any /-nilpotent space is weakly equivalent to
a Postnikov «7-tower. The role of the collection ./ is to allow us to develop
results about spaces built up from a particular kind of abelian group (T-local,
T-complete, etc.) in a uniform manner.

As we discussed in the Introduction, nilpotent spaces give a comfortable
level of generality for the definition of localizations and completions. The the-
ory is not much more complicated than it is for simple spaces, and nilpotency
is needed for the fracture theorems.

The material of this chapter is fundamental to the philosophy of the entire
book. We expect most readers to be reasonably comfortable with CW com-
plexes but to be much less comfortable with Postnikov towers, which they may
well have never seen or seen only superficially. We want the reader to come
away from this chapter with a feeling that these are such closely dual notions
that there is really no reason to be more comfortable with one than the other.
We also want the reader to come away with the idea that cohomology classes,
elements of H"(X; ), are interchangable with (based) homotopy classes of
maps, elements of [X, K(r, n)]. This is not just a matter of theory but rather a
powerful concrete tool for working with these elements to prove theorems.

3.1. &/ -nilpotent groups and spaces

A group is nilpotent if it has a central series that terminates after finitely many
steps. It is equivalent that either its lower central series or its upper central

46
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series terminates after finitely many steps [56, p. 151]. We simultaneously
generalize this definition in two ways. First, the successive quotients in the
lower central series are abelian groups. One direction of generalization is to
require normal sequences whose successive quotients satisfy more restrictive
conditions. For example, we might require them to be Zr-modules, where
Zr is the localization of Z at a set of primes T. The other direction is to start
with an action of a second group on our given group, rather than to restrict
attention to the group acting on itself by conjugation as is implicit in the usual
notion of nilpotency.

Let o7 be a collection of abelian groups (containing 0). The main example
is the collection 7b of all abelian groups or, more generally, the collection o7&
of modules over a commutative ring R. The rings R = Zr and R = Z, are of
particular interest.! While .7k is an abelian category and we will often need
that structure to prove things we want, we shall also encounter examples of
interest where we really do only have a collection of abelian groups. We could
regard such a collection & as a full subcategory of .«/b but, in the absence of
kernels and cokernels in 7, that is not a useful point of view.

Call a group G a w-group if it has a (left) action of the group 7 as automor-
phisms of G. This means that we are given a homomorphism from 7 to the
automorphism group of G. We are thinking of 7 as 71(X) and G as 7, (X) for
a space X. Allowing general non-abelian groups G unifies the cases n = 1 and
n>1

DEFINITION 3.1.1. Let G be a -group. A finite normal series
(1=G;CGy1C---CGy=G
of subgroups of G is said to be an «7-central 7-series if

(i) Gj—1/Gjisin < and is a central subgroup of G/G;.
(ii) Gjisa m-subgroup of G and 7 acts trivially on G;_1/G;.

If such a sequence exists, the action of 7 on G is said to be nilpotent, and
the w-group G is said to be «/-nilpotent of nilpotency class at most g; the
nilpotency class of G is the smallest g for which such a sequence exists.

NOTATION 3.1.2. We abbreviate notation by saying that an .7b-nilpotent
w-group is a nilpotent m-group and that an </z-nilpotent m-group is an

1. We warn the knowledgeable reader that, in contrast to the theory in [21], we really do mean
the p-adic integers Z, and not the field F, here.
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R-nilpotent w-group. When it is clearly understood that a given group 7 is
acting on G, we sometimes just say that G is .&/-nilpotent, leaving 7= under-
stood.

Of course, we can separate out our two generalizations of the notion of nil-

potency. Ignoring 7, a group G is said to be o7 -nilpotent if its action on itself
by inner automorphisms, x - g = xgx ™!, is .7-nilpotent. When </ = .&7b, this
is the standard notion of nilpotency. On the other hand, when G is abelian, a
w-group is just a module over the group ring Z[r]. The purpose of unifying
the notions is to unify proofs of the results we need, such as the following one.
We will use it often.
LEMMA 313, Let 1— G’ -5 G5 6" —> 1 be an exact sequence of
7t -groups. If the extension is central and G’ and G" are < -nilpotent 7 -groups,
then G is an < -nilpotent m -group. Conversely, if <7 is closed under passage to sub-
groups and quotient groups and G is an <f -nilpotent 7 -group, then G’ and G” are
f -nilpotent 1 -groups.

PROOF. For the first statement, let
1=G,CG, 1 C---CGy=C
and
1=G;CcG,C--CGy=G"
be o7 -central rr-series. Then the sequence of inclusions
1=¢(G,) C ¢(Gp_q) C -+ C $(Gy)
=¥ (G c v TG C o CYTHG) =G

is an o7 -central 7-series for G’. The centrality assumption, which in particular
implies that G’ is abelian, is essential to the conclusion.

Conversely, suppose that G is «7-nilpotent. Then there is an «7-central
m-series

1=G4CGg-1C--CGy=0G.
We may identify ¢(G') with G’ and G” with G/G’. Define subgroups

G! = G;N G of G'. Since &/ is closed under passage to subgroups, this gives
a finite «/-central r-series for G'. The quotient groups G;/G/ are isomorphic
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to the quotient groups (G; - G')/G’, and these are subgroups of G”. Since &/
is closed under passage to quotient groups as well as subgroups, G is an
of -central -series for G”. |

We use the action of 71X on the groups 7, X from Definition 1.4.4 and the
definition of an .7 -nilpotent 1 X-group to define the notion of an </ -nilpotent
space. Observe that we are discarding unnecessary generality above, since now
either # = m1X is acting on itself by conjugation or 7 is acting on the abelian
group 7, X forn > 2.

DEFINITION 3.1.4. A connected based space X is said to be </ -nilpotent if
m,X is an 7 -nilpotent 1 X-group for each n > 1. This means that 71 (X) is
of -nilpotent and acts nilpotently on 7,(X) for n > 2. When &7 = o/b we say
that X is nilpotent. When & = o7&, we say that X is R-nilpotent.

Recall that a connected space X is simple if 771 X is abelian and acts trivially
on 7, X. Clearly simple spaces and, in particular, simply connected spaces, are
nilpotent. Connected H-spaces are simple and are therefore nilpotent. While
it might seem preferable to restrict attention to simple or simply connected
spaces, nilpotent spaces have significantly better closure properties under var-
ious operations. For an important example already mentioned, we shall see
in Theorem 6.3.2 that if X is a finite CW complex, Y is a nilpotent space, and
f: X —> Y isany map, then the component F(X, Y)r of f in F(X, Y) is nilpo-
tent. This space is generally not simple even when X and Y are simply con-
nected.

3.2. Nilpotent spaces and Postnikov towers

We defined «7-nilpotent spaces in the previous section. The definition depends
only on the homotopy groups of X. We need a structural characterization that
allows us to work concretely with such spaces. We briefly recall two well-known
results that we generalize before going into this. The classical result about
Postnikov towers reads as follows.

THEOREM 3.2.1. A connected space X is simple if and only if it admits a Postnikov
tower of principal fibrations.

We recall what this means. We can always construct maps a: X — X,
such that «, induces an isomorphism on 7; for i <n and 7;X, =0 for
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i > n just by attaching cells inductively to kill the homotopy groups of X in
dimension greater than n. When X is simple, and only then, we can arrange
further that X;,4+1 is the homotopy fiber of a “k-invariant”

k2 X, — K(mp1X, n+2).

This is what it means for X to have a “Postnikov tower of principal fibrations”.
The name comes from the fact that X, is then the pullback along k"2 of the
path space fibration over K(7,4+1X, n+ 2). Of course, the fiber of the resulting
map pn+1: Xn+1 —> Xy is an Eilenberg-MacLane space K(mp1X, n+ 1).

The quickest construction is perhaps the one outlined on [93, p. 179]. Pro-
ceeding inductively, the idea is to check that 7;Cey, is zero if i < n+1 and is
Tp1X if i = n+ 2. One then constructs k"2 by killing the higher homotopy
groups of the cofiber Ca, and defines X, 1 to be the fiber of k"*2. However,
the proof there is not complete since the check requires a slightly strength-
ened version of homotopy excision or the relative Hurewicz theorem, neither
of which were proven in [93].

We shall give a complete proof of a more general result that gives an anal-
ogous characterization of o7 -nilpotent spaces. In the special case of ordinary
nilpotent spaces, it is usually stated as follows. We say that a Postnikov tower
admits a principal refinement if for each n, py11: X41 —> X, can be factored
as a composite

Xpr1=Yr, = Y, 1 25y s Y = X,
where, for 1 <i <r,, g; is the pullback of the path space fibration over
K(Gj,n+2) along a map k;:Y; 1 - K(G;,n+2). The fiber of g; is the
Eilenberg-MacLane space K(G;, n+ 1), where the G; are abelian groups.

THEOREM 3.22. Aconnected space X isnilpotent if and only if the Postnikov tower
of X admits a principal refinement.

3.3. Cocellular spaces and the dual Whitehead theorem

As a preliminary, we explain cocellular spaces and the dual Whitehead theo-
rems in this section. The arguments here were first given in [91], which is a
short but leisurely expository paper. We recall the definitions of the cocellular
constructions that we shall use from that source and refer to it for some easily
supplied details that are best left to the reader as pleasant exercises. Again, &
is any collection of abelian groups with 0 € «7.
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DEFINITION 3.3.1. Let .# be any collection of spaces that contains * and is
closed under loops. A # -tower is a based space X together with a sequence
of based maps ky,: X, —> Ky, n > 0, such that

@i

(i

X() = X,

K, is a product of spaces in .7,
Xp4+1 = Fky, and

X is the limit of the X,,.

(iii

- O -

(iv
An o7 -tower is a ¥/ -tower, where .74/ is the collection of Eilenberg-Mac Lane
spaces K(A, m) such that A € o/ and m > 0.

Thus X;,41 is the pullback in the following map of fiber sequences.

QK, —— QK,

L

Xnt1 —> PKy

L

Xyn — Ky
kn

We think of the maps X,41 —> X, as giving a decreasing filtration of X,
and of course the fiber over the basepoint of this map is QK. That is dual
to thinking of the inclusions of skeleta X" —s X"*! of a CW complex X as
giving it an increasing filtration, and of course the quotient space X"+ /X" is
a wedge of suspensions X S".

REMARK 3.3.2. The collection of J# -towers has very general closure proper-
ties. Since right adjoints, such as P(—) or, more generally, F(X, —), preserve
all categorical limits and since limits, such as pullbacks and sequential lim-
its, commute with other limits, we find easily that products, pullbacks, and
sequential limits of J# -towers are again .# -towers. The more restrictive col-
lections of Postnikov «7-towers that we shall introduce shortly have weaker clo-
sure properties; compare Lemma 3.5.2 below. For this reason, it is sometimes
more convenient to work with .#c7-towers than with Postnikov o7 -towers.

We focus on .#7-towers in what follows, and we assume that all given
K(A, n)’s are of the homotopy types of CW complexes. It follows that the X,
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also have the homotopy types of CW complexes (see for example [103, 121]),
but it does not follow and is not true that X has the homotopy type of a CW
complex. The composite of the canonical composite X — X1 —> PK, and
the projection of PK, onto one of its factors PK(A, m) is called a cocell. The
composite of k,, and one of the projections K, —> K(A, m) is called a coattach-
ing map. Note that the dimensions m that occur in cocells for a given n are
allowed to vary.

There is a precisely dual definition of a based cell complex. We recall it in

full generality for comparison, but we shall only use a very special case.

DEFINITION 3.33. Let ¢ be a collection of based spaces that contains * and
is closed under suspension. A _¢-cell complex is a based space X together
with a sequence of based maps j,: Ju, —> Xy, n > 0, such that

) Xo = *,
(ii) Ju is a wedge of spaces in _Z,
(iii) Xp+1 = Cjn, and
(iv) X is the colimit of the Xj,.
Thus Xj,1+1 is the pushout in the following map of cofiber sequences.

Jn
]n — X

L

C]n —_— Xn+1

.

2 2

The restriction of the composite CJ, — X,4+1 —> X to a wedge summand
CJ, ] € 7, is called a cell and the restriction of j, to a wedge summand ] is
called an attaching map.

The casetofocusonis #A = {X"A|n > 0} for a fixed space A. For example,
since ¢ S0 = {S*"n > 0}, B4 SO-cell complexes are the same as based cell com-
plexes with based attaching maps. All connected spaces have approximations
by _# S°-cell complexes [93, p. 75]. In general, since attaching maps defined on
S™ for m > 0land in the component of the basepoint, the non-basepoint com-
ponents of _# S%-cell complexes are discrete. It is more sensible to consider
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_7 St-cell complexes, which have a single vertex and model connected spaces
withoutextra discrete components. Similarly, all simply connected spaces have
approximations by _# S2-cell complexes [93, p. 85]. Many of the standard argu-
ments for CW complexes that are given, for example, in [93, Ch. 10] work just
as well for _#-cell complexes in general. They are described in that generality
in [91]. We note parenthetically that _# A-cell complexes have been studied in
many later papers, such as [28, 40], where they are called A-cellular spaces.

Based CW complexes with based attaching maps are the same as _# S-cell
complexes in which cells are attached only to cells of lower dimension. In the
context here, such an X has two filtrations, the one given by the spaces X, in
Definition 3.3.3, which tells at what stage cells are attached, and the skeletal
filtration, in which X" denotes the union of the cells of dimension at most n.
In practice, when X is connected, we can arrange that the two filtrations coin-
cide. However, in other mathematical contexts, it is the cellular filtration {X,,}
that matters. In particular, model category theory focuses on cell complexes
rather than CW complexes, which in fact play no role in that theory. It often
applies to categories in which cell complexes can be defined just as in Defini-
tion 3.3.3, but there is no useful notion of a CW complex because the cellular
approximation theorem [93, p. 74] fails. We leave the following parenthetical
observation as an exercise.

EXERCISE 3.3.4. Let X be an n-dimensional based connected CW complex and
7 be an abelian group. Then the reduced cellular cochains of X with coeffi-
cientsin  are given by C9(X; ) = 7, F(X9/X71, K(rr, n)). The differentials
areinduced by the topological boundary maps X9/X9~1 — £X97!/X972 that
are defined in [93, p. 96]; compare [93, pp. 117, 147].

Analogously, the Postnikov towers of Theorems 3.2.1 and 3.2.2 are special
kinds of @7b-towers. The generality of our cellular and cocellular definitions
helps us to give simple dual proofs of results about them. For a start, the
following definition is dual to the definition of a subcomplex.

DEFINITION 335. Amapp: Z —> Bissaidto bea projection onto a quotient
tower if Z and B are «/-towers, p is the limit of maps Z, —> By, and the
composite of p and each cocell B— PK(A, m) of B is a cocell of Z (for the
same n).

DEFINITION 3.3.6. Amap &: X —> Y is an «/-cohomology isomorphism if
&*: H*(Y; A) — H*(X;A) is an isomorphism for all A € &7.
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A word-by-word dualization of the proof of the homotopy extension and
lifting property [93, p. 73] gives the following result. The essential idea is just
to apply the representability of cohomology,

H™(X; A) = [X, K(A,n)],
which is dual to the representability of homotopy groups,
T X =[S",X],

and induct up the cocellular filtration of an «/-tower. The reader is urged to
carry out the details herself, but they can be found in [91, 4¥]. As a hint, one
starts by formulating and proving the dual of the based version of the lemma
on [93, p. 68]. The proof of the cited lemma simplifies considerably in the
based case, and the proof of its dual is correspondingly easy.

THEOREM 33.7 (COHELP). Let B be a quotient tower of an < -tower Z
and let £: X — Y be an < -cohomology isomorphism. If pyjoh =go& and
pooh = pof inthe following diagram, then there exist g and h that make the dia-
gram commaute.

po P
7 <= F(I+,Z) —_ > 7

\ h 7 g
e 7/
7 s
f // 3 7
x \\g
P

B~——— FI4,B) —— = B

The following result, which is [91, Thm. 6], gives a generalization of Theo-
rem 0.0.2. Remember our standing assumption that all given spaces are of the
homotopy types of CW complexes. As we have noted, our towers Z = lim Z,
are rarely of the homotopy types of CW complexes; it is for this reason that
weak homotopy type rather than homotopy type appears in the following
statement.

THEOREM 3.3.8 (DUAL WHITEHEAD (FIRST FORM)). The following state-
ments are equivalent for a map &: X —> Y between connected spaces X and Y
of the weak homotopy types of <f -towers.
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(i) & is an isomorphism in Ho7.

(ii) &x: i (X) —> 7 (Y) is an isomorphism.
(iii) &*: H*(Y; A) — H*(X; A) is an isomorphism for all A € <.
(iv) §*: [Y,Z] — [X, Z] is a bijection for all o -towers Z.

If of is the collection of modules over a commutative ring R, then the following
statement is also equivalent to those above.

(v) & Hi(X; R) —> Hy(Y; R) is an isomorphism.

SKETCH PROOF. The equivalence of (i) and (ii) is immediate from the def-
inition of Ho.7, and (ii) implies (iii) and (v) by the weak equivalence axiom
for cohomology and homology. To see that (v) implies (iii) for a general ring R,
we must use the “universal coefficient spectral sequence”, but we shall only
apply this when R is a PID, so that the ordinary universal coefficient theo-
rem applies. The crux of the matter is the implication (iii) implies (iv), and
this is restated separated in the following result. The final implication (iv)
implies (i) is formal. Taking Z = X in (iv), we obtain a map £ 1: Y — X
such that £ 1o& ~id. Taking Z =Y, we see that £0&~ 1 ~id since
E*[EoE ] =¢&*[id]in[Y, Y]. O

THEOREM 33.9 (DUAL WHITEHEAD (SECOND FORM)). If§: X — Y is
an o -cohomology isomorphism between connected spaces and Z is an o -tower,
then §*: [Y, Z] — [X, Z] is a bijection.

SKETCH PROOF. This is where the force of dualizing familiar cellular argu-
ments really kicks in. In view of our standing hypothesis that given spaces
such as X and Y have the homotopy types of CW complexes, we may interpret
[X, Z] as the set of homotopy classes of maps X — Z. Now, as observed
in [91, Thm. 5%], the conclusion follows directly from coHELP in exactly the
same way that the dual result on cell complexes [93, p. 73] follows directly
from HELP. The surjectivity of £* results by application of coHELP to the quo-
tient tower Z —> . Just as the cofibration (ig, i1): (8I)+ —> I+ A X is the
inclusion of a subcomplex when X is a based CW complex, so the fibration
(po,p1): F(l4+, Z) — F(d14, Z) is the projection of a quotient tower when Z
is an .o/ -tower (compare Remark 3.3.2). Application of coHELP to this quotient
tower implies the injectivity of £*. a

The equivalence between (iii) and (v) in Theorem 3.3.8 leads us to the
following fundamental definition and easy observation. Despite its simplicity,
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the observation is philosophically important to our treatment of localization
and completion (and does not seem to be mentioned in the literature). For the
moment, we drop all hypotheses on our given spaces.

DEFINITION 3.3.10. Let Rbeacommutativeringandf: X — Y beamap.

(i) f is an R-homology isomorphism if f.: H.(X; R) — H.(Y;R) is an
isomorphism.

(ii) f is an R-cohomology isomorphism if f*: H*(Y; M) — H*(X; M) is an
isomorphism for all R-modules M.

In contrast to Theorem 3.3.8, the following result has no .«/-tower hypo-
thesis.

PROPOSITION 33.11. Let R be a PID. Then f: X —> Y is an R-homology
isomorphism if and only if it is an R-cohomology isomorphism.

PROOF. The forward implication is immediate from the universal coefficient
theorem (e.g., [93, p. 132]). For the converse, it suffices to show that the reduced
homology of the cofiber of f is zero. If Z is a chain complex of free R-modules
such that H*(Z; M) = 0 for all R-modules M, then the universal coefficient
theorem implies that Hom (H,(Z), M) = 0 for all n and all R-modules M.
Taking M = H,(Z), Hom (Hn(Z), Hn(Z)) = 0, so the identity map of H,(Z)
is zero and Hy(Z) = 0. Applying this observation to the reduced chains of
the cofiber of f, we see that the homology of the cofiber of f is zero. O

3.4. Fibrations with fiber an Eilenberg-MacLane space

The following key result will make clear exactly where actions of the funda-
mental group and nilpotency of group actions enter into the theory of Postnikov
towers.? For the novice in algebraic topology, we shall go very slowly through
the following proof since it gives our first application of the Serre spectral
sequence and a very explicit example of how one uses the representability of
cohomology,

3.4.1 H"(X; A) = [X, K(A, n)],

to obtain homotopical information. We regard K(A,n) as a name for any
space whose only nonvanishing homotopy group is w,(K(4, n)) = A. With

2. The first author learned this result and its relevance from Zig Fiedorowicz in the 1970s.
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our standing CW homotopy type hypothesis, any two such spaces are
homotopy equivalent. We shall make use of the fact that addition in the
cohomology group on the left is induced by the loop space multiplication on
K(A,n) = QK(A, n+ 1) on the right; the proof of this fact is an essential fea-
ture of the verification that cohomology is representable in [93, §22.2]. We
shall also make use of the fact that application of 7, induces a bijection from
the homotopy classes of maps K(A,n) — K(A, n) to Hom (A, A). One way
to see that is to quote the Hurewicz and universal coefficient theorems
[93, pp. 116, 132].

LEMMA 3.4.2. Letf: X —> Y be a map of connected based spaces whose (homo-
topy) fiber Ff is an Eilenberg-Mac Lane space K (A, n) for some abelian group A
and n > 1. Then the following statements are equivalent.

(i) Thereisamapk: Y —> K(A,n+ 1) and an equivalence § : X —> Fksuch
that the following diagram commutes, where 7 is the canonical fibration with
(actual) fiber K(A,n) = QK(A, n+1).

3

X — Fk
Y

(it) Thereisamapk: Y —> K(A,n+ 1) andanequivalence r: Nf —> Fksuch
that the following diagram commutes, where w is asin (i) and p: Nf — Y
is the canonical fibration with (actual) fiber Ff .

Py
—> Fk
(iii) The group m1(Y) acts trivially on the space Ff = K(A, n).
(iv) The group m1(Y) acts trivially on the group A = m,(Ff).

PROOF. In (ii), Nf is the mapping path fibration of f, as defined in [93, pp.
48,59]. We first elaborate on the implications of (i). Consider the following
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diagram, in which ¢ and 7 are used generically for canonical maps in fiber
sequences, as specified in [93, p. 59].

L T f
QY Ff X Y
|
| x £
\
QY —— QKA n+1) Fk Y K(A,n+1)
—Qk t 4 k

In the bottom row, the actual fiber QK(A, n+ 1) of the fibration = is canon-
ically equivalent to its homotopy fiber Frr. The dotted arrow x making the
two left squares commute up to homotopy comes from Lemma 1.2.3, using
that the first four terms of the bottom row are equivalent to the fiber sequence
generated by the map 7 [93, p.59]. Since & is an equivalence, a compar-
ison of long exact sequences of homotopy groups (given by [93, p. 59])
shows that x is a weak equivalence and therefore, by our standing assump-
tion that all given spaces have the homotopy types of CW complexes, an
equivalence. Therefore the diagram displays equivalences showing that the
sequence

K(A, n) X Y K(A, n+1)

is equivalent to the fiber sequence generated by the map k.

(i) implies (ii). Consider the following diagram.

§
X — Fk

\L )L ’
7/
v / b4
/

Nf —— Y
P

Here p o v is the canonical factorization of f as the composite of a cofibration
and homotopy equivalence v and a fibration p with fiber Ff, as in [93, pp.
48, 59]%. Since v is an equivalence and a cofibration and 7 is a fibration,

3. The proof that v is a cofibration is missing from [93, p. 48]. It is easily supplied by verification
of the NDR-pair condition of [93, p. 43], using the deformation h on [93, p. 48] and the map
u: Nf —> I defined by letting u(x, w) be the supremum of {1 —tlw(s) =f(x) for 0<s<t},
where w: I —> Y is such that f (x) = »(0).



3.4. FIBRATIONS WITH FIBER AN EILENBERG-MAC LANE SPACE / 59

Lemma 1.1.1 gives a lift A that makes the diagram commute. Since & and v
are equivalences, so is A. Although not needed here, A is a fiber homotopy
equivalence over Y by [93, p. 50].

(ii) implies (iii). The action of 71(Y) on Ff is obtained by pulling back the
action of w1 K(A,n+ 1) on K(A, n) along k,: m1(Y) — 71 K(A, n+1). Since
K(A,n+1) is simply connected, the action is trivial in the sense that each
element of 7r1(Y) acts up to homotopy as the identity map of Ff.

(iii) implies (iv). This holds trivially since the action of 71(Y) on m,(Ff) is
induced from the action of 71 (Y) on Ff by passage to homotopy groups.

(iv) implies (iii). This holds since homotopy classes of maps Ff — Ff
correspond bijectively to homomorphisms A — A.

(iii) implies (i). This is the crux of the matter. Write Ff = K(A, n). We shall
construct a commutative diagram

X
KA n) —— QKA n+1) ——= QKA n+1)
v A \L
X Nf Fk PK(A,n+1)
\p . J/
f
Y ———————Y ——— K(An+1])

k

in which the three columns display fibrations (the bottom vertical arrows)
and the inclusions of their fibers (the top vertical arrows); the map x and
therefore also the map A are equivalences. Then & = Lov: X — Fk will be
an equivalence such that w 0§ = f, proving (i).

The fibration in the right column is the path space fibration, and we are
given the fibration in the left column. The lower left triangle commutes by the
definition of Nf. We must first construct k. This is where the Serre spectral
sequence enters, and we will summarize everything we need in Chapter 24.
Taking coefficients in A, the cohomology Serre spectral sequence for the left
fibration p converges to H*(Nf; A) = H*(X; A). Our assumption (iii) implies
that the local coefficient system that enters into the calculation of the E, term
is trivial and therefore

B} = HP(Y; HY(K(A, n); A)).
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In fact, we shall only need to use the triviality of the local coefficients when
q = n is the Hurewicz dimension, where it is transparent. Indeed, the Hur-
ewicz isomorphism preserves the action of 71(Y), so that 71(Y) acts trivially
on Hy,(K(A,n);Z) and therefore, by the universal coefficient theorem, on
H™K(A, n); A).

Clearly, Eﬁ”q = 0 for 0 < q < n. By the universal coefficient theorem,

Ey" = H"(K(A, n); A) = Hom (A, A).

We let ¢, denote the fundamental class, which is given by the identity
homomorphism of A. Similarly we let t,41 be the fundamental class in
H"™1(K(A, n+ 1); A). The differentials d, () land in zero groups for2 < r < n,
and we have the transgression differential
T(tn) = dny1(tn) = € H™TH(Y; 4) = B0,

The class j is represented by amap k: Y —> K(A, n+ 1), so that k*(t,41) = J.
By definition, the fiber Fkis the pullback displayed in the the lower right square
of our diagram.

We claim that ko p is null homotopic. Indeed, a map Nf — K(A,n+1)
is null homotopic if and only if it represents 0 in H"*!(Nf; A), and the coho-
mology class represented by ko p is

PR (tne1) = 07 ()) = p¥ g1 (1n) = 0.

The last equality holds since p* can be identified with the edge homomorphism

n+1,v. ~ n+1,0 _ n+1,0 n+1,0 0,n
H (Y’A) = EZ - En+1 - En+1 /dn+1En+l

— Ego+1,0 C Hn+1(Nf;A).

Choose a homotopy h: Nf x I — K(A, n+ 1) from the trivial map to ko p.
Then h determines the map A': Nf — Fk specified by 1'(2) = (p(2), h(2))
for z € Nf, where h(z)(t) = h(z,t). This makes sense since Fk = {(y,»)}
where y € Y, w € PK(A,n+1), and k(y) = o(1). Observe for later use that
h(z) € QK(A, n+1) when z € i(Ff) = p~1(*).

Clearly 7 o A" = p since 7 is induced by projection on the first coordinate.
Thus A restricts to a map x': K(A, n) = Ff — QK(A,n+ 1) on fibers. This
gives a diagram of the sort displayed at the start of the proof that (iv) implies
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(i), but with primes on the left-hand horizontal maps. Here x’ need not be an
equivalence, but we claim that we can correct A’ and x’ to new maps A and x
such that x and therefore 1 are equivalences. In the Serre spectral sequence of
the path space fibration on the right, dy+1(tn) = tnt1. By naturality, comparing
the left column to the right column in our diagram, we have

dur1((X)" (tn) = K* (dnp1(tn) = K" (tnp1) = = dny1(tn),

where the last d,,+1 is that of the spectral sequence of n. Therefore d,;1 for
the spectral sequence of p satisfies

dnt1(tn— (X)) = 0
so that we have the cycle

tn— (X')*(tn) € ET, = EX® = H™(Nf; A)/F'H"(Nf; A).

Choose a representative £: Nf — QK(A, n+ 1) ~ K(A, n) for a cohomology
class that represents ¢, — (§)*(io,) in this quotient group. For any choice of ¢,
the restriction £ o i to K(A, n) = Ff represents t, — (x')*(tn). Now define

where the dot denotes concatenation of the path h(z) with the loop
£(z). We again have mi =p, and we thus have an induced map
x: K(A,n)=Ff—>QK(A, n+ 1) onfibers. Forz € Ff, x (z) = x/(2) - ¢i(2). Since
loop multiplication on QK(A, n+ 1) induces addition on cohomology classes,

X () = (X/)*(‘n) + i (tn) = (X/)*(‘n) +in— (X/)*(‘n) = ln-

Therefore x € [K(A, n), QK(A, n+1)] = H"(K(A, n); A) corresponds to the
identity map A — A. This proves that x and therefore X are equivalences. O

3.5. Postnikov &7 -towers

Just as cell complexes are too general for convenience, suggesting restriction
to CW complexes, so of-towers are too general for convenience, suggesting
restriction to Postnikov < -towers.

DEFINITION 3.5.1. A Postnikov o -tower is an «7-tower X = lim X; (see Def-
inition 3.3.1) such that each K; is a K(A;, n; + 1) with A; € &7, nj 1 > n; > 1,
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and only finitely many n; = n for each n > 1. A map ¢: X — Y between
Postnikov o7 -towers is cocellular if it is the limit of maps v;: X; — Y;. For
example, a projection onto a quotient tower of a Postnikov 7-tower X is a
cocellular map.

A Postnikov o7 -tower X is connected since Xy = * and the K; are simply
connected. By the long exact sequences of the fibrations appearing in the
definition of an «-tower, the homotopy groups of X are built up in order,
with each homotopy group built up in finitely many stages. We shall be more
precise about this shortly. Note that a product of Eilenberg-Mac Lane spaces
I1;K(A;, ) is an Eilenberg-Mac Lane space K(IT;A;, j). When < is closed under
products, this makes it especially reasonable to use a single cocell at each stage
of the filtration.

We shall make little formal use of the following result, but we urge the
reader to supply the proofs. They are precisely dual to the proofs of familiar
results about CW complexes that are given in [93, pp. 72-73].*

LEMMA 3.5.2. Let X and Y be Postnikov o -towers, let W be a quotient tower of X,
andlety: Y —> W be a cocellular map.

(i) X x Y is a Postnikov <f -tower with one cocell for each cocell of X and each
cocell of Y.
(it) Y xw X is a Postnikov <f -tower with one cocell for each cocell of X that does
not factor through a cocell of W.
(iii) If Xis simply connected, QX is a Postnikov <7 -tower whose coattaching maps
are the loops of the coattaching maps of X.

Recall that we assume that all given spaces have the homotopy types of CW
complexes, although limits constructed out of such spaces, such as o -towers,
will not have this property. Recall too that we are working in Ho.7, where
spaces are implicitly replaced by CW approximations or, equivalently, where
all weak equivalences are formally inverted. In view of this framework, the re-
sults of this section show that we can freely replace .o7-nilpotent spaces and
maps between them by weakly equivalent Postnikov <7 -towers and cocellular
maps between them.

4. For (iii), the precise dual states that the suspension of a CW complex X is a CW complex
whose attaching maps are the suspensions of those of X. That requires based attaching maps as in
Definition 3.3.3.
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DEFINITION 353. An «/-cocellular approximation of a space X is a weak
equivalence from X to a Postnikov «7-tower.

The definition should be viewed as giving a kind of dual to CW approxi-
mation.” Just as CW approximation is the basis for the cellular construction
of the homology and cohomology of general spaces, cocellular approximation
is the basis for the cocellular construction of localizations and completions of
general nilpotent spaces.

A Postnikov o7 -tower is obtained from a sequence of maps of fiber se-
quences

K(Aj ) =———= K(A;n)

l |

Xiy1 —— PK(Aj,ni+1)

| |

X; —— K(A;,n;+1).
ki

The left column gives an exact sequence of homotopy groups (central ex-
tension)

0 — Aj — my, Xy —> 7, X; —> 0.

Since X; ;1 —> X; on the leftis the fibration induced by pullback along k; from
the path space fibration on the right, we see by using the naturality of the group
actions of Proposition 1.5.4 with respect to maps of fibration sequences that
71(X) is nilpotent and acts trivially on the A; that enter into the computation
of y(X) for n > 1. Therefore, using Lemma 3.1.3, we see that any Postnikov
of -tower is an o7 -nilpotent space. The following result gives a converse to this
statement.

THEOREM 3.5.4. Let X be an < -nilpotent space.

(i) Thereisa Postnikov o7 -tower P(X) and a weak equivalence §x : X — P(X);
that is, & is a cocellular approximation of X.

(i) Ify: X — X’ isa map of </ -nilpotent spaces, then there is a cocellular map
P(y): P(X) —> P(X') such that P() o &x is homotopic to £xr o .

5. It is similar to fibrant approximation, which is dual to cofibrant approximation in model
category theory.
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PROOF. The idea is to use any given o -central w1 X-series for the groups
X to construct spaces X; in a Postnikov .o/-tower such that X is weakly
equivalent to lim X;. Taking &/ = /b, it is clear that Theorems 3.2.1 and 3.2.2
are special cases. For the first, a simple space is a nilpotent space such that
each homotopy group is built in a single step. For the second, the notion of
a principal refinement of a Postnikov tower in the classical sense, with each
homotopy group built up in a single step, is just a reformulation of our notion
of a Postnikov @/b-tower.
Thus, to prove (i), assume given o7 -central 71 X-series

1=Gyp, C--- C Gpo=muX

forn>1.LetA,; = G, j/Gpjr1 for 0 <j < ry,sothat A,; € o and 71X acts
trivially on A, ;. Using these groups, we define spaces Y, ; and maps

Ty X —Y, J
such that

(i) 7, induces an isomorphism ;X — 7Y, ; forq < n;
(ii) mnYy; = 7muX/Gy,j and the map 7, X — 7,Y,; induced by 7,; is the
epimorphism 7, X —> 7,X/Gy,; and
(ili) 74Y,; = 0 for q > n.

The spaces Y, j and maps X — Y, ; are constructed by attaching (n + 1)-cells
to X to kill the subgroup G,,; of 74(X), using maps S" — X that represent
generators of G, as attaching maps, and then attaching higher-dimensional
cells to kill the homotopy groups in dimensions greater than n. To start work
and to implement the transition from finishing work on the nth homotopy
group to starting work on the (n+ 1)st, we set Y190 =% and Yy110 = Yar,.
The maps 7, are just the inclusion maps. From the constructions of Y, ; and
Y,,j+1 we have the solid arrow maps in the diagram

Yn,j+1

Tnj+1 |
| Pnj
A

X — Ynj~
th‘

We construct a map p,; that makes the diagram commute directly from the
definition. We urge the knowledgeable reader to resist the temptation to
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reformulate the argument in terms of obstruction theory. Let Yy — Yiy1
be the s stage of the construction of the relative cell complex
Tpjr1: X —> Y1, so that Yy is constructed from Y by attaching
(s+1)-cells. Starting with 7,,;: X — Y, ;, assume that we have constructed
ps: Ys —> Y, ; such that the following diagram commutes.

Since Gy, j41 C Gy, j C X and 7Y, ; = 0 for g > n, the composite of ps
and any attaching map S — Y used in the construction of Y541 from Y
represents an element of a homotopy groups that has already been killed.
Thus this composite is null homotopic and therefore extends over the cone
CSS. Using these extensions to map the attached cells, we extend ps to
ps+1: Ysy1 —> Y, ;. Passing to colimits over s we obtain the desired map p,, ;.
Clearly p,, ; induces an isomorphism on all homotopy groups except the nth,
where it induces the quotient homomorphism 74(X)/ G, j41 —> 7n(G)/ Gy, -
Since A, ; is the kernel of this homomorphism, the only nonzero homotopy
group of the fiber Fp, ; is the nh which is A, j. Moreover, by the natural-
ity of fundamental group actions, we see that 71Y), ; acts trivially on this
group.
We now correct this construction to obtain commutative diagrams

Xn,j+1

Onj+1 |
| Tnj
v

X —— Xy,
JnJ

with the same behavior on homotopy groups together with “k-invariants”
knJ‘Z X”J —> K(A,w,ﬂ—l— 1)

such that X,,;,1 = Fk,; and m,; is the canonical fibration, where X7 = *
and X410 = Xu,r,- In fact, we construct equivalences x,;: Y, ; —> X, and
commutative diagrams
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Xnj+1
YnJ'+1 E— Xn,j+l

Tnj+1 |
Pn,j | T
N

X o Yo Xy,
Tnj Xn,j

Assuming that we have already constructed the equivalence x,;, we sim-
ply apply Lemma 3.4.2 to the composite f = x,jpu;: Yyjr1 —> X,j. Since
Ff = K(A,j, n) and m1X,,; acts trivially on A, ;, part (i) of that result gives the
required k-invariant k,, ; together with an equivalence

Xnj+1° Yn,j+1 - Xn,j+1 = Fkn,j

making the diagram just displayed commute.

Wedefineo,; = x,jo01,j: X — X, ;. Wethendefine P(X) = lim X, j and
let§: X — P(X) be the map obtained by passage to limits from the maps o, ;.
Then £ is a weak equivalence since 0, j induces an isomorphism on homotopy
groups in degrees less than n, and » is increasing.

For the naturality statement, we are free to refine given .o/-central 71X
and 71X’ series for 7, X and 7, X’ by repeating terms, and we may therefore
assume that the o/-central 1 X' series1 = G}, C --- C G} = muX'forn > 1
satisfies (G, ) C G, i LetA! = G, i/ G, i+ and perform all of the construc-
tions above with X replaced by X'.

We claim first that there exist maps 6,,;: Y,,; — Y, i such that the follow-
ing diagram commutes.

/
Y”J > Yn,j

HnJ'

For this, assuming that 6,,; has been constructed, we look inductively at the
stages Yy — Ygp1and Y, — Y] 1 of the cellular constructions of Y,, 1 and



35. POSTNIKOV «/-TOWERS | 67

Yy,41 from X and X’. We assume that 6;: Y; — Y{ has been constructed in
the following diagram.

X X’

NS

Y, — Y]

L

/
Yor1 — — > Ys+1
Os+1

The composites of attaching maps S7 — Y; with the composite Y; — Y,
in the diagram are null homotopic, either because of our hypothesis that
V(Gny) C G, ;or by the vanishing of homotopy groups, hence we can con-
struct 6541 by using homotopies to extend over cells.

By induction, suppose that we have constructed maps v, ; and homotopies

hoji Xy, ;° Onj = Vnj © Xnj as displayed in the following diagram.

/ po / p /
XnJ'H F(I+’Xng'+1) Xn,j+1
XV/LJ‘HOG”JH 7 Vnjt1 o
e
\ _ Ve
_ s
- h”’«i+1 Xnj+1 4
Yij+1 Xnj+1
- " i i ! ™
n,j ) nJ n,j
Xn,j
Y”J Xn,j
by \iﬂn]\
po p
X' F(I+,X/ ) X',
) nj nJ

Here the inductive hypothesis implies that the solid arrow portion of the dia-
gram commutes. Therefore we can apply Theorem 3.3.7 to obtain amap ,, ;1
such that 71,/”. 0 Ypjt1 = Ynjom,j and a homotopy

s ~
th+1 * Xnj+1° 9nJ+1 = 1»[/rtj4»1 O Xnj+1-
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To start the induction, note that Xj g and Xl/,O are both * and hj g and 1 o are
both constant maps.

Define P(y) =limy,;: P(X) —> P(X’). In the following diagram all
squares and triangles that are not made homotopy commutative by h,,; and
hyjy1 are actually commutative. Therefore the maps h,,; determine a homo-
topy from &x’ o ¥ to P(y/) o Ex on passage to limits.

v
X X/
’
\TWH Twﬂ/
0nJ+l
/
Yujt1 Yn,j+1
’
Y’\ﬂ Xn,j+1/

VYnj+1

This completes the proof of the naturality statement. O



4

DETECTING NILPOTENT GROUPS
AND SPACES

We collect together a number of technical preliminaries that will be needed in
our treatment of localizations and completions and are best treated separately
from either. The reader is advised to skip this chapter on a first reading. The
essential point is to detect when groups and spaces are </-nilpotent. When
discussing naturality, we require that </ be a category rather than just a collec-
tion of abelian groups. For some results, we must assume the much stronger
hypothesis that <7 is an abelian category, and we then change notation from
o/ to ¢ for emphasis.

4.1. Nilpotent actions and cohomology

We give a few easy results about identifying nilpotent group actions here. We
are only interested in group actions on abelian groups, and we agree to call an
abelian 7 -group a w-module. It is sometimes convenient to think in terms of
group rings. An action of 7w on an abelian group A is equivalent to an action
of the group ring Z[r] on A. Let I denote the augmentation ideal of Z[r],
namely the kernel of the augmentation ¢: Z[r] —> Z specified by ¢(g) =1
for g € w. Thus I is generated by the elements g — 1 and I9 is generated by the
products (g1 —1) - - - (g5 — 1). It follows that A is -nilpotent of class g if and
only if 1A = 0 but [171A # 0.

The following observation gives a simple criterion for when a nilpotent
w-module is a ¥-nilpotent 7-module, assuming that % is an abelian category
with infinite direct sums. Since we have only quite specific examples in mind,
we shall not recall the formal definition of abelian categories; see, for example
[79, p-198]. Informally, they are additive subcategories of .27b that are closed
under finite direct sums, kernels, and cokernels; more accurately, they come
with faithful and exact forgetful functors to ozb. The examples to keep in mind
are the categories of modules over a commutative ring, thought of as abelian
groups by neglect of the module structure.

69
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LEMMA 4.1.1. Let € be an abelian category with infinite direct sums. Let C € €
be a nilpotent 7 -module such that x: C — C is a morphism in € foreach x € m.
Then C is a € -nilpotent 7w -module.

PROOF. Here C € %, but the action of 7 on C need not be trivial. The lemma
says that if the action of each element of 7 is a morphism in &, then we can
find a 7r-series with 7 -trivial subquotients such that the subquotients lie in %'
Clearly the quotient C/IC is m-trivial, and it is in € because it is a cokernel of
a morphism in %, namely the morphism @y, C —> C whose restriction to
the x" summand Cisthemapx — 1: C —> C. Our assumption on the action
ensures that this map is in ¥. Now IC is in ¥ since it is the kernel of the quo-
tientmap C — C/IC, whichisin¥.LetC; = I iCfori > 0. Inductively, each
C; satisfies the original hypotheses on C and each inclusion C;; C C;isamap
in ¢ since it is the kernel of the quotient map I'C —s I'C/I'*1C in €. The
descending rr-series {C;} satisfies C, = 0 for some n since C is w-nilpotent. OJ

In two examples, we will encounter full abelian subcategories of b, full
meaning that all maps of abelian groups between objects in the category are
again in the category. The first plays a role in the theory of localizations and the
second plays a role in the theory of completions. In these cases, we conclude
that all nilpotent 7w-modules in % are necessarily ¢-nilpotent 7-modules.

LEMMA 4.1.2. Let T be a set of primes. Any homomorphism of abelian groups
between T-local abelian groups is a homomorphism of Zt-modules. Thus the cate-
gory of Zr-modules is a full abelian subcategory of <7b.

LEMMA 413. Let T be a nonempty set of primes and let FT = X pe1Fy. Observe
that Fr-modules are products over p € T of vector spaces over Fy,. Any homomor-
phism of abelian groups between Fr-modules is a map of Fr-modules. Thus the
category of Fr-modules is a full abelian subcategory of </b.

LEMMA 4.1.4. Ifagroupm acts nilpotently on each term of a complex of w -modules,
then the induced action on its homology is again nilpotent.

PROOF. This is a consequence of Lemma 3.1.3, using the exact sequences
0 —> Zy(C) — Cp —> By_1(C) — 0
0 —> By(C) —> Zy(C) —> Hn(C) —> 0

relating the cycles Z,(C), boundaries B,(C), and homology groups of a chain
complex C. O



4.1. NILPOTENT ACTIONS AND COHOMOLOGY/71
For the following lemma, we assume that the reader has seen the definition
H*(r; B) = Ext} (Z, B)

of the cohomology of the group 7 with coefficients in a w-module B. Here &
acts trivially on Z; more formally, Z[x] acts through ¢: Z[7] — Z. We shall
later also use homology,

H,(m; B) = Tor2™ (7, B).

We urge the reader to do the exercises of [93, pp. 127, 141-142], which use
universal covers to show that there are natural isomorphisms

415 H,(7; B) = Hy(K(,1); B) and H*(x; B) = H*(K(r, 1); B)

when 7 acts trivially on B. The latter will be used in conjunction with the
representability of cohomology. In degree zero, the groups in (4.1.5) are B,
and it makes sense to remove them by defining

H,(m; B) = Hy(K(m,1); B) and H*(r; B) = H*(K(w,1); B).

LEMMA 4.1.6. Let o/ be a collection of abelian groups. Let &: m —> 7’
be a homomorphism of groups such that §*: H*(n'; A) — H*(w; A) is an
isomorphism for all A€ of, where w and n’ act trivially on A. Then
&*: H*(n'; By —> H*(m; B) is an isomorphism for all of -nilpotent m’-modules
B, where it acts on B through §.

PROOF. Since Bis an «/-nilpotent 7'-module, there is a chain of 7'-modules
0=B;CBy1C---CBy=B8

such that A; = B;/B;,1 € o/ and n’ acts trivially on A;. The short exact se-
quence of =’ groups

0— Bjy1— B — A — 0

induces a pair of long exact sequences in cohomology and a map between
them.

H"(n';Biy1) — H"(n;B;) — H"(n;A;) — H"tY(2/; Biy1)

| | | |

H"(w; Biy1) — H"(m;B;)) —— H"(m;4) —— H”+1(71;Bi+1)



72 / DETECTING NILPOTENT GROUPS AND SPACES

By induction and the five lemma, this is an isomorphism of long exact sequen-
ces for all 7, and the conclusion follows. O

4.2, Universal covers of nilpotent spaces

Let X be a nilpotent space. By Theorem 3.5.4, we may assume that X is a
Postnikov tower, which for the moment we denote bylimY;. After finitely many
stages of the tower, we reach Y; = K(71X, 1), and then the higher stages of the
tower build up the higher homotopy groups. In this section, it is not relevant
that 71X is nilpotent, only that it acts nilpotently on the higher homotopy
groups. We therefore define a modified tower by setting Xp = *, X1 =Yj,
and X; = Yj; 1 for i > 2. We still have X = limX;, but now the fiber of the
fibration 7;: X; 11 —> X; is K(A;, n;) for some abelian group A; with trivial
action by 71X and some n; > 2. Although our interest is in nilpotent spaces,
we can now drop the assumption that 1 (X) is nilpotent and work with a tower
of the form just specified. We note that we really do want to work with the
actual limit here, only later applying CW approximation. This ensures that not
only the maps n; for i > 1 but also the projections 0;: X — X; for i > 1 are
fibrations. These fibrations all induce isomorphisms on 7.

Since X7 = K(m1X,1), we can take X to be the fiber of 07: X — Xp.!
Of course, X is simply connected rather than just nilpotent, hence it has an
ordinary Postnikov tower in which each homotopy group is built up in a single
step. However, it is useful to construct a refined Postnikov tower for X from
our modified Postnikov tower limX;. To this end, let X; = xand, fori > 1, let
X; be the fiber of o;: X; —> Xj. Since o; induces an isomorphism on 71, X; is
a universal cover of X;. By Lemma 1.2.3, since the right-hand squares in the
following diagram commute (not just up to homotopy), there are dotted arrow
maps 6,1 and 7; that make the diagram commute.

QX % X X
|
I Gip1 Oi+1
y

QX X1 Xiv1 X
|
| 7 T
y

QX X; X; X

1. We assumed in Notations 0.0.3 that all spaces have universal covers, but not all nilpotent
spaces are semi-locally simply connected; we understand X to mean the space just defined, even
though, strictly speaking, it need only be a fibration over X, not a cover.
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By the functoriality statement in Lemma 1.2.3, 7; 0 6;,1 = 6;. Moreover, by
Addendum 1.2.4, the maps 6; and 7; are fibrations. Clearly, in degrees greater
than 1, the long exact sequence of homotopy groups of the second column
maps isomorphically to the long exact sequence of homotopy groups of the
third column. By passage to limits, the maps &; induce a map

£:X — limX,

and this map induces an isomorphism on homotopy groups and is thus a weak
equivalence. It is reasonable to think of lim X; as P(X). Itis a refined Postnikov
tower of X that, in effect, uses the Postnikov tower of X to interpolate fibrations
into the ordinary Postnikov tower of X in such a way that the homotopy groups
7(X) for n > 2 are built up in exactly the same way that the original Postnikov
tower of X builds up the isomorphic homotopy groups 7, (X).

PROPOSITION 4.2.1. Let € be an abelian category with infinite direct sums, let
C € ¢, and assume that the cohomology functors H1(—; C) on chain complexes of
free abelian groups take values in € (as holds when € is the category of modules
over a commutative ring). Let X be a nilpotent space and let X be its universal cover.
Then m1X acts € -nilpotently on each H1(X; C).

PROOF. Theactionof 71X on H4(X; C)is induced from the action of 71 X on X
by passage to singular chains C, (X), then to singular cochains Hom (C, (X), C),
and finally to cohomology. Since the cohomology functor H4(—; C) takes val-
ues in ¢, the action of 71X on HY(X; C) is through morphisms in €. Thus,
by Lemma 4.1.1, it suffices to show that 71X acts nilpotently on HY(X; C).
Since mX = m1X; acts trivially on A;, Lemma 3.4.2 implies that it acts
trivially on the space K(A;, ;) and therefore acts trivially on H*(K(A;, n;); A)
for any abelian group A. We claim that 71X acts trivially on H*(X;; C). This is
clear when i = 1 since Xj = %, and we proceed by induction on i. We have the
following commutative diagram whose rows and columns are fiber sequences.

T

K(Ai,n,-) _— ~i+1 _—

|

KA, 1) —— X1 ——

]

¥ ———> X

T

Mo XN~ X
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The Serre spectral sequence of the top row of the diagram has E, term
HP (X;; HI(K(A;, m); C)).

By the induction hypothesis, we see that 771X acts nilpotently on the E, term.
By Lemma 4.1.4, it therefore acts nilpotently on each E, and thus on E. By
Lemma 3.1.3, we conclude that it acts nilpotently on H*(X;,1; C). O

4.3. o/ -maps of o/ -nilpotent groups and spaces

Now return to the definitions of §3.1. Whenever one defines objects, one
should define maps between them. Since it is inconvenient to focus on canon-
ical choices of o7 -central 7-series, we adopt an ad hoc definition that depends
on choices and ignore the question of how to make a well-defined category
using the maps that we define. The topology of cocellular maps of Postnikov
of -towers is tailor-made to mesh with this algebraic definition. We assume that
4/ is a category and not just a collection of abelian groups. Thus not all homo-
morphisms of abelian groups between groups in .7 need be morphisms of <.

DEFINITION 43.1. Let G and H be < -nilpotent 7 -groups. We say that a mor-
phism f: G — H of m-groups is an «/-morphism if there exist <7-central
m-series

1=G1CGC---CG1 =G

and
1=Hjy1CH;C---CH1=H

such thatf(G;) C H; and each induced homomorphism G;/G;1 — H;/Hjq
is a map in the category <.

DEFINITION 432 We say that a map f: X — Y of «/-nilpotent spaces is
an «/-map ifeach f;: 7,X — m,Y is an &/-morphism of 71 X-groups, where
m1X acts on my, Y through fi: mX — m1Y.

NOTATION 4.3.3. We refer to R-morphisms or R-maps in these definitions
when o/ = a7y is the category of modules over a commutative ring R. We refer
to fR-maps when R is Noetherian and &/ is the category of finitely generated
R-modules.

Again, the cases R = Zr and R = Z, are especially important to us. How-
ever, they behave quite differently since a map of abelian groups between
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R-modules is automatically a map of R-modules when R is the localization Zr
but not when R is the completion Z,.

In the latter case, the following results will be used to get around the incon-
venient kernel and quotient group hypotheses in Lemma 3.1.3. These results
require our given category . to be abelian, and we again change notation
from &/ to € to emphasize this change of assumptions.

LEMMA 4.3.4. Let€ be an abelian category. The kernel and, if the image is normal,
the cokernel of a € -morphism f : G —> H between € -nilpotent it -groups are again
@ -nilpotent 7 -groups.

PROOF. Assume that we are given % -central 7 -series as described and dis-
played in Definition 4.3.1. We use the language of additive relations A — B,
where A and B are abelian groups. While these can be viewed as just homo-
morphisms from a subgroup of A to a quotient group of B, the elementary
formal theory in [79, 11{6] is needed to make effective use of them. This works
for abelian categories, but the reader should think of the category of modules
over a commutative ring.

Our given category € is abelian, and the abelian groups and homomor-
phisms in the following argument are all in . The map f determines an
additive relation

Gj/Gjy1 — Hjyr/Hjprta.

It sends an element x € G; such that f (x) € Hjy, to the coset of f (x). We can
construct a singly graded spectral sequence from these additive relations. Its
EO-term is

EO = Gj/Gj41® Hj/Hjy
with differential given by do (g, h) = (0,f(g)). The kernel of do is
{(g. WIf (g) € Hj+1} C Gj/Gj41 @ Hj/Hjq
The image of dJQ is
{(0.f(8))g € Gj} C Gj/Gj11 ® Hj/Hj1a

The differential c;l1 E P E}, ! | is given by d1 (g, h) = (0,f(g))- Since dj1 is
defined on the kernel of dJO thei 1mage is contalned in EJ 1+1. The map defined on
the kernel descends to a well-defined map on the homology E 1. Each further
differential is given by the same formula. The kernel of djr is
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{(g: Wf(g) € Hiyr1} C Gj/Gjy1 ® Hj/Hjpq
and the image of djr_r is
{(0.f")g" € Gj—+/Gj—r1} C Gj/Gj11 ® Hj/Hjy1.

For r > g, the length of our given central series, we see that

E® = E = {(g,h)If(g) = 0)/10.f(g)lg' € G} C Gj/Gys1 @ Hy/ iy
This can be rewritten as
EJ?X’ =[(GjNnkerf)/(Gj1Nker f)]1@® [im (H; — coker f)/im (Hj,, — coker f)].

The required ¢’-central 7-series for kerf and coker f are given by G; Nker f
and im (H; — cokerf). O

LEMMA 43.5. Let € be an abelian category. Assume given a long exact sequence
of w-modules

gn+1 hnt1 Jr &
-+ — Buy1 = Cup1 —> Ay —> By —> Cp —> -+

in which the g, are ¢ -morphisms between € -nilpotent 7 -modules By, and C,,. Then
the A, are € -nilpotent 7 -modules. The analogues with hypotheses on the maps f;,
or hy, and conclusion for the w -modules Cy, or By, are also true.

PROOF. By Lemma 4.3.4, ker g, and coker g1 are %-nilpotent w-modules,
hence coker hy,11 and ker f, are € -nilpotent 7-modules. Let

0=D;C D1 C---C Dy = coker hy41

0=En CEn_1C---CEy=kerfy
be o7 -central -series. By Lemma 3.1.3 and the short exact sequence
0 — kerf, — A, —> cokerhpy; — 0,

the {E;} and the inverse images of the {D;} give an .</-central m-series
for A,. O

4.4. Nilpotency and fibrations

As in §1.5, let p: E — B be a surjective fibration. We allow basepoints to
vary. We record three results that relate the nilpotency of the components of
the spaces F, = p~!(b), E, and B. We may as well assume that B is connected,
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since otherwise we could restrict to the components of E that map to a given
component of B. Foreach e € E with p(e) = b, let E, be the component of E that
contains e, let F, be the component of Fj, that contains e, and let(: F, — E,
be the inclusion.

PROPOSITION 4.4.1. Assume that E, is nilpotent.

(i) Feisnilpotent and the 11 (F,, €)-nilpotency class of w,(Fy, €), n > 1, is at most
one greater than the 1 (E,, €)-nilpotency class of 7wy, (Ee, €).
(i) If B is also nilpotent, then w1 (E,, €) acts nilpotently on Fj.

PROOF. We agree to write F and E for the components F, and E, and to omit
basepoints from all notations. We use the action of 71(E) on the long exact
homotopy sequence (1.5.1) that is made explicit in Proposition 1.5.4. Thus we
have the long exact sequence

ath ly Pn

Tn+1(B) 7n(F) 7n(E) 7n(B)

of 71 (E)-groups and homomorphisms of 71 (E)-groups.

For (i), we focus on the case n > 2; the proof when n = 1 is similar, using
that the image of 9, in 771 (F) is a central subgroup by Lemma 1.4.7(v). Write g
and Ir for the augmentation ideals of 71 (E) and 71 (F). Assume that 7, (E) is
71(E)-nilpotent of class g, so that I Z[r,(E)] = 0. Leth € I and x € Z[m4(F)].
Then 1, (h) = 0and thus . (hx) = . (h)e(x) = 0, so there exists z € Z[m41(B)]
such that d(z) = hx. For g € m1(F), t4+(g)z = ps«t«(g)z = z by the definition of
the action of 1 (E) on my11(B) and the fact that p.., is the trivial homomor-
phism. Thus (t«(g) — 1)z = 0. But, since 9 is a map of 71 (E)-modules,

3(ex(g) = 1)z = (x(g) = 1)3(2) = (1x(g) — hx = (g — Phx,

where Proposition 1.5.4(i) gives the last equality. This shows that
1

1 2 m,(F)] = 0.
For (ii), we use that our long exact sequence breaks into short exact se-

quences.
1 —> ker (pn) —> 7u(E) —> mn(E)/ ker (pn) —> 1
1 — im (pn) —> m(B) —> coker (p,) —> 1
1 — coker (pnt1) —> mn(F) —> ker (pn) — 1

Lemma 3.1.3 implies that ker ( p,) and coker ( p,) are nilpotent 71 (E)-groups,
and Lemma 1.4.7(v), adapted in the evident way to replace the homotopy
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fiber there with the actual fiber here, shows that the last extension is cen-
tral when n = 1. These observations and Lemma 3.1.3 imply that 7,,(F) is a
nilpotent 71 (E)-group. Observe that since 71 (F) acts through 71 (E) on my(F),
by Proposition 1.5.4(i), this gives another proof that F is nilpotent. O

Returning to the notations of the previous section, we let 4" be an abelian
category in the following two results. We continue to work in the unbased
setting.

PROPOSITION 4.4.2. If all components of B and E are € -nilpotent and each
restriction of p to a component of E is a € -map onto a component of B, then
each component of each fiber of p is €-nilpotent. If, further, the image of
p«: m1(E, &) —> m1(B,b) is normal, then the cokernel 7o(Fy,e) of ps is a
@ -nilpotent group.

PROOF. Here we use Proposition 1.5.4 to regard (1.5.1) as a long exact
sequence both of 71 (E, e)-groups and, by pullback along v, of 71 (F, e)-groups.
For n > 2, my(F, €) is a €-nilpotent 1 (F, e)-group by Lemma 4.3.5. Lemmas
3.1.3 and 4.3.4 imply that m1(F,e) and 77o(F}, €) are @-nilpotent; compare
Remark 1.5.5. O

PROPOSITION 4.43. If f: A— B and the fibration p: E —> B are € -maps
between € -nilpotent spaces, then the component of the basepoint of AxpE is a
@ -nilpotent space.

PROOF. Let X denote the cited basepoint component. Omitting basepoints
from the notations for homotopy groups, Corollaries 2.2.3 and 2.2.5 give an
exact sequence of homotopy groups ending with

s ma(A) x 12(E) B ma(B) S mi(X) — mi(4) X ny(8) 71 (E) —> 1.

By Proposition 1.5.4, this is a long exact sequence of 71 (X)-groups. Since f
and p are ¥-maps between ¢-nilpotent spaces, f. — px is a ¥-map and, as we
see from Lemma 4.3.4 or 4.3.5, the action of 71(X) on m,(X) is ¢ -nilpotent
for n > 2. The image of 9 is a central subgroup of 71(X), by Lemma 1.4.7,
and 1 (A) Xz, (g) 71(E) is a kernel of a #’-morphism, hence we also conclude
by Lemma 4.3.4 that 71 (X) is a @-nilpotent 1 (X)-group. A similar argument
would work starting with the long exact sequence of the fibration A xg E—~A
with fiber F = p~1(x), but here the possible nonconnectivity of F would
complicate the argument for 71 (X). O



45. NILPOTENT SPACES AND FINITE TYPE CONDITIONS / 79

4.5. Nilpotent spaces and finite type conditions

The spaces that one usually encounters in algebraic topology satisfy finiteness
conditions. For CW complexes X, it is standard (going back at least to Wall’s
1965 paper [140]) to say that X is of finite type if its skeleta are finite, that is, if
it has finitely many n-cells for each n. More generally, a space X is said to be
of finite type if it is weakly equivalent to a CW complex of finite type. This is a
topological specification, and it is the meaning of “finite type” that we adopt.

Unfortunately, it has more recently become almost as standard to say that
a space X is of finite type if its integral homology groups H;(X; Z) are finitely
generated for each i. This is an algebraic specification, and we say that X is
homologically of finite type. Some authors instead ask that the homotopy
groups 7;(X) be finitely generated for all i. Our main goal in this section is to
prove that these three conditions are equivalent when X is nilpotent.

This will later help us determine what can be said about localizations and
completions of nilpotent spaces of finite type. This is particularly important in
the case of completion, whose behavior on homotopy groups is much simpler
in the finite-type case than itis in general. We introduce the following notations
in anticipation of consideration of localizations and completions.

NOTATION 45.1. For a Noetherian ring R, let fo/g denote the abelian cate-
gory of finitely generated R-modules. To abbreviate notation, we say that an
fafr-nilpotent w-group is fR-nilpotent. Similarly, we say that an f.<Zg-nilpotent
space is fR-nilpotent. We speak of f -nilpotent groups and spaces when R = Z.

Thus an f-nilpotent space is a nilpotent space X such that m1(X) is
f-nilpotent and acts f -nilpotently on 7;(X) for i > 2. This is a statement about
subquotients of these groups, but it turns out to be equivalent to the statement
that these groups themselves, or the homology groups H;(X;Z), are finitely
generated. These equivalences are not at all obvious, and we have not found
a complete proof in the literature. We shall sketch the proof of the following
theorem, which is well-known when X is simple. It is beyond our scope to
give full details in the general case, but we shall give the essential ideas.

THEOREM 45.2. Let X be a nilpotent space. Then the following statements are
equivalent.

(i) X is weakly equivalent to a CW complex with finite skeleta.
(ii) X is f -nilpotent.
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(iii) m;(X) is finitely generated for each i > 1.
(iv) m1(X) and H;(X;Z) fori > 2 are finitely generated.
(v) H;(X;Z) is finitely generated for each i > 1.

The implication (i) implies (v) is general, requiring no hypotheses on X.
We restate it in terms of our definitions of spaces being of finite type.

LEMMA 4.53. If X is of finite type, then X is homologically of finite type.

PROOF. The cellular chains of a CW complex X with finite skeleta are finitely
generated in each degree, and the homology groups of a chain complex that
is finitely generated in each degree are finitely generated. O

In outline, the rest of the proof goes as follows. We first explain a clas-
sical result of Serre that implies a generalization of the equivalence of (iii)
and (iv). We then outline a purely group-theoretic proof that (ii) and (iii) are
equivalent. Using information from that proof and a spectral sequence argu-
ment, we see next that (v) implies (iv). Finally, we observe that Wall’s classical
characterization of spaces of finite type [140] applies to show that (iv) implies (i).

Serre proved the following result using the Serre spectral sequence and
what are now called Serre classes of abelian groups [125]. Their introduction
was a crucial precursor to the theory of localization. While our argument
follows his original one, tom Dieck [36, 20.6] has shown that his results can
actually be proven without any use of spectral sequences.

THEOREM 4.5.4 (SERRE). Let X be simply connected. Then all 7;(X) are finitely
generated if and only if all H;(X; Z) are finitely generated.

Since m;(X) = m;(X) for i > 2, application of this result to the universal
cover of a space X gives the promised generalization of the equivalence of (iii)
and (iv) in Theorem 4.5.2.

COROLLARY 4.55. Forany (connected) space X, not necessarily nilpotent, ir;(X)
is finitely generated for each i > 1 if and only if w1 (X) and H;(X; Z) for each i > 2
are finitely generated.

REMARK 4.56. One might ask instead of (iv) that H;(X; Z) for i > 2 be finitely
generated over Z[m1(X)], rather than over Z. These conditions are equivalent



45. NILPOTENT SPACES AND FINITE TYPE CONDITIONS / 81

when 71 (X) is finitely generated and nilpotent, but they are not equivalent in
general and the previous corollary requires the stronger hypothesis.

The proof of Theorem 4.5.4 begins with the following result. We take all
homology groups to have coefficients Z in the rest of this section.

THEOREM 45.7. If X is simply connected, then all H;(X) are finitely generated if
and only if all H;(2X) are finitely generated.

PROOF. The Serre spectral sequence of the path space fibration over X satis-
fies Eﬁq = Hy(X; Hy(2X)) and converges to H,(PX), which is zero except for
Hy(PX) = Z. Using the universal coefficient theorem in homology,

H(X; Hy(QX)) = (Hy(X) ® Hy(@X)) @ Tor (H,1(2X), Hy(2X)).

In particular, EJ; = Hy(X) and Ej , = Hy(X). From here, inductive argu-
ments that Serre codified in [125] give the conclusion. O

COROLLARY 458. If7 isa finitely generated abelian group and n > 1, then each
H;(K (7, n)) is finitely generated.

PROOF. Either by a standard first calculation in the homology of groups [24,
p- 35] or by direct topological construction of a model for K(x,1) as a CW
complex with finitely many cells in each dimension (e.g., [93, p. 126]), the result
istruewhenn = 1. Since QK(7,n+ 1) = K(r, n), the conclusion follows from
the theorem by induction on n. O

PROOF OF THEOREM 4.5.4. Suppose that the homotopy groups of X are
finitely generated. The Postnikov tower of X gives fibrations

K(mn(X), 1) —> Xy —> Xp1.
These have Serre spectral sequences that converge from the groups
Epq = Hp(Xa-1; Hy (K (mn(X), )

in total degree p+ g to Hy(X,). By Corollary 4.5.8 and induction on n, we may
assume that each H;(X,—1) is finitely generated and deduce that each H;(X,)
is finitely generated. Since this holds for all n, H;(X) is finitely generated.
Conversely, suppose that the homology groups of X are finitely generated.
Define g,,: X(n) —> X to be the fiber of the fibration X — X,,_1 given by a
Postnikov tower of X. By the long exact sequence of homotopy groups, we see
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that 7;(X(n)) =0 for i <n—1 and gu,: 7;(X(n)) — m;(X) is an isomor-
phism for i > n. A map X(n) — X with these properties is said to be an
(n — 1)-connected cover of X, and then 7, (X) = H,(X(n)) by the Hurewicz
theorem. Since X is simply connected, we can write X = X(2), and then
m2(X) = Hy(X) is finitely generated. For n > 3, we can apply Lemma 1.2.3 to
the diagram

QX, X(n) X X

L |-

QX1 —— X(n—l) — X —— Xy
dn—1

to obtain a map r, that makes the diagram commute up to homotopy. By
the resulting map of exact sequences of homotopy groups, we see that the
homotopy fiber of r, must be a space K(my—1(X), n—1). Applying the Serre
spectral sequences of the fibration sequences

K(mn-1(X),n—1) — X(n) — X(n—1)

inductively, starting with X = X(2), we see that the homology groups of X (n)
are finitely generated and therefore the m,(X) = H,(X(n)) are finitely gen-
erated. O

The following result shows that (ii) and (iii) of Theorem 4.5.2 are equivalent.
The proof uses a little more group theory than we wish to present in detail.

PROPOSITION 4.5.9. Let G be a nilpotent group. Then the following statements
are equivalent.

(i) G isf -nilpotent.
(i1) G/IG, Gl is finitely generated.
(i) G is finitely generated.
(iv) Every subgroup of G is finitely generated.
Moreover, when these conditions hold, the group ring Z[G] is (left and right)
Noetherian and the group G is finitely presentable.

PROOF. Any central series of G gives an exact sequence

C T

1 el G G/G 1
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where G’ is nilpotent of lower class than G and G/ G’ is abelian. Using the lower
central series of G, we may as well take G’ to be the commutator subgroup
[G, G]. If G is f-nilpotent, then certainly G/G’ is finitely generated, so that
(i) implies (ii). Suppose that (ii) holds. Choose elements h; of G such that the
elements 7 (h;) generate G/G’ and let H be the subgroup of G generated by
the h;. For g € G, there is an element h € H such that 7 (g) = 7 (h), and then
g = gh~'his an element of G'H. By [56, Cor. 10.3.3], this implies that H = G
and therefore G is finitely generated, showing that (ii) implies (iii).

The proof that (iii) implies (iv) is given in [56, p. 426]. The proof goes in two
steps. First, if G is finitely generated, then G is supersolvable, meaning that
it has a finite normal series with cyclic subquotients. Second, every subgroup
of a supersolvable group is supersolvable and is therefore finitely generated.
Finally, (iv) implies (i) since if every subgroup of G is finitely generated, then
G/G’ and G’ are finitely generated. By induction on the nilpotency class, we
can assume that G’ is f-nilpotent, the abelian case being clear, and then the
displayed short exact sequence shows that G is also f-nilpotent.

The Noetherian statement should look very plausible in view of (iv), but
we refer the reader to [57, Thm. 1] for the proof. It applies more generally
to polycyclic groups, which can be characterized as the solvable groups all
of whose subgroups are finitely generated. The statement that G is finitely
presentable is an exercise in Bourbaki [15, Ex. 17b, p. 163]. The essential point
is that if N and H are finitely presentable and G is an extension of N by H,
then G is finitely presentable. O

Returning to the topological context of Theorem 4.5.2, assume that X is
nilpotent and let 7 = m1(X).

SKETCH PROOF THAT (V) IMPLIES (1V). Since Hi(X;Z) = n/[n, ], the
implication (ii) implies (i) of Proposition 4.5.9 shows that = is finitely gen-
erated. There are several choices of spectral sequences that can be used to
show that H;(X; Z) is finitely generated for i > 2. One can use the Serre spec-
tral sequence obtained from the fiber sequence X —> X —> K(r, 1), which
converges from H, (1; Hy (X)) to Hy(X), using a backward induction from the
assumption that 7 and the H;(X) are finitely generated. A more direct argu-
ment uses the Eilenberg-Moore spectral sequence which, in its homological
version and ignoring details of grading, converges from the homology groups
EZ, = Hy(m; Hy(X)) to H,(X). The spectral sequence converges by a result
of Dwyer [41], the essential point being that 7 acts nilpotently on H, (X), by
the homology analogue of Proposition 4.2.1. Using that the group ring Z[r] is
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Noetherian, one can check that the groups of the E»-term are finitely generated
and deduce that the groups H;(X) are finitely generated. Alternatively, one can
use the lower central series spectral sequence for the calculation of the groups
7;(X), as explained (with comparable brevity) in [21, p. 153]. O

SKETCH PROOF THAT (1v) IMPLIES (1). If X is simply connected and
each 7;(X) is finitely generated, the result is easy. There is a standard construc-
tion of a weak equivalence 'X — X from a CW complex I'X to X given, for
example, in [93, p. 75]. Using minimal sets of generators for the homotopy
groups and kernels of maps of homotopy groups that appear in the construc-
tion, we see that we only need to attach a finite number of cells at each stage. A
slight variant of the construction makes the argument a little clearer. Instead of
attaching cylinders in the proof there, we can attach cells to kill the generators
of the kernel of 7;(X;) — m;(X) in the inductive argument. These kernels are
finitely generated at each stage, so we only need to attach finitely many cells to
kill them. Wall [140] refines this argument to deal with a nontrivial fundamen-
tal group 7. In [140, Thm. A], he gives necessary and sufficient conditions for
X to be of finite type. In [140, Thm. B], he shows that these conditions are sat-
isfied if Z[rr] is Noetherian, 7 is finitely presented, and each H;(X) is finitely
generated over Z[r]. We have the first two conditions by Proposition 4.5.9,
and the last condition certainly holds if each H;(X) is finitely generated as an
abelian group. O
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LOCALIZATIONS OF NILPOTENT GROUPS
AND SPACES

We develop localization at T for abelian groups, nilpotent groups, and nilpo-
tent spaces. Of course, localization of abelian groups is elementary and direct.
However, following Bousfield and Kan [21], we first construct localizations
of spaces and then use them to construct localizations of nilpotent groups
topologically rather than algebraically. A purely algebraic treatment is given
by Hilton, Mislin, and Roitberg [60, 62]. We discuss localizations of abelian
groups in §5.1, the essential point being to determine the behavior of localiza-
tion on homology. We define localizations of spaces and show how to localize
the Eilenberg-Mac Lane spaces of abelian groups in §5.2. We construct local-
izations of nilpotent spaces by induction up their Postnikov towers in {5.3. We
specialize to obtain localizations of nilpotent groups in §5.4. We discuss their
general algebraic properties in §5.5, and we discuss finiteness conditions in
§5.6, leading up to a characterization of f Zr-nilpotent groups. The reader may
wish to skip the last two sections on a first reading. Their main purpose is to
develop algebra needed later to prove the fracture theorems in full generality.

Recall our notational conventions from the Introduction. In particular, T
is a fixed set of primes, possibly empty, throughout this chapter and the next.
Maps ¢ will always denote localizations.

5.1. Localizations of abelian groups

Recall that an abelian group B is said to be T-local if it admits a structure of
Zr-module, necessarily unique. It is equivalent that the multiplication map
q: B —> Bisanisomorphism for all primes g notin T. We have the following
easy observation.

LEMMA 51.1. Let

0—A—A—A"—0

87
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be a short exact sequence of abelian groups. If any two of A’, A, and A" are T-local,
then so is the third.

Thelocalization at T of an abelian group Aisamap¢: A — Artoa T-local
abelian group Ar that is universal among such maps. This means that any
homomorphism f: A — B, where B is T-local, factors uniquely through ¢.
That is, there is a unique homomorphism f that makes the following diagram
commute.

¢

A——— Ar

/
/
/ ~
f s F

B

We can define ¢ explicitly by setting A7 = A® Zt and letting ¢(a) = a® 1.
Clearly A is T-local if and only if ¢ is an isomorphism. Since Zr is a torsion-
free abelian group, it is a flat Z-module. We record the following important
consequence.

LEMMA 5..2. Localization is an exact functor from abelian groups to Zt-modules.

We shall focus on cohomology when defining localizations of spaces. This
is natural when thinking about Postnikov towers and the dual Whitehead
theorem, and it leads to efficient proofs. In preparation for this, we describe
the homological behavior of localization of abelian groups in some detail.

THEOREM 5.1.3. The induced map
¢s: Ho(A; Z1) — Hi(AT; Z7)
is an isomorphism for all abelian groups A. If B is T-local, then the homomorphism
H,(B;Z) — H.(B;Z7)
induced by the homomorphism Z. —s Zr is an isomorphism and thus H,(B; Z) is

T-local in every degree.

PROOF. There are several ways to see this result, and the reader is urged
to use her favorite. In view of (4.1.5), one is free to carry out the proof using
algebra, topology, or a combination of the two. Any module over a PID R is the
filtered colimit of its finitely generated submodules, and any finitely generated



5.1. LOCALIZATIONS OF ABELIAN GROUPS / 89

R-module is a finite direct sum of cyclic R-modules (R-modules with a single
generator). We apply this with R = Z and R = Zr. In these cases, the finite
cyclic modules can be taken to be of prime power order, using only primes
in T in the case of Zr, and the infinite cyclic modules are isomorphic to Z or
to Zr.

The localization functor commutes with colimits since it is a left adjoint,
and the homology of a filtered colimit of abelian groups is the colimit of their
homologies. To see this topologically, for example, one can use the standard
simplicial construction of classifying spaces [93, p. 126] to give a construction
of K(A, 1)’s that commutes with filtered colimits, and one can then use that
homology commutes with filtered colimits, by Proposition 2.5.4. Finite sums
of abelian groups are finite products, and as we have already noted it is clear
that a product K(A, 1) x K(A’,1) is a K(A x A, 1). By the Kiinneth theorem
(e.g., [93, p. 130]), the conclusions of the theorem hold for a finite direct sum
if they hold for each of the summands. This reduces the problem to the case
of cyclic R-modules.

One can check the cyclic case directly, but one can decrease the number of
checks needed by using the Lyndon-Hochschild-Serre (LHS) spectral sequence
of Proposition 24.5.3. That spectral sequence allows one to deduce the result
for cyclic groups of prime power order inductively from the result for cyclic
groups of prime order.

Thus suppose first that A is cyclic of prime order g. Since Zt is T-local,
so are both the source and target homology groups. We focus on the reduced
homology groups since K(r, 1)’s are connected and the zeroth homology group
with coefficients in R is always R. If g = 2, K(A,1) = RP™ and if g is odd,
K(A, 1) is the analogous lens space S>°/A. In both cases, we know the integral
homology explicitly (e.g., by an exercise in [93, p. 103]). The nonzero reduced
homology groups are all cyclic of order g, that is, copies of A. Taking coef-
ficents in Zt these groups are zero if g ¢ T and A if g € T, and of course
Ar =0if g ¢ T and At = Aif g € T. Thus the conclusions hold in the finite
cyclic case.

Finally, consider A = Z, so that At = Zr. The circle Slisa K(z,1). Our
first example of a localized space is Sk, which not surprisingly turns out to
be K(Zr,1). Ar can be constructed as the colimit of copies of Z together with
the maps induced by multiplication by the primes not in T. For example, if
we order the primes g; not in T by size and define r, inductively by r; = ¢
and 1, =ry_1G1 - qn = 47 - - - Gn, then Zg is the colimit over n of the maps
rn: Z —> Z. We can realize these maps on 71(S') by using the r,™ power
map S! — S'. Using the telescope construction [93, p. 113] to convert these
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multiplication maps into inclusions and passing to colimits, we obtain a space
K(Zt,1); the van Kampen theorem gives that the colimit has fundamental
group Zr, and the higher homotopy groups are zero because the image of a
map from S” into the colimit is contained in a finite stage of the telescope,
and each such finite stage is equivalent to S!. The commutation of homology
with colimits gives that the only nonzero reduced integral homology group of
K(Zt,1) is its first, which is Zr.

An alternative proof in this case uses the LHS spectral sequence of the
quotient group Zt /Z. Groups such as this will play an important role in com-
pletion theory and will be discussed in Chapter 10. The spectral sequence has
the form

E2, = Hy(Z1/Z; Hy(Z; Z1)) = Hpq(Zr: Z1).

The group Zt/Z is local away from T, hence the terms with p > 0 are zero,

and the spectral sequence collapses to the edge isomorphism

¢x: Hi(Z; Z1) —> Hi(Z1;Z1). 0

COROLLARY 5.1.4. The induced map
¢*: H*(Ar; B) —> H*(A; B)

is an isomorphism for all Zr-modules B.

On H!, by the representability of cohomology and the topological interpre-
tation (4.1.5) of the cohomology of groups, this says that

¢*: [K(Ar, 1), K(B, 1)] —> [K(A, 1), K(B,1)]

isanisomorphism. On passage to fundamental groups, this recovers the defin-
ing universal property of localization.

In fact, as we shall use heavily in {5.4, for any groups G and H, not
necessarily abelian, passage to fundamental groups induces a bijection

5.15 [K(G, 1), K(H,1)] = Hom(G, H).

(This is an exercise in [93, p. 119]). One way to see this is to observe that the
classifying space functor from groups to Eilenberg-Mac Lane spaces (e.g., [93,
p- 126]) gives an inverse bijection to 1, but it can also be verified directly from
the elementary construction of K(G, 1)’s that is obtained by realizing m; as
the fundamental group of a space X [93, p.35] and then killing the higher
homotopy groups of X.
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5.2. The definition of localizations of spaces

Recall that we take all spaces to be path connected. We have the following
three basic definitions. Recall Definition 3.3.10 and Proposition 3.3.11.

DEFINITION 521. A map §: X —> Y is a Zr-equivalence if the induced
map & Hu(X;Z71) — H.(Y;Z7) is an isomorphism or, equivalently, if
the induced map &*: H*(Y; B) — H*(X; B) is an isomorphism for all
Z7-modules B.

DEFINITION 522. Aspace Zis T-localif §*: [Y, Z] — [X, Z] is a bijection
for all Zr-equivalences §: X — Y.

Diagrammatically, this says that for any map f: X — Z, there is a map

f, unique up to homotopy, that makes the following diagram commute up to
homotopy.

DEFINITION 523. Amap ¢: X — Xr from X into a T-local space Xr is a
localization at T if ¢ is a Zr-equivalence.

This prescribes a universal property. If f : X — Z is any map from X to
a T-local space Z, then there is a map f, unique up to homotopy, that makes
the following diagram commute.

¢

X ——— X7

Therefore, localizations are unique up to homotopy if they exist. We shall prove
in §19.3 that they do always exist, but we focus on nilpotent spaces for now.

REMARK 5.24. Onthe full subcategory of connected spaces in Ho.7 thatadmit
localizations at T, localization is automatically functorial (up to homotopy). For
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amap f: X — Y, there is a unique map fr: Xr — Yr in Ho7 such that
¢ of =fro¢in Ho.7, by the universal property.

When specialized to Eilenberg-Mac Lane spaces K(A, 1), these definitions
lead to alternative topological descriptions of T-local abelian groups and of the
algebraic localizations of abelian groups at T. The proofs are exercises in the
use of the representability of cohomology.

PROPOSITION 5.2.5. Anabelian group Bis T-local ifand only ifthe space K(B, 1)
is T-local.

PROOF. If Bis T-local and §: X —> Y is a Zr-equivalence, then
£*: HY(Y; B) — H'(X; B)
is an isomorphism. Since this is the map
£*:[Y,K(B,1)] — [X, K(B, 1)],

K(B,1) is T-local. Conversely, if K(B,1) is T-local, then the identity map
of K(B,1) is a Zr-equivalence to a T-local space and is thus a localization
at T. However, the map ¢: K(B,1) — K(Br, 1) thatrealizes ¢: B—> Bron
fundamental groups is also a Zr-equivalence, by Corollary 5.1.4 and (4.1.5).
Therefore ¢ is also a localization at T. By the uniqueness of localizations, ¢
must be an equivalence and thus ¢: B — Br must be an isomorphism. O

COROLLARY 5.26. Anabelian group Bis T-local if and only if the homomorphism
&*: H*(Y; B) — H*(X; B) induced by any Zr-equivalence £: X —> Y is an
isomorphism.

PROOF. If B has the cited cohomological property, then K(B, 1) is T-local by
the representability of cohomology and B is T-local by the previous result. The
converse holds by the definition of a Zr-equivalence. O

PROPOSITION 5.2.7. A homomorphism ¢: A —> B of abelian groups is an
algebraic localization at T if and only if the map, unique up to homotopy,

¢: K(A, 1) — K(B,1)

that realizes ¢ on 11 is a topological localization at T.
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PROOF. By Corollary 5.1.4 and (4.1.5), if ¢: A — B is an algebraic localiza-
tion at T, then ¢: K(A,1) — K(B, 1) is a Zr-equivalence. Since K(B, 1) is
T-local by the previous result, this proves that ¢ is a topological localization.
Conversely, if ¢: K(A,1) — K(B, 1) is alocalization at T and C is any T-local
abelian group, then the isomorphism

¢*: HY(K(B, 1), C) — H(K(A,1),C)

translates by the representability of cohomology and passage to fundamental
groups into the isomorphism

¢*: Hom(B, C) — Hom(A, C).

This adjunction expresses the universal property of algebraic localization. O
By induction on n, we can now localize Eilenberg-Mac Lane spaces K(A, n).

THEOREM 5.28. If B is a T-local abelian group, then K(B, n) is a T-local space
and H,(K(B,n);Z) is T-local in each degree. For any abelian group A, the map
¢: K(A, n) — K(AT,n), unique up to homotopy, that realizes the localization
¢: A — AT onmy, is alocalization at T.

PROOF. If&: X —> Y is a Zr-equivalence, then
£*: [Y, K(B,n)] —> [X, K(B,n)]

is the isomorphism induced on the nth cohomology group. Thus K(B, n) is
T-local.

For n > 2, we may write QK(A, n) = K(A, n— 1), and the map ¢ induces a
map of path space fibrations

K(An—1 — > PK(A,n) — K(A,n)

| i |

K(Ar,n—1) —> PK(Ar,n) — K(Ar,n).

This induces a map of Serre spectral sequences converging to the homologies
of contractible spaces. The map Q¢ on fibers realizes ¢ on m,_1, and we
assume inductively that it is a Zr-equivalence. By the comparison theorem for
spectral sequences, Theorem 24.6.1 below, it follows that the map ¢ on base
spaces is also a Zr-equivalence. This proves the last statement.
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Taking A = Bto be T-local, we prove that H,(K(B, n), Z) is T-local by induc-
tive comparison of the Z and Zr homology Serre spectral sequences of the
displayed path space fibrations. Starting with the case n = 1in Theorem 5.1.3,
we find that

H,(K(B,n),Z) = H,(K(B,n), Zt). 0

5.3. Localizations of nilpotent spaces

Our construction is based on a special case of the dual Whitehead theorem.
Take o7 in Theorem 3.3.9 to be the collection of Zr-modules. Then that result
takes the following form, which generalizes the fact that K(B, n) is a T-local
space if B is a T-local abelian group.

THEOREM 5.3.1. Every Zr-tower is a T-local space.
We use this result to construct localizations of nilpotent spaces.
THEOREM 5.3.2. Every nilpotent space X admits a localization ¢: X — Xr.

PROOF. In view of Theorem 3.5.4, we may assume without loss of
generality that X is a Postnikov tower lim X; constructed from maps
ki: X; — K(A;, n; + 1), where A; is an abelian group, n; ;1 > n; > 1, and only
finitely many n; = nforanyn > 1. Here Xy = *, and welet (Xo)1 = *. Assume
inductively that a localization ¢;: X; — (X;)r has been constructed and
consider the following diagram, in which we write K(A;, n;) = QK(A;, n; + 1).

k;
K(Ai 1) ——— X1 X; K(A;,ni+1)

|
Q¢ \L | Pit1 l [ \L ¢
\

K((Aj)T, 1) —— Xip1)r —— (Xi)r —— K((A))1, 1+ 1)
(k)T

By Theorem 5.3.1, since ¢; is a Zr-equivalence and K((A;)1,n;+1) is a
Zt-local space there is a map (k;)1, unique up to homotopy that makes the
right square commute up to homotopy. The space X, is the fiber Fk;, and
we define (X, 1)r to be the fiber F(k;)T.

By Lemma 1.2.3, thereis amap ¢; 1 that makes the middle square commute
and the left square commute up to homotopy. By Theorem 5.3.1, (X; 1)1 is
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T-local since it is a Zr-tower. We claim that ¢; 1 induces an isomorphism
on homology with coefficients in Zr and is thus a localization at T. Applying
the Serre spectral sequence to the displayed fibrations, we obtain spectral
sequences

E} o = Hy(X;; Hy(K(Aj, m:); Z1)) = Hpyq(Xiz1; Z7)
Ey o = Hy((Xi)1; Hy(K((A) T, m:); Z1)) = Hp4((Xi41)73 Z7)

and a map between them. By Theorem 5.2.8, the induced map on the homol-
ogy of fibers is an isomorphism. Since ¢; is a localization at T and thus a
Zr-equivalence, the map on E? terms is an isomorphism. It follows that
¢i+1 is a ZT-equivalence, as claimed.

Let X7 = lim (X;)7 and ¢ = lim ¢;: X — Xr. Then ¢ is a Zr-equivalence
by Proposition 2.5.9 and is thus a localization of X at T. O

Our explicit “cocellular” construction of localizations of Postnikov towers
allows us to be more precise about functoriality than in Remark 5.2.4.

THEOREM 53.3. Let X and Y be Postnikov towers and let vy : X —> Y be a cocel-
lular map. Choose cocellular localizations at T of X and Y. Then there exists
a cocellular map Yr: Xt —> Y1, unique up to cocellular homotopy, such that
Y 0 ¢ is homotopic to ¢ o Y.

PROOF. We construct ¥1 and h: ¥1 o =~ ¢ oy by inductive application of
coHELP, Theorem 3.3.7, to the following diagrams and passage to limits.

Po P
(Yig1)T F(Ly, (Yiza)1) (Yip1)T

ir1oVip hit1 7 i) 7
7 7
pe 7
- e
pg 7

Pit1

Xit1 (Xiv1)T

|

X; (Xi)T

(Yi)r F(L+, (Yi)T) (Yi)r
Ppo p




96 / LOCALIZATIONS OF NILPOTENT GROUPS AND SPACES

Now let ¥ and n be maps X7 —> Yr such that both Yro¢ and
no¢ are homotopic to ¢poy. Let P; 1 be the pullback of F(I;,(Y;)r) and
F({0,1}4, (Yiy1)T) over F({0,1}+,(Y;)T) and observe that the fibration
(Yiz1)T — (Y;)T and cofibration {0, 1} — I induce a canonical fibration

F(Lt, (Yiy1)T) — Piy1

We construct the following diagram inductively and apply coHELP to it.

Ppo j41
Fl (Yia)) < Flle, B, (Yin)1) ————= F(L1. (Yiga)7)
fir1 hitq 7 git1 7
- -
\ - P
- Bit1 7
Xiy1 (Xiy1)T
N
Py F(Ly, Piq) Piq

po p

The map f;1: X411 — F(I+, (Yiy1)7) is 2 composite of homotopies
Yrop X oy =nod.
The map gi11: (Xiy1)T —> Pj11 is the map into P;;; defined by the maps
()T — ()T > F(Ly, (Y1)
and
a: (X))t — F({0, 1)+, (Yita)1),

where o(x)(0) = y¥r(x) and «(x)(1) = n(x). It is not difficult to check induc-
tively that this pair of maps does define a map into the pullback. Similarly, the
map hiy1: Xj1 1 — F(I4, Piyq) is defined by the pair of maps

h;
X1 —> X 5 F(L, (Lt (Yi)7)

and
B
Xiy1 — (Xiy1)T — F(I+, F({0, 1}4, (Yiz1) 1)),

where 8(x)(t)(0) = ¥ (x) and B(x)(t)(1) = n(x). On passage to limits, the maps
§; give the desired homotopy from yr to 7. O

We have analogous conclusions for quotient towers and pullbacks.
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PROPOSITION 53.4. Let W be a quotient tower of a Postnikov tower X with
projection w: X —> W. Then there are cocellular localizations Xt of X and
Wr of W such that Wr is a quotient tower of X1 whose projection satisfies
nro¢ =¢om. If =Y (x) is connected, the map ¢p: w~1(x) —> (1)~ (%)
obtained by restricting ¢ : X — Xt to fibers is again a localization at T If, further,
Y is a Postnikov tower, 6: Y —> W is a cocellular map, and 01: Yr — Wr
is chosen as in Theorem 5.3.3, then the pullback X1 X w, Y1 of T and 61 is a
cocellular localization of the pullback X xw Y of w and 6.

PROOF. The first statement is an easy induction based on the definition of
a quotient tower. For the second statement, note that 7 ~!(*) is a Postnikov
tower with one cocell for each cocell of X that does not factor through W. For
the last statement, note that X x w Y can be viewed as a Postnikov tower with
one cocell for each cocell of X that does not factor through W and each cocell
of Y. O

Taking W = %, we have the following special case.
COROLLARY 53.5. X1 X Y7 is a cocellular localization of X x Y.

Either applying Proposition 5.3.4 to the path space fibration or arguing
directly, we obtain a similar result for loop spaces.

COROLLARY 53.6. If X is a simply connected Postnikov tower, then Q(Xr) is a
cocellular localization of QX.

5.4. Localizations of nilpotent groups

Let g be a prime. A group G is said to be uniquely g-divisible if the g™ power
function G — G is a bijection.

REMARK 5.4.1. Of course, an abelian group B is uniquely g-divisible if and
only if the multiplication homomorphism q: B — B is an isomorphism. In
turn, this holds if and only if B® F; = 0 and Tor (B, F4) = 0.

REMARK 5.4.2. If G is uniquely g-divisible for all primes g ¢ T and g € G is
an element of finite order prime to T, so that g" = 1 for some product r of
primes notin T, theng = 1.

DEFINITION 5.43. A T-local group is a nilpotent group that is uniquely
g-divisible for all primes g notin T.
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Thus, for us, a T-local group is necessarily nilpotent. The localization of
a nilpotent group G at T is defined the same way as for abelian groups. It
isamap ¢: G —> Gr to a T-local group Gr that is universal among such
maps. However, it is no longer obvious how to construct such a map, and we
will use topology rather than algebra to do so. We need some preliminaries
that allow us to recast the definitions just given in terms of Zr-nilpotency. We
give a complete proof of the following generalization of Lemma 5.1.1 to help
familiarize the reader with the relevant kinds of algebraic arguments, but the
result itself will be superceded by Corollary 5.4.11 below, which shows that
the centrality assumption is unnecessary. Thus the result can be viewed as
scaffolding leading toward that generalization.

LEMMA 544, Let
L

1—6¢ 565 —1
be a central extension of groups. If any two of G/, G, and G” are uniquely
q-divisible, then so is the third.

PROOF. First assume that G’ and G” are uniquely g-divisible. To show that
the ¢ power map of G is surjective, let x € G. Then (x) = 27 for some
z € G” since G” is uniquely g-divisible. Since  is surjective, ¥ (y) = z for
some y € G. Therefore x = yi(y’) for some y’ € G'. Since G’ is uniquely
g-divisible, y’ = x'? for some x’ € G’ and thus x = y%(x)7 = (yp¢(x/))? since
our extension is central. To show that the g™ power map of G is injective, let
x4 = ylforx,y € G. Then ¢ (x)4 = ¥ (y) and, since G” is uniquely g-divisible,
¥ (x) = ¥ (y). By exactness, x = yi(x’) for some x’ € G’ and so x1 = yT(x1).
Since ¢ is injective "1 = 1. Since G’ is uniquely g-divisible, x’ = 1 and x = y.

Next, assume that G’ and G are uniquely g-divisible. The g power map of
G" is surjective since the g™ power map of G is surjective. Suppose that
¥ (x)7 = ¥ (y)1. Then x9 = i(z)y? for some z € ((G'). Since G’ is uniquely
g-divisible, z = w1 for some w. By centrality, x9 = ((w)?y1 = (¢(w)y)?. Since
G is uniquely g-divisible, x = ¢(w)y and thus ¥ (x) = ¥ (y).

Finally, assume that G and G” are uniquely g-divisible. The ¢! power map
of G’ is injective since the g™ power map of G is injective. Let x € G'. In G,
t(x) = y1 for some y, hence ¥ (y)? = 1. This implies that ¢(y) = 1 and thus
y = ((2) for some z € G/, and 29 = x since ((29) = ((x). O

It is convenient to use this result in conjunction with the following obser-
vation. Let Z(G) denote the center of a group G. Of course, Z(G) is nontrivial
if G is nilpotent.
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LEMMA 5.4.5. IfGisa uniquely g-divisible nilpotent group, then Z(G) is a uniquely
q-divisible abelian group.

PROOF. The g™ power operation on Z(G) is injective because that is true in
G.If z € Z(G), then z = y7 for a unique y € G. Forany g € G,

z=y1=g""ylg = (g7 'yg)

and therefore y = g~'yg, so that y € Z(G). Thus the g™ power operation on
Z(G) is also surjective. O

Using these results, we can generalize our alternative descriptions of what
it means for an abelian group to be T-local to the nilpotent case.

LEMMA 5.4.6. Let G be a nilpotent group. Then G is T-local if and only if G is
Zt-nilpotent.

PROOF. We prove both implications by induction on the nilpotency class of
G, starting with the abelian case.

Suppose first that G is T-local. By the previous lemma, Z(G) is a nonzero
T-local abelian group (and thus a Zr-module). Applying Lemma 5.4.4 to the
central extension

1— Z(G) — G — G/Z(G) — 1,

we conclude that G/Z(G) is T-local. By the induction hypothesis, this im-
plies that G/Z(G) is Zr-nilpotent. Therefore, by Lemma 3.1.3, G is also
Zr-nilpotent.

Conversely, suppose that G is Zr-nilpotent with a Zr-central series

1=G4CGp1C---CG1CG=G

of minimallength. Then G4 is centralin G, and G; 1 and G/G41 are T-local
by the induction hypothesis. Therefore, by Lemma 5.4.4, G is also T-local. O

This allows us to generalize Propositions 5.2.5 and 5.2.7 to nilpotent groups.

PROPOSITION 5.4.7. Anilpotentgroup G is T-localifand only ifthe space K(G, 1)
is T-local.

PROOF. If Gis T-local and thus Zr-nilpotent, then Theorem 3.5.4 constructs
K(G, 1) as a Postnikov Zr-tower and thus as a T-local space. Conversely, if
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K(G, 1) is T-local, then it is equivalent to its cocellular localization, which is a
Zt-tower and thus displays G as a Zr-nilpotent group on passage to ;. O

PROPOSITION 5.4.8. A homomorphism ¢: G —> H between nilpotent groups
is an algebraic localization at T if and only if the map, unique up to homotopy,

¢: K(G,1) — K(H, 1)

that realizes ¢ on 71 is a topological localization at T

PROOF. If ¢: K(G,1) — K(H, 1) is a localization, then specialization of its
universal property to target spaces Z = K(J, 1) and passage to fundamental
groups shows that ¢: G —> H satisfies the universal property required of an
algebraic localization at T. For the converse, we know by the proof of Theo-
rem 5.3.2 that K(G, 1) has a topological localization K(Gt,1). If : G — H
is an algebraic localization at T, then H must be isomorphic to Gr, since both
are algebraic localizations, and therefore K(H, 1) must also be a topological
localization of K(G, 1). O

In the course of proving that localizations exist, we implicitly proved the
following homological result, which generalizes Corollary 5.1.4.

PROPOSITION 54.9. If¢p: G —> Gr is the localization of a nilpotent group G,
then ¢..: Hy(G; Z1) —> Hy(GT; ZT) is an isomorphism and therefore

¢*: H*(Gt; B) — H*(G; B)
is an isomorphism for all T-local abelian groups B.

The exactness of localization also generalizes from abelian to nilpotent
groups.

PROPOSITION 54.10. If 1 — G’ — G —> G” —> 1 is an exact sequence
of nilpotent groups, then
1—>G/T—>GT—>G/%—>1
is an exact sequence.
PROOF. The given exact sequence implies that the homotopy fiber of the

evident map K(G,1) — K(G”,1) is a K(G/,1). Using a given central series
for K(G, 1) and the quotient central series for K(G”,1), the arguments of
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the previous section show that we can construct K(G, 1) — K(G”, 1) as the
projection of a tower onto a quotient tower. As in Proposition 5.3.4, we can
then choose localizations such that K(Gr,1) — K(G%, 1) is also a projec-
tion onto a quotient tower and the induced map on fibers is a localization
K(G',1) — K(G-,1). This gives us a fibration

K{( /T’ 1) — K(Gr,1) — K{( /%, 1).
Its long exact sequence of homotopy groups reduces to the claimed short exact

sequence. (]

This implies the promised generalization of Lemma 5.4.4 to non-central
extensions.

COROLLARY 54.11. Let

1 G G G” 1
1 H’ H H” 1

be a commutative diagram of nilpotent groups with exact rows. If any two of G, G,
and G” are T-nilpotent, then so is the third. If any two of the vertical arrows are
localizations at T, then so is the third.

PROOF. Firstletthe bottom row be the localization of the top row. If two of G/,
G, and G” are T-nilpotent, then two of the vertical arrows are isomorphisms,
hence the third vertical arrow is also an isomorphism by the five lemma.
Therefore the third group is T-nilpotent. Returning to the general diagram
and taking two of its vertical arrows to be localizations at T, we have just
shown that the bottom row is an exact sequence of T-local groups. Therefore
the map from the top exact sequence to the bottom exact sequence factors
through the localization at T of the top sequence. Two of the resulting new
vertical arrows are isomorphisms, hence so is the third, and therefore the third
vertical arrow of the original diagram is a localization at T. O

5.5. Algebraic properties of localizations of nilpotent groups

We have constructed localizations of nilpotent groups topologically. While
that gives the most efficient exposition, it obscures elementwise algebraic
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properties. We here describe some results that give a better algebraic under-
standing of localizations of nilpotent groups and of maps between them,
focusing primarily on just what we shall need later and proving only those
results that play an essential role. Considerably more information appears in
both the topological and algebraic literature; see for example [60, 62, 141]. It
is convenient to introduce the following notation.

DEFINITION 55.1. A T’-number is a product of primes not in T. An ele-
ment g of a group G is T’-torsion if g" =1 for some T’-number r; G is
a T’'-torsion group if all of its elements are T’-torsion. A homomorphism
a:G— His

(i) a T-monomorphism if its kernel is a T’-torsion subgroup;
(ii) a T-epimorphism if for each element h € H, there is an element g € G
and a T'-number r such that h = «(g)"; this implies that the cokernel of
o is a T'-torsion group; and
(iii) a T-isomorphism if it is a T-monomorphism and a T-epimorphism.

Observe that the proof of Theorem 5.3.2 shows that the nilpotency class of
Gr is at most the nilpotency class of G.

PROPOSITION 55.2. Let G be a nilpotent group and let ¢p: G —> Gr be its
localization at T.

(i) ¢ is a T-monomorphism; its kernel is the set of all T'-torsion elements of G,
hence this set is a normal subgroup of G.
(ii) ¢ is a T-epimorphism; that is, for every element h € Gr, there is an element
g € G and a T'-number r such that h" = ¢(g).
(iii) Every element of G is T'-torsion if and only if Gr = 1.

PROOF. The proofis by induction on the nilpotency class of G. We first show
(i) and (ii) for abelian groups and then deduce them for nilpotent groups.
For an abelian group A, ¢: A — Ar is part of the exact sequence

0 —> Tor (A, Z1/Z) —> A 2> Ar—>A® (Z1/Z) —> 0
that arises from the short exact sequence

0—Z— Zt — Z7]7Z — O.
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All elements of Zt/Z are T'-torsion, so the cokernel A® Z1/Z and kernel
Tor(A, Z1/Z) of ¢ are T’-torsion. The conclusion follows easily.
For a nilpotent group G, there is a central series

1=G;CGg-1C---C G CGy=0G.

Since localization is exact, we have a commutative diagram with exact rows

1 Gy G G/Gg —— 1
S CE ¢
1 —— (Gt Gr (G/Gi)T —— 1.

By induction, we may assume that the conclusion holds for G; and G/G;.
From here, the proof is diagram chasing reminiscent of the proof of the five
lemma and of Lemma 5.4.4 above. We leave the details as an exercise for the
reader.

For (iii), if Gr =1, then all elements of G are in the kernel of ¢ and G
is a T’-torsion group by (i). For the converse, let h € Gr. By (ii), there is an
elementg € G and a T’-number r such that h" = ¢(g). Since G is a T’-torsion
group, there is also a T’-number s such that g* = 1. Then h"™ = ¢(g°) = 1,
hence h = 1 by Remark 5.4.2. O

COROLLARY 553. Letaw: G —> H be a homomorphism from a nilpotent group
G to a T-local group H. Then « is a localization at T if and only if it is a
T -isomorphism.

PROOF. The forward implication is given by parts (i) and (ii) of Proposi-
tion 5.5.2, and the converse follows from (iii), which shows that the locali-
zations at T of the kernel and cokernel of « are trivial. O

With a little more work, one can prove the following more general result.

PROPOSITION 554. Letar: G —> H bea homorphism between nilpotent groups
and let ar: G —> Hr be its localization.

(i) ar is a monomorphism if and only if a is a T-monomorphism.
(ii) o is an epimorphism if and only if o is a T-epimorphism.
(iii) o is an isomorphism if and only if  is a T-isomorphism.
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SKETCH PROOF. One would like to say that since localization is exact, the
sequence

1 —> (kera)r — Gy —> Hr —> (cokera)r —> 1

is exact, so that the conclusions follow from Proposition 5.5.2(iii). However, in
our non-abelian situation, we must take into account that the two implicit short
exact sequences do not splice, since the image of « is not a normal subgroup
of H. Part (i) works naively but part (ii) needs more a little more work to
show how the notion of T-epimorphism circumvents this problem. Details
are given in [60, Cor. 6.4]. The key element of the proof is the following group
theoretic observation, which is [60, Thm. 6.1]. We shall have another use for it
shortly. O

Recall that the lower central series of G is defined by I''(G) = G and,
inductively, [V+1(G) = [G, TY(G)].

LEMMA 55.5. Let g and h be elements of a group G. If h1 = 1, then
€h)? =g7 mod IV (G).

Therefore, if G is nilpotent of nilpotency class c, then (gh)? = g¥.

The following observations will play a role in proving the fracture theorems
for localization. Recall that localization commutes with finite products. It does
not commute with infinite products in general, but we have the following
observation.

LEMMA 55.6. If G; is a T-local group for all elements of an indexing set I, then
[Tic; Gi is T-local.

PROOF. A group G is T-local if and only if the g"-power function G — G
is a bijection for all g not in T. A product of bijections is a bijection. O

LEMMA 55.7. Localization at T commutes with pullbacks.

PROOF. Let Gand H be the pullbacks displayed in the following commutative
diagram, where y is obtained by the universal property of pullbacks.
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N

H — Kr

|

J L

NN

Jr ————— It

G —— K

N

The claim is that y is a localization of G at T. When J, K, and L are abelian, G
is the kernel of the difference map | x K — H and the conclusion follows by
the exactness of localization. A different proof applies in general. For a prime
q ¢ T, the g power function on H C Jr x Kr is a bijection since (x,y) € H if
and only if (x4, y7) € H. Therefore H is T-local. We now use Corollary 5.5.3.
Let (j, k) € G. If y(j, k) = 1, then ¢(j) = 1 € J7 and ¢(k) = 1 € Kr, hence
j" =1and k* =1 for T'-numbers r and s. Therefore (j, k)" = 1. This implies
that the kernel of y is the T’-torsion subgroup of G, so that y is a T-mono-
morphism. If (x,y) € H, we must have x9 = ¢(j') € JT and y" = ¢(k') € Kr
for some j' € J, k' € K and T’-numbers q and r. Let s=gqr, j = (j))", and
k= (K)4. Then x° = ¢(j) and y* = ¢(k). Let m and n denote the images of j
and kin L. These may not be equal, but £ = m~'n maps to 1in L, hence there
is a T’-number u such that ¢* = 1. Of course, n = m{. Lemma 5.5.5 shows
that n* = m", where ¢ is the nilpotency class of L. Therefore (j*, k%) is in
G and y maps it to (x,y)™ in H. This proves that y is a T-epimorphism. [

We round out our discussion with some discussion of the behavior of local-
ization with respect to various central series of a nilpotent group G. We first
record a direct consequence of our cocellular construction of localizations.
PROPOSITION 5.5.8. For any central series

(}=GyCcGg1C---CGo=6G
of G, the localization ¢ : G —> G passes to subquotients to give localizations
Gj/Gjt1 — (Gj/Gjta)1, G —> (Gj)r and G/Gj —> (G/Gj)T

forl<j.
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This should make the following pair of results not too surprising. For
complete proofs, see [60, Thms. 5.6, 5.9]. Note that the lower central series
is functorial in G. Using that together with the two out of three result in
Corollary 5.4.11, we obtain an inductive proof of the following result.

PROPOSITION 55.9. The localization ¢: G —> Gr at T passes to subquotients

to give localizations
V(G) — [V(Gr) and G/I¥(G) — Gr/I¥(Gr)

forl<j.

Recall that the upper central series of G is defined inductively by letting
Zy(G) = 1, letting Z;(G) be the center of G, and letting Z;, 1(G)/Z;(G) be the
center of G/Z;(G). Note that since the center is not functorial, neither is the
upper central series. Proposition 4.5.9 gives the starting point for the follow-
ing result, and we shall prove part of it in Lemma 5.6.6 below.

PROPOSITION 5.5.10. If H is T-local, then so is Z;(H) forj > 1. The localization
¢: G —> Gr restricts to maps Z;(G) to Z;(Gr) and, if G is finitely generated, these
restrictions are localizations for 1 < j.

5.6. Finitely generated T-local groups

It is often necessary to restrict attention to finitely generated modules over
the principal ideal domain Zr, and we need the appropriate notion of finite
generation for T-local groups. Although the ideas are clear enough, we have
not found a treatment adequate for our purposes in either the algebraic or
the topological literature. We prove what we need in this section, leaving some
details to the algebraic literature. Our purpose is to say just enough to lay
the groundwork for the later fracture theorems.

Recall that an f Zr-nilpotent group G is one that admits a Zr-central series
whose subquotients are finitely generated Zr-modules. It is immediate from
our cocellular construction of localizations that Gt is fZr-nilpotent if G is
f-nilpotent. We gave several equivalent conditions for a group to be f -nilpotent
in Proposition 4.5.9, and we shall prove a T-local analogue of that result. We
shall use it to characterize f Zr-nilpotent spaces in Theorem 6.1.4, in analogy
with our characterization of f-nilpotent spaces in Theorem 4.5.2.

Remember that we require T-local groups to be nilpotent and not just
uniquely g-divisible for primes notin T. We shall need the following definition.
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DEFINITION 56.1. For a subgroup H of a group G, define H to be the set
of elements g € G such thatg" € H for some T’-number r.!

The following result is due to Warfield [141, Thm. 3.25]; we shall not repeat
its proof.

LEMMA 5.6.2. Forany subgroup H of a nilpotent group G, the set H% is a subgroup

of G.

For a subgroup H of a T-local group G, H% can be characterized as the
smallest T-local subgroup of G that contains H. By Proposition 5.5.2, if
¢: G —> Grisalocalization of G, then Gt = ¢(G)$. We adopt the following
terminology.

DEFINITION 5.63. If H is the subgroup of a nilpotent group G generated by
a set S, then we call H % the subgroup of G T-generated by S. We say that G is
T-generated by Sif G = H % . We say that G is finitely T-generated if it has a
finite set of T-generators.

By an easy clearing of denominators argument, a finitely generated
Zr-module is a finitely T-generated abelian group. The following analogue
of Proposition 4.5.9 admits a similar proof. However, since the details are not
obvious and the result is not in the literature, we shall give the proof. We will
need the following notion.

DEFINITION 5.6.4. Agroup Gis T-supersolvable ifit has a finite normal series
of subgroups that are uniquely g-divisible for q ¢ T and whose successive
subquotients are cyclic Zr-modules.

PROPOSITION 5.6.5. Let G be a T-local group. Then the following statements are
equivalent.

(i) G isfZr-nilpotent.
(ii) G/(IG, G1%) is finitely T-generated.
(iii) G is finitely T-generated.
(iv) Every T-local subgroup of G is finitely T-generated.

1. In[78, 141], H.? is called the T"-isolator of H, where T’ is the set of primes notin T.
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PROOF. Write G’ = [G, G]$. Itis easily checked that G’ is a normal subgroup
of G, and we let 7: G —> G/G’ be the quotient homomorphism. Certainly
(i) implies (ii). Assume (ii). To prove (iii), choose a finite set S of elements h;
of G such that the elements 7 (h;) T-generate G/G/, let H be the subgroup of
G generated by S and let HS > H be the subgroup of G T-generated by S.
The restriction of 7 to H % is an epimorphism. Indeed, if k € G/G’, then there
is a T’-number r such that k" is in the subgroup generated by the 7 (h;), say
k" = 7 (h)forh € H. Since Gis T-local, thereisauniquej € Gsuchthatj” = h,
and then 7 (j) = k since 7 (j)" = k'. It follows exactly as in the proof of Propo-
sition 4.5.9 that G = G’HE. By Lemma 5.6.7 below, this implies that HS = G.

The proof that (iii) implies (iv) is a modification of the proof in [56,
Thm. 10.2.4] of the corresponding implication of Proposition 4.5.9. It pro-
ceeds in two steps. First, by Lemma 5.6.8 below, if G is finitely T-generated,
then G is T-supersolvable. Second, by Lemma 5.6.9 below, every T-local sub-
group of a T-supersolvable group is T-supersolvable and therefore T-finitely
generated. Finally, if (iv) holds, then the center Z(G) is T-local by Lemma 5.4.5
and is therefore finitely T-generated. Since G is finitely T-generated, so is
G/Z(G). By induction on the nilpotency class, we may assume that G/Z(G) is
fZr-nilpotent. Therefore G is f Zr-nilpotent. O

We must prove the lemmas quoted in the proofjust given. We use the upper
central series, and we usually abbreviate Z;(G) to Z;. Itis standard group theory
that Z;, = G if and only if G is nilpotent of nilpotency class g. The following
observation is false for the lower central series since [G, G] need not be T-local
when G is T-local.

LEMMA 5.66. If G is nilpotent, then G is Zr-nilpotent if and only if each Z; is
Z-nilpotent or, equivalently, each Z;/Z;_1 is a T-local abelian group.

PROOF. By induction on the nilpotency class of G, this is immediate from
Lemmas 5.4.4 and 5.4.5. To see this, it helps to observe that

Z_1(G/Z1(G)) = Z(G)/ Z1(G). O

LEMMA 5.6.7. Let G be T-local and suppose that G = [G, G]%], where | C G is
T-local. Then | = G.

PROOF. Let Jo = J and J;11 = Z;,1J;- Then J; is a normal subgroup of J; ;.
Indeed, for z € Z;y and g € G [2,g] = zgz'g~! is in Z;. When g € J;, this
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gives that zgz ! = [z, glgisin Z;J; = J;, the last equality holding since J; D Z;.
Suppose that | is a proper subgroup of G. Since Z,, = G for some m, there
is an i such that J;;; = G but J; # G. The quotient G/J; is a T-local abelian
group, since itis isomorphicto Z;1/J; N Z; 1, and it follows that J; O [G, G]g.
Therefore

G=IG,GIf] C G, Gl =];

which is a contradiction. O
LEMMA 5.6.8. A finitely T-generated T-local group G is T -supersolvable.

PROOF. Let H be the subgroup generated (in the usual sense) by a finite
set of T-generators, so that G = H]G- . Since G is nilpotent, so is H, by
Lemma 3.1.3. By Proposition 4.5.9, Z(H) is finitely generated. We claim that
Z(G)=ZH )g and is therefore finitely T-generated. To see this, let z € Z(H)
andg € G. Thereisa T'-number r such thatg” € H, and then g = zgz~! since
g  =2g"271 = (zgz7!)". This shows that Z(H) C Z(G), and therefore
Z(H) = Z(G) N H. It follows that

Z(H)$ = (Z(G)NH)$ = Z(G)$NHE = Z(G)N G = Z(G).

The second equality holds since it is easily checked that (J N H)$ = J¢ N HS
for any pair of subgroups of a T-local group, and the third equality holds by
Lemma 5.4.5. Now Z(G) is a finitely generated Zr-module and is thus a finite
direct sum of cyclic Zr-modules, so Z(G) is obviously T-supersolvable. We may
assume by induction on the nilpotency class that G/Z(G) is T-supersolvable,
and it follows that G is T-supersolvable. O

LEMMA 5.6.9. Let G be a T-supersolvable group. Then G is finitely T-generated. If
H is a subgroup that is uniquely q-divisible for q ¢ T, then H is T-supersolvable.
If H is also normal in G, then G/H is T-supersolvable.

PROOF. Consider a finite normal series
(}=Gn,CGyu1C---CGy=G

such that the G; are uniquely g-divisible for q ¢ T and the G;,1/G; are cyclic
Zt-modules. Inductively, G1 is T-generated by m — 1 elements, and these
elements together with an element that projects to a Zr-generator of G/G;
T-generate G. The intersections HN G; give a similar normal series for H
and, if H is normal, the images of the G; in G/H give a similar normal series



110/ LOCALIZATIONS OF NILPOTENT GROUPS AND SPACES

for G/H. The essential point is just that submodules and quotient modules of

cyclic Zr-modules are cyclic. O

REMARK 5.6.10. The algebra of T-local and especially finitely T-generated
T-local groups deserves more algebraic study than it has yet received. For
just one example of a further result that seems not to be in the literature, one
can prove by the methods of [78, §67] that the normalizer of a T-local subgroup
of a T-local group is again T-local.



6

CHARACTERIZATIONS AND PROPERTIES
OF LOCALIZATIONS

We give several characterizations of localizations in §6.1, and we use these to
study the homotopical behavior of localization with respect to standard con-
structions on based spaces in §§6.2-6.4. Here §6.2 deals with limits and fibra-
tions, §6.3 deals with function spaces, and §6.4 deals with colimits and cofiber
sequences. The commutation relations in §6.4 lead to a dual cellular construc-
tion of localizations of simply connected spaces, as we explain in §6.5. We
give still other constructions of localizations of H-spaces and co-H-spaces in
§6.6, and we show that localizations preserve such structure. Finally, in §6.7,
we discuss rationalization. In particular, we calculate the rationalizations of
spheres and use the result to give a quick proof of Serre’s theorem about the
finiteness of the homotopy groups of spheres.

6.1. Characterizations of localizations of nilpotent spaces

In order to understand the behavior of various space-level constructions with
respect to localization, we need to show that several alternative conditions on a
map are equivalent to its being a localization. We state two omnibus theorems
for ease of reference and then proceed to their proofs.

THEOREM 6.1.1. The following properties of a nilpotent space Z are equivalent,
and they hold if and only if Z is T -local.

(i) Z is a Zr-nilpotent space.

(it) £*: [Y,Z] — [X, Z] is a bijection for every Zr-equivalence § : X —> Y.
(iii) Each m,Z is a T-local group (nilpotent if n = 1, abelian ifn > 1).
(iv) Each H,(Z;Z) is a T-local abelian group.

THEOREM 6.1.2. For a nilpotent space X, the following properties of a map
¢: X — Y from X to a T-local space Y are equivalent. There exists one and,
up to homotopy, only one such map, namely the localization X — Xr.

111
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(i) ¢*: [Y,Z] — [X, Z] is an isomorphism for all T-local spaces Z.
(it) ¢ is a Zr-equivalence.
(iii) ¢x: X —> .Y is localization at T forn > 1.
(iv) ¢u: Hy(X;Z) —> H,(Y;Z) is localization at T forn > 1.

In Theorem 6.1.1, (ii) is the definition of what it means to be T-local. In
Theorem 6.1.2, (ii) is the definition of what it means for ¢ to be a localization
at T, and we have already proven the existence and uniqueness of such a local-
ization. Thus in both results, it suffices to prove the equivalence of (ii) with
the remaining properties. It is noteworthy in all three results that the actions
of fundamental groups on higher homotopy groups are not mentioned. In
particular, the implication (ili) = (i) in Theorem 6.1.1 shows that if the
groups 7, Z are T-local, then 71 Z must act Zr-nilpotently on them. We com-
ment on the meaning of (iv), which will have no analogue in the case of
completions, and interpolate an important variant of Theorem 6.1.1 before
proceeding to the proofs.

REMARK 6.1.3. Since Zr is Z-flat, Tor (A, ZT) = 0 for all abelian groups A and
the universal coefficient theorem gives an isomorphism

a: Hy(X;Z) @ Zy —> Hy(X; Z7).
Moreover, under this isomorphism the canonical map
B: Hy(X;7Z) — H(X;ZT)

induced by Z — Zr coincides with the localization homomorphism. There-
fore (iv) in Theorem 6.1.1 is equivalent to the assertion that 8 is an isomor-
phism when X is T-local. By the naturality of & and 8 applied to the map ¢,
this implies that (iv) in Theorem 6.1.2 is equivalent to the assertion that

by Ho(X; Z1) —> Hy(XT;ZT)

is an isomorphism.

THEOREM 6.1.4. The following properties of a nilpotent space Z are equivalent.

(i) Z is an f Zr-nilpotent space.
(it) Each my(Z) is a finitely T-generated T-local group.
(iii) H;(Z;Z) is a finitely generated Z-module for each i > 1.

REMARK 6.1.5. We shall develop a theory of “T-CW complexes” in §6.5, but
only for simply connected T-local spaces. With that theory in place, we can
prove as in Theorem 4.5.2 that a simply connected space is f Zr-nilpotent if and
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only if it has the weak homotopy type of a T-CW complex with finite skeleta.
We say that a space weakly equivalent to such a space is simply connected of
finite T-type.

PROOF OF THEOREM 6.1.1. We proceed step by step.

(i) = (ii). Since a Zr-nilpotent space is weakly equivalent to a Postnikov
Zr-tower, this is a special case of Theorem 5.3.1.

(i) = (i). Since Z is T-local, its localization ¢: Z —> Zr must be a weak
equivalence, by the uniqueness of localizations. By our cocellular construction,
Zr is a Postnikov Zr-tower and is therefore Zr-nilpotent.

(i) = (iii). If Z is Zr-nilpotent, then 7, Z is a Zr-nilpotent 71 Z-group for
n > landisthus T-local by Lemma 5.4.6if n = 1 and by Lemma 5.1.1ifn > 1.

(iii) = (i). We can prove this algebraically or topologically. Algebraically,
since each 7, Z is T-local, 71 Z is a Zr-nilpotent 71 Z-group by Lemma 5.4.6
and 7,Z for n > 1 is a Zr-nilpotent 71 Z-group by Lemmas 4.1.1 and 4.1.2.
Topologically, since Z is nilpotent, it has a cocellular localization ¢: Z— Zr
in which Zr is Zr-nilpotent. By (iii) of Theorem 6.1.2, proven below,
¢x: TnZ —> mw,Zr islocalization at T and is thus an isomorphism. Therefore
¢ is a weak equivalence and Z is Zr-nilpotent.

(i) = (iv). When Z = K(B,n) for a Zr-module B, (iv) holds by Theo-
rem 5.2.8. For the general case, we may assume that Z is a Postnikov Z-tower
Z = lim Z;, where Z; 1 is the fiber of amap k;: Z; — K(B;,n; + 1) and B; is
a Zr-module. Using the form of (iv) given in Remark 6.1.3, the map from the
Serre spectral sequence

Hy(Zi; Ho(K(Bi, 1) 2)) => Hpagq(Zis1: )
to the Serre spectral sequence
Hp(Zi; Hy(K(Bi, mi); Z1)) = Hp+q(Ziv1; Z1)
shows that (iv) for Z; implies (iv) for Z; ;. On passage to limits, we see by
Proposition 2.5.9 that (iv) holds for Z.
(iv) = (i). We have the localization ¢: Z — Z. We shall shortly prove
the implication (ii) = (iv) in Theorem 6.1.2, and this gives that

bw: Ho(Z;Z) — Hy(Z1;7)
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is localization at T. By our assumption (iv), the domain here is T-local,
so that this localization is an isomorphism. Since Z and Zr are nilpotent
spaces, ¢ is a weak equivalence by Theorem 3.3.8 and therefore Z, like Z7, is
Zr-nilpotent. O

PROOF OF THEOREM 6.1.4. Proposition 4.5.9 implies that (i) and (ii) are
equivalent. One can see that (i) implies (iii) by inductive use of the Serre spec-
tral sequences of the stages in a Postnikov tower of X. Changing the ground
ring from Z to Zr, the proof that (iii) implies (ii) is the same as the proof that
(iv) implies (iii) in Theorem 4.5.2. O

PROOF OF THEOREM 6.1.2. Again, we proceed step by step.

(i) = (i). Since T-local spaces are weakly equivalent to Postnikov T-towers,
this is a special case of Theorem 5.3.1.

(i) = (ii). Since K(B,n) is T-local for a Zr-module B, this implication is
immediate from the representability of cohomology.

(i) = (iii) and (iv). By the uniqueness of localizations, it is enough to
prove that our cocellular localization ¢: X — Xr satisfies (iii) and (iv).
Thus we assume that X is a Postnikov tower lim X; constructed from maps
k;: X; — K(A;, n; + 1), where A; is an abelian group, n;,1 > n; > 1, and only
finitely many n; = n for each n > 1. Construct Xt by Theorem 5.3.2. On pas-
sage to homotopy groups, the map of fibrations constructed in the proof of
Theorem 5.3.2 gives a map of short exact sequences

1 A T Xip) ——— T Xy ——> 1

J{ ¢ \L ¢i+l* \L Pix

1 —— (A)r —— ml(Xis1)1] —— 7 [(Xi) 7] —— 1.

By construction, the groups in the lower sequence are T-local. Since the left
and right vertical arrows are localizations at T, so is the middle arrow, by
Corollary 5.4.11. Inductively, this proves that (iii) holds. To see that (iv) holds
in the form given in Remark 6.1.3, we just repeat the proof of Theorem 5.3.2
using homology rather than cohomology.

(iv) = (ii). This is an application of the universal coefficient theorem. Let
C be T-local and consider the map of exact sequences
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0 — Ext(H, 1(Xr;Z1),C) — H"(X1;C) —> Hom(H,(Xr;Z7),C) —> 0

| | |

0 —> Ext(H, 1(X;Z1),C) —> H"(X;C) —> Hom(H,(X;Z1),C) —> 0

induced by ¢. By assumption and Remark 6.1.3, the left and right vertical maps
are isomorphisms, hence the middle vertical map is also an isomorphism and
¢ is a Zr-equivalence.

(iii) = (ii). Assuming that ¢,: 7,X —> m,Y is alocalization at T for every
n > 1, we must prove that ¢ is a Zr-equivalence. This is given by Proposi-
tion 5.4.8 when X = K(G, 1) for a nilpotent group G and by Theorem 5.2.8
when X = K(A, n) for an abelian group A.

We first deal with the case when X and Y are simple spaces and then
use universal covers to deal with the general case. Thus suppose that X
and Y are simple. We may assume that they are simple Postnikov tow-
ers and that ¢ is cocellular. Then X =limX; is defined by k-invariants
k+2: X; — K(m;41X,i+2), and similarly for Y. The map ¢ induces maps
of fibration sequences.

K(mi1X,141) Xit1 X;
K(mit1Y,i+1) Vit Y;

Let B be a Zr-module. We have Serre spectral sequences of the form
ED = HP(X;; HU(K (31X, 1+ 1); B)) => HP™(X,,q; B)

and similarly for the Y;. Since the base spaces are simple, the local sys-
tems are trivial. By induction and the case of Eilenberg-Mac Lane spaces, the
induced map of E; terms is an isomorphism and therefore so is the map
H*(Y;;1; B) — H*(X;,1; B). Passing to limits, we conclude from Proposi-
tion 2.5.9 that ¢ is a Zr-equivalence. Now consider the general case. We have
a map of fibrations

—_ X — K(mX,l)

L

— > Y —> K(mY,1).

~T <—— X
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The Serre spectral sequence for X has the form
EY? = HP(K(m1X, 1); HY(X; B)) = HPT(X; B)

and similarly for Y. Here the action of the fundamental group of the base space
on the cohomology of the fiber can be nontrivial. By the case of K(G, 1)’s,

¢*: H*(K(m1Y,1); B) — H*(K(m1X, 1); B)

is an isomorphism for all Z7-modules B. By Proposition 4.2.1, H(Y; B) is a
Zr-nilpotent 1 Y-module. By Lemma 4.1.6, this implies that

¢*: H*(m;Y, HP(Y; B)) — H*(m1X, H?(Y; B)

is an isomorphism, where 71X acts on H4(Y; B) through ¢. By the previous
step, ¢*: HY(Y; B) —> HY(X; B) is an isomorphism, and the actions of 71X
are the same on the source and target. Therefore the map

¢*: H*(m1Y, H*(Y; B)) — H*(m X, H*(X; B))

of E, terms is an isomorphism and ¢ is a Zr-equivalence. O

6.2. Localizations of limits and fiber sequences

The characterizations of localizations imply numerous basic commutation
relations between localization and familiar topological constructions. We gave
some such results using the explicit cocellular construction of localizations in
Proposition 5.3.4 and Corollaries 5.3.5 and 5.3.6. Their homotopical versions
can be proven either directly from the characterizations or by approximating
given nilpotent spaces and maps by Postnikov towers and cocellular maps.
The latter approach leads to the following homotopical observation. Recall the
notion of a Zr-map from Definition 4.3.2.

LEMMA 6.2.1. If f: X —> Y is a map between nilpotent spaces, then its localiza-
tion fr: Xr —> Yr isa Zr-map.

PROOF. By Theorem 3.5.4 we may assume that X and Y are Postnikov towers
and that f is a cocellular map. We may then construct ¢x: X — Xr and
¢y: Y — Y7 by Theorem 5.3.2 and construct fr by Theorem 5.3.3, so that
it too is a cocellular map. Since a map of abelian groups between T-local
abelian groups is a map of Zr-modules, by Lemma 4.1.2, the conclusion
follows. O
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REMARK 6.22. Recall Notations 4.5.1 and 4.3.3. There are precise analogues
for f-nilpotent and fZr-nilpotent spaces for all results in this section and
the next. That is, if we start with finitely generated input in any of our results,
then we obtain finitely generated output. On the fundamental group level, this
relies on Proposition 5.6.5.

We first record the homotopical versions of commutation results that we

have already seen cocellularly and then give a stronger result about fibrations.

PROPOSITION 6.23. IfX and Y are nilpotent spaces, then (X x Y)t is naturally
equivalent to X7 x Yr.

PROPOSITION 6.2.4. IfX isnilpotent and Qo (X) denotes the basepoint component
of QX, then (20X)T is naturally equivalent to Qo(XT).

PRoOOF. This is immediate by inspection of homotopy groups. Alternatively,
observe that QoX is equivalent to X, where X is the universal cover of X,
and apply the cocellular version to X. O

We state the following result in terms of homotopy pullbacks, as defined
in Definition 2.2.1, rather than fibrations. The conclusion is that localization
commutes with homotopy pullbacks. This will play a key role in the fracture
theorems for localization.

PROPOSITION 6.25. Letf: X — Aand g: Y —> A be maps between nilpo-
tent spaces, let No(f,g) be the basepoint component of the homotopy pullback
N(f,g), and let fr and gr be localizations of f and g at T.

(i) No(f,g) is nilpotent.

(it) If N(f,g) is connected, then N(fr,gr) is connected.
(i) No(f,g)is T-local if X, Y, and A are T-local.
(iv) No(fr,gr) is a localization at T of No(f, g).

PROOF. Part (i) holds by the case € = 7b of Proposition 4.4.3. For part (ii),
Corollary 2.2.3 shows how to determine connectivity by the tail end of an exact
sequence, and the exactness of localization of nilpotent groups gives the con-
clusion. Since a space is Zr-nilpotent if and only if it is T-local and nilpotent,
we have a choice of proofs for part (iii), depending on whether or not we
want to use the notion of a Zr-map. While the homotopy groups of a homo-
topy pullback are not the pullbacks of the corresponding homotopy groups in
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general, the description given in Corollary 2.2.3, together with Lemma 5.5.7,
implies that the homotopy groups of No(f,g) are T-local. Alternatively, we
can use the case ¢ = 7, of Proposition 4.4.3 to prove directly that N(f, g)
is Zr-nilpotent. Using Corollary 5.4.11, part (iv) follows by comparison of the
long exact sequences of homotopy groups for No(f, g) and No(fr, gr) given in
Corollary 2.2.3. O

THEOREM 626. Let f: X —> Y be a map to a connected space Y such that Y
and all components of X are nilpotent. Let F = Ff. Then each component of F is

nilpotent and there is a homotopy commutative diagram
QY F
Y
v Fr ¢
N
§
Ffr Xt

‘ p fr

QYT Yr

with the following properties.

(i) Themap ¢: Y —> Yr isalocalization at T.

(ii) The maps ¢: X —> Xt and ¢: F —> Fr are the disjoint unions of local-
izations at T of the components of X and F defined using any (compatible)
choices of basepoints in these components.

(iii) The rows are canonical fiber sequences.

(iv) The restriction of ¥ to a map from a component of F to the component of its
image is a localization at T.

(v) The map &: Fr —> Ffr is an equivalence to some of the components of Ffr.

(vi) Fixx € X, lety = f(x) € Y, and assume that the images of

ferm(X,x) — m(Y,y) and fr,: 71(Xr, (%)) — 71(YT, 9(Y))

are normal subgroups. Then

(@) the quotient group 7o (F) is nilpotent;

(b) the quotient group 7o (FfT) is Z-nilpotent; and
(c) Ys: 7o(F) —> o(FfT) is a localization at T.
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PROOF. We may as well replace f by its mapping path fibration. We see
that the fiber F = Ff is nilpotent by Proposition 4.4.1 or 4.4.2. We start the
construction of the diagram with the upper fibration sequence and chosen
localizations ¢ of Y and the components of X and F. By the universal property,
applied one component of X and F at a time, there are maps fr: Xr — Yt
and pr: Fr — Xr, unique up to homotopy, such that fro¢ >~ ¢of and
pro¢ = ¢ op. The map fr then gives rise to the bottom fibration sequence.
Again by Proposition 4.4.1 or 4.4.2, the components of Ffr are nilpotent. More-
over, the groups in (vi) are nilpotent by Lemmas 3.1.3 and 4.3.4. We see that
Ffr and 7o (Fpr) are T-local by Corollary 5.4.11. Let ¢ be any fill-in making
the left and middle squares commute up to homotopy. Then a comparison of
long exact sequences of homotopy groups shows that ¢ : F — Ffr restricts
to localizations of components and the last clause of (vi) holds. By the unique-
ness of localization, there results a componentwise equivalence & such that
Eo¢ >~ ¥, and po& =~ pr by the uniqueness of pr. O

The previous result simplifies when Y is simply connected and therefore
F is connected. In that case, we can ignore the interior of the central square
and parts (v) and (vi), concluding simply that v : F —> Fft is a localization of
FatT.

6.3. Localizations of function spaces

We first record an essentially obvious consequence of the general theory of
localizations. All of our spaces have given basepoints, and we let X, denote
the component of the basepoint of X.

LEMMA 6.3.1. Let X be nilpotent and Y be T-local and nilpotent. Then
¢*: F(Xr, Y), — F(X,Y),
is a weak homotopy equivalence.
PROOF. We state this in terms of weak equivalence since F(X, Y) need not
have the homotopy type of a CW complex even under our standing assumption

that all given spaces have the homotopy types of CW complexes. Since X is
connected,

Ta(F(X, Y)i) = [S", F(X, Y)s] = [X, (2"Y),]
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for n > 0, and similarly with X replaced by Xr. The space (Q"Y), is T-local
since Y is T-local, and the conclusion follows from the universal property of
the localization ¢: X — Xr. O

Our main interest in this section is to use our study of fibrations to examine
the interaction between localization at T and function spaces. The results here
will play a key role in the proofs of the fracture theorems for localization.
Changing notation, we take X to be the target space and K to be the source.
We are interested in finite based CW complexes K, not necessarily nilpotent.
For such K, F(K, X) does have the homotopy type of CW complex, by [103].
Without changing its homotopy type, we can arrange that K has a single
vertex and based attaching maps. By a based CW complex, we mean one of
this sort. We form the function space F(K, X) of based maps K —> X. It has
a canonical basepoint, namely the trivial map, which we denote by *, but we
generally ignore this fact.

THEOREM 63.2. Let X be a nilpotent space and K be a finite based connected CW
complex. Let f € F(K, X), and let F(K, X); denote the component of F(K, X) that
contains . Let K* denote the i-skeleton of K and define [K, X]r to be the set of all
g € [K, X] such that g|K"~1 = f|K" 1 in [K"~1, X], where n is the dimension of
K. Let ¢: X —> Xt be a localization of X at T. Then the following statements
hold.

(i) F(K,X)s is a nilpotent space, F(K,Xr)gor is a Zr-nilpotent space, and
¢x: F(K, X)f —> F(K, XT)gof is a localization of spaces at T.

(ii) [K,X]y is a nilpotent group, [K,Xrlyor is a Zr-nilpotent group, and
¢x: [K, X]lf —> [K, X1]g0of is a localization at T.

PROOF. First consider the case when K is a finite wedge of i-spheres, where
i>1. Here F(K,X)r = F(Vv Si,X)f is a component of a finite product of
copies of Q'X and is thus a simple space. Since F(K, X) is a loop space and
thus a group up to homotopy, its components are all homotopy equivalent.
Therefore 7, (F(K, X)r) = XT(QX) = x7,44(X) forn > 1, and similarly with
X replaced by Xt. Since m,,;(X7) is a localization of m,,;(X), we see that
F(K, XT)gof is T-local and ¢ is a localization of F(K, X)r at T by use of the
homotopical characterizations in Theorems 6.1.1 and 6.1.2. Similarly, (ii)
holds since the skeleton K 1isa point, sothat [K, X Ir =I[K,X]isa finite prod-
uct of copies of r;(X) and [K, Xrlgof = [K, XT]is the corresponding product of
copies of m;(XT).



6.4. LOCALIZATIONS OF COLIMITS AND COFIBER SEQUENCES/ 121

Now assume that (i) holds for K" 1 where K has dimension n with n > 2.
Let K be the cofiber of a wedge of attaching maps j: ] —> K"~! where Jis a
finite wedge of (n — 1)-spheres. Since K can be identified with Cj, the fiber Fj*,
Jj* = F(j,id), is homeomorphic to F(K, X) by Lemma 1.1.6. (Here the fiber Fj*
is defined with respect to the canonical basepoint of F(J, X)). Thus, for any
map f: K — X with restriction e to K" 1 we have a restriction

F(K,X)f — F(K"™!,X)e —> F(J,X)s

to components of a canonical fibration sequence. By the first case and the
induction hypothesis, the components F(K"~1, X), and F(J, X), are nilpotent
with localizations F(K"~!, X1)goe and F(J, Xt)«. Now (i) follows directly from
Theorem 6.2.6(i). Note that we can take ¢ = F(id, ¢) in this specialization of
that result, so that its diagram takes a more canonical form.

To prove (i), it suffices to identify the set [K,X]; with the group
7o(F(K, X),f), and similarly with X replaced by Xr. We have the required
normality conditions since F(J, X), is a loop space, so that its fundamental
group is abelian and the image of the fundamental group of F(K"~1, X), is
necessarily a normal subgroup. By Theorem 6.2.6(ii),

Yt 70(F(K, X),f) —> 7o(F(K, Xt), ¢ of)
is a localization at T for each f € F(K, X), so that these identifications will
imply (ii). Thus consider the exact sequence of pointed sets

m(F(K"L,X),e) 5> 71 (F(J, X).f o)) 4 wo(F(K, X),f) = mo(F(K" 1, X), ¢).

Here [K, X] can be identified with 7o (F (K, X), f), and [K, X]; can be identified
with the kernel of i*. This exact sequence restricts to the sequence

0 — 7o(F(K, X),f) N wo(F(K, X),f) N no(F(K”_l,X),e)

and this identifies 779 (F(K, X), f) with the kernel [K, X]¢ of i*. O

6.4. Localizations of colimits and cofiber sequences

Using the homological characterization of localizations, we obtain analogues
of the results in §6.2 for wedges, suspensions, cofiber sequences, and smash
products. However, in the non-simply connected case, the required preserva-
tion of nilpotency is not automatic. Wedges behave badly, for example. The
wedge S! v S!is not nilpotent since a free group on two generators is not nilpo-
tent, and the wedge S! v S is not nilpotent since 7; does not act nilpotently
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on ;. In the following series of results, appropriate natural maps are obtained
from the universal properties or functoriality of the specified constructions.

PROPOSITION 6.4.1. If X, Y, and X V'Y are nilpotent spaces, then (X V Y)T is
naturally equivalent to X7 Vv Yr.

PROPOSITION 6.4.2. If X is nilpotent, then (XX)r is naturally equivalent to
T (X7).

PROPOSITION 6.4.3. Leti: A—> X beacofibration andf: A — Y bea map,
where A, X, Y, X /A, and X Up Y are nilpotent. If we choose localizations such that
it: AT —> Xt is a cofibration, then X1 Ua, Yt is a localization of X U4 Y.

PROOF. We first note that Cit >~ X7/Ar is a localization of X/A and then
use the long exact sequences of Z-local homology groups of the cofibration
sequences Y — XU Y — X/Aand Yr — X7 Us, YT — Xr/Ar. O

PROPOSITION 6.4.4. Let f: X —> Y be a map such that X, Y, and Cf are
nilpotent and let ¢: X —> Xt and¢: Y —> Yr belocalizations. Then any fill-in
¢ in the map of canonical cofiber sequences

f i b
X Y cf X
|
¢ i ¢ l [ P}
\
Xr Yr Cfr XYr
fr i 4

is a localization of Cf at T.

PROPOSITION 6.4.5. Let X be the colimit of a sequence of cofibrations
X; —> Xj11 between nilpotent spaces and choose localizations (X;)T — (Xi11)T
that are cofibrations. Then colim (X;)T is naturally a localization of X.

PROPOSITION 6.4.6. If X, Y, and X A'Y are nilpotent, then (X A Y)r is natu-
rally equivalent to X7 A Yr.

PROOF. The Kiinneth theorem and the homological characterization of
T-local spaces imply that Xt A Y7 is T-local. The Kiinneth theorem also
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implies that the smash product of localizations is a localization. The universal
property of (X A Y)r gives the conclusion. O

6.5. A cellular construction of localizations

We have constructed localizations of nilpotent spaces at T using a cocellular
method, and we have proven a number of properties of localizations that do not
depend on the particular construction. Other constructions can also be useful.
In this section, we describe a dual cellular construction of the localizations of
simply connected spaces. The construction does not generalize to nilpotent
spaces, butit has redeeming features. For example, it gives rise to local cellular
chain complexes for the computation of T-local homology.

Since we are interested in simply connected spaces, the logical first step in
the construction is to pick a fixed localization for S?. However, it is easier to
start with S'. We can construct a localization ¢: S' — SI. by taking S. to be
K(Z1,1) for some particular construction of this Eilenberg-Mac Lane space;
the map ¢: S' —> S1. is then induced by the inclusion Z — Zt. We gave
an explicit construction in the proof of Theorem 5.1.3.

Now take S? = £ S!and S2 = £(SL). Inductively, define S’ tobe £ S"~! and
define S’ to be ESiT_l. Define ¢: S' —> S to be ©¢. This gives a localization
by Proposition 6.4.2. Similarly, we localize wedges of spheres, pushouts along
attaching maps, and sequential colimits by the evident and natural use of
Propositions 6.4.1, 6.4.3, and 6.4.5. Note that we must start with S? rather
than S! since otherwise taking wedges of spheres loses nilpotency. This is
where the restriction to simply connected spaces enters.

Now recall the definition of _#-complexes from Definition 3.3.3. It spe-
cializes to give _# S?-complexes and ¢ SZT-cell complexes. In both cases, we
can define CW complexes by requiring cells to be attached only to cells of
lower dimension, and then we can arrange that the sequential filtration that
describes when cells are attached coincides with the skeletal filtration; note
that the 1-skeleton of such a CW complex is just the basepoint. We refer to cell
complexes and CW complexes in _# S% as T-cell complexes and T-CW com-
plexes. The following theorem hardly requires proof since it follows directly
from the results of the previous section. However, we give some details to
illustrate the duality with the cocellular construction.

THEOREM 6.5.1. There is a cellular localization functor from the homotopy cate-
gory of 7 S?-cell complexes to the homotopy category of _# S%cell complexes that
takes CW complexes to T-CW complexes.
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PROOF. Describe X € _#S? as in Definition 3.3.3. Thus X is the colimit of a
sequence of cofibrations X;, —> X;4+1 such that Xy = *, X;41 is the pushout
of the cofibration J, — CJ, and a map j,: J, —> X,, where J, is a wedge
of spheres of dimension at least two. When X is a CW complex, we may take
Ju to be a wedge of n-spheres and then X, is the n-skeleton of X. We define
(X1)n inductively, starting with (X7)o = *. Given (Xr)y, consider the following
diagram.
Jn
Jn X Xnt1 ——> Xn

|
¢ \L \L Pn I Pnt1 l ¢
\i

(Jn)r — X1 —— (Xnt1)T —— (ZJu)T
(n)T

The upper row is a cofiber sequence, and (J,)y is the wedge of the localiza-
tions of the wedge summands S? of J,,. There is a map (j)y, unique up to
homotopy, such that the left square commutes up to homotopy by the univer-
sal property of localizations. We define (X,,41)T to be its cofiber and then the
lower row is also a cofiber sequence. There is a fill-in map ¢y, 1 that makes the
middle square commute and the right square commute up to homotopy, by
Lemma 1.2.1. As noted in the previous section, the homological characteriza-
tions of T-local spaces and localizations at T imply that ¢, 1 is a localization
at T and that if X7 is the colimit of the (X,)r, then the map ¢: X — Xr
obtained by passage to colimits is also a localization at T. A quick summary
of the construction is that we can construct (Xt), as (Xu)T. O

In the previous result, we understand the relevant homotopy categories
to be full subcategories of Ho.7, and then the functoriality of the construc-
tion is immediate from the functoriality of localization in general. However,
we can refine this by dualizing the cocellular functoriality of Theorem 5.3.3.
Recall from [93, p. 74] that, for CW complexes X and Y, any map X — Y
is homotopic to a cellular map and any two homotopic cellular maps are cel-
lularly homotopic. The proof works equally well to give precisely the same
conclusion for CW complexes in ¢ S2 or B4 SZT. Therefore, restricting to CW
complexes (which is no restriction on homotopy types), the full subcategories
just mentioned are the same as the categories of CW complexes and cellular
homotopy classes of cellular maps.

In the construction above, if we start with a CW complex X, we obtain
a T-CW complex Xt. If f: X — X' is a cellular map, we can construct
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fr: X1 —> X} to be a cellular map, and it will be unique up to cellular
homotopy.

We can define the cellular chains of a T-CW complex Y in the same way as
for ordinary CW complexes, letting

6.5.2 Cq(Y) = Hy(Y%, YT 15 27)

and letting the differential come from the connecting homomorphism of the
triple (Y4, Y4~1, Y472), asin[93, p. 117]. In positive degrees, we getisomorphic
chainsif wereplace Zby Zr. If Y = Xr is the cellularly constructed localization
of a CW complex X, then

6.5.3 Cq(Xr) = Co(X; Z7).

The cellular chains of T-CW complexes are functorial on cellular maps, and the
isomorphism (6.5.3) is natural with respect to cellular localizations of maps.
We remark parenthetically that when Y is of dimension n, the corresponding
cochains satisfy

6.5.4 CUY;7) = mp—g F(YY/ Y™ K (r, )

for any Zr-module x, as in Exercise 3.3.4.

6.6. Localizations of H-spaces and co-H-spaces

Recall that an H-space, or Hopf space, X is a space together with a product
X x X —> X such thatthe basepoint* € X is atwo-sided unit up to homotopy.
We may assume that the basepointis a strict unit, and we often denote it by e. Of
course, topological monoids and loop spaces provide the canonical examples.
Nonconnected examples are often of interest, but we continue to take X to be
connected. Recall from Corollary 1.4.5 that X is a simple space.

The elementary construction of SlT in the proof of Theorem 5.1.3 used the
product on S!, and we can use the product on any H-space Y to obtain a
precisely similar construction of Yr. Again, we order the primes ¢; notin T
by size and define r; = gy and r; = g} - - - g;, so that Zr is the colimit over i of
the maps r;: Z —> Z. Applied pointwise, the product on Y gives a product
between based maps S" — Y. This product is homotopic to the product
induced by the pinch map S" — S" Vv S", as we leave to the reader to check.
The latter product induces the addition on homotopy groups, hence so does
the former. An H-space is homotopy associative if its product satisfies the
associative law up to homotopy. We do not require this. However, associating
the product in any fixed order, we can define iterated products. In particular,
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restricting such an r-fold product to the image of the diagonal Y — Y’, we
obtain an r™-power map r: Y —> Y. It induces multiplication by r on each
group mu(Y).

PROPOSITION 6.6.1. For an H-space Y, the localization YT can be constructed
th
as the telescope of the sequence of r;"-power maps Y —> Y.

PROOF. Writing Y7 for the telescope, we have 7, (Y1) = colim 7, (Y), where
the colimit is taken with respect to the homomorphisms given by multiplica-
tion by r;, and this colimit is 77, (Y) . The inclusion of the base of the telescope
isamap Y — Yr that induces localization on homotopy groups. O

The following basic result is more important than this construction and
does not depend on it.

PROPOSITION 6.6.2. If Y is an H-space with product u, then Y1 is an H-space
with product wr such that the localization ¢: Y —> Yr is a map of H-spaces.

PROOF. Consider the diagram

m
YXY —— Y

-l

YrxYr —— YT.
ur

The map ¢ x ¢ is a localization of Y x Y at T, by Theorem 6.1.1. By the
universal property, there is a map ur, making the diagram commute up to
homotopy. To see that the basepoint of Y is a homotopy unit for ju1,, consider
the diagram

id
* XY — YXY —— Y

t un
idxe l J{ ) J{ ¢
L

KT
*XYT e YTXYT —_— XTi'

\___//

id
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The identity map of Yr and the map w1t are both localizations of id = .t on
Y, hence they are homotopic, and similarly for the right unit property. O

The converse does not hold. There are many interesting spaces that are not
H-spaces but have localizations that are H-spaces. In fact, in 1960, well before
localizations were constructed in general, Adams [2] observed that S7. is an
H-space for all odd » and all sets T of odd primes. In fact, there is a quite
simple construction of a suitable product.

EXERCISE 6.63. [130, p. 14] . Let n be odd. Give S" ¢ D"*! the basepoint
* = (1,0,...,0). Define f: S" x S"— S" by f(x,y) = y — (2Zx;y;)x. Observe
that f does have image in S" and show that the degrees of the restrictions
S* — S"of f to x = x and y = * are 2 and —1, respectively.

That is, f has bidegree (2, —1). Since 7,(S%) = [S%, S}] =Zr and 1/2 €
Zt, we have a map of degree 1/2 on S%. We also have a map of degree —1.
The required product on S% is the composite

(1/2,-1) fr

Sr{- X S¥—>S?~ X S?—>S?~.

This map has bidegree (1,1), which means that it gives S7 an H-space
structure. Adams observed further that S% is homotopy commutative and
is homotopy associative if 3 ¢ T. These can be checked from the construction.

In contrast, S" itself is an H-space only if n =0, 1, 3, or 7, by Adams’
solution to the Hopf invariant one problem [1]. Here the Lie group S* is not
homotopy commutative and the H-space S” given by the unit Cayley num-
bers is not homotopy associative. There is a large literature on finite T-local
H-spaces, especially when T = {p}. In the simply connected case, finite here
is best understood as meaning homotopy equivalent to a T-CW complex that
has finitely many cells.

The study breaks into two main variants. In one of them, one allows general
finite T-local H-spaces, not necessarily homotopy associative or commutative,
and asks what possible underlying homotopy types they might have. In the
other, one studies finite T-local loop spaces, namely spaces X that are of the
homotopy type of finite T-CW complexes and are also homotopy equivalent
to QBX for some T-local space BX. Such X arise as localizations of finite loop
spaces. One asks, typically, how closely such spaces resemble compact Lie
groups and what limitations the H-space structure forces on the homology
and homotopy groups. The structure theorems for Hopf algebras that we give
later provide a key starting point for answering such questions.
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Although of less interest, it should be observed that Propositions 6.6.1
and 6.6.2 have analogues for co-H-spaces. A co-H-space Z is a space with a
coproduct §: Z — Z Vv Z such that V o § is homotopic to the identity, where
V:Zv Z — Z is the folding map. Suspensions XX with their pinch maps
provide the canonical examples. We can define r copower maps Z — Z by
iterating the coproduct in some fixed order and then applying the r-fold itera-
tion of V. Assuming for simplicity that Z is simply connected, to avoid dealing
with the group 71(Z), we can check that this map too induces multiplication
by r on homotopy groups. From here the proof of the following result is the
same as the proof of Proposition 6.6.1.

PROPOSITION 6.6.4. For a simply connected co-H-space Z, the localization Zt
th
can be constructed as the telescope of the sequence of r;" copower maps Z — Z.

PROPOSITION 6.6.5. IfZ isa simply connected co-H-space with coproduct §, then
Z is a co-H-space with coproduct 81 such that the localization ¢: Z — Zr isa
map of co-H-spaces.

PROOF. Since Z is simply connected, the wedge Z7 Vv Zr is a localization of
Z v Z, and the conclusion follows by use of the universal property. O

6.7. Rationalization and the finiteness of homotopy groups

Localization at the empty set of primes is called rationalization. Logically it
should be denoted Xy, but it is usually denoted Xp. It will play a special role in
the fracture theorems since rationalization X —> X factors up to equivalence
as the composite X —> X7 —> Xj of localization at T and rationalization for
every set of primes T'. Itis also of considerable interest in its own right. We give
a few examples here and return to the rationalization of H-spaces in Chapter 9.

Many results in algebraic topology that preceded the theory of localization
are conveniently proven using the newer theory. We illustrate this with a
proof of a basic theorem of Serre on the finiteness of the homotopy groups of
spheres. Serre proved the result using (Serre) classes of abelian groups [125].
The proof using rationalization is simpler and more illuminating.

THEOREM 6.7.1 (SERRE). Forn > 1, the homotopy groups 4(S") are finite with
the exceptions of w,(S™) = Z for all n and 73,1 (S") = Z & F, for n even, where
F, is finite.
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The fundamental class ¢, € H"*(K(Q, n); Q) is represented by the identity
map of K(Q, n), and we have the following easy calculation.

PROPOSITION 6.7.2. The cohomology algebra H*(K(Q,n); Q) is the exterior
algebra on vy, if n is odd and the polynomial algebra on vy, if n is even.

PROOF. For n =1 and n = 2, this is clear from Theorem 5.2.8 and the fact
that S! = K(Z,1) and CP*® = K(Z, 2). We proceed by induction on n, using
the Serre spectral sequence of the path space fibration

K(Q n) — PK(@Qn+1) — K(@Qn+1).

Here ¢, transgresses (via dy41) to ty4+1. For n even, the Leibnitz rule im-
plies that dn+1(1?,) = qtn+1tgfl, and the spectral sequence is concentrated
on the 0" and (n+1)* columns. For n odd, the Leibnitz rule implies that
dn+1(13 1) = L{f;: and the spectral sequence is concentrated on the 0™ and
n* rows. O

PROOF OF THEOREM 6.7.1. Starting with a representative k: S"— K(Z, n)
for the fundamental class of S" and arguing as in the cocellular construction
of localizations, we obtain a homotopy commutative diagram

k
K(Z,n—1) ——> S™(n) sr K(z,n)

| o)

K@Qn—-1) ——= S*n)y —— S§ —— K(@Q,n)
ko

in which the rows are canonical fiber sequences and the maps ¢ are rationali-
zations.

If nis odd, ko induces an isomorphism in rational cohomology and is there-
fore an equivalence. This implies that all homotopy groups 74(S"), 4 > n, are
in the kernel of rationalization. That is, they are torsion groups. Since they are
finitely generated by Theorem 4.5.4, they are finite.

If n is even, the Serre spectral sequence of ko implies that H*(S"(n)o; Q)
is an exterior algebra on a class tz,—1 of degree 2n — 1 that transgresses to Lﬁ.
Here dZn(LZQn,l) = L,q1+2, the spectral sequence is concentrated on the 0" and
(2n—1)* rows, and ¢, survives to the fundamental class of S§. Therefore
the Hurewicz dimension of $"(n)¢ is 2n — 1, and a map 53"71 —> S™(n) that
represents (,—1 must be an equivalence. Thus the rationalization of the homo-
topy group m4(S"), g >0, is 0 if g #2n—1 and is Q if g = 2n— 1. Since
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7on—1(S™) is a finitely generated abelian group with rationalization Q, it must
be the direct sum of Z and a finite group. O

We point out an implication of the proof just given.

COROLLARY 6.7.3. Considerthe rationalizationko: S§ — K(Q, n) ofthe canon-
ical map k: S* — K(Z, n). If nis odd, ko is an equivalence. If n is even, the fiber
of ko is K(Q,2n —1).

6.8. The vanishing of rational phantom maps

In this brief section, we give an observation that shows, in effect, that phantom
maps are usually invisible to the eyes of rational homotopy theory.

LEMMA 6.8.1. Let X be a connected CW complex with finite skeleta. If Z is f Q-
nilpotent, then

lim' [£X", Z] =0

and
[X,Z] = lim [X", Z]

is a bijection.

PROOF. We claim that each [£X", Z] is an f Q-nilpotent group. The proof is
by induction on n. Note first that if J is a finite wedge of i-spheres, i > 1, then
[Z], Z] is a finite dimensional Q-vector space and [ ], Z] is an fQ-nilpotent
group.

We may assume that X0 = x. Let Jn, n > 1, be a wedge of n-spheres such
that X"+ is the cofiber of a map u,, : J, — X". Then there is an exact sequence

(Zzﬂn)* E) o (Zpn)*
C = [22X",Z] — [, Z] — [zX"T,Z] — [2X"Z] — (2] Z].

By Lemma 1.4.6(v), the image of § is central in [ZX"*1, Z].
Assume inductively that [£X", Z] is an fQ-nilpotent group. By Lemma

*

5.1.2, (2%un)* is a map of Q-vector spaces and (uy)

*

is a Q-map. By
Lemma 4.3.4, im§ = coker(Eszn) is a finite dimensional Q-vector space
and coker § = ker (Eu,)* is an fQ-nilpotent group. Then Lemma 5.1.2 and

the exact sequence

0 — imé8 — [ZX"1, Z] — coker§ — 0
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imply that [£X"*!, Z] is Q-nilpotent. By Proposition 5.6.5, im § and coker §
both have finite sets of J-generators. The images of the (J-generators for im §
and a choice of inverse images of the (J-generators for coker § give a finite set
of #-generators for [ X n+1 Z]. Proposition 5.6.5 then implies that [Z X", Z]
is fQ-nilpotent.

Now the following easy observation, which is trivial in the abelian case,
implies that the sequence [XX", Z] satisfies the Mittag-Leffler condition des-
cribed in Section 2.3, so that the result follows from Theorem 2.3.3(i). O

LEMMA 6.38.2. Any descending chain of f Q-nilpotent groups has finite length.



/

FRACTURE THEOREMS FOR
LOCALIZATION: GROUPS

In Chapter 5, we described how to construct localizations of nilpotent spaces.
In the next chapter, we go in the opposite direction and describe how to start
with local spaces and construct a “global space” and how to reconstruct a given
global space from its localizations. Results such as these are referred to as frac-
ture theorems. In contrast to Chapter 5, where we constructed localizations
of nilpotent groups from localizations of nilpotent spaces, we first prove frac-
ture theorems for abelian and nilpotent groups in this chapter and then use
the results of Chapter 6 to extend the algebraic fracture theorems to nilpotent
spaces in the next.

Although much of this material can be found in [21, 62, 133], there seem
to us to be significant gaps and oversights in the literature, including some
quite misleading incorrect statements, and there is no single place to find a
full account. There are also some ways to proceed that are correct but give less
complete answers; we shall say little about them here. The new concept of a
“formal localization” plays a central role in our exposition, and that concept
leads us (in §7.5) to a new perspective on the “genus” of a nilpotent group,
namely the set of isomorphism classes of nilpotent groups whose localizations
at each prime are isomorphic to those of the given group. In the next chapter,
we will find an analogous perspective on the genus of a nilpotent space.

Throughout this chapter, let I be an indexing set and let T; be a set of
primes, one for each i € I. Let S = (;; T; and T = | J;; T;; it is sensible to
insist that T; N T; = S for i # j and that T; # S for all i, and we assume that
this holds. Thus the T; — S give a partition of the primesin T — S.

We are mainly interested in the case when S is empty and localization at S is
rationalization. We are then starting with a partition of the set of primes in T,
and we are most often interested in the case when T is the set of all primes. For
example, I might be the positive integers and T; might be the set consisting
of just the ith prime number p;. A common situation is when I = {1, 2},

132
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T1 = {p}, and T is the set of all other primes. For example, spaces often look
very different when localized at 2 and when localized away from 2.

Until §7.6, all given groups in this chapter are to be nilpotent. We have
two kinds of results. In one, we start with a T-local group G and ask how
to reconstruct it from its localizations at the T;. We call these global to local
results and treat them in §7.2, after developing perspectives and preliminaries
in §7.1. We give a conceptual proof that works simultaneously for nilpotent
and abelian groups, but in {7.6 we give a general group theoretical result that
allows an alternative proof by induction on the nilpotency class and that will
be needed later to prove the analogous global to local result for completions.

In the other, we are given T;-local groups and ask how to construct a T-local
group from them. We call these local to global results and treat them in §7.4,
after developing the notion of a formal localization in {7.3. In both, we are
concerned with certain basic pullback diagrams, and it turns out that there
are simplifying features when the indexing set I is finite or the given groups
are finitely generated.

As a matter of philosophy or psychology, the global to local and local to
global perspectives should be thought of as two ways of thinking about essen-
tially the same phenomenon. We either start with a global object and try to
reconstruct it up to equivalence from its local pieces or we start with local
pieces and try to construct a global object with equivalent local pieces. These
processes should be inverse to each other. In all cases the global to local results
are actually implied by the local to global results, but for purposes of exposition
we prefer to think of first localizing and then globalizing, rather than the other
way around.

7.1. Global to local pullback diagrams

For nilpotent groups G, and in particular for T-local groups G, we have the
localizations

¢:G— Gs, ¢;: G— Gr,, and ¥i: Gr, — Gg.

Since Gg is T;-local for each i, we can and do choose v; to be the unique homo-
morphism such that y;¢; = ¢ foreachi. Wealsoletgs: [[; Gr, — ([; G1))s
denote a localization at S. We fix these notations throughout this section. We
are headed toward a description of a T-local group G in terms of its local-
izations. We have the following two commutative diagrams, in which ¢s is a
localization at S, P and Q are pullbacks, and « and g are given by the universal
property of pullbacks.
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(¢l
7.1 [lic: GT,

\/
1V

Gs (ITic1 GT)s
(¢i)s
(¢i)
7.1.2 G [lic1 G,
Y /
[ Q ;v
Gs [lic1 Gs

A

Here (¢;) denotes the map with coordinates ¢; and (¢;)s denotes its local-
ization at S. By Lemma 5.5.6, [[; Gs is S-local and we may identify it with
its localization at S. Applying Lemma 5.5.7 to commute pullbacks with locali-
zaton at T and at T, we obtain the following conclusion.

PROPOSITION 7.1.3. The groups P and Q are T-local, and for each k € I local-
ization at Ty, gives pullback diagrams

Pr, —— ([lie; Gr)t, and Qn, —— ([Lic; G1)T,

k
J/ J/ (@s)T, l l (M),

Gs — ([Lic1 GT)s Gs —— [lic1 Gs:
(i)s A

We have a comparison diagram that relates the T-local groups P and Q. If
7;: [1 Gr,— Gr, is the projection, there is a unique map 77;: (][ G1;) ¢—>Gs
such that 7; 0 ¢s = Yy om;. The map (7;): ([[Gr,)s — [; Gs with coor-
dinates 7; is the localization (y;)s of the map (¥;): [[Gr, — [I; Gs.
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P niel Gr,

N

Q Hiel GTi
[ l
Gs (l_[iel Gr))s Iy
Gs [Tic1 Gs
A

Here y is given by the universal property of the pullback Q. It is immediate
fromthe diagram thaty o« = 8. Sincelocalization commutes with finite prod-
ucts, the map (7;) is an isomorphism and the distinction between diagrams
(7.1.1) and (7.1.2) disappears when I is finite.

LEMMA 7.5 If I is finite, the pullback diagrams (7.1.1) and (7.1.2) may be
identified and the map y : P — Q is an isomorphism.

We are interested in determining when « and g are isomorphisms. Since
ya = B, they can both be isomorphisms only if y is an isomorphism. This
can easily happen even when (77;) is not an isomorphism and the pullback
diagrams cannot be identified. Indeed, we have the following observation.

LEMMA 7.1.6. Supposethat (7;): ([ lic; G1,)s — [lic; Gs isa monomorphism.
Then y is an isomorphism, hence o is an isomorphism if and only if B is an
isomorphism.

PROOF. Let g€ Gs and h € [[; Gr,. If (g, h) € P and y (g, h) = (1,1), then
of course the coordinates must be g =1 and h = 1. That is, y is always a
monomorphism. Now suppose that (g, h) € Q. Then g = y;(h) = 7;¢s(h) for
all i. If g denotes the image of g in ([ [; Gr,)s, then we also have g = 7;(g) for
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all i. Since (77;) is a monomorphism, g§ = ¢s(h) and (g, h) € P. Thus y is an
epimorphism. O

Before giving our general results, we record an important elementary
example where the two pullback diagrams do not coincide, but their pullback
groups do.

PROPOSITION 7.1.7. Let T be the i prime p;. If A is a finitely generated abelian
group, then both of the following diagrams are pullbacks.

(#9;) (%pi)

A — > l_[iA(Pi) and A —— nieIA(Pi)
o l \L bo o i \L s
Ay — ([T; Ao Ao —— [li4o

(0p,)s A

However, the difference map
(¢pi)s = do: Ao x [ Ay ——(IT;i Ap)o,
whose kernel in the left diagram is A is an epimorphism, but the difference map
A —TLys;: Ag x [; Apy—=[1; Ao,

whose kernel in the right diagram is also A is only an epimorphism in the trivial

case when A is finite.

PROOF. Since Ais a finite direct sum of cyclic groups, it suffices to prove this
when A = Z/p" for some prime p and when A = Z. The first case is trivial.
We leave the second as an illuminating exercise for the reader. O

In some of the early literature, the focus is on the pullback Q and the
resulting map B: G — Q, but then there are counterexamples that show
that 8 is not always an isomorphism and thus the pullback Q does not always
recover the original group. In fact, thatis usually the case when the indexing set
Iisinfinite. Of course, such counterexamples carry over to topology. Moreover,
even when y: P — Q is an isomorphism, its topological analogue will not
induce an equivalence of homotopy pullbacks in general. The reader who
looks back at Corollary 2.2.3 will see the relevance of the observation about
epimorphisms in the previous result.
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We shall prove in the next section that « is always an isomorphism. The
proof will use the following observation about the detection of isomorphisms.

LEMMA 7.1.8. A homomorphism o: G —> H between T-local groups is an iso-
morphism if and only if at,: G, — Hr, is an isomorphism for all k € I.

PROOF. This is proven by two applications of Proposition 5.5.4. Since a7, is
an isomorphism, « is a Ty-isomorphism. Since T is the union of the Ty, it
follows that « is a T-isomorphism. In turn, this implies that et is an isomor-
phism. Since G and H are T-local, « itself is an isomorphism. O

However, perhaps the most interesting aspect of the proof will be the cen-
tral role played by the following categorical observation about pullbacks. It
applies to any category that has categorical products. Such categories are said
to be cartesian monoidal. Examples include the categories of abelian groups,
groups, spaces, and sets. Less obviously, the homotopy category Ho.7 is an-
other example, even though pullbacks do not generally exist in Ho.7.

LEMMA 7..9. In any cartesian monoidal category, a commutative diagram of the
following form is a pullback.

(id.gf)

A ——— AxC

; l | e

B —— > BxC

(id.g)

PROOF. A proof using elements, if we have them, just observes thatifa € A,
b e B, and c € C satisfy (b,g(b)) = (f(4),¢), then b = f(a) and ¢ = g(f (a))-
However, it is an easy categorical exercise to verify the result directly from the
universal properties that define products and pullbacks (e.g., [93, p. 16]). O

7.2. Global to local: abelian and nilpotent groups

Here, finally, is our main algebraic global to local result.

THEOREM 7.2.1. Let G be a T-local group.

(i) (¢i): G —> [lic; Gty is a monomorphism.
(ii) The following diagram is a pullback.
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(¢3)
G — [liesGr,

d e

Gs —— ([lie; G1))s
(Pi)s

Moreover, every element z € ([];c; GT,)s is a product z = ¢s(x)(¢i)s(y) for
some x € [[;o; Gt, and y € Gs.

(iii) If G is finitely T-generated, the following diagram is also a pullback.

(¢:)
G — [lies Gy,

do |

Gs — [licsGs
A

PROOF.

(i)-

This holds by two applications of Proposition 5.5.2. The group ker (¢;)
is the intersection of the kernels of the localizations ¢;: G — G, and
all elements of ker ¢; are T;-torsion. Since T is the union of the T;, all
elements of the intersection are T’-torsion. Since G is T-local, ker (¢;) is
trivial.

. Let «: G — P be the map given in (7.1.1). We must prove that « is

an isomorphism. Since P is T-local, by Proposition 7.1.3, it suffices to
show that at,: Gy, —> Pr, is an isomorphism for all k € I. Again by
Proposition 7.1.3, P, is the pullback of the localizations at T of the
maps (¢;)s and ¢s. It suffices to show that G, is also the pullback of
these localizations at Ty. To get around the fact that localization does
not commute with infinite products, we think of [[;; Gr, as the product
of the two groups G, and ]—[j#k Gr;. Localization at Ty, commutes with
finite products and is the identity on Tj-local groups, such as Gs. Thus,
after localization at Ty, our maps are

Gr, X ([Tjzr G113
i (Vo)

Gs

Gs x (Hj;ék Gr))s.
(id.(¢y)s)
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We claim that the group H = ( ]_[j#k Gr;)1y is S-local, so that the second
component v, of the right-hand map is the identity. By Lemma 7.1.9,
this will imply that Gr, is the pullback of these two maps and will thus
complete the proof. To prove the claim, let g be a prime that is not in S.
If g is not in Ty, then the g™ power function H — H is a bijection since
H is Ty-local. If g is in Ty, then g is not in any T; with j # k since g is not
inS=T;NTy. The g™ power function is then an isomorphism on each
Gr; and therefore also on H. This proves the claim.

An alternative argument is possible. One can first prove this in the
abelian case by the argument just given and then argue by induction on
the degree of nilpotency of G. The argument is not uninteresting but is
longer. We give a general group theoretical result that specializes to the
required inductive step in Lemma 7.6.2.

We must still prove the last statement in (ii). We show this when
G = A is abelian here. Using the exactness of localization at T; and
S and the fact that a product of exact sequences is exact, the proof
when G is nilpotent is completed by induction up a central series, using
Lemma 7.6.1 below. In the abelian case, let C be the cokernel of the differ-
ence map

(¢i)s — ¢s: As x [[; A,——(]]; Ar)s,

whose kernel is A. It suffices to prove that C = 0. Since Cis a Zr-module,
this holds if the localization of C ateach prime p € T is zero (e.g., [6, Prop.
3.8)). In turn, since p is in some Ty, this holds if the localization of C at
T}, is zero. But we have just shown that after localization at Tj, we obtain
a pullback diagram of the simple form displayed in Lemma 7.1.9, and it
is obvious that the difference map for such a pullback of modules over
any ring is an epimorphism.

In this case we do not have a direct argument that works for general
nilpotent groups. We first use the structure theorem for finitely generated
modules over the PID Zr to prove the result in the abelian case. Here
the result reduces to the case of cyclic T-modules, where the proof is
no more difficult than that of Proposition 7.1.7. A few more details will
be given in the local to global analogue, Proposition 7.4.4 below. The
general case follows by induction on the degree of nilpotency of G, using
that T-local subgroups of finitely T-generated T-local groups are T-local,
by Proposition 5.6.5, and that the center of a T-local group is T-local, by
Lemma 5.4.5.
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The inductive step can be viewed as a specialization of Lemma 7.6.2
below, but special features of the case at hand allow a simpler argument.

Thus let
L P
1 H G K 1

be an exact sequence of finitely T-generated T-local groups and assume
that the conclusion holds for H and K. Letg; € G, and go € Gs be given
such that v;(g;) = go forall i € I. We must show that there is a unique el-
ementg € Gsuch that ¢;(g) = g; for all i and therefore ¢ (g) = ¥;¢;(g) = go-
There is a unique element k € K such that ¢;(k) = p;(g;) for all i, where
p; denotes the localization of p at T;. Choose g’ € G such that p(g’) = k.
Then pi(g)) = ¢ip(g') = pigi(g'), hence g; = ¢i(g')ii(hi) where h; € Hr,
and, again, (; denotes the localization of ¢ at T;. Since v;(g;) = go and
Yid; = ¢, ¥;(h;) is independent of i. Therefore there is a unique element
h € H such that ¢;(h) = h; for all i. Let g = g’¢(h). Then

bi(g) = dilg ) pit(h) = dilg)u(h) = g

for all i. To prove that g is unique, it suffices to show that 1 is the unique
element g € G such that ¢;(g) =1 € Gr, forall i. For suchag, p(g) =1
by the uniqueness in K, so that we can write g = ((h). Then we must

have ¢;(h) = 1 € Hy, for all i, hence h = 1 by the uniqueness in H. 0

REMARK 7.2.2. Theorem 7.2.1(ii) was proven under a finite generation hypo-
thesis in Hilton, Mislin, and Roitberg [62], and Hilton and Mislin later noticed
that the hypothesis can be removed [61]. That fact is not as well-known as it
should be. We learned both it and most of the elegant proof presented here
from Bousfield.

7.3. Local to global pullback diagrams

In §7.2, we started with a T-local group and showed that it was isomorphic to
the pullback of some of its localizations. In the next section, the results go in
the opposite direction. We start with local groups with suitable compatibility,
and we use these to construct a “global” group. Again, all given groups are to
be nilpotent. However, we need some preliminaries since, a priori, we do not
have an analogue of the pullback diagram (7.1.1).

Quite generally, we do have an analogue of the pullback diagram (7.1.2). Let
I be an indexing set and suppose that we are given groups H and G; fori € I
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together with homomorphisms ;: G; — H. We understand the pullback
of the ¥;’s to be the pullback Q displayed in the diagram

(8:)
7.3.1 Q —— [LieGi

H — [l H
A

Now return to the standing assumptions in this chapter, so that we have
an indexing set I together with sets of primes T; fori € I such that T = | T;,
T;(\T;= Sfori #j,and T; # S for i € I. We consider the pullback diagram
(7.3.1) when G; is Tj-local, H is S-local, and y;: G; — H is localization at
S for each i. Since it is a pullback of T-local groups, the group Q is then
T-local. In general, we cannot expect the coordinates & to all be localizations
at k. By comparison with {7.2, we expect to encounter difficulties when the
indexing set I is infinite, and that is indeed the case. However, in view of
Proposition 7.1.7, we also expect these difficulties to diminish under finite
generation hypotheses. That, however, is less true than we might expect.

The diagram (7.1.2) displays the special case of (7.3.1) that we obtain when
we start with a T-local group G and consider its localizations at the T; and S.
As in §7.2, we would like to have a companion pullback diagram

(i)
7.3.2 P —— Jlie; Gi

S

H —— (l_[iel Gi)s,
w

where ¢s is a localization at S. However, since we do not start with a global
group G and its localizations ¢;, as in (7.1.1), we do not, a priori, have a map w.
This suggests the following definition. Observe thatif 7;: [ | G;— G,; is the pro-
jection, then there is a unique map 7; : (|| G;)s—H such that 7; o ¢s = v; o 7},
and (7;) is the localization (y;)s of the map (y;): [[G; — [, H.

DEFINITION 7.3.3. Let G; be a T;-local group and H be an S-local group, and
let ¥;: G; — H be alocalization at S for each i. Let ¢s: [[; G; — ([]; Gi)s
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be a localization at S and let 77;: ([[;c; Gi)s — H be the unique map such
that 77; o ¢s = ¥; o 7r; for all i. A formal localization associated to the ; is a
map w: H — ([[;c; Gi)s such that the composite 7T; o w is the identity map
of H for eachi € I.

The name comes from the fact that when w exists, it turns out that the map
Wi P —> Gjin (7.3.2) is a localization at T;, hence the map v is a localization
at S and w is the localization of (u;) at S. There must be a formal localization
o whenever the maps §;: Q —> Gy in (7.3.1) are localizations at Tj, for all k.
Indeed, the composites ¥, 0§, = £: Q —> H are then localizations at S for
all k. By Theorem 7.2.1(ii), if we define P to be the pullback of ¢s and the
localization w = (8;)s such that w o ¢ = ¢5 0 (3;), then the resulting canonical
mapa: Q —> P that we obtain must be an isomorphism. We conclude thata
general local to global construction that recovers the local groups that we start
with must incorporate the existence of a map w as in (7.3.2).

When we are given a formal localization w, we obtain a comparison diagram
and a comparison map y : P — Q analogous to (7.1.4), but with Gr, and Gg
there replaced by G; and H.

(1)

7.3.4 P [lic1 Gi
\yx \
(8;)
v Q Hie[ G;
R ¢s i
w
H —— | —— ([LGi)s ;v
H HieI H

In view of the following observation, the notion of a formal localization is
only needed when the indexing set I is infinite.

LEMMA 735. Let I be finite. Then (7;) is an isomorphism and the composite
o = (75;) "' o A is the unique formal localization associated to the ¥;: G; —> H,
hence the diagrams (7.3.2) and (7.3.1) are canonically isomorphic.
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7.4. Local to global: abelian and nilpotent groups

With the notations of (7.3.2), here is our main algebraiclocal to global theorem.

THEOREM 7.4.1. Let G; be a T;-local group and H be an S-local group, and let
Vi1 G; —> H be a localization at S for each i € I. If I is finite or, more generally,
if I is infinite and the ; have a formal localization w, then P is T-local and the
induced map fi,: P, —> Gy, is an isomorphism for each k € I.

PROOF. Despite the difference in context, the proof is exactly the same as the
proof of part (ii) of Theorem 7.2.1, with G, and Gg there replaced by G; and
H and with (¢;)s there replaced by w. Thus P is T-local since it is a pullback of
T-local groups, and the maps i}, are isomorphisms since Lemma 7.1.9 applies
to show that Gy agrees with the pullback obtained by localizing the pullback
diagram that defines P at Tj. O

REMARK 7.42. Infact, the globaltolocal result Theorem 7.2.1(ii) can be viewed
as a direct corollary of the local to global result Theorem 7.4.1. To see that, we
apply Theorem 7.4.1 to G, and Gy for a given T-local group G and then use
Lemma 7.1.8 to conclude that «: G — P is an isomorphism.

In many of the applications, the indexing set I is finite and of course it
is then most natural to work directly with Q rather than introduce formal
localizations. In that case, the following addendum is important. Recall the
characterization of fZr-nilpotent groups from Proposition 5.6.5.

PROPOSITION 7.43. Assume in Theorem 7.4.1 that I is finite and G; is
SfZr,-nilpotent. Then Q is f Z-nilpotent.

PROOF. Assume first that G; = A; is abelian. Then A; is a finitely generated
Zt;-module. Multiplying any given generators by scalars to clear denomina-
tors, we can assume that the generators of A; are in the image of the Zr-module
Q. Let Q' C Q be the Zr-submodule generated by pre-images of the gener-
ators of the A; for all i € I. The localization of Q/Q’ at each prime p € T is
zero, hence Q/Q’ = 0 and Q is a finitely generated Zr-module.

The nilpotent case is proven by induction on the least common bound g of
the lower central series
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of the G;. We prove inductively that G is f Zr-nilpotent. It is therefore finitely
T-generated by Proposition 5.6.5. We use the lower central series since it is
functorial, so that the lower central series of each G; maps to the lower central
series

{1}=HqCHq_1C“'CH1CH0=H

of H. We have induced maps of central extensions

1 —— Gi,j/Gi,j+1 — Gi/Gi,j+1 — Gi/Gi,j — 1

| ! |

1 —— Hj/Hy1 —— H/Hjp ——> H/H —— 1,

For each j, we obtain three pullbacks as in (7.3.1), and they assemble to a central
extension of pullbacks by Lemma 7.6.2(ii), whose key epimorphism hypothesis
is satisfied by the abelian case of the last statement of Theorem 7.2.1(ii). O

There is sometimes an analogue of Theorem 7.4.1 for the pullback Q, rather
than the pullback P, even when I is infinite. When this holds, y: P — Q is
an isomorphism. However, the analogous statement for homotopy pullbacks
in topology will fail in general.

PROPOSITION 7.4.4. Let A; be a finitely generated Z,-module and B be a finitely
generated Zs-module, and let ;: A; —> B be a localization at S for each i € I.
Assume that A; has no (T; — S)-torsion for all but finitely many i. Then the induced
map Qr, —> Ay, is an isomorphism for all k € I.

PROOF. We use the structure theory for modules over a PID. Since the A; all
localize to B at S, we find that

A =ZFr,®@C;®D and B=Fré&D

for some finitely generated free abelian group F, some finite (T; — S)-torsion
abelian groups C;, and some finite S-torsion abelian group D. Here all but
finitely many of the C; are zero. Under these isomorphisms, y; is the sum
of a localization Fr; —> Fs at S, the zero homomorphism on Cj, and an
isomorphism D — D. From this, we cannot conclude that

Q=Fro|]CeD.

iel
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However, observing as in the proof of Theorem 7.2.1(iii) that ([ ];.; Aj)1, is
S-local, we can conclude that for each k

QTngTk@Ck®D~ O

REMARK 7.45. In contrast with Proposition 7.4.3, we shall see in the next
section that Q need not be finitely T-generated even when F is free on one
generator and all C; and D are zero.

REMARK 7.4.6. One might conjecture thata generalization of Proposition 7.4.4
would apply when given fZr,-nilpotent groups G; with a common bound
on their nilpotency class. The outline of proof would follow the proof of
Proposition 7.4.3. However, application of Lemma 7.6.2(ii) fails since its key
epimorphism hypothesis usually fails, as noted in Proposition 7.1.7.

7.5. The genus of abelian and nilpotent groups

It is natural to ask how many groups can have isomorphic localizations at
each set of primes T;. In general, this relates to the question of how unique
formal localizations are. This in turn raises the question of how unique the
localizations v;: G; —> H are in the local to global context. For definiteness
and familiarity, we assume that T is the set of all primes, S is the empty set,
and T; is the set consisting of just the i* prime number p;.

A first thoughtless answer is that the y; are unique since the rationaliza-
tion ¥;: G; —> H of a p;-local group G; is unique. But of course it is only
unique up to a universal property, and if one composes y; with an isomor-
phism &: H — H, then the resulting composite ¥/ = &; again satisfies
the universal property. If we have formal localizations associated to the y; and
the wi’ and form the associated pullbacks P and P’, then P and P’ need not be
isomorphic, but they do have isomorphic localizations at each prime p;. This
leads to the following definition.

DEFINITION 7.5.1. Let G be a nilpotent group. The extended genus of G is
the collection of isomorphism types of nilpotent groups G’ such that the local-
izations Gy, and GI’O are isomorphic for all primes p. If G is finitely generated,
then the genus of G is the set of isomorphism classes of finitely generated
nilpotent groups in the extended genus of G.

There is an extensive literature on these algebraic notions, and we shall not
go into detail. Rather, we shall explain how to calculate the extended genus
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under a simplifying hypothesis that holds when G is finitely generated and
serves to eliminate the role of formal localizations. The actual genus can then
be sought inside the extended genus, one method being to exploit partitions
of the set of primes into finite sets and make use of Proposition 7.4.3. This
gives a partial blueprint for the analogous topological theory.

Let Aut (G) denote the group of automorphisms of G. We show that ele-
ments of the extended genus are usually in bijective correspondence with
double cosets

Aut (Go)\ [T; Aut (Go)/ [T; Aut (G;).

Any nilpotent group G is isomorphic to a pullback as displayed in (7.1.1).
Here we start from localizations ¢;: G —> G; of G at p; and rationalizations
¥i: G; = Gg and use the resulting rationalization w = (¢;)o: Go — ([ ; Gi)o,
which is a formal rationalization of Gyg. We can reconstruct a representa-
tive group in each element of the extended genus of G starting from these
fixed groups G; and Gy, using pullbacks as displayed in (7.3.2). However, the
rationalizations v;: G; —> Gy used in the specification of the relevant for-
mal completion w: Go —> ([ [; Gj)o can vary, the variation being given by an
automorphism §; of the rational nilpotent group Go. Similarly, the rational-
ization of [[; G; can vary by an automorphism of the rational nilpotent group
(IT; Gi)o-

To be more precise about this, observe that, up to isomorphism, any two
groups G and G’ in the same extended genus can be represented as pullbacks
P and P’ as displayed in the top triangles of commutative diagrams

P and

NN

w

— ([1iG)o =— [L;G:i Go — ([[;Gi}o =— TI;Gi

D LN
A (¥i) A W)

[1; Go [1; Go.

Here 7; is the unique map ([[; G;)o — Go such that 77; 0 ¢9 = ; o 7r;, and
similarly for 77/. Usually the pullbacks P and P’ of (w,¢o) and (', ¢g) are
not isomorphic. We fix a reference pullback P = G and have the following
result.



75. THE GENUS OF ABELIAN AND NILPOTENT GROUPS/ 147

PROPOSITION 7.5.2. Assume that (77;) is a monomorphism. Then the extended
genus of G is in bijective correspondence with

Aut (Go)\ [T; Aut (Go)/ [T; Aut (Gy).

PROOF. Since (7;) is a monomorphism, w is uniquely determined and, by
Lemma 7.1.6, the canonical map y: P — Q from the pullback P of (w, ¢) to
the pullback Q of (A, (¥;)) is an isomorphism. Since localizations are unique
up to automorphisms of their targets, we see that () is also a monomorphism
and that the analogous canonical map y’: P’ — Q' is also an isomorphism.
Thus the monomorphism hypothesis allows us to ignore formal localizations
and concentrate on pullbacks of diagrams of the form (A, (/))).

The double cosets are defined with respect to A: Gg —> []; Aut(Go) and
the homomorphisms Aut (G;) —> Aut (Go) that send an automorphism ¢; of
G; to the unique automorphism ¢; of Gg such that ¢; o ¥; = v; o ¢;. We empha-
size that this definition refers to the y; of the fixed reference pullback P = Q.

For any rationalizations ¥/: G; —> Gy, there are automorphisms &/ of Go
such that &/ o ¢; = /. Sending the automorphism &’ = (£/) to the isomor-
phism class of the pullback Q' of

A (¥))
Go [1; Go [[;Gi

gives a surjection from the set Aut ([ [; Go) to the extended genus of G. Sup-

pose we have an isomorphism ¢: Q' —> Q” between two such pullbacks
and consider the following diagram, in which the front and back squares are

pullbacks.
7.53 Q’ [lic; Gi

Q” Hie[ G

ol
A
Go [Tier Go W)
:o\« k
Go [Tic1 Go
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The unlabeled left vertical arrows are rationalizations and the coordinates of
the unlabeled top horizontal arrows are localizations at p;. The universal prop-
erty of localizations gives automorphisms ¢; of G; and ¢y of Gop making the
top and left squares commute. The bottom square obviously commutes, and
then the right square must also commute, so that §o o /] = ¥/’ 0 ;. As above,
we have a unique automorphism ¢; of Go such that ¢; o ¥; = ¥; 0 ¢;. Writing
V! =& o and ¥ = &/’ oy, these equalities imply that & = {po§/ o Z‘;l,
so that the automorphisms &’ = (§/) and &” = (&) are in the same double

coset. Conversely, if §” and £” are in the same double coset, then we obtain an
isomorphism ¢ as displayed in (7.5.3). O

REMARK 7.5.4. If G is abelian, then (77;) is a monomorphism if and only if
all but finitely many of the p;-local abelian groups G; are torsion free. It fol-
lows that (77;) is a monomorphism when G is f-nilpotent or, equivalently by
Proposition 4.5.9, finitely generated.

We give anilluminating elementary example. Above, we started with a given
group G together with fixed localizations G; = G, and a fixed rationalization
Go. If we start out with an abelian group A = A®Z, we have the canonical
localizations A; = A ® Z(j,) and the canonical rationalization Ag = A® Q. The
inclusions Z C Zy,, Z C Q, and Z(,,) C Q induce canonical localizations and
rationalizations

¢t A— A, ¢: A—> Ay, and ¥;: A, — Ay

such that ¥;¢; = ¢. This gives a canonical pullback diagram with pull-
back A.

EXAMPLE 7.55. Let A= Z. An automorphism of Q is just a choice of a unit
in Q, and similarly for Z,,. We are interested in varying choices of v/,
and these amount to choices of nonzero rational numbers &;. We are only
interested in the coset of & modulo the action of the units of Zp, given
by multiplication, hence we may as well take & = p™" for some r; > 0 for
each i. We are only interested in the coset of the resulting automorphism
( p;ri) modulo action by units of Q. If we can clear denominators, the coset
is that of (1;), so that to obtain noncanonical pullback diagrams up to iso-
morphism, we must assume that r; > 0 for all but finitely many i. We obtain
a diagram
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® %o

Q — (ILiZpyo =— TiZpy

A (v, ")

p;
[l;Q

by letting ¢o be the canonical rationalization, ¢o(1;) = (1;), so that
#i(1;) = p; . Then w can and must be defined by setting w(1) = (p.'). The
pullback that we obtain is the subgroup of Q consisting of fractions (in redu-
ced form) whose denominators are not divisible by pir"Jrl for any i. These are
infinitely generated groups when r; > 0 for all but finitely many i. Multiplica-
tion by a fixed nonzero rational number gives an isomorphism from one of
these groups to another. The resulting isomorphism classes give the extended
genus of Z, which is uncountable.

In contrast, the structure theory for finitely generated abelian groups has
the following immediate consequence.

PROPOSITION 7.5.6. The isomorphism class of A is the only element of the genus
of a finitely generated abelian group A.

EXAMPLE 7.5.7. In contrast, non-isomorphic finitely generated nilpotent
groups can be in the same genus, and this can already happen when the nilpo-
tency classis two. A class of examples due to Milnor is described in [62, p. 32]. If
r and s are relatively prime integers, let G,/ be the group with four generators
g1, &, h1, hy and with relations specified by letting

[gLglF =1 and [g1,8] =[h, k2l

and letting all triple commutators be 1. Then G,/s and G,y are non-iso-
morphic groups that are in the same genus if and only if either r = ' mod sor
' = +1mod s.

REMARK 7.5.8. The word “genus” is due to Mislin [105], following an analogy
due to Sullivan [133], and has nothing to do with the use of the word elsewhere
in mathematics. Rather, the analogy is with genetics or, perhaps better, taxo-
nomy. Think of a group as an animal, isomorphic groups as animals in the
same species, and groups in the same genus as animals in the same genus.
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Since groups in the same extended genus can be quite unlike each other, they
might be thought of as animals in the same family.

7.6. Exact sequences of groups and pullbacks

We prove two results about pullback diagrams and exact sequences here.
Exceptionally, we do not require our groups to be nilpotent. Our first result
was used in the proof of Theorem 7.2.1(ii) and will be used again in Chapter 12.

LEMMA 7.6.1. Suppose that the rows in the following commutative diagram are
exact and that the image of p1 is a central subgroup of Gy.

P2 )
Hj &) K 1
21 i i B2 l Y21
p1 o1
H G1 K 1
a3 T T B3 T V3,1
H; G3 K3 1
03 03

Assume that for each element hq € Hy there are elements hy € Hy and h3 € H;
such that hy = ay1(ha)as 1(hs) and similarly for the groups K;. Then for each
g € Gy, there are elements gy € G, and g3 € G3 such that g1 = B21(22)B3,1(g3)-

PROOF. Let g1 € Gi. There are elements k; € K, and k3 € K3 such that
o1(g1) = v2,1(k2)y3,1(k3). Therearealsoelements g, € G andgj € Gs suchthat
02(gy) = k2 and o3 (g}) = k3. Then o1 (g; ' B2,1(25) 3,1 (g5)) = 1, so there is an ele-
ment by € Hy such that p1 (") = g; ' B21(g5)B3,1(g3) and therefore, by cen-
trality, g1 = B2,1(g5)p1(h1)B3,1(g3). Moreover, there are elements hy € H, and
h3 € Hzsuchthath; = O[z,l(hz)(x?,,l(hg,) and thus p; (hl) = ,321,02(’12),33,1/)3(1’1,3).
Let g = gy p2(h2) and g3 = p3(h3)g;. Then g1 = B21(g2)B3,1(g3)- Note that we
do not assume and do not need any of the p; to be monomorphisms in this
proof. O

The first part of the following result is relevant to global to local results. It
allows alternative inductive proofs of some of our results in this chapter and
is used in Chapter 12. The second part is relevant to local to global results. It
was used to prove Proposition 7.4.3.
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LEMMA 7.6.2. Consider a commutative diagram of groups

04 04
Hy Gy Ky 1
\\M,z \ﬁu Y,z
02 02
H; G2 K 1
4,3 J/ Bas l V4,3 l
03 3
Hj G;3 K3 1
\\ a1 \ Ba1 \ Y21
a3 B31 V3.1
H; G1 K
1 a1
Assume that the three rows
i o
1 H; G; K 1,
1 <i < 3 are exact. Consider the fourth row and the three squares
7% Ba2 V4,2
Hy —— H Gy —— &y Ky — K

04,3 i J/ a1 Ba3 i J{ Ba1 V43 \L l Y21

H; —— H; Gy —— G. K3 —— Kj.
31 B31 731

(i) If the fourth row is a central extension and the left and right squares are
pullbacks, then the middle square is a pullback.

(i) If all three squares are pullbacks and every element hy € Hy is a product
a2,1(h2)a31(h3) for some hy € Hy and h3 € Hs, then the fourth row is
exact.

PROOF.

(i) We verify the universal property required for the middle square to be a
pullback. Let 7: G —> G and 13: G —> G3 be homomorphisms such
that B2172 = B3,173. We must show there is a unique homomorphism
74: G —> Gy such that 84274 = 77 and B4 314 = 73.
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Note that ¥2,102T2 = 012,172 = 013,173 = ¥3,10373. Since the square
formed by the K;’s is a pullback there is an induced homomorphism

w: G— K4

such that V4,20 = 02T and V430 = 03T3.
Since o4 is surjective, for each g € G there is a g4 € G4 such that
04(g4) = w(g). Then
02(Ba2(ge) - 2(8 7)) = ya204(ga) - 021287 = yao0(g) -o2ma(g ™) = 1,

hence there is a unique h; € Hy such that p(h2) = Baa(gs) - 12(g7 1)
Similarly,

o3(Bas(ge) (g7 Y) =1,

hence there is a unique h3 € H3 such that p3(h3) = Ba3(gs) - 13(g7Y).
Note that

p1(e21(h2) -a31(h3 1Y) = Baapz(ha) - B3ips(hsh)
= B21Ba2(gs) - Boam2(g7Y) - B3173(8) - B31Bas(gs )
=1.

Since p1 is injective, oz 1(h2) = «3,1(h3). Since the square formed by the
H;'sisapullback, thereisaunique element hy € Hy suchthatay (he) = hy
and «43(h4) = h3. Then, using that ps(Hs) is central in G4 and
Ba2ps = p2aa 2,

Baa(gs- pa(hyh)) = Bas(oa(hy ) - g4)
= pz(hz_l) - B4,2(g4)
=12(g) - Baz(g; ') - Pazlgs) = T2(g)-

Similarly,

Bas(gs - pa(hy ") = 13(g)-

To each element ge G this associates an element
74(g) =g4 - pa(hy ") € Gy suchthat By 5 (t4(g)) = T2(g) and B 3(ta(g)) = 73(g)-
To show that 74 is a well-defined function G — G4, we must show that
it is independent of the choice of g4. Again using that p4 factors through
the center of Gy, it will follow that 74 is a homomorphism.

Suppose that g is another element of G4 such that o4(gy) = w(g). As
above, we obtain elements h}, hj, and h} such that
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p2(hy) = Ba2(gs) - 12(8 ™). p3(hy) = Bas(gs) T3(g7"),
asa(hy) =h,, and  as3(hy) = hi.
Again as above, this implies that

Baa(gh- pa((hy) ™) =1a(g) and  PBas(gs- pa((hy) ") = T3(g)-

We must show that g4 - pa(h, ') = g, - pa((h})~"). Since o4py is trivial,

ou(gs- pa(hy ") pa(h) - (g4) ") = oulga) - oa((gh) ) = L.
Therefore, there is an element xe€ Hy such that
pa(%) = ga - pa(hy ) - pa(hy) - (g4)~". Then, using that pyas 2 = Ba2p4,

02004,2(x) = Ba2(g4) - 54,2,04(@1) - Baapa(hy) - Baa((gh) ™)
=n( nEg ) =1

Since p; is injective o4 2(x) = 1. Similarly, a4 3(x) = 1. Therefore x = 1.
This implies that the map 74: G — G4 is a well-defined homomor-
phism.

A similar argument shows that 74 is unique. Suppose we have another
homomorphism t;: G —> G4 such that B47; = 1, and 37, = 13.
Little diagram chases show that

I /
V420474 = y42047, and  y4304T4 = Y430474.

Since the square formed by the K;’s is a pullback, this implies that
0474 = 047,. Therefore 74(g)(t;) "1 (g) = pa(x) for some x € Hy. Further
little diagram chases and the fact that p; and p3 are injective imply that
a42(x) =1 and a43(x) = 1. Since the square formed by the H;’s is a
pullback, this implies that x = 1 and therefore that 74 = 7.

It is clear that ps is a monomorphism, o4p4 is trivial, and
ker (04) = im(p4). We must show that the map o4 is an epimorphism. Let
(k2,k3) € Ky, so that 5 1(k2) = y3,1(k3), and choose g) € G; and g} € G3
such that o;(g)) = k, and o3(g;) = k3. Then o1(B21(g5)B31(g5)~Y) = 1,
hence £21(g5)(31(g5) " = p1(h1) and by = a1 (hy ez 1 (h3) for some
hi € H;. Let g = pa(h2)g; and g3 = p3(h3)g;. Then (g2,g3) € G4 and

04(82, 83) = (k2, k3). .
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FRACTURE THEOREMS
FOR LOCALIZATION: SPACES

In this chapter we extend the results of the previous chapter to nilpotent spaces.
We first consider fracture theorems for maps from finite CW complexes into
nilpotent spaces and then consider fracture theorems for nilpotent spaces
themselves. For the former, we induct up the skeleta of the domain. For the
latter, we could use the results of the previous chapter to conclude corre-
sponding results for Eilenberg-MacLane spaces and then induct up Postnikov
towers to extend the conclusions to nilpotent spaces. However, we shall see
that more elegant proofs that directly mimic those of the previous chapter are
available. As usual, all given spaces are taken to be based, connected, and of
the homotopy types of CW complexes.

As in the previous chapter, let T;, i € I, be sets of primes, and let
T =Uc; Tir and S = ;¢ T;. We assume that T;NT; = S if i #j, and that
T, # Sforie L

8.1. Statements of the main fracture theorems

For ease of reference we record the main results of this chapter, which are
analogues of the main results of the previous chapter. For our global to local
results, we let

¢p: X — X5, ¢;: X — Xr, and ;1 X1, — Xs

be localizations of a nilpotent space X such that y;¢; ~ ¢ for each i € I. We
alsolet ¢s: [[; X1, — (][; X1;)s denote a localization at S.

THEOREM 8.1.1. Let X be a T-local space and let K be a finite CW complex. Then
the function

(¢i2): [K,X] — [ [IK, X7]

i€l
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is an injection and the following diagram is a pullback of sets.

(5)«
8.1.2 [K,X] —— [K,[];e; X1,

N |

[K,Xs] —— [K’(HieIXTi)S]
((#4)s)«

THEOREM 81.3. Let X be a T-local space. Then the following diagram is a
homotopy pullback of spaces.

(¢i)
X —— [l X1y

d e

Xs —> (nieIXTi)S
(#i)s

ADDENDUM 8.1.4. If the indexing set I is finite, then both theorems remain

valid if we replace ([[;c; X1;)s by the equivalent space [];; Xs in the lower

iel
right corner of the pullback diagrams. Now suppose that I is infinite and that

X is f Zr-nilpotent.

(i) In Theorem 8.1.1, the conclusion remains true if we replace ([[;c; XT)s
by [1;c; Xs in the lower right corner.

(ii) In Theorem 8.1.3, the conclusion generally fails if we replace ([;c; Xt;)s
by [1;c; Xs in the lower right corner.

For our local to global results, let X; be a T;-local nilpotent space, let Y be an
S-local space, and let ¥;: X; — Y and ¢s: [[;c; Xi — ([1ic; Xi)s be local-
izations at S. Let 7;: ([];c; Xi)s —> Y be the map, unique up to homotopy,
such that 7; o ¢s >~ V; o ;. Then (7)) ([Tie; Xi)s — [1; Y is a localization
of (1;) at S.

DEFINITION 81.5. Aformallocalization associated to the maps ;: X; — Y

is a homotopy class of maps w: Y —> ([];c; X;)s that satisfies the following

iel
two properties.

(i) The composite of w and 7; is homotopic to the identity map for each
iel
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(ii) Each element z € m1(([[;c; Xi)s) is the product of an element ¢, (x) and
an element w,(y), where x € m1([[;c; X;) and y € m1(Y) .

As will emerge shortly, w exists and is unique if I is finite. Given w, let P
be the homotopy pullback in the diagram

m
8.1.6 P —— [l X

S

Y — ([ier Xi)s-

By Corollary 2.2.3, property (ii) is equivalent to requiring P to be connected.

THEOREM 8.1.7. Let X; be T;-local and Y be S-local, and let ¥r;: X, —> Y be a
localization at S for each i € I. Assume that either I is finite or I is infinite and
the ¥; have an associated formal localization w. Then P is T-local and the induced
map Pr, —> Xy, is an equivalence for all k € 1.

COROLLARY 8.1.8. The coordinate P —> X, of v in (8.1.6) is a localization at
Ty, hence v in (8.1.6) is a localization at S and w is the localization of u at S.

We have phrased our results in terms of P, but much of the literature
focuses instead on the homotopy pullback Q in the diagram

8.1.9 Q e l_[iej X;

N

Y — [l Y-
A

Here there is no formal localization, and the following observation, whose
proof is the same as that of Lemma 7.3.5, shows that the notion of a formal
localization is only needed when the indexing set I is infinite.

LEMMA 8.1.10. Let I be finite. Then (71;) is an equivalence and the composite
o = (75;) "' o A is the unique formal localization associated to the Vr;: X; — Y,
hence the diagrams (8.1.6) and (8.1.9) are canonically equivalent.
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By Proposition 7.4.3 and Theorem 4.5.2, Theorem 8.1.7 has the following
important refinement when the indexing set I is finite.

COROLLARY 8.1.11. If I is finite and X; is fZ1,-nilpotent for each i € I, then
Q =~ P is fZr-nilpotent. In particular, if T is the set of all primes, then Q is
f-nilpotent.

WARNING 8.1.12. The space Q is always T-local. However, even if each X; is
fZ7,-nilpotent and simply connected, the induced map Qr, — X is gener-
ally not an equivalence for all k € I (since otherwise P — Q would be an
equivalence) and the homotopy groups of Q are generally not finitely gener-
ated Z-modules (as will become clear in our discussion of the extended genus
in §8.5). This contradicts claims made in several important early papers on the
subject.

We prove Theorem 8.1.1 in {8.2, Theorem 8.1.3 in §8.3, and Theorem 8.1.7
in §8.4. The latter two proofs are direct and conceptual, but we explain alter-
native proofs by induction up Postnikov towers in {8.6. This depends on the
general observation thathomotopy pullbacks of homotopy pullbacks are homo-
topy pullbacks, which is a topological analogue of Lemma 7.6.2. We note that
it would be possible to instead first prove Theorem 8.1.7 and then deduce
Theorem 8.1.3 from it, following Remark 7.4.2. The starting points for all of
our proofs are the characterizations of T-local spaces and of localizations at
T in terms of homotopy groups that are given in Theorems 6.1.1 and 6.1.2.
In analogy with §7.5, in §8.5 we use the notion of a formal localization to
describe the genus of a nilpotent space, namely the equivalence classes of
spaces whose localizations at all primes p are equivalent to those of the given
space.

8.2. Fracture theorems for maps into nilpotent spaces

We prove Theorem 8.1.1 in this section. Thus let K be a finite CW complex
and X be a T-local nilpotent space. We emphasize that even if K and X are
simply connected, the proofs here require the use of nilpotent groups.
THEOREM 8.2.1. The function

(Dis): [K, X]——[1;e;[K, X7,

is an injection.
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PROOF. When K = S", the claim is that (¢;,): [S", X] — [];;[S" X1,]isa
monomorphism. This means that

(i) X —> [lies (TaX)1,

isamonomorphism. The claim follows from Theorem 7.2.1(i) since the groups
7w, X are T-local.
The case K = v;S" reduces to showing that

(bix): TTIS™ X1 —> Tlier (TT;1S" X1,1)

is a monomorphism, and this follows from the case K = S™.

We now argue by induction. Thus assume that the result holds for K",
where the dimension of K is n, and recall the notation [K, X]; from Theo-
rem 6.3.2. Let f, g € [K, X] and assume that ¢; o f >~ ¢; og for all i. By induc-
tion, f|K" 1 ~ g|K"~! and therefore g € [K, X]y.

By Theorem 6.3.2 and the assumption that X is T-local, [K,X]f
is a Zr-ilpotent group, [K,Xrlsor is a Zr-nilpotent group, and
[K, X1 — [K, X1,1p,0f is localization at T;. By Theorem 7.2.1(i), the map

(K, X]p —> [Ties[K X11g01

is a monomorphism. Since ¢;og =¢;of =id in [K, Xr]4,s for each i,
f~g O

REMARK 822. Exceptthat we change the group theoretic starting point, mak-
ing use of Theorem 7.2.1(iii), the proof of (i) in Addendum 8.1.4 is exactly the
same.

EXAMPLE 8.23. The assumption that K is finite is essential. An easy coun-
terexample otherwise goes as follows. Let ¢: S* — S7. be localization at T,
where n > 2, and let T; be the i prime in T. Let K be the cofiber of ¢, so that
we have a cofiber sequence

o 7 oz
n n
S Sn K st SuHL,

For each prime p € T, ¢,: Sj — (S7)p is an equivalence, hence so is Z¢,.
Since the localization at p of the cofiber sequence is again a cofiber sequence,
, must be null homotopic. However, 7 itself is not null homotopic since, if
it were, the map ¥¢ would have a left homotopy inverse and Z would be a
direct summand of Zr.
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When K has localizations, their universal property has the following con-
sequence, whose algebraic precursor is recorded in Lemma 7.1.8. It says that
to check whether or not two maps are homotopic, it suffices to check whether
or not they become homotopic after localization at each prime p.

COROLLARY 824. Letf,g: K —> X be maps, where K is a nilpotent finite CW
complex and X is a nilpotent space. Then f ~ g if and only if f, >~ g, for all
primes p.

PROOF. By the theorem, (¢p,): [K,X] —> ]_[p[K,Xp] is injective. Since K
is nilpotent, we have ¢;: [K,X,] = [Kp, Xp]. Therefore the product of locali-

zations
[K,X] — l_[p[Kp,Xp]

is injective. O

Retaining the notations of Theorem 8.2.1, observe that since y; o ¢; >~ ¢
for each i the image of (¢;)« in [K, [ [;c; X1;] factors through the pullback of
sets constructed from the lower and right legs of the diagram (8.1.2). For the
purposes of this proof, we give this pullback the abbreviated notation P[K, X].

THEOREM 825. The function
(#i)«: [K,X] —> P[K, X]
is a bijection of sets.
PROOF. By Theorem 8.2.1, (¢;)« is injective. We must show that it is sur-

jective. First consider the case K = S". We must show that (¢;). maps 7, (X)
isomorphically onto the pullback of the diagram

niel 7n(XT;)

|

n(Xs) —— ([licr n(X1;))s-
(Bix)s

This holds by Theorem 7.2.1(ii) since the groups 7, X are T-local. The result
for a wedge of spheres again reduces to the case of a single sphere.

Assume that the result holds for K"~!, where K has dimension n. Con-
sider an element (g;) € P[K, X]. By the induction hypothesis there is a map
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e € [K"LX] such that ¢;oe=g]|K" ™' for all i. Let | be a wedge of
(n — 1)-spheres, chosen so that K is the cofiber of a mapj: ] —> K"~1. Since
J is a wedge of (n — 1)-spheres,

(@i)«: [J, X] — P[], X]
is an isomorphism. Consider the following diagram.

J e i
J — 1 — X —— X7,

|

K

Since ¢; o e extends to g, ¢; oeoj is trivial by the long exact sequence for a
cofibration. For maps from J, (¢;,) is a bijection by the previous case. There-
fore, eoj is trivial and e extends to a map f € [K, X]. Note that ¢; f|gn-1 is
homotopic to g;|xn-1, but ¢;f is not necessarily homotopic to g; on all of K.
However, since ¢; f | gn—1 = g;|gn—1 for all i, the maps (g;) define an element of
the nilpotent group given by the pullback of the diagram

nieI[K’ X, ]¢i0f

\L I

[K,Xs] — ([lie/[K X1;]p0f)s-
(his)s

By Theorems 6.3.2 and 7.2.1, there is an element g € [K, X1¢ such that

¢iog =g foralli. O

EXAMPLE 8.26. The assumption that K is finite is again essential. Let
T = Ty U T, be a partition of the set of all primes. If K = CP* and X = S3,

the square

[CP®,$3] — [CP™,5}]

| |

[CP®, S} ] — [CP%, S]]

is not a pullback because the canonical map of lim! terms
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lim' [ECP", $’] — lim' [ECP", S}, | ®lim' [£CP", 53, ]

is nota monomorphism. The details are similar to those of §2.4; see [21, V.7.7].

While less important than the previous results, we record the following
observation since it does not appear in the literature.

PROPOSITION 82.7. IfI s finite, then the formal sum
[[ie/[ZK, X1,] — [2K, Xs]

is a surjection.

PROOF. The claim is that every element of the target is a product of elements
Vi (%;) from the source. Since [ZK, Y] = 71(F(K, Y), *) for any Y, this follows
from Theorem 6.3.2 by inducting up the skeleta of K and using Theorem 7.2.1.
]

REMARK 828. It is possible to relax the hypothesis on the space K in Theo-
rems 8.2.1 and 8.2.5 and in Proposition 8.2.7. If we take K to be a space with
finitely generated integral homology, then there is a finite CW complex K and
amap f: K — K such that

F* K YI=[K, Y]

see, for example, [62, 11.4.2, I1.4.3]. Therefore, we may apply the cited results
to any space K with finitely generated integral homology.

8.3. Global to local fracture theorems: spaces

In this section, we follow §7.2 and prove the analogous global to local result,
namely Theorem 8.1.3. Thus let X be a T-local nilpotent space. We must prove
that the diagram

(¢)
33 X — Tl X,

R

Xs —— ([lier X1))s
(9i)s

is always a homotopy pullback. Recall that part (ii) of Addendum 8.1.4 states
that the analogous diagram
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(¢4)
832 X — Tl Xr

d e

Xs —— [lie1 Xs
A

is generally not a homotopy pullback, even when X is fZr-nilpotent. Re-
member that these diagrams are equivalent when the indexing set I is finite.

Recall too that Proposition 2.2.2 and Corollary 2.2.3 tell us how to compute
the homotopy groups of homotopy pullbacks. In particular, lete: G — Gy
and B: G, —> Go be homomorphisms of groups with pullback G. Con-
sider the corresponding homotopy pullback X of Eilenberg-Mac Lane spaces
K(—, n), taking the given groups to be abelian when n > 1. Let G; x G, acton
Go by go(g1, &) = «(g1) " 'g0B(g2) with orbit set J. Then

m—1(X) =] and m,(X) =G,

with 74(X) = 0 otherwise. Of course, for a product of groups G;, we have
K(]] G;,n) >~ [1; K(G;, n). Now Theorem 7.2.1(ii) implies the following result
since it shows that J is trivial in this case.

LEMMA 83.3. The diagram (8.3.1) is a homotopy pullback when X is a T-local
Eilenberg-Mac Lane space.

EXAMPLE 83.4. The diagram (8.3.2) is not a homotopy pullback in the case
when X = K(Z, n) and T; is the jth prime number since, with additive notation,
Proposition 7.1.7 shows that | is nonzero in this case.

From here, we can prove that the diagram (8.3.1) is a homotopy pullback
by inducting up the Postnikov tower of X, as we will explain in {8.6. However,
we have a simpler alternative proof that directly mimics the proof in algebra.
It starts with the analogue of Lemma 7.1.8.

LEMMA 83.5. Let X and Y be T-local nilpotent spaces. Amapf: X — Yisan
equivalence if and only if fr,: X1, — Yr, is an equivalence for each k € I.

PROOF. Itsufficestoshow thatf,: 7, (X) —> m,(Y)is anisomorphism if and
onlyif (fr,)«: m«(X1,) — m+(Yr,)is anisomorphism for all k. This means that

(S T (X) 1, —> (V)73

is an isomorphism for all k. Lemma 7.1.8 gives the conclusion. O
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Recall from Proposition 6.2.5 that localization preserves homotopy pull-
backs.

THEOREM 83.6. The diagram (8.3.1) is a homotopy pullback for any T-local
nilpotent space X.

PROOF. Let P be the homotopy pullback displayed in the diagram

()
\

P — [lier X,

I

Xs — ([lier X1))s-
(Pi)s

¢

The outer square commutes up to homotopy, hence there is a map f that
makes the diagram commute up to homotopy. We must show that f is an
equivalence. By Lemma 8.3.5 it suffices to show that fr, is an equivalence for
all k € I. By Proposition 6.2.5, we obtain another homotopy pullback diagram
after localizing at Tj.

Py, ——— (HieIXTi)Tk

| |

(Xs)r, —— ((ITie1 XT))8) 73

Arguments exactly like those in the proof of Theorem 7.2.1(ii) imply that
this diagram is equivalent to the diagram

Pr, XTj, X (Hi;ﬁk Xr,)s
i 1//k><id
Xs Xs % (l_[i;ék Xt;)s-

(id,(¢y)s)

To interpret this homotopy pullback, we assume or arrange that v is a fibra-
tion and then take the actual pullback. Here we are using actual identity maps
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where indicated, and we can apply Lemma 7.1.9 in the cartesian monoidal
category of spaces to conclude that the homotopy pullback is equivalent to
Xrt,. Parenthetically, we can also apply Lemma 7.1.9 in the homotopy cate-
gory of spaces, and we conclude that in this case the homotopy pullback is in
fact a pullback in the homotopy category. In any case, it follows that f7, is an
equivalence. O

REMARK 83.7. We repeat Remark 7.2.2, since it applies verbatim here. Theo-
rem 8.1.3 was proven under a finite generation hypothesis in Hilton, Mislin,
and Roitberg [62], and Hilton and Mislin later noticed that the hypothesis can
be removed [61]. That fact is not as well-known as it should be. We learned
both it and most of the elegant proof presented here from Bousfield.

8.4. Local to global fracture theorems: spaces

We here prove Theorem 8.1.3. Thus let X; be a T;-local nilpotent space and
Y be an S-local nilpotent space. Let ;: X; —> Y be a localization at S for
each i. When the indexing set I is infinite, we assume that we have a for-
mal localization w: Y —> ([]; X;)s. We then have the homotopy pullbacks
P and Q of (7.1.1) and (7.1.2). These are both homotopy pullbacks of dia-
grams of T-local spaces and are therefore T-local if they are connected, by
Proposition 6.2.5. Again, remember that these diagrams are equivalent when
the indexing set I is finite. In that case, it is clear from algebra that P and
Q are connected, and our definition of a formal localization ensures that P
is connected in general. However, the algebraic description of the homotopy
groups of a homotopy pullback in Proposition 2.2.2 shows that the homo-
topy groups of Q are quite badly behaved when I is infinite: quotients of the
huge Zs-module [[;.; 74 (Y) appear with a shift of degree. In fact, Q is rarely
a connected space.

We must prove that the induced map Py, —> X is an equivalence for all
k € I. The proof follows the outline of the proofs in §7.4 and §8.3. As in the
latter section, we could start by using the algebraic result, Theorem 7.4.1, to
prove the following topological analogue.

LEMMA 84.1. The maps Pr, —> X, are equivalences when the X; are Tj-local
Eilenberg-Mac Lane spaces.

However, an argument precisely like the proofs of Theorem 7.4.1(ii) and
Theorem 8.1.3 gives the general conclusion directly.
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THEOREM 8.4.2. The maps Pr, —> X are equivalences.

PROOF. Let P be the homotopy pullback displayed in (8.1.6). We have as-
sumed that P is connected, and by Proposition 6.2.5 we obtain another
homotopy pullback diagram after localizing at Tj.

Pr, ——— (HieIXi)Tk

| |

Y7, 7 (( l_[iel X;)s)T,

Arguments exactly like those in the proof of Theorem 7.2.1(ii) imply that this
diagram is equivalent to the diagram

Pr, X % ([Tier Xi)s

-

Y Yo ([T Xi)s

(id,m2w)

where 7; denotes the evident projection. The description of the right vertical
arrow depends only on the ¥; and not w, but the assumed compatibility of w
with A ensures that its localization at T}, takes the required form (id, myw).
Lemma 7.1.9 applies to show that the homotopy pullback Pr, is equivalent to
X;, (and is a pullback in the homotopy category). O

When I is infinite, we do not have an alternative inductive proof since
we must start with a formal localization and it is not clear how those behave
with respect to Postnikov towers. When [ is finite, the formal localization
is equivalent to A: Y — []; Y and we do have such a proof, as we explain
in §8.6.

8.5. The genus of nilpotent spaces

Much early work in the theory of localization focused on the concept of genus,
which was introduced by Mislin [105] in the context of H-spaces. The literature
is quite extensive and we refer the reader to the survey [100] of McGibbon for
further information and many references. We first introduce the idea, state
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some key results, and give some examples, without proofs. We then describe
how the notion of a formal localization applies to the analysis of the extended
genus. As in §7.5, we assume that T is the set of all primes, S is the empty set,
and T; is the set consisting of just the i* prime number p;.

DEFINITION 85.1. Let X be a nilpotent space. The extended genus of X, de-
noted G(X), is the collection of homotopy types of nilpotent spaces X’ whose
localizations at all primes p are equivalent to those of X. When X is f -nilpotent,
the genus of X, denoted G(X), is the collection of f-nilpotent homotopy types
in G(X). A property of f-nilpotent spaces is said to be generic if it holds for all
(or none) of the spaces in a given genus.

As we shall explain in §13.6, use of completions rather than localizations
leads to two interesting variant notions of the genus of a space. A little thought
about the structure of finitely generated abelian groups and the universal coeffi-
cient theorem gives the following consequence of the fact that the genus of any
finitely generated abelian group has a single element. For the last statement,
see [100, p. 82].

PROPOSITION 85.2. Homology groups and homotopy groups, except for the fun-
damental group if it is non-abelian, are generic. While the integral cohomology
groups are generic, the integral cohomology ring is not.

EXAMPLE 853. Example 7.5.7 implies that the fundamental group is not
generic.

Perhaps for this reason, but also because of the difficulty of computations,
the study of the genus is generally restricted to simply connected spaces of
finite type. The extended genus is generally very large, probably too large to be
of interest in its own right. For example, Example 7.5.5 and Proposition 7.5.6
have the following consequence.

EXAMPLE 85.4. The extended genus of K(Z, n) is uncountable for n > 1. The
genus of K(A,n) has a single element for any finitely generated abelian
group A.

McGibbon generalized this example to the following result [101, Thm. 2].

THEOREM 85.5. Let X be simply connected of finite type and assume that either
Hy(X;Z) = 0 or m,(X) = 0 for all but finitely many n. Then the extended genus of
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X is finite if and only if Xy is contractible. If Xo is not contractible, the extended
genus of X is uncountable.

In contrast, Wilkerson [144] proved the following opposite conclusion for
the genus; see also [100, Thm. 1].

THEOREM 85.6. Let X be simply connected of finite type and assume that either
Hy(X;Z) = 0 or m,(X) = 0 for all but finitely many n. Then the genus of X is finite.

Having the homotopy type of a finite CW complex is not a generic property,
by a counterexample of Mislin [106]. Being of the homotopy type of a space
with finitely generated integral homology is generic, and that gives interest
to Remark 8.2.8. Results of Zabrodsky [146, 2.9] and Mislin [107] give the
following conclusion, and Zabrodsky’s work in [146] gives a complete recipe
for the computation of the genus in this case.

THEOREM 85.7. The property of being a finite H-space is generic.
A beautiful worked out example was given by Rector [117].
THEOREM 85.8. The genus of HHP* is uncountably infinite.

For comparison, McGibbon [99] computed the genus of the finite nilpotent
projective spaces RP2"+1, CP" and HP" for 1 < n < oc. For these spaces X,
he uses pullbacks over X to give the set G(X) a group structure and proves the
following result.

THEOREM 85.9. Let n be a positive integer.

(i) GRP™ 1) =1,
(i) G(CP™" =1,
(iii) GHP" = Z/2@® - - - ® Z/2, where the number of factors equals the number
of primes p such that2 < p < 2n—1.

As in the case of nilpotent groups, asking how unique formal localizations
are gives a starting point of the analysis of the extended genus, and one can
then seek the actual genus inside that. Again, a general idea is to exploit finite
partitions of the primes and Corollary 8.1.11, and thatleads to many of the most
interesting examples. We shall say just a little more about that in §9.4, where
we consider fracture theorems for finite H-spaces. Although we shall not cor-
relate this approach to the analysis of the genus with the existing literature
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in this book, the flavor is much the same. Many known calculations rely on
an understanding of double cosets of homotopy automorphism groups, and
we indicate their relevance, following §7.5. Roughly speaking, the conclu-
sion is that, under suitable hypotheses, elements of the extended genus of an
f-nilpotent space are in bijective correspondence with the double cosets

hAut(Xp)\ [T, hAut(Xp)/ [T, hAut(X;),

where hAut denotes the group of self-homotopy equivalences of a space X.

Any nilpotent space X is equivalent to a homotopy pullback P constructed
from rationalizations v; of its localizations X; at p; and a formal localization
w: Xo —> (]]; X;)o ofits rationalization Xy. Since we are only trying to classify
homotopy types, we can use the same spaces X; and X to construct a repre-
sentative for each homotopy type in the same genus as X. The y; can vary, the
variation being given by a self-homotopy equivalence &; of the rational nilpotent
space Xp. Similarly, the rationalization of [ [; X; can vary by a self-equivalence
of the rational nilpotent space (][; X;)o. Notice that Theorem 7.2.1(ii) and
Corollary 2.2.3 imply that the homotopy groups 7, (P) are isomorphic to the
pullbacks 7, (Xo) X, [, X;)0) #n( [ I; Xi) for any space P in the same extended
genus as X; any variation is in the maps that define these pullbacks. As
already noted, the homotopy groups are generic when X is simply connected of
finite type.

To be more precise, up to equivalence any two spaces X and X’ in the same
genus can be represented as homotopy pullbacks P and P’ as displayed in the
top triangles of commutative diagrams

and

ARSIV

0%1—[1 O%Hl

\ l(ﬁi);/ \ l(ﬁ{/
A (Vi) A ()

[i Xo []; Xo.

Here 7; is the map ([[; X))o — Xo, unique up to homotopy, such that
7;0¢o ~ Y;om;, and similarly for 7]. Usually the homotopy pullbacks of
(@, ¢0) and (', ¢p) are not equlvalent. We fix a reference pullback P ~ X
and have the following result. It is less satisfactory than its algebraic analogue
Proposition 7.5.2 but serves to give the idea.



85. THE GENUS OF NILPOTENT SPACES / 169

PROPOSITION 85.10. Assume that

(i)« [Xo, ([ [ Xi)ol — X0, [ [ Xo!

is a monomorphism. Then the extended genus of X is in bijective correspondence
with a subset of
hAut(Xo)\ [T; hAut(Xo)/ [T; hAut(X;).

PROOF. Since (7;)« is a monomorphism, the homotopy class of w is uniquely
determined by the requirement that 7; o w = id for all i. Similarly, the homo-
topy class of the localization ¢ is uniquely determined by the ;. Since
localizations are unique up to equivalences of their targets, we see that (/)
is also a monomorphism and ' and ¢y, are also uniquely determined.

The double cosets of the statement are defined with respect to
the diagonal A: hAut(Xo) — [];hAut(Xo) and the homomorphisms
h Aut (X;) — h Aut(Xp) that send a self-equivalence ¢; of X; to the self-
equivalence Z; of Xy, unique up to homotopy, such that &; o ¥; = v; o ¢;. This
definition refers to the y; of the fixed-reference pullback P. We must restrict
to the double cosets of K (which is not claimed to be a subgroup).

At this point the analysis diverges from the algebraic setting, since the
homotopy pullbacks P and Q of (w, ¢o) and (A, (;)) are not only not equivalent
but, in contrast to Proposition 8.5.2, they can have very different homotopy
groups. This means that we cannot even take for granted the existence of
formal localizations «’ for all choices of the wi’. However, since we are trying
to determine the extended genus, we are starting with given global spaces that
determine the required formal localizations.

For each P’ and each i, there is a self-equivalence &’ of X such that
&/ o = /. Let K be the subset of [ [; hAut(Xp) consisting of those & = (£')
such that the ¥/ admit a formal localization «’, necessarily unique. Sending
& to the homotopy class of the pullback P, we obtain a surjection from K to
the extended genus of X.

The double cosets of the statement are defined with respect to
the diagonal A: hAut(Xp) —> [];hAut(Xp) and the homomorphisms
h Aut (X;) — h Aut(Xp) that send a self-equivalence ¢; of X; to the self-
equivalence ¢; of Xy, unique up to homotopy, such that ¢; o ¥; = v; 0 ¢;. This
definition refers to the y; of the fixed reference pullback P. We must restrict
to the double cosets of K.

1. We do not claim that K is a subgroup of []; h Aut (Xp) in general, but we expect the two to
be equal in reasonable examples.
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Suppose we have a homotopy equivalence ¢ : P —> P” between two such
pullbacks and consider the following diagram, in which the front and back
squares are pullbacks.

8.5.11
P l_[ieIXi
\i
P//
¢o/ l
w/
Xo — | —= ([LicsX)o
-\
Xo (ITier Xi)o I Xo

The unlabeled left vertical arrows are rationalizations and the coordinates
of the unlabeled top horizontal arrows are localizations at p;. The universal
properties of localizations give self-equivalences ¢; of X; and ¢y of Xo making
the top and left squares homotopy commutative. There is a map o, unique
up to homotopy, that makes the bottom square commute up to homotopy, and
then the right square must also commute up to homotopy. We have completed
the diagram to the right to aid in identifying the double coset interpretation.
As above, we have a self-equivalence ¢; of X such that ¢; o ; ~ ¥; 0 ¢;. We also
have self-equivalences &’ and " of Xy such that £/ o ; ~ ¢/ and &/ o ¢; == ¢/".
Choosing homotopy inverses ;:171, we see that £ ~ ¢po ¢/ o E[l. Running the
argument in reverse, we see that if £’ and £” are in the same double coset,
then we obtain an equivalence ¢ as in (8.5.11). O

8.6. Alternative proofs of the fracture theorems

We explain parenthetically how to prove Theorems 8.1.3 and 8.1.7 by inducting
up Postnikov towers. This uses an easy but useful general observation about
homotopy pullbacks. We shall make essential use of it later.

PROPOSITION 8.6.1. Consider the following homotopy commutative diagram.
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Ay Ao Ay A
b
G Co G C
I R
By By B, B
P1 Py Py

Let the column and row displayed to the right and at the bottom be obtained by
passage to homotopy pullbacks from the corresponding rows and columns of the
diagram. Let D be the homotopy pullback of the column at the right and P be the
homotopy pullback of the row at the bottom. Then D and P are equivalent.

PROOF. Ifthe diagram commutes and D and P are the actual pullbacks, then
the conclusion holds by the well-known and easy categorical analogue that
pullbacks of pullbacks are pullbacks [80, IX, {8]. To calculate the six given
homotopy pullbacks, we must use the mapping path fibration to replace at
least one of the two maps with a common target in each row and column
of the diagram by a fibration and then take actual pullbacks, and a diagram
chase shows that we can simultaneously make the diagram commute rather
than just commute up to homotopy. We claim that judicious choices make
one of the two maps in the induced column and row a fibration. That reduces
the homotopy pullbacks to actual pullbacks to which the categorical analogue
applies. We choose to replace the maps

Ay — Ay, By — By, Ay — C, Bj — C1, C; — Cy, and By — ()

by fibrations (the last two choices being arbitrary). With these choices, the
induced maps of pullbacks A — C and P, — Py are also fibrations. By
symmetry, we need only prove the first of these. Thus suppose given a lifting
problem

Y — A

A 7
s
Ve
Ve

YxI —— C.
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Weuse that Ay —> C;isafibration to obtain alift A, in the following diagram,
and we then use that Ay — A is a fibration to obtain a lift ;.

Y A

Ay

Ay =— A
VSl i
(@)
X2 \
I

The lifts 41 and A, induce the required lift A into the pullback A. O

Y x C

EXAMPLE 8.6.2. Asaperhapsamusing example, observe that QX is the homo-
topy pullback of the diagram « —> X <«— x. If P is the homotopy pullback of
mapsf: X — Aandg: Y — A, then the proposition shows that QP is the
homotopy pullback of the maps Qf and Qg. As a more serious example, when
gis* —> A, Pisthe fiber of f. We shall shortly specialize Proposition 8.6.1 to
the case when one of the columns is trivial and we are considering pullbacks
of fibers.

Proposition 8.6.1 specializes to give the inductive step of the promised
alternative proof that the diagram (8.3.1) is a homotopy pullback. To see that,
suppose that the conclusion holds for a T-local space X and let Y be the
fiber of a map k: X — K, where, for definiteness, K is a simply connected
T-local Eilenberg-Mac Lane space. Note that Y is the homotopy pullback of k
and the trivial map * — K, or the actual pullback of k and the path space
fibration PK — K. We apply Proposition 8.6.1 to the following homotopy
commutative diagram. The homotopy pullbacks of its rows are as indicated
in the column at the right since localizations preserve homotopy pullbacks by
Proposition 6.2.5. The homotopy pullbacks of its columns are as indicated in
the row at the bottom by Lemma 8.3.3 and asssumption.
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l_lkTi
HXTi B HKTi -~ % HYTi
¢s J/ i [ l ¢s
(Mk;)s
(ITX1)s —— ([1Kp)s =— = (ITY)s
(¢i)s T T (#i)s T (#i)s
XS KS % YS
ks
X K *

By Proposition 8.6.1, Y is equivalent to the homotopy pullback of the right
column.

Finally, we show how to prove inductively that the maps Py, — X; of {8.4
are equivalences when I is finite. We can apply the following result to each
stage of compatible Postnikov towers for the X; and Y and then pass to limits.

LEMMA 8.6.3. Let K; be a T;-local, simply connected Eilenberg-Mac Lane space, L
be an S-local, simply connected Eilenberg-Mac Lane space, and ;1 K; —> Lbe a
localization at S. Let X; be a T;-local space, Y be an S-local space, and yr;: X; —> Y
be a localization at S. Let X! and Y’ be the fibers of maps k;: X; —> K; and a map
£:Y —> L such that £yr; >~ k; for all i and consider the following diagram.

I1k;
I X, —— I1 Ky, <— =* I1 Xl/
Vi Vi \L 14
e
1Y I1L * 1y
A A T A
Y L * Y’
4
P Py * P

where P, Py, and P’ are the homotopy pullbacks of the columns above them. Assume
that P —> X, is a localization at Ty for each k. Then P' — X] is a localization
at Ty, for each k.
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PROOF. There is a map ¢ as stated because localization commutes with finite
products. More precisely, this is a consequence of Lemma 8.1.10. By Proposi-
tion 8.6.1, P’ is the fiber of the map P —> Py, and for each k there results a
map of fiber sequences

P P Po
X]é — X —— K.

The space X; is Ty-local by Theorem 5.3.1. The middle and right vertical arrows
are localizations at Ty, by assumption and Lemma 8.4.1. Therefore, by the five
lemma applied to homotopy groups, the left vertical arrow is a localization
atk. O



9

RATIONAL H-SPACES AND
FRACTURE THEOREMS

We here describe the category of rational H-spaces and apply this to give more
algebraically calculational fracture theorems for H-spaces. Rather tautologi-
cally, a major theme of algebraic topology is the algebraization of homotopy
theory. In some cases, the algebraization is complete, and this is true for
rational homotopy theory, as proven by Quillen [115] and Sullivan [134]; see
also Bousfield and Gugenheim [20] and Félix, Halperin, and Thomas [48].
However, the algebraization of the rational homotopy theory of H-spaces is
elementary, depending only on the structure theory for Hopf algebras that we
shall develop in Chapter 22. The reader may want to look at that chapter before
reading this one.

After describing the cited algebraization, we show how to give it more
topological content via the Samelson product on homotopy groups. This gives
a Lie algebra structure on m,(X) for a connected H-group X (as defined in
Definition 9.2.1) such that the Lie algebra 7, (X) ® Q is determined by the
Hopf algebra H,(X; Q). This leads to an all too brief discussion of Whitehead
products, which are the starting point for serious work in unstable homotopy
theory. We then return to fracture theorems and describe how such results
can be algebraicized when restricted to H-spaces.

In this chapter, we agree to say that a rational space Y is of finite type if
its integral, or equivalently rational, homology groups are finite dimensional
vector spaces over Q.

9.1. The structure of rational H-spaces

We shall prove the following basic result, which describes the homotopy types
of rational H-spaces.

175
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THEOREM 9.1.1. If Y is a connected rational H-space of finite type, then Y is
equivalent to a product X, K(mn(Y), n) of rational Eilenberg-Mac Lane spaces. If Y
is finite (as a rational CW complex), then m,(Y) = 0 for all even n.

The finite type hypothesis is needed due to the topology rather than the
algebra. The problem is the lack of a Kiinneth theorem for infinite products.

Since the k-invariants of X, are the rationalizations of the k-invariants of
X, the theorem has the following implication.

COROLLARY 9.1.2. The k-invariants of an H-space X that is rationally of finite
type are torsion classes. If X is finite (as a CW complex), then X has the rational
homotopy type of a finite product of odd dimensional spheres.

When X is finite, the number of spherical factors is the rank of X and the
list of their dimensions is the type of X. The classification problem for finite
H-spaces considers those X with the same rank and type. When X is a compact
Lie group, this notion of rank coincides with the classical one: the rank of X
is the dimension of a maximal torus.

The multiplication on an H-space X determines a comultiplication on the
rational cohomology of X. This is compatible with the multiplication induced
on H*(X; Q) by the diagonal map and so H*(X; Q) is a commutative and asso-
ciative quasi-Hopf algebra. Here “quasi” refers to the fact that the coproduct
need not be coassociative since the product on X need not be homotopy asso-
ciative. The proof of Theorem 9.1.1 is based on the following structure theorem
for rational quasi-Hopf algebras, which is Theorem 22.4.1.

THEOREM 9.1.3. If A is a commutative, associative, and connected quasi-Hopf
algebra over Q, then A is isomorphic as an algebra to the tensor product of an exterior
algebra on odd degree generators and a polynomial algebra on even degree gen-
erators.

We calculated the rational cohomology of K(Q; n) in Proposition 6.7.2. It
is the polynomial algebra P[i,] if n is even and the exterior algebra E[t,] if

nis odd.

PROOF OF THEOREM 9.1.1. By Theorem 9.1.3, the rational cohomology of
X is a tensor product of exterior and polynomial algebras. We can choose
representative maps X —> K(Q, n) for the generators and take them as the
coordinates of a map f from X to a product of K(Q, n)’s. The map f induces
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an isomorphism on rational cohomology and therefore, by our finite type
hypothesis, on rational homology. Since the source and target of f are simple
and rational, the Q-equivalence f must be an equivalence. O

While our interest is in H-spaces, the proof makes clear that the conclusion
applies to any simple rational space of finite type whose rational cohomology
is a free commutative Q-algebra.

We can elaborate the argument to obtain an equivalence of categories.

THEOREM 9.1.4. Rational cohomology defines a contravariant equivalence from
the homotopy category of rational connected H-spaces of finite type to the cat-
egory of commutative, associative, and connected quasi-Hopf algebras of finite

type.

PROOF. The required contravariant functor S from H-spaces to Hopf alge-
bras is given by S(Y) = H*(Y; Q). The inverse functor T from Hopf algebras
to H-spaces assigns to a Hopf algebra A the product of Eilenberg-Mac Lane
spaces K(Q, n), one for each algebra generator of degree n. This fixes the space
and therefore the cohomology algebra, but it does not fix the H-space struc-
ture. The coproduct ¢ : A —> A ® A sends each generator x of degree nto an
element of A ® A of degree n. By the Kiinneth theorem, we may identify A® A
with H*(Y x Y; Q). By the representability of cohomology, the element v (x)
is represented by a map Y x Y to K(Q, n). These maps are the coordinates of
the product Y x Y — Y that makes Y into an H-space. A moment’s reflec-
tion will convince the reader that ST(A) is isomorphic to A as a quasi-Hopf
algebra, and it follows from Theorem 9.1.1 that TS(Y) is equivalent to Y as an
H-space. 0

It is clear from the proof that this equivalence of categories provides a
dictionary for translating topological properties into algebraic properties. For
example, we have the following elaborations.

PROPOSITION 9.1.5. A rational H-space Y of finite type is homotopy associative
(or homotopy commutative) if and only if H*(Y; Q) is coassociative (or cocommu-
tative). If Y is of finite homological dimension, so that H*(Y; Q) is an exterior
algebra, then Y is homotopy associative if and only if Y is equivalent as an
H-space to a finite product of spaces K(Q, 2n — 1). In particular, it is then homotopy
commutative.
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PROOF. The first statement is clear. For the second, if Y is of finite homo-
logical dimension, then, as we shall prove in Corollary 22.4.3, H*(Y;Q) is
an exterior Hopf algebra. This means that its generators x are primitive,
Y(x) = x®1+1Qx. Since the fundamental classes of Eilenberg-Mac Lane
spaces are clearly primitive, the conclusion follows. For the last statement,
recall from [93, p. 127] that Eilenberg-Mac Lane spaces can be constructed as
commutative topological groups. O

9.2. The Samelson product and H..(X; Q)

In this digressive section, which elaborates on [104, App.], we show that there
is a conceptual topological way of interpreting the homology H. (X; Q) when X
is a connected homotopy associative H-space, not necessarily of finite homo-
logical dimension. We begin with some preliminaries on the structure of
H-spaces.

DEFINITION 9.21. An H-monoid is a homotopy associative H-space. An
H-group is an H-monoid with a map x providing inverses up to homotopy,
so that

po(idx x)oA x>~ po(x xid)oA,

where * denotes the trivial map at the unit element e and u is the product.
If we abuse notation by writing x (x) = x~! and writing u(x,y) = xy, then
the condition becomes “xx~! = ¢ = x~'x” up to homotopy. An H-monoid
is grouplike if 7o(X) is a group under the product induced by the product

on X.

More elegantly, an H-space X is an H-monoid if the functor [—, X] is
monoid-valued and is an H-group if the functor [—, X] is group-valued. Using
the uniqueness of inverses in a group, a formal argument shows that if X is an
H-monoid, then itis an H-group if we have either of the homotopies displayed
in the definition; the other will follow. Note in particular that the set [S, X]
of components is then a group, so that an H-group is necessarily grouplike.
Less obviously, the converse often holds.

LEMMA 9.2.2. A connected H-monoid is an H-group.

PROOF. Define the “shearing map” §: X x X — X x X by &(x,y) = (x, xy).
On 7, (X) X ,(X), including n = 1, it induces the homomorphism of abelian
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groups that sends (a,b) to (a,a+b). This is an isomorphism; its
inverse sends (a,b) to (a,b—a). Therefore & induces an isomorphism
on homotopy groups and is an equivalence. Choose a homotopy inverse
€71 and define x =m0& oy, where (1(x) = (x,¢) and m(x,y) =Y.
Then since £~ is homotopy inverse to &, m o0&~ is homotopic to 71,
and po£~! is homotopic to m,. Using the first of these, we see that
(id xx) 0 A = (id xmp) o (id x& ') o (id xt1) 0 A is homotopic to £ 1 ous.
Using the second, we see that t 0 £ ! o ¢1 is homotopic to the constant map. [J

Digressing from our usual assumption that X is connected, we have the
following weaker analogue. We shall make use of it later, when proving Bott
periodicity.

LEMMA 9.23. If X is a grouplike H-monoid, then H is homotopy equivalent to
X, x mo(X), where X, denotes the component of the unit element e. If, further, X
is homotopy commutative, then X is equivalent to X, x mo(X) as an H-space and
therefore X is an H-group.

PROOF. Choose a basepoint x; in each component [x;], taking e in the com-
ponent [e] = X,. Write y; for the basepoint in the component inverse to [x;]
in mp(X). Define pu: X — X, x mo(X) by u(x) = (»y;, [x;]) for x € [x;] and
define v: X, x mo(X) —> X by v(x,[x;]) = xx;. Then p and v are inverse
equivalences, and they are maps of H-spaces if X is homotopy com-
mutative. d

Now consider the rational homology of a connected H-group X. Since
the Hopf algebra H,(X; Q) is cocommutative, it is primitively generated and
is therefore isomorphic to the universal enveloping algebra U(P), where P
denotes the Lie algebra (under the commutator) of primitive elements in
H,(X; Q). This statement is explained and proven in Theorem 22.3.1 and
Corollary 22.3.3. The vector space of primitive elements depends only on
the coproduct of H(X;Q) and therefore depends only on the diagonal map
of X, not on its product. Therefore, as a vector space, P can be identified
with the primitive elements in the homology of the product of Eilenberg-
MacLane spaces that is equivalent to the rationalization of X. However,
a moment’s thought makes clear that the Hurewicz homomorphism for a
rational Eilenberg-Mac Lane space identifies its homotopy groups with the
primitive elements in its rational homology. Therefore that is also true for the
rationalization Xo. This proves the following result.
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PROPOSITION 9.24. The Hurewicz homomorphism
h: 7. (Xo) — H«(Xo;Z) = Hi(X; Q)

is a monomorphism whose image is the vector subspace of primitive elements.

This raises the question of whether there is a homotopical construction
of a Lie bracket on m.(X) for an H-group X that is compatible under the
Hurewicz homomorphism with the commutator in H,(X; Z). The answer is
that indeed there is. The relevant product on homotopy groups is called the
Samelson product, and we shall define it shortly. The discussion just given will
then have the following immediate implication. Here and below, when X is
connected, we understand 7, (X) to mean the graded abelian group consisting
of the homotopy groups of X in positive degrees.

THEOREM 9.25. Let X be a connected H-group of finite type. Then H,(X; Q) is
isomorphic as a Hopf algebra to U(m,(X) ® Q), where 7, (X) is regarded as a Lie
algebra under the Samelson product.

DEFINITION 9.26. Let X be an H-group. Write x (x) = x~! and define a map

¢: X xX —> X by
o(x,y) = () (x 'y 7).

As noted above Proposition 1.4.3, we may assume that e is a strict two-sided
unit element, and a similar use of the nondegeneracy of the basepoint e shows
that ¢ is homotopic to a map ¢’ that restricts to the trivial map on X v X and
thus factors through X A X. For based spaces J and K, define the generalized
Samelson product

(= =) [J.XIQ[K, X] — [JAK, X]

by (f,g) = [¢' o (f Ag)]. Specializing to | = SP and K = S, this gives the
Samelson product

(= =)t 1p(X) @ mg(X) —> 7p14(X).
PROPOSITION 9.2.7. Let X be an H-group. If x € Hp(X;Z) and y € Hy(X; Z)
are primitive, then
Pu(x ®y) = xp — (= 1)"yx =[x, y].
Therefore the Hurewicz homomorphism h: m.(X) —> Hy(X; Z) satisfies
h((f.8)) = [h(x), hiy)].
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PROOF. The map ¢ is defined by the commutative diagram

AxA idxtxid
XxX ——— X XxXXxXxX — X xXxXxX

¢ i \L idxidx x x x

X XxX XxXxXxX.
Iz HXp

For a primitive element %, A, (x) = x® 1+ 1®x and x(x) = —x, by (21.3.4).
From here, a simple chase of the displayed diagram gives the first statement.
Since h(f Ag) = h(f) ® h(g), the second statement follows. O

For connected rational H-groups Y, h: 7,(Y) — H,(Y; Q) is a monomor-
phism, and it follows that 7, (Y) is a Lie algebra under the Samelson product.
Since 4 (Xp) is 7 (X) ® Q, the rationalization of 7, (X) is a Lie algebra for any
connected H-group. It requires more work to show that 7, (X) is itself a Lie
algebra. We only sketch the proof. Complete details may be found in [143, X{5].

PROPOSITION 9.2.8. For a connected H-group X, m.(X) is a Lie algebra under
the Samelson product.

SKETCH PROOF. We need three preliminaries, the first of which is group
theoretical. Recall that the lower central series {I';} of a group G is given by
I'1 = G and, inductively, I';;; = [T, Gl. If {G;} is any central series of G,
starting as usual with Go = G, then I'; C G;_;. If G is nilpotent of class m,
then T'y41 = 0, and it follows that all iterated commutators of length m + 1
are zero. By [148, pp. 82-84], for x,y,z € G,

9.2.9 [%,yz] = [x,y][x,z] mod I3
and
9.2.10 [x, [y, 211y, [z, x]1[z, [x,y]] = 1 mod Tjy.

Second, we need the notion of the category of a space. For finite based
connected CW complexes X;, 1 < i <k, filter the product Y = Xj x - - - x X} by
letting (x1, . . ., %) bein F;Y if atleast k — j of the coordinates x; are basepoints.
Thus FyY is a point, F1Y is the wedge of the X;, and so on, with F,Y =Y.
Taking all X; = X, say that the category of X is less than k if the diagonal map
A: (X, %) — (X*, F,_1X¥) is homotopic to a map into F,_; X¥. It follows that
X has category less than k+ 1. The category of X, denoted cat(X), is defined
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to be the minimal k such that X has category less than k+ 1. When k = 0, this
means that X is contractible.

Third, we need the calculation of cat(Y) when Y is a product of spheres. A
stratification of X of height k is a filtration by subcomplexes FX, 1< j<k,
such that FoX = *, the boundary of each cell in FiX is contained in Fj_1X,
and FiX = X. If X has such a stratification, then cat(X) < k; in particular,
cat(X) < dim(X). For a lower bound on cat(X), one checks that if X has cate-
gory less than k, then the product of any k elements in H*(X; Z) is zero. Now let
X;=SP,p;>1,and Y = Xj X - - - X X. The filtration of Y above is a stratifi-
cation of height k, hence cat(Y) < k, and equality follows since the product of
the k fundamental classes is nonzero.

Now return to our H-group X. Let K be a finite CW complex. If cat(X) =k,
one proves that the group G = [K, X] is nilpotent of class at most k [143, X.3.6].
For a more explicit result, suppose that K has a stratification F;K, 1 <j < k.
Define G CGto be the set of maps in f € [K, X] such thatf|ij is null
homotopic. Then {G;} is a central series for G [143, X.3.10].

We apply all of this with K taken to be a product of either 2 or 3 spheres,
so that cat(K) = 2 or cat(K) = 3. We conclude that all double commutators
[x, [y, z]] vanish in the group [SP x S9, X] and all triple commutators vanish in
the group [SP x S x S", X]. Noticing that the maps [K AL, X] — [K x L, X]
are monomorphisms, and similarly for K A L A M, we see that we can check
the required algebraic identities by working either in the group [S¥ x S%,X], in
which I's C G, = 0, or in the group [SP x S1x S, X],in which 'y C G3 = 0.

For example, to check that (f,g+h)=(f,g)+(f.h), for f € my(X)
and g,h € my(X), we map these homotopy groups to the group
[SP x S1,X], where the equation holds modulo I'3 =0 by (9.2.9). The
proof that (f,g)+(—1)P{g,f) works similarly, using  that
t: SPTd = SP A ST —> SIASP = STHP has degree (—1)P1. Similarly, for
f emnp(X), g € mg(X), and h € 7, (X), the Jacobi identity

(=S (g b)) + (= D)Pg, () + (= 1), (f.8) =0

can be deduced from the equation (9.2.10) in the group [SP x $9 x S", X]. The
signs enter from transpositions needed to arrange that all elements lie in this

group. O

9.3. The Whitehead product

In this even more digressive section, we briefly describe the Whitehead prod-
uct, which is fundamental in the deeper parts of unstable homotopy theory
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and is conspicuous by its absence from [93]. It is most easily defined as a
special case of the Samelson product. That is the approach that we shall take,
although it risks obscuring the importance of the definition.

For any based spaces | and X, we may identify [X], X] with [ ], @X]. It is
relevant to signs that we write suspensions on the right, ] = J A S!. Since
QX is an H-group under concatenation of paths, we have the generalized
Samelson product

(=, =) [, 2X1®[K,QX] — [J A K, QX].
We rewrite this as
- —1: [Z], X]®[ZK, X] — [Z(] A K), X]

and call it the generalized Whitehead product. Taking Taking | = SP~! and
K = S971, this specializes to the Whitehead product

[= =1t mp(X) ® 7q(X) —> 7p+g-1(X)-

Clearly this is natural in X. It is determined in general by knowledge of the
[ip, iq], where i, € m,(SP) is the fundamental class.

More formally, in analogy with cohomology operations we define an r-ary
homotopy operation of degree n to be a natural transformation

Wy, (X) X - X7, (X) —> 7pgn(X), p=p1+---+pr.

Such homotopy operations are in canonical bijective correspondence with
elements ¥ € 7y, ,(SP1 V.-V SPr). The element ¥ corresponding to V¥ is
W (ip,, -+ ,1p,), and the operation W corresponding to ¥ is given by

Y(fi, o) = ((Vo(fi v V))x(¥).

Here f;: SP — X is an element of 77, (X), and V is the fold map, which is the
identity on each wedge summand of X Vv - - - v X. The Whitehead products are
the most important examples. From this point of view, the Whitehead product
[ip, iq] is thought of as a map spta-1 __, §pv/ §9, and it is the attaching map
for the construction of S¥ x S from SP v S1.

The Whitehead products appear in the EHP-sequence, which is the most
important tool for the study of unstable homotopy groups. Expositions may be
found in Whitehead’s 1978 book [143], which nowhere mentions localization,
and Cohen’s 1985 lecture notes [30], which assume familiarity with it. The
latter is especially recommended as a follow-up to this book for the reader
who is interested in learning more about classical homotopy theory.
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9.4. Fracture theorems for H-spaces

Now return to the fracture theorem context of the previous chapter. As there,
we let T;, i € I, be sets of primes. We now assume that T; N T; = & for i # j,
so that the set S of the fracture theorems is empty, and we assume that
T =|J; T; is the set of all primes. Thus we are relating global spaces X to
their rationalizations Xp through intermediate localizations Xr;.

THEOREM 9.4.1. Let X be a nilpotent finite CW complex or, more generally, a
nilpotent space with finitely generated integral homology.

(i) X is an H-space if and only if each Xr, is an H-space and the coproducts on
H*(X; Q) induced by the rationalization maps ¥;: X1, —> Xo all coincide.

(ii) X is a homotopy associative (or commutative) H-space if and only if each Xr,
is a homotopy associative (or commutative) H-space.

PROOF. First,letX bean H-space. By Proposition 6.6.2, each Xr, has a unique
H-space structure such that the localization ¢;: X — X7, is an H-map. Sim-
ilarly, the resulting product on Xr, induces a unique H-space structure on Xo
such that the localization v;: X1, — Xp is an H-map. Since the composite
V;¢; is rationalization, each of these H-space structures on Xy must coincide
with the one induced by that of X. Thus they induce the same coproduct on
H*(X;Q) = H*(Xo; Q). This implication does not depend on X having finitely
generated integral homology.

Conversely, suppose that each Xr, is an H-space and the induced coproducts
on H*(X; Q) coincide. Using Remark 8.2.8, we can apply Theorem 8.2.5 and
Addendum 8.1.4(i) with K taken to be the n-fold product X" for any n, since
these spaces are again nilpotent and have finitely generated integral homology
groups. Using the notations for maps from the cited references, for purposes
of the present proof we let Q[X", X] denote the pullback displayed in the
diagram

(¢i)*
9.42 QIX", X] —— [X" [lie; XT;]

Ps l J/ (TT; )=

X", X0l — [X",[]ier Xol.
Ay

We conclude from Theorem 8.2.5 and Addendum 8.1.4(i) that the canonical

map
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9.4.3 (X" X] — Q[X" X]

is a bijection. By the universal properties of (X")r, and (X")o and the commu-
tation of localization with finite products, the induced maps

[(XT,)", X1, = [(X")1;, X1,] — [X", X71]

and
[(X0)", Xo] = [(X™)0, X0l — [(X™)1;, Xo] —> [X", Xo]

are bijections for all i. Putting these bijections together, we can rewrite
(9.4.2) as

(#ix)
544 QIX", X] — = [Te/l(Xr)" Xr]

mi | o

[(X0)", Xo] — [;c/[(X0)", Xol-
A

By assumption, the product maps on Xr, induce the same map on H*(X; Q)
and, by Theorem 9.1.4, this implies that the induced products on X; are
homotopic. Thus the assumptions give us a well-defined element of Q[X?, X].
The corresponding element of [X?, X] is an H-space structure on X, the unit
condition being obtained by two applications of (9.4.3) with n = 1.

If X is homotopy associative or homotopy commutative, then so is X7, since
the multiplication on X7, is induced from that on X. Conversely, if the Xr, are
homotopy associative, we can apply (9.4.3) with n = 3 to see that

po(ux1l)puo(lxpu): XxXxX — X.

Similarly, if the X7, are homotopy commutative and t: X x X — X x X is
the interchange map, we can apply (9.4.3) with n = 2 to conclude that

pnpot>~pu: X xX — X. 0
THEOREM 9.4.5. Let I be finite. Let Y; be a T;-local H-space such that H,(Y;; Z)
is finitely generated over Zr,. Let A be a quasi-Hopf algebra over Q, and let
V't A— H*(Y;Q)

be an isomorphism of quasi-Hopf algebras. Then there exists one and, up to equiv-
alence of H-spaces, only one H-space X such that Xt is equivalent as an H-space
to Yy, for each k € 1. Moreover, X has finitely generated integral homology.
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PROOF. By the equivalence of categories given in Theorem 9.1.4, there is a
rational H-space Y corresponding to the Hopf algebra A and for each map v*
there is a map of H-spaces

lﬁiZYi—>Y

that realizes the map ¥ on rational cohomology. Let X be the homotopy
pullback of the ;. By Theorem 8.1.7, the canonical map X7, — Y; is an
equivalence for each i € I. Since the integral homology of Y; is finitely gener-
ated over Zt;, X has finitely generated integral homology by Proposition 7.4.3.
As in the previous proof, we now have the bijection (9.4.3). The product on X is
the element of [ X?, X] that corresponds to the products on the Xr, in Q[X?, X].
Again, the unit condition is obtained by two applications of (9.4.3) with n = 1.
The uniqueness follows from the uniqueness of Y and Theorem 8.1.1. O

The results of this section give the starting point for the subject of finite
H-space theory. For example, one can build exotic finite H-spaces, ones not
equivalent to compact Lie groups, S7, and products thereof, by patching
together localizations at different sets of primes of different global H-spaces
that happen to be rationally equivalent. Returning to the taxonomic analogy of
Remark 7.5.8, this is an application of a standard approach to the construction
of interesting examples of global spaces with well-understood localizations
that are in the same genus. Thinking of spaces, homotopy types, and spaces
in the same genus as analogous to animals, animals in the same species, and
animals in the same genus, algebraic topologists are expert at genetic mod-
ification to produce different species in the same genus. We usually modify
spaces using finite sets I, especially partitions of the primes into two disjoint
sets T1 and T5. In that case, the local to global fraction results go under the
name of Zabrodsky mixing, following [145, 146, 147].

The idea is to take two spaces Xj and X, that are equivalent rationally but
have very different localizations at T1 and T, and construct a hybrid beast by
our local to global construction. We refer the interested reader to [2, p. 79] for
an amusing discussion of the resulting bestiary. The historically first example
was due to Hilton and Roitberg [63]. They constructed an H-space X thatis in
the same genus as the Lie group Sp(2) but is not equivalent to it. Both X and
Sp(2) are equivalent to S x S7 away from the primes 2 and 3. As is explained
in [62, pp. 122-127], the three H-spaces in sight, X, Sp(2), and S x §’, are
total spaces of bundles over S7 with fiber S3, and every simply connected finite
H-space with rational cohomology E[x3, x7] is equivalent to the total space of
such a bundle. There is a large literature devoted to examples such as this.
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For a beautiful concrete general result, we quote the following remarkable
theorem of Hubbuck [69].

THEOREM 9.46. Let X be a connected homotopy commutative finite H-space.
Then X is homotopy equivalent to a torus T = (S1)" for some n.

Since T admits a unique H-space structure, it follows that the equivalence
is necessarily an equivalence of H-spaces. Observe that it is not even assumed
that X is homotopy associative, but the result implies that it is. The following
corollary is essentially equivalent to the theorem.

COROLLARY 9.4.7. A simply connected homotopy commutative finite H-space is
contractible.
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10

COMPLETIONS OF NILPOTENT
GROUPS AND SPACES

We develop completion at T for abelian groups, nilpotent groups, and nilpotent
spaces. We say right away that there is a choice here. It is usual to focus on a
single prime p, and there is no loss of information in doing so since completion
at T is the product over p € T of the completions at p, and similarly for all
relevant algebraic invariants. We have chosen to work with sets of primes, but
the reader may prefer to concentrate on a single fixed prime.

In contrast to localization, completions of abelian groups can sensibly be
defined in different ways, and the most relevant definitions are not standard
fare in basic graduate algebra courses. Here again we construct and study com-
pletions of nilpotent groups topologically rather than algebraically. We discuss
various ways of completing abelian groups in {1. We define completions of
spaces and connect the definition to the algebraic theory of completions in §2.
We then construct completions of nilpotent spaces by induction up their Post-
nikov towers in §3. We specialize to obtain completions of nilpotent groups
in (4.

Recall our notational conventions from the Introduction. In particular, T
is a fixed and nonempty set of primes throughout this chapter. Maps ¢ will
always denote completions.

10.1. Completions of abelian groups

10.1.1. p-adic completion
It is usual to define the completion of an abelian group A at a given prime p
to be the p-adic completion

A, =lim (A/p" A),

where the limit is defined with respect to the evident quotient homomor-
phisms. For later reference, we recall that the limit can be displayed in the
short exact sequence

191
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10.1.1 0— A, —> x,A/p'A 5 x,A/p'A —> 0,

h coordinate

where « is the difference of the identity map and the map whose r*
is the composite of the projection to A/p" 1 A and the quotienthomomorphism
q: A/p"T1A — A/p’ A; since the maps q are epimorphisms, « is an epimor-
phism [93, p. 147]. This definition will not fully serve our purposes since p-adic
completion is neither left nor right exact in general, and exactness properties
are essential to connect up with the topology. The Artin-Rees lemma implies

the following analogue of Lemma 5.1.2.

LEMMA 10.1.2. When restricted to finitely generated abelian groups, the p-adic
completion functor is exact.

When A = Z, we write Z, instead of Zp for the ring of p-adic integers, and
we abbreviate Z/nZ to Z/n. Observe that the p-adic completion functor takes
values in the category of Z,-modules. The action is given by the evident natural
maps

limZ/p" ®limA/p"A — lim (Z/p" ® A/p"A) = lim A/p" A.

When A is finitely generated, p-adic completion is given by the map
¥ : A— AQ®Z, specified by ¥ (a) = a® 1, this again being a consequence
of the Artin-Rees lemma. In this case, the alternative notion of completion at
p that we shall give shortly agrees with p-adic completion. Since Zj, is torsion
free, it is a flat Z-module, which gives us another way of seeing Lemma 10.1.2.

Even if we restrict to finitely generated abelian groups, we notice one
key point of difference between localization and completion. While a homo-
morphism of abelian groups between p-local groups is necessarily a map of
Z(p-modules, a homomorphism of abelian groups between p-adically com-
plete abelian groups need not be a map of Z,-modules.

10.1.2. Derived functors of p-adic completion

To overcome the lack of exactness of p-adic completion in general, we consider
the left derived functors of the p-adic completion functor. For the knowledgable
reader, we recall that left derived functors are usually defined only for right
exact functors, in which case the 0" left derived functor agrees with the given
functor. However, the definition still makes sense for functors that are not
right exact. We shall not go into the general theory of derived functors since,
for our present purposes, the abstract theory is less useful than a concrete
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description of the specific example at hand. The left derived functors of
p-adic completion are given on an abelian group A by first taking a free
resolution

0—F —>F—A—0

of A, then applying p-adic completion, and finally taking the homology of the
resulting length two chain complex I:"I’, — IEP. Thus the left derived functors
of p-adic completion are defined by

Lo(A) = coker (F, —> F,) and Ly(A) = ker (F), — F).

These groups are independent of the choice of resolution, as one checks by
comparing resolutions, and they are functorial in A. The higher left derived
functors are zero. We have a map of exact sequences

10.1.3 0 F F A 0
I
b
A
0 LA F, —>= F, —> LA —= 0
It induces a natural map
b A —> LA

Since kernels and cokernels of maps of Z,-modules are Zy-modules, since
a free abelian group is its own free resolution, and since p-adic completion is
exact when restricted to finitely generated abelian groups, we have the follow-
ing observations.

LEMMA 10.1.4. The functors Lo and Ly take values in Zy-modules. If A is either a
finitely generated abelian group or a free abelian group, then LoA = Ap, L1A=0,
and ¢: A —> LyA coincides with p-adic completion.

We usually work at a fixed prime, but we write Lg and Llf when we need to
record the dependence of the functors L; on the chosen prime p.

DEFINITION 10.15. Fix a prime p. We say that the completion of A at p is
defined if L;A = 0, and we then define the completion of A at p to be the
homomorphism ¢: A — LyA. We say that A is p-complete if p: A —> LoA
is an isomorphism. As we shall see in Proposition 10.1.18, if A is p-complete,
then 1A = 0.
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EXAMPLE 10.1.6. We have seen that finitely generated and free abelian
groups are completable and their completions at p coincide with their p-adic
completions.

EXAMPLE 101.7. Z, ® Zp and Z/p™ (see below) are Zy-modules that are not
p-complete.

The essential exactness property of our derived functors, which is proven
in the same way as the long exact sequences for Tor and Ext, reads as follows.

LEMMA 10.1.8. For a short exact sequence of abelian groups
0—A —A—A —0,
there is a six term exact sequence of Zy-modules
0— LA — L1A — L1A" — [gA — [gA — [(A” — 0.

This sequence is natural with respect to maps of short exact sequences.

10.1.3. Reinterpretation in terms of Hom and Ext

These derived functors give a reasonable replacement for p-adic completion,
but they may seem unfamiliar and difficult to compute. However, they can be
replaced by isomorphic functors that are more familiar and sometimes more
easily computed. Define Z/p to be the colimit of the groups Z/p" with respect
to the homomorphisms p: Z/p" —> Z/p"*! given by multiplication by p.

EXERCISE 10.1.9. Verify that Z/p™ = Z[p~1]/Z.

NOTATION 10.1.10. For a prime p and an abelian group A, define E,A to be
Ext (Z/p*, A) and define Hj,A to be Hom (Z/p*°, A).

Of course, E,A = 0 if A is a divisible and hence injective abelian group.
Write Hom (Z/p", A) = A, for brevity. We may identify A, with the subgroup
of elements of A that are annihilated by p".

PROPOSITION 10.1.11. There is a natural isomorphism
HyA = lim A,,

where the limit is taken with respect to the maps p: Ary1 —> A,, and there is a
natural short exact sequence

0 —> lim' A, — E,A —> A, —> 0.
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PROOF. The exact sequence
P r
0—Z-—Z—Z/p —0

displays a free resolution of Z/p", and the sum of these is a resolution of
®,Z/p". Since Hom (Z, A) = A, we may identify Ext(Z/p", A) with A/p"A.
Moreover, we have maps of free resolutions

r+1

p
0 Z Z Z/p*tt —— 0
p l J/ q
0 V/ 7 Z/ph — 0.
pf

The colimit Z/p™ fits into a short exact sequence
0 — @Z/p" — & L/p —> L/p>* —> 0.

Writing 1, for the image of 1in Z/p", ((1;) = 1, — p1,41. The resulting six term
exact sequence of groups Ext (—, A) takes the form

10.1.12
0 — HyA— x; A, L XA —> E,A— % A/p'A N xrA/pr A—>0.

The first map ¢* is the difference of the identity map and the map whose r*
coordinate is p: Ar41 —> A. Its kernel and cokernel are lim A, and lim?! A,,
respectively. The second map ¢* is the map « of (10.1.1) whose kernel and
cokernel are Ap and 0, respectively. O

EXAMPLE 10.1.13. Any torsion abelian group A with all torsion prime to p
satisfies H,A = 0 and E,A = 0.

EXAMPLE 10.1.14. Hy(Z/p™) is a ring under composition, and it is isomor-
phic to the ring Z, by inspection of the limit system in the previous result;
Ey(Z/p*>) = 0 since it is a quotient of Ext (Z/p*°, Zlp~') = 0.

The following immediate consequence of Proposition 10.1.11 shows that
E,A is isomorphic to A, in the situations most often encountered in algebraic
topology.

COROLLARY 10.1.15. Ifthe p-torsion of A is of bounded order, then Hy,A = 0 and
£:EpA — Ap is an isomorphism.
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EXAMPLE 101.16. If A = @,>17Z/p", then E, A is not a torsion group, the map
&:EpA — Ap is not an isomorphism, and A is not p-complete.

PROPOSITION 10.1.17. There are natural isomorphisms
Lo(A) = EpA and L1(A) = HpA.
Moreover ¢: A —> LoA coincides with the connecting homomorphism
§: A= Hom (Z,A) — Ext(Z/p™,A) =E,A
associated with the short exact sequence

0— Z — Z[p~ '] — Z/p> — 0.

PROOF. Let

0—F —F—>A—0
be a free resolution of A. From this sequence we obtain the exact sequence
0—>L1A—>ﬁ’p—>l:”p—>LoA—>0
of (10.1.3) and also, since H,F = 0, the exact sequence of Ext groups
0 — HyA —> E,F' — E,F — E,A — 0.

Since EpF = 1:"p for free abelian groups F, we may identify these two exact
sequences. The last statement follows since the diagram (10.1.3) has an easily
checked analogue for Hj and E,. O

These isomorphisms may seem a little unnatural at first sight since Extis a
derived functor of Hom. It was first noted by Harrison [58] that these Ext groups
give a homologically appropriate variant of the classical p-adic completion
functor.

PROPOSITION 10.1.18. Let A be an abelian group and let B be any of A,, HpA,
and EpA. Then HyB =0 and §: B —> E,B is an isomorphism. Equivalently,
LiB=0and ¢: B—> LoBisan isomorphism. Therefore, if p: A —> LoAisan
isomorphism, then L1A = L1LyA = 0.

PROOF. Using the six term sequence of groups Ext(—, B) associated to
the short exact sequence 0 —> Z — Z[p~'] —> Z/p™ — 0, we see that
H,B = 0and §: B—> E,B is an isomorphism if and only if
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10.1.19 Hom (Z[p~'],B) =0 and Ext(Z[p~!],B) =0.

This condition certainly holds if p" B = 0 for any r, so it holds for all A, and
A/p"A. If (10.1.19) holds for groups B;, then it holds for their product x;B;.
Suppose given a short exact sequence 0—> B'—> B—> B”—0. If (10.1.19)
holds for B, then

Hom (Z[p~ '], B) = 0, Hom (Z[p~ '], B") = Ext (Z[p~ '], B),
and Ext(Z[p~'],B") = 0.

I (10.1.19) holds for B”, then it holds for B’ if and only if it holds for B. Now the
short exact sequence (10.1.1) implies that (10.1.19) holds for B = Ap, and the
four short exact sequences into which the six term exact sequence (10.1.12)
breaks up by use of kernels and cokernels implies that (10.1.19) holds for
B =EpAand B = H,A. a

Further interesting group theoretical results on “cotorsion abelian groups”,
of which p-complete abelian groups are examples, were obtained by Harrison
[58] long before their relevance to topology was noticed. His results were later
summarized by Bousfield and Kan [21, pp. 181-182]. Since we will not have
need of them, we will not recall them here.

10.1.4. The generalization to sets of primes

DEFINITION 10.1.20. Fix a nonempty set of primes T and recall that Z[T~!]
is obtained by inverting the primes in T, whereas Zr is obtained by inverting
the primes not in T. Define

HrA = Hom (Z[T'1/Z, A) and ETA = Ext(Z[T"'1/Z, A).

We say that the completion of A at T is defined if Hr A = 0, and we then define
the completion of A at T to be the connecting homomorphism

¢: A=Hom (Z,A) — ETA
that arises from the short exact sequence
0— Z —> Z[T™Y — Z[T711/Z —> 0.

We say that B is T-complete if ¢ is an isomorphism. We let @/ denote the
collection of all abelian groups that are completable at T and we let A1 C 2/t
denote the collection of all T-complete abelian groups.
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REMARK 10.1.21. The short exact sequence above gives rise to an exact
sequence

0 — HrA — Hom (Z[T'],A) > A — ErA — Ext(Z[T"'],A) — 0;

A is completable at T if Hom (Z[T~!],A) = 0 and B is T-complete if and
only if

10.1.22 Hom (Z[T™1],B) =0 and Ext(Z[T'], B) = 0.

The inclusion Z[T~'] — Q induces an isomorphism Z[T~'1/Z — Q/Z,
and Q/Zr is isomorphic to the T-torsion subgroup of Q/Z. In turn, Q/Z is
isomorphic to the direct sum over all primes p of the groups Z/p*>°. These
statements are well-known in the theory of infinite abelian groups, and we
invite the reader to check them for herself. It follows that the definitions above
generalize those given when T is a single prime. Indeed, we have the chains
of isomorphisms

HrA = Hom (Z[T~1]/Z, A)

= Hom (@®per Zlp~'1/Z, A)

12

xper Hom (Z[p~11/Z, A)

= Xper HpA
and

ErA = Ext! (Z[T~11/Z, A)

12

Ext! (@per ZIp~'1/Z, A)

112

x et Ext! (Z[p~11/Z, A)

XpeT EpA.

Analogously, we define
AT = XpETAp-

By Lemma 10.1.4, all of these are modules over the ring Zr = X peT L.

The results we have proven for a single prime p carry over to sets of primes.
For example, Corollary 10.1.15 and Proposition 10.1.18 imply the following
results.
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PROPOSITION 10.1.23. If A is a torsion-free or finitely generated Zs-module for
any set of primes S D T, then Hr A = 0 and the canonical map ETA —> Ar isan
isomorphism; its inverse can be identified with the map A ® Z1 —> ETA induced
by the action of Z1 on ETA. In particular, Ex restricts to an exact functor from
finitely generated Zr-modules to Z-modules.

PROPOSITION 10.1.24. For any abelian group A, the groups AT, HTA, and ETA
are T-complete.

10.2. The definition of completions of spaces at T

Recall that we take all spaces to be path connected. Recall too that we let
Fr = XpeTFp. We have the following three basic definitions, which are written
in precise parallel to the definitions in the case of localization. The equiva-
lence in the following definition follows directly from Definition 3.3.10 and
Proposition 3.3.11.

DEFINITION 10.21. A map §: X —> Y is said to be an Fr-equivalence if
&x: Hy(X;Fp) — Hy(X;Fp) is an isomorphism for all primes p € T or, equiv-
alently, if £*: H*(Y; B) - H*(X; B) is an isomorphism for all Fr-modules B.

DEFINITION 1022. A space Z is T-complete if £*: [Y,Z] — [X,Z] is a
bijection for all Fr-equivalences £: X —> Y.

Diagrammatically, this says that for any map f: X — Z, there is a map
f, unique up to homotopy, that makes the following diagram commute up to
homotopy.

DEFINITION 10.2.3. Amap ¢: X —> Xr from X into a T-complete space X1
is a completion at T if ¢ is an Fr-equivalence.

This prescribes a universal property. If f: X — Z is any map from X to
a T-complete space Z, then there is a map f, unique up to homotopy, that
makes the following diagram commute.
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¢

X — Xr

Therefore completions are unique up to homotopy if they exist. We shall
prove in Chapter 19 that they do always exist, but we focus on nilpotent spaces
for now.

REMARK 10.2.4. On the full subcategory of connected spaces in Ho.7 that
admit completions at T, completion is automatically functorial (up to homo-
topy). For a map f X —> Y, there is a unique map fT Xr — Yrin HoZ
such that ¢ o f = fr 0 ¢ in Ho.7, by the universal property.

The definitions just given do not mention any of the algebraic notions that
we discussed in the previous section. However, they lead directly to consid-
eration of the collection At of T-complete abelian groups, as the following
analogue of Corollary 5.2.6 shows.

THEOREM 10.2.5. TheFr-equivalences coincide with the maps that induce isomor-
phisms on cohomology with coefficients in all groups in B, and Br is the largest
collection of abelian groups for which this is true.

PROOF. Let ¢t denote the collection of all abelian groups C such that
£*: H*(Y; C) — H*(X; C)

is an isomorphism for all Fr-equivalences §: X — Y. Our claim is that
Pt = €r. The collection ér has the following closure properties.

(i) If two terms of a short exact sequence of abelian groups are in 67, then
so is the third term since a short exact sequence gives rise to a natural
long exact sequence of cohomology groups.

(i) If p e T and p"C = 0, then C € %7, as we see by (i) and induction on r;
the case r = 1 holds by the definition of an Fr-equivalence.

(iii) Any product of groups in é7 is also in €7 since H*(X; x;C;) is naturally
isomorphic to x;H*(X; C;).

(iv) By (i), the limit of a sequence of epimorphisms f;: C;;; —> C; between
groups in ¢r is a group in ¢t since we have a natural short exact
sequence
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0 — lim Ci —> XiCi — XiCi —> 0;

the lim! error term is 0 on the right because the f; are epimorphisms;
see §2.3.
(v) All groups At are in €7, as we see by (ii), (iii), and (iv).
(vi) ErAisin 46t if Ais completable at T, as we see by (i), the exact sequence
(10.1.3) and Proposition 10.1.17.
(vii) Aisin %T if Ais T-complete since A is then completable and isomorphic
to ETA.

This proves that 1 C ¢r. For the opposite inclusion, we observe first that
the unique map from K(Z[T~'],1) to a point is an Fr-equivalence. Indeed,
we have seen that K(Z[T~'],1) is a localization of S! = K(Z, 1) away from T.
Its only nonzero reduced homology group is Hy (K(Z[T~'],1);Z) = Z[T~'].
Since multiplication by p € T is an isomorphism on this group, the universal
coefficient theorem implies that I:I*(Z[T_l], Fp) = Oforp € T.For C € 4T, we
conclude that H*(Z[T~], C) = 0. By the universal coefficient theorem again,

Hom (Z[T~'],C) = HYZ[T'1,C) =0

and
Ext(Z[T~!],C) = H*Z[T™!],C) = 0.
By Remark 10.1.21, this means that C is T-complete. O
Recall the discussion of profinite groups from §2.5 and say that a profinite
group B =lim By is T-profinite if the B are T-torsion groups. Itis clear from
Theorem 10.2.5 and its proof that many T-profinite abelian groups are in #Ar
and are thus T-complete in our sense, but it is not clear that all of them are.

However, Theorem 10.2.5 and the restriction of Theorem 2.6.1 to T-profinite
abelian groups imply the following result.

COROLLARY 1026. All T-profinite abelian groups are in Br.
Returning to topology, we can now relate #r to Eilenberg-Mac Lane spaces.
COROLLARY 102.7. If Bis T-complete, then K(B, n) is T-complete for all n > 1.

PROOF. If&: X — Y is an Fr-equivalence, then

£*: H*(Y; B) — H*(X; B)
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is an isomorphism by Theorem 10.2.5 and thus
£ 1Y, K(B,n)] — [X, K(B,n)]

is an isomorphism by the representability of cohomology. O

By analogy with Proposition 5.2.5, we have an alternative topological
description of the collection &t of T-complete abelian groups. As in that
result, we cannot prove this without first doing a little homological calculation,
but we defer that to the next section.

PROPOSITION 10.2.8. An abelian group B is T-complete if and only if the space
K(B, 1) is T-complete.

PROOF. If Bis T-complete, then K(B, 1) is T-complete by the previous result.
Suppose that K(B,1) is T-complete. Then the identity map of K(B,1) is a
completion at T. Moreover,

£%:0 =[x K(B,1)] — [K(Z[T'1,1), K(B,1)]

is an isomorphism since K(Z[T~!],1) — # is an Fr-cohomology isomor-
phism, as we observed in the proof of Theorem 10.2.5. Using the represent-
ability of cohomology, this gives that

Hom (Z[T~'], B) = HY(Z[T '], B) = 0.

This implies that HyB =0, so that B is completable at T. In Theo-
rem 10.3.2 below, we shall show among other things that the map
¢: K(B,1) — K(ETB, 1) that realizes ¢: B — Er B on fundamental groups
is an Fr-equivalence, and its target is T-complete since ErB is T-complete
by Proposition 10.1.24. Thus ¢ is also a completion of K(B, 1) at T. By the
uniqueness of completion, ¢ must be an equivalence and thus ¢: B — ErB
must be an isomorphism. O

10.3. Completions of nilpotent spaces

We construct completions here, beginning with completions of Eilenberg-
Mac Lane spaces. That was the easy step in the case of localizations, but it is
the key step in the case of completions. We first record the relevant special
case of the dual Whitehead theorem. Take .7 in Theorem 3.3.9 to be #At. Then
that result takes the following form, which generalizes the fact that K(B, n) is
T-complete if B is T-complete.
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THEOREM 103.1. Every Ar-tower is a T-complete space.

We use this result to construct completions of nilpotent spaces, dealing
separately with Eilenberg-Mac Lane spaces before proceeding to the general
case.

THEOREM 10.3.2. Foreach abelian group A and each n > 1, there is a completion
¢: K(A,n) — K(A,n)}. The space K(A, n)y is Br-nilpotent, its only nonzero
homotopy groups are

ma(K(A )}) = ETA

and
Tt (K(A, m)p) = HrA,

and ¢y : m,(K(A, n)) —> m,(K(A, n)%) coincides with ¢: A — ErA.

PROOF. First consider a free abelian group F. Here we have HrF = 0 and
ErF = Fr. We claim that the map

¢: K(F,n) — K(Fr,n)

that realizes ¢: F —> Fr is a completion at T. Since Fr is T-complete by
Proposition 10.1.24, K(Fr, n) is T-complete by Corollary 10.2.7. Thus we only
need to prove that ¢, is an isomorphism on mod p homology for p € T. We
proceed by induction on n, and we first consider the case n = 1.

The projection Fr —> I:“p induces an isomorphism on mod p homology
since its kernel is local away from p. We now use the LHS spectral sequence,
Proposition 24.5.3, of the quotient group I:“p /F. The spectral sequence has the
form

Eyy = Hp(Ey/F; Hy(F; Fy)) = Hpoq(Epi Fp)-

The group l:"p /Fisuniquely p-divisible. One can see this, for example, by noting
that the canonical map F — f:p is a monomorphism of torsion-free abelian
groups that induces an isomorphism upon reduction mod p. Alternatively,
writing elements of F in terms of a basis for F and writing integer coefficients
in p-adic form, we see that elements of F/p" F can be written in the form f + pg,
where the coefficients appearing in f satisfy 0 < a < p. If we have an element
(fr + pgr)of im F/p"F C x,F/p"F with components written in this form, then
compatibility forces (f;) to come from an element f € F, and it follows that
our given element is congruent to p(g,) mod F. It follows that the terms with
p > 0 are zero and the spectral sequence collapses to the edge isomorphism
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. . ~ g2 _ ~ .
¢« Hy(F; F,) = EO‘* = EO,* = H*(Fp,]Fp).

Forn > 1, take K(F,n— 1) = QK(F, n) and consider the map of path space
fibrations

K(F,n—1) ——> PK(F,n) — K(F,n)

| | |

K(Fr,n—1) — PK(Fr,n) —> K(Fr,n).

By the Serre spectral sequence, the induction hypothesis, and the comparison
theorem, Theorem 24.6.1, the map

2 Hy(K(F,n), Fp) —> Hy(K(ET,n), Fp)

is an isomorphism and therefore ¢ is a completion at T.

Now consider a general abelian group A. Write A as a quotient F/F’ of free
abelian groups and let i: F* —> F be the inclusion. We construct a map of
fibration sequences

K(F,n) — K(An) —> K(F,n+1) — K(F,n+1)

|
Q‘Pl I ¢ i¢ i¢
N in

K(Br,n) — KA n) —— K(Fy,n+1) — K(Fr,n+1).

Here the map i realizes the algebraic map i on passage to 7,41 and can be
viewed as the map from the fiber to the total space of a fibration with base space
K(A,n+1). We take K(A, n) to be the fiber Fi and take K(F, n) = QK(F,n+1).
The two completion maps on the right have been constructed, and that on the
left is the loops of that on the right. The map i% is the map, unique up to
homotopy, that makes the right square commute up to homotopy, and it real-
izes the algebraic map i} on passage to ;1. We define K(A, n)7 to be its
fiber. By Lemma 1.2.3, there is a dotted arrow map ¢ that makes the middle
square commute and the left square commute up to homotopy. This map
induces an isomorphism on mod p homology for p € T by the map of Serre
spectral sequences induced by the map of fibrations given by the left two
squares. To show that ¢ is a completion of K(A, n) at T it remains to show
that K(A, n)% is complete. Since K(A, n)} is visibly a Ar-tower, this holds by
Theorem 10.3.1.
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The bottom fibration sequence above gives a long exact sequence
- — 1 (K(FT, 1)) — 7001(K(A, 1)5) —> T0p1 (K(Fp, n+ 1))
— u(K(Fr, n)) — 7a(K(A, n)}) —> mn(K(Fp, n+1)) — -

By the case of free abelian groups this simplifies to

SA
0 —> mus1(K(A m)p) — Fp =D Fr — ma(K(A,n)}) — 0.

The map i} is the product over p € T of the maps i)}, and our algebraic
definitions and results give exact sequences

0—>HpA—>IA~";—>IA7p—>EpA—>O.

The product over p € T of these exact sequences is isomorphic to the pre-
vious exact sequence, and this gives the claimed identification of homotopy
groups. Comparing the map on homotopy groups given by our map of fibra-
tion sequences to the diagram (10.1.3), we see that the map on n** homotopy
groups induced by ¢ is the algebraic map ¢. O

In view of Example 10.1.14, we have an interesting explicit example where
homotopy groups shift dimension.

EXAMPLE 103.3. For a prime p, K(Z/p, n)g is an Eilenberg-Mac Lane space
K(Zp, n+1).

This is not an exotic example. Analogous dimension-shifting examples play
a central role in comparing the algebraic K-theory of an algebraically closed
field, which is concentrated in odd degrees, to topological K-theory, which is
concentrated in even degrees [89, 113, 116].

The generalization from Eilenberg-Mac Lane spaces to nilpotent spaces
works in precisely the same way as the construction of localizations. We need
only replace the localizations K(Ar, n) by the completions K(A, n)%. The fact
that the latter are not Eilenberg-Mac Lane spaces does not change the details
of the construction.

THEOREM 103.4. Every nilpotent space X admits a completion ¢p: X —> Xr.
PROOF. Exactly as in the proof of Theorem 5.3.2, we may assume that X

is a Postnikov tower lim X; constructed from maps k;: X; — K(A;, n; + 1),
where A; is an abelian group, n;,1 > n; > 1, and only finitely many n; = n
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for any n > 1. Here Xy = %, and we let (X0)§ = %. Assume that a completion
¢i: X; — (X;)} has been constructed and consider the following diagram, in
which we write K(4;, n;) = QK(A;, n; +1).

K(Aj 1) —— Xip1 X; K(A;,n;+1)

|
Q¢ l | bit1 l [ l ¢
\

K(A;,n)p —— (Xip1)p — (X)) —— K(A,nm+1)p
(ki)p

By Theorem 10.3.1, since ¢; is an Fr-equivalence and K(A;,n; + 1)} is a
T-complete space there is a map (k;)%, unique up to homotopy, that makes the
right square commute up to homotopy. The space X, is the fiber Fk;, and
we define (X;41)% to be the fiber F(k;)7.

By Lemma 1.2.3, thereisamap ¢, 1 that makes the middle square commute
and the left square commute up to homotopy. By Theorem 10.3.1, (X;41)% is
T-complete since it is a Ar-tower. To see that ¢;, 1 is a completion at T it
remains to show that it induces an isomorphism on homology with coeffi-
cients in Fj, for p € T. The proof is a comparison of Serre spectral sequences
exactly like that in the proof of Theorem 5.3.2. We define X7 = lim (X;)7 and
¢ =lim¢;: X — X7. Then ¢ is an Fr-equivalence by Proposition 2.5.9 and
is thus a completion of X at T. O

Similarly, the proofs of the following analogues of Theorem 5.3.3, Propo-
sition 5.3.4, and Corollaries 5.3.5 and 5.3.6 concerning the functoriality of
our cocellular constructions are virtually identical to the proofs of those
results.

THEOREM 103.5. Let X and Y be Postnikov towers and let : X — Y be a
cocellular map. Choose cocellular completions at T of X and Y. Then there exists
a cocellular map 7 : X — Y7, unique up to cocellular homotopy, such that
Y4 o ¢ is homotopic to ¢ o 1.

PROPOSITION 103.6. Let W be a quotient tower of a Postnikov tower X with
projection w: X —> W. Then there are cocellular completions X1 of X and
W1 of W such that W, is a quotient tower of X whose projection satisfies
npop=¢om. If w1 (x) is connected, the map ¢: w1 (x) —> ()" (*)
obtained by restricting ¢ : X —> X7 to fibers is again a completion at T If, further,
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Y is a Postnikov tower, 0: Y —> W is a cocellular map, and 67 : Y — W2
is chosen as in Theorem 10.3.5, then the pullback X1 x wh Y2 of mf and 67 isa
cocellular completion of the pullback X xw Y of w and 6.

COROLLARY 103.7. X7 x Y7 is a cocellular completion of X x Y.

COROLLARY 10338. If X is a simply connected Postnikov tower, then Q(X7) is a
cocellular completion of QX.

10.4. Completions of nilpotent groups

As in the case of localization we can extend the definition of completion from
abelian groups to nilpotent groups by using the completion at T of nilpotent
spaces. By Theorem 10.3.4, for any nilpotent group G there is a completion
K(G,1)% of K(G, 1). By construction, m,(K(G, 1)}) = 0 for n > 3. We define

ErG = m1(K(G, 1)})

and
HrG = m(K(G, 1)),

and we let ¢: G —> E1G be the homomorphism induced on 71 by the com-
pletion ¢: K(G,1) — K(G, 1)}. Of course, as a second homotopy group,
HrG is abelian. By the functoriality of topological completion, Hr and Er
are functors and ¢ is a natural transformation. We say that G is completable
at T if HTG = 0, and we then call ¢ the completion of G at T. We say that
G is T-complete if ¢ is an isomorphism; as in the abelian case, this implies
that Hr G = 0. The universal property of topological completions specializes
to show that completion at T is universal among homomorphisms G — H
of nilpotent groups such that G is completable at T and H is T-complete.

The following three results are the analogues for completion of Propositions
5.4.7,5.4.8, and 5.4.9. The proofs of the second and third of them are identical
to the proofs in the case of localization, but the proof of the first must take
account of the fact that not every nilpotent group is completable.

LEMMA 104.1. A nilpotent group G is T-complete if and only if G is
P -nilpotent.

PROOF. If G is T-complete, then both its identity homomorphism and the
homomorphism obtained by passage to 71 from the inductive construction
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of completion at T in Theorem 10.3.4 are completions of G at T. By unique-
ness, they agree up to isomorphism under G, and the latter description dis-
plays G as a Zr-nilpotent group. Conversely, suppose that G is a Zr-nilpotent
group. Then K(G,1) is a Ar-nilpotent space and is equivalent to a Post-
nikov Ar-tower. Since we only have a fundamental group to construct, each
n; = 1 and the groups A; are all T-complete in the inductive diagram that
appears in the proof of Theorem 10.3.4. The maps ¢; defined inductively
there are all equivalences between Eilenberg-Mac Lane spaces K(—, 1), hence
¢: K(G,1) — K(G, 1)} is an equivalence. Therefore, K(G, 1)} must be a
space K(E1G, 1) and ¢: G —> ErG must be an isomorphism. O

PROPOSITION 10.4.2. A homomorphism ¢: G —> H between completable nil-
potent groups is an algebraic completion at T if and only if the map, unique up to
homotopy,

¢: K(G,1) — K(H, 1)

that realizes ¢ on 71 is a topological completion at T.
PROPOSITION 1043. If¢p: G —> Gr is the completion of a completable nilpo-

tent group G, then
¢« Hi (G Fp) —> Hi(Gr;TFp)

is an isomorphism for all primesp € T.

Proposition 5.4.10 and Corollary 5.4.11 also have analogues for comple-
tions.

PROPOSITION 1044. Let1 — G —> G —> G” —> 1 be an exact sequence
of nilpotent groups. Then the induced maps give a fibration sequence

K(G, 1)} — K(G, 1)} — K(G", 1)},
and the resulting long exact sequence of homotopy groups has the form

1 — HrG — HrG — HrG' — ErG — E1G — E7G" — 1.

PROOF. We can choose a central series for G that begins with a central series
for G’ and ends with the inverse image of a central series for G”. We can
construct corresponding Postnikov towers, so K(G”, 1) is a quotient tower of
K(G,1) with fiber K(G',1). Then, by Theorem 10.3.5, we can arrange our
completions so that the map K(G, 1)} — K(G”, 1)} is the projection onto a
quotient tower and the map on the fiber is completion at T. O
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COROLLARY 10.4.5. Suppose given a map of short exact sequences of completable

nilpotent groups
1 G’ G G” 1
1 H’ H H” 1

in which the groups on the bottom row are T-complete. If any two of the three vertical
arrows are completions at T, then so is the third.

We give some algebraic properties of completion at T in the rest of the
section. Some of these properties are direct generalizations from the abelian
case, but others give further information even in that case.

LEMMA 10.4.6. For any nilpotent group G, Ht G and ETG are T-complete. More-
over, the map ¢: G —> Er G gives rise to isomorphisms

Hr(ker¢) = HrG and ErG = Er(im¢),

and ET(ker ¢) = 0, Hr(im ¢) = 0, Er(coker ¢) = 0, and Hr (coker ¢) = 0.

PROOF. Since K(G,1)} is nilpotent, it can be constructed as a Postnikov
tower with quotient tower K(ETG,1). The fiber of the quotient map is a
space K(HrG, 2). Labeling the quotient map 7 and the fiber inclusion map ¢,
Proposition 10.3.6 gives a map of fibration sequences

K(H7G,2) — K(G,1)) ——> K(ErG, 1)

‘| | |

K(H7G,2)% —> (K(G,1)})} — K(ETG,1)5.

A
tr Tr

The vertical arrows ¢ are completions, and the middle arrow is an equiva-
lence since the identity map of K(G, 1) is also a completion. By construction,
K(HtG, 2)} is simply connected and 7, (K(ETG, 1)7) = 0 for n > 2. Compar-
ing the long exact sequences of homotopy groups, we see that

(i) HrHrG = 73(K(H1 G, 2)5) = 0;
(ii) m2(w4) = 0 and hence HTETG = m(K(ETG, 1)}) = 0; and
(iil) m2(:%) and mq(7w}) are isomorphisms.
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Therefore the left and right vertical arrows ¢ induce isomorphisms of homo-
topy groups. This proves the first statement. The second statement is left as
an exercise for the reader. It is shown by applying Proposition 10.4.4 to the
two short exact sequences obtained by factoring ¢ through its image. The
proof entails diagram chasing of the two resulting six term exact sequences,
using the fact that the composite ErG —> Erim¢ —> ETErG is the isomor-
phism ET¢. O

We will not make direct use of the following result, but we will make a
little use of some of its consequences. To prove it, we drop our attempt to be
algebraically as well as topologically self-contained and use some group theory
that can be found in standard sources, such as Kurosh [78].

PROPOSITION 10.4.7. Let G be a nilpotent group.

(i) Hr G = Hr (1 G), where 7 G is the T-torsion subgroup of G.
(i1) Ht G = 0 if the p-torsion elements of G are of bounded order forp € T.
(iii) ErG = 0 if and only if G is p-divisible forp € T.

PrROOF. The quotient group G/t G is T-torsion free, hence so are the abelian
subquotients of its upper central series [78, II, pp.245, 247]. This implies
that Hr(G/1G) = 0, and (i) now follows from Proposition 10.4.4. Since the
abelian subquotients of any central series of G will inherit the boundedness
property in (ii), (i) and the abelian group case of (ii) imply that (ii) holds in
general.

For (iii), assume first that ETG = 0. Consider the fiber F¢ of the map

¢: K(G,1) — K(G, 1)5.

The space K(G, 1)% is nilpotent, and its reduced mod p homology is zero for
p € T. Therefore the integral homology of F¢ is local away from p and so F¢
is local away from T, hence the nilpotent group w1 (F¢) is local away from
p- Since ETG =0, G is a quotient of 71(F¢) and is therefore p-divisible for
peT.

Conversely, assume that G is p-divisible for p € T. We have not yet proven
the abelian case of the claim, so we consider that first. If G is abelian and
T-torsion free, then it is a Z[T~1]-module. If G is abelian and a T-torsion
group, then it is a direct sum of copies of Z/p*> for p € T [78, I,p.165].
In either case, Hom (Z[T~'], G) — Hom (Z, G) is an epimorphism and
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¢: G —> ErG is the zero homomorphism. Therefore the isomorphism
Er¢: ErG — ETErG is zero and thus ErG = 0. For general nilpotent
p-divisible groups G, an argument in [78, II, p.237] shows that G admits
a central series all of whose abelian subquotients are of one of the two types
just considered, so that ErG = 0. O

REMARK 10.4.8. By the previous two results HyG = Hr K, where K is the
T-torsion subgroup of ker ¢. Using Proposition 10.4.4 and Lemma 10.4.6,
we find that ErK = 0. By the previous result, K is thus a divisible torsion
nilpotent group. It is therefore abelian [78, 11, p. 235], in accordance with our
definition of H7 G as an abelian group. When T = {p},

H,G = HyK = Hom (Z/p*, K) = Hom (Z/p, G).

The last Hom refers to the category of groups, and the last equality is the
observation that any group homomorphism Z/p* — G factors uniquely
through K.

COROLLARY 10.4.9. For any nilpotent group G, HtG is a torsion-free abelian
group, and Ext (HT G, ETA) = 0 for all abelian groups A.

PROOF. Byinspection, Hr G is torsion free when G is abelian, and the general
case follows from the previous remark. The second statement follows since
E7A is an Ext group, Tor (B, C) = 0 if B is torsion free [25, VIL.4.2], and

Ext (B, Ext (C, D)) = Ext (Tor (B, C), D)

for all abelian groups B, C, and D [25, VI.3.5a]. O

REMARK 10.410. We shall use this together with the fact that, for abelian
groups Aand B, Ext (B, A) classifies extensions0 — A — C — B —> 0Oof
abelian groups[79, p. 68]. Thus Ext (B, A) = 0implies that every such extension
splits in the form C = A@® B.

The results above are less complete than in the abelian case in that we have
not yet considered T-adic completion of nilpotent groups. We will never make
later use of such a notion, but we sketch how the theory goes, without striving
for rigor. There are several equivalent ways to define T-adic completion, and
we give the one that best fits our way of thinking about completion.
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DEFINITION 10.4.11. For a nilpotent group G, define the T-adic completion
of G to be the inverse limit of the Zr-nilpotent groups under G. That is, the
inverse system runs over the commutative diagrams of homomorphisms

B/

where B and B’ are T-nilpotent. This gives a functor since for f: H — G
we can map an element of Hr to the element of G given by the coordinates
indexed on composites H —> G —> B. By the definition, we have a natural
map ¢: G —> Gr. Applying the functor Er and using that the groups B in
the limit system are T-complete, we obtain a natural map ¥ : ErG — Gr
such that ¥ o¢ = ¢. That is, the T-adic completion ¢ factors through the
T-completion ¢.

The definition is not quite rigorous because we have not shown that the
inverse system can be restricted to a cofinal set of homomorphisms G — B.
The standard way around this is to restrict attention to epimorphisms, taking
the limit of T-nilpotent images of G, as we did implicitly for p-adic completion
of abelian groups. However Gr is defined, we will have Gt = x pép, and we
could start with that as part of the definition. We did that in the abelian case
and, as there, we could redefine Gp to be lim G/GP', where G?" denotes the
subgroup, necessarily normal, generated by all elements g’ for g € G. This
gives a well-defined functor, and it is the definition of choice in the algebraic
literature (see, for example, [141, p. 52]), but now we must check that each
G/GP' is p-complete. Alternatively, we can redefine Cp using epimorphisms to
Fp-nilpotent groups. When G is finitely generated, we can replace %, -nilpotent
groups by finite p-groups in the limit system, and then G, is isomorphic to
the classical profinite completion of G at p [126, p. I-5].

PROPOSITION 10.4.12. If the p-torsion elements of G are of bounded order for
pe T, theny: ErG —> @T is an isomorphism.
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SKETCH PROOF. The hypothesis on the p-torsion is inherited by all subquo-
tients of G, so Ht vanishes on all groups in sight. Profinite completion at pis an
exact functor on finitely generated nilpotent groups, and one can generalize to
show that this remains true without finite generation under our hypothesis on
the p-torsion. In the case of abelian groups, this is a p-adic generalization of the
Artin-Rees lemma that we proved implicitly in the first section of this chapter.
Given the exactness, Gt is p-complete and ¥ is an isomorphism by induction
on the nilpotency class of G, using Proposition 10.4.4 and Corollary 10.4.5.
For closely related results, see [141, Thms. 7.4, 7.6]. O
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CHARACTERIZATIONS AND PROPERTIES
OF COMPLETIONS

We give several characterizations of completions in §1. Starting with §2, we
restrict attention to completions at a single prime p, and we study the homo-
topical behavior of completion at p with respect to standard constructions on
based spaces. The treatment runs parallel to that in Chapter 6, and we focus
on points where completion behaves differently from localization.

11.1. Characterizations of completions of nilpotent spaces

We show that several alternative conditions on a map are equivalent to its
being a completion at T. We have the following pair of omnibus theorems.

THEOREM 11.1.1. The following properties of a nilpotent space Z are equivalent,
and they hold if and only if Z is T-complete.

(i) Z is a Br-nilpotent space.
(ii) £*: [Y,Z] — [X, Z] is a bijection for every Fr-equivalence £ : X —> Y.
(iii) Each m,Z is a T-complete group (nilpotent if n = 1, abelian if n > 1).

THEOREM 11.1.2. For a nilpotent space X, the following properties of a map
¢: X — Y from X to a T-complete space Y are equivalent. There exists one
and, up to homotopy, only one such map, namely the the completion X —> Xr.

(i) ¢*: [Y,Z] — [X, Z] is an isomorphism for all T-complete spaces Z.

(1) ¢ is an Fr-equivalence.
Moreover, for each n > 1, there is a natural and splittable exact sequence

0 —— Erm,X T, Y Hrm,—1X —— 0,

214
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and the composite 7, X i> ErnnX — w,Y is ¢y If X is a#r-nilpotent,
so that each Hrm,X =0, the following condition is equivalent to (i)
and (ii).

(iii) Forn>1, ¢y: myX —> 7, Y is completion at T.

In Theorem 11.1.1, (ii) is the definition of what it means to be T-complete.
In Theorem 11.1.2, (ii) is the definition of what it means for ¢ to be a comple-
tion at T, and we have already proven the existence and uniqueness of such a
completion. Therefore, in both results, it suffices to prove the equivalence of
(ii) with the remaining properties. Note that the hypothesis for criterion (iii)
of Theorem 11.1.2 is essential. For example, 7, (K(Z/p*, n),) = 0.

PROOF OF THEOREM 11.1.1. This is very nearly the same as the proof of
Theorem 6.1.1. We use our characterization of 1 in Theorem 10.2.5 and the
dual Whitehead theorem for the collection %t to see that (i) = (ii). The im-
plications (ii) = (i) and (i) = (iii) are proven as in Theorem 6.1.1. The
topological proof of (iii) = (i) in Theorem 6.1.1 works just as well here,
although the algebraic proof does not. O

PROOF OF THEOREM 11.1.2. Again, much of this is nearly the same as
the proof of Theorem 6.1.2. The equivalence of (i) and (ii) follows from
Theorem 10.3.1 and the representability of cohomology. The proof that
(iii) = (ii) when X is o#7-nilpotent is the same as the corresponding implication,
(ili) = (ii), of Theorem 6.1.1. Conversely, to see that (ii) implies (iii) when
X is ofr-nilpotent, it suffices to check the general statement about homotopy
groups. For that purpose, we may use our cocellular completion ¢. The con-
clusion holds when X is an Eilenberg-Mac Lane space by Theorem 10.3.2. The
claimed exact sequence of homotopy groups and the description of ¢, fol-
low inductively by chasing the maps of exact sequences of homotopy groups
associated to the maps of fibration sequences in the inductive construction
of X7 in Theorem 10.3.4. The chase uses the exact sequences displayed in
Lemma 10.1.8 and, more explicitly, Proposition 10.4.4. With the notations of
the proof of Theorem 3.5.4, these give exact sequences of the form

0 — HrA; — HT(G/GnJ+1) — HT(G/GHJ')
—> E1A; — E1(G/Gpjy1) — E1(G/Gyj) — 1

determined by the central series used to build up G = 7, X. Ateach stage of the
inductive construction of X7, we are building one of these exact sequences in
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the (n + 1)* and n* homotopy groups of Xr, and by the time we have finished
building up the n* homotopy group we have also built the summand Hr,X
of the (n+ 1)® homotopy group. At each stage of the construction, we have
splittings in view of Corollary 10.4.9 and Remark 10.4.10. O

Recall that HTA = xpeTHpA and ETA = Xpe7E,A. Together with Theo-
rem 11.1.2, these observations have the following consequence, which was
promised at the very beginning of the previous chapter.

COROLLARY 11.1.3. For a nilpotent space X, the canonical natural map
(mp): XT —> XperXp
is an isomorphism in Ho.7.

PROOF. Observe that )A(p is a T-complete space since %, is contained in HAr,
so that any %,-nilpotent space is Zr-nilpotent. By the universal property of Xr
the completions X — )A(p factor through canonical natural maps 7 : Xr — )A(p
forpe T:

The map (m): Xr —> xpeT)A(p induces an isomorphism on homotopy
groups and is thus a weak equivalence or, equivalently, an isomorphism in
HoZ. O

The following result makes clear that completion at T can be thought of as
a refinement of localization at T.

PROPOSITION 11.1.4. The completion at T of a nilpotent space X is the composite
of its localization at T and the completion at T of the localization Xr.

PROOF. Since F, is a p-local abelian group it is also T-local. Therefore
any Fr-equivalence is a Zr-equivalence. By the definitions of T-local and
T-complete spaces, this implies that any T-complete space is T-local. By
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the universal property of localization at T, we obtain a map ¢ making the
following diagram commute.

Since ¢ is clearly an Fr-equivalence, it is a completion of Xt at T. O

REMARK 11.1.5. Observe that we have no analogues of the homological crite-
ria in parts (iv) of Theorems 6.1.1 and 6.1.2. In fact, the integral homology
of completions is so poorly behaved that it is almost never used in practice.
The groups H,(Xr; Z) are always T-local, so they are uniquely g-divisible for
q ¢ T, but little more can be said about them in general. Observe that, by
Remark 5.4.1 and the universal coefficient theorem, if I:In()A(T;]Fp) =0 and
Hy1 (X7 Fp) =0forp e T, then H,(Xr;Z) is a rational vector space.

One might naively hope that, at least if X is f-nilpotent, H, (Xr; Z) might
be isomorphic to Hy(X; Z) ® Zr, in analogy with what is true for localization.
However, as observed in [21, VI.5.7], that is already false when X = S". For
q > n, the groups Hy(S%;Z) are rational vector spaces. Let n be odd. Then
Corollary 6.7.3 implies that the rationalization of 34 is a space K(Q® Zt, n)
so that, for g > n,

Hy (8% Z) = Hy((S)o; Q) = Hy(K(Q® Z1,n); Q).

For a Q-vector space V, H,(K(V,n); Q) behaves homologically as if it were
a graded exterior algebra generated by Hy,(K(V,n);Q) = V. In particular,
Hgn(S%; Z) is an uncountable Q-vector space for g > 2.

11.2. Completions of limits and fiber sequences

Since completions see one prime at a time, by Corollary 11.1.3, we now fix
a prime p and only consider completion at p henceforward. This allows us
to work with the Noetherian ring Z, rather than the ring ZT, which is not
Noetherian if the set T is infinite.

This section is analogous to the corresponding section, §6.2, for localization.
The main difference is that it is necessary to be more careful here since exact-
ness properties are more subtle and since the characterizations of completions
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are weaker. To begin with, we do not have a general analogue for completions
of the result that a p-local nilpotent group is Z,-nilpotent. This is related to
the fact that a homomorphism between p-complete abelian groups need not
have p-complete kernel and cokernel and need not be a homomorphism of
Zy-modules. Recall the notion of a Z,-map from Definition 4.3.2.

LEMMA N21. If f: X —> Y is a map between nilpotent spaces, then its
completion f,: ffp — ?p is a Zy-map.

PROOF. ByTheorem 3.5.4 we may assume that X and Y are Postnikov towers
and that f is a cocellular map. We may then construct ¢x: X — }A(p and
oy: Y — f/p by Theorem 10.3.4 and construct ﬂ by Theorem 10.3.5, so that
ittoo is a cocellular map. Since the functors Hj and I, that describe homotopy
groups take values in the category of Zp-modules, the conclusion follows. O

While this result works in full generality, it is only useful to us when we
obtain f Z,-maps. The problem is that, while the kernel and cokernel of a map
of Zy-modules between p-complete abelian groups are Zy-modules, they still
need not be p-complete. However, they are so when the given modules are
finitely Z,-generated. Recall Notations 4.5.1 and 4.3.3. The proof above works
to give the following refinement.

LEMMA M.22. Iff: X — Y is a map between fZr mpotent spaces for any
set of primes T such that p € T, then its completion ﬁ, Xp —> Yp is an

fZy-map.

The following two results work without f-nilpotency hypotheses on our
spaces.

PROPOSITION 11.23. IfX and Y arenilpotent spaces, then (X x Y), is naturally
equivalent to )A(p X f’p.

PROPOSITION 11.2.4. If X is nilpotent and Qo(X) denotes the basepoint compo-
nent of QX, then (QX)j, is naturally equivalent to Qo(ffp).

PROOF. As noted in the proof of Proposition 6.2.4, Q¢X is equivalent to QX.
The cocellular version of the statement applies to X. O



11.2. COMPLETIONS OF LIMITS AND FIBER SEQUENCES [ 219

Our methods do not give the most general possible forms of the next two
results, but their f-nilpotency hypotheses are satisfied in the applications and
would shortly become necessary in any case.

PROPOSITION 11.25. Let f: X — A and g: Y —> A be maps between
f-nilpotent spaces, let No(f, g) be the basepoint component of the homotopy pullback
N(f.g), and let f, and g, be p-completions of f and g.

(i) If N(f,g) is connected, then N( ﬁ,, 8p) is connected.
(it) No(f,g) is p-complete if X, Y, and A are p-complete.
(1ii) No(f?,,gp) is a p-completion of No(f, g)-

PROOF. Recall from Proposition 6.2.5 that No(f, g) is nilpotent. We mimic
that result for the rest. The f-nilpotent hypothesis is not needed for (i) since
Corollary 2.2.3 shows how to determine connectivity by the tail end of an
exact sequence, and the right exactness of the functor E, gives the conclu-
sion. For (ii), Proposition 4.4.3, applied to the abelian category f.o7, of finitely
generated Zy-modules, shows that No( ﬁ,, 8p) is f Zy-nilpotent and is therefore
p-complete. Using Corollary 10.4.5, part (iii) follows by comparison of the
long exact sequences of homotopy groups for No(f, g) and No(fT, gr) given in
Corollary 2.2.3. O

Similarly, the proof of the following theorem uses the results just cited,
and also Lemmas 3.1.3 and 4.3.4, exactly as in the proof of its analogue,

Theorem 6.2.6, for localizations.

THEOREM 11.26. Letg: X —> Y be a map to a connected space Y such that Y
and all components of X are f-nilpotent. Let F = Fg. Then each component of F is
f-nilpotent and there is a homotopy commutative diagram

t q g
QY F X Y

Q0 12 E, ¢ ¢
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with the following properties.

(i) Themap ¢p: Y —> f’p is a completion at p.

(ii) The maps ¢: X —> }A(p and ¢: F — l:"p are the disjoint unions over the
components of X and F of completions at T, defined using any (compatible)
choices of base points in these components.

(iii) The rows are canonical fiber sequences.

(iv) The restriction of ¥ to a map from a component of F to the component of its
image is a completion at p.

(v) Themap &: I:}, —> Fg, is an equivalence to some of the components of Fp.

(vi) Fix xe€X, let y=g(x)€Y, and assume that the images of
ge: m1(X, %) = m1(Y,y) and §ps: 11(Xp, (%)) — m1(Yp, ¢(y)) are normal
subgroups. Then the quotient group 7o(F) is f -nilpotent, the quotient group
70(Fg,) is f Zp-nilpotent, and Y. o(F) —> 7o(Fy) is a completion at p.

As in the local case, the result simplifies when Y is simply connected and
therefore F is connected. We can then ignore the interior of the central square
and part (ii), concluding simply that the fill-in ¢ : F — Fg, is a completion
of F at p.

11.3. Completions of function spaces

We first record an essentially obvious consequence of the general theory of
completions. We wrote the proof of Lemma 6.3.1 in such a way that it applies
with minor changes of notation to prove the following analogue.

LEMMA 11.3.1. Let X be nilpotent and Y be p-complete. Then
¢*: F(Xy, Y) — F(X, Y),

is a weak homotopy equivalence.

More deeply, we have the following analogue of Theorem 6.3.2, in which
we use much of the same notation that we used there. This result will play a
key role in the fracture theorems for completion.

THEOREM 11.3.2. Let X be an f-nilpotent space and K be a finite based connected
CW complex. Let g € F(K, X), and let F(K, X)g denote the component of F(K, X)
that contains g. Let K denote the i-skeleton of K and define [K, X 1g to be the set of
all h € [K, X] such that h|[K"~1 = g|K”*1 € [K"1, X1, where n is the dimension
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of K. Let ¢: X —> X, be a completion of X at p. Then the following statements
hold.

(i) F(K,X)g is an f-nilpotent space, F(K, )A(p)qgog is an f Zy-nilpotent space, and
¢+: F(K,X); — F(K, }A(p)q)og is a completion of spaces at p.

(ii) [K,X]g is an f-nilpotent group, [K, )A(p]g is an f7Zy-nilpotent group, and
¢y [K, X]g — [K,)A(p]q;og is a completion at p.

The proof of Theorem 6.3.2 applies verbatim. Note that even if we could
manage to eliminate f-nilpotency hypotheses in our results on fibrations in
the previous section, we would still have to restrict to f -nilpotent spaces in this
result, as the example of K = S" and X = K(Z/p>°, n) makes clear.

11.4. Completions of colimits and cofiber sequences

The analogues for completion of the results of §6.4 are intrinsically less sat-
isfactory since the relevant constructions fail to preserve p-complete spaces.
Notably, it is not true that £X is p-complete when X is p-complete, as we
saw in Remark 11.1.5. As there, the problem is that we have no homological
characterizations like those in Theorems 6.1.1 and 6.1.2 to rely on. However,
using the characterization of completion in terms of mod p homology, we can
obtain correct statements simply by completing the constructions that fail to
be complete. We obtain the following conclusions.

PROPOSITION 11.41. IfX, Y, and X V'Y are nilpotent spaces, then (X vV Y)j, is
naturally equivalent to ()A('p \% ?p);.

PROOF. ¢V p: XVY — Xp \% ffp is an Fy-equivalence, but its target need
not be p-complete. The composite of the displayed map with a completion of
its target is a completion of its source. a

The proofs of the next few results are of exactly the same form.

PROPOSITION 11.42. If X is nilpotent, then (£X), is naturally equivalent to
(ZXp)p-

PROPOSITION 11.43. Leti: A —> X beacofibrationandf: A —> Y bea map,
where A, X, Y, X /A, and X Up Y are nilpotent. If we choose completions such that
ip: Ap — )A(p is a cofibration, then ()A(p Ui, ffp);, is a completion of XU, Y.



222 / CHARACTERIZATIONS AND PROPERTIES OF COMPLETIONS

PROPOSITION 11.44. Let f: X —> Y be a map such that X, Y, and Cf are
nilpotent and let  be a fill-in in the map of canonical cofiber sequences

f 1 T
X Y cf =X
|
gl s
Y
X —= Y, —> Cf =X,
i i "

in which the given maps ¢ are completions at p. Then the composite of Y with a
completion of its target is a completion of Cf .

PROPOSITION 11.45. If X is the colimit of a sequence of cofibrations
X; —> Xi11 between nilpotent spaces, and if completions are so chosen that the
completions (X;), — (Xi41)p are cofibrations, then (colim (X;)p), is a comple-
tion of X.

PROPOSITION 146 If X, Y, and X AY are nilpotent, then (X AY), is
naturally equivalent to ()A(p A f/p);.

Clearly, in view of these results, it is unreasonable to expect to have a
cellular construction of completions analogous to the cellular construction of
localizations given in §6.5.

11.5. Completions of H-spaces

It is also unreasonable to expect to have naive constructions of completions
of H-spaces and co-H-spaces analogous to the constructions for localiza-
tions given in §6.6, and we cannot expect completions of co-H-spaces to be
co-H-spaces. However, completions of H-spaces behave well.

PROPOSITION 11.5.1. IfY is an H-space with product i, then f/p is an H-space
with product fi, such that ¢: Y —> ?p is a map of H-spaces.

PROOF. The map ¢p x¢p: Y XY — ?p X ?p is a completion at p, so there
is a map fip, unique up to homotopy, such that /i, o (¢ x ¢) is homotopic to
¢ o w. Left and right multiplication by the basepoint of ?p are each homotopic
to the identity by another application of the universal property. O
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There is a large body of interesting work on p-complete H-spaces. Here
again, some of the interest is in seeing how much like compact Lie groups they
are. For that comparison, one wants them to satisfy some reasonable finiteness
condition, but in the absence of a cell structure it is not entirely obvious how
to specify this. One also wants them to be equivalent to loop spaces. Of course,
this holds for any topological group G, since G is equivalent to the loops on
its classifying space BG. This leads to the following notion.

DEFINITION 11.5.2. A p-compact group is a triple (X, BX, ¢), where BX is a
p-complete space, ¢: X —> QBX is a homotopy equivalence, and the mod p
cohomology of X is finite dimensional. It is often assumed that BX is simply
connected, so that X is connected.

This notion was introduced and studied by Dwyer and Wilkerson [44], who
showed how remarkably similar to compact Lie groups these X are. The com-
pletion of a compact Lie group is an example, but there are many others.
Like compact Lie groups, p-compact groups have versions of maximal tori,
normalizers of maximal tori, and Weyl groups. A complete classification, anal-
ogous to the classification of compact Lie groups, has recently been obtained
[4, 5].

11.6. The vanishing of p-adic phantom maps

In parallel with §6.8, we give an observation that shows, in effect, that phantom
maps are usually invisible to the eyes of p-adic homotopy theory. The proof
relies on results from the literature about the vanishing of higher-derived
functors of lim. Their proofs are not hard, but they would take us too far afield
to give full details here.

LEMMA 11.6.1. Let X be a connected CW complex of finite type. If Z is
fZr-nilpotent then
lim!'[=X;, Z] = 0

and
(X, Z] — im[X;, Z]

is a bijection.

The conclusion is similar to that of Lemma 6.8.1, but that result was proven
using a cellular decomposition of X, whereas this result is proven using
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a cocellular decomposition of Z. Recall the definition of a J# -tower from
Definition 3.3.1.

PROOF OF LEMMA 11.6.1. By Corollary 11.1.3 we may assume without loss
of generality that T = {p}. Let fof, denote the collection of finite abelian
p-groups; we could equally well replace f.o7, by the single group Z/p in the
argument to follow.

We can construct the spaces K(Z/pf, n) and K(Zp, n) as f.o7,-towers. To be
precise about this, we use that the group H""(K(Z/p%, n),F,) is a copy of F,,
generated by fB4(tn), where 1, € H*(K(Z/p?, n); Fp) is the fundamental class
and

Bo: H' (= 2/p) — H"" (= Z/p)

is the ¢ Bockstein operation. That operation is obtained as the connecting
homomorphism associated as in [93, p. 181, #3] to the short exact sequence

0 — z/p! — 2/p" — Z/p — 0,
followed by reduction mod p. Viewing (i) as a map
K(z/p%,n) — K(Z/p,n+1),
its fiber is a space K(Z/p?*!, n). The limit of the resulting fibrations
K(z/p™ ) — K(Z/p",n)

is a space K(Zp, n).

In view of Remark 3.3.2, it follows that for any finitely generated Z,-module
B, the space K(B, n) can be constructed as a % f.o7,-tower with countably may
cocells. By Theorem 3.5.4, the fZy,-nilpotent space Z can be taken to be a
Postnikov fZ,-tower. Using Remark 3.3.2 again, it follows that all terms of
the tower and Z itself are .7 f.of)-towers with countably many cocells. The
commutations with sequential limits used in the construction give the more
precise information that Z is the limit of countably many quotient towers W;,
each of which has finite homotopy groups. For a finite complex K, [K, W]
is finite and, by Theorem 2.3.3, lim! vanishes on inverse sequences of finite

groups. Thus, for each fixed i,
|
hmj [2°X;, W;]=0.

If we assume that the groups [ZX], W] are abelian, then a result of Roos
[119, Thm. 3] (see also [120]) gives a spectral sequence that converges from

Ey" = lim{ lim{ [£X;, W}]
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to the derived functors lim" of the bi-indexed system {[ZX;, W;jl} of finite
groups. Since our limit systems are sequential or have cofinal sequential sub-
systems, the E, terms with p > 1 or q > 1 are zero, as are the terms with
g = 1, and the lim" groups to which the spectral sequence converges are zero
forn > 1. This forces E; = Ey and E;'O = 0, thatis limi1 [2£X;, Z] = 0. Adirect
adaptation of Roos’s arguments starting from the explicit definition of lim!
given in Definition 2.1.8 allows us to draw the same conclusion even when
the groups [XX;, W] are not abelian. O
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FRACTURE THEOREMS FOR
COMPLETION: GROUPS

In this chapter we describe how to construct a global nilpotent group from
a complete nilpotent group, a rational nilpotent group, and a compatibility
condition. The compatibility condition involves a notion of formal completion,
and we also give a brief discussion of what we call the adelic genus of a nilpotent
group. We describe the corresponding constructions for nilpotent spaces in
the next chapter. The results in these chapters parallel those in Chapters 7 and
8, but the proofs are quite different. For example, at one key spot in this chapter
we use a space-level result from the next chapter to prove a general algebraic
result about completions of nilpotent groups. In turn, we use that algebraic
result to prove a general topological result about completions of spaces in the
next chapter, carefully avoiding circularity. This contrasts with Chapters 7 and
8, where we consistently used results for groups to prove the corresponding
results for spaces.

More fundamentally, the algebra is here much less predictive of the topol-
ogy. Many of the algebraic results require completability restrictions on the
given groups, whereas the analogous topological results apply without any
such restriction. Conceptually, the point is that the group theory knows only
about Eilenberg-Mac Lane spaces K(G, 1), but the topology knows how to use
two-stage Postnikov towers to construct completions of Eilenberg-Mac Lane
spaces K(G, 1) for nilpotent groups G that are not completable algebraically.
Since we are interested primarily in the topology, we shall not be overly thor-
ough in our treatment of the algebra. However, we shall be quite carefully
pedantic about those results that are not well documented in other sources,
since it is quite hard to determine from the literature precisely what is and is
not true.

We let T be any nonempty set of primes. The focus is on the case when T
is the set of all primes and the case when T consists of a single prime p. Since
completions at T split as the products of the completions at p € T, the reader

226
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may wonder why we don’t just work one prime at a time. The answer is that
since we are relating global to local phenomena, these splittings do not imply
that our results for the primes p € T imply our results for T itself. We shall
say a bit more about this at the end of §12.2.

All given groups are to be nilpotent in this chapter, even when we neglect
to say so. Recall from Lemma 5.4.6 that T-local groups are the same as
Zr-nilpotent groups, as defined in Notation 4.5.1. Similarly, recall from
Proposition 5.6.5 that finitely T-generated T-local groups are the same as
fZr-nilpotent groups.

12.1. Preliminaries on pullbacks and isomorphisms

We begin by showing that completion preserves certain pullbacks. This is
in contrast to the case of localization, where all pullbacks are preserved. Of
course, the difference is a consequence of the failure of exactness for com-
pletion. We then give a criterion for a map between T-local groups to be an
isomorphism and show by example that its restrictive hypotheses cannot be
eliminated.

LEMMA 12.1.1. Let

f
A—— C
‘| |

B —— D

h
be a pullback diagram of abelian groups, where D is rational. Then ETA is iso-
morphic to ErB@ErC and, if B and C are completable at T, then so is A.

PROOF. Since D is rational, ErD = 0 by Proposition 10.1.11 and the first
claim can be viewed as saying that the functor E7 preserves the displayed
pullback. We are given the exact sequence

(f8) h—k
0 — A —— B®C —— D,

and we let I C D be the image of h — k. We then have a short exact sequence
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(f:8) h—k

0 — A —— BpC —— ] ——= 0.

By Proposition 10.4.4 (taking products over p € T), it gives rise to an exact
sequence

0 — HrA) — Hr(B®C) — Hr() — Er(4d) — Er(B®&C) — Er(I) — o.

Since D is rational, so is I, hence Hr(I) =0 and Er(I) =0, by Proposi-
tion 10.1.11. Therefore the sequence says that ET(A) = Er(B) @ Er(C) and
Hr(A) = 0if Hr(B® C) = 0. O

LEMMA 12.1.2. Let v: H —> G be a homomorphism between T-local groups,
where G is completable at T. Then  is an isomorphism if and only if

Yo: Hy— Go and Ery:ErH — ErG

are isomorphisms.

PROOF. The forward implication is obvious. Assume that y/o and ETy are
isomorphisms. Since v is an isomorphism, Proposition 5.5.4 implies that
the kernel and cokernel of ¢ are T-torsion groups.

Let im(y/) be the kernel of the cokernel of ¥, that is, the normal subgroup
of G generated by im (y). The exact sequence

1 im(y) G coker (y)——1
gives an exact sequence
I%Hrﬁ(d/)%HT(G)%HT coker (w)%ETﬁ(W)%ET(G)—HET coker () —1.

Since the isomorphism E1 factors through the map Et(im(/))—Er(G),
thismapmustbeanepimorphism, hencetheepimorphismEr G—Er coker (/)
must be trivial. This implies that Er coker () =1. By Proposition 10.4.7,
coker () is T-divisible. Since it is also a T-torsion group, it is trivial. Thus ¥
is an epimorphism. Now the exact sequence

1——=ker (¢) H G 1

gives an exact sequence

1R

1——Hr ker (y) HrH HrG Er ker (y) ErH ErG 1.
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Since Hr(G) = 0 by hypothesis, this exact sequence shows that Er ker () = 1.
By Proposition 10.4.7 again, ker (y) is T-divisible. Since it is also a T-torsion
group, it is trivial and ¢ is an isomorphism. O

EXAMPLE 12.1.3. The completability hypothesisis essential. The abelian group
B = @pe1Z/p™ satisfies By = 0 and ETB = 0. Therefore, for any abelian
group A, for example A = 0, the inclusion and projection A — A® B — A
are examples of maps that induce isomorphisms after rationalization and
application of Et but are not themselves isomorphisms.

12.2. Global to local: abelian and nilpotent groups

We agree to write ¢ for rationalization and (;3 for completion at T in this
section. Example 12.1.3 shows that we cannot expect to recover a global T-local
group G from Gg and E1 G unless Hr G = 0. Because the technical hypotheses
differ, we consider monomorphism, isomorphism, and epimorphism condi-
tions separately.

LEMMA 12.2.1. If an abelian group A is completable at T, then the kernel of the
completion ¢: A — ErA is Hom (Z[T1, A). If G is an fZr-nilpotent group,
then the completion ¢: G — E7G is a monomorphism.

PROOF. The firststatement holds by Remark 10.1.21. While Hom (Z[T~!], A)
is often nonzero, for example when A = Q, it is easily seen to be zero when
Ais a finitely generated Zr-module. The second statement follows by the five
lemma since all of the subquotients of any central series of an fZr-nilpotent
group are finitely T-generated, by Proposition 5.6.5. O

Finite generation hypotheses will shortly enter for another reason. Recall
that quotients of T-completable groups need not be T-completable in gen-
eral, as the example B = Zr/Z illustrates. However, we have the following
observation.

LEMMA 12.2.2. Forany set of primes T’ D T, all subquotients of all f Z1+-nilpotent
groups are completable at T. In particular, all subquotients of f Z-nilpotent groups
are completable at T

PROOF. Since completion at T is the composite of localization at T and
completion at T, this is implied by Proposition 5.6.5. O
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The following ad hoc definition encodes greater generality.

DEFINITION 1223. A nilpotent group G is nilpotently completable at T if
it has a central series all of whose subquotients (including G itself) are

completable at T.

In the abelian case, the following result is best possible. In the nilpotent
case, the completability hypothesis is not actually essential, as we shall see
from an alternative proof in the next section, but it is a natural condition to
assume and is needed for our first proof.

THEOREM 12.2.4. If Gisa T-local group that is nilpotently completable at T, then

the diagram
¢
G —— ErG
%o \L l %o
Gy —— (ETG)o
o
is a pullback.

PROOF. Changing notation to G = A, we first prove this when G is abelian.
Let B be the pullback displayed in the diagram

B —— ETA

s

Ay —— (ETA)o.
(®)o

The universal property gives a map v : A — B that factors both the comple-
tion A — ETA and the rationalization A — Ag. Since rationalization is

exact,

By ——= (ETA)o

.

Ay —— (ETA)0
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is a pullback whose right vertical arrow is an isomorphism. Therefore,
Bp— Apisanisomorphismandsois o : A9 — Bo. Similarly, since ET(Ao) =0,
Lemma 12.1.1 shows that B is completable at T and Ery: ETA — ErBisan
isomorphism. By Lemma 12.1.2, ¢ is an isomorphism.

Reverting to our original notation, the general case is proven by induction
on the nilpotency class of G, using Lemma 7.6.2. To see this, choose a central
series

(1=G4CG-1C...CGo=G

for G where G4_1 and G/Gy1 are completable at T. The base case and the
inductive hypothesis imply that the diagrams

(G/Gg-1) ——— Er(G/Gg-1) (Gg-1) ——— Er(Gg-1)
(G/Gg-1)0 —— (ET(G/Gg-1))o (Gg-1)0 —— (E1(Gg-1))o

are pullbacks. Since rationalization is exact,

1 —— (Gg-1)o Go (G/Gg-1)0 —— 1
is exact. Since G/Gy1 is completable at T,
1 —— Er(G4-1) —— Er(G) — Er(G/Gy-1) —— 1
is exact. This exact sequence and the exactness of rationalization imply that
1 —— ([Er(Gg-1))0 —— ([Er(G))o —— ET(G/Gg-1))0 —— 1
is exact. The claimed pullback follows from Lemma 7.6.2(i). O

The next result is the one proven topologically.! In turn, this algebraic
result will later be used in the proof of our topological global to local fracture
theorem.

1. The result is stated in [39, Prop. 3.5], but without details of proof.
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PROPOSITION 12.2.5. For any T-local group G, every element z € (ETG)o is a
product z = ¢o(x)o(y) for some x € ETG andy € Go.

PROOF. Incontrastto the analogue for localization, we prove this using topol-
ogy. Again, we first prove this in the abelian case, writing G = A. We have
K(A, 2) available to us, and we let P be the homotopy pullback displayed in the
diagram

n
P — K(A2)

| B

K(A,2)0 —— (K(A, 2)?)0.
(®)o

Since the other three spaces in the diagram are simply connected, the descrip-
tion of the homotopy groups of P in Corollary 2.2.3 ensures that P is connected.
By Theorem 13.1.5 (or Lemma 13.2.3) below, v is a rationalization and u
is a completion at T, hence the induced map «: K(4,2) — P becomes an
equivalence upon rationalization and completion at T. Therefore, by Corol-
lary 13.2.2 below, « is an equivalence. In particular, 771 (P) = 0. The conclusion
follows from Corollary 2.2.3 and the description of the homotopy groups of
completions in Theorem 11.1.2.

The general case is again proven topologically, by specializing Lemma 13.2.4
below. Briefly, let Y be the fiber of a map X — K(A, 2), where X is one stage
in the inductive construction of K(G, 1) and Y is the next stage. Let P be the
homotopy pullback displayed in the diagram

P

-

Yo —— (}A’T)().
b0

By Lemma 13.2.4, the canononical map Y — P is an equivalence. Since Y
is connected, so is P, and the conclusion again follows from Corollary 2.2.3
and Theorem 11.1.2. The reader may feel, as the authors do, that this is a
rather mysterious way to prove something as concrete and algebraic as the
result we are after. She might prefer an algebraic proof that just applies the
elementary Lemma 7.6.1. Choosing a central series for G as in the proof of
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Theorem 12.2.4 above and using the right exactness of the functor Et, we do
obtain a commutative diagram with exact rows

ErG;/Giy1 — ErG/Giyy —— ErG/G; —— 1

| i |

(ErGi/Git1)0 — Er1(G/Git1)0 — (ErG/Gi)o —— 1

| T T

(Gi/Git1)o ——— (G/Gipr)o —— (G/Gi)o —— 1.

However, to be able to quote Lemma 7.6.1, we need an intuitively obvious
but technically elusive detail. We leave it as an exercise for the dissatisfied

reader. O

EXERCISE 12.26. Let0 > A - G —> H — 1bea central extension of nilpo-
tent (or T-local) groups. Then the image of the induced map ETA— ErG
is a central subgroup, hence so is the image of the induced map
(ETA)o — (ETG)o.

It is natural to think of completion at p as the composite of localization at p
and completion at p, and it is also natural to ask how Theorem 12.2.4 correlates
with its analogue for localization, part (ii) of Theorem 7.2.1. Again assuming
that G is T-local and using notations and constructions cognate with those in
Theorem 7.2.1(ii), we have the following commutative diagram. It should be
compared with the key diagram (7.1.4) of §7.1, in which G is compared with
the pullbacks P and Q that are implicit in the top left square and its composite
with the triangle in the diagram.

@) Mgy
G l_[pET G(p) HpeT EyG
o l ) o
(@p)o (Nbp)o

Go (Iper G(p)o (ITper E»Glo

() (7Tp)

A

HpeT Go HpeT ((EpG)o)

T1(($p)o)
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The vertical maps ¢o are rationalizations. The map 7, at the bottom right
is obtained by rationalizing the projection IT,cTE,G — E,G, and the map
7Ty at the bottom center was defined similarly above (7.1.4). The two vertical
composites 7, o ¢ are rationalizations G, —> Go and E,G — (E,G)o.
The upper left square is a pullback, by Theorem 7.2.1(ii), and so sometimes
is the left part of the diagram with its middle horizontal arrow (¢,)o erased, by
Proposition 7.1.7 (see also Proposition 7.4.4 and Remark 7.4.6). The right part
of the diagram with its middle horizontal arrow (qu)o erased is a pullback when
each Gy satisfies the hypothesis of Theorem 12.2.4 (for the case T = {p}).
This certainly holds when G is finitely T-generated, which is the main case
of interest. We conclude that Theorem 12.2.4 for T is often but not always
implied by Theorem 12.2.4 applied to the singleton sets T = {p}. As we have
seen in Chapter 8, the divergence between the two pullbacks, Pand Q, induced
by the left part of the diagram becomes greater in the topological analogues.

12.3. Local to global: abelian and nilpotent groups

Our algebraic local to global result reads as follows. Its hypotheses seem to be
minimal, but it is instructive to compare it with Theorem 13.3.1, where the
topology allows us to generalize to groups that are not completable at T.

THEOREM 123.1. Let
nw
G —— ]
v l l %o
H—=Jo
be a pullback square of nilpotent groups such that

(i) ] is T-complete;
(i1) ¢o: ] —> Jo is a rationalization of J; and
(iii) H is rational.

Then G is T-local and completable at T, u: G — | is a completion at T, and
v: G — H is a rationalization. Therefore w is the rationalization of 1.

PROOF. Since J, Jo, and H are T-local, G is T-local by Lemma 5.5.7. We
first prove the rest in the abelian case, and we change notations in accord with
Lemma 12.1.1, letting G = A, H = B, and | = C. Since Bisrational, HTB = 0
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and ETB = 0. Since C is T-complete, HrC = 0 and E7C = C. Therefore, by
Lemma 12.1.1, A is completable at T and ETA — E7C = C is an isomor-
phism. Similarly, since rationalization preserves pullbacks, rationalization of
the given pullback square shows that A —> Bg = B is an isomorphism. This
proves the result in the abelian case. We can now change our point of view and
think of the pullback A as a given T-local and T-completable abelian group that
gives rise to our original pullback diagram via rationalization and completion
at T. Therefore the abelian case of Proposition 12.2.5 applies. We will use that
in our proof of the generalization to the nilpotent case.

Returning to the original notations, we prove the nilpotent case by induc-
tion on the larger of the nilpotency classes of | and H. The argument is
similar to the proof of Proposition 7.4.3. To exploit naturality, we start with
the lower central series of ] and H. Rationalization gives a map from the lower
central series of J to its rationalization, which is a lower central series of Jo
and so contains termwise the lower central series of Jo. The lower central
series of H is already rational, and w maps it into the lower central series
of Jo and thus into the rationalization of the lower central series of J. Since
rationalization commutes with quotients, for each j we obtain a commutative
diagram

| ——> H/Hy1 —— H/Hp ——> H/H —— 1

l S

1 —— (J/jtx1)o —— (J/]jt1)o —— (J/]o —— 1

T I

1 —— Jillin —— J/Jin J/]j 1

of central extensions. We denote the resulting sequence of pullbacks by
1——=A[j]—G[j + 1] ——G[j]—=1.

By Lemma 7.6.2(ii), whose key epimorphism hypothesis we verified in our
discussion of the abelian case, this is an exact sequence and in fact a central
extension. We know the result for A[j] and assume it inductively for G[j].
This clearly implies that Hr G[j + 1] = 0, and five lemma arguments give that
the associated maps v and u for G[j + 1] are a rationalization and a comple-
tionat T. d
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As promised, this allows us to reprove and improve Theorem 12.2.4.

THEOREM 123.2. If G is a T-local group that is completable at T, then the
following diagram is a pullback.

N

Gy —— (E7G)o
b0

PRoOOF. Take H = Go and | =ETG, with ¢ a rationalization of | and
® = ¢o. Let P be the pullback of ¢ and w. The universal property of P
gives a map o: G —> P that induces an isomorphism upon rationalization
and completion at T. Since P is completable at T, « is an isomorphism by
Lemma 12.1.2. g

12.4. Formal completions and the adélic genus

We have emphasized the fully general nature of the local to global fracture the-
orems. That is both a virtue and a defect. For example, @ in Theorem 12.3.1
can have a large kernel, or can even be zero. In the latter case, letting
K =ker (¢o: ] — Jo), wehave G = H x K, Go = H,andE7G = ErK. Noth-
ing like that can happen in the cases of greatest interest, where all groups in
sight satisfy finite generation conditions over the appropriate ground ring and
H and ] are related by nontrivial rational coherence data.

We first develop conditions on the input that ensure that our local to
global fracture theorem delivers fZr-nilpotent groups as output. This is sub-
tle since finite generation conditions on the input are not always sufficient.
There are finitely generated T-complete groups that cannot be realized as the
completions of finitely generated T-local groups.

Specializing to the set of all primes, we then define and say just a little
about the calculation of “adélic” and “complete” variants of the (local) genus
that we defined in §7.5. Here, assuming that we are given an fZ-nilpotent
group that can be realized as the completion of an f-nilpotent group, we ask
whether such a realization is unique and how to classify all such realizations.

To give a naive framework for dealing with these questions, we introduce
an analogue of the notion of a formal localization of a rational nilpotent group
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that is naturally dictated by our cocellular constructions of localizations and
completions. That motivation takes a global to local point of view, but the
essential point is that the definition formalizes what is needed to go from
finitely generated local data to finitely generated global data. Let Q1 denote
the ring Zr ® Q. Written that way, we think of first completing and then
rationalizing. But we have Qr = Q ® Zr. Written that way, we think of first
rationalizing and then rationalizing completion maps. That makes good sense
even though first rationalizing and then completing groups gives the trivial
group.

Recall the notions of an R-map of R-nilpotent w-groups and of an fR-map
of fR-nilpotent w-groups from Definition 4.3.1 and Notation 4.3.3. By the
cocellular functoriality of our constructions of localizations and completions,
localizations and completions of maps are R-maps for the appropriate ground
ring R, as observed in Lemmas 6.2.1, 11.2.1, and 11.2.2. A formal completion
is a particular kind of Q-map. Before giving the full definition, we note the
following analogue of the cited lemmas, which deals with a subsidiary part of
the definition.

LEMMA 12.41. If | is Z-nilpotent, then its rationalization ¢o: | —> Jo is a
Zr-map. Moreover, if | is f Zr-nilpotent and its torsion subgroup is finite, then
J and Jo admit central series { J;} and {K;} such that ¢o(J;) C K; and the induced
map of Z-modules Ji/Jix1 —> K;/Kiyq is isomorphic as a Qr-module under the
Zr-module]i/]iH to the canonical map n: J;/J;x1 —> Ji/Jiv1 ® Q. Thatis, there
is a commutative diagram

JilJit1
N
Ki/Kiy1 JilJit1®Q

of Zr-modules in which the isomorphism is a map of Qr-modules.

PROOF. The first statement is easily proven by induction, using our cocel-
lular constructions. For the second statement, the kernel of ¢ is the torsion
subgroup of ], which is finite by assumption and therefore an fZr-nilpotent
group. We may start our central series for | and Jo with a central series for
ker ¢p and the constant central series K; = K of the same length. Thus we
may as well replace | by J/ ker ¢p and so assume that ¢ is a monomorphism.
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Then the subquotients J;/J;, 1 are finitely generated free Zr-modules and the
conclusion follows. O

Of course, even if | is f Zr-nilpotent, ¢y is not an fZr-map since its target
is not fZr-nilpotent. It is fQr-nilpotent, and we must use the ring Qr for
algebraic understanding. The group 7 in the following definition plays no role
in this section, but the generality will be relevant to the space-level analogue.
We are only interested in the cases when either x is trivial or all given groups

are abelian.

DEFINITION 124.2. Let = be a group, H be an fQ-nilpotent 7-group, and
J be an fZr-nilpotent 7-group with rationalization ¢o: | —> Jo. A formal
completion of H at T associated to ¢¢ is a homomorphism w: H — Jo of
m-groups with the following property. There exists an f Q-central 7 -series { H;}
for H, an fZT-central n-series { J;} for J, and an f@T-central m-series {K;}
for Jo such that the w-equivariant conclusion of Lemma 12.4.1 holds for ¢y
and each induced homomorphism H;/H; 1 —> K;/K;;1 of Q[rr]-modules is
isomorphicasa @T [r]-module under the Q[ ]-module H;/H;_; to the natural
homomorphism

n: Hi/Hip1 = Hi/Hipy ® Zr — Hi/Hi ®Zr.
Thus w(H;) C K; and we have a commutative diagram
Hi/Hiq
/ \

Ki/Kitq H;/Hi 1 ® Lt

of maps of Q[r]-modules such that the isomorphism is a map of
Qr[w]-modules. Observe that a formal completion @ is necessarily a
monomorphism. Observe too that when the given groups are abelian, the
only requirement on the map w is that there must be a commutative diagram

of Q[z]-modules
H

Jo ———— H®Zr

§
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in which & is an isomorphism of Q7w ]-modules. No compatibility with the
map ¢y is required.

From a global to local point of view, we have the following observation.
As in Lemma 12.2.2, we use that completion at T factors through localization
atT.

PROPOSITION 12.4.3. For any T' O T, the rationalization (¢)o of the comple-
tion ¢: G —> ETG at T of an fZy -nilpotent group G is a formal completion
Go — (ETG)o.

From a local to global point of view, we have the following addendum to
Theorem 12.3.1.

THEOREM 12.4.4. Let

i
G —— ]

l |

H— Jo
w

be a pullback square of nilpotent groups such that

(i) J is f Z1-complete and its torsion subgroup is finite;
(i) ¢o: ] —> Jo is a rationalization of J;
(iii) H is rational; and
(iv) w is a formal completion associated to ¢o.

Then G is f Z-nilpotent.

PROOF. The kernel of ¢ is the torsion subgroup of J, which is finite by
assumption and therefore an f Zr-nilpotent group. It coincides with the kernel
of v, and, arguing as in Proposition 12.4.3 we may as well replace G and | by
their quotients by ker ¢9. That is, there is no loss of generality if we assume
that G and J are torsion free.

We look first at the abelian case. Then H is just a finite dimensional ratio-
nal vector space with an inclusion w: H — Jo of abelian groups and thus of
rational vector spaces that is equivalent under H to the canonical inclusion
H — H® Zt. Then the pullback G is a torsion-free Zr-module whose ratio-
nalization is H and whose completion at T is J. We may choose basis vectors for
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H thatare in G and are not divisible by any p € T. Let F be the free Zr-module
on these generators and ¢.: F —> G the canonical map of Zr-modules. Since ¢
rationalizes to the identity map of H, G is torsion free, and G/F is torsion free,
¢ is an isomorphism. By a pedantically careful diagram chase that we leave to
the reader, our pullback diagram in this case is isomorphic to the canonical
pullback diagram

F —— F®lr

|

FRQ — F®Qr.

For the inductive step, we choose central series {H;}, {J;}, and {K;} for
H, ], and Jy, respectively, as in the definition of a formal completion. As
usual, these assemble into a sequence of pullback diagrams of central exten-
sions. The sequence of pullback groups induced by each of these pullback
diagrams is short exact by Lemma 7.6.2(ii); the epimorphism hypothesis in
that result is satisfied by the abelian case of Proposition 12.2.5, which is
quite easy to reprove algebraically under the finite generation hypotheses
we have here. These extensions show that the pullbacks G; of the diagrams
H; —— K; <—— J; displaya central Zr-series for G with finitely gene-
rated subquotients, and the last statement follows by inspection. O

REMARK 12.4.5. The notion of formal completion used in Theorem 12.4.4 may
seem fussy. However, some such hypothesis is needed since Belfi and Wilk-
erson [10] have given an example of a finitely generated Zp-nilpotent group J
with mod p homology of finite type over IF, and with nilpotency class two such
that there is no finitely generated Z,-nilpotent group G whose completion
Gp is isomorphic to J, hence there is no finitely generated nilpotent group G
whose completion is isomorphic to J.

We now specialize T to be the set of all primes. We have two alternative
notions of genus.

DEFINITION 12.4.6. The adelic genus of a finitely generated nilpotent group
G is the set of isomorphism classes of finitely generated nilpotent groups G/
such that Gy is isomorphic to Gj, and @p is isomorphic to é']/o for all primes p.
The complete genus of G is defined by dropping the requirement that Go be
isomorphic to Gj,.
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The name “adeélic” is suggested by Sullivan’s analogy [133, 135] with the
theory of adéles in number theory. There do not seem to be standard names
for these notions in the literature, although the adelic genus has been stud-
ied, in particular by Pickel [112]. The previous proof gives the analogue of
Proposition 7.5.6.

PROPOSITION 12.4.7. The isomorphism class of A is the only element of the adélic
genus of a finitely generated abelian group A.

REMARK 12.4.8. In analogy with Example 7.5.7, Belfi and Wilkerson [10, 4.2]
have given examples of non-isomorphic finitely generated nilpotent groups G
and G’ that are in the same adelic genus but whose localizations G, and G},
are not isomorphic for some prime p, so that G and G’ are not in the same
genus.

We sketch briefly a naive approach to the study of the adeélic genus of a
fixed f-nilpotent group G. We ignore the question of change of chosen central
series in the definition of a formal completion. We may as well fix ] = G and
H = Gy. Then G is the pullback of a certain formal completion

1) $o
H— Jo =— ]

The results of this section imply that we can construct any other group G’ in
the same adélic genus as a pullback of a formal completion

o by
H— Jo =— ]

There is a unique automorphism £: Jo —> Jo of Q-modules such that
& o ¢y, = ¢o, and the pullback of

Eow’ %o

H— Jo =<— ]

is isomorphic to G’. Thus we may as well fix ¢y and consider all possible
choices of w. Two choices differ by a Q-automorphism of Jo. Let Aut (Jo)
denote the group of such automorphisms. We send an automorphism & to the
isomorphism class [£] of the pullback of & o w and ¢y. This is a well-defined
surjective function from Aut ( Jo) to the adelic genus of G. A Z-automorphism
¢ of J induces a Q-automorphism ¢ of Jo such that Z o ¢g = ¢ o ¢. It follows
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that [ 0&] = [£]. We would like to say that a Q-automorphism g of H
induces a @-automorphism ¢ of Jo such that € o w = w o &. It would follow that
[ 0 &] = [£]. The conclusion would be that the adélic genus of G is in bijective
correspondence with the double cosets

Aut H\ Aut (Jo)/ Aut].

REMARK 12.49. This sketch is incomplete since we have not shown that w
is functorial on automorphisms, but the conclusion is correct by results of
Pickel [112]. Moreover, combining with results of Auslander and Baumslag
[7, 8] and Borel [13], one can prove the remarkable result that the adelic genus
and complete genus of G are both finite sets. A summary of how the argument
goes is given in [144, {1].
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FRACTURE THEOREMS FOR COMPLETION:
SPACES

In this chapter we prove analogues of the results of the previous chapter for
nilpotent spaces. As in Chapter 8, we begin with a fracture theorem for maps
from finite CW complexes into f-nilpotent spaces. Aside from its restriction
to f-nilpotent spaces, some such restriction being necessary, its proof is so
precisely similar to the analogous arguments of §8.2 that we feel comfortable
in leaving the details to the reader.

We then consider fracture theorems for nilpotent spaces, stating them in
§13.1 and proving them in §13.2 and §13.3. The exposition follows the order
given in the analogue for localization, starting with global to local results.
However, these results are deduced from local to global results that are proven
topologically, making minimal use of the corresponding results for groups.
More straightforward inductive proofs based on the results for groups work
under completability assumptions.

The last three sections are of a different character. In §13.4, we give an
informal notion of the tensor product of a space and a ring. We have seen
two examples. All localizations fit into this framework, and completions of
f-nilpotent spaces do too. This gives a context in which to discuss Sullivan’s
formal completions in §13.5. These are extensions of tensor products with
the rings Zr from simple spaces of finite type to more general simple spaces.
Using these preliminaries, we return to the notion of genus in §13.6, where
we describe two variants of the notion of genus that we discussed in §8.5.

Throughout this chapter, T denotes a fixed set of primes. The set of all
primes and the set consisting of just one prime are the most interesting cases,
and the reader may prefer to focus on those. We let ¢ denote completion at T
and ¢ denote rationalization. All given spaces are to be nilpotent, even when
we neglect to say so, and we understand T-local and T-complete spaces to be
nilpotent. We may identify X1 with [lper f(p.

243
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13.1. Statements of the main fracture theorems

The following result is a consequence of Theorems 11.1.2, 11.3.2, and 12.3.2
via arguments exactly like those in §8.2.

THEOREM 13.1.1. Let X be an f Zr-nilpotent space and K be a finite CW complex.
Then the function
¢y [K, X] — [K, X7]

is an injection and the function
(6, 0): [K, X1 —> [K, X711 X ¢ 55091 [K: 0]
is a bijection. Moreover, the formal sum
[ZK,Xr] x [ZK, Xo] — [EK, (X7)o]

is a surjection.

The examples K = §" and X = K(Z/p*, n) or X = K(Q, n) show that the
injectivity statement no longer holds when X is Zr-nilpotent (= T-local),
rather than f Zr-nilpotent. The surjectivity statement is analogous to Proposi-

tion 8.2.7. The following consequence of the injectivity statement is analogous
to Corollary 8.2.4.

COROLLARY 13.1.2. Letf,g: K —> X be maps, where K is a nilpotent finite CW
complex and X is an f-nilpotent space. Then f ~ g if and only if f, ~ g, for all
primes p.

REMARK 13.1.3. Asin Remark 8.2.8, the previous results apply more generally,
with K taken to be any space with finitely generated integral homology.

Surprisingly, the fracture theorems for spaces, as opposed to maps, require
no f Zr-nilpotency assumptions.

THEOREM 13.1.4. Let X be a T-local space. Then the following diagram is a homo-
topy pullback.

X — %

|

A

Xo —> (X1)o
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THEOREM 13.1.5. Let

m
P —— [lper %

T

Y —— (Iper Xp)o
®

be a homotopy pullback of connected spaces in which

(i) the space X, is p-complete;
(ii) the map ¢q is a rationalization of [ [,c 1 Xp; and
(iii) the space Y is rational.

Then the space P is T-local, the map v is a completion of P at T, and the map v is
a rationalization of P. Therefore the map w is a rationalization of the map 1.

Theorem 13.3.1 below gives a restatement that may make the comparison
with the algebraic analogue, Theorem 12.3.1, more transparent.

REMARK 13.1.6. By Corollary 2.2.3, the hypothesis that P is connected in Theo-
rem 13.1.5 is equivalent to saying that every element z € 71 ((] [, Xp)o) is the
product of an element ¢y, (x) and an element w,(y) where x € 71 (][] X;) and
y € m1(Y). This means that w must satisfy the analogue of (ii) in the definition
of a formal localization, Definition 8.1.5. However, we require no hypothesis
analogous to (i) there. We will add such a hypothesis in §13.6, where we fix
Y and assume finite generation conditions. It is remarkable and illuminat-
ing that no connection between Y and the X, other than the condition given
by requiring P to be connected is needed for the validity of Theorem 13.1.5.
Of course, that condition always holds when the X, and Y are simply con-
nected.

REMARK 13.1.7. We shall derive Theorem 13.1.4 from Theorem 13.1.5, where-
as we gave an independent proof of the analogue for localization. Since X is
connected, the homotopy pullback to which Theorem 13.1.4 compares it must
also be connected, as in the previous remark. The algebraic result Proposi-
tion 12.2.5 proves this, and Theorem 13.1.4 depends on that result. However,
the proof of Proposition 12.2.5 referred forward to the topology. We shall care-
fully avoid circularity.
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13.2. Global to local fracture theorems: spaces

The following general observation is elementary butimportant. Ithelps explain
why one should expect to be able to reconstruct T-local spaces from their
rationalizations and their completions at T.

LEMMA 13.2.1. Let f: X —> Y be any map. Then f,.: H (X;Z1) — Hy(Y;ZT)
is an isomorphism if and only if f.: Hy(X; Q) — H«(Y;Q) and, forallp € T,
Sio Ho(X;Fp) —> Hi(Y;Fp) are isomorphisms.

PROOF. Since Qand F, are modules over the PID Zt, the universal coefficient
theorem gives the forward implication. For the converse, the Bockstein long
exact sequences of homology groups induced by the short exact sequences

0— Z/p”_1 — Z/p" — Z/p — 0

show that f.: Hy(X;Z/p") — H«(Y;Z/p") is an isomorphism for n>1
since it is an isomorphism when n =1. Since Z/p>* = colimZ/p" and
Q/Z1 = ®perZ/p™>°, this implies that fi: H.(X;Q/Z7) — H.(Y;Q/Z7)
is an isomorphism. Indeed, homology commutes with sums and colimits
of coefficient groups since this already holds on the chain level. Now the Bock-
stein long exact sequence induced by the short exact sequence

00— Zr — Q— Q/ZT — 0

shows that fi.: H«(X;Z1) — H«(Y;Zr) is an isomorphism. O

Since maps of T-local, rational, and T-complete spaces are equivalences if
and only if they induce isomorphisms on homology with coefficients in Zr,
Q, and F,, for p € T, the following result is an immediate consequence.

COROLLARY 13.22. Let f: X —> Y be a map between T-local spaces. Then f
is an equivalence if and only if its rationalization fo: Xo — Yo and completion
fr: X’T — ?T at T are equivalences.

Now the global to local fracture theorem, Theorem 13.1.4, is a direct con-
sequence of the local to global fracture theorem, Theorem 13.1.5.

PROOF OF THEOREM 13.1.4, ASSUMING THEOREM 13.15. Let P be the
homotopy pullback of the diagram
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Xr

iqﬁo

Xo — (Xr)o.
(é1)o0

Since m;(Xt) = Erm1(X), Proposition 12.2.5 implies that P is connected.
Therefore Theorem 13.1.5 implies that the induced map «: X — P becomes
an equivalence when rationalized or completed at T. By Corollary 13.2.2, & is
an equivalence. O

An alternative inductive argument is possible. Its first steps are given
in the following two lemmas, which are also the first steps in the proof of
Theorem 13.1.5. The following result is analogous to Lemma 8.3.3.

LEMMA 13.2.3. Theorem 13.1.4 holds when X = K(A,n), where n > 1 and A is
abelian.

PROOF. We construct the pullback P in the diagram of Theorem 13.1.4 and
obtain a map o: X —> P. We check that a9 and & are equivalences using
Proposition 6.2.5 for the rationalization and Proposition 11.2.5 for the com-
pletion. Corollary 13.2.2 completes the proof. This outline is a complete proof
when n > 2, but it hides a subtlety when n = 1. To apply the cited results,
we need to know that P is connected. The already proven case n = 2 of the
present result implies the abelian group case of Proposition 12.2.5, and that
result implies that P is connected. a

The proof of the inductive step of the alternative proof of Theorem 13.1.4
is essentially the same as the proof of the analogous inductive step in the
alternative proof of Theorem 8.1.3 given in {8.6. We need to induct up the
Postnikov tower of a given nilpotent space, and the following result enables
us to do so. The proof is an application of Proposition 8.6.1. Applied to the
inductive construction of K(G, 1) for a nilpotent group G, the argument has
already been used to prove Proposition 12.2.5. Therefore a special case of this
proof is used implicitly to get started with our first proof of Theorem 13.1.4.

LEMMA 13.2.4. Suppose that Theorem 13.1.4 holds for X and let Y be the fiber of
a map k: X —> K, where K is a simply connected T-local Eilenberg-Mac Lane
space. Then Theorem 13.1.4 holds for Y.
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PROOF. Consider the following homotopy commutative diagram. The homo-
topy pullbacks of its rows are as indicated in the column at the right since
localizations and completions preserve fibers. The homotopy pullbacks of its
columns are as indicated in the row at the bottom, by Lemma 13.2.3 and

asssumption.
A I,é A A
Xt Kt * Yr
$o $o o
A ];0 A A
(Xt)o > (Kr)o <—— * (Y1)o
(4o (é)o o
X() K() * Yo
ko
X K *

By Proposition 8.6.1, Y is equivalent to the homotopy pullback of the right
column. In particular, since Y is connected, that homotopy pullback is con-
nected. O

13.3. Local to global fracture theorems: spaces

In this section we prove the local to global result, Theorem 13.1.5. The argu-
ment is a specialization of the proof of a more general result of Dror, Dwyer,
and Kan [39] in which nilpotency is relaxed to “virtual nilpotency”. We abbre-
viate notation by letting Z = [[ X, and Zp = ([] Xp)o. Equivalently, Z is any
T-complete space and Z is its rationalization. Thus Theorem 13.1.5 can be
restated as follows.

THEOREM 13.3.1. Let

p —— Z

l |

Y*>Z()
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be a homotopy pullback of connected spaces in which

(i) the space Z is T-complete;
(ii) the map ¢o: Z —> Zy is a rationalization of Z; and
(iii) the space Y is rational.

Then the space P is T-local, the map u: P —> Z is a completion at T, and
the map v: P —> Y is a rationalization of P. Therefore w is a rationalization

of L.

As noted in Remark 13.1.6, the assumption that P is connected means that
every element of 1 (Z)) is a product of an element in the image of w, and an
element in the image of ¢,.. Observe that no such hypothesis was needed in
the analogous algebraic result, Theorem 12.3.1.

The proof of the theorem is based on the following lemma. It is convenient
to use the language of fiber squares, which are just pullback squares in which
one of the maps being pulled back is a fibration.

LEMMA 13.3.2. For a homotopy pullback P as displayed in Theorem 13.3.1 there is
an integer n > 1 and a factorization

Mn Oi—1
P Zn N Z; Zi_1 c. Z1
v i i Yn J/ Vi \L Vi1 l %o
Y Vi Vi Vi1 Vi =— %
wp Ti—1

of the homotopy pullback square such that

(i) each Z; and V; is connected and nilpotent;
(i) each V; is rational;
(iii) there are maps w;: Y —> V; and 1,_q: V; — V;_1 such that o1 = ©
and T,_jow; = wi_1;
(iv) there are maps p;: P —> Z; and 0;_1: Z; —> Z;_1 such that u1 = u
and oi_10 i = [i—1;
(v) each map ¥;: Z; —> V; is a Q-homology equivalence;
(vi) each map o;_1: Z; —> Z;_1 is an Fr-homology equivalence;

(vii) the following are fiber squares
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i i1

p Z; Ziq

Nt

Y — V, ——= V,_g;
wj Ti—1

(viii) the map wuy: 1Y —> 71 Vy is sutjective.

PROOF OF THEOREM 13.3.1, ASSUMING LEMMA 13.3.2. Since Y and Z
are rational, they are T-local. Since Z is T-complete, it is T-local. By Propo-
sition 6.2.5, P is nilpotent and T-local. With n as in Lemma 13.3.2, let F
be the common fiber of the maps u, and w, and consider the following
diagram.

MUn
F ——= P — Z,

R

F—=Y — V,
Wy,

Since Y and V,, are connected, nilpotent, and rational and wp, : 71(Y) = 71(Va)
is a surjection, F is connected, nilpotent, and rational by Proposition 6.2.5.

By Proposition 4.4.1, 71 V,, and 1 Z, act nilpotently on the rational homol-
ogy of F. Applying Theorem 24.6.2 to the map of rational homology Serre
spectral sequences induced by the displayed map of fibration sequences, we
see that v is a rational homology isomorphism since v, is a rational homology
isomorphism.

Since F is rational, Theorem 6.1.1 implies that Hy(F;Z) is uniquely
divisible for each g, hence the universal coefficient theorem implies that
H;(F; Fr) = 0 for each i. Therefore the Fp-homology Serre spectral sequence
of the fibration sequence

MHn
F — P —— Z,

collapses to show that u,: P — Z, is an Fr-homology equivalence. Since
each of the maps o, is an Fr-homology equivalence, pu: P — Z is an
Fr-homology equivalence. O
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PROOF OF LEMMA 133.2. We may assume that ¢¢ is a fibration, and we
agree to arrange inductively that the map vy: Z, — V; is a fibration for
each i. That is, we arrange that the squares in our factorization are fiber
squares.

We proceed by induction on i. Suppose that we have constructed spaces Z;
and V; and maps ¥, 0;_1, T;_1, i, and w; for 1 < i <j such that (i) through
(vii) are satisfied. If w; _: m1Y —> 1V is surjective, there is nothing to prove.
Otherwise let C; be the cokernel of the map

wj,  Hi(Y;Z) — Hi(V}; Z).

Observe that the abelian group C; is rational.
Let F be the fiber of the map v;: Z; —> V;. Since
¢
— 7

1

is a fiber square of connected spaces, for every element x € 71(V}) there are

<

v

—_—
@y

elements y € m1(Y) and z € 71(Z)) such that x = o;_(y)¥;, (2).
Let §; be the composite surjection

§: mV; — Hi(VjiZ) — G

obtained from the Hurewicz homomorphism. Precomposing, we obtain a
map

5.
J
& nlzj — mV; — G,

and it is also surjective since the naturality of the Hurewicz homomorphism
implies that, with the notations above, o;_(y) maps to 0 in C; and thus x and
Vj, (2) have the same image in C;. Let D; be the kernel of §; and E; be the kernel
of ;.

Define 7j: Vi1 —> V; to be the fiber of the map o;: V; — K(C;, 1),
unique up to homotopy, that realizes the epimorphism §; on 1. The image of
m1(Y)is containedin Dj, sothemapw;: Y — Vjliftstoamapwj1: Y — Vi
such that 7jo w1 = ;.

Observe that ajoy;: Z; —> K(Cj, 1) is the map that realizes the epi-
morphism g on m and define 0j: Ziy1 — Zj to be the fiber of ajo ;.
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Equivalently, Z;; is the pullback Z; xvy; Vji1 (compare Lemma 1.2.7), and
this description gives a map ¥, 1: Zj;1 —> Vj;1 such that the right square
commutes in the following diagram. The universal property of the pullback
gives a map pjy1: P —> Zj; such that ojoujq = p; and the left square
commutes.

Hj+1 gj
P — Zj+1 E—— ZJ

Ui l‘/’jﬂ i‘ﬁj
Yj

Y —— Vj+1 E—
@j+1 Ej

This gives the spaces and maps required at the next stage. We must verify
(1)—(vii) with i replaced by j + 1, and we must see how the construction leads
inductively to (viii).

(i) Since Z; and V; are connected and ¢;: m1Z; —> Cjand §;: mV; — C;
are surjective, the exact sequences

&

72'12]‘ E— CJ E— 7T()Zj+1 E— T[()Zj

4

7'[1Vj  — C] E— 770Vj+1 E—— JT()VJ'

imply that Z;y and V;; are connected. Since Z;, V;, and K(Cj, 1) are
nilpotent, Proposition 4.4.1 implies that Z;,; and Vj;; are nilpotent.
(ii) Since C; is rational, K(Cj, 1) is rational. Since V; and K(C;, 1) are nil-
potent and rational and Vj,; is connected, V;, is rational.
(iii) and (iv) The required maps and relations are part of the construction.
(v) Since Z;, V;, and K(Cj, 1) are nilpotent and Z;,; and V}; are connected
Proposition 4.4.1 implies that C; acts nilpotently on H.(Z;;1; Q) and
H,(Vj41; Q). In the map of rational homology Serre spectral sequences
induced by the map of fiber sequences
%

Zisn — 4 — K(G,1])

SN

Vin —> VY —— K(G.1)

7
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the maps
;.0 Ho(Z;; Q> Ho(V;Q) and id: He(K(Cj, 1); Q)— H.(K(Cj, 1); Q)
are isomorphisms. Therefore Theorem 24.6.2 implies that
Vi, Ho(Zj1Q) — Hu(Vi1: Q)

is an isomorphism.

(vi) Since C; is rational, I:I*(K(Cj, 1); Fr) = 0 by the universal coefficient
theorem. With Fr coefficients, the Serre spectral sequence of the fi-
bration

o

Zjs1 —> Zj— K(G, 1)

collapses, and its edge homomorphism is an isomorphism
0}y : H(Zj11;Fr) — Ha(Z;Fr).

(vii) The right square in the diagram in (vii) is a pullback by construction.
For the left square, recall that P = Z; xv, Y. Therefore

P=2z 7 Y
= 2w (Vs ¥y, Y)
=Zjy XV Y.
(viii) The group C; is the cokernel of the map
mY/[mY, mY] — m1V;/[m1Vj, Vil

The short exact sequence
%
1= m(Vip) > m(V) > G —> 1

gives an isomorphism 71(V;;1) — ker §;. Applied with G; = 1 V; and
H =mY, Lemma 13.3.3 below implies that there is an integer n > 1
such that m;V,, = m Y. O

LEMMA 13.33. Let G be a nilpotent group and let H C G be a subgroup. Let
G1 = G and, inductively,

Gi+1 = ker(Gi —> COkeI’(H/[H, H] — Gi/[Gi, Gl]))

Then there is an integer n > 1 such that G; = H forj > n.
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PROOF. Clearly H C G; for each i. We claim that G; is contained in the sub-
group of G generated by H and I';G, the i# term of the lower central series of
G. Since G is nilpotent, this gives the conclusion.

We prove the claim by induction on i, the case i = 1 being trivial since
I'1G = G. Thus suppose that G; is contained in the subgroup of G gener-
ated by H and I';G. Let g € G;1. By definition, there are elements h € H and
k € [G;, Gi] such that g = hk. To show that g is in the subgroup generated
by H and I';;1G, it suffices to show that [G;, G;] is contained in that sub-
group. An element in [G;, G;] is the product of elements in [H, H], [H, I';G],
and [[';G,T;G]. Since I';11G =[G, I';G], such elements are all in H or in
i G. O

13.4. The tensor product of a space and a ring

We describe an old idea in a general way. While the idea deserves further
exploration, we use it only to establish an appropriate context for understand-
ing a functor that we will use in our discussion of the complete genus of a
space. We saw in §12.4 that the lack of a functorial formal completion of nilpo-
tent groups impeded the naive analysis of the complete genus of f-nilpotent
groups. This section and the next will solve the analogous problem for (simple)
spaces.

The idea is to form the tensor product of a space X and a ring R to obtain
a space “X ® R” such that 7,.(X ® R) is naturally isomorphic to m.(X)® R.
Remember that our default is that ® means ®y. Of course, some restrictions
must be placed on X and R. Since we would not want to try to understand
R-nilpotent groups in this generality, we insist that fundamental groups be
abelian. We could allow nontrivial actions of the fundamental group on higher
homotopy groups, but we prefer to forego that complication. Therefore we
restrict to simple spaces X.

Although not essential to the general idea, we also assume that the homo-
topy groups of X, or equivalently the integral homology groups of X, are finitely
generated over Zt for some set of primes T. In the rest of this chapter, we
agree to say that a simple T-local space with this property is T-local of finite
type. Our main interest is the set of all primes, when X is simple and of
finite type, and the empty set of primes, when X is simple and rational of fi-
nite type. Since we want tensoring over R to be an exact functor on abelian
groups, we also insist that the underlying abelian group of R be torsion free.

We have already seen two examples of the tensor product of a space and a
ring. For any set of primes S C T, the localization of X at S can be thought
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of as X ® Zs and the completion of X at S can be thought of as X ® 7s. We
didn’t need the finite type hypothesis to conclude that 7, (Xs) = 7.(X) ® Zs,
but we did need it to conclude that 7, (Xs) = 7,(X) ® Zs. In both cases, with
our X ® R notation, we started with K(A, n) ® R = K(A® R, n) and inducted
up the Postnikov tower of X to obtain the construction. We explain how the
same construction goes in our more general situation. When we localized
or completed k-invariants, we exploited universal properties special to those
contexts. In general, we need some substitute to allow us to tensor k-invariants
with R.

Although we shall not make explicit use of it, we observe that our finite type
hypothesis simplifies the task of finding such a substitute. For any finitely gen-
erated free Zr-module F, any Zr-module B, not necessarily finitely generated,
and any abelian group A, the natural map

a: Hom (F,B)® A — Hom (F, B® A)

specified by (¢ ® a)(f) = ¢(f) ® aisanisomorphism. Here again, by default,
Hom means Homy, but Hom is the same as Homy,. when its arguments are
T-local. Therefore our claimed isomorphism is a tautology when F is free on
one generator, and it follows by induction when F is free on a finite number
of generators. Applying this to the cellular cochains of X with coefficients in
B and passing to homology gives the following result.

LEMMA 13.4.1. If X is fZr-nilpotent, B is a T-local abelian group, and A is any
abelian group, then the canonical map

a: H'(X; )@ A — H*(X;B® A)
is an isomorphism of graded T-local abelian groups.

Now restrictto A = R. TheunitZ —> Rinduces a natural homomorphism
v: B—> B®R for T-local abelian groups B. Let X1 ® R = K(71(X) ® R, 1).
Inducting up the Postnikov tower of X, we try to construct X, +1 ® R as the fiber
kr{rz

of an induced k-invariant in the following diagram, where B = 7,41 (X).

. T knt2

K(Bn+1) — > Xy X, K(B,n+2)

v \L \L Pnt1 \L ®n \L v
t b4 k;+2

KB®Rn+1) —> X,y1®R —> X,®R —> K(BQR,n+2)
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We mneed a class k'f;z € H"?(X, ® R;mp11(X) ® R)  such  that
Prlki"?) = v (k™).

The difficulty is that, in this generality, the cohomology of the Eilenberg-
Mac Lane spaces K(B® R, n) can be quite badly behaved. Thus we may not
have enough cohomological control to start and continue the induction. If we
can do so, then cocellular approximation of maps gives the functoriality of
the construction. We urge the interested reader to follow up and determine
conditions under which the construction can be completed. The cases R = R
and R = C would be of particular interest. When T is the empty set, the
realification of rational spaces case has been studied using the algebraization
of rational homotopy theory [23, 35].

However, what is relevant to our work is that if one can construct a tensor
product functor F by some other means, then it must in fact be constructible
in the fashion just outlined. To be precise about this, suppose that we have a
functor

F: HofsTy — Hort.7,

where Ho?..7 is the homotopy category of simple T-local spaces and Hojr 7
is its full subcategory of spaces of finite T-type. Let I: Ho} +7 —> HorJ
be the inclusion and suppose that we have a natural transformation n: I — F.
Suppose finally that the functor 7, F takes values in the category of R-modules
and therefore of Z7 ® R-modules and that we have a natural iso-
morphism

En: myFX — my(X)® R
of ZT ® R-modules such that the following diagram of Zr-modules com-
mutes.
T (X)
N
T FX m(X)® R
&n

Since we are working up to homotopy, we may write FK(B,n) = K(B® R, n),
where B is a finitely generated Zr-module and n > 1. Using &,, we may then
identify n: K(B,n) — K(B® R, n) with the map induced by n: B— BQ R.
Inductively, we can identify F(X,) with the n' stage (FX),, of a Postnikov tower
for FX. To see this consider the following diagram, where again B = m,41(X).
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. T k2

K(Bn+1) — > Xy X, K(B,n+2)

n l i n l n \L n
Fu Fr Fkn+2
FK(B,n+1) —— F(Xy41) —— F(X)) —— FK(B,n+2)

i Mn+1 l Mn
n+2
L T kR

K(B®Rn+1) —> (FX)py1 —> (FX), —> K(B®R n+2)

The top three squares commute by the naturality of 1. Suppose inductively
that we have an equivalence u,. Define k;;“ to be the composite Fk"2 o !
for a chosen homotopy inverse 1 ~!. Since Fk"*? o Frr ~ %, there is a map
tnt1 such that 7o ppt1 > ppo Fr. Since (—)Q® R is an exact functor, a
five lemma argument shows that p,41 is an equivalence. Arguing the same
way, we obtain an equivalence v: FK(B,n+1) — K(B® R, n+ 1) such that
LoV = lutq o Fr. But we may as well replace the bottom arrow ¢ by ¢ o v since
fibration sequences are defined up to equivalence in the homotopy category.
Then the diagram commutes, as desired.

We conclude that the construction of a tensor product functor F implicitly

constructs the required k-invariants k’[;rz.

13.5. Sullivan's formal completion

We take R =7 = Hp Zp and construct a tensor product functor on the cate-
gory of simple spaces equivalent to CW complexes with countably many cells,
following Sullivan [133, 135]. Of course, it suffices to define the functor on
countable CW complexes since we are working in homotopy categories. Since
T-local spheres are constructed as countable cell complexes, any simply con-
nected T-local space of finite type for any set of primes T will be in the domain
of the construction, but since we are not insisting on T-local cells the domain
also includes all simple T-local spaces of finite T-type.

DEFINITION 13.5.1. Let X be a countable CW complex. Choose a cofinal
sequence of finite subcomplexes X; and define the formal completion FX to
be the telescope of the completions X;. Passage to telescopes from the comple-
tion maps ¢: X; — X; induces amap n: X ~tel X; — FX. Iff: X — Y
is a cellular map between countable CW complexes, choose a cofinal sequence
(i) such thatf (X;) C Y,(; and define Ff : FX — FY by passage to telescopes
from the completions X; —> Y,,(; of the restrictions of f.
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It is tedious but elementary to check that different choices of cofinal
sequences lead to equivalent spaces and maps. The point is that the telescopes
depend up to equivalence only on choices of cofinal sequences.

PROPOSITION 13.5.2. Let Ho%,.7 be the full subcategory of Ho* 7 whose objects
are the simple spaces that are equivalent to countable CW complexes and let
I: Ho},.7 —> Ho*.7 be the inclusion. Then Definition 13.5.1 gives a functor
F: Ho},.7 — Ho'.7 and a natural transformation n: I —> F. The composite
functor 7w, F takes values in Z-modules and there are natural isomorphisms

Ep: T FX —> (X)L

of Z-modules such that the following diagram of abelian groups commutes.
n(X)
N
7w FX T0(X) ® Z
&n

PROOF. Itis routine to check that F is a functor and 7 is natural. It is part of
Theorem 11.1.2 that the homotopy groups 7,(X;) are Z-modules in a natural
way and that they are naturally isomorphic under 7, (X;) to 7,(X;) ® Z. Since
the homotopy groups of telescopes are the colimits of the homotopy groups
of their terms and tensor products commute with colimits, the last statement
follows. O

In effect, at least for countable complexes (and use of more general col-
imits could eliminate the countability restriction), we now have two different
extensions of the restriction of the completion functor on finite complexes to a
functor defined on more general spaces, namely the original completion func-
tor X of Chapter 10 and the formal completion FX. The latter does not satisfy
a universal property, but the previous section gives it a general conceptual
home. Restricting F to T-local spaces, it gives a tensor product functor of the
sort discussed there for every set of primes T. We are particularly interested in
the set of all primes. Completion is trivial when restricted to rational spaces,
but the functor

F: HO}Qﬂ — Horo
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on the homotopy category of simple rational spaces of finite type fits into the
following result, in which the fact that F is already defined on all simple spaces
of finite type plays a central role.

THEOREM 13.53. Let X be a simple space of finite type with rationalization
¢o: X —> Xo. Then the map n: X — FX is a completion of X and the map
F(¢o): FX —> F(Xo) is a rationalization of FX. Therefore the naturality diagram

n
X — FX

$o l l F(¢o)

Xo —— F(Xo)
n

can be identified naturally with the homotopy pullback diagram

N

Xo —— (FX)o.
()o

In particular, F(Xo) and (FX)o may be identified.

PROOF. The first statement means that n: X — FX satisfies the universal
property that characterizes n: X —> X. The last statement is intuitively obvi-
ous. One composite first tensors with Q and then tensors with 7., while the
other first tensors with Z and then tensors with Q. Thus both composites
amount to tensoring with Q. Thinking cocellularly and using the cocellular
description of F given in the previous section, we see by induction up the
Postnikov tower of X that the two composites are tensor products of X with Q
and can be specified by the same k-invariants.

We work with the cellular definition to give a formal proof. Remember that
localizations and completions are defined by universal properties in the homo-
topy category and so are not uniquely specified. Choose a cofinal sequence
of finite subcomplexes X; of X. With any construction of X the inclusions
X; — X induce maps X; —> X under X;, well defined up to homotopy.
These maps induce a map «: tel X; — X under X which on homotopy
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groups induces the isomorphism colim 77, (X;) ® Z = 74(X) ® Z. Therefore «
is an equivalence under X, hence n: X — FX satisfies the defining univer-
sal property of a completion of X. Similarly, since F(Xp) is rational, with any
construction of (FX) its universal property gives a map 8: (EX)o —> F(Xo)
under FX that induces the isomorphism 7,(X) @ ZQ Q — 7,(X) @ Q® Z
on homotopy groups. Therefore 8 is an equivalence under FX and F(¢y) sat-
isfies the defining universal property of a rationalization of FX. Since the
first diagram commutes, its lower arrow 5 satisfies the defining property of a

localization of ¢ in the second diagram. O

13.6. Formal completions and the adélic genus

We have defined the formal completion functor in Definition 13.5.1. We dif-
ferentiate between the formal completion, as defined there, and a formal com-
pletion as specified in the following definition, which is restricted to rational
spaces. Recall the algebraic notion of a formal localization of an f Q-nilpotent
s-group from Definition 12.4.2.

DEFINITION 1361. Let Y be an fQ-nilpotent space, Z be an fZr-nilpotent
space, and ¢o: Z —> Zg be a rationalization. A formal completion of Y at T
associated to ¢ is a map w: Y —> Zj with the following properties. Let 7 be
the pullback of 71 (Y) and 71 (Z) over 71(Zo).

(i) The homomorphism w,: 71(Y) — m1(Zo) is a formal completion asso-
ciated to (¢po)«: 71(Z) —> m1(Zo)-

(ii) For n > 2, the homomorphism w,: 7,(Y) —> mn(Zp) of m-groups is a
formal completion associated to (¢o)«: 7u(Z) —> 7u(Zo).

When Y, Z, and therefore Z; are simple, the only requirement on the map w
is that for each n > 1, there must be a commutative diagram of Q-modules

wu(Y)
mn(Zo) . a(Y) ® Z1

in which & is an isomorphism of Q7-modules. No compatibility of o with the
map ¢y is required.
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As in algebra, this notion encodes what we see in our cocellular construc-
tions of localizations and completions. From a global to local point of view, we
have the following analogue of Lemma 6.2.1.

PROPOSITION 13.62. Forany T’ O T, the rationalization (§)o of the completion
¢: X — Xr of an fZp-nilpotent space X is a formal completion Xo —> (X)o.

From a local to global point of view, we have the following addendum to
Theorem 13.3.1.

THEOREM 13.6.3. Let

n
P —— Z

g

Y — 2o
w

be a homotopy pullback of nilpotent spaces such that

(i) Z is fZr-complete and the torsion subgroup of each 7,(Z) is finite;
(it) ¢o: Z —> Zy is a rationalization of Z;
(iii) Y is rational; and
(iv) w is a formal completion associated to ¢o.

Then P is f Zr-nilpotent.

PROOF. This holds by its algebraic analogue Theorem 12.4.4 and the abelian
w-group analogue of that result, which admits essentially the same proof. O

REMARK 13.6.4. In view of Remark 12.4.5, some such hypotheses as in Theo-
rem 13.6.3 are needed to construct global spaces of finite type from f Zr-spaces.
There are f Zp-spaces Z such that there is no f Zy)-space P whose completion
at p is equivalent to Z.

We now specialize T to be the set of all primes. We again have two alter-
native notions of genus, in analogy with Definition 12.4.6.

DEFINITION 13.6.5. The adelic genus of an f-nilpotent space X is the set of
homotopy types of f-nilpotent spaces Y such that X is equivalent to Yy and
)A(p is isomorphic to f’p for all primes p. The complete genus of X is defined
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by dropping the requirement that Xy be isomorphic to Y. Write Go(X) for the
adelic genus of X and G(X) for the complete genus. Recall that G(X) denotes
the (local) genus of X. If two spaces are in the same local genus, they are in
the same adélic genus, and if two spaces are in the same adelic genus they are
in the same complete genus. Therefore we have inclusions

G(X) C Go(X) C G(X).

We can carry out the naive analysis of the adélic genus exactly as in the alge-
braic analogue discussed in §12.4. Fixing a rationalization ¢o: X —> (X)o the
results above imply that all elements of Go(X) can be constructed as homotopy
pullbacks of formal completions w: X —s> (X)o associated to ¢y.

However, we can obtain a precise analysis by restricting to simple spaces,
which we do henceforward. Thus we now require all spaces in a given genus
to be simple. When X and therefore Xp is simple, the argument of §13.4
shows that Sullivan’s formal completion n: Xo — F(Xp) is a formal com-
pletion of Xj in the sense of Definition 13.6.1. Theorem 13.5.3 leads to an
easy proof of the following description of the adelic genus G(X). We agree
to write FX instead of X in what follows, regarding X as the homotopy pull-
back displayed in the upper diagram of Theorem 13.5.3, and we agree to write
FXy for both F(Xp) and (FX)o since Theorem 13.5.3 shows that they can be
identified.

Let hAut(FXo) denote the group of self-homotopy equivalences via Q-maps
(equivalently, Z-maps) of FX, lethAut(FX) denote the group of self-homotopy
equivalences via Z-maps of FX, and let hAut(Xp) denote the group of self-
homotopy equivalences of Xj. Since F is a functor and 7 is natural, we have a
homomorphism

F: hAut(X()) — hAut(FX())

such that (Fe) on >~ noe. Similarly, by the universal property of localization
we have a homomorphism hAut(FX) — hAut(FXy), denoted ¢ > Z, such
that £ o ¢ = ¢ o £, Where ¢9 = Fpg: FX —> FX,.

THEOREM 13.6.6. For a simple space X of finite type, there is a canonical bijection
between Go(X) and the set of double cosets

hAub(Xo)\hAut(FX,) /hAut(FX).

PROOF. We define a function W from the set of double cosets to Go(X) by
sending & € hAut(FXp) to the homotopy pullback of the diagram
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n & $o
Xo FXo FXo FX.

A little diagram chasing shows that varying & within its double coset gives
equivalent pullback diagrams and hence equivalent homotopy pullbacks.

If W(&) and W (0) are equivalent, say by an equivalence y, then we obtain
equivalences yp and Fy, unique up to homotopy, such that the left and top

N

squares are homotopy commutative in the diagram

V(&) FX

v () FX
l %o
n §
Xo FXo FXo o
\ \Fio \FAJ;
Yo
Xo FXo FXp.
n 6

As above, these induce equivalences Fyy and 15)\/ such that the bottom left
square and the right square are homotopy commutative. It follows that 6 is
homotopic to Fy o& o (Fyp)~! and is thus in the same double coset as &. There-
fore W is injective.

We can construct any simple space Y of finite type as the homotopy pullback

of the maps

n %o
Yo FYy FY.

Suppose that Y is in the same genus as X. Then we have equivalences
a: Yo — Xo and B: FY — FX. Define & = fo(Fa)~!. Another little
diagram chase shows that Y is equivalent to W (£). Therefore W is surjective. O

Recall that the function space F(X, Y) is nilpotent when X is finite and Y
is of finite type. Taking Y = X, this suggests that the automorphism groups
above should be nilpotent, or nearly so, when X is finite and that their analysis
should be closely related to the algebraic analysis of the genus of a finitely
generated nilpotent group (see Remark 12.4.9). This idea was worked out in
detail by Wilkerson [144], who proved the following theorem.
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THEOREM 136.7. If X is a simply connected finite CW complex, then G(X) and
therefore Go(X) and G(X) are finite sets.

It is natural to ask whether these three notions of genus are genuinely
different. The question was answered by Belfi and Wilkerson [10], and we
merely record their answers. Say that X is m,-finite or H,-finite if it has only
finitely many nonzero homotopy groups or only finitely many nonzero homol-
ogy groups, all of them assumed to be finitely generated.

THEOREM 13.6.8. Let X be an f-nilpotent space. If Xy admits an H-space struc-
ture, then Go(X) = G(X). If, further, X is either m,-finite or H,finite, then
G(X) = G(X). However, there are simply connected examples such that
Go(X) # G(X), and these can be chosen to be . finite or H,-finite. Similarly,
there are simply connected examples such that G(X) # Go(X), and these too can
be chosen to be m,-finite or H,-finite.
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AN INTRODUCTION TO MODEL
CATEGORY THEORY

We now switch gears and consider abstract homotopy theory. Here we adopt
a more categorical perspective than earlier in the book. To prove that localiza-
tions and completions exist in full generality, we make use of model category
theory. Since its use pervades modern algebraic topology and since some
aspects of the theory that we believe to be important are not in the existing
expository works on the subject, we give a treatment here. Model category
theory is due to Quillen [113]. Nice introductions are given in [43, 54], and
there are two expository books on the subject [65, 66]. Given these sources
and the elementary nature of most of the basic proofs, we leave some of the
verifications to the reader. The literature on the subject is huge and grow-
ing. Just as Hopf algebras began in algebraic topology and then were seen
to be fundamental in other subjects, homotopy theoretic methology, such as
model category theory, began in algebraic topology and then was seen to be
fundamental in other subjects.

In fact, by now the very term “homotopy theory” admits of two interpreta-
tions. There is the homotopy theory of topological spaces, which is the core of
algebraic topology, and there is also homotopy theory as a general methodology
applicable to many other subjects. In the latter sense, homotopy theory, like
category theory, provides a language and a substantial body of results that are
applicable throughout mathematics. The two are intertwined, so that there is
a subject of categorical homotopy theory (studied by algebraic topologists) and
of homotopical category theory (a closely related subject studied by category
theorists). Model category theory provides a central organizational principle
for this branch of mathematics. To explain properly the ideas that are involved,
we outline some categorical concepts that appear wherever categories do and
give just a hint of the higher categorical structures that begin to emerge in the
study of model categories.

267



268 /| AN INTRODUCTION TO MODEL CATEGORY THEORY

In part to emphasize this categorical perspective, we develop the definition
of a model category in its modern conceptual form in §14.1 and §14.2. We
focus on weak factorization systems (WFSs), since they are the conceptual key
to the efficacy of the definition. We discuss homotopies and the homotopy
category of a model category in §14.3 and {14.4.

We deliberately give an uninterrupted development of the theory in this
and the following two chapters, reserving all discussion of examples to the
two chapters that follow. The reader is encouraged to skip directly from this
chapter to Chapter 17 to begin looking at the examples before seeing the rest
of the theory.

14.1. Preliminary definitions and weak factorization systems

Let . be a category. We insist that categories have sets of morphisms between
pairs of objects; category theorists would say that .# is locally small. Similarly,
we understand limits and colimits to be small, meaning that they are defined
with respect to functors out of small categories 2. We assume once and for
all that .# is bicomplete. This means that ./ is complete (has all limits) and
cocomplete (has all colimits). In particular, it has an initial object # and a
terminal object * (the coproduct and product of the empty set of objects re-
spectively).

A model structure on .# consists of three interrelated classes of maps
(W, €, %), called the weak equivalences, the cofibrations, and the fibrations.
The weak equivalences are the most important, since the axioms are designed
tolead to a well-behaved homotopy category Ho.# that s obtained by inverting
the weak equivalences. This is a localization process that is analogous to the
localization of rings at multiplicatively closed subsets, and it is characterized
by an analogous universal property. Formally, this means that there must be
a functor y : .#4 — Ho.# such that y (w) is an isomorphism if w € # and
y is initial with respect to this property. We shall require in addition that the
objects of Ho.# are the objects of .# and that y is the identity on objects.!
Thatis, if F: .#4 — J¢ is any functor such that F(w) is an isomorphism for
w € ¥, then there is a unique functor F: Ho#/ — 7 suchthat Fo y = F.
It follows that F = F on objects. We say that such a functor y is a localization
of .4 at W'. Since it is defined by a universal property, it is unique up to
canonical isomorphism.

1. The addition is an inessential convenience. The literature is divided on this point. Some
authors do and others do not insist that the objects of .# and Ho.# coincide.
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One might attempt to construct Ho.# by means of words in the morphisms
of .# and formal inverses of the morphisms of %, but the result of such a
construction is not locally small in general. Moreover, it would be very hard to
“do homotopy theory” in a category constructed so naively. The cofibrations
and fibrations are extra data that allow one to do homotopy theory, and there
can be many model structures on .# with the same weak equivalences. We
prefer to build up to the definition of model categories by first isolating its key
categorical constituents. The three classes of maps turn out to be subcategories
that contain all isomorphisms and are closed under retracts.

DEFINITION 14.1.1. Aclass # of mapsin .# is closed under retracts if, when
given a commutative diagram

i r

A—= X —> A roi=id
fi l lf

j 5
B—>Y —> B soj=1id

with g € J, it follows that f € #". The special case when ior =id and
jos=id shows that every map isomorphic to a map in % is also in 7.
It follows that if all identity maps are in ., then so are all isomorphisms. It
is conceptually helpful to think in terms of the arrow category of .#, denoted
o/ r. A , whose objects are the maps of .# and whose morphisms f — g are
the commutative squares

The following observation is often applied to classical homotopy cate-
gories, where it shows that a retract of a homotopy equivalence is a homotopy
equivalence.

LEMMA 14.1.2. Inany category, if f is a retract of g and g is an isomorphism, then
f is an isomorphism.

PROOF. Adopting the notations of the diagram in Definition 14.1.1, define
f~1 =rg~Yj. Then f ~! is the inverse isomorphism of f. O
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REMARK 14.1.3. Observe that for any mapsf: X — Yandg: Y — X such
that fg = id, f is tautologically a retract of g f via the diagram

X —— X —— X
e ]
g f
Y — X — Y.

DEFINITION 14.1.4. Asubcategory # of ./ qualifies as a subcategory of weak
equivalences if all identity maps in .# are in #, # is closed under retracts,
and ¥ satisfies the two out of three property: for a composite w = vo u, if any
two of u, v, and w are in ¥, then so is the third.

The original source of the following basic idea goes back to Lemma 1.1.1.

DEFINITION 14.1.5. Consider commutative squares

g
D

A
\L A
. v
v s
v
X

S
f

{
®<~— m
=

Say that (i, p) has the lifting property if for every such square there is a lift A
making the triangles commute. For a class of maps .Z, we say that p satisfies
the rightlifting property (RLP) with respect to .Z if (i, p) has the lifting property
for every i € .&; we let P denote the class of all such maps p. Dually, for a
class of maps %, we say that i satisfies the left lifting property (LLP) with respect
to Z if (i, p) has the lifting property for every p € Z; we let Y% denote the class
of all such maps i. We write A% if (i, p) has the lifting property whenever
i€ % and p € Z. This means that . C Y% or, equivalently, Z C .£Y.

Of course, these last inclusions can be proper. When they are equalities,
the resulting classes have some very useful properties, which are catalogued
in the following definitions and result. Here we mention transfinite colimits
for the first time since §2.5. We shall make little use of them until §19.3, before
which we only need sequential colimits. Transfinite colimits play a substan-
tial role in the foundational literature of model category theory, and they are
crucial to the construction of Bousfield localizations, but they play little if any
direct role in the calculational applications.
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DEFINITION 14.1.6. Let A be a (nonempty) ordinal. We may regard A as an
ordered set and hence as a small category. A A-sequence is a colimit-preserving
functor Xi: A — .#, so that Xg = colimy g X for B < A. The transfinite
composite of X is the induced map

Xo —> colimy <y Xy.

When A is a regular cardinal (see Definition 2.5.2) viewed as a category, it
is clearly a A-filtered category in the sense of Definition 2.5.3, and it has all
colimits. The role of the colimit condition is illustrated in Proposition 2.5.4.

DEFINITION 14.1.7. Let .Z be a class of maps in .#. We say that .% is left
saturated if the following (redundant) closure properties hold.

(i) -Z is a subcategory of .# that contains all isomorphisms.
(ii) -Z is closed under retracts.
(iii) Any coproduct of maps in .Z isin.Z.
(iv) Any pushout of a map in .Z is in .Z; that is, if the following diagram is
apushoutand iisin &, thenjisin .&.

|

|

Mo~ »

(v) If A is an ordinal and X is a A-sequence such that Xy — X417 isin &
for all @« + 1 < A, then the transfinite composite of X is in .Z.

The dual properties specify the notion of a right saturated class of maps. Here
coproducts, pushouts, and transfinite composites must be replaced by
products, pullbacks, and transfinite sequential limits.

PROPOSITION 14.18. Let & be any class of maps in 4. Then BH is left
saturated and D is right saturated.

PROOF. The reader is urged to carry out this categorical exercise. For (i),
successive lifts show that a composite of maps in ¥.%¢" is in Y%, so that ©.¢
is a subcategory, and it is obvious from the definition of the lifting property
that isomorphisms are in B.%¢. For the other parts, given a lifting problem
for the relevant categorical colimit, the hypothesis gives lifts in induced lifting
problems that by the universal property of the relevant colimit fit together to
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give a solution of the original lifting problem. It is instructive to understand
why the conclusion does not imply that Y% is closed under all colimits in
/v . For example, (iii) and (iv) do not imply that a pushout in &/r.# of
maps in Y7 is again in 9.#"; compare Exercise 1.1.2. O

We often use the result above together with the following evident inclusions.
LEMMA 14.1.9. Foranyclass %, % C B(H'P).If # C JH  then #¥ > P,

DEFINITION 14.1.10. An ordered pair (£, Z) of classes of morphisms of .#
factors .# if every morphism f: X — Y factors as a composite

i(f) p(f)
X——=Z(f)——=Y

with i(f) € £ and p(f) € Z. Let dom and cod denote the domain and
codomain functors &/r.#4 —s> /. The factorization is functorial? if i and
p are functors &/r.# — o/ r.4 such that

domoi=dom, codoi=domop, codop=cod

and p(f) oi(f) = f. Equivalently, a functorial factorization consists of a functor
Z: dvr.M — A and natural transformations i: dom — Z and p: Z — cod
such that the composite natural transformation poi: dom — cod sends

ftof.

Mapping cylinders and mapping path fibrations [93, pp. 43, 48] give the orig-
inal source for the following idea, but it also arises from analogous categorical
contexts.

DEFINITION 14.1.11. A weak factorization system, abbreviated WFS, in .# is
an ordered pair (£, %) of classes of morphisms of ./ that factors .# and
satisfies both

L =9% and % =<2

The required equalities say that the maps in . are precisely the maps that
have the LLP with respect to the maps in % and the maps in # are precisely
the maps that have the RLP with respect to the maps in .£. A WFS is functorial
if the factorization is functorial.

2. The definition given in some standard sources is not correct.
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Category theorists also study strong factorization systems, for which the
relevant lifts A are required to be unique.? The difference is analogous to the
difference between the class of fibrations and the class of covering maps as
the choice of Z. Our focus on weak rather than strong factorization systems is
illustrative of the difference of focus between homotopical categorical theory
and classical category theory. There is an equivalent form of the definition of
a WES that is generally used in the definition of model categories. We give
it in Proposition 14.1.13 below, using the following observation to prove the
equivalence.

LEMMA 14.1.12 (THE RETRACT ARGUMENT). Letf =qoj: A—> Bbea fac-
torization through an object Y. If f has the LLP with respect to q, then f is a retract
of j. Dually, if f has the RLP with respect to j, then f is a retract of q.

PROOF. Alift k in the square

A
koA
St
7/
B —— B

gives a retraction

A A A
[ A PR
q
B Y B.

—_—

lw

O

PROPOSITION 14.1.13. Let (£, %) factor A . Then (£, %) is a WES if and only
if LAK and L and Z are closed under retracts.

PROOF. If (£, %) is a WFS, then certainly £ 1Z%. Suppose that f is a retract
of g, where g € .Z. Let p € # and assume that £ and k make the right-hand
square commute in the following diagram. We must find aliftin the right-hand
square, and there is a lift A as drawn since g € .Z.

3. They write (&, /), thinking of these as classes & of epimorphisms and .# of monomor-
phisms [11, §5.5]. Reversing the order, in many categories (.#,&) is a weak but not a strong
factorization system. We think of cofibrations as analogous to monomorphisms and fibrations as
analogous to epimorphisms.
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1 r 4
X A E roi=id
/7
A -7
~ >3 c soj=id
J s k

The composite A o gives a lift in the right-hand square. Therefore . is closed
under retracts. Dually, Z is closed under retracts. For the converse, we have
L CBP# and Z C £P and must show that equality holds. Let f € BZ.
Factor f as qoj with j € .2 and q € #Z. By Lemma 14.1.12, f is a retract of
j and is thus in .Z. Dually, Z = £?. Therefore (£, %) is a WES. O

14.2. The definition and first properties of model categories

DEFINITION 14.2.1. A model structure on ./ consists of classes (#/, %, %)
of morphisms of .#, the weak equivalences, cofibrations, and fibrations, such
that

(i) # has the two out of three property.
(ii) (¥, F N¥#)is a (functorial) weak factorization system.
(iii) (¢ N#,.F)is a (functorial) weak factorization system.

We emphasize that this is a general definition in which the three classes
of maps need not have anything to do with the classes of maps with the same
names in the classical topological setting. The parenthetical (functorial) in
the definition is a matter of choice, depending on taste and convenience.
Quillen’s original definition did not require it, but many more recent sources
do. There are interesting model categories for which the factorizations cannot
be chosen to be functorial (see, for example, [71]), but they can be so chosen
in the examples that are most commonly used. We will not go far enough into
the theory for the difference to matter significantly. Observe that the model
axioms are self-dual in the sense that the cofibrations and fibrations of ./ are
the fibrations and cofibrations of a model structure on the opposite category
#°P that has the same weak equivalences. Therefore results about model
categories come in dual pairs, of which it suffices to prove only one.

The maps in .# N# are called acyclic (or trivial) fibrations; those in € N %
are called acyclic (or trivial) cofibrations. The definition requires every map to
factor both as the composite of a cofibration followed by an acyclic fibration
and as an acyclic cofibration followed by a fibration; we will say a little more
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about that in Remark 14.2.6 below. It also requires there to be a lift in any
commutative square

N
AN
N
o <— m
=

Mo~ »

in which i is a cofibration, p is a fibration, and either i or p is acyclic. More
precisely, it requires the following two pairs of equalities.

14.2.2 ¢ =2ZnNW) and FNW = €Y

1423 F=@EnNW)? and ¥NW =87

Proposition 14.1.8 shows that ¥ and €N are left saturated and .# and
F MW are right saturated, which is one motivation for our original definition
of a WES.

By (14.2.2) and (14.2.3), to specify a model structure on a category with a cho-
sen class of weak equivalences that satisfies the two out of three property, we
need only specify either the cofibrations or the fibrations, not both. Moreover,
by Proposition 14.1.13, the equalities (14.2.2) and (14.2.3) are equivalent to the
statement that the relevant four classes are closed under retracts and satisfy

14.2.4 CAFNW) and FRAENYW).

It is usual to define model categories by requiring (14.2.4) and requiring .%,
%, and # to be closed under retracts. The following observation (due to Joyal
and Tierney*) shows that our axioms imply that # is closed under retracts
and are therefore equivalent to the usual ones.

LEMMA 14.25. The class % as well as the classes €, € N\W, F, and F NW in
a model structure are subcategories that contain all isomorphisms and are closed
under retracts. Therefore W is a subcategory of weak equivalences in the sense of
Definition 14.1.4.

PROOF. Proposition 14.1.8 implies that €, € N¥, #, # N'# are subcate-
gories that contain all isomorphisms and are closed under retracts. The two out
of three property implies that # is closed under composition, and, together

4. It is Proposition 7.8 of A. Joyal and M. Tierney. Quasi-categories vs Segal spaces. Categories
in algebra, geometry and mathematical physics, 277-326. Contemp. Math., 431. Amer. Math. Soc.,
Providence, 2007.
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with either factorization property, it also implies that # coincides with the
class of composites poi such thati € ¥N% and p € F N#'. Since all iden-
tity maps are in both € N# and .# N#, they are in #. It remains to show
that 7 is closed under retracts. Suppose given a retract diagram

k

o —> o6 —> o

SRR L

o — 06 —> 0

with w € /. Firstassume thatf € .% and use either factorization and the two
out of three property to factor w as vou, where u e ¥N# andve FN¥.
Let s = u o k in the following expansion of the previous diagram.

k

_— 0 —> 0

4

N \

AN i /
\”l\*\ ;
N \ ‘/ t

*|

e —> 06 —> @

.
f

Since f € .% and u € € N # there is a lift t that makes the diagram commute.
Thentos = id. Thusf isaretractof v, hence f isin.# N # sincevisin . F N /.

For the general case, factor f as poi where i€ ¥N# and p € .# and
construct the following expansion of our first diagram.

Here the top left square is a pushout and, by three applications of the universal
property of pushouts, there is a map r such that the upper right square com-
mutes and r o £ = id, there is a map g such that the lower left square commutes
and qoj = w, and the lower right square commutes. By Proposition 14.1.8,
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jisin €N since it is a pushout of a map in ¥NY and ¥N¥W = 8.7.
Therefore, g is in # by the two out of three property. The diagram shows that
the fibration p is a retract of q, hence p is in # by the first part. Since i is in
€N, itfollows that f = poiisin #. O

The following evident observation is often used but seldom made explicit.

REMARK 14.2.6. The definition of a model category implies that for any map

f: X — Y, wehave the following commutative solid arrow diagram in which
i(f) is an acyclic cofibration, p(f) is a fibration, j(f) is a cofibration, and gq(f)
is an acyclic fibration. Therefore there is a lift £(f) that makes the diagram
commute.

it

If f is a weak equivalence, then this is a diagram of weak equivalences.
When the factorizations can be chosen to be functorial, one can ask whether
they can be so chosen that & ( f) is natural.” As we explain in Proposition 15.1.11
and Remark 15.2.4, they often can be so chosen, although they usually are not
so chosen.

DEFINITION 14.2.7. An object X of a model category .# is cofibrant if the
unique map ¥ —> X is a cofibration. An acyclic fibration g: QX — X in
which QX is cofibrant is called a cofibrant approximation or cofibrant replace-
ment® of X. We can obtain g by factoring # — X. Dually, X is fibrant if X — *
is a fibration. An acyclic cofibration r: X —> RX in which RX is fibrant is a
fibrant approximation or fibrant replacement of X. We can obtain r by factoring

5. As far as we know, this question was first raised by Emily Riehl; it is considered in her paper
[118], which studies model categories categorically.

6. The words “approximation” and “replacement” are both in common use; we usually use
the former when thinking about a single object and the latter when thinking about a functorial
construction.
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X — . We say that X is bifibrant” if it is both cofibrant and fibrant. Let ./,
///f, and ///cf denote the full subcategories of cofibrant, fibrant, and bifibrant
objects of .#, respectively.

Cofibrant and fibrant replacements are very important to the theory. Even
when they are functorial, they are not unique, and there often are several
different cofibrant or fibrant replacement functors with different good proper-
ties. Given two cofibrant replacements q: QX — X and q': Q'X — X, the
lifting property gives a weak equivalence £ : QX —> Q'X suchthatg o& = g.
The following remark plays a role in the construction of the homotopy category
Ho.Z .

REMARK 14.2.8. Itis central to the theory that we can replace objects by ones
that are both fibrant and cofibrant. The two obvious composite ways to do
this are weakly equivalent as we see from the following diagram, in which the
labeled arrows are weak equivalences. Here the maps Qr and Rq are given if
we have functorial factorizations Q and R. If not, we obtain them by applying
lifting properties to the acyclic fibration g on the right or the acyclic cofibration r
on the left; the unlabeled arrows from ¢ and to * are included in the diagram to
clarify that application of the lifting properties. The difference is an illustrative
example of why it is often convenient but usually not essential to include the
functoriality of factorizations in the definition of a model category.

7. This term is nonstandard; it is usual to write fibrant and cofibrant instead.
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The lifting property gives a weak equivalence & that makes the diagram
commute.?

In many model categories, either all objects are fibrant or all objects are
cofibrant (but rarely both). For example, all objects are fibrant in the model
structures that we shall define on %, and all objects are cofibrant in the usual
model structure on simplicial sets. In such cases, many results and arguments
simplify. For example, the following result becomes especially helpful when
all objects are cofibrant or all objects are fibrant.

LEMMA 1429 (KEN BROWN'S LEMMA). Let F: .# — A be a functor,
where .# is a model category and A is a category with a subcategory of weak equiv-
alences. If F takes acyclic cofibrations between cofibrant objects to weak equivalences,
then F takes all weak equivalences between cofibrant objects to weak equivalences.
Dually, if F takes acyclic fibrations between fibrant objects to weak equivalences,
then F takes all weak equivalences between fibrant objects to weak equivalences.

PROOF. Letf: X —> Y be a weak equivalence between cofibrant objects of
A . The map f and the identity map of Y specifyamap X LI Y — Y, and we
factor it as the composite of a cofibration j and an acyclic fibration p to obtain
the following commutative diagram in .Z.

X
f
l
J D

] Xuy —s Z —='Y

: T
id
Y

The left square is a pushout, hence i; and i, are cofibrations, and this implies
that X II'Y and Z are cofibrant. By the two out of three property in ., ji;
and jij are weak equivalences and thus acyclic cofibrations between cofibrant
objects. By hypothesis, F takes them to weak equivalences. By the two out
of three property in ./, F(p) is a weak equivalence since F(p)F(ji;) = id and
F(f) is a weak equivalence since F(f) = F(p)F(ji1). O

8. Similarly to footnote 5, when our factorizations are functorial it is natural to ask whether &
can be chosen to be natural. The question is answered in [118].
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REMARK 14.2.10. The weak equivalences in .4#” might be the isomorphisms.
For example, .4#” might be the homotopy category of a model category.

14.3. The notion of homotopy in a model category

As will be formalized in Addendum 16.4.10, in most examples there is a famil-
iar and classical notion of a homotopy between maps. It is defined in terms of
canonical cylinder and path objects, such as X x I and Map (I, X) in the case
of spaces. Quillen [113] developed a notion of homotopy in general model cat-
egories and showed how to derive many familiar results using the model theo-
retic notion. However, in the examples, it turns out that the classical notion of
homotopy suffices to describe the model theoretical notion. We shall make this
assertion precise at the end of §16.4. Therefore, when actually working with
model categories, one usually ignores the background material on the model
theoretical notion of homotopy. For that reason, we just describe how the gen-
eral theory goes, emphasizing the model theoretic analogue of the Whitehead
theorems but leaving some detailed verifications to the reader. We largely
follow [43, {4].

We consider a fixed model category .# throughout this section. There
are several variant model theoretical notions of cylinder and path objects that
abstract the properties of the classical cylinder and path objects.

DEFINITION 14.3.1. A cylinder object for X € .# is an object Cyl X together
with maps ip: X —> CylX, i1: X — Cyl X, and p: Cyl (X) —> X such that
poip =id = poij and p is a weak equivalence; by the two out of three prop-
erty, ip and i are also weak equivalences. A cylinder object is good if the
map i =ip+1i1: XX — Cyl(X) is a cofibration. A good cylinder object
Cyl (X) is very good if p is an acyclic fibration. Factorization of the folding map
X X — X shows that every X has at least one very good cylinder object. A
left homotopy between maps f,g: X — Y is amap h: Cyl(X) — Y such
that hoip = f and hoi; = g, where Cyl (X) is any cylinder object for X; h is
good or very good if Cyl (X) is good or very good. Define 7¢(X, Y) to be the
set of equivalence classes of maps X —> Y under the equivalence relation
generated by left homotopy.

LEMMA 143.2. If X is cofibrant and Cyl X is a good cylinder object, then ig and iy
are cofibrations and thus acyclic cofibrations.

PROOF. The inclusions g and ¢; of X in X LI X are cofibrations since the
following pushout diagram displays both of them as pushouts of § — X.



143. THE NOTION OF HOMOTOPY IN A MODEL CATEGORY [ 281

g — X

Ll

X — XUIX

Lo

Therefore their composites iy and i; with i are cofibrations. O

LEMMA 1433, If h is a left homotopy from f to g and either f or g is a weak
equivalence, then so is the other.

PROOF. By the two out of three property, f is a weak equivalence if and only
if h is a weak equivalence, and similarly for g. a

We emphasize that the definition of left homotopy allows the use of any
cylinder object and that the notion of left homotopy and its good and very good
variants are not equivalence relations in general. Even in some categories with
canonical cylinders, such as the category of simplicial sets, homotopy is not
an equivalence relation in general. If we were only interested in model cate-
gory theory, we could restrict attention to very good cylinder objects. However,
the canonical cylinder objects in the examples are generally not very good,
so we must allow the more general versions in order to make the promised
comparisons. For example, in the standard model structure on topological
spacesof §17.2, X x Iisacylinder object, butitis not good unless X is cofibrant,
and similarly for categories of chain complexes. We shall return to this point
in Addendum 16.4.10.

DEFINITION 143.4. Dually, a path object? for X is an object Cocyl X together
withmaps pg: Cocyl X —> X, p1: Cocyl X —> X, andi: X —> Cocyl X such
that ppoi =id = p; oi and i and hence py and p; are weak equivalences. A
path object is good if the map p = (po, p1): Cocyl X — X x X is a fibration.
A good path object is very good if i is an acyclic cofibration. Factorization of
the diagonal map X — X x X show that every X has at least one very good
path object. There are evident dual definitions of right homotopies, good right
homotopies and very good right homotopies. Define 7" (X, Y) to be the set of
equivalence classes of maps X —> Y under the equivalence relation generated
by right homotopy.

Of course, the following duals of Lemmas 14.3.2 and 14.3.3 hold.

9. The term “cocylinder” is also used and, inconsistently, we use notation that reflects that term.



282 /| AN INTRODUCTION TO MODEL CATEGORY THEORY

LEMMA 1435, If X is fibrant and Cocyl X is a good path object, then po and p1
are fibrations and thus acyclic fibrations.

LEMMA 143.6. If h is a right homotopy from f to g and either f or g is a weak
equivalence, then so is the other.

Lemmas 14.3.5 and 14.3.2 have the following immediate consequences.

LEMMA 143.7 (HEP). Leti: A —> X be a cofibration and Y be a fibrant object.
Then i satisfies the right homotopy extension property with respect to Y. That is,
for any good path object Cocyl Y and any maps f and h that make the following
square commute, there is a lift h that makes the triangles commute.

h
A — CocylY

I:L/vf

i 2 lpo
/
~

X — Y

f

LEMMA 1438 (CHP). Let p: E —> B be a fibration and X be a cofibrant object.
Then p satisfies the left covering homotopy property with respect to X. That is, for any
good cylinder object Cyl X and any maps f and h that make the following square
commute, there is a lift h that makes the triangles commute.

f

X — E

P 4
l e
10 yVZ 14
Ve

Cle — B
h

We record several further easily proven observations about these notions.

PROPOSITION 14.3.9. The notion of left homotopy satisfies the following prop-
erties. The notion of right homotopy satisfies the dual properties. Consider maps
f.g: X — Y and, for (iii),e: W — X.

(i) There is a left homotopy between f and g if and only if there is a good left
homotopy between f and g.

(i) If Y is fibrant, there is a good left homotopy between f and g if and only if
there is a very good left homotopy between f and g.
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(iii) IfY is fibrant and f is left homotopic to g, then f o e is left homotopic to g o e.
(iv) If X is cofibrant, then left homotopy is an equivalence relation on 4 (X, Y).

PROOF. We give the reader the essential ideas in the following sketch
proofs.

(i) Factori: X LI X —> Cyl X to obtain a good cylinder Cyl'X with an acyclic
fibration to Cyl X; composition with a homotopy gives a good homotopy.

(ii) Factor the weak equivalence p: Cyl X —> X to obtain a very good cylin-
der Cyl'X together with an acyclic cofibration j: Cyl X — Cyl'X. Since
Y is fibrant, a left homotopy h defined on Cyl X in the diagram

h
CylX —— v

7
, v
J s
v n

Cyl'’X —— =

lifts to a left homotopy h' defined on Cyl'X.

(iii) Useavery good cylinder Cyl X to define a homotopy h: f >~ g and choose
a good cylinder Cyl W. Use the lifting property to obtain A making the
following diagram commute. Then ho X gives the required homotopy

foex~goe.

elle i

wWHow — XIIX —— CylX
A ///7
i /// \LP
Cylw w X
p e

(iv) f is left homotopic to f since X itself gives a cylinder for X. If f is left
homotopic to g, use of the interchange map on X LI X shows that g is
left homotopic to f. For transitivity, observe that the pushout of a pair
of good cylinders Cyl X and Cyl'X along the cofibrations i1 and i in the
diagram

i1 io
CylX<—X——=Cyl'X
gives another good cylinder Cyl”X. Given left homotopies f ~ g and
g = hdefined on Cyl X and Cyl X, use the universal property of pushouts
to obtain a homotopy f ~ h defined on Cyl"X. O
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COROLLARY 143.10. IfY is fibrant, then composition in .# induces composition
74X Y) x 78(W, X) — 74(W, Y).

If W is cofibrant, then composition in .# induces composition

"X, Y) x 7"(W,X) — 7" (W, Y).

PROOF. Ife,e': W — X and f,f': X —> Y are left homotopic, then foe
and f' o e are left homotopic by (iii) and f o e and f o ¢’ are left homotopic by
composing a homotopy Cyl W — X with f. This implies the first part. The
second is dual. O

The previous results give properties of left homotopies and of right homo-
topies, thought of separately. Perhaps the real force of Quillen’s approach to
homotopies is the comparison between left and right homotopies.

PROPOSITION 143.11. Consider mapsf,g: X — Y.

(i) If X is cofibrant and f is left homotopic to g, then f is right homotopic to g.
(it) IfY is fibrant and f is right homotopic to g, then f is left homotopic to g.

PROOF. For (i), there is a left homotopy h: CylX — Y defined on some
good cylinder object Cyl X. Choose any fixed good path object Cocyl Y. Since
ig is an acyclic cofibration, by Lemma 14.3.2, and p is a fibration, there is a lift
X in the following diagram.

X Y Cocyl Y

A _ -7
io /// p

i1 _ -
X — CjlX ——= XxCylX —— Y xY
(p.id) (f>h)

The composite Ai; is a right homotopy from f to g. The proof of (ii) is dual. O
DEFINITION 143.12. When X is cofibrant and Y is fibrant, we say that f is

homotopic to g, written f ~ g, if f is left or, equivalently, right homotopic to g.
We then write 7 (X, Y) for the set of homotopy classes of maps X — Y.

The previous proof has the following consequence, which is the key to
comparing classical homotopies with model theoretic homotopies.
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COROLLARY 14.3.13. Let X becofibrant and Y be fibrant. Fix a good cylinder object
Cyl X and a good path object Cocyl Y. If f >~ g, then f is left homotopic to g via a
homotopy defined on Cyl X and f is right homotopic to g via a homotopy mapping
to Cocyl Y.

The following result can be viewed as giving weak model theoretic ana-
logues of the dual Whitehead theorems. Another variant is given in Theo-
rem 14.4.8 below.

THEOREM 14.3.14. The following versions of the dual Whitehead theorems hold.

(i) If X is cofibrant and p: Z — Y is an acyclic fibration, then the function
ps: 14X, Z) — 7%(X, Y) is a bijection.

(it) If Y is fibrant and i: W — X is an acyclic cofibration, then the function
i*: " (X, Y) — n" (W, Y) is a bijection.

PROOF. For a map f: X —> Y and for a left homotopy h between maps
k,£: X — Z that is defined on a good cylinder Cyl X, lifts in the diagrams

k+¢
and XX — Z

] Z
7
B L
v v
X Y

CylX —— Y
h

N

-

show that p, is surjective and injective, respectively. Here we have used that
po (k+ ¢) restricts to pk and p¢ on the two copies of X in X L1 X. O

The topological analogue of (i) does not require a fibration hypothesis and
therefore has one of the implications in the following result as a formal conse-
quence [93, pp. 73-74]. In the model theoretical version, neither implication
is obvious.

THEOREM 14.3.15. Let f: X —> Y be a map between bifibrant objects X and Y.
Then f is a homotopy equivalence if and only if f is a weak equivalence.

PROOF. Factor f as the composite of an acyclic cofibration i: X — Z
and a fibration p: Z —> Y and observe that Z is also bifibrant. By Theo-
rem 14.3.14(ii), the functions

*:n(Z,X) — n(X,X) and i*:7(Z,Z) — 7w(X,2)
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are bijections. Choose j: Z — X such thati*(j) = idx, so thatji >~ idx. Then
i*(ij) = iji =~ i and therefore ij >~ idz. Thus i is a homotopy equivalence with
homotopy inverse j. If f is a weak equivalence, then p is an acyclic fibration
and the dual argument gives that p is a homotopy equivalence with a homo-
topy inverse q: Y — Z. The composite g = jq is then a homotopy inverse
tof.

Conversely, assume that f is a homotopy equivalence with homotopy in-
verse g. Since i is a weak equivalence, it suffices to prove that p is a weak
equivalence to deduce that f is a weak equivalence. Let h: CylY — Y be a
good left homotopy from fg = pig to the identity map of Y. Choose a lift k in
the diagram

7
l £
10 v p
e

CY]Y — Y
h

and let g = kiy: Y —> Z. Then k is a good homotopy from ig to g such that
pq = idy. Moreover, p = pij = fj and therefore

qp ~ igp >~ ig fj ~ idz.

By Lemma 14.3.3, this implies that gp is a weak equivalence. By Remark 14.1.3,
p is a retract of gp since pq = id. Therefore p is also a weak equivalence. O

REMARK 14.3.16. We have used HELP and coHELP in several places, notably
§3.3. The first author has long viewed them to be a central organizational con-
venience in classical homotopy theory. Implicitly and explicitly, we shall again
use HELP in developing the g-model structures on spaces in §{17.2 and on chain
complexes in §18.4. These generalizations of the HEP and CHP in classical
homotopy theory are themselves specializations of dual model theoretic gen-
eralizations of HELP and coHELP that were introduced and given the names
left and right HELP by Vogt [139]. He used them to give a characterization of
the weak equivalences in any model cateogory in terms of lifting properties.

14.4. The homotopy category of a model category

To begin with, we reconsider the cofibrant and fibrant replacements of Defi-
nition 14.2.7 from a homotopical point of view. In the definition of a model
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category, we built in the choice of having functorial factorizations. When we
have them, we have cofibrant and fibrant replacement functors Q and R. In
general, we have functors up to homotopy. To make this precise, observe
that the results of the previous section, in particular Corollary 14.3.10 and
Proposition 14.3.11, validate the following definitions of homotopy categories.

DEFINITION 14.4.1. Consider the full categories ., ///f, and ///cf of cofi-
brant, fibrant, and bifibrant objects of .#, respectively. Define their homotopy
categories h.#;, h.#, and h.Z to be the categories with the same objects
and with morphisms the equivalence classes of maps with respect to right
homotopy, left homotopy, and homotopy, respectively. In the first two cases,
we understand equivalence classes under the equivalence relation generated
by right or left homotopy.

Consider a map f: X — Y. Choose cofibrant replacements q: QX — X
and q: QY — Y and fibrant replacements r: X — RX andr: Y — RY. Then
we can obtain lifts Q f: QX —> QY and Rf : RX —> RY in the diagrams

14.4.2
f r
QY and X — Y — RY
of -7 -7
l - - - q r l - - g l
- - _ - - Rf
(0):¢ X Y RX ——— > =

Thus we have a kind of point set level naturality of g and r even when we
do not have functors Q and R. These constructions enjoy the following prop-
erties.

LEMMA 14.43. Consideramapf: X — Y.

(i) f is a weak equivalence if and only if Q f is a weak equivalence.
(ii) The left (and hence right) homotopy classes of Q f depend only on the left
homotopy class of the composite fg.
(iii) If Y is fibrant, the right homotopy class of Q f depends only on the right
homotopy class of f.
(iv) f is a weak equivalence if and only if Rf is a weak equivalence.
(v) The right (and hence left) homotopy classes of Rf depend only on the right
homotopy class of the composite rf .
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(vi) If X is cofibrant, the left homotopy class of Rf depends only on the left
homotopy class of f.

PROOF. Statements (iv)—(vi) are dual to statements (i)—(iii). Parts (i) and (iv)
hold by the two out of three property. Parts (ii) and (v) hold by Theorem 14.3.14
and Proposition 14.3.11, applied with X replaced by the cofibrant object QX
or Y replaced by the fibrant object RY. If Y is fibrant, then so is QY, and if X
is cofibrant, then so is RX. Parts (iii) and (vi) hold by two more applications of
Theorem 14.3.14. O

Lemma 14.4.3 and Remark 14.2.8, the latter elaborated to show that &
becomes natural on passage to the homotopy category h.#, imply the follow-
ing statement.

PROPOSITION 14.4.4. Cofibrant and fibrant replacement induce functors
Q: M —> htl; and R: M — ht.

When restricted to fibrant and cofibrant objects, respectively, these functors factor
through homotopy categories to induce functors

hQ: htly — htly and hR: htl; — hty.
Moreover, bifibrant replacement RQ and QR induce naturally equivalent functors

hRo Q, hQoR: M —> htly:

The notations hQ, hR, and analogues are generally abbreviated to Q
and R, by abuse of notation, and we agree to write RQ for the functor
hRo Q: .#—h.#y induced by chosen objectwise cofibrant and fibrant
replacements, as above, or by chosen functorial replacements if we have them.
By a similar abuse of notation, we write RQ f for either a map in .y obtained
by successive lifts in (14.4.2) or for its homotopy class (which is well-defined),
letting the context determine the meaning.

DEFINITION 14.4.5. Define the homotopy category Ho.# to have objects the
objects of .# and morphism sets

Ho.# (X, Y) = h.#;(RQX, RQY) = 7 (RQX, RQY),
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with the evident composition. Define y : .# —> Ho.# (X, Y) to be the identity
on objects and to send a map f to RQ f. Observe that Ho.# is equivalent to
h#y via the functor that sends X to RQX and f to RQ f.

PROPOSITION 14.4.6. The class of maps f such that y (f) is an isomorphism is
precisely W, and every map in Ho./# is a composite of morphisms in y (#) and
inverses of morphisms in y (¥).

PROOF. By Lemma 14.4.3, if f: X — Y is a weak equivalence, then so is
RQ f. By Theorem 14.3.15, RQ f is then a homotopy equivalence and hence
an isomorphism in h.#s. Conversely, if RQ f is an isomorphism in h.Z,
then RQ f is a homotopy equivalence and therefore a weak equivalence, again
by Theorem 14.3.15. This implies that f is a weak equivalence.

For the second part, note that for any X we have weak equivalences

Xe OX— > ROX,
and these induce an isomorphism &£x =y (r)y (q) ' : ¥ (X)—y (RQX) in Ho.# .
When X € .4, q and r are homotopy equivalences and thus &x is a map
in #y. If'Y is also in .y, the maps &x and £y in .# induce an isomor-
phism of 7(X,Y) with 7(RQX, RQY). For any X and Y, this identifies
Ho.# (RQX, RQY) = (RQRQX, RQRQY) with Ho.# (X, Y) = m (RQX, RQY).
Since passage to homotopy classes of maps is a surjection

M (ROX, RQY) —> 7(RQX, RQY) = Ho.# (X, Y),

every map f: X — Y in Ho.# (X, Y) is represented by a composite &, Loty
for some map g: ROX — RQY in .. O

THEOREM 14.4.7. The functor y: M4 —> Ho.# is a localization of A4 at W .

PROOF. Let F: .# —> 5 be a functor that sends weak equivalences to iso-
morphisms. We must construct F: Ho.# —> # such that Foy = F.
We let F=F on objects. With the notations of the proof of Proposi-
tion 14.4.6, we can and must define F on morphisms by sending a map &x
to F(r)F(q)~! and sending a map f € Ho.# (X, Y) represented by ‘g‘;lgéx to
F(§y) ™" F(g) F(6x)- U

Alternative versions of the dual Whitehead theorems drop out formally
from the construction of Ho.Z.
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THEOREM 1448 (WHITEHEAD). The following versions of the dual Whitehead
theorems hold.

(i) Amap p: Z —> Y between fibrant objects is a weak equivalence if and only
ifpe: (X, Z) — 7w(X,Y) is a bijection for all cofibrant objects X.

(ii) Amap i: W —> X betweeen cofibrant objects is a weak equivalence if and
only if i*: m(X,Y) — 7 (W, Y) is a bijection for all fibrant objects Y.

PROOF. Inany category ¥, amap f: A —> Bis an isomorphism if and only
if either f.: ¢(C,A) — %(C,B) or f*: ¥ (B, C) — (A, C) is an isomor-
phism for one C in each isomorphism class of objects in €. In fact, we need
only test on objects C and D that are isomorphic to A and B. Recalling that
amap f in ./ is a weak equivalence if and only if y(f) is an isomorphism
in Ho.# , we apply this categorical triviality in the homotopy category Ho./.
Here every object is isomorphic to a cofibrant object and Ho.Z (X, Y) can be
identified with 7 (X, Y) when X is cofibrant and Y is fibrant. For (i), it suffices
to use cofibrant approximations of Z and Y as test objects and for (ii), it suffices
to use fibrant approximations of W and X. O

It is important to understand when functors defined on .# are homo-
topy invariant, in the sense that they take homotopic maps to the same map.
There are three results along this line, the most obvious of which is the least
useful.

LEMMA 144.9. Any functor F: .M —> S that takes weak equivalences to
isomorphisms identifies left or right homotopic maps.

PRoOOF. Foracylinder Cyl X, Fiy = Fi; since both areinverse to Fp. Therefore,
for a homotopy h: CylX — Y from f to g,

Ff = F(hl()) = FhFi() = FhFil = F(I’Lll) = Fg.
The proof for right homotopies is dual. O

However, the hypothesis on F here is too strong and rarely holds in practice.
The following dual pair of lemmas often do apply. Ken Brown’s lemma (14.2.9)
is relevant to these results and to their applications in the next chapter.

LEMMA 14.4.10. Any functor F: .4, —> J€ that takes acyclic cofibrations to
isomorphisms identifies right homotopic maps.
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PROOF. By (i) and (ii) of the dual of Proposition 14.3.9, if f, g are right homo-
topic maps X —> Y where X and Y are cofibrant, then there is a very good
homotopy h: X —> Cocyl Y between them. Then i: Y — Cocyl Y is an
acyclic cofibration, hence Cocyl Y is also cofibrant. Therefore Fi is defined
and is an isomorphism, hence so are Fpy and Fp;. The conclusion follows as
in Lemma 14.4.9. O

LEMMA 14411, Any functor F: My —> J that takes acyclic fibrations to

isomorphisms identifies left homotopic maps.
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COFIBRANTLY GENERATED AND PROPER
MODEL CATEGORIES

This chapter develops several disparate basic features of model category theory.
There is a standard construction of WFSs and model categories, which is
based on Quillen’s “small object argument”. The latter is a general method for
starting with a set, Z say, of maps of .# and constructing from 7 a functorial
WFS (2(Z9), I9). We explain this construction of WFSs in §15.1.

The method has the attractive feature that @(Z9) is constructed from Z in
a concrete cellular fashion. The reader should have in mind the set Z of inclu-
sions S® — D"*! used to construct cell complexes of spaces. The method in
general involves transfinite colimits, although Quillen [113] originally con-
sidered only sequential colimits. The transfinite version of the argument
was implicit in Bousfield [16], but was only later codified in the notion of
a cofibrantly generated model category. That notion offers a very convenient
packaging of sufficient conditions to verify the model axioms, as we explain
in §15.2.

The small object argument is often repeated in the model category liter-
ature, but it admits a useful variant that we feel has not been sufficiently
emphasized in print.! We call the variant the compact object argument. In
many basic examples, such as topological spaces, chain complexes, and sim-
plicial sets, only sequential colimits are required. When this is the case, we
obtain a more concrete type of cofibrantly generated model category called
a compactly generated model category. In such cases we are free to ignore
transfinite cell complexes. Compactly generated model categories are attrac-
tive to us since the relevant cell theory is much closer to classical cell theory
in algebraic topology (e.g., [93]) and in homological algebra (e.g., [77]) than
the transfinite version. Appreciation of the naturality of the more general
notion can best be obtained by reading §19.3, where we construct Bousfield

1. It is discussed in [97], but that is not a book for those new to the subject.
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localizations of spaces at homology theories. The examples of cofibrantly gen-
erated model categories that we construct before that section are compactly
generated.

We feel that the general case of cofibrantly generated model categories is
overemphasized in the model category literature, and we urge the reader not
to get bogged down in the details of the requisite smallness condition. At least
on a first reading, it suffices to focus on the simpler compactly generated case.
As we observe at the end of §15.2, there is an attractive intermediate notion
that arises when cofibrations are constructed using sequential colimits and
acyclic cofibrations are constructed using transfinite colimits. It is that kind
of cofibrantly generated model category that appears in §19.3.

We describe model structures in over and under “slice categories” in §15.3.
This gives a frequently used illustration of how one creates new model struc-
tures from given ones. We then describe left and right proper model structures
in {15.4. These conditions on a model structure are central to the applications
of model category theory, and they play an important role in the development
of Bousfield localization in Chapter 19. We illustrate their use in the relatively
technical §15.5, which is best skipped on a first reading. It uses properness to
relate lifting properties to hom sets in homotopy categories.

15.1. The small object argument for the construction of WFSs

The essential starting point is to define Z-cell complexes. When Z is the set
{S" —s D"*1} of standard cell inclusions, all CW complexes will be examples
of Z-cell complexes as we define them. However, for reasons we will explain,
that fails with the usual model theoretic definition of an Z-cell complex. Recall
Definition 14.1.6.

DEFINITION 15.1.1. Let Z be a set of maps in .#. For an object X € .# and
an ordinal A, a relative Z-cell A-complex under X isamapg: X — Z thatisa
transfinite composite of a A-sequence Z, such that Zy = X and, for a successor
ordinal @ +1 < A, Zy41 is obtained as the pushout in a diagram
J
]_[ Aq — Zy

||

By —— Zata,
k
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wherethei,: A; — B runthroughsomeset S, of mapsin Z. The restrictions
of j to the A; are called attaching maps, and the restrictions of k to the B,
are called cells. We say that f is a simple relative Z-cell A-complex under X
if the cardinality of each S, is one, so that we adjoin a single cell at each
stage. Define €' (Z) to be the class of retracts of relative Z-cell complexes in ..
An object X € .# is an Z-cell complex if there is a relative Z-cell complex
) — X.

DEFINITION 15.1.2. Arelative Z-cell w-complex is called a sequential, or clas-
sical, relative Z-cell complex. Here the indices « just run over the natural
numbers, so that Z = colim Z, as in the classical definition of CW complexes.

In the model category literature, relative Z-cell complexes are generally
defined to be simple, so that they are transfinite composites of pushouts of
maps in Z. Coproducts are then not mentioned in the definition, but they
appear in its applications. Using coproducts in the definition keeps us closer
to classical cell theory, minimizes the need for set theoretic arguments, and
prescribes Z-cell complexes in the form that they actually appear in all versions
of the small object argument. Note that we have placed no restriction on the
cardinality of the sets Sy. Such a restriction is necessary if we want to refine a
given Z-cell complex to a simple Z-cell A-complex for some prescribed value of
X, but we shall avoid use of such refinements. We digress to say just a bit about
how the comparison of simple and general Z-cell complexes works, leaving
the details to the literature [65, Ch. 10], but we will make no use of simple cell
complexes and therefore no use of the comparison.

PROPOSITION 15.1.3. By ordering the elements of coproducts along which push-
outs are taken, a relative Z-cell A-complex f: X —> Z can be reinterpreted as a
simple relative Z-cell complex. That is, we can reinterpret the maps Zy —> Zy 41
as simple relative cell complexes, obtained by attaching one cell at a time, and then
reindex so as to interpolate these simple cell complexes into the original cell complex
to obtain a simple cell k -complex for some ordinal k > A.

We can determine the cardinality of k in terms of the cardinalities of A and
the sets Sy. Recall the definition of a regular cardinal from Definition 2.5.2.

DEFINITION 15.1.4. A relative Z-cell A-complex is regular if A is a regular
cardinal and the indexing sets S, for the attaching maps all have cardinality
less than that of A.
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There is no real loss of generality in indexing Z-cell complexes on regu-
lar cardinals since we can add in identity maps to reindex a relative Z-cell
A-complex to a relative Z-cell k-complex that is indexed on a regular cardinal
k& > A. There is real loss of generality in restricting the cardinalities of the sets
Se. The point of the restriction is that we can now apply Proposition 15.1.3
without increasing the cardinality of the ordinal A that we start with.

COROLLARY 15.1.5. A regular Z-cell A-complex can be reinterpreted as a simple
relative Z-cell A-complex.

That ends the digression. We now offer two parallel sets of details. One
focuses solely on sequential colimits, that is, on Z-cell w-complexes. The other
makes use of Z-cell A-complexes for larger ordinals A. We argue that the latter
should be used when necessary, but that their use when unnecessary only
makes arguments unaesthetically complicated. As already noted, we shall
arrange our work so that we have no need to make explicit use of ordinals
larger than  until Chapter 19.

DEFINITION 15.1.6. Anobject A of ./ is compact with respect to Zif for every
relative Z-cell w-complex f : X — Z = colim,, Z,, the canonical map

colim, A (A, Z,) — M (A, Z)

is a bijection. The set Z is compact, or permits the compact object argument,
if every domain object A of a map in Z is compact with respect to Z. When
7 is compact, we interpret '(I) to mean the class of retracts of relative Z-cell
w-complexes, excluding the relative Z-cell A-complexes for 1 > w.

DEFINITION 15.1.7. Let k¥ be a cardinal. An object A of .# is k-small with
respect to Z if for every cardinal A > k and every relative Z-cell A-complex
f:X — Z = colimg.; Zg, the canonical map

colimgy M (A, Zg) — M (A, Z)

is a bijection. An object A is small with respect to Z if it is k 4-small for some
ka. The set Z is small, or permits the small object argument, if every domain
object A of a map in 7 is small with respect to Z.

LEMMA 15.1.8. If T is small, there is a regular cardinal A such that every domain
object A of a map in Z is A-small.
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PROOF. Take X to be any regular cardinal that contains all k4. O

REMARK 15.1.9. In Definition 15.1.6, we do not restrict to regular Z-cell
w-complexes. The cardinalities of the sets S, of attaching maps are unre-
stricted, just as in the usual definition of CW complexes. The regular Z-cell
w-complexes are the complexes with finite skeleta, and we can order their cells
to make them simple w-complexes. We cannot so order general w-complexes
without increasing the cardinality. Observe that “compact” and “w-small” are
very different notions: “compact” nowhere mentions cardinalities greater than
w, whereas w-small refers to all cardinalities greater than w. In marked con-
trast, Proposition 15.1.3 implies that the notion of A being «x-small with respect
to Z is unchanged if we restrict attention to simple relative Z-cell complexes
in Definition 15.1.7, as is generally done in the literature [65, 66].

For clarity, we isolate the central construction of the small object argument.

CONSTRUCTION 15.1.10. Letf: X — Y be a map in .#. Let S be the set of

all commutative squares

Bq*>Y7

Jg

where i is a map in Z. We construct the single step factorization diagram for f:

k=[] kq
]_[q ]_[Sq Aq X
LI 11 \L i l
¢ f
]_[q ]_[Sq Bq y4 p

Y.

The square is a pushout diagram that defines Z, i, and ¢, and the map p s given
by the universal property of pushouts. The diagram displays a factorization
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of f as pi, where i is a one step relative Z-cell complex and the map ¢ can be
viewed as solving the lifting problem for ( i, p) defined by the maps ik and j.

PROPOSITION 15.1.11 (THE SMALL OBJECT ARGUMENT). Assume that a
set Z of maps in A is either compact or small. Then there is a functorial WFS
(€(T), IP). Moreover, the construction is functorial with respect to inclusions of
subsets J C .

PROOF. Let A = w in the compact case and let A be the regular cardinal of
Lemma 15.1.8 in the small case. Let f: X —> Y be a map in .#. We shall

construct a functorial factorization X - Z 5 Y in which i is a relative Z-cell
A-complex and pis in Z9. With the language of Definition 14.1.6, we construct
a A-sequence Z, of objects over Y, and we then definei: X — Zandp: Z - Y
by taking the transfinite composite of this A-sequence. We set Zy = X and let
ip=1d: X — Zp and pgp = f: Zo —> Y. Inductively, suppose that we have
completed the construction up through Z,, so that we have a relative Z-cell
complexiy: X —> Zyandamappy: Zy —> Y suchthatpy oiy = f. We con-
struct Zy41 together with a factorization Z, — Zy4+1 Py of Po DY
applying the single step factorization diagram to the map p,. The compos-

ite X 2% Zy —> Zg+1 is a relative Z-cell complex iy11, and py+1 solves a
lifting problem as specified in Construction 15.1.10. We define Zg, ig, and
pp on limit ordinals B by passage to colimits. With g = A, this completes the
construction of the factorization.

To see that p is in 7%, consider the following diagram, in which : € Z and
maps k and j are given such that the outer square commutes.
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Since Z is compact or small, k factors through some Z,, giving maps « and p
making the top triangle commute, and then the arrows ¢, j, , and pp display
one of the squares used in the single step construction of Zy 41 from Z,. The
single step construction gives the map ¢, and the diagonal composite gives the
required lift.

To see that we have a WFS (%'(Z), %), we must show that

€1 =%7%) and €)% =1

If f: X —> Y is in @(Z¥) and we factor f as above, then the retract argu-
ment of Lemma 14.1.12 shows that f is a retract of i and is therefore in € (Z).
Conversely, since 7 is contained in the left saturated class ¥ (Z%) (see Defini-
tion 14.1.7, Proposition 14.1.8, and Lemma 14.1.9), we see that €' (Z) C 9(Z9).
By Lemma 14.1.9, 79 > ¢(2)¥ and () > (Y (Z9))? = I%

To see the functoriality of the factorization, consider a commutative square

f

X — Y

X — Y.

f/

Constructa factorization X’ > Z' & Y’ inthe same way as above. Inductively,
assume that we have obtained a map t,: Z, —> Z/, that makes the following
diagram commute.

la Pa
Zo
r l i o l s
X/ Z(/)t Y/
T Pa

For the next stage, the composite with s of a square used to construct Zy 11
from Z, gives one of the squares used to construct Z/, ; from Z,. The map
t: Z —> Z’ obtained by passage to colimits satisfies ti = ir and sp = pt,
verifying the claimed functoriality of the factorization.

Finally, let 7 C Z. An ordinal X such that the domains of maps in 7 are
A-small with respect to relative Z-cell complexes has the same property for 7.
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We may use A-complexes to construct both WFSs, and we write superscripts Z
and J to distinguish them. Inductively, assume that we have obtained a map
ty: ZJ —> ZI that makes the following diagram commute.

Ty Pa
X zJ Y
\L 5
X zZ Y
[ Pa

The composite of t, with an attaching map used to construct Z (;7“ from zJ
gives one of the attaching maps used to construct ZZ,; from ZZ, and the
universal property of pushouts gives the next map #,,1. Passage to colimits
gives amap t: Z7 — ZZ under X and over Y. For K C 7, the composite of

this construction for K C Jand J C T gives the construction for X c Z. O

REMARK 15.1.12. There is a general property of a category, called local pre-
sentability [12, §5.2], that ensures that any set Z permits the small object
argument. In such categories, this leads to a more uniform and aesthetically
satisfactory treatment of the small object argument. It is satisfied by most
algebraically defined categories. It is not satisfied by the category of compactly
generated topological spaces. However, if instead of using all compact Haus-
dorff'spaces in the definition of compactly generated spaces [93, p. 37], one only
uses standard simplices, one obtains the locally presentable category of “com-
binatorial spaces”. It appears that one can redo all of algebraic topology with
combinatorial spaces replacing compactly generated spaces. We will not say
more about that point of view. The insight is due to Jeff Smith (unpublished);
published sources are [9, 47].

15.2. Compactly and cofibrantly generated model categories

The model categories in most common use, although by no means the only
interesting ones, are obtained by use of the small object argument. Their cofi-
brations and acyclic cofibrations admit cellular descriptions.

DEFINITION 152.1. Amodelstructure (#/, %, .F) on .# is generated by sets Z
and Jif F = J%and F NW =19, SinceI¥ = ¢ (Z)% and J? = € (J)¥,
it is equivalent that € = € (Z) and € N# = €(J). The sets Z and J are
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called the generating cofibrations and generating acyclic cofibrations. We say
that the model structure is cofibrantly generated if the sets Z and 7 are small.
We say that the model structure is compactly generated if the sets Z and J
are compact, in which case only sequential cell complexes are used to define
€ (Z) and € (J).

It is possible for a model category to be generated by sets Z and 7 that
are neither small nor compact, although this possibility is seldom encountered
and never mentioned in the literature.

REMARK 15.22. A combinatorial model category is a locally presentable cate-
gory that is also a cofibrantly generated model category [9].

There are several variant formulations of the following criterion for detect-
ing cofibrantly generated model categories. The version we give is [97, Thm.
4.5.6]. Recall Definition 14.1.4.

THEOREM 15.2.3. Let .# be a bicomplete category with a given subcategory W
of weak equivalences and given sets T and J of maps. Assume that T and J are
compact or small. Then 4 is a compactly generated or cofibrantly generated model
category with generating cofibrations T and generating acyclic cofibrations J if and
only if the following two conditions hold.

(i) (Acyclicity condition) Every relative J-cell complex is a weak equivalence.
(ii) (Compatibility condition) IV = J9 N¥ .

PROOF. The necessity of the conditions is obvious. Thus assume that (i) and
(ii) hold. Define ¥ = Y(Z%) and .# = J¥. We must show that (¢, Z N %)
and (¥ N¥,.%) are WESs. In view of the definitions of .% and ¥, the small
object argument gives WFSs

(¢,Z%) and (6(J), 7).

Since we have assumed in (ii) that Z¥ = . N %, it only remains to prove that
€ (J) = ¢ N W. Since # is a category of weak equivalences, it is closed under
retracts, hence (i) gives that ¢’ (J) C #. Moreover,

JC 2IP) C AP = A FnH) = BI?) =%,

It follows by left saturation that € (J) C € and thus €(J) C €N #. Con-
versely, let f € €N and factor f as a composite goj, where j € €(J) and
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q € Z. Then jis in #, hence q is in # by the two out of three property. Thus
gisin F N#W = I2. Since f is in &, it has the LLP with respect to q. By the
retract argument, Lemma 14.1.12, f is a retract of j. Since j is in €(J), f is in
¢(J). |

In practice, the compatibility condition is often easily verified by formal
arguments. For example, Theorem 15.2.3 is often used to transport a model
structure across an adjunction, as we formalize in Theorem 16.2.5 below, and
then only the acyclicity condition need be verified. The acyclicity condition
clearly holds if 7 C # and # is a left saturated class of maps in the sense of
Definition 14.1.7. This rarely applies since pushouts of weak equivalences are
generally not weak equivalences. However, pushouts of coproducts of maps
in J often are weak equivalences, and verifying that is usually the key step in
verifying the acyclicity condition.

The following two remarks pull in opposite directions. The first suggests
that it may sometimes be useful to expand Z, whereas the second suggests
that it is worthwhile to keep Z as small as possible.

REMARK 15.2.4. The sets Z and J are not uniquely determined. In practice,
with the standard choices, the maps in J are relative Z-cell complexes but
are not themselves in Z. However, we are free to replace Z by ZU J. The
hypotheses of Theorem 15.2.3 still hold. This gives a new set Z of generating
cofibrations that contains 7. Now we have not only factorization functors
Z%(f)and Z7(f) onmapsf: X —> Y, but we also have a natural comparison
map ZJ(f) —> ZZ(f) under X and over Y. This places us in a categorical
context of maps of WFSs [118].

REMARK 15.2.5. Notice that use of the small object argument applies inde-
pendently to Z and J to construct the two required WFSs. The assumption
that Zand J be compact or small in Theorem 15.2.3 should be interpreted as
allowing 7 to be compact and 7 to be small. This combination appears in the
most common examples, such as Bousfield localizations, and it allows one to
model the cofibrations using only sequential Z-cell complexes.

15.3. Over and under model structures

There are several elementary constructions on model categories that lead
to new model categories, often cofibrantly generated if the original one
was. We record a useful elementary example that plays an important role
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in parametrized homotopy theory [97] and has many other applications. It
shows in particular how to construct model structures on based spaces from
model structures on unbased spaces.

DEFINITION 15.3.1. Let .# be a category and B be an object of .#. The slice
category B/.# of objects under B has objects the maps i = ix: B— X in
A and morphisms the maps f : X —> Y such thatf oix = iy. Forgetting the
maps ix gives a functor U: B/.# —> .#. Dually, we have the slice category
A | B of objects over B and a functor U: .# /B —> .#. Combining these,
we have the category .#p of sectioned objects over B; these have projections
p: X — Bandsectionss: B—> X suchthatpos = id, and we have forgetful
functors U from .#p toboth B/.# and .# / B. Thinking of Bas the identity map
B — B, we may identify .#p with either B/(.# /B) or (B/.#)/B.For X € .#,
the canonical inclusion makes X LI B an object under B and the canonical
projection makes X x B an object over B. For Y € .# /B, Y LI B is an object
under B via the canonical inclusion and over B via the given map Y — Band
the identity map of B. We have adjunctions

15322 M (UY,X) = (#/B)(Y, B xX),
15.3.3 (X, UY) = (B/.#)(X 1 B,Y),
and

15.3.4 (.4 /B)(Y, UZ) = (Y 1 B, Z).

For a pair of objects A and B, we have the category A/.# /B of objects under
A and over B. It has forgetful functors, again denoted U, to A/# and .# /B.
All forgetful functors in sight are faithful. The categories B/.#, .# /B, and
/g are bicomplete. The category A/.# /B is not, but it is a coproduct of
bicomplete categories. For each fixed map f: A —> B, let (A/.#/B); be
the subcategory of diagrams A > X 2 B such that pos=f. In particular,
Mp = (B/.#|B)iq. The map f is an object of both .# /B and A/.#, and
(A/# | B)y may be identified with either f/(.#/B) or (A/.#)/f. Therefore
(A/A |B)s is bicomplete, and A/.# /B is the disjoint union over f of its
subcategories (A/.# /B)s.

DEFINITION 15.3.5. Consider a functor U: A4 —> A.

(i) We say that U reflects a property if a map f in .# has the property when-
ever Uf does; it creates the property if f has the property if and only if
Uf has the property, that is, if f preserves and reflects the property.
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(ii) If we have a class .Z of maps in .#, we define a corresponding class
U™l of maps in 4" by letting f be in U~'.# if and only if Uf is in .%;
if we think of .Z as specifying a property, then we think of U as creating
the class of maps in .4 that satisfies the corresponding property.

(iii) We say that a model structure on .# creates a model structure on .4’
if 4" is a model category with the classes of weak equivalences and
fibrations created by the functor U. The cofibrations in .#” must then
be the maps that satisfy the LLP with respect to the acyclic fibrations.
The dual notion, with cofibrations and fibrations reversed, is much less
frequently encountered.

(iv) We say that a model structure on .# strongly creates a model structure
on 4 if 4 is a model category with the classes of weak equivalences,
cofibrations, and fibrations all created by the functor U.

It rarely happens that .# strongly creates a model structure on .4/, but it
does happen in the present context of over and under categories. The def-
inition of left and right proper model categories will be given shortly, in
Definition 15.4.1 below.

THEOREM 15.3.6. Let .# be a model category, let A and B be objects of 4, and
let f: A—> B be a map. Then the forgetful functors U strongly create model
structures on B/ M, M | B, M, and (A/ 4 | B)y. If 4 is left or right proper, then
so are B/.M, M |B, Mg, and (A/A4 |B)s. If 4 has generating sets T and 7,
then B/, # | B, B, and (A/ ./ | B)s have generating sets suitably constructed
from Z and 7.

PROOF. The model axioms are inherited from .#, the point being that the
WESs of .# directly imply WFSs for the slice categories since lifting maps
and factorizations in .# between maps in slice categories provide lifting
maps and factorizations in slice categories. Properness is a similar formal
check.

For the last statement, we do not use the small object argument. Rather,
we appeal to the notion of a model category that is generated but not neces-
sarily compactly or cofibrantly generated given in Definition 15.2.1. Define
7/ B to be the set of maps in .# /B such that Ui is a map in Z. Define B/Z to
be the set of maps in B/.# obtained by applying the functor (—) LI B to the
maps in Z. Define Zp to be the set of maps i LI B in .#3, where i is a map in
7/B. Generalizing the last, define Z¢ to be the set of maps
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XA

A iLllid B

o

YA

in (A/.# | B)y, where iy is the inclusion onto the summand A and i is a map
in Z/B. The last two definitions can be viewed as specializations of the first
two to appropriate slice categories of arrow categories. Define B/ 7, [J/B, Js,
and Jr similarly. In all cases, since .# = J%and FNW =7IY in 4 and
the forgetful functors to .# create the model structures, formal arguments
give the corresponding equalities in our slice categories. For .#/B, it is clear
from the definitions that p € (Z/B)¥ if and only if U, € Z and similarly for
J. For B/, it is clear from the adjunction (15.3.3) and the definitions that
p € (B/Z)? if and only if U, € Z and similarly for 7. The analogues for .43
and (A/.# | B)y follow formally. O

REMARK 153.7. The forgetful functor U :.# /B —> .# clearly carries re-
lative cell complexes to relative cell complexes (both defined starting from
either Z or 7). It follows that if 7 and J are compact or small, then so are
Z/B and J/B. Therefore, if .# is compactly or cofibrantly generated, then
so is .# / B. Provided that B itself is a cell complex, U : B/.# —> .# carries
relative cell complexes to relative cell complexes. In this case, we see using
the adjunction (15.3.3) that if 7 and 7 are compact or small, then so are Z/B
and J/B. Without the proviso on B, this seems to be false. It follows that if
B is both an Z-cell complex and a J-cell complex and .# is compactly or cofi-
brantly generated, then so is B/.# . This criterion is uninteresting in general,
since it implies that B is contractible, but it does apply to categories of based
objects.

We shall define Quillen adjunctions below, in Definition 16.2.1, and the
following result will be immediate from the definition.

COROLLARY 15.3.8. The adjunctions (15.3.2), (15.3.3), and (15.3.4) are Quillen
adjunctions.
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15.4. Left and right proper model categories

The following concept will play a significant role in our discussion of Bousfield
localization in Chapter 19, and it is important throughout model cate-
gory theory. We will give a conceptual reinterpretation of the definition in
Proposition 16.2.4.

DEFINITION 15.4.1. A model category .# is left proper if the pushout of a
weak equivalence along a cofibration is a weak equivalence. This means that
if i is a cofibration and f is a weak equivalence in a pushout diagram

i

— > Y,
g
then g is a weak equivalence. It is right proper if the pullback of a weak equiv-

f
E—

alence along a fibration is a weak equivalence. This means that if p is a fibration
and f is a weak equivalence in a pullback diagram

then g is a weak equivalence. It is proper if it is both left and right proper.

Over and under model structures often play a helpful technical role in
proofs, as is well illustrated by their use in the proof of the following result.
One point is that appropriate maps can be viewed as cofibrant or fibrant objects
in model categories, allowing us to apply results about such objects to maps.

PROPOSITION 15.4.2. Let .4 be a model category. Then any pushout of a weak
equivalence between cofibrant objects along a cofibration is a weak equivalence,
hence A is left proper if every object of A is cofibrant. Dually, any pullback of a
weak equivalence between fibrant objects along a fibration is a weak equivalence,

hence ./ is right proper if every object of A is fibrant.
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PROOF. Consider a pushout diagram
A B
X Y

in which i is a cofibration, f is a weak equivalence, and A and B are cofibrant.

f
R
e
g

We must show that g is a weak equivalence. Observe that X and Y are also
cofibrant. By Theorem 14.4.8, it suffices to show thatg*: 7 (Y, Z) — 7 (X, Z)
is a bijection for all fibrant objects Z. Foramapt: X —> Z, we see by applying
Theorem 14.4.8(ii) to f that there is a map s: B— Z such that sof >~ toi.
Applying HEP, in the form given in Lemma 14.3.7, to the cofibration i, we
can homotope t to a map ¢’ such that sof =t/ oi. Then s and ¢’ define a map
r: Y — Z such that rog = t'. Thus g* is surjective. To see that g* is injec-
tive, let u and v be maps Y — Z such that uog ~vog via a good right
homotopy h: X — Cocyl Z. Working in the model category .# /(Z x Z) of
Theorem 15.3.6, in which the good cocylinder (po,p1): CocylZ — Z x Z
is a fibrant object, we apply Theorem 14.4.8(ii) again to obtain a map
k: B—> Cocyl Z over Z x Z such that kof >~ hoi. Applying Lemma 14.3.7
again, we can homotope h over Z x Z to amap h' such thatkof = h’ 0i. Then
W' and k define a right homotopy Y — Cocyl Z from u to v. O

There is another condition that one can ask of a model category that appears
to be much stronger but in fact is equivalent to its being left proper. Roughly,
the condition states that pushouts preserve weak equivalences. The statement
has often been verified in special situations and is used over and over again
in applications. We have already seen instances of it in Lemma 2.1.3 and its
dual Lemma 2.2.4.

DEFINITION 15.4.3. A model category .# satisfies the left gluing lemma if,
for any commutative diagram
A C B

b

A/ < C/ > B/
j £
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in which i and j are cofibrations and f, g, and h are weak equivalences, the
induced map of pushouts

AUcB— A'Ux B

is a weak equivalence. The right gluing lemma is stated dually.

PROPOSITION 15.4.4. A model category ./ is left or right proper if and only if it
satisfies the left or right gluing lemma.

PROOF. We prove the left case. If the left gluing lemma holds, then we see
that ./ is left proper by taking f, g, and k to be identity maps, so that i =j.
The conclusion then shows that the pushout A= AUg B —> AUp B’ of the
weak equivalence h along the cofibration i is a weak equivalence. Thus assume
that .# is left proper. We proceed in three steps.

Step 1. If k and ¢ are both weak equivalences, then by left properness so are
the horizontal arrows in the commutative diagram

A — AUcB
SR
A —— A'Ug B.

Since f is a weak equivalence, the right vertical arrow is a weak equivalence
by the two out of three property of weak equivalences.

Step 2. If k and ¢ are both cofibrations, consider the commutative diagram
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The back, front, top, and two bottom squares are pushouts, and the mid-
dle composite ' — A’ is j. Since k and ¢ are cofibrations, so are the
remaining three arrows from the back to the front. Similarly, i and its
pushouts are cofibrations. Since C —> C, A —> A, and B —> B’ are weak
equivalences, left properness and the two out of three property imply that
A— AUcC,AUcC' —> A, AUc B—> AUc B, and AUc B — A’ U B
are weak equivalences. Composing the lasttwo, AUc B —> A’ U B isaweak

equivalence.

Step 3. To prove the general case, construct the following commutative
diagram.

J 14
A o B
C'Uc D

Here we first factor k as the composite of a cofibration and a weak equiva-
lence k and then define a map £ by the universal property of pushouts. By left
properness, D —> C’Uc D is a weak equivalence, and by the two out of three
property, so is L. By the second step,

AUcD — A'Ug (C'Uc D)= A'Uc D
is a weak equivalence and by the first case, so is

AUc B = (AUc D)Up B — (A'Uc D)Ucuep) B = A'Ucr B'. O

In our examples, we sometimes prove the gluing lemma directly, because
it is no more difficult. However, in deeper examples it is often easier to check
that the model structure is left proper and to use the previous result to deduce
that the left gluing lemma holds.
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15.5. Left properness, lifting properties, and the sets [X,Y]

We work in a fixed model category .# in this section. Leti: A —> X be a map
in ./ and Z be an object of .# . Consider the induced map

15.5.1 "1 [X,Z] — [A Z]

of hom sets in Ho.Z. We describe how we can sometimes deduce that i*
is a bijection directly from lifting properties and, conversely, how we can
sometimes deduce lifting properties when i* is a bijection. While i will be a
cofibration and Z will be fibrant, the force of these results comes from the
fact that the relevant lifting properties concern pairs of maps, neither of which
need be a weak equivalence. This should be a standard part of model category
theory, although we have not found exactly what we want in the literature. The
work in this section will be needed in our discussion of Bousfield localization,
and it well illustrates how important it is to know whether a model structure is
left or right proper. The results here all have evident duals, with cofibrations
and fibrations reversed.

We defined homotopy pushouts of spaces in Definition 2.1.1. We now
generalize to arbitrary model categories and then specialize to a particular
case of interest.

DEFINITION 15.5.2. Define the homotopy pushout (or double mapping cylin-
der) M(f,g) of a pair of maps f: A —> X and g: A —> Y to be the pushout
offlIg: ALIA — X LY along the cofibration ig +i1: AHA — CylAofa
good cylinder object Cyl A. Thus a map h: M(f,g) —> Z specifies a good left
homotopy higf =~ hipg. When X = Y and f =g, we call the homotopy pushout
M(f,f) a spool? of f and denote it by Splf. We define homotopy pullbacks
dually.

We have the following pair of results, the first of which is just an obser-
vation.

LEMMA 1553. If i1 A—> X and the canonical map k: Spli —> CylX are
cofibrations between cofibrant objects and both satisfy the LLP with respect to a fi-
bration Z — x, then i*: [X, Z] —> [A, Z] is a bijection.

2. This well-chosen term is due to Bousfield [16].
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PROOF. Since [X, Z] = (X, Z) and similarly for [A, Z], the LLP for i gives
that i* is a surjection and the LLP for k gives that i* is an injection. O

LEMMA 15.5.4. Assume that 4 is left proper. If i: A — X is a cofibration and
Z is a fibrant object such that
i [X,Z] — [A, Z]

is a bijection, then Z — x satisfies the RLP with respect to i.
The proof uses the notion of a cofibrant approximation of a map.

DEFINITION 1555 A cofibrant approximation of a map f: X — Y is a
commutative diagram

0X —— QY

qxl lqy

X — Y

f

in which QX and QY are cofibrant, f” is a cofibration, and gx and gy are weak
equivalences.

LEMMA 155.6. Any map f: X —> Y has a cofibrant approximation.

PROOF. Letqx: QX —> X be a cofibrant approximation of X and factor fgx
asqyf’, wheref’: QX — QY isacofibrationandgy: QY — Yisanacyclic
fibration. O

Observe that cofibrant approximation of maps gives a way to arrange that
the hypothesis on i in Lemma 15.5.3 is satisfied. We will consider analogues
for the map k in Lemma 15.5.3 at the end of the section. Lemma 15.5.4 is
proven by concatenating the following two results, using that i* is isomorphic
to j* if j is a cofibrant approximation of i.

LEMMA 15.5.7. Assume that . is left proper. Let i: A —> X be a cofibration, let
j: B—> Y be a cofibrant approximation of i, and let p: E —> B be a fibration.
If p satisfies the RLP with respect to j, then p satisfies the RLP with respect to i.

PROOF. Consider the following diagram.
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J z i
N
Y X

1 f

Herei: A — X is a cofibration, f and g are given such that the right square
commutes, and we seek a lift A. As constructed in Lemma 15.5.6, the two
maps ¢ are cofibrant approximations and j is a cofibration. The upper left
square is a pushout, so that k is a cofibration and, since .# is left proper, r is
a weak equivalence. The map s is given by the universal property of pushouts
and is a weak equivalence since r and q are so. There is a lift Y — E by
hypothesis, and the lift i is then given by the universal property of pushouts.
We may regard X, Z, and E as objects in the category (A/.# /B)yg. Since i and
k are cofibrations in .#, X and Z are cofibrant objects of the model category
(A/A | B)pg, and sis a weak equivalence between them. Similarly E is a fibrant
object of (A/.# | B)pg. Therefore the induced map

s (X, E)pg —> 7(Z, E)pg

of homotopy classes of maps in (A/.# /B), is a bijection. This implies that
there is a lift A: X — E such that As >~ u under A and over B. The two tri-
angles in the right square commute since A is a map under A and over B. O

LEMMA 1558. Ifj: B— Y is a cofibration between cofibrant objects and Z is a
fibrant object such that
Jj* 1Y, Z1 — [B, Z]

is a bijection, then Z —> x satisfies the RLP with respect to j.

PROOF. [Y,Z] = n(Y, Z) and similarly for B, so for any map g: B— Z
there is a map A': Y —> Z and a homotopy h: B —> Cocyl Z from A’j to g.
By HEP, Lemma 14.3.7, h extends to a homotopy h:Y — Cocyl Z such that
poh = ' and hj = h. The map A = pih satisfies Aj = g. |

Returning to Lemma 15.5.3, we consider its hypothesis about Spli. We
therefore assume that i: A — X is a cofibration between cofibrant objects.
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A map h: Spli — Z specifies two maps X —> Z and a good left homotopy
between their restrictions to A. When Cyl X is very good, we can form a com-
mutive diagram

i io-+i
15.5.9 XUX <— ALUA —— CylA
i i l Cyli
XX —— XUX —— Cle.
io+i1

Passage to pushouts displays the map k: Spli — CylX as a cofibration
between cofibrant objects. Here the map Cyli is obtained by noticing that
the solid arrow part of the following diagram commutes, so that we can obtain
the dotted lift.

illi lo+i1
AUA — XUX —— GylX

v -7
i0+i1l \///\y\ lp
A X
P ,

CylA

1

There is an alternative way to verify the hypothesis on k, but it presupposes
familiarity with the notion of an enriched model structure that will be discussed
in {16.4.

REMARK 15.5.10. When we have a good cylinder functor in the sense of Adden-
dum 16.4.10, we automatically have a map Cyli such that (15.5.9) commutes.
The following diagrams display the idea behind the two ways of getting the
map k; the symbol © indicates tensors, as defined in §16.3.

i0+i1 id@(io+i1)
ALA CylA AQ(ILT) AOI
il Spli Cyli ioid Spli ioid
XX ——— CylX X o ((IUI) X®I

io+i1 ido(io+i1)
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In the first, we are working in a general model category and k: Spli — Cyl X
is obtained by passage to pushouts from the right square of (15.5.9). If .#
is left proper, then k is a weak equivalence if i is a weak equivalence. In the
second, we are working in a #-model category where the unit object I of the
monoidal model category ¥ has a good cylinder object I. The second diagram
is a pushout product, hence k there is a cofibration and is a weak equivalence
if i is a weak equivalence.

Thus the hypotheses of Lemma 15.5.3 hold quite generally. The discussion
leads to the following definition, which will be used at one place in §19.3.

DEFINITION 155.11. A subcategory of weak equivalences . has good spools
if for every .Z-acyclic cofibration i: A —> X between cofibrant objects, there
is a spool Spli such that k: Spli — Cyl X is an .Z-acyclic cofibration.



16

CATEGORICAL PERSPECTIVES
ON MODEL CATEGORIES

Just as we have categories, functors, and natural transformations, we have
homotopy categories derived from model categories, which we call derived
homotopy categories, together with derived functors and derived natural trans-
formations. These functors and natural transformations come in two flavors,
left and right, and are discussed in §16.1. Left and right Quillen adjoints are
the most common source of left and right derived functors, and we discuss
these in §16.2. We return to these ideas in §{16.5 where, following Hovey [66,
§1.4] and Shulman [127], we describe the 2-categorical way of understanding
the passage to derived homotopy categories and we explain that double cate-
gories, rather than categories or 2-categories, give the appropriate conceptual
framework for understanding maps between model categories. In that frame-
work, left and right Quillen adjoints are treated symmetrically as morphisms
in a single double category, rather than asymmetrically as the morphisms in
either of a pair of categories.

In §16.3, we outline the theory of enriched categories. In most of mathe-
matics, categories appear not just with sets of morphisms but with morphism
objects that lie in some well-behaved category . For example, the objects of
might be abelian groups, modules over a commutative ring, topological spaces,
simplicial sets, chain complexes over a commutative ring, or spectra. We
return to model category theory and describe enriched model category theory in
§16.4. One small point that deserves more emphasis than it receives in the liter-
atureisthatthereis a familiar classical notion of homotopy in the enriched cate-
gories that appear in nature, and the model categorical notion of homotopy and
the classical notion of homotopy can be used interchangably in such contexts.

16.1. Derived functors and derived natural transformations

Having defined model categories, we want next to define functors and natural
transformations between them in such a way that they give “derived” functors
314
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and natural transformations on passage to their derived homotopy categories.
To that end, we must first define what we mean by derived functors between
the derived homotopy categories Ho.# and Ho.#" of model categories .#
and .#. However, we focus primarily on a single model category .# in this
section.

We say that a functor F: .# — .4 between categories with weak equiv-
alences is homotopical if it takes weak equivalences to weak equivalences,
and we say that a functor F: .# —> Ho.4" or more generally a functor
F: # — ¢ for any other category /¢ is homotopical if it takes weak equiv-
alences to isomorphisms. The universal property of localization then gives
a functor F: Ho.#/ —> Ho./# in the first case or F: Ho.# — . in the
general case such that the first or the second of the following two diagrams
commutes.

F
M ——— N or M

N

Ho.## — Ho AN Hotl —— 7
F F

Herey: .# —> Ho.# and§: .#" —> Ho.# denote thelocalization functors.

The functor F is a derived functor of F. However, this will not suffice for the
applications. As we have already said, most functors F that we encounter are
not homotopical, and then it is too much to expect that diagrams such as those
above commute; rather, we often obtain diagrams like these that commute up
to a natural transformation that is characterized by a universal property.

There are two kinds of derived functor in common use: left and right. We
note parenthetically that there are also functors that in some sense deserve the
name of a derived functor and yet are neither left nor right derived in the sense
we are about to define. The theory of such functors is not well understood, but
they appear in applications (e.g., [97]) and have been given a formal description
in [128]. In this section, we focus attention on a functor F: .# — ¢, where
the target category S is arbitrary. When we return to the model category .4,
we will apply the following definition with J# taken to be Ho.#" and with F
replaced by § o F for some functor F: .4 —> .

DEFINITION 16.1.1. A left derived functor of a functor F: . # — 7 is a
functor LF: Ho.# — ¢ together with a natural transformation u: LF o y—F
such that for any functor K: Ho.#Z — ¢ and natural transformation
&: Koy —> F, there is a unique natural transformation o : K — LF such



316 / CATEGORICAL PERSPECTIVES ON MODEL CATEGORIES

that the composite 1o (o - y): Koy —> LFoy —> F coincides with &. That
is, (LF, ) is terminal among pairs (K, §).

Y LF pno(o-y)=%¢

Ho.#

Itis a categorical convention to write arrows for functors and double arrows
for natural transformations, as in the diagram above. We use o to denote the
composite of two functors or the composite of two natural transformations.
We use - to denote the composite of a natural transformation and a functor;
categorically, that is often called whiskering. For example, o - y is defined by
applying o to objects in the image of y. Since left derived functors are charac-
terized by a universal property, they are unique up to canonical isomorphism
if they exist. Confusingly, they are examples of what are known categorically as
right Kan extensions; we shall ignore that categorical perspective. Of course,
we also have a dual definition.

DEFINITION 16.1.2. A right derived functor of a functor F: . # — ¢ is a
functor RF: Ho.# — ¢ together with a natural transformation v: F>RF oy
such that for any functor P:.# — Ho.# and natural transfor-
mation ¢: F—> Poy, there is a unique natural transformation
p: RF — P such that the composite (p-y)ov: F—> RFoy —> Poy
coincides with ¢. That is, (RF, v) is initial among pairs (P, ¢).

F

H

RF l (p-y)ov=¢
X |
P

M
y
Ho.#
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It is important to realize that these definitions depend only on the functor
F and the localization y : .# — Ho.#, not on any possible model structure
that might be present on .# or any extra structure on 7. We have assumed
that .# has a model structure since that structure leads to a convenient gen-
eral way to construct left and right derived functors of suitably well-behaved
functors.

PROPOSITION 16.13. If F: .# —> J¢ takes acyclic cofibrations between cofi-
brant objects to isomorphisms, then the left derived functor (LF, ) exists. Moreover,
for any cofibrant object X of 4, u: LFX — FX is an isomorphism.

PROOF. By Ken Brown’s lemma, 14.2.9, and Remark 14.2.10, F carries all
weak equivalences between cofibrant objects to isomorphisms. By Proposi-
tion 14.4.4, cofibrant replacement induces a functor Q: .# — h.#;. By
Lemma 14.4.10, F passes to right homotopy classes to induce a functor
F: htt, — 5. The functor F o Q carries weak equivalences in .# to iso-
morphisms. Define LF: Ho.#Z — ¢ to be the functor induced from Fo Q
by the universal property of y and define u: LF oy — F atan object X to be
the map Fq: FQX — FXin . 1f X is cofibrant, then g is a weak equivalence
between cofibrant objects and Fq is an isomorphism. It is an easy exercise to
verify that (LF, u) satisfies the required universal property. O

PROPOSITION 16.1.4. If F: .# —> S takes acyclic fibrations between fibrant
objects to isomorphisms, then the right derived functor (RF, v) exists. Moreover, for
any fibrant object Y of #,v: FY —> RFY is an isomorphism.

Now return to the pair of model categories .# and .#". The following
language is standard. Its purpose is just to distinguish between the two choices
of target category, .4#” and Ho.#". We will later omit the word “total”.

DEFINITION 16.1.5. Let F: .# — _# be a functor. A total left derived func-
tor of F is a functor LF: Ho.# — Ho.# such that LF is a derived functor
of § o F. A total right derived functor is defined dually.

COROLLARY 16.1.6. IfF: ./ —> N takes acyclic cofibrations between cofibrant
objects to weak equivalences, then the total left derived functor (LF, ) exists.

COROLLARY 16.1.7. If F: .# —> N takes acyclic fibrations between fibrant
objects to weak equivalences, then the total right derived functor (RF, u) exists.
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Having defined and shown the existence of derived functors, the obvious
next step is to define and show the existence of derived natural transformations.

DEFINITION 16.1.8. Let «: F —> F’ be a natural transformation between
functors F, F': .# —> ¢ with left derived functors (LF, u) and (LF', /). A
derived natural transformation of & is a natural transformation Le : LF — LF’
such that the following diagram of natural transformations commutes and is
terminal among commuting squares of the same form.

Lo
LF —— LF

Rt

F — F
o

The terminality condition is displayed schematically in the commutative dia-
gram of functors and natural transformations

e

F —— F.
o
Given B, &, and &’ that make the outer trapezoid commute, there must exist
natural transformations ¢ and ¢’ that make the upper trapezoid commute.
Derived natural transformations between right derived functors are defined

dually.

REMARK 16.1.9. In the context of total derived functors of a pair of functors
F,F': # — ., the bottom arrow «: F — F’ must be replaced by the
arrow §ow: o F —> § o F’ in the diagrams in the preceding definition.

In the context of Corollary 16.1.6, the existence is obvious. In effect, we
define Lo: LFX — LF'X to be a: FQX —> F'QX. The verification of
terminality is straightforward. The dual existence statement is similar.
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LEMMA 16.1.00. If F,F': ./ —> A are functors that take acyclic cofibrations
between cofibrant objects to weak equivalences and o: F — F' is a natural trans-
formation, then Lo exists.

LEMMA 161.11. If F,F': . # —> A are functors that take acyclic fibrations
between fibrant objects to weak equivalences and a: F — F' is a natural trans-
formation, then Ra exists.

REMARK 16.1.12. In practice, the functors that have left derived functors are
often left adjoints and the functors that have right derived functors are often
right adjoints. Virtually every functor mentioned in this book is a left or right
adjoint with a left or right derived functor. However, a given functor F might
be both a left and a right adjoint and it might have both a left derived functor LF
and a right derived functor RF. There will then be a natural map LF — RF,
but it need not be an isomorphism in general [128].

16.2. Quillen adjunctions and Quillen equivalences

Corollaries 16.1.6 and 16.1.7 apply in particular to the left and right adjoints
of a special kind of adjunction between model categories. Such adjunctions
suffice to give most of the derived functors that one needs in the applications.
We again assume that .# and ./ are model categories.

DEFINITION 16.2.1. Let F: . #4 — A and U : A —> .# be left and right
adjoint. The pair (F, U) is a Quillen adjunction if the following equivalent
conditions are satisfied.

(i) F preserves cofibrations and U preserves fibrations.
)
)
)

(iv) F preserves acyclic cofibrations and U preserves acyclic fibrations.

(ii) F preserves cofibrations and acyclic cofibrations.

(ili) U preserves fibrations and acyclic fibrations.
The Quillen adjunction (F,U) is a Quillen equivalence if for any map

f: FX — Y withadjointg: X — UY, where X is cofibrant and Y is fibrant,
f is a weak equivalence in .4 if and only if g is a weak equivalence in ..

The verification that the conditions listed in the lemma are in fact equivalent
is an exercise in the definition of an adjoint functor and the meaning of the
lifting properties; we leave it to the reader. The letters F and U are meant to
suggest “free” and “underlying”. Many of the applications concern adjunctions
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(F, U) where F specifies free structured objects (such as monoids, algebras,
etc.) and U forgets the structure on these objects.

PROPOSITION 16.2.2. If (F, U) is a Quillen adjunction, then the total derived
functors LF and RU exist and form an adjoint pair. If (F,U) is a Quillen
equivalence, then (LF, RU) is an adjoint equivalence between Ho.# and Ho V.

PROOF. Corollaries 16.1.6 and 16.1.7 give that LF and RU exist. If X is cofi-
brantin.# and Y isfibrantin .4, then the adjunction A (FX, Y) £ .# (X, UY)
passes to homotopy classes of maps to give

hV (FX,Y) = hott (X, UY).

Nowlet X and Y be general objects of .# and .4/, respectively. Since LF = FQ
and RU = UR we have

Ho.# (LFX, Y) = Ho.# (FQX, RY) = Ho.#(QX, URY) = Ho.# (X, RUY).

The weak equivalencesr: Y —> RY andg: QX —> X induce the firstandlast
isomorphisms. The middle isomorphism is an instance of the isomorphism
on the level of homotopy classes of maps.

For the last statement, we must show that the unit and counit of the derived
adjunction are isomorphisms. When X is cofibrant, as we may assume, the
unit of this adjunction is induced by the composite of the unit n: X — UFX
of the adjunction (F, U) and the map UrF: UFX —> URFX. By the definition
of a Quillen equivalence, this composite is a weak equivalence since its adjoint
is the weak equivalence r: FX —> RFX. The dual argument applies to the
counit. O

The converse of the last statement also holds, and gives one among several
equivalent conditions that we record in the following result. We leave the
verification to the reader (or see [66, 1.3.13, 1.3.16]). Recall Definition 15.3.5.

PROPOSITION 16.2.3. Let (F, U) be a Quillen adjunction between .# and A .

Then the following statements are equivalent.

(i) (F, U) is a Quillen equivalence.
(ii) (LF,RU) is an adjoint equivalence of categories.
(iii) F reflects weak equivalences between cofibrant objects and the composite

£0FqU: FQUY —> FUY —> Y

is a weak equivalence for all fibrant Y.
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(iv) U reflects weak equivalences between fibrant objects and the composite
UrFon: X — UFX — URFX

is a weak equivalence for all cofibrant X.
If U creates the weak equivalences in 4, the following statement can be added.
(v) n: X — UFX is a weak equivalence for all cofibrant X.
If F creates the weak equivalences in ./, the following statement can be added.

(vi) e: FUY — Y is a weak equivalence for all fibrant Y.

We illustrate these notions with a reinterpretation of what it means for
a model category .# to be left or right proper. Let f: A — B be a map in
A . We have functors f*: B/.# —> A/ and f,: .4 |A —> .# /B given by
precomposition or postcomposition with f. The functor f* has the left adjoint
fi given on objects i: A —> X by letting f(i) be the pushout B — X Ux B.
Dually, the functor f; has the right adjoint f* given on objects p: E —> B by
letting f( p) be the pullback A xp E —> A.

PROPOSITION 16.2.4. A model category ./ is left proper if and only if (fi,f*) is
a Quillen equivalence between the under model categories A/ .# and B/ A . 1t is
right proper if and only if (fi,f") is @ Quillen equivalence between the over model
categories M | A and 4 | B.

PROOF. Recall Definition 15.3.5. Since the forgetful functors U from the
under and over categories to .# strongly create their model structures, by
Theorem 15.3.6, and since Uf* = U on B/.# and Uf, = U on .4 /A, it is
evident that f* is a Quillen right adjoint that creates the weak equivalences in
B/ and that f, is a Quillen left adjoint that creates the weak equivalences in
A/ .. A cofibrant object of A/ is a cofibrationi: A — X, and the unitn on
the object i is precisely the map X —> X U, B that the definition of left proper
asserts to be a weak equivalence when f is a weak equivalence. Therefore,
Proposition 16.2.3(v) gives the claimed characterization of left proper. Dually,
Proposition 16.2.3(vi) gives the claimed characterization of right proper. O

The criterion of Proposition 16.2.3(v) is especially useful since a standard
way to build a model category structure on .4 is to use an adjunction (F, U)
to create it from a model structure on .#, setting # 4 = U~Y(#.4) and
F.y = U YZ y4). The following result, which is [65, 11.3.2], is frequently
used for this purpose.



322 / CATEGORICAL PERSPECTIVES ON MODEL CATEGORIES

THEOREM 16.2.5. Let (F, U) be an adjunction between .4 and N, where A is a
cofibrantly or compactly generated model category with sets 7 and J of generating
cofibrations and generating acyclic cofibrations. Let FZ and F J be the sets of maps
in A obtained by applying F to the maps in T and J. Define weak equivalences
and fibrations in A by requiring the functor U to create them. Then A is a
cofibrantly or compactly generated model category with generating cofibrations FZ
and generating acyclic cofibrations F T if the following conditions are satisfied.

(i) FZ and FJ are small or compact.
(ii) Every relative F J-cell complex is a weak equivalence.

Moreover, (F, U) is then a Quillen adjunction.

PROOF. Since functors preserve composition and retracts, the weak equiva-
lences in .4 form a subcategory of weak equivalences. Now the conclusion
follows from Theorem 15.2.3 since exercises in the use of adjunctions show
that the compatibility condition FZ¥ = FJY N # in .4 follows formally from
the compatibility condition Z¥ = J%9 N# in .# . Since U preserves fibrations
and weak equivalences, the last statement is clear. O

REMARK 16.2.6. With the notations of Definition 15.1.6 or 15.1.7, the
verification of (i) reduces by adjunction to consideration of maps
A —> Ucolimg.;Zg, where A is small in .# and Z is a relative cell com-
plexin .4 (defined using sequences in the compact case). Often U commutes
with the colimits relevant to the small object argument and the smallness of
Ain . implies the smallness of FA in .#". The verification of (ii) concerns
the preservation of weak equivalences under colimits. Since the weak equiva-
lences are created by the right adjoint U, this is not formal.

If (F,U) and (G, V) are adjoint pairs, where the target category of F is
the source category of G, then the composites (GF, UV) also form an adjoint
pair. If (F, U) and (G, V) are Quillen adjunctions, then so is (GF, UV). It
is standard in the model category literature to define the category of model
categories to have objects the model categories and morphisms the left Quillen
functors or, alternatively, the right Quillen functors. Obviously the asymmetry
is unaesthetic.

More deeply, it masks one of the greatest difficulties of model category
theory and of the theory of derived functors in general. Good properties of
left adjoints are preserved under composition of left adjoints. However, it is
in practice very often necessary to compose left adjoints with right adjoints.
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Results about such composites are hard to come by. They are often truly deep
mathematics. We shall say a little bit more about this in §16.5.

However, the categorical considerations of greatest relevance to the appli-
cations of model category theory concern enrichment from hom sets to hom
objects. The model axioms do not refer to any enrichment that might be
present, but there are additional axioms that do relate enrichment to the model
structure. We shall turn to those in §{16.4 after summarizing the categorical

background in the next section.

16.3. Symmetric monoidal categories and enriched categories

In practice, categories come in nature with more structure than just sets of
morphisms. This extra structure is central to all of category theory, homotopi-
cal or not. While every mathematician who makes use of categories should
understand enrichment, this is not the place for a full exposition. The most
thorough source is Kelly’s book [75], and an introduction can be found in
Borceux [12, Ch. 6]. We outline what is most relevant to model categories in this
section.

A monoidal structure on a category ¥ is a product, ® say, and a unit ob-
ject I such that the product is associative and unital up to coherent natural
isomorphisms; ¥ is symmetric if ® is also commutative up to coherent natu-
ral isomorphism. Informally, coherence means that diagrams that intuitively
should commute do in fact commute. (The symmetry coherence admits a
weakening that gives braided monoidal categories, but those will not concern
us.) A symmetric monoidal category ¥ is closed if it has internal hom objects
Y (X,Y)in ¥ together with adjunction isomorphisms

VXQY,Z) =V (X, Y (Y, Z)).

These isomorphisms of hom sets imply isomorphisms of internal hom objects
in¥

VXR®Y,Z) = V(X (Y, Z)).

The proof is an exercise in the use of the Yoneda lemma: these two objects
represent isomorphic functors of three variables.

From now on, we let ¥ be a bicomplete closed symmetric monoidal cat-
egory. Such categories appear so often in nature that category theorists have
invented a name for them: such a category is often called a “cosmos”. We will
require our cosmos ¥ to be a model category in the next section, but we ignore
model category theory for the moment. When ® is the cartesian product,
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we say that 7 is cartesian closed, but the same category ¥ can admit other

symmetric monoidal structures.

EXAMPLES 16.3.1. We give examples of cosmoi 7.

@)
(1)

(i)

(vi)

(vii)

The category .7t of sets is closed cartesian monoidal.

The category % of (compactly generated) spaces is cartesian closed. The
space % (X, Y) is the function space of maps X — Y with the k-ification
of the compact open topology.

The category % of based spaces is closed symmetric monoidal under the
smash product. The smash product would not be associative if we used
just spaces, rather than compactly generated spaces [97, §1.7]. The based
space % (X, Y) is the function space F(X, Y) of based maps X — Y.
The category s.”t of simplicial sets is cartesian closed. A simplicial set
is a contravariant functor A — .7et, where A is the category of sets
n=1{0,1,---,n} and monotonic maps. There are n-simplices A[n] in
s.7et, and n — A[n] gives a covariant functor A —> s.7t. The internal
hom [92, §1.6] in s.7t is specified by

s7et(X, Y), = s.7et(X x A[n], Y).

For a commutative ring R, the category .4 of R-modules is closed sym-
metric monoidal under the functors ®g and Hompg; in particular, the
category o#b of abelian groups is closed symmetric monoidal.
For a commutative ring R, the category Chp of Z-graded chain complexes
of R-modules (with differential lowering degree) is closed symmetric
monoidal under the graded tensor product and hom functors

(X @R V) = SpigonXy @1 Yy d(x®Y) = d(x) @+ (— )Px @ d(y)
Homg (X, Y), = IT; Homg (Xi, Yirn); d(f)i =dofi—(—1)"fi_1 od.
Here the symmetry y: X® Y — Y ® X is defined with a sign,
y(x®y) =(—1)Py®x for x € X, and y € Y,.

The category 4at of small categories is cartesian closed.

Example (iii) generalizes from % to an arbitrary cartesian closed cate-
gory V.

EXAMPLE 163.2. Let ¥ be cartesian closed. Its unit object * is a terminal

object, so there is a unique map t: V — xforany V € ¥. Let %, = /¥ be



16.3. SYMMETRIC MONOIDAL CATEGORIES AND ENRICHED CATEGORIES / 325

the category of based objects in ¥/, with base maps denoted i: * — V. For
V, W € ¥, define the smash product V A W and the function object F(V, W)
to be the pushout and pullback in ¥ displayed in the diagrams

j
VUW —> VxW and F(V,W) —= ¥(V,W)

o | |-

* — VAW Y (%, %) —— Y (%, H).

L

Here j has coordinates (id,i) on V= V x x and (i,id) on W = % x W, and
the base map i: x — F(V, W) is induced by the canonical isomorphism
* —> Y (*,%) and the map ¥(t,i): * = ¥ (%, %) — ¥ (V, W). The unit
- x4 in ¥4 is the coproduct of two copies of *, with one of them giving the
base map i: ¥ —> S°.

There are two ways of thinking about enriched categories. One can think
of “enriched” as an adjective, in which case one thinks of enrichment as addi-
tional structure on a preassigned ordinary category. Alternatively, one can
think of “enriched category” as a noun, in which case one thinks of a self-
contained definition of a new kind of object. From that point of view, one
constructs an ordinary category from an enriched category. Thinking from
the two points of view simultaneously, it is essential that the constructed ordi-
nary category be isomorphic to the ordinary category that one started out with.
Either way, there is a conflict of notation between that preferred by category
theorists and that in common use by “working mathematicians” (to whom [80]
is addressed). We give the definition in its formulation as a noun, but we use
notation that implicitly takes the working mathematician’s point of view that
we are starting with a preassigned category .Z.

DEFINITION 163.3. Let ¥ be a symmetric monoidal category. A ¥-category
M, or a category ./ enriched in ¥, consists of

(i) a class of objects, with typical objects denoted X, Y, Z;

(ii) for each pair of objects (X, Y), a hom object # (X, Y) in ¥;

(iii) for each object X, a unit map idx: I — # (X, X) in #’; and

(iv) for each triple of objects (X, Y, Z), a composition morphism in ¥

MY, 2)@MX,Y) — M(X, Z).



326 / CATEGORICAL PERSPECTIVES ON MODEL CATEGORIES

The evident associativity and unity diagrams are required to commute.

MY, Z)@ MX,Y)@ MW, X) —— MY, 2)@M(W,Y)

| l

MX, Z)® M(W,X) MW, Z)

10.M(X,Y) ~——— MXY) — > MX,Y)SI

i | i

A, Y)RMX,Y) — MXY) <— M(X,Y)®M(X,X)

The underlying category of the enriched category has the same objects and
has morphism sets specified by

16.3.4 MX,Y) =V (L, M(X,Y)).

The unit element of .# (X, X) is idx. The composition is the evident composite

V(LMY Z) x V(LA Y))

E

VYARL MY, Z)Q A (X, Y))

|

V(L A(X,2)),

where we have used the unit isomorphism IQ I = 1.

As said, we have given the definition in its “noun” form. In its “adjectival”
form, one starts with a preassigned ordinary category .#, prescribes the appro-
priate enrichment, and requires a canonical isomorphism between the original
category . and the underlying category of the prescribed enriched category.
Rigorously, equality must be replaced by isomorphism in (16.3.4), but one gen-
erally regards that canonical isomorphism as an identification. Less formally,
we start with an ordinary category ., construct the hom objects .Z (X, Y) in %,



16.3. SYMMETRIC MONOIDAL CATEGORIES AND ENRICHED CATEGORIES / 327

and check that we have the identification (16.3.4). For example, any cosmos is
naturally enriched over itself via its internal hom objects. The reader is urged
to think through the identifications (16.3.4) in Examples 16.3.1.

EXAMPLES 16.3.5. When 7 is one of the cosmoi specified in Examples 16.3.1,
categories enriched in ¥, or ¥ -categories, have standard names.

(i) Categories as usually defined are categories enriched in .7t.

(ii) Categories enriched in «7b are called .«b-categories. They are called addi-
tive categories if they have zero objects and biproducts [80, p. 196]. They
are called abelian categories if, further, all maps have kernels and cok-
ernels, every monomorphism is a kernel, and every epimorphism is a
cokernel [80, p. 198].

(iii) Categories enriched in % are called topological categories.

(iv) Categories enriched in s.”t are called simplicial categories.

(v) Categories enriched in Chg for some R are called DG-categories.

(vi) Categories enriched in %ut are called (strict) 2-categories and, induc-
tively, categories enriched in the Cartesian monoidal category of
(n — 1)-categories are called (strict) n-categories.

Examples of all six sorts are ubiquitous. For any ring R, not necessarily
commutative, the category of left R-modules is abelian. Many categories of
structured spaces, such as the categories of topological monoids and of topo-
logical groups, are topological categories. The letters DG stand for “differential
graded”. We shall return to the last example in §16.5.

Most of the model category literature focuses on simplicial categories.
Although there are technical reasons for this preference, we prefer to work with
naturally occurring enrichments wherever possible, and these may or may not
be simplicial. In our examples, we focus on ¥ = % and ¥ = Chg. These have
features in common that are absent when ¥ = s.%%t.

Of course, the definition of a #'-category is accompanied by the notions
of a ¥-functor F: . # —> A and a ¥ -natural transformation n: F — G
between two ¥ -functors .# —> 4. For the former, we require maps

F: (X, Y) — N (FX, FY)

in ¥ that preserve composition and units. For the latter, we require maps
n: FX — GX in .4 such that the following naturality diagrams commute
in ¥ for all objects X, Y € ..
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F
MY, X) ——> N(FY,FX)

Gl l

N(GY,GX) —= N(FY,GX)

Here we have used that maps f: X' — X and g: Y — Y’ in .# induce
maps

5 MX,Y) — M(X,Y) and g.: H(X,Y) — M(X,Y)
in 7. Indeed, f is an element of the set ¥ (I, # (X, X')), and f * is the composite

id®f o
M Y)E MK, Y)RTI— (X, Y)® M (X, X ) —M(X, Y).

The general idea is that one first expresses categorical notions diagrammat-
ically on hom sets, and one then sees how to reinterpret the notions in the
enriched sense.

However, there are important enriched categorical notions that take ac-
count of the extra structure given by the enrichment and are not just reinter-
pretations of ordinary categorical notions. In particular, there are weighted
(or indexed) colimits and limits. The most important of these (in nonstandard
notation) are tensors X © V (sometimes called copowers) and cotensors (some-
times called powers) ®(V, X) in .# for objects X € .# and V € ¥. These are
characterized by natural isomorphisms

16.3.6 MXOV,Y)ZV(V, MX,Y)) = .M(X,D(V,Y))

of hom sets. Taking X to be the initial object ¥ or Y to be the terminal object
* and using that initial and terminal objects are unique up to isomorphism,
we see that

16.3.7 POV =0 and O(V,*) = *
for all objects V € ¥. There are natural maps

16.3.8
XO(VOW) — (XOV)OW and d(V,d(W,X)) — &(VE W,X)

and we require these to be isomorphisms. The first of these is the adjoint of
the composite
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Ve w

eV

n®n

HAXOV,(XOV)OW)®A(X,XOV)

M(X,(XOV)OW),

where 7 is the unit of the first adjunction in (16.3.6), and the second is defined
similarly. By a check of represented functors and the Yoneda lemma, (16.3.6)
and the isomorphisms (16.3.8) imply natural isomorphisms of objects in ¥

16.3.9 MXOV,Y)VZ WV, MX,Y)) = MX, OV, Y)).

Again, examples are ubiquitous. If Ris a ring, X and Y are left R-modules,
and V is an abelian group, then X ® V and Hom (V, Y) are left R-modules
that give tensors and cotensors in the abelian category of left R-modules. This
works equally well if X and Y are chain complexes of R-modules and V is a
chain complex of abelian groups. We shall return to this example in Chapter 18.

We say that the ¥'-category . is ¥ -bicomplete if it has all weighted col-
imits and limits. We dodge the definition of these limits by noting that .#
is ¥-bicomplete if it is bicomplete in the ordinary sense and has all ten-
sors and cotensors [75, Thm. 3.73]. The category ¥ is itself a #"-bicomplete
¥ -category. Its tensors and cotensors are given by its product ® and internal
hom functor ¥.

16.4. Symmetric monoidal and enriched model categories

Let . be a ¥ -bicomplete ¥ -category, where ¥ is a cosmos (bicomplete closed
symmetric monoidal category). The reader may wish to focus on the case
M =Y. Before turning to model category theory, we consider some con-
structions on the arrow category of ..

CONSTRUCTION 164.1. Let i: A—> X and p: E —> B be maps in .Z.
Define .# [, p] to be the pullback in ¥ of the bottom and right arrows in
the following diagram, and define .#[i, p] to be the map in ¥ given by the
universal property of pullbacks.
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A (id.p)
A (X, E) A (X, B)
A (iid) A i, pl A (iid)
M (A, E) A (A, B)
A (id,p)

The functor ¥ (I, —) is a right adjoint and therefore preserves limits, such
as pullbacks; applying this functor and changing notation from .Z to .#
gives the analogous commutative diagram of sets for the underlying cate-
gory .. The relevance to model category theory is clear from the following
observation.

LEMMA 16.4.2. The pair (i, p) has the lifting property if and only if the function
%[i,p]: /[(X, E) — /fg[i,p] = //(A, E) X.///(A,B) %(X, B)

is surjective.

CONSTRUCTION 1643. Letk: V — W beamapin ¥ andletf: X — Y
be a map in .Z.

(i) Define the pushout product f Ok by the following diagram, in which f Kk
denotes the pushout of the top and left pair of maps and f Ok is given by
the universal property of pushouts.

foid
XoV YOV

fm/
RN

XoW YOW
foid

idok idok
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(ii) Define ®[k,f] by the following diagram, in which ®g[k,f] denotes the
pullback of the bottom and right pair of maps and ®[k, f] is given by the
universal property of pullbacks.

®(id, f)
®(W, X) O(W, )
\cb[kd:] /
@ (k,id) Dok, f1] ®(k,id)
d(V, X) (V. Y)
@(id, f)

By (16.3.7), we have the following special cases.

LEMMA 16.4.4. Ifi: ) —> X is the unique map, then i0k can be identified with
dOok: X®@V — X W.
Ifp: X —> = is the unique map, the @[k, p] can be identified with

®(k,id): ®(W,X) — (V,X).

In the rest of the section, we assume further that ¥ and .# are model

categories.

LEMMA 16.4.5. Consider (generic) mapsi: A—> X andp: E —> Bin .# and
k: V. — W in 7. The following statements are equivalent.

(i) The map i, pl in ¥ is a fibration if i is a cofibration and p is a fibration,
and it is acyclic if in addition either i or p is acyclic.
(ii) The map iDkin A is a cofibration if i and k are cofibrations, and it is acyclic
if in addition either i or k is acyclic.
(iii) The map [k, pl in A is a fibration if k is a cofibration and p is a fibration,
and it is acyclic if in addition either k or p is acyclic.

PROOF. We show that (i) and (ii) are equivalent. A dual argument shows that
(i) and (iii) are equivalent. By the first adjunction of (16.3.6) and a diagram
chase that we leave to the reader, the pair (k, .Z[i, p]) has the lifting property if
and only if the pair (i0k, p) has the lifting property. By the model axioms, this
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lifting property holds for all cofibrations k if and only if .Z[i, p] is an acyclic
fibration, and it holds for all acyclic cofibrations k if and only if .Z[i, p] is a
fibration. Assume that i is a cofibration. If (i) holds and k is a cofibration,
then iOk has the LLP with respect to all acyclic fibrations p and is therefore a
cofibration. If, further, i or kis acyclic, then iOk has the LLP with respect to all
fibrations p and is therefore an acyclic cofibration. Thus (ii) holds. Similarly,
(ii) implies (i). O

The following observation admits several variants. It concerns the veri-
fication of the acyclicity part of Lemma 16.4.5(ii), and there are analogous
observations concerning the verification of the acyclicity parts of the other two
statements.

REMARK 16.46. Consider the pushout-product diagram of Construc-
tion 16.4.3(i). If k is an acyclic cofibration and the functors X © (—) and
Y © (—) preserve acyclic cofibrations, then, since pushouts preserve acyclic
cofibrations, we can conclude by the two out of three property that f Ok is a weak
equivalence. Similarly, if the left map id ©k is a cofibration, the map f is a weak
equivalence, the functors (— ) ® V and (—) © W preserve weak equivalences,
and .7 is left proper, we can conclude that f Ok is a weak equivalence.

DEFINITION 16.4.7. The model structure on the cosmos ¥ is monoidal if

(i) the equivalent conditions of Lemma 16.4.5 hold for .# = ¥’; and

(ii) for some (and hence any) cofibrant replacementg: QI — I, the induced
mapid®q: X ® QI — X ® I = X is a weak equivalence for all cofibrant
Xev.

Assume that this holds. Then .# is said to be a #"-model category if

(i) the equivalent conditions of Lemma 16.4.5 hold for .#; and

(ii) for some (and hence any) cofibrant replacement q: QI — I, the induced
mapid ©q: X © QI — X O I = X is a weak equivalence for all cofibrant
Xed.

By Lemma 16.4.4, conditions (ii) and (iii) of Lemma 16.4.5 imply preserva-
tion properties of the functors X ©® (— ) and ®(—, X) as special cases. The case
A =Y is of particular interest.

LEMMA 16.4.8. Assume that .4 is a ¥ -model structure. If X € ./ is cofibrant,
then the functor X © (—) preserves cofibrations and acyclic cofibrations. If X is
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fibrant, then the functor ®(—, X) converts cofibrations and acyclic cofibrations in
¥ to fibrations and acyclic fibrations in A .

Of course, these statements can be rephrased in terms of Quillen adjunc-
tions. In all of the examples that we shall encounter in this book, the unit
objectI € ¥ is cofibrant and therefore the unit conditions in Definition 16.4.7
hold trivially. The reader, like many authors, may prefer to assume once and
for all that I is cofibrant, but there are interesting examples where that fails
(e.g., in [46]). We agree to assume that the unit * of any given cartesian closed
model category is cofibrant. Then Theorem 15.3.6 and Example 16.3.2 lead to
the following observation.

LEMMA 16.4.9. Let ¥ be a cartesian closed monoidal model category and give
Vi = /Y its induced model structure as the category of objects under x from
Theorem 15.3.6. Then ¥, is a monoidal model category under the smash product.

PROOF. The weak equivalences, cofibrations, and fibrations (#%, 6, %) of
¥, are created by the forgetful functor U: ¥, — ¥, and U has left adjoint
(— )+, the addition of a disjoint base point. The unit object S® = *, is cofi-
brant in ¥; since * is cofibrant in ¥. We must prove that ¢,0%, C %, and
(#: N 6)DCx C (#i N Ex). We prove the first of these. The proof of the second
is similar.

Observe that the functor ( — )+ is strong symmetric monoidal in the sense
that V4 A W, is naturally isomorphic to (V x W)L. This implies that if i and j
are maps in ¥/, then i, 0j; is isomorphic to (i0j)+. Let ¢ denote the class of
maps it in %, where i € €. We saw in Corollary 15.3.8 that €, = 9 ((€4)¥).
Since ¥ is monoidal, ¥, 0% C ¥4 C %, Formal adjointness arguments
from the closed structure on ¥; imply that

2((€4)7)02((€4)7) € P((€4)7),
which says that ¢,0% C . O

The definitions so far are standard, but we require an important addendum.
It connects up naturally occurring homotopies with model theoretic homo-
topies. Although it is often used implicitly, as far as we know it has never
been made explicit. It applies to all of the examples in this book, but it does
not always apply.
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ADDENDUM 16.410. We require of a monoidal model category ¥ that it
contain a fixed chosen good cylinder object I = Cyl I such that the maps

X®I— X®I=X and Y =¥(Y) — ¥(IY)

induced by the weak equivalence p: I — I are weak equivalences for all cofi-
brant objects X and fibrant objects Y of /. Similarly, we require of a ¥"-model
category .# that the maps

XOI— X and Y — &(I,Y)

are weak equivalences for all cofibrant objects X and fibrant objects Y of .Z.
For general objects X and Y of .#, we define classical homotopies to be maps
X ©®1 — Y. By adjunction, these are the same as maps X — ®(I, Y), so
that there is no distinction between left and right classical homotopies.

REMARK 16.4.11. In practice, the functors X ® — on ¥ and X © — from ¥ to
A preserve weak equivalences for all cofibrant objects X in ¥ or ./, and
dually for the functors ¥/(—, Y) and ®(—, Y). Then the addendum holds as a
special case. Proposition 14.3.9 implies that all classical homotopies are model
theoretic homotopies. When X is cofibrant and Y is fibrant, Lemma 16.4.8
implies that X © I is a good cylinder object and ®(I, Y) is a good path object.
Since Corollary 14.3.13 shows that we can then use any fixed good cylinder
object Cyl X and any fixed good path object Cocyl Y to define left and right
homotopies, we are entitled to choose the classical cylinders X © I and path
objects ®(I, Y). We conclude in particular that the model theoretic set 7 (X, Y)
of homotopy classes of maps coincides with the classical set 7 (X, Y) of classical
homotopy classes of maps X — Y.

The remark has the following consequence, which shows that our adden-
dum to the standard definitions reconciles classical homotopy theory with
model theoretic homotopy theory.

THEOREM 16.4.12. Let .4 be a "V -model category that satisfies Addendum 16.4.10.
Then Ho.# is equivalent to the homotopy category h.# s of bifibrant objects and
classical homotopy classes of maps between them.

REMARK 16.413. We shall not go into the details, but in fact Ho.# is
enriched over Ho//, and the equivalence of the theorem is an equivalence of
Ho” -categories. The reader is invited to verify these assertions.
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16.5. A glimpse at higher categorical structures

In this section we give an informal introduction to the application of some of
the more elementary parts of higher category theory to model category theory.
The relevant categorical notions give the right formal context for the study of
left and right derived functors. We shall ignore issues of size in this informal
discussion, allowing classes of objects and categories that are not locally small.
We have defined categories enriched in a symmetric monoidal category
¥, and we have observed that one such ¥ is the Cartesian monoidal cate-
gory 6at, the category of categories and functors. We have also observed that
a category enriched in 4ut is called a 2-category. An example is %at itself.
The internal hom %at(%, Z) is the category of functors ¥ — & and natural
transformations between them. We have composition functors

Cat(9, &) x Cat(€, 9) —> GCut(6,6)

between these internal homs given by composition of functors and natural
transformations. For the latter, if : F —> F’ and B: G —> G’ are natural
transformations between composable pairs of functors, then Boa« is the
common composite in the commutative diagram

G oF
N
Boa
GoF G oF.
GoF’

We think of functors as morphisms between categories and natural trans-
formations as morphisms between functors. We also have two 2-categories
Mod6aty and Aod%at, of model categories. Their objects (or 0O-cells) are
model categories, their morphisms (or 1-cells) are Quillen left adjoints and
Quillen right adjoints, respectively, and their morphisms between morphisms
(or 2-cells) are natural transformations in both cases.

The reason for introducing this language is that there is a sensible notion
of a pseudo-functor between 2-categories, and it provides the right lan-
guage to describe what exactly L and R are. A pseudo-functor F: € — &
between 2-categories assigns 0-cells, 1-cells, and 2-cells in 2 to 0-cells, 1-cells,
and 2-cells in ¥. For each fixed pair X,Y of 0O-cells, F specifies a functor
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C(X,Y) — 2(FX,FY). However, for 0-cells X, F(Idx) need not equal Idpx
and, for composable 1-cells F and G, F(G o F) need not equal FG o FF. Rather,
there are 2-cell isomorphisms connecting these. These isomorphisms are sub-
ject to coherence axioms asserting that certain associativity and left and right
unity diagrams commute; see, for example, [76]. Given the precise definition,
the following result becomes clear.

PROPOSITION 16.5.1. Passage from model categories to their derived homotopy
categories Ho.#, derived functors, and derived natural transformations specify
pseudo-functors

L: #od%6aty — Gat and R: #od%at, — Cut.

Obviously, it is unsatisfactory to have L. and R part of distinct structures.
After all, left and right Quillen adjoints are directly related, and one some-
times must compose them. The proper framework is given by viewing model
categories as forming not a pair of 2-categories, but rather as a single double
category. We sketch the idea, referring the interested reader to [127] for details.

Just as we can define a category enriched in any symmetric monoidal cate-
gory ¥/, we can define an internal category in any complete category #'. It has
object and morphism objects b and .Zor in ¥ together with maps

S, T: Mor —> Ob, I.Ob —> Mor, and C: .#or x g, Mor —> Mor

in ¥, called source, target, identity, and composition. These must satisfy the
usual unit and associativity laws for a category, expressed diagrammatically.
An ordinary category is an internal category in the category of sets. Internal
categories in the category % of topological spaces appear frequently. A double
category is just an internal category in 6at. A 2-category can be viewed as a
double category whose object category is discrete, meaning that it has only
identity morphisms.

The definition just given is the quickest possible, but it obscures the essen-
tial symmetry of the notion of a double category 2. It has 0-cells, namely
the objects of the category &b, it has both “vertical” and “horizontal” 1-cells,
namely the morphisms of 0b and the objects of .Zor, and it has 2-cells, namely
the morphisms of .#Zor. When one writes out the category axioms for the func-
tors S, T, I, and C in the original definition, one finds that they are completely
symmetric with respect to the vertical and horizontal 1-cells. We cannot com-
pose horizontal and vertical 1-cells in general, but we nevertheless think of
2-cells as fillers in diagrams
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A B
o
J k
X Y.

Here A, B, X, and Y are 0-cells, j and k are vertical 1-cells, f and g are horizon-

16.5.2

SNA

tal 1-cells, and « is a 2-cell. With the original definition, « is a morphism from
f to g in .#or, and the fact that .#or is a category leads to vertical composi-
tion of 2-cells. The composition functor C leads to horizontal composition of
2-cells, and the fact that C is a functor expresses a symmetric interchange
law between these two composition laws for 2-cells. A double category has as
part of its structure vertical and horizontal 2-categories %, and %}, of 0-cells,
vertical or horizontal 1-cells, and vertical or horizontal 2-cells. Here a 2-cell «
as pictured above is vertical if f and g are identity horizontal 1-cells (objects of
#or in the image of I) and is horizontal if j and k are identity vertical 1-cells
(identity morphisms in the category Ob).

An example that is relevant to the study of a single model category may
clarify the idea. Thus let .# be a category with a subcategory # of weak equiv-
alences. We form a double category 2(.#, #') whose objects are the objects
of ./, whose horizontal and vertical 1-cells are the morphisms of .# and of
W, and whose 2-cells are commutative diagrams

f

X — Y

X’ > Y/
g

in which v, w € #. Thinking in terms of the arrow category of .#, we can view
this square as a morphism v —> w between vertical arrows or as a morphism
f —> g between horizontal arrows.

Any 2-category ¥ determines a double category .2(%).! Its vertical and hor-
izontal 1-cells are both the 1-cells of €. Its 2-cells « in (16.5.2) are the 2-cells
a: kf —> gjin €. In particular, we have the double category 2(%ut) whose

1. Category theorists often call 2(%) the double category of quintets in ¢ since its 2-cells can
be viewed as quintets (f,g,J, k, «).
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1-cells are functors and whose 2-cells (16.5.2) are natural transformations
a: kf — gj.

The reason for introducing this language is that it gives a way of expressing
L and R as part of a single kind of functor, namely a double pseudo-functor
F: 2 — & between double categories. Such an F assigns 0-cells, vertical
1-cells, horizontal 1-cells, and 2-cells in Z to the corresponding kinds of cells
in €. These assignments must come with coherence isomorphism 2-cells that
give restrictions of F to pseudo-functors F,: 2, — &, and F},: &), — &j,.
The coherence isomorphisms must be doubly natural, in a sense that is made
precise in [127, §6]. Once the definition has been made precise, diagram chas-
ing proves the following generalization of Proposition 16.5.1; see [127, Thm.
7.6].

THEOREM 16.5.3. Model categories are the O-cells of a double category .#od
whose vertical and horizontal 1-cells are the Quillen left and right adjoints and
whose 2-cells are the natural transformations. There is a double pseudo-functor
F: .#od — 2(%at) such that F, = L and F, = R.

This result encodes many relationships between left and right Quillen
adjoints in a form that is familiar in other categorical contexts. The Quillen
adjunctions (F, U) are examples of the correct categorical notion of an adjunc-
tion in a double category, called a conjunction in [127, §5]. For example, the
theorem has the following direct categorical corollary [127, Cor. 7.8], which
should be contrasted with Remark 16.1.12.

COROLLARY 16.5.4. IfF is both a Quillen left adjoint and a Quillen right adjoint,
then LF = RF.

The real force of Theorem 16.5.3 concerns the comparisons it induces
between composites of left and right derived adjoint base change functors
[127, §9], but it would take us too far afield to say anything about that here.
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MODEL STRUCTURES ON THE
CATEGORY OF SPACES

We give an idiosyncratic introduction to examples, focusing on the kinds
of model categories encountered in classical algebraic topology and classical
homological algebra. We treat these examples in parallel, discussing model
structures in topology here and model structures in homological algebra in
the next chapter.

The central point we want to make is that there are three intertwined model
structures on the relevant categories, and that the least familiar, which is called
the mixed model structure and was introduced relatively recently by Michael
Cole [33], is in some respects the most convenient. In fact, we shall argue that
algebraic topologists, from the very beginning of the subject, have by prefer-
ence worked implicitly in the mixed model structure on topological spaces.
A general treatment of topological model categories from our point of view
is given in [97, Part II], and the treatment here is largely extracted from that
source.! We offer a new perspective on the philosophy in §19.1, where we
show that the mixed model structure is fundamental conceptually as well as
pragmatically.

In contrast to our conventions in the first half of the book, spaces are no
longer assumed to be of the homotopy types of CW complexes, although we
do still assume that they are compactly generated. We also focus on unbased
rather than based spaces. This is reasonable in view of Theorem 15.3.6, which
shows how to construct model structures on the category of based spaces from
model structures on the category of unbased spaces.

1. While that treatment focused on more advanced examples, its discussion of the general
philosophy may nevertheless be helpful to the reader.

339



340 / MODEL STRUCTURES ON THE CATEGORY OF SPACES

17.1. The Hurewicz or h-model structure on spaces

The most obvious homotopical notion of a weak equivalence is an actual homo-
topy equivalence. We call such maps h-equivalences for short. It is natural to
expect there to be a model category structure on the category % of compactly
generated spaces in which the weak equivalences are the h-equivalences.

In [93] and in the first part of this book (see especially §1.1 and §1.3), the
words “cofibration” and “fibration” are used only in their classical topological
sense. The cofibrations are the maps i: A — X that satisfy the homotopy
extension property (HEP). This means that for all spaces B they satisfy the
LLP with respect to the map po: B! — B given by evaluation at 0. The fibra-
tions are the maps p: E —> B that satisfy the covering homotopy property
(CHP). This means that for all spaces A they satisfy the RLP with respect to
the inclusion ip: A —> A x I. This notion of fibration was first defined by
Hurewicz [70]. Since we are now doing model category theory and will have
varying notions of cofibration and fibration, we call these Hurewicz cofibra-
tions and Hurewicz fibrations, conveniently abbreviated to h-cofibrations and
h-fibrations.

These cofibrations and fibrations were not considered by Quillen in his
paper introducing model categories [113], but Strem [132] later proved a ver-
sion of the following result. Technically, he worked in the category of all
spaces, not just the compactly generated ones, and in that category the model
theoretic cofibrations are the Hurewicz cofibrations that are closed inclusions.
However, as we left as an exercise in [93, p. 46], the Hurewicz cofibrations
in 7% are closed inclusions. A thorough discussion of variant h-type model
structures on topological categories is given in [97, Ch. 4].

THEOREM 17.1.1 (--MODEL STRUCTURE). The category % 1is a monoidal
model category whose weak equivalences, cofibrations, and fibrations, denoted
(M, 6, F), are the h-equivalences, h-cofibrations, and h-fibrations. All spaces
are both h-fibrant and h-cofibrant, hence this model structure is proper.

Before turning to the proof, we record the following corollary, which is
immediate from Theorem 15.3.6, Corollary 15.3.8, and Lemma 16.4.9.

COROLLARY 17.1.2. The category %, of based spaces in % is a proper model cate-
gory whose weak equivalences, cofibrations, and fibrations are the based maps that
are h-equivalences, h-cofibrations, and h-fibrations when regarded as maps in %.
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The pair (T, U), where T is given by adjoining disjoint basepoints and U is the for-
getful functor, is a Quillen adjunction relating % to %.. Moreover, % is a monoi-
dal model category with respect to the smash product.

REMARK 17.1.3. In the first half of the book, we worked thoughout in the
category 7 of nondegenerately based spaces in %. These are precisely the
h-cofibrant objects in the h-model category of all based spaces. There is an
elementary cofibrant approximation functor, called whiskering. For a based
space X, let wX be the wedge X V I, where I is given the basepoint 0 when con-
structing the wedge, and give wX the basepoint 1 € I. The map q: wX — X
that shaves the whisker I is an h-equivalence, and it is a based h-equivalence
when X is in 7. While .7 cannot be a model category, since it is not cocom-
plete, it is far more convenient than %,. The h-classes of maps specified in
Corollary 17.1.2 are not the ones natural to the based context, where one wants
all homotopies to be based. However, when restricted to .7, the h-classes of
maps do coincide with the based homotopy equivalences, based cofibrations,
and based fibrations by [93, p. 44] and Lemmas 1.3.3 and 1.3.4.

To begin the proof of Theorem 17.1.1, we return to an unfinished piece of
business from Chapter 1, namely the proof of Lemma 1.1.1. The lifting axioms
needed to prove Theorem 17.1.1 are the same as the unbased version of that
result.

PROPOSITION 17.1.4. Consider a commutative diagram of spaces

17.1.5 A ——

in which i is an h-cofibration and p is an h-fibration. If either i or p is an
h-equivalence, then there exists a lift A.

PROOF. First, assume that i is a homotopy equivalence. A result in [93, p. 44]
shows that Ais a deformation retractof X. Thus thereisaretractionr: X — A
and a homotopy h: ir ~~ id relative to A. Since (X, A) is an NDR pair, there
is also a map u: X — I such that A = u~1(0) [93, p. 43]. We deform the
homotopy h to a more convenient homotopy j: ir > id by setting
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hix,t/u(x)) ift < u(x)

i hx, 1) ift > u(x).

Since fjip = fir = pgr and p is an h-fibration, there is a lift v in the diagram
X E

—~
v ~
, ~
io _ - P
~

-

Xx] — X —— B.
J f
We obtain a lift A in (17.1.5) by setting A(x) = v(x, u(x)). Since u(A) = 0 and
ri =id, Al = vigi = gri = g, while pA(x) = pv(x, u(x)) = fj(x, u(x)) = f (x).
Second, assume that p is a homotopy equivalence. A result in [93, p. 50]

shows that there is a section s: B— E and a homotopy h: sop ~ id over B.
Let Mi = X x 0U A x I be the mapping cylinder and construct a diagram

k

Mi —— E

v 7
s
ﬂi Y ip
s

XxI — B
J
by letting k(x, 0) = s(f (x)), k(a, t) = h(g(a), t), and j(x, t) = f (x). The left arrow
is the inclusion of a deformation retract [93, p. 43], hence is an h-acyclic

h-cofibration. By the first part, there is a lift v. Setting A(x) = v(x, 1), we
obtain a lift A in (17.1.5). O

Note that %}, is closed under retracts by Lemma 14.1.2 and obviously satis-
fies the two out of three property. To complete the proof of the model axioms,
it only remains to prove the factorization axioms. We need the following
saturation property of the h-acyclic h-cofibrations.

LEMMA 17.1.6. A pushout of an h-acyclic h-cofibration is an h-acyclic h-cofibra-
tion and the inclusion of the initial term in a colimit of a sequence of h-acyclic
h-cofibrations is an h-acyclic h-cofibration.

pPrRoOF. This follows easily from the already cited result, [93, p. 44], that an
h-acyclic h-cofibration is the inclusion of a deformation retraction. O
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It is standard that any map f: X — Y factors as composites

J r v P
X——>Mf——>Y and X——=Nf——7Y,

where j is an h-cofibration, r and v are h-equivalences, and p is an h-fibration
[93, pp. 43,48]. We can modify the first construction to arrange that r is also
an h-fibration or modify the second construction to arrange that v is also an
h-cofibration. It suffices to do the second of these since if we then replace r by
a composite p ov of an h-acyclic h-cofibration v and an h-fibration p, then p
will be acyclic by the two out of three property for #}, and therefore f will be
the composite p o (v oj) of an h-acyclic h-fibration and an h-cofibration.

LEMMA 17.1.7. Any map f: X —> Y factors as the composite of an h-acyclic
h-cofibration and an h-fibration, hence f also factors as the composite of an
h-cofibration and an h-acyclic h-fibration.

PROOF. LetZy = Xand py = f. Inductively, assume that we have constructed
amap pn: Z, —> Y.Bythedefinitionof Np,as Z, xy Y!, wehave projections
Np, — Z, and Np, — Y!, and the latter has an adjoint map Np, x [ — Y.
Construct the following diagram, in which Z,, is the displayed pushout and
v, and A, are the canonical maps.

Npp —— Z,

The universal property of pushouts gives an induced map pn+1. By
Lemma 17.1.6, v, is an h-acyclic h-cofibration since it is a pushout of such a
map. Let Z be the colimit of the Z, and letv: X — Zand p: Z —> Y be the
colimits of the maps v, and p,. Certainly f = p o vand, again by Lemma 17.1.6,
v is an h-acyclic h-cofibration. By an exercise in point-set topology, since we are
working with compactly generated spaces the canonical continuous bijection
colim Np, —> Np is a homeomorphism. The left adjoint (— ) x I commutes
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with colimits, and the colimit of the maps A, gives a lift A in the canonical
example

Np —= Z

A L7
i e P
Ve

NopxI ——= Y

of (17.1.5). The adjoint of A is a path-lifting function No — ZI. As observed
in [93, p. 47], this implies that p is an h-fibration. O

We have completed the proof that % is a model category. It is monoidal
since a standard lemma [93, p. 43] on the product of NDR-pairs verifies
Lemma 16.4.5(ii). Since h-acyclic h-cofibrations and h-acyclic h-fibrations are
inclusions and projections of deformation retractions, by [93, pp. 44, 50],
every object is both h-cofibrant and h-fibrant by a glance at the relevant lift-
ing properties. By Proposition 15.4.2, this implies that the model structure is
proper.

This completes the proof of Theorem 17.1.1.

17.2. The Quillen or g-model structure on spaces

In the first half of the book, we assumed that all spaces had the homotopy types
of CW complexes. Therefore there was no distinction between a homotopy
equivalence and a weak homotopy equivalence. By contrast, we now define a
g-equivalence to be a weak homotopy equivalence, namely a map that induces
a bijection on path components and an isomorphism on homotopy groups for
all choices of basepoints.

LEMMA 17.2.1. The subcategory #; of weak homotopy equivalences in % is a
subcategory of weak equivalences.

PROOF. We first show that the collection of maps % satisfies the two out of
three property. Leth =gof,f: X — Yandg: Y — Z. If f andgorifg
and h are weak equivalences, then clearly so is h or f. To see that if f and
h are weak equivalences, then so is g, note that a point y € Y may not be of
the form f(x) but is nevertheless a choice of basepoint for which we must
check that g, m.(Y,y) — 7«(Z, g(y)) is an isomorphism. Since f induces a
bijection on path components, there is a point f(x) and a path « from f (x)
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to y. Conjugating with o and g o « gives vertical isomorphisms such that the
following diagram commutes, and the bottom arrow g, is an isomorphism
since f; and hy = g o f; are isomorphisms.

8+
(Y, y) ——— 7w (Z,g(y)

. |

g
(X, %) —— (Y, f (%) —— m(Z,8(f (%))

Therefore the upper arrow g, is an isomorphism. This verifies the two out
of three property, and it is clear that #} is a subcategory that contains all
isomorphisms and is closed under retracts. O

We define a g-fibration to be a Serre fibration, which is a map that satisfies
the RLP with respect to Z, where Z denotes the set of inclusions sv-1_ p»
n> 0. Here S~ lis empty. We let 7 denote the set of maps ig: D" — D" x [,
n > 0. We define a g-cofibration to be a map that satisfies the LLP with respect
to the g-acyclic g-fibrations.

THEOREM 17.2.2 (-MODEL STRUCTURE). The category % is a compactly gen-
erated, proper, and monoidal model category whose weak equivalences, cofibrations,
and fibrations, denoted (#y, 6y,.%,), are the q-equivalences, g-cofibrations, and
q-fibrations. The sets T and J are generating sets for the g-cofibrations and the
g-acyclic q-cofibrations. Every space is q-fibrant.

PROOF. By Proposition 2.5.4, any compact space K is compact in the sense
of Definition 15.1.6. Therefore Z and 7 are compact, and we understand €' (Z)
and € (J) to mean the retracts of the sequential relative cell complexes of Def-
inition 15.1.1. By the compact object argument, Proposition 15.1.11, we have
functorial WFSs (¢'(Z),Z%) and (€' (J), J?). To verify the model axioms, we
need only verify the acylicity and compatibility conditions of Theorem 15.2.3.
For the acyclicity, if i: A = Xy —> colim X; = X is a relative J-cell complex,
then, by inspection, each map X; — X1 of the colimit system is the inclu-
sion of a deformation retraction and therefore i is a g-equivalence (in fact an
h-equivalence).

For the compatibility, we must show that 79 = 7% N %#;. The maps in 7
are relative CW complexes, so they are in ¢’(Z), and this implies that Z¥ c J%.
To show that 79 C %, observe that the inclusion of a basepoint, * —> S",
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and the inclusion of the two bases of the reduced cylinder, $" v §" — S% A1,
are relative CW complexes and are thus in ¥(Z). If p: E — B is in ZY,
then liftings with respect to * —> S" show that ps: 7u(E, x) —> 7, (B, p(x))
is surjective and liftings with respect to S" v §" — S% AT show that p, is
injective. Conversely, suppose that p: E —> B is in J% N % and consider a
lifting problem

g

Sn—l _ E

A 7
e
l g lp
e

D" —— B.

f

We use the square to construct the solid arrow portion of the following
diagram, in which j is the constant homotopy at g, j(x,t) = g(x), and h = poj.

i() i1
g1 —— > n-lyj < gon-1

h/ \J\ g/
p
B E
N N
h N i g N

i1
D" D*x I D"

io

By the key lemma of [93, p.68], since p is a weak equivalence there are
dashed arrows g and h making the dashed and solid arrow part of the dia-
gram commute. Since the pair (D" x I, D" x {0}) is homeomorphic to the pair
(D" x I, D" x {1}U S"~! x I) and p € J?, p satisfies the RLP with respect to
the latter pair. Therefore, there is a lift v such that pov = I:L voip =g, and
v restricts to j on S"~! x I. The composite A = v o iy is the desired lift in our
original diagram.

To see that the g-model structure is monoidal, note that the product of
cells is a cell, in the sense that if i and j are the inclusions S™~! — D™ and
S*=1 — D", then idj is homeomorphic to the inclusion $™*+"~1 —s pm+n,
Similarly, if j here is instead ip: D* — D" x I, then i0j is homeomorphic to
ig: DT — DM ¢ [, Tt follows inductively that if i and j are relative Z-cell
complexes, then i0j is a relative Z-cell complex, and that if i is a relative Z-cell
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complex and is a relative J-cell complex, then i0j is a relative J-cell complex.
Moreover, the functor iO( —) on the arrow category preserves retracts. There-
fore i0j is a g-cofibration if i or j is so and is a g-acyclic g-cofibration if, further,
either i orj is so.

Since every space is g-fibrant, the g-model structure is right proper. Rather
than prove directly that it is left proper, we prove the gluing lemma and use
Proposition 15.4.4. O

LEMMA 17.23 (THE GLUING LEMMA). Assume that i and j are g-cofibrations
and f, g, and h are q-equivalences in the following commutative diagram.

i k
A C B

e b

A/%C/H.B/
j l

Then the induced map of pushouts
X=AUcB— A/Uc/B/:X/

is a g-equivalence.

PROOF. Since a g-cofibration is an h-cofibration, alemma of [93, p. 78] shows
that the natural maps M(i, k) — X and M(j, £) —> X’ from the double map-
ping cylinders to the pushouts are h-equivalences and thus g-equivalences.
Now, breaking the double mapping cylinders into overlapping unions of sin-
gle mapping cylinders, as in [93, p. 78], we see that the conclusion will hold
in general if it holds for a map (X; A, B) — (X’; A, B) of excisive triads, with
C=ANBand C'=A"N B'. This case is a theorem proven in [93, pp. 78-80]. O

Again by Theorem 15.3.6, Corollary 15.3.8, and Lemma 16.4.9, Theo-
rem 17.2.2 has the following consequence.

COROLLARY 17.24. The category %, of based spacesin % is a compactly generated
proper model category whose weak equivalences, cofibrations, and fibrations are the
based maps that are g-equivalences, g-cofibrations, and g-fibrations in % . The sets
of generating based q-cofibrations and q-acyclic based g-cofibrations, 7 and J,,
are obtained from I and J by adjoining disjoint basepoints to the source and target
of all maps. The pair (T, U), where T is given by adjoining disjoint basepoints, is a
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Quillen adjunction relating % to %.. Moreover, %, is a monoidal model structure
with respect to the smash product.

REMARK 17.2.5. The g-cofibrant based spaces are those for which * — X is
a retract of a relative Z-cell complex, so they are retracts of cell complexes with
x as a vertex. Note that the most natural kind of based cell complexes would
start with based cells S* — D"*! for chosen basepoints of spheres and would
have based attaching maps. While such cell complexes are useful, they can only
model connected based spaces.

17.3. Mixed model structures in general

Every h-equivalence is a g-equivalence, every h-fibration is a g-fibration, and
therefore every g-cofibration is an h-cofibration. This situation occurs often
when one first builds a homotopy category by identifying homotopic maps
and then constructs a “derived” homotopy category by inverting weak equiva-
lences. Following Cole [33], we explain how to mix model structures in such a
situation. Throughout this section, we work in a bicomplete category .# with
two model structures,

(Wh, Ch, F1) and (#g, €y, Fy),

such that
Wy C Wy Fn C Fy andtherefore 6; C 6.

There are dual results with the roles of cofibrations and fibrations reversed,
but our applications will not use them. We give the basic theorems and sev-
eral elaborations, all adapted from [33]. Since his short paper gives complete
proofs, we shall be just a little sketchy. The details are all elementary. What is
deep is the insight that these results should be true.

THEOREM 1731 (THE MIXED MODEL STRUCTURE). Define W =Wy,
Fm = Ty, and
Cm = UTuNH) = AT N W)

Then (Wim, €m, Fm) is a model structure on M.
prRoOOF. Clearly #;,, Fm, and 6, are subcategories of .# that are closed

under retracts and %4, satisfies the two out of three property. One of the
lifting properties holds by definition. Since %), = %, to see that

T = (G N Wi)?
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it suffices to show that
17.3.2 G N Wy = 6, N W,

A map in 6, N, is clearly in #},, and it has the LLP with respect to .%;, and
thus with respect to .#), N %4, hence is also in %,,. For the opposite inclusion,
ifiis in 6, N #;, and we factor i as p oj, where j is in 63, N #}, and p is in .%},,
then p is in #} by the two out of three property. Therefore i satisfies the LLP
with respect to p. Thus there is a section s of p such that so i = j. By the retract
argument, Lemma 14.1.12, i is a retract of j and hence is in 6}, N #,.

For the factorization axioms, let f: X —> Y be any map. By (17.3.2), fac-
toring f as p o i where i is in 6, N #}, and p is in .#, gives one of the required
factorizations. For the other, factor f as poi where i is in %; and p is in
FqN'Wy. Then factor p as goj where j is in €, N %}, and q is in %,. Then
f =qo(joi). Clearly ¢; C €, hence i is in €. By (17.3.2), j is also in &,
hence so is joi. By the two out of three property, g is in #; and thus in
Fn N W O

The mixed model structure relates well to Quillen adjunctions. Let .4
be another category that, like .#, has h- and g-model structures such that
W, C Wgand F, C Fy.

PROPOSITION 17.3.3. Let (F, U) be an adjunction relating A and A". If (F, U)
is a Quillen adjunction with respect to both the h- and the g-model structures, then
(F, U) is a Quillen adjunction with respect to the m-model structures. If, further,
(F, U) is a Quillen equivalence with respect to the q-model structures, then (F, U)
is a Quillen equivalence with respect to the m-model structures.

PROOF. Since m-fibrations are h-fibrations, U preserves m-fibrations. Since
the m-acyclic m-fibrations are the maps in %, N #; = F, N (W3 N %), U pre-
serves them too. This proves the first statement. The second statement is clear
since F and U induce an adjoint equivalence between the homotopy categories
Ho.# and Ho.#" defined with respect to #; = #},; see Proposition 16.2.3. [

The main value of the m-model structure comes from an analysis of the
m-cofibrations and the m-cofibrant objects, which we give next, using the fol-
lowing result in the proof. A key point is that m-cofibrations satisfy properties
that show how to relate the weak equivalences and cofibrations in the h- and
g-model structures. When we specialize to spaces, the statements in the rest of
the section give model theoretic refinements of classical results, and the reader
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may wish to skip to the next section, referring back to this one as needed. For
example, the first part of the following result refines the Whitehead theorem
that a weak equivalence between CW complexes is a homotopy equivalence.

PROPOSITION 17.3.4. Leti andj be m-cofibrations in the commutative diagram

f

(i) If f is a q-equivalence, then f is an h-equivalence. In particular, a
q-equivalence between m-cofibrant objects is an h-equivalence.

(ii) If f is an h-cofibration, then f is an m-cofibration. In particular, an
h-cofibration between m-cofibrant objects is an m-cofibration.

PROOF. The proof of (i) is analogous to the proof of Ken Brown’s lemma
(14.2.9), and uses a similar commutative diagram and factorization:

X
i f
i1
k
A XUyY —— 7 ——= Y.
i
j id
Y

The left square is a pushout, hence i; and i, are m-cofibrations. Factor the
induced map XUaY — Y as pok, where k € 6}, and p € %, N #pn. By
the two out of three property, koi; and koi, are in #,. By (17.3.2), they
are in 6, N #, C #,. Since po (ko iy) = id, p is in %, by the two out of three
property. But then f = po (ko) is also in #4,.

For (ii), factor f as pok where k: X — Zisin €y, and p: Z — Y isin
Fm N Wy Then koiis in €y, and we can apply (i) to the diagram

A
N
Z ———> Y

p
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to see that pisin #, and thus in . %), N #4,. Therefore f has the LLP with respect
to p. By the retractargument, f is a retract of k and is thus an m-cofibration. O

THEOREM 1735. A map j: A —> X is an m-cofibration if and only if j is an
h-cofibration that factors as a composite f o i, where i is a q-cofibration and f is an
h-equivalence. An object X is m-cofibrant if and only if it is h-cofibrant and has
the h-homotopy type of a g-cofibrant object.

PROOF. If j is in %y, then it is certainly in %,. We can factor it as
Jj=foi, where iis in %; and f is in .%,; N #}. Since i and j are both in %,
Proposition 17.3.4(i) shows that the g-equivalence f must be an h-equivalence.

For the converse, we are given a factorization j = f oi, wherei: A — Y
isin ¢y and f: Y —> X is in #},. Factor j as pok, where k: A — Eisin
%m and p: E — X is in Fp, N'#},. Since i € G4 C G, there is a lift in the

diagram
A E
1o}
Y X.

Since f and p are in %}, so is £. Since i and k are in },, Proposition 17.3.4(i)
shows that ¢ is in #,. But then p is in %, by the two out of three property and
is thus in %, N %j,. Since j is in 4, it has the LLP with respect to p. By the
retract argument, j is a retract of k and is thus in &,.

Jw

f

For the second statement, applying the first part with A = ¢ gives the
forward implication. For the converse, let Y be a g-cofibrant object that is
isomorphic to X in the homotopy category h.# of the h-model structure.
Then Y is h-cofibrant and the isomorphism must be given by an h-homotopy
equivalence Y — X. The first statement applies with A = ) to show that X
is m-cofibrant. U

The following analogue is not an alternative characterization but rather a
convenient factorization up to retract property of m-cofibrations.

LEMMA 17.3.6. Any m-cofibration j: A —> X is a retract of an m-cofibration
ki: A — Z such that i is a q-cofibration and k is an h-acyclic h-cofibration.

PROOF. Factorjaspoi, wherei € ¢;andp € F;N#;. Thenfactorpasqok,
where k € €, N}, and q € F,. Then q € #; by the two out of three property
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and j has the LLP with respect to q. By the retract argument, j is a retract
of koi. O

We use this to compare properness in the g- and m-model structures.

PROPOSITION 17.3.7. If ./ isright g-proper, then . is right m-proper; A is left
m-proper if and only if A is left q-proper.

PROOF. Since .Fy, C %y, the first statement is clear from the definition of
right proper. Similarly, since ; C %, the forward implication of the second
statement is clear from the definition of left proper. Assume that ./ is left
g-proper and consider a pushout diagram

f

A — B

T

X — XUyB
8
in which j is an m-cofibration and f is a g-equivalence. We must show that g is
a g-equivalence. As in Lemma 17.3.6, let j be a retract of an m-cofibration
ki: A—> Z where i: A—> A’ is a g-cofibration and k: A’ — Z is an
h-acyclic h-cofibration. Then g is a retract of the pushout h: Z — Z U, B
of f along ki. Since #},, = #j is closed under retracts, it suffices to prove that
h is in #;. The diagram

Z —> ZUuxB
h
displays a composite of pushout diagrams. Since i is in %3 and .# is left
g-proper, f’ is in #4. Since kis in €}, N #},, so is its pushout £. Since %, C #,
h is in #; by the two out of three property. O

We also use Lemma 17.3.6 to relate monoidal properties of the three
model structures. Thus let .# be a ¥-bicomplete ¥ -category, where, like
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M, the cosmos ¥ has h- and g-model structures such that %, C #; and
Ty, C fq_

THEOREM 17.3.8. Assume that ¥ is h-monoidal and g-monoidal. Then it is
m-monoidal. If A is a ¥ -model category with respect to both the h- and g-model
structures, then ./ is a ¥ -model category with respect to the m-model structure.

PROOF. We must showthat ®: ¥ x ¥ — ¥ and ©: A4 x ¥ —> 4 take
a pair (f,g) of maps in €y, to a map in ¢, that is m-acyclic if either f or g is
so. The acyclicity part follows easily from (17.3.2). For the cofibration part, we
use Lemma 17.3.6 to break the verification into steps that follow from state-
ments about the h- or g-model structures separately and from consideration
of composites. The unit conditions (ii) of Definition 16.4.7 are fussy and make
use of factorizations

- Tyl —>Tpul— Tl —1

of cofibrant approximations in the three model categories. Since I is g-cofibrant
and therefore m- and h-cofibrant in all examples encountered in this book, we
refer the reader to [33, 6.6] for details. O

Note that we can vary the situation here by, for example, taking the h- and
g-model structures to be the same on ¥, while using different h- and g-model
structures on .. In particular, itis sensible to make this choice when studying
simplicial model categories since the category of simplicial sets does not have
an h-model as opposed to g-model structure.

Turning to more technical results, we show that Proposition 17.3.4 admits
more elaborate analogues. These results help make it easy to recognize
h-equivalences and m-cofibrations when we see them.

PROPOSITION 17.3.9. Consider a commutative diagram

VN

X — Z <=— Y.

f g

(i) Ifi and j are m-cofibrations, f is a g-equivalence, and g is an h-equivalence,
then f is an h-equivalence.

(ii) Ifiis an h-cofibration, j is an m-cofibration, and f and g are h-equivalences,
then i is an m-cofibration.
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PROOF. For (i), factorgaspok, wherek: Y — WisinG,andp: W — Z
isin %, N #;,. Since i € Gy, 1 has the LLP with respect to p and there is a lift
¢ in the diagram

i

w
K

Mo~

Then k € #;, by the two out of three property and, by (17.3.2), k is in
G, N Wy C #y,. Again by the two out of three property, pisin #,. Since f and p
are in %, sois £. Since i and ko j are in Gy, £ is in %}, by Proposition 17.3.4(i),
hence f = polisin #,.

For (ii), factor i as pok where k: A — Wisin €, and p: W — X isin
Fm N\ W We see that fo p is in #, by applying (i) to the diagram

A

1/ N

— Z <— Y.

f g

Since f is in #4, so is p. Thus p is in .%;, N #}, and i has the LLP with respect
to p. By the retract argument, i is a retract of k and is thus in €. O

PROPOSITION 17.3.10. Assume that ./ is left h-proper and consider a commuta-
tive diagram (not necessarily a pushout) in which f is an h-equivalence and i and
j are h-cofibrations.

f

A
|
X

B
|
_ Y
g
(i) If i and j are m-cofibrations and g is a q-equivalence, then g is an

h-equivalence.
(it) Ifg is an h-equivalence and i or j is an m-cofibration, then so is the other.
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(ii) If i and j are m-cofibrations and g is an h-cofibration, then g is an
m-cofibration.

PROOF. Factor the given square through a pushout P to obtain

f
A————— B
e
i P J
N
X Y.

g

Since ./ is left h-proper, i is in 63, and f is in %}, we see that h is in %},.
Therefore, by the two out of three property, if g is in either %, or %4, then so
is £. Moreover, if i is in 6y, then so is its pushout k.

For (i), we have that g is in %4, by hypothesis, and thus £ is in #}. But then,
by Proposition 17.3.4(i), £ is in #}, and therefore soisg = £oh.

For (ii), assume first that i is in &,. Then k is in %, and Proposition
17.3.9(ii) shows thatj is in €},. Assume next that j is in ¢p,. Factor i as pom,
where m: A — Zisin 6, and p: Z — Y is in %, N #},. In the square

gp is in #; and (i) applies to show that g o p is in %}, and thus p is in %, N %,.
Since i is in 4}, it has the LLP with respect to p. By the retract argument, i is
a retract of m and is thus in %,.

For (iii), factor g as pok, where k: X — Zisin % andp: Z — Yisin
Fm N\ Wy. We may apply (i) to the square
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to see that p is in #},. Then g has the LLP with respect to p. By the retract
argument, g is a retract of k and is thus in €. O

17.4. The mixed model structure on spaces

Returning to the case .# = %, we advertise how well the mixed model struc-
ture captures the familiar viewpoint of classical algebraic topology. We first
summarize the properties of the m-model structure on spaces. The following
definition is dictated by Theorem 17.3.5.

DEFINITION 17.41. A map j: A — X in % is an m-cofibration if j is an
h-cofibration that factors as a composite f o1, where i is a g-cofibration and
f is an h-equivalence.

THEOREM 17.42 (m-MODEL STRUCTURE). The category % is a proper mono-
idal model category whose weak equivalences, cofibrations, and fibrations, denoted
either (Wi, Cm, Fm) or (W, €m, Fr), are the q-equivalences, m-cofibrations, and
h-fibrations. Every space is m-fibrant. A space is m-cofibrant if and only if it has
the homotopy type of a CW complex. The identity functor on % is a right Quillen
equivalence from the m-model structure to the q-model structure and therefore is a
left Quillen equivalence from the q-model structure to the m-model structure.

PROOF. Only the characterization of m-cofibrant spaces requires comment.
Recall that every space is h-cofibrant. As we shall explain shortly, every cell
complex is homotopy equivalent to a CW complex. Moreover, any retract up
to homotopy of a CW complex is homotopy equivalent to a CW complex by
[93, p. 80, #3]. These facts imply the stated characterization. O

COROLLARY 17.43. The category % of based spaces in % is a proper model cate-
gory whose weak equivalences, cofibrations, and fibrations are the based maps that
are g-equivalences, m-cofibrations, and h-fibrations in % . The pair (T, U), where
T is given by adjoining disjoint basepoints, is a Quillen adjunction relating % to
U;.. Moreover, % is a monoidal model structure with respect to the smash product.
A based space is m-cofibrant if and only if it is h-cofibrant (nondegenerately based)
and of the homotopy type of a CW complex.

PROOF. For the last statement, the inclusion of the basepoint in an
m-cofibrant based space is an h-cofibration; compare Remark 17.1.3. O
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Therefore the category of CW homotopy types in .7 used in the first half
of this book is the full subcategory of the category %, whose objects are the
m-cofibrant based spaces. As promised in the introduction, this gives a model
theoretic justification for our original choice of a convenient category in which
to work.

It has long been accepted that the g-equivalences give the definitively right
weak equivalences for classical homotopy theory. This dictates % as our pre-
ferred subcategory of weak equivalences. The fibrations most frequently used
in practice are the Hurewicz fibrations rather than the Serre fibrations. There
are good reasons for this. For example, Hurewicz fibrations, but not Serre
fibrations, are determined locally, in the sense of the following result (e.g.,
[88, 3.8]). It generalizes a theorem of Hurewicz [70].

THEOREM 17.44. Let p: E —> B be a surjective map and assume that B has a
numerable open cover { U} such that each restriction p~' U —> U is an h-fibration.
Then p is an h-fibration.

The proof uses the characterization of h-fibrations in terms of path-lifting
functions [93, §7.2], and that characterization itself often gives an easy way of
checking that a map is an h-fibration. Paradoxically, this means that it is often
easiest to prove that a map is a g-fibration by proving the stronger statement
that it is an h-fibration. These considerations argue for the h-fibrations, %,
as our preferred subcategory of fibrations.

With the mixed model structure, we combine these preferences, which
is just what the working algebraic topologist does in practice, and has done
for the past half century. The mixed model structure has all of the good for-
mal properties of the g-model structure. It is almost certainly not cofibrantly
generated, but that is irrelevant to the applications.

The results of the previous section imply that the class &, of m-cofibrations
is also very well-behaved. Any map with the name cofibration should at least
be a classical Hurewicz cofibration, and an m-cofibration is an h-cofibration
that is a g-cofibration up to homotopy equivalence. Using [93, {6.5], we see
that an m-cofibration A — X is an h-cofibration that is cofiber homotopy
equivalent under A to a retract of a relative cell complex and thus, by a relative
generalization of an argument to follow, of a relative CW complex.

Proposition 17.3.4(ii) gives a weak two out of three property that makes
it easy to recognize when a map is an m-cofibration. Since m-cofibrations
are more general than g-cofibrations, Proposition 17.3.4(i) generalizes the
relative version of the Whitehead theorem that a weak equivalence between
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cell complexes is a homotopy equivalence. Since % is h-proper, Proposi-
tion 17.3.10 gives interesting generalizations of these results.

Cell complexes are more general than CW complexes, but any cell complex
is homotopy equivalent to a CW complex. Therefore, in the mixed model struc-
ture, we can use cell and CW complexes interchangeably. That too conforms
with historical preference. There are two quite different ways to see this. One
is to first approximate any space X by a weakly equivalent CW complex, (e.g.,
[93, §10.5]), and then use the Whitehead theorem (e.g., [93, §10.3]) to show
that any cell approximation of X is homotopy equivalent to the constructed
CW approximation. The other is to inductively deform any given cell complex
to a homotopy equivalent CW complex by cellular approximation of its attach-
ing maps. The geometric realization of the total singular complex of X gives
a particularly nice functorial CW approximation (e.g., [93, §16.2]), and it is a
functorial cofibrant approximation in both the g- and the m-model structures.

A central reason for preferring the m- to the g-model structure is that it is
generally quite hard to check whether a given space is actually homeomorphic
to a cell or CW complex, whereas there are powerful classical theorems that
characterize spaces of the homotopy types of CW complexes. For an elementary
example of this, there are many contractible spaces that cannot be homeo-
morphic to cell complexes; cones on badly behaved spaces give examples. In
particular, Milnor [103] gives a characterization that has the following conse-
quence, among many others. By an n-ad, we understand a space X together
with n — 1 closed subspaces X;. It is a CW n-ad if X is a CW complex and the
X; are subcomplexes. It is an m-cofibrant n-ad if it is homotopy equivalent
to a CW n-ad.

THEOREM 17.45 (MILNOR). If X is m-cofibrant and C is compact, then the
function space X of maps C —> X is m-cofibrant. If (X;X1,--- ,X,_1) is an
m-cofibrant n-ad and (C; Cy, - - - , Cy—1) is a compact n-ad, then the function space
n-ad (XC;chl, - ,chfil) is an m-cofibrant n-ad.

Moreover, the m-cofibrant objects mesh naturally with the h-fibrations [121,
129]. The following result again requires Hurewicz rather than Serre fibra-
tions.

THEOREM 17.46 (STASHEFF, SCHON). Ifp: E — Bis an h-fibration and B
is m-cofibrant, then E is m-cofibrant if and only if each fiber F is m-cofibrant.

It is to be emphasized that the same hierarchichal picture of h-, m-, and
g-model structures is present in all of the myriad other examples of topological
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model categories, although it has usually not been made explicit. Examples
appear in [46, 82, 83] and many other places.

17.5. The model structure on simplicial sets

We have mentioned that most of the model theoretic literature focuses on
simplicial sets. Although the standard model structure on simplicial sets is
very convenient and useful, the proofs that it is indeed a model structure are
notoriously involved. The senior author has long believed that simpler proofs
should be possible. Correspondence between him and Pete Bousfield in the
course of writing this book have led to several variant proofs, primarily due to
Bousfield, that are simpler than those to be found in the literature. We explain
the most concise variant. We give the statement and relevant background
material in this section and turn to the details of proof in the next.

We refer to the 1967 book [92], as reprinted in this series, for much of the
background and details of definitions, although we could instead refer to the
1999 book of Goerss and Jardine [53]. A very good source for our purposes is
the 1990 book of Fritsch and Piccinini [49], which gives complete and elemen-
tary proofs of the key results we need. The crux of our proof comes from results
in two wonderful 1957 papers, by Kan [74] and Milnor [102].? In retrospect,
each gives a fibrant replacement functor on simplicial sets with unusually nice
properties: both of these functors preserve fibrations and finite limits. Our
proof of the model axioms requires use of these properties, but it is irrelevant
which of the functors we use.

Our starting point is the following definition, part (iii) of which is not but
ought to be the standard definition of a weak equivalence of simplicial sets. As
explained, for example, in [92, 6.11], the naive notion of homotopy between
maps that is obtained by use of the simplicial 1-simplex I = A[1] gives an
equivalence relation when the target simplicial set is a Kan complex, and then
the set 7 (X, Z) of homotopy classes of maps X — Z makes good sense.

DEFINITION 175.1. Letf: X —> Y be a map of simplicial sets.

(i) f is a cofibration if the map f;: X; —> Y, of g-simplices is an injection
for each g; equivalently, f is a categorical monomorphism. In particular,
every simplicial set is cofibrant.

2. Regrettably, the material of Kan’s paper was not included in [92].
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(i) f is a fibration if it is a Kan fibration. This means that f satisfies the
RLP with respect to all horns A¥[n] — A[n]. In particular, the fibrant
objects are the Kan complexes.

(iii) f is a weak equivalence if

ffin(Y,2) — n(X,2)

is a bijection for all Kan complexes Z.

Here A¥[n] is the subcomplex of A[n] generated by all (n — 1)-dimensional
faces of the standard n-simplex except the k™. Let &, .%, and # denote the three
classes of maps of simplicial sets just defined. Let Z denote the set of inclusions
dA[n] —> A[n] and let J denote the set of inclusions A¥[n] — A[n].

We abbreviate our previous notation by writing . = 5.7t for the category
of simplicial sets. Let (T, S) denote the adjoint pair between . and % given
by geometric realization and the total singular complex; TX is usually denoted
|X|, but we follow the notation in [92]. We shall prove the following theorem.

THEOREM 17.52. The classes (¥, €, - F) give the cosmos . a structure of com-
pactly generated, proper, monoidal model category with generating sets Z of cofibra-
tions and J of acyclic cofibrations. Moreover (T, S) is a Quillen equivalence between
< and U with its g-model structure.

The proof uses several equivalent characterizations of the weak equiva-
lences. Note that in contrast with spaces, homotopy groups do not enter into
the definition of weak equivalences. One reason is that they are not easily
defined for general simplicial sets. However, they admit a direct combinato-
rial definition for Kan complexes, in which case they are studied in detail in
[92, Ch. I]. This suggests the following definition and theorem.

DEFINITION 1753. Amap f: X —> Y of Kan complexes is a combinatorial
weak equivalence if fi: 7y (X, x) —> mu(Y,f(x)) is an isomorphism for all
n > 0 and all base vertices x € X.

The class of combinatorial weak equivalences forms a subcategory of weak
equivalences between Kan complexes, in the sense of Definition 14.1.4, and
the following characterizations hold.

THEOREM 17.5.4. Let X and Y be Kan complexes. The following conditions on a
map [ : X —> Y are equivalent.
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(i) f is a combinatorial weak equivalence.
(i) f is a homotopy equivalence.
(iii) f is a weak equivalence.

The equivalence of (i) and (ii) is [92, 12.5], and we will not repeat the proof.
The proof there uses the combinatorial theory of minimal Kan complexes, but
other proofs are possible. The equivalence of (ii) and (iii) is formal. Since the
Kan complexes are the bifibrant objects in ., this result should be viewed
as the simplicial analogue of the Whitehead theorem that a weak equivalence
between CW complexes is a homotopy equivalence.

We need a few standard results about the functors S and T.

LEMMA 17.5.5. The functor S takes spaces to Kan complexes, takes Serre fibrations
to Kan fibrations, and preserves limits.

PROOF. The first two statements follow directly from the adjunction and
observations about topological simplices. The third holds since S is a right
adjoint. |

LEMMA 17.5.6. The functor T preserves finite limits, hence so does the composite
functor ST.

PROOF. T preserves finite products by [92, 14.3].3 Recall from [92, Ch. III] or
[93, Ch. 16] that each point of TX can be written uniquely in the form |x, u|,
where x is a nondegenerate simplex in some X, and u is an interior point
of the topological n-simplex A, [92, 14.2], so that TX is a CW complex with
one g-cell for each nondegenerate g-simplex. Using that and the proof that T
preserves finite products, one can easily check that the natural map

T(YxxZ) — TY x1x TZ

is a continuous bijection between subcomplexes of T(X x Y) = TX x TY.
Consideration of cell structures shows that the bijection is a homeomor-
phism.* O

We do not have to use the following result, but the shape of the theory is
clarified by stating it.

3. The cited result assumes that T(X) x T(Y) is a CW complex, which of course is automatic
using compactly generated spaces.

4. The similar argument using equalizers is given in detail in Gabriel and Zisman [50, p. 51].
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THEOREM 17.5.7. The functor T takes Kan fibrations to Serre fibrations, in fact to
Hurewicz fibrations, hence the functor ST preserves Kan fibrations.

REMARK 17.5.8. With Serre fibrations in the conclusion, this result is due to
Quillen [114]. All known proofs use the combinatorial theory of minimal fibra-
tions. Quillen used the result of Gabriel and Zisman [50] that T takes minimal
fibrations to Serre fibrations. With Hurewicz fibrations in the conclusion, the
result is due to Fritsch and Piccinini [49, Thm. 4.5.25].

The adjunction (T, S) relates well to homotopies and homotopy groups.

LEMMA 17.5.9. Let X be a simplicial set and Y be a space. Then
7(TX,Y) = 7 (X, SY)

and
(Y, y) = 7n(SY, )

foranyy € Y (regarded as a O-simplex of SY ).

PROOF. Homotopies X x A[1] —> SY correspond by adjunction to maps
T(X x A[1]) — Y. Since T preserves products and T A[1] is homeomorphic
tothe interval I, these adjoint maps are in bijective correspondence with homo-
topies TX x I — Y. This proves the first statement. The argument extends
to pairs, and the statement about homotopy groups is an immediate compar-
ison of definitions, using that T takes (A[n], dA[n]) to its evident topological
analogue. O

The following result is due to Milnor [102]; see [49, Cor. 4.5.31] or [92,
Thm. 16.6(i)]. Actually, one can either first prove the theorem and then deduce
the corollary or first prove the corollary and then deduce the theorem.

THEOREM 17.5.10. For a Kan complex X, the unit n: X — STX of the adjunc-
tion is a combinatorial weak equivalence and therefore a homotopy equivalence.

COROLLARY 17.5.11. For a space Y, the counit ¢: TSY — Y of the adjunction
is a g-equivalence.
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PROOF. As with any adjunction, the composite

n Se
SY STSY SY

is the identity map. By the two out of three property and Theorem 17.5.10,
Se is a combinatorial weak equivalence. By Lemma 17.5.9, this implies that
¢ induces an isomorphism on all homotopy groups and is thus a g-equiv-
alence. O

We advertised the significance of the CW approximation functor TS and
gave an intuitive sketch of a more direct proof of Corollary 17.5.11 in [93,
pp. 122-124]. As noted there, the cellular chains of the CW complex TSY are
naturally isomorphic to the singular chains of Y. Now the following result
recovers the usual definition of weak equivalences of simplicial sets.

PROPOSITION 17.512. Amap f: X —> Y of simplicial sets is a weak equiva-
lence if and only if Tf : TX —> TY is a g-equivalence and therefore a homotopy
equivalence.

PROOF. If f is a weak equivalence, then Lemma 17.5.9 and the fact that SW
is a Kan complex for any space W imply that

(If)Y*: 7 (TY, W) — n(TX, W)

is a bijection for any W. Therefore Tf is a homotopy equivalence. Conversely,
if Tf is a homotopy equivalence, then Lemma 17.5.9 implies that

7Y, SW) — 7w (X,SW)

is a bijection for any space W. In particular, this holds when W = TZ for a Kan
complex Z. By Theorem 17.5.10, Z is homotopy equivalent to STZ. Therefore

ffim(Y,Z2) — n(X,2)

is a bijection for all Kan complexes Z. O

COROLLARY 17.5.13. For any simplicial set X, the unit n: X —> STX is a weak
equivalence.

PROOF. The composite

Ty &
X TSTX X
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is the identity map and ¢ is a homotopy equivalence, hence T is a homotopy
equivalence. O

Proposition 17.5.12 means that the left adjoint T creates the weak equiva-
lences in .. In most other adjoint pair situations, it is the right adjoint that
creates the weak equivalences. The difference is central to the relative difficulty
in proving the model category axioms in .7

The simplicial simplices A[n] admit barycentric subdivisions SdA[n] and
these can be used to construct a subdivision functor Sd: ./ — .. The func-
tor Sd has a right adjoint Ex. For a simplicial set X, the set of n-simplices
of Ex(X) is the set of maps of simplicial sets SdA[n] —> X. There are “last
vertex” maps SdA[n] —> A[n], and these maps induce a natural injection
e: X —> Ex(X) of simplicial sets. Applying the functor Ex and the map e iter-
atively and passing to colimits, there results a functor Ex*: . — . and a
natural map n: X — Ex*°(X).

LEMMA 17.5.14. The functor Ex® preserves finite limits.

PROOF. This holds since Ex* is the colimit of the right adjoints Ex" along
the injections e: Ex" — Ex"*1, O

Kan [74] proved the following two results. The first is straightforward. See,
for example, [49, Lem. 4.6.18, Prop. 4.6.19]. Kan’s original proof of the sec-
ond was quite difficult, but a straightforward argument directly analogous to
Milnor’s proof of Theorem 17.5.10 is given in [49, Lem. 4.6.20, Cor. 4.6.22].

THEOREM 17.5.15. The functor Ex™ takes simplicial sets to Kan complexes and
takes fibrations to fibrations.

THEOREM 17.5.16. The map Te: TX —> TEx(X) is a homotopy equivalence.
Therefore the map Tn: TX —> TEx®°(X) is a homotopy equivalence.

PROPOSITION 17.517. Amap f: X —> Y is a weak equivalence if and only if
the map Ex*°(f): Ex>°(X) — Ex*°(Y) is a weak equivalence and therefore a
homotopy equivalence.

PROOF. In view of Proposition 17.5.12 and Theorem 17.5.16, this is immedi-
ate from the naturality of 7. O
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We summarize the results collected above in the following omnibus theo-
rem, which we state in model categorical language. It makes sense to ask for
such data in any model category, but such data rarely exists.

THEOREM 17.5.18. Let R: . — .7 denote either of the functors ST or Ex*°
and let n: X —> RX be the natural map. Then R and n satisfy the following
propetties.

(i) n: X — RX is a weak equivalence.

(ii) RX is fibrant.
(iii) Ifp: E —> Bisa fibration, then so is Rp: RE —> RB.
(iv) The functor R preserves finite limits.

Moreover, amap f : X — Y isin ¥ if and only if Rf is a homotopy equivalence.

The most difficult of these statements is (iii) in the case R = ST, and use
of R = Ex™ instead of R = ST circumvents the need for that. However, the
essential conceptual point is that our proof of the model axioms uses the listed
properties, and we are free to use either choice of R.

17.6. The proof of the model axioms

We use the criterion of Theorem 15.2.3 to complete the proof of Theo-
rem 17.5.2, and we give full details starting from the results recorded in the
previous section. Since Z and 7 consist of maps between simplicial sets with
only finitely many nondegenerate simplices, any map from one of them to
a sequential colimit factors through a finite stage. Therefore the small-object
argument applies in its compact form to both Z and 7. Thus we have WFSs
(6(Z), %) and (¢(J), J?). By Definition 17.5.1, the cofibrations are the injec-
tions and the fibrations are the Kan fibrations, which means that 72 = .Z.
We begin with the following observation.

LEMMA 17.6.1. Every cofibration i: K — L is isomorphic to a relative Z-cell
complex. Therefore IV = €Y and IV C Z.

PROOF. Let Ly = K and L; be the union of K and the subcomplex of L gen-
erated by the vertices of L not in K. Inductively, suppose we have constructed
a relative cell complex K — L, and an inclusion L, — L that is a bijection
on g-simplices for q < n. Let J, be the set of n-simplices in L but not in L.
They must be nondegenerate and their boundaries must consist of simplices
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in L,. We may regard an n-simplex as a map A[n] —> L, and we form the
pushout diagram

11, 9A) —— L,

.

]—[_]n Aln] ——— Ly41.

The universal property of pushouts gives a map L,y; —> L, and the induced
map colim L, —> L is evidently a bijection. The first part of the last state-
ment is immediate and implies the second part since the maps in J are
injections. O

We must prove the acyclicity and compatibility conditions of Theo-
rem 15.2.3. Asaleftadjoint, T preserves all colimits and, forj € 7, Tjis homeo-
morphic to an inclusion ip: D" — D" x I. Therefore, up to isomorphism, T
carries a relative J-cell complex in the category of simplicial sets to a relative
J-complex in the category of topological spaces, hence acyclicity is immediate
from the corresponding property for the g-model structure on %. It remains
to prove the compatibility condition Z¥ = 72 N # . For that purpose we need
two standard and elementary combinatorial lemmas. The first gives the CHEP
in.7.

LEMMA 17.6.2 (CHEP). Let i: A —> X be a cofibration and p: E —> B be a
fibration. Letj: Mi =X x {0}UA x I —> X x I be the inclusion of the mapping
cylinder Mi in the cylinder X x 1. For any commutative square

fuh

Mi —— E

H 7
i 7
J P p
Ve

XxI —— B,
h

there is a homotopy H that makes the diagram commute. The analogue with the
vertex {0} replaced by the vertex {1} in the definition of Mi also holds.

PROOF. Asinlemmal1.3.2,h: A x I — Eisahomotopy of the restriction of
f: X — Eto A, and h is a homotopy of pf whose restriction to A is covered
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by h. By adjunction, the statement is equivalent to the assertion that i has
the LLP with respect to the canonical map E! — Np, where Np = B! xp Eis
defined using either py: B — Borp;: Bl — B.Lemma 17.6.1 implies that
this will hold foralli: A — X ifitholds fori € Z, thatis, fori: dA[n] — Aln].

We claim that in this case the map j: Mi — Al[n] x I is a relative J-cell
complex with n+ 1 cells, all of them of dimension »n + 1. Since p has the RLP
with respect to 7, this implies the conclusion. The notation is marginally sim-
pler if we start with the vertex 1 rather than 0 in I. More precisely, starting
with Ko = A[n] x {1} U9dA[n] x I and ending with K41 = A[n] x I, we claim
that there are n+ 1 nondegenerate simplices vy, : Aln+1] — A[n] x I,
0 < m < n, that are in A[n] x I and are not in Mi and that A[n] x I is con-
structed from Mi by inductively attaching these simplices along attaching
maps apy: A" [n+1] — K. We display the (m+1)" step of the con-
struction in the commutative diagram

.

Am+1[n+ 11 —— K,

| | f

Aln+1] — Kpt1

TN

Aln] x [

Mi

where the left square is a pushout.

Recall that A[n], is the set of order-preserving functions g — n, where
n={0,1,---,n}. Thus (A[n] xI), consists of pairs of order—prese?ving functions.
We can order these lexicographically and determine which are nondegenerate.
An inspection that is implicit or explicit in any proof that realization preserves
products shows that the nondegenerate (n+ 1)-simplices of A[n]x I can
be identified with the n+ 1 order-preserving injections vy,: n+1 — nx1
whose images are the ordered chains

{(0,0), (1,0),- - (m, 0), (m, 1), (m+1,1),- -, (n, 1)},
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where 0 < m < n. The displayed pushouts build in these simplices inductively.
The faces d;v,, are obtained by deleting the i entry in the chain, and these are
all in 9 A[n] x I except for the cases dovg € A[n] X {1}, dnt1Vm = Fm+1Vm+1,
which has image

{(0,0),(1,0),- -, (m,0), (m~+1,1),- -, (n,1)},

and dpy1v, € Aln] x {0}. Weregard vy, asthemap A[n+ 1] — A[n] x I that
takes the n+ 1 simplex t,+1 given by the identity map of n + 1 to the simplex

Vm. To define the attaching map «,,, we must specify the images in K, of
the faces d;ipq1 for i # m + 1. These images are forced by commutativity of
the diagram, since they are given by faces of Ky, C A[n] x I that are in the
image of vy,. The argument with {1} replaced by {0} is similar, but working
downward rather than upward on m. O

The second combinatorial lemma gives that each A[n] is contractible.

LEMMA 17.6.3. Let r: A[n] —> * be the trivial map. The last vertex n of A[n]
gives a map n: * —> A[n], and there is a homotopy h: id ~ nr.

PROOF. Wemustconstructh: A[n] x I —> A[n] thatrestricts to the identity
mapon A[n] x {0} and restricts to nr on A[n] x {1}. Identifying the g-simplices
of A[n] x I with lexicographically ordered pairs of order-preserving functions
as in the previous proof, we see that the order-preserving functionn x 1 — n
that sends (m, 0) to m and (m, 1) to n determines h. Observe the asymmetry:
homotopy is not an equivalence relation here since A[n] is not a Kan complex,
and there is no analogous homotopy nr >~ id. O

The following result gives the special case of the compatibility condition
that applies to fibrations with trivial base space. We separate it out for clarity.

LEMMA 17.6.4. The following conditions on a Kan complex F are equivalent.

(1) 7u(F,v) = % for all n > 0 and all base vertices v.
(it) F is contractible.
(iii) The trivial map rp: F —> x is in %,

PROOF. Statements (i) and (ii) are equivalent by Theorem 17.5.4, applied to
rr. We could check that (iii) implies (i) directly from the definition of homotopy
groupsin[92, p. 7], but we instead observe that (iii) implies (ii) by specialization



17.6. THE PROOF OF THE MODEL AXIOMS / 369

of the first part of the proof of the next result. To see that (ii) implies (iii), let
i: A— X beamapinZ (or, more generally, any injection) and letg: A — F
be a map. We must show that g extendstoamap g: X — F such thatgi = g.
Since F is contractible, we can choose a base vertex v: * —> F and a homotopy
h:vrp ~id. Let ry : X —> s be the trivial map. By the CHEP, we can extend

vrx Uh(g xid): Mi=X x {0JUAXT — F
to a homotopy H: X x I — F such that Hj =vrx Uh(g xid): Mi — F.
Then the map g = Hj satisfies gi = g. a

PROPOSITION 17.65 (COMPATIBILITY). IV = JY9 N¥.

PROOF. Let p: E —> B be in Z9. By Lemma 17.6.1, p has the RLP with
respect to all injections and in particular is a fibration. We can construct a
section s of p and a homotopy h: sp = id as lifts in the diagrams

idLsp
# —— E and Exdl —— E
s 7 h /1
i // ip l // lp
/ s
— B ExI —— B.
pm

Therefore p is a homotopy equivalence and is thus in #.

Conversely, let p: E —> Bbe in J2 N'#, so that p is an acyclic Kan fibra-
tion. The fiber Fj, over b is the pullback of p along b: A[0] — B. Applying
R = ST or R = Ex®, we obtain a Kan fibration between Kan complexes with
fiber RF,, over n(b). Since p is in #, Rp is a homotopy equivalence. It induces
isomorphisms on all homotopy groups by Theorem 17.5.4. Fibrations between
Kan complexes have long exact sequences of homotopy groups [92, Thm. 7.6],
and the long exact sequence for Rp shows that 7, (RFj, n(b)) = * for all n. By
Lemma 17.6.4, F, is contractible and rp: F — % isin Z9.

Consider a lifting problem

g
0A[n] —— E

A 7
- P
Ve
Ve

A[n] —— B.

f
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By Lemma 17.6.3, there is a homotopy h: A[n] x I — B from f to the
constant map ¢, at b. We make two applications of the CHEP.

g AU
0A[n] — E Aln] x {1}U0A[n] x I — E
h /1 H -~ -7
io l P - 4 j i _ - p
e _ - -
0A[n]xI —— B Aln] x I B
h h

The lift h is a homotopy from g to a map g, = ftl : dA[n] —> F), that covers
the restriction of h to a homotopy d A[n] x I — B. Since rg is in 79, there is
alift g,: A[n] — Fj of g,. The lift H is a homotopy from a lift . = Hy in our
original diagram to the map g,. O

This completes the proof of the model axioms. The rest of the proof
of Theorem 17.5.2 is straightforward. The functor T converts inclusions of
simplicial sets to inclusions of subcomplexes in CW complexes, and it pre-
serves weak equivalences by Proposition 17.5.12. Therefore T is a Quillen
left adjoint, and (T, S) is a Quillen equivalence by Theorem 17.5.10 and
Corollary 17.5.11.

Since every object of .7 is cofibrant, . is left proper by Proposition 15.4.2.
Since we have fibrant replacement functors R that preserve pullbacks and
fibrations, to check that . is right proper it suffices to consider pullback
squares in which all objects are fibrant. Therefore Proposition 15.4.2 also
implies that . is right proper.

To see that . is monoidal, leti: A — Bandj: X — Y be cofibrations.
The pushout product i Xj is readily verified to be an inclusion and thus a
cofibration. We must show that it is acyclic if either i or j is acylic. Since the
functor T preserves products and pushouts, it preserves pushout-products.
Since 7% is a monoidal model category, the conclusion follows.

REMARK 17.6.6. The last statement is usually proven by the combinatorial the-
ory of anodyne extensions, which are essentially just the maps in € (7), and
the conclusions of that theory are then used in the proof of the model axioms.
Our argument uses the CHEP, which is the starting point for the theory of
anodyne extensions, but nothing more. The rest of the conclusions of that
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theory follow from their topological analogues, once the model structure on

. is in place.

REMARK 17.6.7. There is no h-model structure on simplicial sets in the litera-
ture, and it does not seem sensible to try to define one. One point is just that
the unit interval simplicial set I = A[1] is asymmetric and the obvious notion

of homotopy is not an equivalence relation.
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MODEL STRUCTURES ON CATEGORIES
OF CHAIN COMPLEXES

In this chapter, we mimic the previous chapter algebraically, describing the
h-, g-, and m-model structures on the category of R-chain complexes. Here
R is a ring, not necessarily commutative, fixed throughout the chapter and
R-modules are taken to be left R-modules; of course, either left or right works.
Again, as in topology, we believe that the m-model structure is central and
deserves much more attention than it has received in the literature. We shall
explain why it is conceptually fundamental shortly, in §19.1.

18.1. The algebraic framework and the analogy with topology

Let Chg be the category of Z-graded R-chain complexes and R-chain maps
between them. Differentials lower degree, d: X, —> X,,_1. The category Chg
is bicomplete. Limits and colimits in Chpg are just limits and colimits of the
underlying R-modules, constructed degreewise, with the naturally induced dif-
ferentials. Here we use the term “R-module” for a graded R-module, without
differentials (or with differential identically zero).

We can shift to cohomological grading, X' = X_;, without changing the
mathematics. The differential would then raise degree. Homological grad-
ing emphasizes the analogy with topology. In the topological literature, chain
complexes are often assumed to be bounded below, following Quillen’s orig-
inal treatment [113]. In cohomological grading, that corresponds to cochain
complexes bounded above, which is not a commonly occurring framework.
We prefer to make no boundedness assumption. While we have chosen
not to deal with spectra in this book, the analogy with model structures
on categories of spectra is much closer if we work in the unbounded
context.

In this chapter, ® and Hom mean ®7 and Homy, unless otherwise specified
and chain complexes mean Z-chain complexes. Recall from §16.3 thata cosmos

372
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is a bicomplete closed symmetric monoidal category. The category Chy, is a
cosmos under ® and Hom. Recall too that

X®Y)y= Y X®Y; and Hom(X,Y), = [[Hom (X; Yisn)
i+j=n i

with differentials given by
d(x®y) = d(x) @y + (— 1)*¥*x @ d(y) and (df)(x) = d(f (x)) — (= 1)"f (d(x)).

The category Chp is enriched, tensored, and cotensored over Chyz. The
chain complex of morphisms X — Y is Hompg (X, Y), where Homp (X, Y)
is the subcomplex of Hom (X, Y) consisting of those maps f that are maps
of underlying R-modules. The reader may want to check that Hompg (X, Y) is
closed under the differential in Hom (X, Y).

We used the notations ® and ® for tensors and cotensors earlier, but we use
® and Hom here, where these again mean ®7 and Homyz. However, for clarity
and brevity, we generally abbreviate notation by setting XX = Hom (K, X).
For X € Chg and K € Chg, the chain complexes X ® K and XX are R-chain
complexes with r(x ® k) = (rx) ® kand (rf)(k) = 1f (k) forr € R, x € X, k € K,
and f € Hom (K, X). Weleave itto the reader to verify the required adjunctions

Homg (X ® K, Y) = Hom (K, Homg, (X, Y)) = Homg (X, YX).

To emphasize the analogy with topology, we give algebraic objects topologi-
cal names. Observe that since the zero module 0 is both an initial and terminal
object in Chg, the analogy to make is with based rather than unbased spaces.
For n € Z, we define S", the n-sphere chain complex, to be Z concentrated in
degree n with zero differential. For any integer n, we define the n-fold sus-
pension X"X of an R-chain complex X to be X ® §". Thus (£"X),4q = X;.
The notation is motivated by the observation that if we define 7y, (X) to be
the abelian group of chain homotopy classes of maps S" — X (ignoring the
R-module structure), then 7, (X) = Hy(X). The motto is that homology is a
special case of homotopy and that homological algebra is a special case of
homotopical algebra.

Analogously, we define D"*! to be the (1 + 1)-disk chain complex. Itis Z in
degrees nand n + 1 and zero in all other degrees. There is only one differential
that can be nonzero, and we choose that differential to be the identity map
Z —> Z. The copy of Z in degree n is identified with S and is quite literally
the boundary of D"+!. We agree to write S’ = R® S" and D! = R® D"+

We define I to be the cellular chains of the unit interval. It is the chain
complex with one basis element [I] in degree 1, two basis elements [0] and
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[1] in degrees 0, and differential d([I]) = [0] —[1]. We define a homotopy
f =~ g between maps of R-chain complexes X —> Y to be a map of R-chain
complexes h: X @ I —> Y that restricts to f and g on X ® [0] and X ® [1]. As
the reader can check from the differential on the tensor product (or see [93,

p-90]),
s(%) = (- ) h(x (1))

then specifies a chain homotopy satisfying the usual formula ds+sd = f —g.
We record the following definition now but say more about it later. In Chg,
coproducts are direct sums and the pushoutof maps f: A - Xandg: A — Y
is the “difference cokernel” (X @ Y)/Im(f —g).

DEFINITION 18.1.1. Let f: X —> Y be a map of R-chain complexes. Define
the mapping cylinder Mf to be the pushout Y Ur (X ® I) of the diagram

f io
Y= X—XQI.

Define the mapping cocylinder Nf to be the pullback X xs Hom (I, Y) of the
diagram

f o
X— >Y<— Hom(LY).

We have two natural categories of weak equivalences in Chgr. The
h-equivalences are the homotopy equivalences of R-chain complexes, and the
g-equivalences are the quasi-isomorphisms, namely those maps of R-chain
complexes that induce an isomorphism on passage to the homology of the
underlying chain complexes. We call the subcategories consisting of these
classes of weak equivalences #}, and #}. Since chain homotopic maps induce
the same map on homology, #}, C #;. Itis easily checked that both categories
are closed under retracts and satisfy the two out of three property and are thus
subcategories of weak equivalences as defined in Definition 14.1.4. Similarly,
it will be evident that the classes of cofibrations and fibrations that we define
in this chapter are subcategories closed under retracts, and we take that for
granted in our proofs of the model axioms.

We let hChp denote the ordinary homotopy category of Chg and call it the
classical homotopy category of Chg. It is obtained from Chpg by passing to
homotopy classes of maps or, equivalently, by inverting the homotopy equiv-
alences. It is often denoted .#% in the literature. We let HoChyr denote the
category obtained from Chg, or equivalently from hChg, by formally inverting
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the quasi-isomorphisms. It is called the derived category of Chg, and the alter-
native notation %y is standard. Just as in topology, we shall describe three
interrelated model structures on Chg, which we name as follows.

The classical model structure is denoted by

18.1.2 (P G F)-

The Quillen, or projective, model structure is denoted by
18.1.3 (Wq, €4, F).

The mixed model structure is denoted by

18.1.4 (W Cmr Fm) = Hgp Cmr Fh).

After some preliminaries in §18.2 on h-cofibrations and h-fibrations, we
describe these model structures successively in the rest of the chapter. The one
in common use is the g-module structure, but, just as in topology, we argue
that the m-model structure is probably more convenient. It well represents
how one actually works in derived categories, and we shall see in the next
chapter that it gives a new conceptual perspective on their construction.

REMARK 18.1.5. The h-model structure, which was long folklore, is due inde-
pendently to Cole [32], Schwinzl and Vogt [122], and Christensen and Hovey
[29, 66]. The Quillen model structure is of course due to Quillen [113]. The
g-model structure has an injective analogue that we define in passing but do
not discuss in detail; see, for example, [66, Thm. 2.3.13]. This model structure
is of less interest to us since, with it, Chyz is not a monoidal model category [66,
p- 111]. However, there are closely related contexts, such as categories of chain
complexes of sheaves, where the g-model structure (alias the projective model
structure) does not exist, but the injective model structure does. Moreover,
there is a “flat” model structure that is monoidal in such contexts [51, 52, 67].
The mixed model structure is due to Cole [33].

18.2. h-cofibrations and h-fibrations in Chy

In this preliminary section, we mimic the topological theory of h-cofibrations
and h-fibrations, replacing % (or .7) by Chg and replacing x (or A) by ®.

DEFINITION 182.1. Anh-cofibrationisamapi: A —> X in Chp that satisfies
the homotopy extension property (HEP). That is, for all B € Chg, i satisfies the
LLP with respect to the map po: B! — B given by evaluation at the zero cycle
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[0]. An h-fibration is a map p: E —> B that satisfies the covering homotopy
property (CHP). That is, for all R-chain complexes A, p satisfies the RLP
with respect to the map ip: A — A® I. Let %}, and %, denote the classes of
h-cofibrations and h-fibrations.

Remember that the h-equivalences are the homotopy equivalences of
R-chain complexes. We say that a R-chain complex is contractible if it is
homotopy equivalent to the R-chain complex 0. The following triviality is
helpful.

LEMMA 18.2.2. Let C be a contractible R-chain complex. Then 0 —> C is a retract
ofig: C —> C® I and C —> 0isa retract of po: C! — C.

PROOF. Here of course we mean retracts in the arrow category. A contracting
homotopy h: 0 >~ id¢ may be viewed as either a map C® [ —> C or a map
C —> C!. The following diagrams commute:

0 C 0 an cl C |

LT

C — C®l — C
i1 h

LEMMA 18.23. Ifi: A — X is an h-cofibration, then i is a monomorphism. If
p: E —> Bisan h-fibration, then p is an epimorphism.

PROOF. Justas for spaces [93, p. 42], the mapping cylinder Mi = X U; (A® I)
must be a retract of X ® I, which is impossible if i has a nonzero kernel. The
dual argument applies to p. O

The following results are direct analogues of standard results in topology
concerning cofiber and fiber homotopy equivalence [93, pp. 44, 50]. Consider
the category A/ Chg of chain complexes under a chain complex R. Let X and Y
be R-chain complexes under A, with given mapsi: A — Xandj: A — Y.Two
mapsf,g: X —> Y under A are said to be homotopic under A, or relative to A,
if there is a homotopy h: X ® I —> Y between them such that h(a ® [I]) = 0
for a € A. That is, h restricts on A® I to the algebraic version of the constant
homotopy at j. A cofiber homotopy equivalence is a homotopy equivalence
under A. Working in the category Chg/B of chain complexes over a chain
complex B, the notion of fiber homotopy equivalence is defined dually.
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We note that the composite of homotopiesj, h: X ® I — Y, whereh: e >~ f
andj: f ~ g, is the homotopy k: e ~ g given by eand gon X ® [0] and X ® [1]
and by j+h on X ® [I]. This composite of algebraic homotopies substitutes
for the composite of topological homotopies that is obtained by cutting the
unit interval in half and rescaling the homotopies.!

PROPOSITION 18.24. Leti: A—> X andj: A —> Y be h-cofibrations and let
f: X —> Y be a map under A. If f is a homotopy equivalence, then f is a cofiber
homotopy equivalence.

PROOF. The conclusion says that there is a map g: Y — X under A and
homotopies fg >~ id and gf ~ id under A. The proof is formally identical to
the proof of the topological analogue in [93, p. 44], but with x replaced by ®.
The cited proof displays composites of homotopies explicitly in terms of the
unit interval, but translating in terms of composites of algebraic homotopies
as just described is straightforward. O

COROLLARY 18.25. Let i: A —> X be an h-acyclic h-cofibration. Then X /A is
contractible and i is isomorphic under A to the inclusion A — A® X /A.

PROOF. By h-acyclicity and Proposition 18.2.4, there is a deformation retrac-
tionr: X — A If h: X® I — X is a homotopy id >~ ior under A, then h
induces a contracting homotopy on X/A. O

PROPOSITION 18.26. Let p: E —> B and q: F —> B be h-fibrations and let
f+ E —> F beamap overp. If f is a homotopy equivalence, then f is a fiber homo-
topy equivalence.

COROLLARY 182.7. Let p: E —> B be an h-acyclic h-fibration. Then ker (p) is
contractible and p is isomorphic over B to the projection B @ ker (p) —> B.

A companion to these results relates homotopy equivalences to contractibil-
ity. Observe that for any R-chain complexes X and Y, the abelian group of
0-cycles in Hompg (X, Y)o is the group Chgr(X, Y) of maps of R-chain com-
plexes X — Y, and Ho(Hompg (X, Y)) is the abelian group hChg(X,Y) of
homotopy classes of maps X —> Y of R-chain complexes.

1. If one wants, one can make addition of homotopies look formally the same in the two contexts
by observing that the sum of homotopies is defined using a map I — IUgo I in both contexts.
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LEMMA 18.28. Let

f g
0 X Y Z 0

be an exact sequence of R-chain complexes whose underlying exact sequence of
R-modules splits degreewise. Then f is a homotopy equivalence if and only if Z is
contractible and g is a homotopy equivalence if and only if X is contractible.

PROOF. If f is an h-equivalence, then f.: Hompg (A, X) — Homg (A, Y) is
an h-equivalence and thus a quasi-isomorphism for any A. Since the functor
Homp (A, —) preserves finite direct sums of underlying graded R-modules, the
splitting hypothesis ensures that the functor Homp (A, —) takes the given short
exact sequence to a short exact sequence, and the resulting long exact sequence
of homology groups shows that the homology of Homp (4, Z) is zero. Taking
A = Z, the identity map of Z is a 0-cycle and hence a boundary, which means
that Z is contractible. Conversely, if Z is contractible, then Hompg (A, Z) is a
contractible chain complex for any A, hence f, is a quasi-isomorphism for any
A. Since hChg(A, X) = Ho(Homg (A, X)), it follows formally from the cases
A=Y and A = X that f is an h-equivalence. A symmetric argument applies
with f and Z replaced by g and X. O

It is now easy to verify the algebraic analogue of Proposition 17.1.4.

PROPOSITION 18.2.9. Consider a commutative diagram of R-chain complexes

g
—_—

Mo >
>
A

oo <—
~

AN
AN
\l\

in which i is an h-cofibration and p is an h-fibration. If either i or p is an
h-equivalence, then there exists a lift A.

PROOF. If p is an h-acyclic h-fibration, then Corollary 18.2.7 shows that p is
isomorphic to a projection B@® C — B, where C is contractible. Thus p is the
sum of idg and C —> 0, which by Lemma 18.2.2 is a retract of pg: C! — C.
Therefore i satisfies the LLP with respect to p since it satisfies the LLP with
respect to idp and po. The proof when i is an h-acyclic h-cofibration is dual. O



18.3. THE h-MODEL STRUCTURE ON Ch, [ 379

18.3. The h-model structure on Chp

We shall prove the following theorem. Recall the definition of a monoidal
model category ¥ and of a ¥-model category from Definition 16.4.7.

THEOREM 18.3.1. The subcategories (¥4, €1, Fy) define a model category struc-
ture on Chg, called the h-model structure. Every object is h-cofibrant and h-fibrant,
hence the h-model structure is proper. If R is commutative, the cosmos Chg is a
monoidal model category under ®. In general, Chy is a Chz-model category.

For the model structure, it remains only to prove the factorization axioms.
This could be done directly, but we prefer to take a less elegant and more
informative approach. In topology, a map has the HEP if and only if it is the
inclusion of an NDR-pair [93, p.43] and a map has the CHP if and only if it
has this property locally [93, p. 49]. These criteria allow us to recognize such
maps when we see them. Similarly, in algebra, it is not at all obvious how
to recognize maps that satisfy the HEP or CHP when we see them. We shall
rectify this by giving new definitions of r-cofibrations and r-fibrations and
proving that these maps are precisely the maps that satisfy the HEP or CHP.
The new notions are much more algebraically intuitive. To go along with this,
we define an r-equivalence to be an h-equivalence.

REMARK 183.2. What is really going on here is that we have two model struc-
tures, the h-model structure and the r-model structure, that happen to coin-
cide. The r stands for “relative”, and the r-module structure is a starting point
for relative homological algebra. In more sophisticated algebraic situations,
there are h-, r-, and g-model structures, and they are all different. This happens,
for example, if R is a commutative ring, A is a DG R-algebra, and we consider
model structures on the category of differential graded A-modules.? In this sit-
uation, A need not be projective as an R-module, and then functors such as ®
and Homy rarely preserve exact sequences. Relative homological algebra recti-
fies this by restricting the underlying notion of an exact sequence of A-modules
to sequences that are degreewise split exact as sequences of graded R-modules.

DEFINITION 1833. A map f: X — Y of R-chain complexes is an
r-cofibration if it is a degreewise-split monomorphism; it is an r-fibration if

2. Details will appear in a paper by the first author.
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itis a degreewise-split epimorphism. We use the term “R-split” for degreewise
split from now on.

Of course, such splittings are given by maps of underlying graded R-
modules that need not be maps of chain complexes. The following result
(due to Cole [32]) shows that the splittings can be deformed to chain maps if
the given R-split maps are homotopy equivalences. It implies the r-analogues
of Corollaries 18.2.5 and 18.2.7.

PROPOSITION 18.3.4. Let

f g
0 X Y Z 0

be an exact sequence of R-chain complexes whose underlying exact sequence of graded
R-modules splits. If f or g is a homotopy equivalence, then the sequence is isomorphic
under X and over Z to the canonical exact sequence of R-chain complexes

0 X XoZ z 0.

PROOF. We may choose a map of R-modules r: Y —> X such that rf = idx.
As usual, there results a map of R-modules i: Z — Y such that gi =id,
ri =0, and fr +ig = idy.

Assume that f is a homotopy equivalence. By Lemma 18.2.8, Z is con-
tractible. Let s be a contracting chain homotopy, so that ds+ sd = idz. Define

t'=r—rodoiosog: Y — X.

Sincegof = 0,1 of =rof =idx, so that ' is also a splitting map. But now
r’ is a chain map, as we see by a tedious chain of equalities:
dr’ = dr — drdisg
= rfdr — rfdrdisg since rf =id
= rdfr — rdfrdisg since df = fd
= rd(id — ig) — rd(id — ig)disg  since fr+ig=id
= rd — rdig — rddisg + rdigdisg

= rd — rdig + rdidgisg since dd =0 and dg =gd
= rd — rdig + rdidsg since gi =1id

= rd — rdi(id — ds)g

= rd — rdisdg since ds+sd =id

=rd —rdisgd = r'd since dg = gd.
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Therefore r’ induces an isomorphism of chain complexes Y = X @& Z under
X and over Z. The argument when g is a homotopy equivalence is dual,
in the sense illustrated in the following proof of the r-analogue of Proposi-
tion 18.2.9. g

PROPOSITION 18.3.5. Consider a commutative diagram of R-chain complexes

g
_—

X< >
>
Q

oo <— ™
<

N
N
\l\

in which i is an r-cofibration and p is an r-fibration. If either i or p is an
h-equivalence, then there exists a lift A.

PROOF. Ifiisan h-equivalence, then i is isomorphic to a canonical inclusion
i: A—> A@® C where C is contractible, and if p is an h-equivalence, then p is
isomorphic to a canonical projection p: B& C —> B where C is contractible.
The constructions of lifts in the two cases are dual. Since the reader may not
be comfortable with this kind of duality, we give the details in both cases.
Let C be a contractible R-chain complex with contracting homotopy s, so that
ds+sd =idc.

First, assume that p is an h-equivalence and take E = B@ C. Write
g=1(g1,&) g1: A—> Band g: A — C, and write A = (A1, A2) similarly.
To ensure that pA = f, we can and must define A1 = f. To define 1,, choose a
retraction r: X —> A of underlying R-modules, so that ri = ids. Then define

Ay = dsgor + sgord.
Since d? = 0, we see immediately that di; = dsgyrd = A,d, and we have

Al = (dsgar + sgard)i

= dsg) + spd since ri =1id and di =id
= dsgy + sdg since dgy = god
=g since ds+sd = id.

Next assume that i is an h-equivalence and take X = A® C. Write f = (f1,/2),
fi:A—> Band f,: C — B, and write A = (X1, X2) similarly. To ensure that
A = g, wecanand mustdefine A; = g. Todefine A,, chooseasectionj: B—>E
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of underlying R-modules, so that pj = idp. Then define
A2 = jHsd +djfs.
Since d* = 0, we see immediately that di, = djfysd = 1,d, and we have

pra = p(jifasd + djf29)

= frsd + dfzs since pj =id and pd = dp
= fosd + frds since df, = fd
=f since ds—+sd = id. O

PROPOSITION 183.6. Let f: X — Y be a map of R-chain complexes. Then f
is an h-cofibration if and only if it is an r-cofibration and f is an h-fibration if and
only if it is an r-fibration.

PROOF. Changing notation, let i: A —> X be an h-cofibration. Then the
mapping cylinder Mi = X U; A® I is a retract of X ® I. As an R-module, Mi
is the direct sum X ® A® XA, where Ais AQR-[1] and XA is AQR-[I];
A = A®[0] is identified with i(A) C X. Clearly Mi retracts to the summand
A. The composite retraction restricts on X ® R-[1] to a splitting X — A
of i. Conversely, let i be an r-cofibration. Since pp: B! — B is an h-acylic
r-fibration for any B, Proposition 18.3.5 shows that i satisfies the HEP and is
thus an h-cofibration. A dual argument shows that the h-fibrations coincide
with the r-fibrations. O

It is now very easy to prove the factorization axioms. Just as in topology,
any map f : X —> Y factors as composites

J r v P
18.3.7 X——>Mf——=Y and X——>Nf——7Y,

where r and v are h-equivalences. Since the topological proofs of these equiv-
alences do not transcribe directly to algebra, we indicate quick proofs; formal
arguments are also possible. Here j(x) = x ® [1], r(y) =y, r(x ® [1]) = f (%),
and r(x ® [I]) = 0. Define i: Y —> Mf by i(y) = y. Then ri = idy. A homo-
topy h: Mf ® I —> Mf from ir to iy is given by

0 ifze Y (orz=x®[0])
hz[I) = 1x®[I] ifz=x®[1]
0 ifz=x®I[I].



18.4. THE ¢-MODEL STRUCTURE ON Ch, [ 383

A small check, taking care with signs, shows that this works. The defini-
tions of v and p are dual to those of j and r respectively, and a dual proof
shows that v is an h-equivalence. An easy inspection shows that j and v are
R-split monomorphisms and r and p are R-split epimorphisms. Therefore
these elementary factorizations are model theoretic factorizations and the
proof of the model axioms is complete.

It remains to prove that the h-model structure is monoidal when R is com-
mutative and that Chpg is an Chgz-model category in general. Leti: A — X
and j: Y — Z be h-cofibrations (in either situation, with ® understood to
be @p for the first statement). We must prove that idj: iKj — X ® Z is an
h-cofibration that is h-acyclicif i or j is h-acyclic. If r: X — Aands: Z — Y
splitiandj, they induce a splitting r Os as displayed in the following comparison
of coequalizer diagrams.

(id®j)—(i®id)
AQY —— > (AQRZ)®(X®Y) — > iKj —> 0

i®j iQid@id®) J/ l i0j
(i[d®id)—(id®id)
XQZ ———— > XQ®)P(X®Z) —— XQZ —— 0

r®s reideid®s \L l rOs

AQY —— > AQRZ)®(X®Y) — > iKj —> 0
(id®j)—(i®id)

Now suppose that i is a homotopy equivalence. By Corollary 18.2.5, it is iso-
morphic under A to an inclusion A — A @ C, where C is contractible. This
implies that ij is isomorphic to the map

idgjeid
(CRY)BARZ)— = (CRZ)D (AR Z).
This is a homotopy equivalence since a contracting homotopy for C ~ {0}
induces a contracting homotopy for C® Y and C® Z.

18.4. The g-model structure on Chg

We defined h-fibrations in Chg to be the precise algebraic analogues of
Hurewicz fibrations in %, and we define g-fibrations to be the precise
analogues of Serre fibrations. Recall that %} is the subcategory of quasi-
isomorphisms.
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DEFINITION 184.1. Let Z denote the set of inclusions S ' — D for all
n € Zand let 7 denote the set of maps ig: D} — D ® Iforalln € Z. Amap
p in Chp is a g-fibration if it satifies the RLP with respect to J. A map is a
g-cofibration if it satisfies the LLP with respect to all g-acyclic g-fibrations. Let
%4 and Z; denote the subcategories of g-cofibrations and g-fibrations.

The proof of the following result is almost identical to that of its topological
analogue Theorem 17.1.1. There are alternative, more algebraically focused
proofs, and we say a little about the steps as we go along.

THEOREM 18.42. The subcategories (#5, 6,4, F4) define a compactly generated
model category structure on Chy, called the g-model structure. The sets T and J are
generating sets for the g-cofibrations and the g-acyclic q-cofibrations. Every object is
q-fibrant and the g-model structure is proper. If R is commutative, the cosmos Chg
is a monoidal model category under ®. In general, Chy is an Chyz-model category.

Itis easyto characterize the g-fibrations and the g-acyclic g-fibrations directly
from the definitions.

PROPOSITION 18.43. A map p: E —> B is a q-fibration if and only if it is a
degreewise epimorphism.

PROOF. By definition, p is a g-fibration if and only if p has the RLP with
respect to all maps ip: Df — D} ® I. Elaborating on Lemma 18.2.2, it is easy
to check that iy is isomorphic to the direct sum of id: D} — D}, 0 — D},
and 0 — DEH. This implies that p is a g-cofibration if and only p has the
RLP with respect to all maps 0 — D¥%. Since a map D} — B is a choice of
a chain of By, we can find a lift in any diagram of the form

0 —— E

]

Dy ——= B
if and only if p is a degreewise epimorphism. O

PROPOSITION 18.4.4. Amap p: E —> B is a g-acyclic q-fibration if and only if
pisinZ?.
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PROOF. Itis an exercise to check this by using that a test diagram

sl ——~ F

|

Dﬁ — > B
consists of a cycle e € E,_1 and a chain b € B, such that d(b) = p(e). O

In fact, there is no need to give such a direct proof of Proposition 18.4.4
since the conclusion will drop out from the verification of the model axioms.
The following lemma is the exact algebraic analogue of the key lemma used
in the proof of HELP (the homotopy extension and lifting property) in [93].
As in topology, it helps us organize the proof of the compatibility condition
required in Theorem 15.2.3. We prove it and record the algebraic version of
HELP before returning to the proof of Theorem 18.4.2 and characterizing the
g-cofibrations and g-acyclic g-cofibrations, which we do in the next section.

LEMMA 18.4.5. Let e: Y —> Z be a map in Chg. Then the induced map e, on
homology is a monomorphism in degree n — 1 and an epimorphism in degree n if and
only if whenever given maps f : Df — Z, g: S?l — Y, andh: S?l ®I—>Z
such thatf|§$71 =hoig and eog = hoiy in the following diagram, there are
maps g and h that make the entire diagram commute.

io i1
n—1 n—1 n—1
SR —— SR I <—— SR

S

PROOF. Let i,_71 be the canonical basis element of S?l and j, be the
basis element of D} with d(j,) =i,—1. The map g is given by a cycle
Y = g(in—1) € Yu—1 and the map f is given by a boundary relation

z = f(in-1) = df (ju) € Zn-1.
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Letting ¢ = (— 1)"'h(i,_1 ® [I]), we see that the homotopy h is determined
by y, 2, and a chain ¢ such that d(c) = z — e(y). Thus e, sends the homology
class [y] to 0. If H,—_1(e) is a monomorphism, there is a chain k € Yy, such that
d(k) = y. Then e(k) +c—f(ja) is a cycle. If Hy(e) is an epimorphism, there
must be a cycle y’ € Y, and a chain £ € Z, 1 such that

d(e) = e(y') — (e(k) +c —f (jun))-

We then define g(j,) =k—y" and fz(jn® [I1) = (—1)"¢; the definitions of
these maps on other basis elements are forced by commutativity of the dia-
gram. Alittle check shows that hisin facta chain map. For the converse, we see
that H,—1(€) is a monomorphism by the case h(i,—1 ® [I]) = 0 of the diagram.
Then

dz = h(in_1 ®[0]) = h(ip_1 ® [1]) = ey,

so that f displays eg(i,—1) as a boundary. The map g shows that g(i,—1) must
be a boundary. We see that Hy(e) is an epimorphism by the case g = 0 and
h = 0 of the diagram. Then z is a cycle, and the maps § and h display a cycle
of Y whose image under ¢ is homologous to z. O

We shall be using the compact object argument, hence we are only inter-
ested in sequential cell complexes, like the classical cell complexes in topology
and like projective resolutions in algebra. We define ¢ (Z) and %(J) to be the
retracts of the relative cell complexes, as in Definition 15.1.1.

REMARK 18.4.6. An Z-cell complex X has an increasing filtration given by
its successive terms, which we shall here denote by FyX rather than X, in
order to avoid confusion with the R-module X, of elements of degree q.
The subcomplex FzX can have elements of arbitrary degree. Let us write
X<4 for the elements of X of degree < g. This gives X a second filtration
that corresponds to the skeletal filtration of CW complexes in topology. In
topology, cellular approximation of maps allows us to replace cell complexes
by equivalent CW complexes. In algebra, the comparison is much simpler
and the difference is negligible since an “attaching map” S§ — F;X for a
cell Dﬁ“ necessarily has image in the elements (F;X), of degree n. When
we restrict attention to those X such that X; =0 for g < 0, as in classical
projective resolutions, we may as well also restrict attention to those Z-cell com-
plexes such that F;X = X (starting with F_1X = 0 and allowing FoX to be

nonzero).
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THEOREM 184.7 (HELP). Let A —> X be a relative Z-cell complex and let
e:Y — Z be a g-equivalence. Given maps f : X — Z, g: A—> Y, and
h:A®I —> Zsuchthatf|A = hoigandeog = hoiy inthe following diagram,
there are maps g and h that make the entire diagram commute.

io i1
A——m—— AQI

e
Z Y

N N
N N
oo N g N

A

PROOF. We proceed by induction over the cellular filtration, and then by
passage to unions, proceeding one layer of cells at a time. The (g + 1) term
Fg11X of the filtration of X is constructed by attaching cells D" along attaching
maps S% ! —> FyX. Starting with FoX = A, we obtain the conclusion by
applying the case Sﬁ_l — D} one cell at a time to the cells of F;;1X not in
FyX. O

18.5. Proofs and the characterization of g-cofibrations

PROOF OF THEOREM 18.4.2. With A = w, itis obvious that Zand [Jare com-
pact in the sense of Definition 15.1.6. Indeed, for any finite cell complex A and
relative Z-cell complex X — Z = colim F;;Z, the canonical map

colim,, Chg(A, F;Z) —> Chg(A, Z)

is an isomorphism since a map A —> Z is determined by the images
of its finitely many R-basis elements. By the compact object argument,
Proposition 15.1.11, we have functorial WFSs (¢'(Z), Z%) and (4 (J), J?).
To verify the model axioms, we need only verify the acylicity and
compatibility conditions of Theorem 15.2.3. For the acyclicity, let
it A= FoX — colim F;X = X be a relative J-cell complex. Arguing one cell
at a time, we see that each map FyX — F;;1X of the colimit system is the
inclusion of a deformation retraction and therefore i is a g-equivalence (in fact,
an h-equivalence).
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For the compatibility, we must show that Z¥ = 79 N #,. The maps
in J are Z-cell complexes, so they are in %¥(Z), and this implies that
7% c J?.To show that Z% C #, observe that the inclusions 0 — S} and
io+i1: SE® Sy — SE®1I are relative Z-cell complexes and are thus in
¢(I). If p: E—> B is in 79, then liftings with respect to 0 —> S%
show that py: Hu(E) —> Hp(B) is surjective and liftings with respect to
SE® Sk — Sk ®1I show that p, is injective. Conversely, suppose that
p: E—> Bisin J? N#; and consider a lifting problem

We use the square to construct the solid arrow portion of the following dia-
gram. The map h is the composite of f and the map Sﬁ_l ® I — D} that
sends iy_1 ® [I] to 0 and sends both i,_1 ® [0] and 1,1 ®[1] t0 i,,—1.

Sn—l o Sn—l ® I " Sn—l
R R R
% o
r
B E
f AN v 7N

h N : g AN

D Di®I D

By Lemma 18.4.5, since p is a quasi-isomorphism there are dashed arrows g
and h making the dashed and solid arrow parts of the diagram commute. Since
phasthe RLP with respect to ig, it has the RLP with respect to i; and we obtain a
lift v such thatpov = handvoi = g. The composite A = v o iy is the desired
lift in our original diagram. This completes the proof of the model axioms.

To see that the g-model structure is monoidal when R is commutative, con-
sider i0j, where i and j are the cells i: SB~' — D% andj: S% ' —> D& We
obtain a split inclusion f of relative cell complexes
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Sl’RnJran Dg+n71

] |

iKj ——> DP®grD:E
i0j

by setting f (im+n—2) = im—1 ® in—1 and f (jm+n—1) = jm ® in—1. The quotient
of i0j by f is isomorphic to the cell

m+n—1 m+n
Sk — D™

That is, i0j is the direct sum of two cells and so is a relative cell complex. If
we replace j here by ig: Dy — D} ® I, then i0Jj is a homotopy equivalence.
Rather than prove that, we observe that the proof of Proposition 18.4.3 shows
that we could have used the alternative set of generating g-acyclic g-cofibrations
consisting of the maps j: 0 — D} and then i0j is just i @ idp», which is a
relative J-cell complex. It follows inductively that if i and j are relative Z-cell
complexes, then i0j is a relative Z-cell complex, and that if i is a relative Z-cell
complex and is a relative J-cell complex, then i0j is a relative J-cell complex.
Moreover, the functor i0( —) on the arrow category preserves retracts. There-
fore i0j is a g-cofibration if i or j is so and is a g-acyclic g-cofibration if, further,
either i or j is so. The proof that Chg is an Chz-model category for any ring R
is similar.

Since every R-chain complex is g-fibrant, the g-model structure is right
proper. As in topology, we prove the gluing lemma and conclude that the
g-model structure is left proper by Proposition 15.4.4. O

LEMMA 1851 (THE GLUING LEMMA). Assume that i and j are g-cofibrations
and f, g, and h are q-equivalences in the following commutative diagram in Chg.

i k
A C B

b

Al <=— ¢ — B
j 14

Then the induced map of pushouts
X=AUcB— A/UC/B/=X/

is a q-equivalence.
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PROOF. The pushout AU¢ B is constructed by an exact sequence

(i,k) idp—idp
0 C A®B AUc B—>0.

Here (i, k) is a monomorphism since i is a monomorphism. We have a similar
exact sequence for A'Uc B'. The induced map is given by a map of exact
sequences in Chg, and the conclusion follows by the five lemma applied to the
resulting map of long exact sequences. O

Of course, one characterization of the g-cofibrations and g-acyclic
g-cofibrations is that they are retracts of relative Z-cell complexes and rel-
ative J-cell complexes. We want something more explicit. The following
results should be compared with the characterization of h-cofibrations as the
degreewise-split monomorphisms.

PROPOSITION 18.5.2. Let C be an object of Chpg.

(i) 0 — C is a g-acyclic g-cofibration if and only if C is a projective object of
the category Chg.
(it) If C is g-cofibrant, then C is degreewise projective.
(iii) If C is bounded below and degreewise projective, then C is q-cofibrant.

PROOF. Proposition 18.4.3 implies that a map is a g-fibration if and only if
it is an epimorphism in Chg, so (i) is a direct reinterpretation of the LLP for
0 — C. For (ii), any Z-cell complex is degreewise free, hence any retract of
an Z-cell complex is degreewise projective. The proof of (iii) is just like the
standard construction of maps from complexes of projectives to resolutions
in classical homological algebra. Given a g-acyclic g-fibration p: E — Band
a map f: C — B, we must construct a lift A: C — E such that pAr =,
and we proceed by degreewise induction, starting with 0 in degrees below
the minimal degree in which C is nonzero. Suppose given A,: C, —> Ej,
such that pA, = f, and dA, = A,—1d. Since pn41 is an epimorphism and
Cu+1 is projective, there is a map p: Cpy1 —> Eny1 such that pu = f. Let
v=du—2rnd: Chy1 —> E,. Then pv =0 and dv = 0, so that v is a map
into the cycles of the g-acyclic complex ker (p). The cycles are equal to
the boundaries, so, again using that C,i1 is projective, there is a map
7: Cyp1 —> ker (p)n+1 such that dr = v. Setting A1 = n — 7, we find that
Prnt1 = fut1 and diyp1 = Aud. O
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PROPOSITION 1853. Amapi: A—> X is a g-cofibration if and only if it is a
degreewise-split monomorphism such that the cokernel C = X /A is q-cofibrant.

PROOF. Assume first that i is a g-cofibration. Then i is a retract of a relative
Z-cell complex. Since a retract of a degreewise-split monomorphism is also
a degreewise-split monomorphism, i is a degreewise-split monomorphim.
Since C is the pushout of A — 0 along i, C is g-cofibrant. For the converse,
observe that 7(C,Y) = 0 if Y is g-acyclic by the model theoretic Whitehead
theorem, Theorem 14.4.8. This implies that the chain complex Hompg (C, Y)
is g-acyclic. Consider a lifting problem

g
E—

A
l A
. Y
v v
7
X

S
f

o

N
0O <
S

)

where p is a g-acyclic g-fibration. Let Y = ker(p) and observe that Y is
g-acyclic. Since C is degreewise projective, we can write X = A® C as graded
R-modules. Since the inclusion A —> X and projection X —> C are chain
maps, we can write the differential on X in the form

d(a, c) = (d(a) + t(c), d(c)),

where t is a degree —1 map of graded R-modules such that dt + td = 0. This
formulais forced by d* = 0. Wewritef = fi +f,fi: A—> Bandf;: C — B,
and we write A = A1 + A, similarly. We can and must define A; = g to ensure
that g = Ai. We want pA,(c) = f2(c) and

dAa(c) = Ad(0, ¢) = A(E(c), d(c)) = gH(c) + A2d(c).

Since C is degreewise projective, there is a map f,: C —> E of graded
R-modules such that pf, = f,. The map f, is a first approximation to the
required map A,. Define k: C — E by

k=df,—fd—gt.

We claim that pk = 0, so that k may be viewed as a map C —> Y of degree
—1. To see this, note that df = fd implies df, = fit + fod. Since pd = dp,
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Moreover,

dk+kd = —dfrd — dgt + dfpd —gtd = 0,

sothatkisacycle of degree —1in Hompg (C, Y). It must be a boundary, so there
isadegree 0 map of graded R-modules ¢: C — Y C E suchthatd¢ —¢d = k.
Define A, = f; — £. Certainly pA, = pf2, and

dria=dh—dt =fd+g+k—k—td=gt+ . O

Of course, regarding an ungraded R-module M as a DG R-module con-
centrated in degree 0, a g-cofibrant approximation of M is exactly a projective
resolution of M. There is a dual model structure that encodes injective reso-
lutions [66, Thm. 2.3.13].

THEOREM 1854. There is a cofibrantly generated injective model structure
(#4, 6, F;) on Chg, where the maps in €; are the monomorphisms. The maps
in F; are the degreewise-split epimorphisms with i-fibrant kernel, and

(i) D — 0 is a g-acyclic i-fibration if and only if D is an injective object of the
category Chp.
(ii) If D is i-fibrant, then D is degreewise injective.
(iii) If D is bounded above and degreewise injective, then D is i-fibrant.

The identity functor is a Quillen equivalence from the q-model structure to the
i-model structure on Chg.

REMARK 185.5. Hovey [68] has studied abelian categories with model struc-
tures in which the cofibrations are the monomorphisms with cofibrant
cokernel and the fibrations are the epimorphisms with fibrant kernel.

18.6. The m-model structure on Chg

We briefly describe the mixed model structure and how it relates to the familiar
viewpoint of classical homological algebra. The homotopy category hChg and
derived category HoChg have been used in tandem since the beginnings of the
subject. The mixed model structure allows more direct use of the homotopy
theory of hChpg in the study of HoChg.
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We obviously have #, C #4, and .7, C .%, since the h-fibrations are the
R-split epimorphisms and the g-fibrations are all epimorphisms. All of the
work needed to define and describe the mixed model structure

(WH’L! Cgm’ ﬁm) = (%r %mr ‘gzh)

has already been done in {17.3. The mixed model structure has all of the good
formal properties of the g-model structure. It is proper, it is monoidal when
R is commutative, and it is a Chz-model structure in general. The identity
functor on Chp is a right Quillen equivalence from the m-model structure
to the g-model structure and therefore a left Quillen equivalence from the
g-model structure to the m-model structure.

The class %, of m-cofibrations is very well behaved. The h-cofibrations are
the R-split monomorphisms, and Theorem 17.3.5 says that an m-cofibration
is an h-cofibration that is a g-cofibration up to homotopy equivalence. More
precisely, using Proposition 18.2.4, we see that an m-cofibration A — X is
an R-split monomorphism that is cofiber homotopy equivalent under A to a
relative cell complex. Proposition 17.3.4(ii) gives a weak two out of three prop-
erty that makes it easy to recognize when a map is an m-cofibration. Since
m-cofibrations are more general than g-cofibrations, Proposition 17.3.4(i) gen-
eralizes the relative version of the Whitehead theorem that a weak equivalence
between cell complexes is a homotopy equivalence. Since Chg is h-proper,
Proposition 17.3.10 significantly generalizes these results.

Specializing, Theorem 17.3.5 implies that the m-cofibrant objects are pre-
cisely the objects of Chp that are of the homotopy types of g-cofibrant objects.
This implies that they are homotopy equivalent to complexes of projective
R-modules, and the converse holds when we restrict attention to complexes
that are bounded below. Homotopy invariant constructions that start with
complexes of projective R-modules automatically give m-cofibrant objects, but
not necessarily degreewise-projective objects. In particular, it is very often use-
ful to study the perfect complexes, namely the objects of Chg that are homotopy
equivalent to bounded complexes of finitely generated projective R-modules.
These are the dualizable objects of HoChg in the sense, for example, of [95].
It would take us too far afield to go into the details of this, but the m-model
structure is exactly right for studying this subcategory of Chg.

From the point of view of classical homological algebra, it is interesting to
think of projective resolutions homotopically as analogues of approximation
by CW complexes, well-defined only up to homotopy equivalence. From that
point of view there is no need to restrict attention to degreewise projectives
since only the homotopy type is relevant. Of course, using either a g-cofibrant or
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m-cofibrant approximation P of an R-module M, regarded as a chain complex
concentrated in degree 0, we have

TorR (N,M) = H.(N®g P) and Exty (M, N) = H* Homg (P, N),

the latter regraded cohomologically. We can think of these as obtained by first
applying the derived functors of N ®g (—) and Hompg (—, N) and then taking
homology groups or, equivalently, thinking in terms of spheres S%, homotopy
groups.



19

RESOLUTION AND LOCALIZATION
MODEL STRUCTURES

In §19.1, we present a new perspective on the three model structures that
we described on spaces and chain complexes in the previous two chapters.
Indeed, this gives a new perspective on the construction of the homotopy
category Ho% of spaces from the naive homotopy category h% obtained by
identifying homotopic maps and of the derived homotopy category HoChg
of chain complexes from the naive homotopy category hChpg. The perspective
applies to many other contexts in topology and algebra where we have both a
classical and a derived homotopy category. It focuses on what we call resolu-
tion model structures. This is a nonstandard name. These model structures are
usually called colocalization model structures since they are dual to the more
familiar localization model structures, to which we turn next. The essential
point is that the mixed model structures on % and on Chy are actually exam-
ples of resolution model categories and therefore play an intrinsic conceptual
role independent of the g-model structures. This theory brings into focus the
conceptual unity of our three model structures.

Localization model structures codify Bousfield localization, which vastly
generalizes the constructions in the first half of this book. There we concen-
trated on arithmetic localizations and completions that are closely related to
standard algebraic constructions. We restricted our constructions to nilpo-
tent spaces since that is the natural range of applicability of our elementary
methodology and since most applications focus on such spaces. There are sev-
eral different ways to generalize to non-nilpotent spaces, none of them well
understood calculationally. Bousfield localization gives a general conceptual
understanding of the most widely used of these, and it gives the proper per-
spective for generalizations to categories other than the category of spaces and
indeed to other fields of mathematics.

In modern algebraic topology, especially in stable homotopy theory, Bous-
field localizations at generalized homology theories play a fundamental role.

395
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These have been less studied on the space level than on the spectrum level,
where they are central to the structural study of the stable homotopy cate-
gory. The model theoretic method of construction of such localizations works
equally well for spaces and spectra, and it specializes to extend our arith-
metic constructions to non-nilpotent spaces. We explain the general idea in
§19.2. Although we start work in a general model theoretic context, we switch
gears in {19.3 and give a geodesic approach to the construction of localizations
of spaces at generalized homology theories. Except that we work topologically
rather than simplicially, our exposition is based primarily on the original paper
of Bousfield [16].

We return to the general theory in {19.4, where we place the localization
of spaces at a homology theory in a wider context of localization at a map, or
at a class of maps. We then relate localization to enrichment in the context of
¥-model categories in §19.5. The enrichment is essential to the construction
of Bousfield localization in full generality.

19.1. Resolution and mixed model structures

Our initial definition in this section requires only a category, but we prefer
to start with a model category .#. In principle, the model structure can be
perfectly general, but we use the notation (47, ¢, %), choosing the letter .72
since we are thinking of actual homotopy equivalences. We write [X, Y],» for
the set of morphisms X — Y in Ho.#. We are thinking of contexts in which
[X, Y] =7 (X,Y). Let # C .# be any subcategory of weak equivalences (in
the sense of Definition 14.1.4) that contains .7. We are thinking of the weak
homotopy equivalences in % and the quasi-isomorphisms in Chg. Since we
have the two categories 7 and # of weak equivalences in sight, we sometimes
say that a map is # -acyclic if it is in #.

DEFINITION 19.1.1. Anobject C of .# is said to be # -resolvant (or % -colocal)
abbreviated to resolvant when % is understood, if it is cofibrant and for every
map f: X — Y in #/, the induced function

S [C X — [C, Y
is a bijection. A map y: 'X — X in # from a resolvant object I'X to X is

called a resolution (or colocalization) of X.

As will become clear, the resolvant objects in % are the spaces of the
homotopy types of CW complexes, and this codifies the Whitehead theorem
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for such spaces. Similarly, the (bounded below) resolvant objects in Chpg are
the chain complexes that are of the homotopy type of chain complexes of
projective modules, and this codifies the analogous Whitehead theorem for
such chain complexes.

The definition of a resolution prescribes a universal property. Writing “up
to homotopy” to mean “in Ho.#”, if f : D — X is any map from a resolvant
object Dto X, there is a map ]; , unique up to homotopy, such that the following
diagram commutes up to homotopy.

14
rx —m X

N

Therefore a resolution of X is unique up to homotopy if it exists. There is a
natural model theoretic way to try to construct resolutions.

DEFINITION 19.12. Amapi: A —> X in ./ is a # -cofibration if it satisfies
the LLP with respect to # N.%. An object C is # -cofibrant if # — Cis a
W -cofibration. Let @y denote the class of # -cofibrations in ..

Even without knowing that the definitions above give a model structure,
we can relate %/ -resolvant objects to # -cofibrant objects.

PROPOSITION 19.1.3. Let # be a subcategory of weak equivalences in A . If .
is right proper, then every # -resolvant object is # -cofibrant.

Under mild hypotheses, we can also prove the converse. The dual of both
Proposition 19.1.3 and its converse are given in Proposition 19.2.5 below, and
the proofs there dualize directly.

DEFINITION 19.1.4. If the classes (¥, €y ,.%) specify a model structure on
M, we call it the % -resolution model structure. When this holds, we say that
the %/ -resolution model structure exists.

We give some implications of the existence of the #/-model structure before
turning to examples. Write [X, Y]y for the morphism sets of the homo-
topy category Ho(.#, #') of the # -resolution model structure. Categorically,
Ho(, %) is obtained from .#, or from Ho.#, by formally inverting the
morphisms in #. Observe that 6 C € since S C /.
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PROPOSITION 19.1.5. If(W, Gy, F) is a model structure, then the identity func-
tor on A is a Quillen right adjoint from the original model structure on .4 to the
W -resolution structure. If C is # -cofibrant, then C is cofibrant in the original model
structure on .4 and

19.1.6 [C. X1z =[CX]y.

Therefore C is # -resolvant.

PROOF. The first statement is clear since the # -resolution model struc-
ture has more weak equivalences and the same fibrations as the original
model structure. Since Gy C %, (19.1.6) is immediate from the adjunction
between homotopy categories. The last statement follows by the definition of
a #-resolvant object. O

COROLLARY 19.1.7. If (W, 6y, F) is a wmodel structure on .#, then a
W -cofibrant approximation y : TX — X of X, obtained by factoring § — X,
is a W -resolution of X.

Of course, this construction of resolutions necessarily gives a functor T
on the homotopy category together with a natural transformation y : I' — Id.
The first part of the following result holds by Propositions 19.1.3 and 19.1.5.
The duals of the other two parts are proven in the next section, and the dual
proofs work equally well.

PROPOSITION 19.1.8. Asssume that .# is right proper and (¥, €y, F) is a
model structure. Then the following conclusions hold.

(i) An object C is #-resolvant if and only if it is # -cofibrant.
(ii) # isthe class of all maps f : X —> Y such that

i [CXly — [C, Yy

is a bijection for all #-resolvant objects C.
(iii) The # -resolution model structure is right proper.

These ideas give a general and conceptually pleasing way to construct res-
olutions, but of course the real work lies in the proof that the #“resolution
model structure exists. In the two most classical cases, we have already done
that work.
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PROPOSITION 19.19. Start with the h-model structure on % and let W = ¥
be the subcategory of weak homotopy equivalences. Then the #-resolution model
structure exists since it coincides with the m-model structure.

PROPOSITION 19.1.10. Start with the h-model structure on Chy and let W = ¥
be the subcategory of quasi-isomorphisms. Then the W -resolution model structure
exists since it coincides with the m-model structure.

These results are immediate from the definitions since in both cases the
fibrations and weak equivalences of the two model structures are identical.
Observe that there is no direct mention of the g-model structure in this devel-
opment. Its role is to show that the % -localization model structure exists
and to help describe its properties, as summarized in our discussion of the
m-model structures. Dualizing some of the discussion in the rest of the chapter
leads to alternative ways to prove the model axioms in other situations where
the general definitions apply.

Observe that Proposition 19.1.8 gives a direct conceptual route to the char-
acterization of spaces of the homotopy types of CW complexes as those spaces
C such that f,: 7 (C,X) — 7 (C,Y) is a bijection for all weak equivalences
[+ X — Y, and similarly for chain complexes.

19.2. The general context of Bousfield localization

Intherest of the chapter, except when we focus on spaces, we let.# be a bicom-
plete category with a model structure (#/,%,.#) and associated homotopy
category Ho.Z. We denote its morphism sets by [X, Y] rather than [X, Y]y
for brevity and consistency with the first half of the book. One often wants to
localize .# so as to invert more weak equivalences than just those in %/, and
there is a general procedure for trying to do so that is dual to the idea of the
previous section. As the choice of the letter # is meant to suggest, we are
thinking of .# as the g- or m-model structure, but the definition is general.
There are two variants, which focus attention on two slightly different points
of view. Either we can start with a subcategory .Z of weak equivalences, in the
sense of Definition 14.1.4, that contains %/, or we can start with an arbitrary
class # of maps in .#. We make the former choice in this section and the
latter choice when we return to the general theory in §19.4. Starting with .%,
we have definitions that are precisely dual to those of the previous section.

DEFINITION 19.21. An object Z of .# is said to be £-local, abbreviated to
local when .Z is understood, if it is fibrant and for every map §: X — Y in
Z, the induced function
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£ 1Y, Z] — [X,Z]

is a bijection. A map ¢: X — LX in .Z to a local object LX is called a
localization of X at %, or an .Z-localization of X.

Here is the example most relevant to this book.

DEFINITION 19.22. Forspaces X andahomology theory E, on spaces, say that
&: X — Yisan E-equivalenceifitinduces an isomorphism E,(X) —> E«(Y)
and let %% denote the class of E-equivalences. Say that a space Z is E-local if
itis Zr-local. Say that a map ¢: X — X from X into an E-local space X is
a localization at E if ¢ is an E-equivalence.

EXAMPLE 19.23. When E,(X) = H«(X;ZT), these definitions agree up to
nomenclature with our definition of localization at T in §5.2. Similarly, when
E«(X) = Hy(X; Fr), where FT = X1y, these definitions agree up to nomen-
clature with our definition of completion at T in §10.2.

Observe that the names “localization” and “completion” that are carried
over from algebra in the earlier parts of the book are really the names of two
examples of a generalized notion of localization. Dually to §19.1, the essential
idea of Bousfield localization is to try to construct a model structure on .# of
the form (£, €, Z.¢).

DEFINITION 19.24. Amap p: E —> Bin ./ is an Z-fibration if it satisfies
the RLP with respect to £ N%. An object Z is Z-fibrant if Z — * is an
Z-fibration. Let .% ¢ denote the class of Z-fibrations in ..

We shall give more detail of the general theory than we gave in §19.1, but
many of the results and their proofs, such as the following one, dualize to prove
analogous results in that context. Even without knowing that the notions above
give a model structure, we can relate .#-local objects to .Z-fibrant objects.

PROPOSITION 19.2.5. Let .Z be a subcategory of weak equivalences in .

(i) If A is left proper, then every -2 -local object is . -fibrant.
(ii) If £ has good spools, then every .2 -fibrant object is £ -local.

PROOF. For (i),if Zis.¥-localandi: A — X isin ¥ N.Z, then the function
i*: [X, Z] —> [A, Z] is a bijection. Therefore, Z —> x satisfies the RLP with
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respect to i by Lemma 15.5.4. With the definition of good spools given in
Definition 15.5.11, (ii) follows from Lemma 15.5.3. O

DEFINITION 19.26. If the classes (£, ¥, .Z.¢) specify a model structure on
M, we call it the .#-localization model structure. When this holds, we say that
the .Z-localization model structure exists.

We give some implications of the existence of the .#-localization model
structure before turning to examples. Write [X, Y] for the morphism sets
of the homotopy category Ho(.#,.Z) of the .Z-localization model struc-
ture. Again, categorically, Ho(.#,.%) is obtained from .# or from Ho.#
by formally inverting the morphisms in .#. The following result is dual to
Proposition 19.1.5 and admits a dual proof.

PROPOSITION 19.2.7. If(Z, ¥, Z.¢) is a model structure, then the identity func-
tor on A is a Quillen left adjoint from the original model structure on .4 to the
ZL-localization structure. If Z is £ -fibrant, then Z is fibrant and

19.2.8 (X, Z] = [X, Z] #.

Therefore Z is £ -local.

Observe that the “good spools” hypothesis of Proposition 19.2.5(ii) is not
needed to prove that #-fibrant objects are #-local when (£, %, #«) is a
model structure.

COROLLARY 1929. If (£, 6,.-F.¢) is a model structure on .4, then an
Z-fibrant approximation ¢: X —> LX of X, obtained by factoring X — x, is
an £ -localization of X.

This construction of localizations necessarily gives a functor L on the homo-
topy category together with a natural transformation ¢: Id — L. In this

general context, there is a meta-theorem that reads as follows.

THEOREM 19.2.10. Under suitable hypotheses, (£, €, F.¢) is a model structure
on M, called the £ -localization model structure.

This is a general and conceptually pleasing way to construct localizations,
and ithas myriads of applications in algebraic topology and algebraic geometry.
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However, in practice the logic s circular, since the essential step in the proof of
Theorem 19.2.10 is the following factorization result, which already constructs
the desired localizations as a special case.

THEOREM 19.2.11. Under suitable hypotheses, every map f : X —> Y factors as
an L -acyclic cofibration i: X —> E followed by an £ -fibration p: E — Y.

In fact, Theorem 19.2.11 directly implies Theorem 19.2.10. Indeed, one
of the lifting properties is given by the definition of .# ., and the following
lemma implies that the other lifting property and the other factorization are
already given by the WES (%,.% N'#) of the original model structure on ..

LEMMA 19212. Amapf: X — Yisin FNW ifand only ifitisin Fo N.Z.

PROOF. Iff isin ZF N/, thenf isin ¥ since # C £ and f is in F¢ since
f satisfies the RLP with respect to ¢ and therefore with respect to ¥ N.Z.
Conversely, assume that f is in F¢ N.Z. Factor f in our original model
structure on ./ as a composite of a cofibration i: X — E and an acyclic
fibration p: E — Y. Then i is in .Z by the two out of three property, hence i
hasthe LLP with respectto f. Therefore thereisaliftA: E — X inthe diagram

|

Y.

X ——
\LA
. s
v Y
v
E

This implies that f is a retract of p and is thus in .# N #. O

\

-]

One can ask for minimal hypotheses under which Theorems 19.2.10 and
19.2.11 hold. It is usual to assume that ./ is left proper. This assumption is
very natural in view of the following result.

PROPOSITION 19.2.13. Assume that 4 isleft proper and (£, €, F ) is a model
structure. Then the following conclusions hold.

(i) An object Z is L -local if and only if it is £ -fibrant.
(ii) Z isthe class of all maps f : X —> Y such that

Y, Zly — [X, Z]g

is a bijection for all £ -local objects Z.
(iii) The Z-localization model structure is left proper.
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PROOF. Part (i) is immediate from Propositions 19.2.5(i) and 19.2.7. For (ii),

f* is certainly an isomorphism if f is in .. For the converse, recall that the
defining property of an .Z-local object refers to [—, —] rather than [—, —] #.
Let Z be .#-local and consider the commutative diagram

(L)
[LY,Z]ly —— [LX,Z]y

|

[Y.Z]ly —— [X,Z]¢.
f*
The vertical arrows are bijections, hence f* is a bijection if and only if (Lf)*

is a bijection. Since Z is .Z-local, it is .Z-fibrant, hence by Proposition 19.2.7
we can identify (Lf)* with

(LF)*: [LY, Z] — [LX, Z].

Ifthisisabijection for all Z-fibrant Z, such as Z = LX, then theimage of Lf in
Ho.# isanisomorphism, hence Lf isin # and thusin .Z. Since Lf o¢p = ¢pof
in Ho(#, %), the image of f in Ho(.#, ) is an isomorphism, hence f is in
. This is essentially an application of the two out of three property, but that
does not quite apply since we are not assuming that ¢ is functorial and L is
natural before passage to homotopy categories.

For (iii), assume that f isin . and i is a cofibration in the pushout diagram

f

A — B

X — XUyxB.
g

We must show that g is in .Z. Construct the following commutative diagram.

i f
(0):¢ QA oB
qx i l “ l a
X A B
i f

The squares display cofibrant approximations of the maps i and f, as con-
structed in Lemma 15.5.6. By the gluing lemma (Proposition 15.4.4), g is
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weakly equivalent (in @/r.#) to the pushout g': QX — QX Uga OB of f’
along 7. Since (£, %, %) is a model structure, g’ is in £ by Proposi-
tion 15.4.2. Therefore g is in .%. O

In enriched contexts, to which we shall return in §19.5, Proposition 19.2.13
implies that .#-localizations of ¥-model structures are generally ¥-model
structures.

PROPOSITION 19.2.14. Assume that ./ isaleft proper ¥ -model category for some
monoidal model category ¥ and assume further that either

(i) the functors (—) © V preserve £ -acyclic cofibrations or
(ii) the functors (—) @ V preserve £ and the functors X O (— ) preserve cofibra-
tions.

Then if (£, €, F ) is a model structure, it is a ¥ -model structure.

PROOF. The enrichment, tensors, and cotensors are given, and we know that
if i: A—> X is a cofibration in .# and k: V — W is a cofibration in ¥,
then the pushout product iOk: i Kk —> X ® W is a cofibration that is a weak
equivalence if either i or k is a weak equivalence. We must show that if i is in
%, then so is iOk. This follows from the hypotheses, the previous result, and
Remark 16.4.6. O

To prove Theorem 19.2.11 and therefore Theorem 19.2.10, it is also usual
to assume that ./ is cofibrantly generated. That is convenient and proba-
bly essential for a general axiomatic approach. However, it plays a relatively
minor conceptual role. Any proof of Theorem 19.2.11 is likely to use trans-
finite induction. As we shall see in §19.3, where we prove Theorem 19.2.11
for £ = £, the argument will also prove that the .Z-model structure is cofi-
brantly generated when the original one is, albeit with a large and inexplicit
set of generators for the acyclic cofibrations. The proof in §19.3 will start with
the g-model structure on % and not the m-model structure. Whether or not
that is essential, it is certainly convenient technically.

Nevertheless, the cofibrant generation of the .#-model structure seems
to be more of a pleasant added bonus than an essential conceptual feature.
To avoid obscuring the ideas, we delay turning to this feature until the end of
the next section. As an historical aside, Bousfield’s original treatment [16] first
introduced the methods of transfinite induction into model category theory,
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and only later were his ideas codified into the notion of a cofibrantly generated
model structure. Our exposition follows that historical perspective.

19.3. Localizations with respect to homology theories

We work with the g-model structure on % as our starting point in this spe-
cialization of the general theory above. We consider the class g of
E,-isomorphisms defined in Definition 19.2.2, where E, is any homology
theory. Of course, .Z% is a category of weak equivalences. To simplify nota-
tion, write #g = F.g, for the class of maps that satisfy the RLP with respect
to €3N ZE. To complete the long-promised construction of E,-localizations
of spaces, in particular of localizations and completions at a set of primes
T, it suffices to prove that (£, €, FE) is a model category. As explained
after Theorem 19.2.11, it suffices for that to prove the following factorization
theorem.

THEOREM 19.3.1. Every map f: X —> Y of topological spaces factors as an
Lg-acyclic cofibration i: X —> Z followed by an Lg-fibrationp: Z — Y.

The rest of this section is devoted to the proof and some remarks on how the
conclusion relates to our earlier construction of localizations and completions.
Our homology theory E, is required to satisfy the usual axioms, including the
additivity axiom; see, for example, [93, Ch. 14]. Thus it converts disjoint unions
of pairs to direct sums, hence its reduced variant E (defined on .7) converts
wedges to direct sums. Generalizing [93, {14.6], it can be deduced from the
axioms that E, commutes with filtered colimits and, in particular, transfinite
composites. We used a more elementary argument to verify this for ordinary
homology in Proposition 2.5.4.

Let « be a regular cardinal greater than or equal to the cardinality of the
underlying set of the abelian group @®pnezEn(*). For a CW complex X, let
«(X) denote the number of cells of X. By a CW pair (X, A), we understand
an inclusion i: A —> X of a subcomplex A in a CW complex X. Thus i is an
E,-isomorphism if and only if E, (X, A) = 0.

LEMMA 193.2. If(X, A)isa CW pair and « (X) < «, then E.(X, A) has at most k
elements.

PROOF. Since E,(X, A) = E, (X/A), we may assume that A is a point. We start
from the case X = S", we then pass to wedges of copies of S by additivity, we
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next pass to skeleta of X by induction using the long exact sequences associated
to cofibrations, and we conclude by passage to colimits. O

NOTATION 19.3.3. Let % denote the class of CW pairs (B, A) such that

(i) «(B) <« and
(ii) Ey(B,A) = 0.

Since we have only sets of attaching maps to choose from in constructing such
CW pairs, we can choose a subset K of the class %" such that every map in %
is isomorphic to a map in K.

We isolate the following observation, which will allow us to characterize
the class .#f of E-fibrations in terms of K. When E,. (X, A) = 0 with X perhaps
very large, it shows how to find a subpair in K.

LEMMA 193.4. If (X, A) is a CW pair such that A # X and E.(X, A) = 0, then
there exists a subcomplex B C X such that B ¢ A and (B, AN B) isin K.

PROOF. We use that X is the colimit of its finite subcomplexes and that E,
commutes with filtered colimits. We take B to be the union of an expanding
sequence of subcomplexes {B,} of X such that B, ¢ A, k(Bs) < «, and the
induced map

Ev(By, AN By) —> Ey(Bns1, AN Byp1)

is zero for each n > 1. Using that E, commutes with sequential colimits,
it will follow that E.(B,ANB) =0. To construct the B,, start with any
B; € X such that B; ¢ A and «(B1) <«. Given B,, for each element
x € Ex(Bn, AN By), choose a finite subcomplex Cy such that x maps
to zero in E.(ByUCy, AN(B,UCy)). There exists such a Cy since
colim E,(C, AN C) = E,(X, A) = 0, where C runs over the finite subcomplexes
of X. We can then take B,41 = B, U (Uy Cx). O

PROPOSITION 193.5. Amap p: Z —> Y has the RLP with respect to K if and
only if p is in Fg; that is, K? = Fp.

PROOF. Since the mapsin K are E-equivalences and g-cofibrations, necessity
is obvious. Thus assume that p has the RLP with respect to K. We may as well
insist that each pair (D" x I, D") is in K, and then our hypothesis ensures that
p is a g-fibration. It is especially this innocuous-seeming point that makes it
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convenient to work with the g- rather than the m-model structure. We must
show that there is a lift £ in each diagram

19.3.6 — Z

A
e A
ii/ lp
/
X — Y

in which i is an E-equivalence and a g-cofibration. By Lemmas 15.5.6 and
15.5.7, we may replace i by a cofibrant approximation and, by CW approxima-
tion of pairs [93, §10.6], we can arrange that our cofibrant approximation is
given by an inclusion of a subcomplex in a CW complex. Thus we may assume
without loss of generality that i is the inclusion of a subcomplex A in a CW
complex X.

With the notation of Lemma 19.3.4, if we set C = AU B then p has the
RLP with respect to the pushout A —> C of AN B —> B. Thus for each CW
pair (X, A) such that E, (X, A) = 0, we have a CW pair (C, A) C (X, A) such that
C # A, E,(C,A) =0, and p has the RLP with respect to A —> C. Consider
the set S of pairs (V, £v) such that V is a subcomplex of X that contains A,
E«(V,A) =0, and £y is a lift in the restricted diagram obtained from (19.3.6)
by replacing X by V. Order these pairs by (V, £y) < (W,€w) if V.C W and
Lw|V = Ly. The colimit of an ordered chain in S is again in S, hence S has
a maximal element (W, £w) by Zorn’s lemma. We claim that W = X. If not,
there is a CW pair (C, W) C (X, W) such that C # W, E,(C,W) =0, and p
has the RLP with respectto W —> C. We can extend £y to £¢ via the diagram

| <

z

W
te
et
7/
cC — %,

’

{

and this contradicts the maximality of (W, £w). O

The proof of Theorem 19.2.11 is now completed by the small object
argument, Proposition 15.1.11, whose smallness hypothesis is verified in
Proposition 2.5.4.

THEOREM 19.3.7. Any map f: X —> Y factors as the composite of a relative
KC-cell complex i: X — Z and a map p: Z —> Y that satisfies the RLP with
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respect to K and is thus in Fg. Therefore the £ -localization model structure exists
and € (K) = 64N ZLx.

PROOF. Proposition 15.1.11 gives a WFS (%'(K), K?). Together with Proposi-
tion 19.3.5, that gives the first statement. As noted in the previous section,
the model axioms follow. In particular, ¢(K) = %4 N2 since both are
U Z. O

The properties of homology theories imply that ¢ N % is a saturated class
of maps, in the sense of Definition 14.1.7. Therefore a relative XC-cell complex
is an E,-isomorphism. This verifies the acyclicity condition of Theorem 15.2.3
for the E-localization model structure (.£%, €3, #E). Its compatibility condition
states that 79 = K¥ N ¥, where T is the generating set of cofibrations for the
g-model structure. Since K¥ = Fp, this condition holds by Lemma 19.2.12.
Therefore Proposition 19.3.5 and Theorem 19.3.7 complete the proof of Theo-
rem 19.2.11. Together with Proposition 19.2.13, they also complete the proof
of the following result.

THEOREM 193.8. The classes (L, €4, F) give % a left proper cofibrantly gener-
ated model structure with the generating sets Z of g-cofibrations and KC of £g-acyclic
g-cofibrations.

Proposition 19.2.13 gives the following direct consequence. It will seem
familiar to the observant reader: it can be viewed as an analogue of the dual
Whitehead theorem; compare Theorems 3.3.8 and 3.3.9. However, the model
theoretic proof is altogether different, requiring no use or even mention of
cohomology.

COROLLARY 193.9. Amap §: X —> Y isan E-equivalence if and only if
£5:1Y,Z] — [X, Z]

is a bijection for all E-local spaces Z.

REMARK 19.3.10. This result generalizes the equivalence of (i) and (ii) in The-
orem 6.1.2 from nilpotent spaces to all spaces. Similarly, it generalizes the
equivalence of (i) and (ii) in Theorem 11.1.2 from nilpotent spaces to all spaces.
Note that Proposition 3.3.11 gives an elementary comparison of homologi-
cal and cohomological equivalences that does not require nilpotency. In the
earlier parts of the book, the focus on nilpotency allowed us to go beyond
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the characterization of localizations at T in terms of T-local homology to
characterizations in terms of homotopy groups or integral homology groups.
Similarly, it allowed us to go beyond the characterization of completions at p in
terms of mod p homology to obtain a characterization in terms of homotopy
groups in the finite-type case, together with a description of the homotopy
groups in the general nilpotent case. Little is known about the behavior on
homotopy groups of localizations and completions of non-nilpotent spaces.
Of course, for generalized homology theories E,, no such concrete descrip-
tions can be expected, even for nilpotent spaces. The determination of the
homotopy groups of particular E-localizations of spectra is a major part of
stable homotopy theory.

REMARK 19.3.11. In view of the already excessive length of this book, we shall
say nothing about the alternative definitions of localizations and completions
of non-nilpotent spaces. The source cited most often is the book [21] of Bous-
field and Kan. Sullivan gave a quite different early construction [133], and
Morel [109, 110] showed how to compare and apply the Bousfield-Kan and
Sullivan constructions. Again, there are many other interesting references.
For example, Bousfield [18] showed that, already for S' v S*, the Bousfield-
Kan completion at p does not induce an isomorphism on mod p homology. We
reiterate that, with any definition, relatively little is known about the behavior
on homotopy groups in general.

19.4. Bousfield localization at sets and classes of maps

We return to a general model category .Z. As stated at the beginning of §19.2,
the theory of Bousfield localization admits an alternative starting point. While
less relevant to our work in this book, it gives a more general kind of local-
ization, of which E-localization is a special case. The starting point in this
section dualizes to give an alternative starting point for §19.2. However, we
warn the reader that these definitions are naive and provisional. They will be
superceded in the next section.

DEFINITION 19.4.1. Let J# be any class of maps in .Z.
(i) An object Z € # is o -local if it is fibrant and

1Y, Z1 — [X, Z]

is a bijection for all maps f: X — Y in 7.
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(ii) Amapé&: X — Y isa ¥ -equivalence if
£ 1Y, Z] — [X, Z]

is a bijection for all % -local objects Z.
(iii) Amap ¢: X — X is alocalization of X at 7 if X is ¥ -local and ¢
is a ¥ -equivalence, so that

¢ [Xn, Z] — [X, Z]

is a bijection for all .# -local objects Z.

Define % to be the class of J# -equivalences in .Z. When % is a set, we
change typeface to KC; here we have relative K-cell complexes in mind. When
K is a singleton set { f}, we write f-local, f-equivalence, and f-localization for
the notions just defined.

Observe that .# -localization, if it exists, is a functor Ly : .# —> Ho.#
such that ¢ is natural. Observe too that a map in .2 between ¢ -local objects
is a weak equivalence. We have allowed .#" to be a class and not just a set of
morphisms. However, when J¢" = K is a set, there is an evident reduction.

LEMMA 19.4.2. IfKCis a set of maps and f is the coproduct of the maps in IC, then
the notions of KC-local, KC-equivalence, and IC-localization coincide with the notions
of f-local, f -equivalence, and f -localization.

PROOF. This holds since we have a natural isomorphism [LIX;, Z]= x; [X;, Z]
for objects X; indexed on any set {i} and any object Z. O

We give some simple observations that compare our two starting points.

LEMMA 19.4.3. Foranyclassofmaps J , Ly isa subcategory of weak equivalences
that contains #.

PROOF. Since [—, Z] is a functor, it is easy to check that % is a subcategory
of .# that satisfies the two out of three property and is closed under retracts.
It contains % since w* is a bijection for w € #  and any object Z. O

The following two observations are essentially tautologies from the defini-
tions.
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LEMMA 19.4.4. Forany class of maps 2, the notions of ¢ -local, . -equivalence,
and ¢ -localization coincide with the notions of £ -local, £y -equivalence, and
Ly -localization.

PROOF. Itis immediate from the definitions that Z is J¢ -local if and only if
it is £ -local, and the rest follows. ]

Of course, it might happen that ¢ itself is a subcategory of weak equiva-
lences, which brings us back to the starting point of §19.2. Here we have the
following comparison of contexts, which is just a reformulation of Proposi-
tion 19.2.13. In perhaps confusing notation, it tells us that every subcategory
Z of weak equivalences for which the .Z-localization model structure exists
is of the form .Z for some class of maps %', namely % = .%.

PROPOSITION 19.4.5. If . isleft proper and ¢ is a subcategory of weak equiv-
alences in . such that the  -localization model structure exists, then ¥ = Ly
and the J¢ -localization model structure is left proper.

Returning to the context of the previous section, we can now reinterpret
localization at E as localization at a map. The following result is a corollary
of Proposition 19.3.5. We use its notations, and we write 5 and K for the
class " and set K defined in Notation 19.3.3.

COROLLARY 19.4.6. The following conditions on a space Z are equivalent.

(i) Z is E-local.
(it) Z is Fg-fibrant.
(iii) Z is Kg-local.
(iv) Z —> x satisfies the RLP with respect to Kg.
(v) Z is fg-local, where fg is the disjoint union of the maps in Kg.

Therefore the K g-equivalences are the same as the E-equivalences and localization

at E coincides with localization at fg.

PROOF. (i)and (ii) are equivalent by Proposition 19.2.13, (ii) and (iv) are equiv-
alent by Proposition 19.3.5, and (iv) and (v) are equivalent by Lemma 19.4.2.
Analogously to the equivalence of (i) and (ii), we claim that (iii) and (iv) are
equivalent, and (iii) implies (iv) by Lemma 15.5.8. For the converse, since
the maps i: A — X in K are g-cofibrations between g-cofibrant objects,
if we construct j: Spli — Cyl X using the usual double mapping cylinder
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construction, then j is in the class .#¢ and so has an isomorphic representa-
tive in the set Kg. Thus (iv) implies (iii) by Lemma 15.5.3. The last statement
follows from Proposition 19.4.5, since it implies that the E-equivalences are
the maps that induce an isomorphism on [—, Z] for those spaces satisfying
our equivalent conditions. O

19.5. Bousfield localization in enriched model categories

We said that Definition 19.4.1 is naive and provisional. One good reason is
that the localization asked for in that definition need not always exist [40, p. 3].
Another reason is that, in practice, the model category .# we start off with
is generally a #-model category for some cosmos ¥ with a monoidal model
structure. We write (#/, ¢, %) for the model structures on both .# and ¥. We
regard these model structures as fixed and are concerned with localizations of
. In the presence of such enrichment, Definition 19.4.1 is better replaced
by the following analogue. Others of our earlier definitions also admit such
enriched alternatives.

DEFINITION 195.1. Let J# be any class of cofibrations between cofibrant
objects of ..

(i) An object Z € .# is J¢ -local if it is fibrant and
MY, Z) — M(X,2)

is a weak equivalence for all maps f in 7.
(ii) Amapé&: X — Y isa # -equivalence if

) A, 2) — AX,2)

is a bijection for all # -local objects Z and some (and hence any) cofibrant
approximation §": X’ — Y’ of &

(iii) Amap ¢: X — X is alocalization of X at ¢ if X is ¢ -local and ¢
is a . -equivalence.

Define .Z to be the class of .# -equivalences in .# and define .%_ to be the
class of maps that satisfy the RLP with respect to € N.Z». We say that the
Zy-localization model structure exists if (L, 6, .Z.») is a model structure
on /.

In view of cofibrant replacement of maps, Lemma 15.5.6, our assumption
on the maps in % loses no generality in the context of the previous section;
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it ensures that # (X, Z) is homotopically meaningful. As in Lemma 19.4.2,
sets KC can be replaced by the disjoint union of the maps in them. Rather than
compare our two notions of localizations at sets of maps abstractly, we return
to the context of topological spaces, but now we prefer to work in the category
% of based topological spaces. Here we quote the following result, which is
due to Casacuberta and Rodriguez [26]. As usual, we let F(X, Y) denote the
function space of based maps X —> Y and let X; denote the union of an
unbased space X and a disjoint basepoint.

THEOREM 19.52. Letf: A —> B be a map between CW complexes and let Z be
any based space. Then f*: F(B, Z) —> F(A, Z) is a weak equivalence if and only
if the induced functions

[ST,F(B,Z)] — [S%, F(A, Z)],

or equivalently
[BASY,Z] — [AASY, Z],

are bijections for all n > 0.

COROLLARY 19.53. Let & be a class of relative based CW complexes A —> B
that is closed under the extended suspension functors (—) A S’ forn > 0. Then the
A -local spaces and the ¢ -equivalences in Definitions 19.4.1 and 19.5.1 coincide,
hence so do the two notions of # -localization and the two £ -model structures.

From here, working in the g-model structure on the category %, of based
topological spaces, one can elaborate the methods of §19.3 to prove the follow-
ing existence theorem for the f-model structure. We leave the details to the
interested reader, or to the references in the following remarks.

THEOREM 19.54. Let . denote the set consisting of a relative based CW
complex f: A — B and its extended suspensions f A S} for n > 0. Then the
F -localization model structure exists. It is a left proper %,.-model structure.

REMARK 19.5.5. There is an extensive literature on f-localizations for a map f.
The first existence proofis due to Bousfield [17], and the books [53, 65] study the
foundations in detail. These sources work with simplicial sets. Dror Fajoun’s
monograph [40] gives several variant existence proofs, and he explains how
either simplicial sets or topological spaces can be used. His monograph ana-
lyzes many interesting examples in detail. Bousfield [19] gives a nice overview
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of this area, with many references. More recently, Jeff Smith (unpublished)
has proven that the f-localization model structure exists for any map f in any
left proper combinatorial simplicial model category.

REMARK 19.5.6. One can ask whether localizations at classes, rather than sets,
of maps always exist. Remarkably, Casacuberta, Scevenels, and Smith [27]
prove that this holds if Vopénka’s principle (a certain large cardinal axiom)
is valid, but that it cannot be proven using only the usual ZFC axioms of set
theory.

We end our discussion of model categories and localization with a philos-
ophical remark that contains a puzzling and interesting open problem.

REMARK 19.5.7. The notion of localizing a category .#, or a homotopy cate-
gory Ho.#, at a subcategory . of weak equivalences makes sense as a general
matter of homotopical algebra, independent of model category theory. How-
ever, the general theory here depends on the chosen model structure since
we have required .Z-local objects to be fibrant in a given model structure on
#. Thus our definition of an #-local object really defines the notion of being
Z-local relative to a given model structure. For a fixed ambient category of
weak equivalences %, there may be several model structures (%, €, %) on A
with different good properties.

In particular, in the categories of spaces or chain complexes, we have the
g-model structure and the m-model structure with the same weak equivalences
and therefore with equivalent homotopy categories. In these cases, all objects
are fibrant and so the definition of Z-local objects is the same in the two
cases. However, the question of the existence of the .Z-model structure is still
model dependent. Clearly, asking whether (%, €, %) is a model structure is
a different question for ¢’ = %; and for ¢’ = %,,. Of course, # & depends on
which choice we make, even though the fibrant objects are the same with both
choices.

The known existence proofs for .#-local (or .# -local) model structures on
spaces start from the g-model structure. We actually do not know whether or
not (&, €m, F¢) is a model structure even when we do know that (%, ¢;, %) is
a model structure. We regard this as a quite unsatisfactory state of affairs, but
we leave the existence of model structures (.Z, 6, -%¢) as an open problem.
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BIALGEBRAS AND HOPF ALGEBRAS

We define bialgebras, Hopf algebras, and related algebraic structures, largely
following the original paper [104] of Milnor and Moore but incorporating
various simplifications and amplifications. The reader is urged to recall our
conventions on grading and commutativity from Warning 0.0.6. The theme
is the definition of algebraic structures by use of dual commutative diagrams.
Thus the familiar concepts of algebra and module dualize to concepts of coal-
gebra and comodule, and the structures of algebra and coalgebra combine
to give the notion of a bialgebra. Incorporating antipodes (sometimes called
conjugations), we obtain the notion of a Hopf algebra. In the cocommutative
case, bialgebras and Hopf algebras can be viewed as monoids and groups in
the symmetric monoidal category of cocommutative coalgebras.

20.1. Preliminaries

We shall work over a commutative ground ring R. The reader may prefer to
take R to be a field, since that holds in most applications. Unless otherwise
specified, ® = ®@g and Hom = Homp. Recall that these are defined on graded
R-modules by

(A® B)y= Y  A;®B; and Hom, (A, B) = [ [ Hom (4;, Bi;s).
i+j=n i

We think of R, or any other ungraded R-module, as concentrated in degree 0.
We define the dual A* of A by A* = Hom (A, R), so that A" = Hom (A, R);
here we have implicitly reversed the grading to superscripts (with a sign
change).

Of course, ® is associative and unital (with unit R) up to natural isomor-
phism and has the natural commutativity isomorphism

y:A®B—> BRA

417
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specified by y (a ® b) = (— 1)9¢8498bh @ g. We introduce such a sign when-
ever two entities are permuted. By a harmless standard abuse, we omit the unit
and associativity isomorphisms from diagrams and treat them as if they were
identifications. Use of the commutativity isomorphism is always made explicit.
In categorical language, the category .# of graded R-modules is symmetric
monoidal, and it is closed in the sense that there is a natural isomorphism

Hom (A® B, C) = Hom (A, Hom (B, C));
it sends f to g, where g(a)(b) = f (a ® b). There are further natural maps
v: Hom (A, B)® C — Hom (A, B® C),
0. A— A
and
a: Hom (A, C) ® Hom (B, D) — Hom (A® B, C® D),
which specializes to
a: A*® B* > (A® B)*.
These maps are specified by
v(f ®c)(a) = (~ 1O @ @0,
pla)(f) = (- 18U (a),
and
af ®g)a®b) = (—1)*BE O @)g(h).

We say that A is projective if each A, is projective (over R), and we say that A
is of finite type if each A; is finitely generated (over R). We say that A is bounded
if it is nonzero in only finitely many degrees. Thus A is finitely generated if
and only if it is bounded and of finite type. We say that A is bounded below (or
above) if A; = 0 for i sufficiently small (or large). Then v is an isomorphism if
Aisbounded and either A or C is projective of finite type, p is an isomorphism
if Ais projective of finite type, and the last map « is an isomorphism if A and B
are bounded below and A or B is projective of finite type. In these assertions,
boundedness hypotheses ensure that the products appearing in our Hom’s
are finite, so that they become sums, and projective of finite type hypotheses
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allow us to apply the analogous assertions for ungraded modules. Hence-
forward, we implicitly restrict attention to nonnegatively graded modules, for
which A; = 0if i < 0, since that is the case of greatest interest in algebraic
topology.

Virtually all of our substantive results will be proven by use of filtrations
and bigraded modules. We usually have A,; =0 for all p < 0 or all p > 0.
The signs occurring in the study of bigraded modules always refer to the total
degree p + ¢. The tensor product of bigraded modules is given by

(A®B)pg= >  Ap®Bj.
i+Hj=p,k+l=q
Similarly, the dual A* is given by AP? = Hom (A4, R).
A filtration {F,A} of a graded module A is an expanding sequence of
submodules F,A. A filtration is said to be complete if

A = colimF,A and A=limA/FyA.

In most cases that we consider, we have either F,A= A for p > 0 and
NpFpA =0 or F;A=0 for p < 0 and A = U,F,A. In such cases, complete-
ness is clear. We give R the trivial filtration, F,R = 0 for p < 0 and F,R=R
for p > 0. The tensor product of filtered modules is filtered by

Fp(A® By=Im | Y  F,A®FB| C A®B.
i+j=p

We say that a filtration of A is flat if each A/F,A is a flat R-module; we say that
a filtration is split if each sequence

0—> FpA—> A— A/F,A— 0

is split exact over R. Of course, these both hold automatically when R is a field.
The associated bigraded module E°A of a filtered module A is specified by

Ep A= (FpA/Fp 1A)p14.

Of course, E¥ is a functor from filtered modules to bigraded modules.

PROPOSITION 20.1.1. Letf : A — B be a map of complete filtered R-modules. If
E°f : E°A — E°B is a monomorphism, or an epimorphism, or an isomorphism,
then f and all its restrictions Fyf are also monomorphisms, or epimorphisms, or
isomorphisms.
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PROOF. The commutative diagram

0 —— FA/Fp 1A —— FA/Fp 1A ——> FA/Fp)A —— 0

i i |

0 —— F,B/Fp 1B —— F4B/Fyp 1B —— F;B/F;B —— 0

implies inductively that f induces a monomorphism or epimorphism or iso-
morphism FzA/FyA — Fy4B/F,B for all p < q. Passing to colimits over g, we
find that the same is true for A/F,A — B/F,B for all p. Since lim is left exact
and preserves isomorphisms, we obtain the conclusions for the monomor-
phism and isomorphism cases by passage to limits. Since lim is not right
exact, we must work a little harder in the epimorphism case. Here we let C, be
the kernel of the epimorphism A/F,A — B/F,B and let C = lim C,. A chase
of the commutative exact diagram

Fpi1A/FpA — > Fypy1B/FyB — = 0

0 o A/FpA — > BJ/F,B — > 0

|

0 — CG41 —— A/Fpp1A ——— B/Fp1B ——= 0

shows that {C;} is an inverse system of epimorphisms. Therefore lim' Cp=0
and each map C — C, is an epimorphism. The exact sequence of inverse
systems

0 — {Cy} — {A/F,A} — {B/F,B} — 0

gives rise to an exact sequence 0 - C - A — B — 0 and a chase of the
commutative exact diagram
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0 0
C G 0
0 F,A A AJF,A —
l
0 FyB B B/FyB —— 0
0 0
shows that F,A — F,B is an epimorphism. O

Chases of congeries of exact sequences give the following comparison
assertion.

PROPOSITION 20.1.2. Let A and B be filtered R-modules such that A and B are
either both split or both flat. Then the natural map

E°A® E°B — E°(A® B)

is an isomorphism of bigraded R-modules.

20.2. Algebras, coalgebras, and bialgebras
We give the most basic definitions in this section.
DEFINITION 202.1. An R-algebra A = (A, ¢, n) is a graded R-module A to-

gether with a product ¢ : AQ A — Aand unitn : R — A such that the follow-
ing diagrams commute.

id ®¢ id ®@n n®id
ARARA —— ARA and A®R —— ARA <=— RQ®A
e i i ’ \ J/ ¢/
AQA — A A

¢
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A is commutative if the following diagram also commutes.

14
ARA ——— AQA

N A

Anaugmentation of Aisamorphismofalgebrase : A — R. Givene, kereis
denoted IA and called the augmentation ideal of A; sinceen =id, A= R IA.
If A and B are algebras, then so is A® B; its unit and product are

nen (P®¢)(id ®y ®id)
R=R®Q®R—>AQ®B and AQRBRQRAR®B A® B.

An algebra A is commutative ifand only if ¢ : A® A — Aisamap of algebras.

DEFINITION 20.2.2. An R-coalgebra C = (C,,¢) is a graded R-module C
together with a coproduct ¢ : C - C® C and counit (or augmentation)
¢ : C — R such that the following diagrams commute.

14
C — C®C and C
'/fl iid@lﬁ / lw\
CRC — CRCRC C®R =— C®C —— R®C
Yid id ®¢ e®id

C is cocommutative if the following diagram also commutes.

C
N
C®C ——— C®C

14

A unit (sometimes called coaugmentation) for C is a morphism of coalge-
bras  : R — C; given 1, define JC = coker . Since en =id, CZ R JC. If
C and D are coalgebras, then so is C ® D; its augmentation and coproduct are

Qe (id ®y®id)(y@v)
C®B —— R®R=Rand C®D — > CR®D®C®D.

A coalgebra C is cocommutative if and only if ¢ is a map of coalgebras.
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DEFINITION 20.2.3. Let A be a flat R-module. A bialgebra (A4, ¢, ¥, n, €) is an
algebra (A, ¢, n) with augmentation ¢ and a coalgebra (A, ¥, £) with unit n such
that the following diagram is commutative.

¢ 4
ARQA A ARQA

vor | | sos

AQARARA —— ARARARA
id @y ®id

That is, ¢ is a morphism of coalgebras or, equivalently, ¥ is a morphism
of algebras. If the associativity of ¢ and coassociativity of ¢ are deleted from
the definition, then A is said to be a quasi-bialgebra.! There result notions of
coassociative quasi-bialgebra and of associative quasi-bialgebra.

The flatness of Ais usually not assumed butholds in practice; in its absence,
the notion of bialgebra is perhaps too esoteric to be worthy of contemplation.

LEMMA 20.2.4. Let A be projective of finite type.

(i) (A, @, n) is an algebra if and only if (A*, ¢*,n*) is a coalgebra, ¢ is an aug-
mentation of A if and only if €* is a unit of A*, and A is commutative if and
only if A* is cocommutative.

(it) (A, @,¥,n,€) is a bialgebra if and only if (A*, ¥*, ¢*, &%, n*) is a bialgebra.

Similar conclusions hold for quasi-bialgebras.

DEFINITION 20.25. We define indecomposable and primitive elements.

(i) Let A be an augmented algebra. Define the R-module QA of indecompos-
able elements of A by the exact sequence

¢
TIA® IA IA QA 0.

Note that QA is well-defined even if A is not associative.
(ii) Let C be aunital coalgebra. Define the R-module PC of primitive elements
of C by the exact sequence

v
0 PC JjC JC®JC.

1. This use of “quasi” is due to Milnor and Moore [104]; Drinfeld later gave a more precise
meaning to the term “quasi-Hopf algebra” [38].
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Let IC = kere. We say that x € IC is primitive if its image in JC lies in

PC. Note that PC is well-defined even if C is not coassociative.

LEMMA 20.2.6. If C is a unital coalgebra and x € IC, then
Y(x) =x® 1+Zx/®x”+1®x,
where Y x' ® x" € IC® IC. Ifx is primitive, then
Yx)=xx1+1Qx.
PROOF. C®C = (R®R) @ (IC®R)® (R® IC) ® (IC ® IC), where R = Im 7,
and the natural map IC — JC is an isomorphism. The first statement holds

since

(e®id)¥(x) = x = (id ®e)¥ (),

and the second statement is immediate from the definition. a

When x € IC, we usually write ¥ (x) = > %' ®x” generically for the
coproduct,? including the terms x ® 1 and 1® x and omitting an index of
summation.

LEMMA 20.2.7. If A is an augmented algebra, then P(A*) = (QA)*. If, further, A
is projective of finite type, then

JAQIA —— JA — QA —— 0

is split exact if and only if

0 —— P(AY) I(A*) I(A*) @ I(A¥)
is split exact; when this holds, P(A*)* = QA.

DEFINITION 20.2.8. Let Abea quasi-bialgebra. Define v : PA — QA to be the
composite

PA —> JAZIA — > QA

(or, equivalently, the restriction of JA — QA to PA if PA is regarded as con-
tained in A). A is said to be primitive, or primitively generated, if v is an epi-
morphism; A is said to be coprimitive if v is a monomorphism.

2. In the algebraic literature, the more usual convention is to write ¥ (x) = }_ x1) ® x(3).
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A structure A (algebra, coalgebra, bialgebra, etc.) is filtered if it has a split
filtration such that all of the structure maps preserve the filtration. It follows
that E°A is a structure of the given type. The following definitions give basic
tools for the study of (quasi) bialgebras by passage to associated bigraded
primitive or coprimitive bialgebras. We warn the reader that the filtrations in
the following two definitions are not necessarily complete. In the first case,
thatis a familiar fact from classical algebra since the intersection of the powers
of a (two-sided) ideal in a ring can be nonzero [6, p. 110].

DEFINITION 20.29. Let A be an augmented algebra. Define the product fil-
tration {F,A} by F,A=Aif p> 0 and F,A = (IA)7F if p < 0. Observe that

E),A=0if p>0, E),A=Ej,A=R, and E%) A= QA

If A is an associative quasi-bialgebra with split product filtration, then E°A
is a primitive bialgebra since the elements of E° | A generate EA and are
evidently primitive, and this implies coassociativity.

DEFINITION 20.2.10. Let C be a unital coalgebra. Define the coproduct filtra-
tion {F,C} by F,C=01if p <0, FoC = R, and F,C = ker gﬁp if p > 0, where
¥y is the composite

Vp
ICCC——C® - C——=]JC®---®JC, p factors.

Observe that
E),C=0if p<0, E,C=E),C=R and F),C=PC.

If C is a coassociative quasi-bialgebra with split coproduct filtration, then E°C

0, ,C are evidently indecom-

posable and include all the primitives; Lemma 21.1.1 below implies that E°C

is a coprimitive bialgebra since the elements of E

is associative.

20.3. Antipodes and Hopf algebras

For a monoid G, the monoid ring R[G] is a bialgebra with product, coproduct,
unit, and counit induced by the product, diagonal, identity element, and trivial
function G — {pt}. If G is a group, its inverse function induces an antipode
on R[G], in the sense of the following definition.
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DEFINITION 20.3.1. An antipode x on a bialgebra A is amap x : A— A of
R-modules such that the following diagrams commute.

id®x x®id
AQA — ARA AQA —— > ARA
WT i"’ 4 i"b
A R A A R A
3 n € n

A Hopf algebra is a bialgebra with a given antipode.
If A and B have antipodes x and x’ then A ® B has the antipode x ® .

REMARK 20.3.2. The original definition of an antipode in Milnor and Moore
[104] required only one of these two diagrams to commute, since in the cases of
interestin algebraic topology, if one of them commutes, then so does the other.
Actually, in [104] and most of the topological literature, the term “conjugate” is
used instead of “antipode”. Historically, the concept of Hopf algebra originated
in algebraic topology, where the term “Hopf algebra” was used for what we
are calling a bialgebra. The term “bialgebra” was introduced later and is still
rarely used in topology. In fact, as we shall see in §21.3 below, the bialgebras
that usually appear in algebraic topology automatically have antipodes, so that
itis reasonable to ignore the distinction, and we do so where no confusion can
arise. We have followed the algebraic literature in using the name antipode
and distinguishing between bialgebras and Hopf algebras because of the more
recentinterestin Hopfalgebras of a kind that do not seem to appear in algebraic
topology, such as quantum groups.

REMARK 20.3.3. In general, the existence and properties of antipodes is a sub-
tle question. For example, x can exist but not satisfy x2 = id. The order of an
antipode y is defined to be the minimum #» such that x" = id. It can be any
even number or can even be infinite [136, p. 89].

In the cocommutative case, the concepts of bialgebra and Hopf algebra can
be given a pleasant conceptual form. It is a standard and easy observation that
the tensor product is the categorical coproduct in the category of commutative
algebras. The units of A and B induce maps of algebrasi: A — A® B < B: ],
and for any algebra maps f: A — C «<— B: g, the composite of f ® g and
the product on C gives the unique map of algebras h: AQ B—> C such
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that hoi = f and hoj = g. We are interested in the dual observation. Recall
that, in any category with products, we have the notion of a monoid, namely an
object with an associative and unital product, and of a group, namely a monoid
with an antipode. The following result is immediate from the definitions.

PROPOSITION 20.3.4. Thetensor product is the categorical product in the category
€ of commutative coalgebras. A cocommutative bialgebra is a monoid in €, and a
cocommutative Hopf algebra is a group in 6.

There is another conceptual way of thinking about antipodes. It is based
on the following construction.

CONSTRUCTION 203.5. Let C be a coalgebra and A be an algebra. Then
Hom (C, A) is an algebra, called a convolution algebra. Its unit element is the
composite C <> R L Aandits product is the composite

Hom ()
e

s: Hom (C, A) ® Hom (C, A) = Hom (C® C, A® A) Hom (C, A).

If C is unital with unit n and A is augmented with augmentation ¢, then the
set G(C, A) of maps of R-modules f: C — Asuchthatfn =nandef =¢is
a submonoid of Hom (C, A) under the convolution product .

REMARK 20.3.6. Visibly, when A is a bialgebra, an antipode is a (two-sided)
inverse to the identity map A —> A in the monoid G(A, A). Therefore y is
unique if it exists. This remark is one reason to prefer the two-sided rather
than the one-sided definition of an antipode.

Clearly, a sensible way to prove that a bialgebra A is a Hopf algebra is to
prove more generally that G(A, A) is a group. We return to this point in §21.3,
where we give an easy general result of this form that applies to the examples
of interest in algebraic topology.

20.4. Modules, comodules, and related concepts
There are many further basic pairs of dual algebraic definitions.
DEFINITION 20.4.1. Let (A, ¢,n) be an algebra. A left A-module (N, &) is an

R-module N and action £ : AQ N — N such that the following diagrams
commute.
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id ®¢& n®id
ARARN —— AQN and AR®RN <=—— R®N
P®id l J{ £ 3 J{ /
A®N — N N
£

For an R-module N, (A® N, ¢ ®id) is an A-module and is said to be an
extended A-module. For an A-module (N, &), & is a morphism of A-modules.
With kernels and cokernels defined degreewise, the category of left A-modules
is abelian. There is an analogous abelian category of right A-modules. For a
right A-module (M, 1) and a left A-module (N, &), the tensor product M ® N,
which of course is just an R-module, can be described as the cokernel of

AQid—1d®E: MRA®N — MQN;

®4 is a right exact functor of M and of N.
DEFINITION 204.2. Given an augmentation ¢ : A — R of A, regard R as a
(left and right) A-module via ¢ and define
QAN =R®aN=N/IA-N;
QaN is called the module of A-indecomposable elements of N and is abbre-

viated QN when there is no danger of confusion. Observe that Q4 (IA) = QA.

DEFINITION 20.4.3. Let (C, ¥, ¢) be a coalgebra. A left C-comodule (N, v) is
an R-module N and coaction v : N — C ® N such that the following diagrams
commute.

v

N — C®N and N
vi ixﬁ@id vi \
COIN — C®CQ®N C®N —— R®N
id ®v e®id

For an R-module N, (C® N, ¢ ® id ) is a C-comodule, said to be a coexten-
ded C-comodule. For a C-comodule (N, v), v is a morphism of C-comodules.
Since ® is right but not left exact, the category of left C-comodules does not
admit kernels in general; it is abelian if C is a flat R-module. There is an
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analogous category of right C-comodules. For a right C-comodule (M, 1) and
a left C-comodule (N, v), define the cotensor product MO¢N to be the ker-
nel of

nw®id—id®v: MN - M® CQ N.

The functor Ois left exact with respect to sequences of left or right C-comodules
that are split exact as sequences of R-modules (in the sense that the kernel at
each position is a direct summand).

DEFINITION 20.4.4. Given a unit n: R — C, regard R as a (left and right)
C-comodule via 1 and define

PcN = ROcN = {n|v(n) =1Qn};

PcN is called the module of C-primitive elements of N and is abbreviated PN
when there is no danger of confusion. Observe that Pc(JC) = PC.

The following definition is fundamental. For a general algebra A, the tensor
product (over R) of A-modules is an A ® A-module, but for bialgebras we can
internalize this structure by pullback along .

DEFINITION 2045. Let(A, ¢, ¥, n, ¢) be abialgebra. For left A-modules (N, &)
and (N’,&’), the following composite defines a left A-module structure on
N®N'.

(id ®y®id)(y®id) EQE
AQIN®N’ AQINQRAQN — NN’

An A-structure (module, coalgebra, algebra, bialgebra, Hopf algebra, etc.) is
an A-module and a structure of the specified type such that all the maps that
define the structure are morphisms of A-modules. Dually, for left A-comodules
(N, v)and (N’, V'), the following composite defines a left A-comodule structure
on N@N'.

vV (p®id)(id @y ®id)
NN — AQNQRAQN AQN®N

The dual notion of an A-comodule and a structure whose structural maps are
morphisms of A-comodules will be referred to as an A-comodule structure.

LEMMA 20.4.6. Let A be an algebra and N be an R-module, both projective of finite
type.
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(1) (N, ) isaleft A-module if and only if (N*, £*) is a left A*-comodule and then,
if QN is also projective of finite type, (QN)* = P(N*).

(it) If A is a bialgebra, then N is a left A-structure if and only if N* is a left
A*-comodule structure of the dual type.

LEMMA 20.4.7. Let A be a bialgebra and C be a left A-coalgebra. Then QaC admits
a unique structure of coalgebra such that the natural epimorphism 7 : C — QaC
is a morphism of coalgebras.

PROOF. The augmentation of Q4C = R®4 C is the map
id®e: R®aC— R®AR=R
and the coproduct is the composite of
id®y : R®sC — RRA(CRCQ)
and the natural map R®4 (C® C) » (R®4 C)® (R®4 C). O

Note that any bialgebra C that contains A as a subbialgebra is certainly a
left A-coalgebra.

LEMMA 20.4.8. Let A be a bialgebra and B be a left A-comodule algebra. Then
P4 B admits a unique structure of algebra such that the natural monomorphism
t: PAB — B is a morphism of algebras.

DEFINITION 20.4.9. Amorphism f : A — Bofaugmented algebras is said to
be normal if the images of the composites

feid ) id ®f ®
IAQ B — B®B —— B and B®IA — B®B —— B

are equal and if the quotient map = : B — B//f is a split epimorphism, where
B//f is defined to be the R-module

QuB=R®sB=B/IA-B=DB/B-IA=B®4R.
When f is an inclusion, B//f is generally written B//A. Clearly B//f ad-

mits a unique structure of augmented algebra such that 7 is a morphism of
augmented algebras, and the following is an exact sequence of R-modules.
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of or
QA QB Q(B//f) —= 0

DEFINITION 20.4.10. A morphism g: B — C of unital coalgebras is said to
be conormal if the kernels of the composites

v g®id ¥ id ®g

are equal and if the inclusion ¢ : B\\g — B is a split monomorphism, where
B\\g is defined to be the R-module

PcB = ROcB = ker (g®id)y = ker (id ®g)y = BOcR.
When g is an epimorphism, B\\g is generally written B\\C. Clearly B\\g

admits a unique structure of unital coalgebra such that ¢ is a morphism of
unital coalgebras, and the following is an exact sequence of R-modules

P Pg
0 —— P(B\\g) PB PC.

When R is a field, any morphism of commutative augmented algebras is
normal and any morphism of cocommutative unital coalgebras is conormal.

REMARK 20.4.11. Letf : A — B be a morphism of bialgebras. If f is normal,
then B//f is a quotient bialgebra of B by Lemma 20.4.7. If f is conormal, then
A\\f is a subbialgebra of A by Lemma 20.4.8. The first assertion generalizes.
A two-sided ideal | C IB is said to be a Hopf ideal if

V() CB®J+]®B,

and then B/J (if flat) is a quotient bialgebra of B.

We emphasize that the previous few definitions and results work equally
well if bialgebras are replaced by Hopf algebras everywhere.
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CONNECTED AND COMPONENT
HOPF ALGEBRAS

An R-module A such that A; = 0fori < 0 (as we have tacitly assumed through-
out) and Ag = Ris said to be connected. Note that a connected algebra admits
a unique augmentation and a connected coalgebra admits a unique unit.
We shall see in §21.3 that a connected bialgebra always admits a unique
antipode. Except in §21.3, we therefore follow the literature of algebraic
topology and only use the term “Hopf algebra” in this chapter, since there
is no real difference between the notions when A is connected. Connected
structures arise ubiquitously in topology and have many special properties.
For example, the homology of a connected homotopy associative H-space
X is a connected Hopf algebra. The homology of nonconnected but grou-
plike (o(X) is a group) homotopy associative H-spaces leads to the more
general notion of a component Hopf algebra. When concentrated in degree
zero, these are just the classical group algebras R[G]. These too have unique
antipodes.

We prove basic theorems on the splitting of connected algebras and coal-
gebras over a connected Hopf algebra in §21.2, and we prove the self-duality
of free commutative and cocommutative connected Hopf algebras on a single
generator in §21.4. To illustrate the power of these beautiful but elementary
algebraic results, we show how they can be used to prove Thom’s calculation
of unoriented cobordism and Bott’s periodicity theorem for BU in §21.5 and
§21.6.

21.1. Connected algebras, coalgebras, and Hopf algebras

We here prove various special properties that hold in the connected case but
do not hold in general. However, they generally do apply to bigraded objects
that are connected to the eyes of one of the gradings, and such structures can
arise from filtrations of objects that are not connected.

432
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LEMMA 21.1.1. Let A be a connected coprimitive quasi-Hopf algebra. Then A is
associative and commutative. If the characteristic of R is a prime p, then the p™
power operation & (defined only on even degree elements of A if p > 2) is identically
zero on IA.

PROOF. Write a(x,y, 2) = x(yz) — (xy)z and [x,y] = xy — (— 1)9e8~¥de8yyy If
x, y, and z are primitive elements of IA, then a(x,y,2), [x,y], and &(x) are
also primitive by direct calculation from Lemma 20.2.6 and the fact that the
coproduct is a map of algebras. Since these elements obviously map to zero
in QA, they must be zero. Now proceed by induction on q = deg x, for fixed g
by induction on r = degy, and for fixed g and r by induction on s = deg z. By
calculation from the induction hypothesis at each stage, we find that a(x, y, 2),
[x,y], and & (x) are primitive and therefore zero. Here we prove commutativity
before handling p™ powers so as to ensure that (x 4 y)? = x? 4. O

A Priifer ring is an integral domain all of whose ideals are flat. A Noetherian
Priifer ring is a Dedekind ring. Recall that we require Hopf algebras to be flat
R-modules.

LEMMA 21.1.2. A connected Hopf algebra A over a Prufer ring R is the colimit of
its Hopf subalgebras of finite type.

PROOF. Since Ris Priifer, every submodule of the flat R-module A is flat. Any
element of A lies in a finitely generated subalgebra B, and B is clearly of finite
type. An inductive argument based on the form of ¥ (x) given in Lemma 20.2.6
shows that the smallest Hopf subalgebra of A that contains B is also finitely
generated. |

PROPOSITION 21.1.3. If f : A — Bisa morphism of augmented algebras, where
B is connected, then f is an epimorphism if and only if Q f is an epimorphism.

PROOF. Certainly Q f is an epimorphism if f is. Suppose that Q f is an
epimorphism. By application of the five lemma to the commutative diagram

with exact rows

IA®IA 1A QA 0

RN

IB® IB IB OB 0
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we see by induction on n that f is an epimorphism in degree n for all n since
f is trivially an epimorphism in degree 0 by the connectivity of B. O

PROPOSITION 21.1.4. If f : A — B is a morphism of R-flat unital coalgebras,
where A is connected, then f is a monomorphism if and only if Pf : PA — PBisa
monomorphism.

PROOF. The argument is dual to that just given. The flatness hypothesis
ensures that f ® f : JA®Q JA — JB® JB is a monomorphism in degree n if
f is a monomorphism in degrees less than n. O

The following result is a version of “Nakayama’s lemma”. It and its dual
are used constantly in algebraic topology.

LEMMA 21.1.5. If A is a connected algebra and N is a left A-module, then N = 0
ifand only if ON = 0.

prRoOF. Clearly QN = 0 if and only if JA® N — N is an epimorphism, and
this implies that N is zero by induction on degrees. O

LEMMA 21.1.6. If A is a connected algebra and f : N — N’ is a morphism of
left A-modules, then f is an epimorphism if and only if Q f : ON — QN is an
epimorphism.

pROOF. The functor Q is right exact, hence Q cokerf = 0 and therefore
coker f = 0if Q f is an epimorphism. O
The duals of the previous two results read as follows.

LEMMA 21.1.7. If C is a connected coalgebra and N is a left C-comodule, then
N = 0 ifand only if PN = 0.

LEMMA 21.18. If C is an R-flat connected coalgebra and f : N — N’ is a mor-
phism of left C-comodules, then f is a monomorphism if and only if Pf is a
monomorphism.
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21.2. Splitting theorems

Here we prove the basic results of Milnor and Moore [104] on tensor prod-
uct decompositions of connected Hopf algebras. These play a key role in
many calculations, for example, in the calculation of the cobordism rings of
manifolds.

THEOREM 21.2.1. Let A be a connected Hopf algebra and B be a connected left
A-coalgebra. Write QB = QaB and assume that the quotient map 7w : B — QB
is a split epimorphism. Define +: A — B by (a) = an(l) and assume that
1®id : AQ OB — B® QB is a monomorphism. Then there is an isomorphism
f: B— A® QB that is a map of both left A-modules and right QB-comodules.

PROOF. Since 7 is a split epimorphism, we can choose a map of R-modules
o : QB — B such that mo =1id. Let g : A® OB — B be the induced map of
left A-modules. Since Qg : QB = Q(A® QB) — QBis the identity, g is an epi-
morphism by Lemma 21.1.6. We have the following composite of morphisms
of A-modules.

g 14 id ®@m
h:AQ QB ——= B ——> B®B —— B®OQB

Here A acts through ¢ : A — Ron QB and acts diagonally on the tensor prod-
ucts. We claim that h is a monomorphism, so that g is a monomorphism and
therefore an isomorphism. Filter A® QB by the degrees of elements of QB,

Fy(A® QB) =Y A®Q;B.
i<p

The associated bigraded module of A ® QB satisfies
Epg(A® OB) = A;® Q,B.

Filter B® QB similarly. Since h is a morphism of A-modules and is clearly
filtration-preserving when restricted to QB, it is filtration-preserving. Since
7(an) = 0 unless deg (a) = 0, we see that E°h = (®id and thus E%h is a
monomorphism by hypothesis. By Proposition 20.1.1, it follows that h is a
monomorphism, as claimed. Now observe thatg(a ® n(1)) = ¢(a) fora € Aand
thus (id®e)g~ 't =id: A — A, & : QB — R. Define f to be the composite

v id@r g 'wid id ®e®id
B —— B®B ——= B®OB —— AQ®QOB®QOB ——= AR OQB.
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Clearly f is a morphism of left A-modules and right QB-comodules. Recall
the filtration on A® QB. Inspection shows that fg: AQ OB — A® OB is
filtration-preserving and that

E'(fg) = ([d ®e)g @m0 = id.

Therefore, by Proposition 20.1.1, fg is an isomorphism, hence so is f. O

Note that, in the hypotheses, ¢ ® id will be a monomorphism if ¢ is a mono-
morphism and QB is flat. Since a direct summand of a flat module is flat, the
assumption on & implies that QB is flat if B is flat. Of course, when R is a
field, as is the case in most applications, the only assumption is that: : A — B
be a monomorphism.

The dual result reads as follows.

THEOREM 21.22. Let C be a connected Hopf algebra and B be a connected left
C-comodule algebra. Write PB = Pc B and assume that the inclusion « : PB — B
is a split monomorphism. Define w : B— C to be the composite of the co-
action v:B— C®B and idQe:C®B— C and assume that
7 ®id : B PB— CQ PB is an epimorphism. Then there is an isomorphism
g : C® PB — Bthatis a map of both left C-comodules and right PB-modules.

When R is a field, the only assumption is that 7 : B— C be an epimor-
phism.

These results are frequently applied to morphisms of Hopf algebras. Recall
Definitions 20.4.9 and 20.4.10.

THEOREM 21.23. Lett: A — Bandn : B— C be morphisms of connected Hopf
algebras. The following are equivalent.

(i) tis a normal monomorphism, C = B//A, and 7t is the quotient map.
(ii) 7 is a conormal epimorphism, A = B\\C, and ¢ is the inclusion.
(iii) There is an isomorphism f :AQ C — B of left A-modules and right
C-comodules and an isomorphism g : C® A — B of right A-modules and
left C-comodules.

When (i)—(iii) hold,

fliden) =t=gn®id), (¢®id)f ' =r = (id®sg ",
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and the following is a commutative diagram with exact rows.

Py Pr
0 PA PB PC
QA QB QC 0
Q Qr

PROOF. Clearly (i) implies (iii) by Theorem 21.2.1 and symmetry; similarly,
(ii) implies (iii) by Theorem 21.2.2 and symmetry. When (iii) holds, the descrip-
tions of ¢« and x in terms of f and g follow from the module and comodule
morphism properties of f and g, and (i) and (ii) follow by inspection. The
diagram is obvious. O

COROLLARY 21.24. Let A— B and B — C be normal monomorphisms of con-
nected Hopf algebras. Then B — C induces a normal monomorphism of connected
Hopf algebras B//A — C//A, and (C//A)//(B//A) is isomorphic to C//B.

prROOF. C= B®C//B, hence C//A= B//A® C//B, and the conclusions
follow. n

COROLLARY 21.25. Let A— B and B — C be conormal epimorphisms of con-
nected Hopf algebras. Then A — B induces a conormal epimorphism of connected
Hopf algebras A\\C — B\\C, and (A\\C)\\(B\\C) is isomorphic to A\\B.

21.3. Component coalgebras and the existence of antipodes

To prove the existence and develop the properties of x on a bialgebra A,
we need to make some hypothesis. However, the usual hypothesis in alge-
braic topology, connectivity, is too restrictive for many applications. We give a
more general hypothesis, but still geared toward the applications in algebraic

topology.
DEFINITION 21.3.1. We define grouplike algebras and component coalge-
bras.

(i) Anaugmented algebra A is said to be grouplike if the set 71 (1) of degree
0 elements is a group under the product of A.
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(ii) Let C be a coalgebra such that Cy is R-free and define

nC={glY(g) =g®gandg # 0} C Co.

For g € nC, g = ¢(g)g by the counit property and thus ¢(g) = 1 since
Co is assumed to be R-free. Define the component C, of g by letting
Cy = Rg® C,, where the R-module Cg of positive degree elements of
Cg is

x|y (x) = x®g+2x/®x”+g®x, degx’ > 0 and degx” > 0}.

(iii) Say that C is a component coalgebra if Cp is R-free, each C, is a sub-
coalgebra of C, and C is the direct sum of the C,.

If Cis unital then it has a privileged component, namely C;. Note that prim-
itivity becomes a less general notion in component coalgebras than intuition
might suggest: elements x with ¥ (x) = x ® g + g ® x, g # 1, are not primitive
according to Definition 20.2.5.

If X is a based space, then H,(X; R), if R-flat, is a unital component coalge-
bra. Similarly, H,(QX; R), if R-flat, is a grouplike component Hopf algebra; it
is connected if and only if X is simply connected.

Now recall Construction 20.3.5. We implement the idea at the end of §20.3.

LEMMA 213.2. If C is a unital component coalgebra and A is a grouplike aug-
mented algebra, then G(C, A) is a group under the convolution product .

PROOF. Letf € G(C, A). We must construct f ~!. Define f (g) = f(g) " for
g € 7C and extend f ~! to all of Cy by R-linearity. Proceeding by induction on
degrees, define f ~1(x) for x € Cg by

7 ==fe) ' f@f ) =D _flg) ) ),

where ¥ (x) =x Qg+ > ¥ @x" +g®x, degx > 0 and degx” > 0. Extend
f~!to C by Rlinearity. Then f % f ! = ne by direct inductive calculation. Of
course, since every f has a right inverse, f ! x f = ne follows formally. O

PROPOSITION 21.3.3. Let A be a grouplike component bialgebra. Then A admits
a (unique) antipode x, so that

P(id@x)y = ne = ¢(x ®id )y
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Further, the following two diagrams are commutative.

14 1% 1% ¢
A — ARA — ARA and ARA — ARA — A
A ARA ARA A.
14 ¢

Moreover, if A is either commutative or cocommutative, then x% = x o x = id.

PROOF. The first statement is immediate from Lemma 21.3.2. For the
first diagram, we claim that both ¥ x and (x ® x)y¥ are the inverse of
¥ : A— A® Ain the group G(A, A® A). Indeed, we have

Yxyx = (@ Q) (idQy ®id) (¥ @Y x)¥ = ¥o(id ®@x)¥ = ¥ne = ne

by the very definition of a bialgebra. Since x isnaturalandy : AQ A > AQ A
is an automorphism of Hopf algebras, (x ® x)y = ¥ (x ® x). Thus

U (x®@x)y¥ = (#®4¢)(id®y ®id)[¥ @y (x @ x)¥)¥
= (p®¢)(id®y ®id)(ild®id®y)(ld®id®) ® Xx)(¥ ®¥)¥
= (¢ ®id)(id®y)(i[d®¢ ®id)(Id ®id®x ® x)(id QY ®id ) (¥ ®id )y
= (p®id)(id®y)(id ®@ne ® x)(¥ ®id )y
= (¢ ®id)(id ®@x @ ne)(¥ ®@id )y
= (ne @ ne)y = ne.
The proof of the second diagram is dual. Finally, to show that x? =1id, it

suffices to show that x 2 is the inverse of x in the group G(A, A). If Ais commu-
tative, the second diagram in the statement gives

KX =P 0¥ = d(x @ x)(x ®id)Y = xdy (x ®id)¥ = xne = e
The proof that x? = id when A is cocommutative is dual. O
Note that the second diagram of the statement asserts that x is a graded

involution. In the connected case, an easy induction gives the following explicit
formula for the antipode. If degx > Oand Y (x) = x®@1+ ) ¥ @x" +1®x,



440 / CONNECTED AND COMPONENT HOPF ALGEBRAS

degx’ > 0 and degx”>0, then

2134 X)) =—x=>_ «'x(x

21.4. Self-dual Hopf algebras

The homology Hopf algebras H,(BU;Z) and H,(BO; ;) enjoy a very special
property: they are self-dual, so that they are isomorphic to the cohomology
Hopf algebras H*(BU;Z) and H*(BO;F;). The proof of this basic result is
purely algebraic and explicitly determines the homology Hopf algebras from
the cohomology Hopf algebras (or vice versa if one calculates in the opposite
order). We assume that the reader knows that the cohomology Hopf algebras
are given by

2141 H*(BU;Z) = Plc; | i = 1} with v(c) = Y ¢®g

i+j=n
and
2142 H*(BO;Fy) = Plw; | i > 1} with y(wa) = Y wi@w.
i+j=n

The calculations of H*(BU(n); Z) and H*(BO(n); F,) are summarized in [93,
pp- 187, 195], and passage to colimits over n gives the stated conclusions.
Thus determination of the homology algebras is a purely algebraic problem
in dualization.!

Recall that the dual coalgebra of a polynomial algebra P[x] over R is written
I'[x]; when P[x] is regarded as a Hopf algebra with x primitive, I'[«x] is called
a divided polynomial Hopf algebra.

Clearly H*(BU(1); Z) = P[ci1]and H*(BO(1); F,) = P[w;] are quotientalge-
bras of H*(BU;Z) and H*(BO;F,). Write H,(BU(1); Z) = I'[y1]; it has basis
{y; | i = 0} and coproduct ¥ (yn) = Ziﬂ-:n ¥i ® ¥j, where yp = 1and y; is dual
to cj. Write Hy(BO(1); F2) = I'[y1] similarly. The inclusions BU(1) — BU
and BO(1) — BO induce identifications of these homologies with subcoal-
gebras of Hy(BU;Z) and H,(BO;F;), and we prove that these subcoalgebras
freely generate the respective homology algebras.

THEOREM 21.43. H,(BU;Z) = P{y; | i > 1}, where y; € H(BU(1); Z) is dual
to ci. The basis {p;} for the primitive elements of H.(BU; Z) such that (c;, p;) = 1

1. We thank John Rognes, who texed this section from the first author’s notes in 1996.
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is specified inductively by

i-1
p=n and p;=(—1)"Tiy+ Z(— 1)’+1)/jp,'_j fori> 0.
j=1

This recursion formula is generally ascribed to Newton, of course in a
different but related context, although the following explicit evaluation was
known even earlier (to Girard, in a 1629 paper).

REMARK 21.4.4. An explicit formula for p; is given by

|E|
Z( |E|+1 )‘ JE
el

Here the sum is taken over all sequences E = (e1,...,e) with g; > 0 and
Ygeg =1 |El =Y egand yE =y

THEOREM 21.45. Hy(BO;Fy) = P{y; | i > 1}, wherey; € H(BO(1); F3) isdual
to wi. The nonzero primitive elements of H.(BO; F,) are specified inductively by

i1
pr=y1 and p;= i)/i+Z)/jpi_j fori> 0.
j=1

Comparison of these theorems to (21.4.1) and (21.4.2) shows that
H*(BU; Z) and H*(BO; F,) are self—dual; that is, they are isomorphic as Hopf
algebras to their own duals. Following Moore [108], we shall carry out the
proofs by considering self-duality for certain general types of Hopf algebras.

We work in the category of connected free R-modules X of finite type, so
that X; = 0 for i < 0 and Xy = R. Throughout the discussion, all algebras are
to be commutative and all coalgebras are to be cocommutative. Thus all Hopf
algebras are to be commutative and cocommutative.

DEFINITION 21.46. We define some universal Hopf algebras.

(i) A universal enveloping Hopf algebra of a coalgebra C is a Hopf algebra
LC together with a morphism i: C — LC of coalgebras that is universal
with respect to maps of coalgebras f : C — B, where Bis a Hopfalgebra.
That is, any such f factors uniquely as f o1 for a morphism f :LC— B
of Hopf algebras.
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(ii) A universal covering Hopf algebra of an algebra A is a Hopf algebra MA
together with a morphism p: MA — A of algebras that is universal with
respect to maps of algebras f : B —> A, where B is a Hopf algebra. That
is, any such f factors uniquely as po f for a morphism f : B—> MAof
Hopf algebras.

LEMMA 21.47. Universal Hopf algebras exist and are unique. That is,

(i) any coalgebra C admits a universal enveloping Hopf algebra i: C — LC;
(ii) any algebra A admits a universal covering Hopf algebra p: MA — A.

PROOF. Of course, uniqueness up to isomorphism follows from universal-
ity. For (i), we have C = R@® JC, where JC is the module of positive degree
elements of C. As an algebra, we take LC = A(JC), the free (graded) com-
mutative algebra generated by JC. Let i: C —> LC be the natural inclusion
JC — LC in positive degrees and the identity map id of R in degree zero. If
¥ is the coproduct of C, the coproduct of LC is defined to be the unique map
of algebras ¥ : LC — LC ® LC that makes the following diagram commute:

v
C — C®C

ii | o

ILC — LCQ®ILC.
1

That ¢ defines a coalgebra and thus a Hopf algebra structure on LC and that
i: C — LC is universal follow directly from the universal property of LC
as an algebra. For (ii), since all modules are taken to be free of finite type,
p: MA — A can be specified as i*: (L(A*))* — A™ = A. O

REMARK 21.48. Similar constructions may be obtained when we omit some
or all of the commutativity hypotheses. We can define universal enveloping
commutative Hopf algebras for arbitrary coalgebras and universal covering
cocommutative Hopf algebras for arbitrary algebras. These will coincide with
our present constructions under our hypotheses. The universal enveloping
noncommutative Hopf algebra is of course a quite different construction.

We shall shortly require a pair of dual lemmas, for which we need some
notations. For an R-module X, let X" denote the n-fold tensor product of X
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with itself. With the usual sign (— 1)9¢8*48Y inserted when x is permuted
past y, the symmetric group X, acts on X". If X is an algebra or coalgebra,
then so is X", and X, acts as a group of automorphisms. Let ¥, act trivially
on LC and MA.

LEMMA 21.49. Let C be a coalgebra. For n > 0, define 1,: C* —> LC to be the
composite of i": C" — (LC)" and the iterated product ¢: (LC)" — LC. Then
tn is @ morphism of both %,-modules and coalgebras. If Cy = 0 for 0 < g < m,
then v, is an epimorphism in degrees g < mn.

PROOF. The first statement is immediate from the definitions and the sec-
ond statement follows from the fact that the image of ¢, is the span of the
monomials in C of length at most n. a

LEMMA 21.4.10. Let A be an algebra. For n > 0, define w,: MA —> A" to be the
composite of the iterated coproduct ¥ : MA —> (MA)" and p": (MA)" — A".
Then 1y, is a morphism of both X,-modules and algebras. If Ay = 0 for0 < g < m,
then v, is a monomorphism in degrees q < mn.

PROOF. This follows by dualizing the previous lemma. O

DEFINITION 21.411. Let X be a positively graded R-module, so that X; = 0
fori < 0. Define LX = L(R@® X), where R@® X is R in degree zero and has the
trivial coalgebra structure, in which every element of X is primitive. Define
MX = M(R® X), where R@® X has the trivial algebra structure, in which the
product of any two elements of X is zero. There is a natural morphism of Hopf
algebras A: LMX — MLX, which is defined in two equivalent ways. Indeed,
consider the following diagram:

LMX MLX

MX — R®&X —— IX.
r i

Define u to be A(p): AJMX) — A(X), which is the unique morphism of
algebras that extends iop, and then obtain A by the universal property of
p: MLX — LX. Define v to be the dual of A(i*): A((JLX)*) — A(X™), so that
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v is the unique morphism of coalgebras that covers i o p, and obtain A by the
universal propertyofi: MX —> LMX. To see that the two definitions coincide,
note that if A is defined by the first property, then A o i = v by uniqueness and
so A also satisfies the second property.

Observe that (R @ X)* may be identified with R @ X*. Since MA = (L(A*))*,
it follows that

MX = M(R®X) = (L(R® X*))* = (L(X*))".
In turn, with A = L(X*), this implies
ML(X*) = MA = (L(A"))" = (L(L(X"))")* = (LMX)".

If X is R-free on a given basis, then the isomorphism X = X* determined by
use of the dual basis induces an isomorphism of Hopf algebras

B: MLX = ML(X*) = (LMX)*.

When A: LMX — MLX is an isomorphism, it follows that LMX is self-dual.
While A is not always an isomorphism, it is so in the cases of greatest topo-
logical interest. We now regard i: C — LC as an inclusion, omitting i from
the notation. Write (—, —) for the usual pairing between a free R-module and
its dual.

THEOREM 21.412. Let X be free on one generator x of degree m, where either m
is even or R has characteristic two. Then A: LMX —> MLX is an isomorphism.
Moreover if

¢ =yx) ellx]=MX and y, = (Bol)(s) € (LMX),
then y; is the basis element dual to ci' and the basis {p;} for the primitive elements
of (LMX)* such that {c;, p;) = 1 is specified inductively by

i-1
pr=n and p=(=1)"iy+d (=1 yp fori>o.
=1

Here LMX = P{c; |i> 1} with ¥ (cu) = Zi+j:n c;®c;, where cop=1.
When R = Z and m = 2, LMX may be identified with H*(BU; Z) and (LMX)*
may be identified with H,(BU;Z). Thus this result immediately implies
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Theorem 21.4.3. Similarly, with R = F, and m = 1, itimplies Theorem 21.4.5.
The rest of the section is devoted to the proof.

PROOF. Note that LX = P[x] and write P[x]" = P[x1,...,%x,], where
%=1 -®1xR®1®:--®1 with x in the ith position. Let o1, ..., 0y, be
the elementary symmetric functions in the x;. Consider m,A: LMX — P[x]",
where 7w, = p": MP[x] —> P[x]" is as specified in Lemma 21.4.10. From
the diagram that defines A, we see that pA: LMX — P[x] is given on
generators by

x ifj=1

pic; = ipc; =
7o ifj> 1.

Since A is a morphism of Hopf algebras, it follows that

o; ifj<n

uhg =G =p" A=) | Y we-ea |={7 7
i1+ Fin =] 0 lf_] > n.
Since LMX = P[¢;], the map m,A: Pl¢;] —> Ploy, ..., oy] is an isomorphism
in degrees q < mn. By Lemma 21.4.10, m,, also takes values in P[oy, ..., 0]

and is a monomorphism in degrees q < mn. Therefore 7, and A are both
isomorphisms in degrees q < mn. Since n is arbitrary, this proves that A is an
isomorphism.

To see the duality properties of the y;, consider the map v: I'[x] — MP[x]
in the diagram defining 1. Here vis dualto A(i*): A(JT[x*]) — P[x*], where
x* is the basis element of X* dual to x, and i* maps y; (¥*) to x* and annihilates
¥i(x*) for i > 1. Since ¢; = y;(x) is dual to (x*)!, v(c;) is dual to y;(x*)}, and
thus nv(c;) = y; is dual to ci'.

Since the primitive elements of (LMX)* are dual to the indecomposable
elements of LMX, they are free on one generator dual to ¢; in each degree
mi. We shall prove inductively that this generator is p;, the case i = 1 having

been handled above. Consider the term Yipi—j, 1 < j <i—1, in the iterative

_j,
expression for p;. Let cf be a monomial in the ¢, so that E = (ey, ..., e,) and

cE= ¢i' -+ ¢ Then

(E, yipig) = (WeE, v @ pig) = (Wb, (&) @t )

by the induction hypothesis and the calculation above. Consideration of the

. i i—1
E is either c’lci,j or c]1 Ci—j+1, when

form of ycF shows that this is zero unless ¢
it is one in all cases except the case (ci, Yi_1p1) = i. It follows that (cE, p;) = 0
except for the case (c;, p;) = 1. An alternative argument is to verify inductively

that each p; is in fact primitive and then check that (c;, p;) = 1. O
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21.5. The homotopy groups of MO and other Thom spectra

In [93, Ch. 25], we explained Thom’s classical computation of the real cobor-
dism of smooth manifolds. In fact, the exposition there was something of a
cheat. Knowing the splitting theorems of §21.2 and the self-duality theorem of
§21.4, the senior author simply transcribed the first and quoted the second to
give the main points of the calculation. That obscures the conceptual simplicity
of the idea and its implementation. We explain in this section how the general
theory applies. A punch line, explained at the end of the section, is that the
conceptual argument applies to much more sophisticated cobordism theories,
where the actual calculations are far more difficult. We take all homology and
cohomology with coefficients in IF; in this section.

Recall the description of the Hopf algebra H*(BO) from (21.4.2). The struc-
ture of the dual Hopf algebra H,(BO) is given in Theorem 21.4.5. To conform
to the notation of [93, Ch. 25], write y; = b;. It is the image in H,(BO) of
the nonzero class x; € H,(RP*°). Thus H,(BO) is the polynomial algebra on
the b;, and ¥ (by) = Zi+j=k b;® bj.

The Thom prespectrum TO and its associated Thom spectrum MO are
described in [93, pp. 216, 229], but we are not much concerned with
the foundations of stable homotopy theory here. The ring structure on
TO gives its homology an algebra structure, and the Thom isomorphism
®: H,(TO) —> H,(BO) is an isomorphism of algebras [93, p. 221]. Write
a; = ®~1(b;). The Thom space TO(1) of the universal line bundle is equivalent
to RP* and, with ag = 1, g; is the image of x; 1 in H,(TO).

Let A be the mod 2 Steenrod algebra and A, be its dual. Then A acts on
the cohomology of spaces, prespectra, and spectra, and the action of A on the
cohomology of a ring prespectrum T dualizes to give H,(T) a structure of left
A-comodule algebra, as in Theorem 21.2.2. The composite

7 = (id®e)v: Hy(TO) — A, ® Hy(TO) —> A,

is computed on [93, p. 224]. The computation just translates the easy compu-
tation of the action of A on H*(RP) to a formula for the coaction of A,. As an
algebra, A, is a polynomial algebra on certain generators &, of degree 2" — 1,
and 7 (apr—1) = &. Thus = is an epimorphism.

By Theorem 21.2.2, this implies that there is an isomorphism

A, ® Pa, (H,(TO)) = H,(TO)

of left A -comodules and right P4, (H«(TO))-modules. Since we know that A,
and H,(TO) are polynomial algebras such that the generators of A, map to
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some of the generators of H,(TO), it is clear that Pa, (H«(TO)) = N, must
be a polynomial algebra on (abstract) generators u; of degree i, where i > 1
and i # 2" — 1. Dually H*(TO) = H*(MO) is isomorphic as an A-module to
A® N*. Asexplained informallyin [93, §25.7], this implies that MOis a product
of suspensions of Eilenberg-Mac Lane spectrum HF; and that 7, (MO) = N,
as an algebra. This gives the now standard way of obtaining Thom’s calculation
[137] of 7, (MO).

The theorem applies to unoriented smooth manifolds, but one might con-
sider less structured manifolds, such as piecewise-linear (PL) or topological
manifolds. Focusing on PL manifolds for definiteness, which makes sense
since the theory of PL manifolds was designed to get around the lack of
obvious transversality in the theory of topological manifolds, one can adapt
Thom’s theorem to prove geometrically that the PL-cobordism groups are iso-
morphic to the homotopy groups of a Thom prespectrum TPL. By neglect of
structure, we obtain a map of Thom prespectra TO —> TPL. We have the
same formal structure on TPL as we have on TO, and we have a commutative
diagram

H,(TO) H,(TPL)

Even without any calculational knowledge of H.(BPL) and H.(TPL), we
conclude that 7 on the right must also be an epimorphism.
Therefore, as a matter of algebra, Theorem 21.2.2 gives us an isomorphism

A, ® Pa, (H4(TPL)) = H,(TPL)

of left A,-comodules and right P4, H,(TPL)-algebras. Here again, the Thom
isomorphism &: H,(TPL) — H,(BPL) is an isomorphism of algebras.
Therefore, if we can compute H,(BPL) as an algebra, then we can read
off what P4, (H«(TPL)) must be as an algebra. The same formal argument
as for MO shows that MPL is a product of suspensions of HF, and that
7+(MPL) = Pa,(H,(TPL)) as algebras. In fact, this argument was understood
and explained in [22] well before H,(BPL) was determined. The calculation of
H,(BPL;Fy) at all primes p is described in [81, 31], but that is another story.?

2. It is part of the 1970s story of infinite loop space theory and Ey, ring spectra; see [90] for a
1970s overview and [96] for a modernized perspective.
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In any case, this sketch should give some idea of the algebraic power of the
splitting theorems in §21.2.

21.6. A proof of the Bott periodicity theorem

The self-duality of H*(BU) described in (21.4.1) and Theorem 21.4.3 also plays
a central role in a quick proof of (complex) Bott periodicity. We describe how
that works in this section. As discussed briefly in [93, §24.2], the essential point
is to prove the following result. Homology and cohomology are to be taken
with coefficients in Z in this section.

THEOREM 21.6.1. Thereisa map B: BU — QSU of H-spaces that induces an
isomorphism on homology.

It follows from the dual Whitehead theorem that 8 must be an equivalence.

We begin by defining the Bott map g, following Bott[14]. Write U(V) for the
compact Lie group of unitary transformations V — V on a complex vector
space V with a given Hermitian product. If V is of countable dimension,
let U(V) denote the colimit of the U(W) where W runs through the finite
dimensional subspaces of V with their induced Hermitian products. Fixing
the standard inclusions C" — C*, we specify BU = U/U x U to be the
colimit of the Grassmannians U(2n)/U(n) x U(n). We let U be the colimit of
the U(2n) and SU be its subgroup colim SU(2n) of unitary transformations
with determinant one. For convenience, we write V = C* and let V" denote
the direct sum of n copies of V.

It is also convenient to use paths and loops of length 7. Taking 0 < 6 <,
define v(9) € U(V?) by

v(0)(Z,2") = (€92, e72").
Note that v(0) is multiplication by 1, v(x) is multiplication by —1, and
v(0)~! = v(—6). Define
B: U(C™® ®C™) — QSU(C™ & C™)
by letting
BT)(6) = [T,v(0)] = Tv(®)T "v(—0),
where T € U(V?). Clearly [T, v(#)] has determinant one and B(T) is a loop

at the identity element ¢ of the group SU(V?). Moreover, since v(d) is just
a scalar multiplication on each summand V, if T = T' x T” € U(V) x U(V),
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then B(T)(0) = e. Therefore B passes to orbits to give a well-defined map
B:BU=U/Ux U — QSU.

To define the H-space structure on BU, choose a linear isometric
isomorphism & : V2 — V and let the product T; T, be the composite

E1? T80T, id®yoid g2
\Z V4 V4 V4 V2,

where y: V2 — V2 interchanges the two summands. Up to homotopy, the
product is independent of the choice of &. The H-space structure we use
on QSU is the pointwise product, (w1wz)(0) = w1(0)w2(0). We leave it as an
exercise to verify that 8 is an H-map.}

Let {e;} and {¢}} denote the standard bases of two copies of V and let C and
CJ, respectively, be spanned by the first n vectors in each of these bases. Let

j: U(C}®C3) — UCT @ CYh)
be the inclusion. Restrictions of B give a commutative diagram

o

CP" = U(C}®C})/UCH x U(C]) ———— QSU(C}aCl) = QSUn+1)

/| | =

B
U@n)/U(n) x U(n) = UCI&CP)/U(CY) x UC)) —— QSUC&CY) = QSU(2n).

Passing to colimits over n, we obtain the commutative diagram

o

Cp>® —— QSU

i ﬁ <] =

BU —— QSU.

The right arrow is an equivalence, as we see from a quick check of homology
or homotopy groups.

We claim that H,(Q2SU) is a polynomial algebra on generators §; of degree
2i, i > 1, and that a,: H.(CP®) — H,(QSU) is a monomorphism onto
the free abelian group spanned by suitably chosen polynomial generators ;.

3. This is also part of the 1970s infinite loop space story; details generalizing these H-space
structures and maps to the context of actions by an E,, operad may be found in [89, pp. 9-17].
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The algebra in §21.4 implies the topological statement that
Jx: He(CP*®) — H,(BU) is a monomorphism onto the free abelian group
generated by a set {y;} of polynomial generators for H,(BU), hence the claim
will complete the proof of Theorem 21.6.1.

Think of S! as the quotient of [0, 7] obtained by setting 0 = . Let

i: yCr'ecl) — ucCrec)

be the inclusion. It induces a map i: CP"~! — CP" that leads to the left
diagram below, and the right diagram is its adjoint.

21.6.2 cpr1 *a> QSU(n) scpr-1 *a> SU(n)
i l l Qi i l l i
cPr ——> QSU(n+1) TCP" . SUn+1)
P l l Qn o l l x
§2n ——> g2ntl n§m ——— g2ntl

h i

Here p: CP" —> CP"/CP""! = §?" is the quotient map and 7 (T) = T (¢,,).

LEMMA 21.6.3. The composite Qm o oi is trivial, so that Qm o« factors as the
composite hp for a map h. Moreover, the adjoint h of h is a homeomorphism.

PROOF. Let T € U(C} @ C}) represent T € CP" and let T; ' and T, ' denote
the projections of T~! on C/ and on C}. We have

(Q)a(T)(0) = Tv(O)T~'v(—6)(e,)
=Tv(O) T Y ¥e,)
= T(T{ (€)' T3 (@)
=+ (€ =TT, (),
as we see by adding and subtracting TT; *(¢],). If T(e},) = €|, so that T is in

the image of U(C}~! @ C}) and T is in the image of CP"~!, then T, ' (€}) = 0
and thus (Qn)a(T)(0) = €, for all 6. To prove that h is a homeomorphism, it
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suffices to check that it is injective. Its image will then be open by invariance
of domain and closed by the compactness of X S hence will be all of §2"+1
since $2"+1 is connected. Denote points of £X as [x,6] forx € X and 6 e SL
We have

h(Ep)IT, 0] = 7&lT,0] = (Qr)a(T)(0) = €, + (e 2% — 1)TT; (€)).

Since T~ is the conjugate transpose of T, T, '(e,) = c¢], where c is the
coefficient of ¢, in T(¢]). Here T ¢ CP"~! if and only if ¢ # 0, and then
TT, !(¢,) = €, + T'(e},), where T’ denotes the projection of T on C"~' @ C}.
Therefore

hlp(T),01 = e 20, + T'(¢))

when T ¢ CP"!. The injectivity is clear from this. a

Armed with this elementary geometry, we return to homology. The right-
most column in the second diagram of (21.6.2) is a fibration, and we use it
to compute H,(Q2SU(n + 1)) by induction on n. We have SU(2) = S3, and we
claim inductively that the cohomology Serre spectral sequence of this fibration
satisfies Ey = E. This leads to a quick proof that

Hi(SU(n+1)) = E{painall <i<nj

as a Hopf algebra, where y;;,1 has degree 2i + 1 and m.(y2n+1) is a generator
of Hap+1(S%"+1). Indeed, assume that we know this for SU(n). Then, since the
cohomology spectral sequence is multiplicative and the exterior algebra gener-
ators of H*(SU(n)) = Eg "* have degrees less than 2n, they must be permanent
cycles. Therefore F; = E. This implies that H*(SU(n+ 1)) is an exterior
algebra. Moreover, by the edge homomorphisms, i* is an isomorphism in
degrees less than 2n+ 1 and the last exterior algebra generator is 7™ (izn+1).
Inductively, the exterior generators in degrees less than 2n are primitive. Since
i is a map of topological groups, i* is a map of Hopf algebras. Since i*7* = 0,
inspection of the coproduct shows that the generator in degree 2n+ 1 must
also be primitive.

Using the Serre spectral sequence of the path space fibration over SU(n+1),
we conclude that

H,(QSUmn+1) Z P{§|1 <i<n},

where §; has degree 2i. The classical way to see this is to construct a test
multiplicative spectral sequence with

E2, = P(8|1 <i < n}® E{ypiall <i <n)
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and with differentials specified by requiring y;; ;1 to transgress to §;. This
ensures that Ex is zero except for Z = Eg. We can map the test spectral
sequence to the homology Serre spectral sequence of the path space fibration
by a map that is the identity on E& , and commutes with the transgression.
The conclusion follows by the comparison theorem, Theorem 24.6.1. The
argument shows that the polynomial generators transgress to the exterior
algebra generators and thus that the exterior algebra generators suspend to
the polynomial algebra generators. At the risk of belaboring the obvious, we
spell things out explicitly via the following commutative diagram, in which
the unlabeled isomorphisms are suspension isomorphisms.

(oY

H,,(CP") Hn(QSU(n+ 1))

IR

Hyp11(22SU(n+ 1))

Ex

H2n+1(Z(CP” ——> Hpyu+1(SU(n+1))

114

Px

14

B
Hop1(252") —— Hapy1(S?"HY)

\ e
>h

HZVH»l (E 952n+1)

Qs
(50)s l ~ o (@)

(SZn HZn(Q SZVH—I)
h*

Here ¢ denotes the evaluation map of the (X, Q) adjunction, and the suspen-
sion o is defined to be the composite of ¢, and the suspension isomorphism.
The algebra generator 8, maps to a fundamental class under m,o. By the
diagram, so does the basis element xy, € Hy,(CP"). Therefore, modulo
decomposable elements that are annihilated by o, a.(xy;) = §; as claimed.
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LIE ALGEBRAS AND HOPF ALGEBRAS
IN CHARACTERISTIC ZERO

All of the structure theorems for Hopf algebras in common use in algebraic
topology are best derived by filtration techniques from the Poincaré-Birkhoff-
Witt (PBW) theorem for graded Lie algebras and restricted Lie algebras. In this
chapter, we first introduce Lie algebras and prove the PBW theorem for their
universal enveloping algebras. We next show that primitive (= primitively gen-
erated) Hopf algebras in characteristic zero are the universal enveloping alge-
bras of their Lie algebras of primitive elements. We then use this fact to study
the algebra structure of commutative Hopf algebras in characteristic zero.

While some of these results first appeared in Milnor and Moore [104], the
most basic structure theorems go back to earlier work of Hopf, Leray, and
Borel.

22.1. Graded Lie algebras

We continue to work over a fixed commutative ring R. The following witty
definition is due to John Moore and is used in [104].

DEFINITION 22.1.1. A (graded) Lie algebra over R is a (graded) R-module L
together with a morphism of R-modules L® L — L, denoted [—, —] and called
the bracket operation, such that there exists an associative R-algebra A and a
monomorphism of R-modulesj : L — Asuchthatj([x,y]) =[jx,jylforx,y € L,
where the bracket operation in A is the (graded) commutator,

[a,b] = ab — (— 1)de8adeghpy

A morphism of Lie algebras is a morphism of R-modules that commutes with
the bracket operation.

453
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The following identities are immediate consequences of the definition. It
would be more usual to take them as the defining properties of the bracket
operation, but we shall see that for particular ground rings R the definition
can imply more relations than are listed.

LEMMA 2212, Let L be a Lie algebra andlet x € Ly, y € Ly, and z € L;. Then the
following identities hold.

(i) [x,y] = —(=1)Ply, x;

(i) [x,x] = 0 if either char R = 2 or p is even;
(iii) (=P [x, [y, 21l + (= 1)Ply, [z, %11+ (— 1)"z, [x,y]] = 0;
(iv) [x,[x%,x]] = 0 if p is odd.

Formula (iii) is called the Jacobi identity. When p is even, (i) implies
2[x,x] = 0; when p is odd, (iii) implies 3[x, [x,x]] = 0. We shall see that,
at least if R is a field, any R-module with a bracket operation satisfying these
identities can be embedded in a bracket-preserving way in an associative alge-
bra and is therefore a Lie algebra. This is not true for a general R. For instance,
[x,2x] = Oifchar R = 4is anidentity notimplied by those of the lemma (when
deg (x) is odd). Of course, for any R, any associative alegbra is a Lie algebra
under the commutator operation.

DEFINITION 22.1.3. The universal enveloping algebra of a Lie algebra L
is an associative algebra U(L) together with a morphism of Lie algebras
i: L — U(L) such that, for any morphism of Lie algebras f : L — A, where
A is an associative algebra, there exists a unique morphism of algebras
f 1 U(L) — Asuchthatfi =f.

Clearly U(L) is unique up to canonical isomorphism, if it exists.

PROPOSITION 22.1.4. Any Lie algebra L has a universal enveloping algebra U (L),
andi: L — U(L) is a monomorphism whose image generates U(L) as an algebra.
Moreover, U(L) is a primitive Hopf algebra.

PROOF. Let T(L) be the tensor algebra, or free associative algebra,
generated by L. Explicitly, T(L)=}_,.oTa(L), where To(L) =R and
To(l)=L®---®L, n factors of L, if n>0. The product in T(L) is
obtained by passage to direct sums from the evident isomorphisms
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T (L) ® Tn(L)— Timn(L). Definei : L — T(L)to be the identification of L with
T1(L). For an associative algebra A, a map of R-modules f : L — A extends
uniquely to a map of algebras f : T(L) - A. Let I be the two-sided ideal in
T(L) generated by the elements

xp— (—1)dexderyy —[x,y], x,y € L,

define U(L) = T(L)/I, and leti : L — U(L) be the evident composite. Clearly
i has the required universal property. Of course, the injectivity of i is built into
our definition of a Lie algebra, and i(L) generates U(L) since i(L) generates T (L).
By the universal property, a morphism f : L — L’ of Lie algebras induces a
unique morphism U(f) of associative algebras such that the following diagram
commutes.

f

L —— T

-, b
u(f)

ULy — U(L)

If we take L' = {0}, then U(L’) = R and we obtain an augmentation of U(L).
The product L x L of Lie algebras inherits a structure of Lie algebra, and
the algebra U(L) ® U(L’) together with the evident morphism of Lie algebras
i:Lx I — UL)® U(L),

i(x,x)=x®1+1Qx
is easily checked to satisfy the universal property that defines U(L x L’). The
diagonal A : L — L x Lis a map of Lie algebras and therefore induces a mor-

phism of algebras ¢ : U(L) — U(L) ® U(L) such that the following diagram
commutes.

L — LxL

o,

U(L) —— U(L)® U(L)

Thus U(L) is a bialgebra, and i(L) C PU(L) by the diagram, so that U(L) is
primitive. For the antipode, we have the opposite Lie algebra L°P with bracket
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[—, =1y, and x — —x defines a map of Lie algebras L — L°P. We can
identify U(L°P) as U(L)?, and then the universal property gives a map of
algebras x: U(L) — U(L)%, that is, an involution on U(L) itself. Writing
the obvious equalities [x, —x] = 0 = [—x, x] as diagrams and passing to the
corresponding diagrams induced on the level of universal enveloping algebras,
we see that yx is an antipode on U(L). O

22.2. The Poincaré-Birkhoff-Witt theorem

The Poincaré-Birkhoff-Witt theorem gives a complete description of the asso-
ciated graded Hopf algebra of U(L) with respect to a suitable filtration (under
appropriate hypotheses) and therefore gives a complete description of the
additive structure of U(L). We require a definition.

DEFINITION 222.1. LetLbeaLiealgebra. The Lie filtration of U(L)is specified
by F,U(L) = 0if p < 0, FoU(L) = R, and F,U(L) = (R@® L)? if p > 1. Clearly
U(L) = UpF, U(L), so the filtration is complete.

Provided that the Lie filtration is split or flat, so that E®(U(L) ® U(L)) is
isomorphicto E®U(L) ® E®U(L), E° U (L) inherits a structure of primitive Hopf
algebra from U(L). Since the commutator in U(L) of elements in L agrees with
the bracket operation in L and since L generates U(L), we see immediately that
EOU(L) is commutative. Clearly we have

QFE°U(L) = E} ,U(L) = L, where E) U(L) = L411.

Let L denote the underlying R-module of L regarded as an abelian Lie
algebra and write A(L) = U(L?). Then A(L) is the free commutative algebra
generated by L. Explicitly, A(L) = T(L)/]J where J is the commutator ideal.

For a filtered R-module A, write E®A for the graded R-module that is
obtained by regrading the associated bigraded R-module E°A by total degree:

EPA= ) Ej.A.
pt+q=n

If E°A is a bigraded algebra, Hopf algebra, and so on, then E®A is a graded
algebra, Hopf algebra, and so on.

By the universal property of A(L), the evident inclusion of L in E® U(L)
induces a natural map of commutative algebras f : A(L) — E® U(L).
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NOTATION 2222 If charR=2, let L™ =L and L= = {0}. If charR # 2,
let LT and L~ be the R-submodules of L concentrated in even and in odd
degrees.

The hypotheses on the characteristic of R in the next result ensure that the
identities of Lemma 22.1.2 suffice to characterize our Lie algebras, as we shall
see.

THEOREM 22.2.3 (POINCARE-BIRKHOFF-WITT). Let L bean R-free Lie algebra.
Assume that char R = 2, or that 2 is invertible in R, or that L = LT so that L is
concentrated in even degrees. Then f : A(L) — E® U(L) is an isomorphism of Hopf
algebras.

prooF. Itwill fall out of the proof that the Lie filtration of U(L) is split, so that
E® U(L)is a primitively generated Hopfalgebra, and f will preserve coproducts
since it is the identity on the R-module L of primitive generators. Of course,
f is an epimorphism since L generates E® U(L). Filter E® U(L) by filtration

F,E®U(L Z

i<p

degree,

Obviously E°E® U(L) = E°U(L). Give A(L) its Lie filtration. Clearly E°A(L) is
the free commutative bigraded algebra generated by L regarded as a bigraded
R-module via L1 4 = Lgy1. The map f is filtration preserving, and it suffices to
prove that E°f is a monomorphism.

Give T(L) the evident filtration, F,T(L) = Zn<p ), and observe that
the quotient maps 7 : T(L) — A(L) and p : T(L) — U( ) are both filtration-
preserving. Let I = ker p. We shall construct a filtration-preserving morphism
of R-moduleso : T(L) — A(L)suchthato (I) = 0Oand % = E%x. Ttwill follow
that o factors as & p for a filtration-preserving R-map & : U(L) — A(L). We will
have E% E°p = E%7 and, since E%p and E%r are epimorphisms of algebras,
E% will be a morphism of algebras. The composite

E°f E%
EOA(L) —— E'U(L) —— E°A(L)

will be the identity since it will be a morphism of algebras that restricts to the
identity on the R-module L of generators. Thus E°f will be a monomorphism
and the proof will be complete.



458 / LIE ALGEBRAS AND HOPF ALGEBRAS IN CHARACTERISTIC ZERO

To construct o, let {z;} be an R-basis for L indexed on a totally ordered set.
The set of monomials

22.2.4 {zt, -z, k1 < --- <kpand k; < ki if 2z, € L7}

is an R-basis for A(L). Let y; denote z; regarded as an element of T(L).
Then yy, - - - yk, is a typical basis element of T, (L). Of course, the sequence
{k1,...,kn} will generally not be ordered as in (22.2.4). When it is so ordered,
we require o to satisfy the formula

2225 O (Y, Vh,) =2k, 2k, if kK1 <o <kpand k; < kg if z, € L™

For a general sequence {k1,...,k,} and 1 <i < n, we require

degzy, degz

2226 O (Y - Yk,) =(—1) L (Vk; * 0 Ve Vi Y Ve Vi)

+ 0 (Ve Ve [Vh Yoy Whiyn = Vi)

Clearly, if there is a well-defined map o: T(L) — A(L) of R-modules that
satisfies these formulae, the desired relations I C kero and E% = E°r will
follow.

We define o : T(L) — A(L) by induction on the filtration degree n, with
o(1) =1 and o (y) = 2z handling filtration degrees 0 and 1. Assume that o
has been defined on F,_1T(L). Define the index q of a sequence {k, ..., k,}
to be the number of transpositions required to put it in nondecreasing order.
We define o by induction on n and, for fixed n, by induction on the index g.
We have defined o for n < 1, so we assume that n > 1. Define o by (22.2.5)
for sequences of index 0 unless some k; = k; ;1 with z;, € L™, in which case
define o by the formula

1
2227 o (Vey - Yhy) = 50 (Vi Vi [Pk Vi DVhi s k-

Observe that (22.2.7) is consistent with and in fact forced by (22.2.6). Assuming
that o has been defined on sequences of index less than g and that {kq, .. ., k,,}
has index g, we define o (yg, - - - yi,) by (22.2.6) if k; > k;yq and by (22.2.7)
if kj = ki;1 and 2z, € L. To complete the proof, we must show that o is
actually well-defined, that is, that our definition of ¢ by (22.2.6) and (22.2.7) is
independent of the choice of i. The argument is tedious, but elementary, and
we shall not give full details. There are four cases to be checked, each with two
subcases.
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Case 1. ki = ki;q and kj = kjq,j > i+ 1, withz, € L™ and 2z € L.
Subcasej > i+ 1. We must show that

O (Vky =~ Wi Vi1 - -+ Vi) = 0 (kg == [k Vi1 -+ - Vi)

Here (22.2.6) and induction on »n show that both sides are equal to
1
200 e vl v Vil )

Subcasej = i+ 1. Here (22.2.6), induction on n, and the identity [, [x, x]] = 0
imply the equality

O (Viy - Vi, [V Vi 1+ - Vi) = 0 (Vg - - [V Vi 1Yk, -+ - Pk )-
Case 2. k; = ki with zp, € L™ and k; > kjyq,j > i+ 1.

Subcase j > i+ 1. The argument here is similar to (but has more terms to
check than) the argument in the subcase j > i+ 1 of Case 1, the induction
hypotheses on both n and q being required.

Subcasej =i+ 1. Letu =y, = yp1andv = yy,,, andletdegv = p; of course,
deg u is odd. We must show that
1
Ea(ykl . [u, u]v e Ykn) = (_ ]_)po-(ykl e UVU - - Ykn)
0 (Y o ulu, vl )
By (22.2.6) and induction on g and n, we have
O (bt i) = (= 2oy v g + 0 (g [l )
= 3(=DPolpy vl ul - y,)
+0 (P oo [w, Vv -y,
= 3 (=P (e T ulv oy,
+o(Yr - v, [w, ull- - yi,))
— (= Do (g, ---ulu,vl---yi,)

+O—(Yk1 - [[u’ V], u] .. Ykn)
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The Jacobi and anticommutativity formulas imply

1 1
5[1/, [u, ull + (— 1)P[[u,v], u]l = E[V’ [w, ull + [u, [u,v]]

1
= E([V’ [w, ull — (— 1)P[u, [v, ul]
+[u, [u,v]]) = 0.

Comparing formulas, we obtain the desired equality.

Case 3. k; > kipqand k; = kj g withz, € L7, j > i+ 1.
The proof in this case is symmetric to that in Case 2.

Case 4. ki > ki1 and kj > kj;q withj > i+1.

The proof when j > i+ 1 is straightforward by induction, as in the subcase
j > i+ 1of Case 1, and the proof when j = i 4 1 is a calculation similar to that
in the subcase j = i 4 1 of Case 2. O

We retain the hypotheses of the theorem in the following corollary.

COROLLARY 22238. Let {x;} and {y;} be R-bases for L~ and LT indexed on totally
ordered sets. Then U(L) is the free R-module on the basis

{xil ~'~ximy;1 Y;:“l << im,jl < - <jn andrk > 1}.
PROOF. Since E®U(L)is a free R-module, it is isomorphic as an R-module to
U(L). The conclusion follows from the evident analogue for U(L?) = A(L). O

COROLLARY 22.29. Let L be a free R-module together with a bracket operation
satisfying the identities listed in Lemma 22.1.2. Assume that char R =2, or 2 is
invertible in R, or L = LY. Then L is a Lie algebra.

PROOF. Construct U(L) as in the proof of Proposition 22.1.4 and give it the
Lie filtration of Definition 22.2.1. The proof of Theorem 22.2.3 only used
the cited identities and so gives that A(L) = E®U(L). Thus L — U(L) is a
bracket-preserving monomorphism of R-modules. O

22.3. Primitively generated Hopf algebras in characteristic zero

Throughout this section and the next, Ris assumed to be a field of characteristic
zero. However, all of the results remain valid if R is any ring of characteristic
zero in which 2 is invertible and all R-modules in sight are R-free.
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A quick calculation shows that the R-module PA of primitive elements of a
Hopf algebra A is a Lie subalgebra. The universal property of U(PA) thus
gives a natural map of Hopf algebras g : U(PA) — A, and g is clearly an
epimorphism if A is primitive. Let £ and £ denote the categories
of Lie algebras and of primitive Hopf algebras over R. We have functors
U:¥ — PH and P: P — £, a natural inclusion L C PU(L), and
a natural epimorphism g : U(PA) — A, where L € .£ and A € 5. This
much would be true over any commutative ring R, but when R is a field of
characteristic zero we have the following result.

THEOREM 223.1. Thefunctors U : & — PH and P : PH — L areinverse
equivalences of categories. More explicitly,

(i) PU(L) = L for any Lie algebra L and
(it) g : U(PA) — A s an isomorphism for any primitive Hopf algebra A.

PROOF. We first prove (i). Consider the Lie filtration of U(L). Let x € F, U(L),
x & F,_1U(L), and suppose that x € PU(L). It suffices to prove that p = 1.
The image of x in EI(,)_* U(L) is primitive. By the PBW-theorem, E® U(L) = A(L)
as a Hopf algebra. Consider the basis for A(L) given in Corollary 22.2.8. The
generators x; and y; there are primitive. Using the notation (i, ) for the evident
binomial coefficient considered as an element of R, we see that

vo" = ) Gy ey if yelt

i+Hj=n

Since char R = 0, we check from this that no decomposable basis element is
primitive and that no two basis elements have any summands of their coprod-
ucts in common, so that no linear combination of decomposable elements is
primitive. This implies that p = 1 and proves (i).

To prove (ii), define the primitive filtration of a Hopf algebra A by

F,A=01if p<0, FpA=A, and F,A = (R® PAY if p> 0.

This filtration is complete, A = U,F,A, if and only if A is primitive. By (i),
the Lie and primitive filtrations coincide on U(L). For A € # the epi-
morphism g : U(PA) — A is filtration-preserving and, since PU(PA) = PA,
g is an isomorphism on the R-modules of primitive elements. Therefore
E% is a monomorphism on the primitive elements of E®U(PA), that is, on
E?, . U(PA). Since E®U(PA) is connected with respect to its filtration degree,
E% is a monomorphism by Proposition 21.1.4 and g is a monomorphism by
Proposition 20.1.1. O
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We emphasize that A itself is not assumed to be connected here.

COROLLARY 2232. If A is a commutative primitive Hopf algebra, then A is
isomorphic as a Hopf algebra to the free commutative algebra generated by PA.

PROOF. A= U(PA) = A(PA) since PA is an abelian Lie algebra. O

Among other things, our next corollary shows thata connected Hopfalgebra

is primitive if and only if it is cocommutative.

COROLLARY 22.3.3. Let A be a connected quasi-Hopf algebra.

(i) v: PA — QA isa monomorphism if and only if A is associative and commu-
tative.
(it) v: PA — QA s an epimorphism if and only if A is coassociative and cocom-
mutative.
(iii) v : PA — QAisanisomorphism ifand onlyif A is a commutative and cocom-
mutative Hopf algebra.

PROOF. By Lemma 21.1.1, if v is a monomorphism, then A is associative and
commutative. Conversely, suppose that A is associative and commutative. Give
A its product filtration (see Definition 20.2.9). Then E°A is a commutative
primitive Hopf algebra, hence E°A = A(PE®A) by the previous corollary. It
follows that PEA = Egl’*A. If x € PA, x € FyA, and x ¢ F,_1A, then the
image of x in Eg*A is primitive and we must have p = —1. This implies that v
isamonomorphism. When A is of finite type, (ii) follows from (i) by dualization
since A = A** and (i) holds for A*. The general case of (i) follows by passage
to colimits, using Lemma 21.1.2, since the functors P and Q commute with
(directed) colimits. Part (iii) follows from (i) and (ii). O

COROLLARY 22.3.4. A Hopf subalgebra of a primitive Hopf algebra is primitive.

PROOF. Let A C B, where B is primitive. Since B is cocommutative, so is
A. If A is connected, the conclusion follows from (ii) of the previous corol-
lary. For the general case, let A’ = U(PA) and let g : A" — A be the natural
map. Give A’ and B their primitive filtrations and filter A by F,A = AN FyB.
These filtrations are all complete, and g and the inclusion A — B are filtration-
preserving. Clearly F]A’ = R@® PA = F;A. The induced map E°A — E°Bis
again a monomorphism. Since E°A is connected (with respect to its filtration
degree) and cocommutative, it is primitively generated. Since PE°B = EJ B,
we find



224. COMMUTATIVE HOPF ALGEBRAS IN CHARACTERISTIC ZERO / 463
PEOA = F¥ A" = E) _A = PEA.

Thus E%g is an isomorphism on primitives and therefore also an epimorphism
on indecomposables. By Propositions 21.1.3 and 21.1.4, this implies that E%g
is an isomorphism and thus g is an isomorphism. O

COROLLARY 223.5. A Hopf subalgebra A of a primitive Hopf algebra B is a
normal subalgebra if and only if PA is a Lie ideal of PB. When this holds,
B//A = U(PB/PA) and

0 PA PB P(B//A) —— 0
is an exact sequence of Lie algebras.

PROOF. Assume PAisalieidealin PB.Ifx € PAandy € PB, then|[x,y] € PA
and, since A is primitive, the equation xy = [x, y] + ( — )48 * 48y therefore
implies that IA - B = B IA. Conversely, assume that A is a normal subalgebra
of Band let C = B//A. The exact sequence

0 —~ PA— PB— PC

implies that PA is a Lie ideal of PB. Itis easily checked that C and the inclusion
PB/PA — C satisfy the universal property required of U(PB/PA), and the
remaining conclusions follow. O

22.4. Commutative Hopf algebras in characteristic zero

Again, let R be a field of characteristic zero. We prove the classical structure
theorems for commutative Hopf algebras in characteristic zero. As before,
A(X) denotes the free commutative algebra generated by an R-module X. If we
write E(X) for the exterior algebra generated by an R-module X concentrated
in odd degrees and P(X) for the polynomial algebra generated by an R-module
X concentrated in even degrees, then, for a general R-module X,

AX)=EX7)® P(X™),

where X~ and X denote the submodules of X concentrated in odd and even
degrees, respectively.

THEOREM 22.4.1 (LERAY). Let A be a connected, commutative, and associative
quasi-Hopf algebra. Let o : QA — IA be a morphism of R-modules such that
o = id, where  : [A — QA is the quotient map. Then the morphism of algebras
[ A(QA) — Ainduced by o is an isomorphism.
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PROOF. Give A(QA) and A their product filtrations. These filtrations are com-
plete since A is connected, and f is filtration-preserving. Since E°A is a com-
mutative primitive Hopf algebra, A(PE°A) = E°A by Corollary 22.3.2, and
similarly for A(QA). Now PE°A — QE®A is just the composite

o b 3
ESL*A(QA)= QA — > JA ——> QA= EEL*A

and is thus the identity. Therefore E°f is an isomorphism of Hopf algebras
and f is an isomorphism of algebras. O

The following immediate consequence of the previous theorem was the
theorem of Hopf that initiated the study of Hopf algebras.

COROLLARY 2242 (HOPF). Let A be a connected, commutative, and associative
quasi-Hopf algebra such that Q ,A = O ifniseven. Then A = E(QA) as an algebra.
In particular, the conclusion holds if A, = 0 for all sufficiently large n.

PROOF. For the last statement, note that an even degree indecomposable
would give rise to a polynomial subalgebra. O

If the coproduct is coassociative, we can strengthen the conclusion of the
preceding corollary.

COROLLARY 22.43. Let A be a connected commutative Hopf algebra such that
QnA = 0ifniseven. Then A = E(PA) as a Hopf algebra.

PROOF. By Corollary 22.3.2, it suffices to prove that v : PA — QA is an epi-
morphism. By Corollary 22.3.3, v is a monomorphism and it suffices to prove
that A is cocommutative. By Lemma 21.1.2, we may assume that A is of finite
type. Then A* is a primitive Hopf algebra and P,A* = 0 if n is even. Thus
[%,y] = 0 if x,y € PA* and A* is commutative. Therefore A is cocommuta-
tive. O

We conclude with the following basic result. By Corollary 22.3.3, it is just
a restatement of the connected case of Corollary 22.3.2.

THEOREM 22.4.4. Let A be a connected, commutative, and cocommutative Hopf
algebra. Then A = E((PA)™) ® P((PA)™) as a Hopf algebra.
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RESTRICTED LIE ALGEBRAS AND HOPF
ALGEBRAS IN CHARACTERISTIC p

This chapter is precisely parallel to the previous one. We first introduce
restricted Lie algebras and prove the PBW theorem for their universal envelop-
ing algebras. We next show that primitive Hopf algebras in characteristic p are
the universal enveloping algebras of their restricted Lie algebras of primitive
elements. We then use this fact to study the algebra structure of commutative
Hopf algebras in characteristic p.

Most of these results first appeared in Milnor and Moore [104], but with
different proofs, and some go back to earlier work of Leray, Samelson, and
Borel. §23.4 is a corrected version of results in [84].

23.1. Restricted Lie algebras

In this section and the next, we work over a commutative ring R of prime
characteristic p. Of course, either 2 = 0 or 2 is invertible in R. As before, we
let Xt and X~ denote the R-submodules of even and odd degree elements
of an R-module X, with the convention that XT =X and X~ = {0} if
charR = 2.

DEFINITION 23.1.1. Arestricted Lie algebra over Ris a Lie algebra L together
with a function & : LT — L with £(L,) C Lpp, such that there exists an asso-
ciative algebra A and a monomorphism of Lie algebras j : L — A such that
JE(x) = &j(x), where £ : AT — At is the p power operation. A morphism of
restricted Lie algebras is a morphism of Lie algebras that commutes with the
“restrictions” .

LEMMA 231.2. Let L be a restricted Lie algebra. Let x € L,y € L}, z € L}, and
r € R. Define (ady)(x) = [x,y] and, inductively, (ady)’(x) = [(ady)'~1(x),y].
Then the following identities hold.

465
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(i) [x.§(y)] = (ady)?(x)
(i) &(ry) = P& (y)
(i) E(y+2)=&(y)+&(2) + Zp ), whereis; (y, 2) is the coefficient of a' !
in the expression ad(ay + z)P~ i (y), here a is a degree zero indeterminant.

PROOF. Part (ii) is trivial. Consider the polynomial algebra P[b,c] on two
indeterminates b and ¢ of the same degree n, where n is even if char R > 2.
We have the identities

(1) (b—c)P =bP —cP and
(2) (b_cpl Zp 1blp11

Thus the same identities hold for two commuting elements in any R-algebra.
Embed L in an associative algebra A, as in the definition. Left and right mul-
tiplication by y are commuting elements in the algebra Homg(A, A), hence
(1) implies (i) and (2) implies

(3) (adypP () = X0 1.
To prove (iii), consider the polynomial algebra A[a]. Write
(4) (ay+2) =y +2 + T sily, 2)a

We must evaluate the coefficients s;(y, z), which a priori lie in A, as elements
of L. Formal differentiation of (4) with respect to a, using d(a’) = ia'~!, gives

(5) 07 (ay+2)'y(ay+2)P7 17 = Y0 Lisi(y, 2)a !

Replacing x and y by y and ay + z, respectively, in (3) and comparing the
result to (5), we find that is;(y, z) admits the description given in (iii). Setting
a = 1in (5), we obtain (iii). O

Observe that (iii) shows that & (y + 2) — £(y) — & (2) is in the Lie subalgebra
of L generated by y and z.

We shall see that, at least if R is a field, any Lie algebra L with a restriction
& satisfying these identities can be embedded in a restriction-preserving way
as a Lie subalgebra of an associative algebra and is therefore a restricted Lie
algebra. Of course, any associative algebra is a restricted Lie algebra under the
commutator and pth power operations.

DEFINITION 23.1.3. The universal enveloping algebra of a restricted Lie alge-
bra L is an associative algebra V(L) together with a morphism of restricted Lie
algebras i : L — V(L) such that, for any morphism of restricted Lie algebras
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f: L — A where Ais an associative algebra, there exists a unique morphism
of algebras f : V(L) - Asuchthatfoi=Ff.

Clearly V(L) is unique up to canonical isomorphism, if it exists.

PROPOSITION 23.1.4. Any restricted Lie algebra L has a universal enveloping
algebra V (L), andi: L — V(L) is a monomorphism whose image generates V(L) as
an algebra. Moreover, V(L) is a primitively generated Hopf algebra.

PROOF. Let I C U(L) be the two-sided ideal generated by all elements of the
form xP —&(x), x € L*. Define V(L) = U(L)/I and let i : L — V(L) be the
composite of i : L — U(L) and the quotient map U(L) — V/(L). The universal
property is easily checked, and it is then clear that i is a monomorphism whose
image generates V(L). The proof of the last statement is exactly the same as
for U(L), the essential point being that V(L x L) is isomorphic to V(L) ® V(L)
for restricted Lie algebras L and L' |

23.2. The restricted Poincaré-Birkhoff-Witt theorem

We here obtain the Poincaré-Birkhoff-Witt theorem for restricted Lie algebras
L. The Lie filtration of V(L) is defined exactly as was the Lie filtration of U(L);
see Definition 22.2.1 and the discussion following it. We shall describe the
associated graded algebra E® V(L) when L is R-free. In V(L), xP = &(x) for
x € L*. Since &(x) has filtration one, x = 0 in the commutative algebra
E®V(L).

Let L* denote the underlying R-module of L regarded as an abelian restricted
Lie algebra with restriction zero and write B(L) = V(L¥). Then B(L) = A(L)/J,
where ] is the ideal generated by {x?|x € L*}. Clearly the inclusion of L in
E®V(L) induces a natural map of algebras f : B(L) — E®V(L).

THEOREM 23.2.1 (POINCARE-BIRKHOFF-WITT). Let L be an R-free restricted
Lie algebra. Then f : B(L) — E® V(L) is an isomorphism of Hopf algebras.

PROOF. Give B(L) its Lie filtration and E® V(L) its filtration by filtration
degree. Then E°B(L) is obtained by application of B to L regarded as a
bigraded R-module via L1, = L1, and E°E®(L) = E°V(L). Since f is evi-
dently a filtration-preserving epimorphism, it suffices to prove that E°f is
a monomorphism. Observe that the quotient maps n : A(L) — B(L) and
p: U(L) » V(L) are filtration-preserving. Let I = ker p. Recall the map of
R-modules 6: U(L) —> A(L) from the proof of Theorem 22.2.3. We shall
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construct a filtration-preserving morphism of R-modules 7 : A(L) — B(L)
such that 75 (I) = 0and E%t = E%r. It will follow that 76 = 7 p for a filtration-
preserving R-map 7 : V(L) — B(L) and that E°7 is a morphism of algebras.
The composite

E%f EO7
E°B(L) —— E°V(L) —— E°B(L)

will be the identity morphism of algebras, hence E°f will be a monomorphism
and the proof will be complete.

To construct z, let {y;} be an R-basis for L*. Clearly L™ plays a negligible

role here, and we let x denote an arbitrary basis element of A(L™) = B(L™) and
define 7(x) = x. Let z; denote y; regarded as an element of B(L). We define t
by induction on the filtration degree. We define t by the formulas
23.2.2 t(xyjrl .- YJ’:) = szrll o er: foreachr; <p
and
23.23 '1:(xyjr1 e ern) = '1:(xyjrl . 'YJZTS(}’J’l))’J':W)/JZTf . ~yj:’:) ifr; > p.
By induction on the filtration degree, these formulas uniquely determine a
well-defined filtration-preserving morphism of R-modules t: A(L) — B(L)
such that E%7 = E%r. It remains to check that 75 (I) = 0. By definition, I is
the two-sided ideal in U/(L) generated by {y? — &(y)ly € L*}. If yis alinear com-
bination ) _ k;y;;, the identities (ii) and (iii) of Lemma 23.1.2 and the agreement
of commutators and Lie brackets of elements of L in U(L) imply that

Y g = Dk 0 —E ).

Thus I is the two-sided ideal in U(L) generated by {yj’ —&(yj)}- Now a calcula-
tion from the identity (i) of Lemma 23.1.2 and the inductive definitions of &
and t gives the conclusion. O

The following corollaries are deduced precisely as in the case of Lie algebras.

COROLLARY 2324, Let {x;} and {y;} be R-bases for L~ and L™ indexed on totally
ordered sets. Then V(L) is the free R-module on the basis

r Tops . .
{xi1"'xiijll"'Yj:|ll<"'<lm’11<"‘<]nand1§rk<p}.

COROLLARY 23.2.5. Let L be an R-free Lie algebra together with a restriction opera-
tion satisfying the identities listed in Lemma 23.1.2. Then Lis a restricted Lie algebra.
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23.3. Primitively generated Hopf algebras in characteristic p

In this section, R is assumed to be a field of characteristic p. Again, all of the
results remain valid if R is any ring of characteristic p and all R-modules in
sight are R-free.

The R-module PA of primitive elements of a Hopf algebra A is a restricted
Lie subalgebra. The universal property of V(PA) thus gives a natural map
of Hopf algebras g : V(PA) — A, and g is an epimorphism if A is primi-
tive. Let Z.Z and £ denote the categories of restricted Lie algebras and
of primitive Hopf algebras over R. We have functors V : Z.¥ — P and
P: P — X2, anatural inclusion L C PV(L), and a natural epimorphism
g: V(PA) - A, where L € 2 and A € P

THEOREM 233.1. The functors V: ZL — P and P: PAH — AL are

inverse equivalences of categories. More explicitly,

(i) PV(L) = L for any restricted Lie algebra L and
(it) g : V(PA) — A is an isomorphism for any primitive Hopf algebra A.

PROOF. To prove (i), we consider the Lie filtration of V(L). By the PBW the-
orem, E®V(L) = B(L) as a Hopf algebra. Arguing precisely as in the char-
acteristic zero case, we find that PEOV(L) = Eg ,V(L) and conclude that
PV(L) C F1V(L). This proves (i). To prove (ii), consider the primitive filtra-
tion of A, as specified in the proof of Theorem 22.3.1. The Lie and primitive
filtrations on V(L) coincide and g is filtration-preserving. It follows just as in
the characteristic zero case that E%g is a monomorphism and that g is therefore
an isomorphism. U

COROLLARY 23.3.2. IfAisacommutative primitive Hopfalgebra such that xP = 0
if x € (IA)Y, then A is isomorphic as a Hopf algebra to B(PA).

PROOF. A = V(PA) = B(PA) since PAis an abelian restricted Lie algebra with
restriction zero. O

Unlike its characteristic zero analogue, Corollary 23.3.2 fails to describe
arbitrary commutative primitive Hopf algebras A over R. We have A = V(PA),
and we shall study V(PA) in more detail in the next section. For similar reasons,
the characteristic p analogue of Corollary 22.3.3 takes the following weaker
form. We again emphasize that A was not assumed to be connected in the
results above.
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COROLLARY 23.3.3. Let A be a connected quasi-Hopf algebra.

(i) v: PA— QA is a monomorphism if and only if A is associative and
commutative and satisfies xP = 0 for x € (IA)*.

(it) If A is commutative and associative and if € (A) is the quasi-Hopf subalgebra
of A whose positive degree elements are spanned by {xP|x € (IA)T}, then the
following is an exact sequence of R-modules.

0 —— P§A) —— PA*U> QA

(i) If A is a commutative and cocommutative Hopf algebra, then the following
is an exact sequence of R-modules.

0 —— P&(4) PA QA orA) —— 0

Here A (A) is the quotient Hopf algebra & (A*)* of A if Ais of finite type and, in
general, A (A) is the colimit of the A(B), where B runs over the Hopf subalgebras
of A that are of finite type.

PROOF. Ifvisamonomorphism, then A is associative and commutative and
x? = 0forx € (IA)" by Lemma 21.1.1. Conversely, give A its product filtration,
which is complete since A is connected. The previous corollary applies to
give E°A = B(PE°A). It follows as in the proof of Corollary 22.3.3 that v is a
monomorphism. To prove (ii), let B = A//£ A. Then B satisfies the hypotheses
of (i). By Theorem 21.2.3, we have the commutative diagram with exact rows

0 —— P§(4) PA PB
Q&(4A) QA 0B 0

Here v : PB — QB is a monomorphism and Q&(A) — QA is zero. Now (ii)
follows by a simple diagram chase. When A is of finite type, (iii) follows from
(ii) by dualization, and the general case then results by passage to colimits. O

COROLLARY 23.34. A Hopf subalgebra of a primitive Hopf algebra is itself
primitive.

PROOF. Let A C B, where B is primitive. By precisely the same argument
as in the proof of Corollary 22.3.4, it suffices to prove the result when A
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and B are connected. By Lemma 21.1.2, we may assume that A is of finite
type. The proof of Lemma 21.1.2 applies to show that B is the colimit of its
primitive Hopf subalgebras of finite type, and A will necessarily be contained
in one of them. Thus we may assume that B is also of finite type. Then A*
is a quotient hopf algebra of B*. Since v : PB* — QB* is a monomorphism,
part (i) of the previous corollary applies to show that B* is associative and
commutative with zero p™ powers. Therefore A* also has these properties and
v : PA — QAisamonomorphism. Dualizing back, we have thatv : PA — QA
is an epimorphism. O

COROLLARY 23.3.5. A Hopf subalgebra A of a primitive Hopf algebra B is a nor-
mal subalgebra if and only if PA is a restricted Lie ideal of PB. When this holds,
B//A = V(PB/PA) and

0 — PA— PB — P(B//A) — 0

is an exact sequence of restricted Lie algebras.

PROOF. The argument is the same as for Lemma 20.4.7, but with the obser-
vation that, since A is a subalgebra of B, PA is automatically closed under
the restriction in B and is thus a restricted Lie ideal if and only if it is a Lie
ideal. O

23.4. Commutative Hopf algebras in characteristic p

In this section, R is assumed to be a perfect field of characteristic p. We need
R to be perfect since relations of the form x?* = ry?, where r has no p* root,
would lead to counterexamples to the main results.

THEOREM 23.4.1. Let A be a connected, commutative, and associative quasi-Hopf
algebra. For a morphism of R-modules o : QA — IA such that wo = id, where
7 1 IA — QA is the quotient map, let R(A; o) be the abelian restricted Lie subal-
gebra of A generated by the image of o. For a suitable choice of o, the morphism
of algebras f : V(R(A;0)) — A induced by the inclusion of R(A;0) in A is an
isomorphism.

PROOF. Clearly f is an epimorphism for any choice of 0. Let .# be the family
of pairs (B, o), where B is a quasi-Hopf subalgebra of Aand o : QB — Bisa
R-splitting of = : B — QB such that the following properties hold.

(1) The map of algebras f : V(R(B; o)) — B associated to ¢ is an isomor-
phism.
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(2) The map QB — QA induced by the inclusion of B in A is a monomor-
phism, and (QB)4 = 0forq > nif (QB), — (QA)y is notan isomorphism.

Partial order .# by (C,t) < (B,o) if C C B and o extends t. Note that
QC — OB is then a monomorphism such that (QC); =0 for g > n if
(QC)n — (QB)y is not an isomorphism. The family .# is nonempty since
it contains (R, 0), and the union of a chain in .% is an element of .%. Therefore
F has a maximal element (C, ). Assume for a contradiction that C # A. Let
n be minimal such that (QC), # (QA)x. Then (QC)y = 0 for g > n. Choose
y € A, such that 7 (y) is not in QC and let B be the subalgebra of A generated
by C and y; B is necessarily a quasi-Hopf subalgebra. The quotient B//C is a
monogenic Hopf algebra with primitive generator the image z of y.

A check of coproducts shows that the minimal m such that y™ = 0 must
be a power of p. Define the height of y by ht(y) =t ifypt =0 but ypt_l # 0, or
ht(y) = oo if there exists no such t. It is possible that y € B has greater height
than z € B//C, but we claim that there exists x € B such that x also has image
z in B//C and ht(x) = ht(z). Granting the claim, we complete the proof as
follows. By Theorem 21.2.3, the composite map of algebras

IR0 @
C®B//C —— B®B —— B

is an isomorphism, where i : C — B is the inclusion and o(z) = x. If we
extend 7 : QC — Cto o : QB — B by setting o7 (y) = x, then the associated
map of algebras V(R(B; o)) — B is an isomorphism and (C, ) < (B, o).

Thus it remains to prove the claim. There is nothing to prove if p > 2 and
n is odd or if z has infinite height. Thus let ht(z) = s. Let C' = £%(C). Since
R is perfect, C’ is a quasi-Hopf subalgebra of C. Consider the commutative
diagram

C B B//C

J/ 14 l B l o
¢//C" —— B//C" —— (B//C")//(C//C)
where the vertical arrows are quotient maps. By Corollary 21.2.4, « is

an isomorphism, and we regard it as an identification. Let x’ € B//C’
map to z € B//C. Then x’ has height p*. Indeed, &5(x') is primitive since
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Y(x)=x"®1+u+1Q«',whereu € I(C//C')Q I(C//C")and thus £*(u) = 0.
However, B//C’ has no nonzero primitive elements of degree p°n in view
of the exact sequence

0 —— P(C//C'y —— P(B//C') —— P(B//C)

and the fact that all indecomposable elements of C//C’ have degree < n and
all (p*)** powers of elements of C//C’ are zero (and similarly for B//C). Now
choose w € B such that S(w) = «’. Then y(w) =w®1+v+1®w, where
ve IC®IC. Since (id ®B)(v) € ICRI(C//C’), &5(id ®B)(v) = 0. Tt follows
that (id @ B)y&5(w) = £°(w) ® 1. By Theorem 21.2.3, this implies that £5(w) is
in C'. Let £°(w) = £°(w'), where w' € C. If x = w —w/, then £*(x) = 0 and x
projects to zin B//C. O

EXAMPLE 23.4.2. The theorem fails if o is not chosen properly. For a coun-
terexample, let p = 2 and take A = P{x} ® E{y}, where x and y are primitive
elements of degrees one and three. If one foolishly defines o : QA — A by
on(x) = x and on(y) = y+x>, then V(R(A;0)) is a polynomial algebra on
two genelrators.1

We have the following immediate corollary for quasi-Hopf algebras hav-
ing only odd-degree generators. We say that a commutative algebra is strictly
commutative if x? = 0 for all odd-degree elements x; of course, this always
holds if char R # 2.

COROLLARY 23.4.3. Let A be a connected, strictly commutative, and associative
quasi-Hopf algebra such that Q,A = 0 ifniseven. Then A = E(QA) as an algebra.

Again, we obtain a stronger conclusion when the coproduct is coasso-
ciative.

COROLLARY 23.4.4 (LERAY-SAMELSON). Let A be a connected strictly commu-
tative Hopf algebra such that Q,A = 0 if n is even. Then A = E(PA) as a Hopf
algebra.

PRoOOF. This follows from Corollaries 23.3.2 and 23.3.3 by the same
arguments used to prove Corollary 22.4.3. O

1. This example is due to Paul Goerss [private communication].
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Using Corollary 23.3.5, we can obtain an analogue of Theorem 22.4.4, but
this result gives considerably less complete information than was obtainable
in the characteristic zero case.

COROLLARY 23.45. Let A be a connected, commutative, and cocommutative
Hopf algebra over R, where char R > 2. Let B = E(PA™) and C = A//B. Then
A = BQ® C as a Hopf algebra.

PROOF. By (iii) of Corollary 23.3.3, v : PA — QA is an isomorphism in odd
degrees. We may assume that A is of finite type. Dualizing, we have that
v: PA* - QA* is also an isomorphism in odd degrees, and there results
a map of Hopf algebras n*: B* — A* such that the evident composite
B — A — B s the identity. Let p : A — C be the natural epimorphism and
define w : A — B® C to be the composite

¥ TRp
A — AQRA —— BQ®UC.

Since A is cocommutative, ¥ is a morphism of Hopf algebras, hence so
is w. Since (¢ ®id)w = p and (id @€)w = 7, w is clearly an epimorphism.
Using the exact sequence of primitives in Corollary 23.3.5 and the fact that
P(B® C) = PB® PC, we see that w is an isomorphism on primitives and
therefore a monomorphism. O

To complete our results, we must still determine the structure of V(L),
where L is an abelian restricted Lie algebra. Clearly, it suffices to study L itself.

THEOREM 23.4.6. Let L be an abelian restricted Lie algebra such that Ly is finitely
generated as a restricted Lie algebra. Then L is isomorphic to a direct sum of mono-
genic abelian restricted Lie algebras.

PROOF. Clearly L = L™ x LT as an abelian restricted Lie algebra. Since L™ is
just a vector space, with no additional structure, we may as well assume that
L = L*. Let L(n) be the abelian restricted Lie subalgebra of L generated by the
L; fori < n. Since L is the union of the L(n), it suffices to prove the result when
L = L(n). We proceed by induction on n.

We first consider the case L = L(0) = Lo, which is exceptional. Let P[t]
denote the noncommutative polynomial algebra in one indeterminate ¢ with
tr =Pt for r € R. If R=T,, P[t] is the ordinary polynomial algebra. The
relation & (rx) = rP& (x) shows that L is a P[t]-module via tx = &(x). Since R s



234. COMMUTATIVE HOPF ALGEBRAS IN CHARACTERISTIC p /475

perfect, r — r? is an automorphism of R, and P[¢] is a principal ideal domain
by Jacobson [72, p. 30]. Therefore, by [72, pp. 43—44], every finitely generated
P[t]-module is a direct sum of cyclic modules. This says that L is a finite direct
sum of monogenic abelian restricted Lie algebras.

In general, L is the direct sum of L(0) and its restricted Lie subalgebra of
positive-degree elements, so we may now assume that Ly = 0. Consider the
case L = L(n), where n > 0 and the conclusion holds for L(n — 1). Choose a
splitting o of the epimorphism L(n), —> L(n)n/L(n — 1), and choose a basis
for L(n),/L(n— 1),. The image under o of the chosen basis gives a set of
generators of degree n of L(n). Since, in contrast with the case L(0), there is
no further structure in sight in degree n, we may apply a passage to colimits
argument to see that the conclusion holds in general if it holds when there
are only finitely many generators, g say, of degree n. We proceed by induction
on g, there being nothing to prove if there are no such generators. Thus
assume first that L has g generators of degree n and let L’ be the abelian
restricted Lie subalgebra of L generated by L(n — 1) together with q—1 of
these generators. Let L” = L/L’. By the induction hypothesis, L’ is a sum of
monogenic abelian restricted Lie algebras. By construction, L” is an abelian
restricted Lie algebra generated by a single element, x say, of degree n. It
suffices to prove that L is isomorphic to L' @ L”. To show this, it suffices to
construct a morphism f: L” — L of abelian restricted Lie algebras such that
nf =1id, where w : L — L” is the quotient map.

Define the height of an element z € L by ht(z) = sif £5(z) = 0 but £~ () £ 0
and ht(z) = c0if §™(z) # 0for all m. Of course, if 7 (y) = x, then ht(y) > ht(x).
To construct f, it suffices to find y € L such that 7 (y) = x and ht(y) = ht(x)
since f(x) =y then determines f. If ht(x) = oo, any y such that 7(y) = x
will do. Thus assume that x has finite height s. Since R is perfect, £°(L) is a
abelian restricted Lie subalgebra of L'. Let M’ = L'/&5(L') and M = L/&5(L').
We may identify L” with M/M’. Choose z € M, which projects to x € L”,
and w € L, which projects to z. We have M; = 0 for t > p°n by construction
and L} = 0 for t > p*n since ht(x) = s. Thus M; = O for t > p*nand &%(z) = 0.
Therefore £%(w) = £°(w') for some w’ € L. Lety = w — w'. Then n (y) = x and
ht(y) = s. O

Observe that V(@; L;) = ®; V(L;). One way to see this formally is to ignore
the coproduct and observe that, as a left adjoint, the functor V from abelian
restricted Lie algebras to commutative algebras commutes with categorical
coproducts, which are direct sums on the Lie algebra level and tensor prod-
ucts on the algebra level. The following two theorems are therefore direct
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consequences of Theorems 23.3.1 and 23.4.1. Note that a connected mono-
genic Hopf algebra is of the form E[x], where x € (IA)~, or P[x]/(x"") or P[x],
where x € (IA)T.

THEOREM 23.4.7. If Ais a primitive commutative Hopf algebra and Ay is finitely
generated as an algebra, then A is isomorphic as a Hopf algebra to a tensor product
of monogenic Hopf algebras.

THEOREM 23.48 (BOREL). If A is a connected, commutative, and associative
quasi-Hopf algebra, then A is isomorphic as an algebra to a tensor product of
monogenic Hopf algebras.



24

A PRIMER ON SPECTRAL SEQUENCES

This chapter contains those results about spectral sequences that we used
earlier in the book, incorporated into a brief background compendium of the
very minimum that anybody interested in algebraic topology needs to know
about spectral sequences. Introductory books on algebraic topology usually
focus on the different kinds of chain and cochain complexes that can be used
to define ordinary homology and cohomology. It is a well-kept secret that
the further one goes into the subject, the less one uses such complexes for
actual calculation. Rather, one starts with a few spaces whose homology and
cohomology groups can be computed by hand, using explicit chain complexes.
One then bootstraps up such calculations to the vast array of currently known
computations using a variety of spectral sequences. McCleary’s book [98] is
a good encyclopedic reference for the various spectral sequences in current
use. Other introductions can be found in many texts in algebraic topology and
homological algebra [79, 123, 142]. However, the truth is that the only way to
master the use of spectral sequences is to work out many examples in detail.

All modules are over a commutative ring R and understood to be graded,
whether or not the grading is mentioned explicitly or denoted. In general, we
leave the gradings implicit for readability. The preliminaries on tensor product
and Hom functors of §20.1 remain in force in this chapter.

24.1. Definitions

While spectral sequences arise with different patterns of gradings, the most
commonly encountered homologically and cohomologically graded spectral
sequences fit into the patterns given in the following pair of definitions.

DEFINITION 24.1.1. A homologically graded spectral sequence E = {E"} con-
sists of a sequence of Z-bigraded R modules E" = {E;’q},zl together with dif-
ferentials

477
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r. pr r
ar: Epqg = Eprgir—t
such that E"*! = H,(E"). A morphism f: E — E’ of spectral sequences is
a family of morphisms of complexes f": E" — E" such that f™*! is the
morphism H,(f") induced by f™.

DEFINITION 24.12. A cohomologically graded spectral sequence E = {E,}
consists of Z-bigraded R-modules E, = (E¥ ‘q}rzl together with differentials

dp: BP9 prrramrtl
such that E,4q1 = H.(E;). We can regrade E, homologically by setting

E,}? a4 _ E"
concept.

»—q SO in principle the two grading conventions define the same

Let E = {E"} be a spectral sequence. Let Z, the cycles, be the kernel of d'
and B, the boundaries, be the image of d'. Then, under the identification of
H,(E') with E2, d? is a map

Z'/B' - Z'/B'.
Continuing this identification, E" is identified with Z"~'/B"~! and the map
ar- Zr—l/Br—l N Zr—l/Br—l

has kernel Z" /B! and image B"/B"~!. These identifications give a sequence
of submodules

0=B"cB'c...cz’cz'cz’=E.
Define Z* = N7, Z', B* = U2, B',and E, = Zp0 / ByS, writing E* = {EJ2 ).
We say that E is a first-quadrant spectral sequence if E, , = 0 for p < 0 or
q < 0. Inafirst-quadrant spectral sequence the terms {Ey ,} are called the base

terms and the terms {E] q) are called the fiber terms. Note that elements of
E; o cannot be boundaries for r > 2 since the differential

A" Epyy i1 — Epo
has domain the 0 group. Thus

E;,Jal = Ker (d": E;Z,O — E;_r’r_l)
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and there is a sequence of monomorphisms

. goo _ pptl P 3 2
eg: E,o = Ep‘o — Ep‘o — - Ep,O — Ep,O‘
Similarly, forr > 1, Ej 4 consists only of cycles and so there are epimorphisms
.2 3 4+2 _ poo
er: E(),q — EO,q e Eo’q = Equ.

The maps ep and ef are called edge homomorphisms. From these maps we
define a “map” t = 5 'dPe; E;}O — Eé’p_l, as in the following diagram.

0 E(%,pfl
T €F
0 — Ej —— 55_0 ’ Egpfl — E5 ——= 0
e

2
Ep,0 0

This map is called the transgression. It is an additive relation [79, I1.6] from a
submodule of E;,o to a quotient module of E(%,p—l'

A cohomologically graded first-quadrant spectral sequence E is also defined
to have E! = 0 for p < 0 or g < 0. However, when regraded homologically it
becomes a third-quadrant spectral sequence. Again, its base terms have g = 0
and its fiber terms have p = 0. It has edge homomorphisms

. b0 p,0 p,0 p0 _ p0
eg: By —> B — - > —>Ep+1_Eoo
(which are epimorphisms) and

0, 0, 0,
ep: EEd=F4 — E1

0,9 0,9
= Bg12 q+1_’"'_’E3 - E

(which are monomorphisms). Its transgression v = egldpegl is induced by
the differential dj: Eg’p - Ef,”o. It is an additive relation from a submodule
of ES’P toa quotient module of Eg’o.

24.2. Exact couples

Exact couples provide an especially useful and general source of spectral
sequences. We first define them in general, with unspecified gradings. This
leads to the most elementary example, called the Bockstein spectral sequence.
We then describe the gradings that usually appear in practice.
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DEFINITION 24.2.1. Let Dand E be modules. An exactcouple ¢’ = (D, E; 1i,j, k)
is a diagram

in which Ker j = Imi, Ker k = Imj, and Ker i = Imk.

Ifd =jk: E — E,thendod = jkjk = 0. Construct ¢’ = (D', E';i,j', k') by
letting
D' =i(D) and E' = H,(E;d),

and, writing overlines to denote passage to homology classes,

i =ilip), J/(i(x)) = () = jx) +JK(E), and ¥ (7) = K (y +5k(E)) = k(y)-
Thatis, i’ is a restriction of i and j’ and k" are induced from j and k by passing to
homology on targets and sources. We easily check thatj’ and k' are well-defined
and the following result holds.

LEMMA 24.2.2. € is an exact couple.

Starting with ¢ = %M, we can iterate the construction to form
&) = (D", E",i",j", k"). (The notation might be confusing since the maps
i", j*, and k" given by the construction are not iterated composites). Then,
with d" =j"k", {E"} is a spectral sequence. It can be graded differently than
in the previous section since we have not specified conditions on the grading
of D and E. The Bockstein spectral sequence in the proof of Lemma 4.3.4
comes from a particularly simple exact couple and is singly graded rather than

bigraded.

EXAMPLE 24.2.3. Let C be a torsion-free chain complex over Z. From the short
exact sequence of groups

0 Z Z Z/pZ —— 0
we obtain a short exact sequence of chain complexes

0 C C C®Z/pZ —— 0.
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The induced long exact homology sequence is an exact couple

H,(C) H,(C).

~

H.(C®Z/pZ)

The resulting spectral sequence is called the mod p Bockstein spectral
sequence. Here d": E; — E;_, forall r > 1 and all n, and we have short exact
sequences

0 — (p'_lHn(C))(X)Z/pZ — E, —> Tor(p’_lHn_l(C),Z/pZ) —

When r = 1, this is the universal coefficient exact sequence for calculating
Hu(C;Fp), and we may view it as a higher universal coefficient exact sequence
in general.

We can describe this spectral sequence in very elementary terms. Let X"
be the functor on graded abelian groups given by (X"A)41, = Ay. For a cyclic
abelian group 7, we have a Z-free resolution C(w) given by Z in degree 0 if
7 = Z and by copies of Z in degrees 0 and 1 with differential ¢° if # = Z/¢’.
Assume that H,(C) is of finite type and write H,(C) as a direct sum of cyclic
groups. For each cyclic summand, choose a representative cycle x and, if
7 =Z/¢°, a chain y such that d(y) = ¢°x. For each cyclic summand r, these
choices determine a chain map £"C(r) — C. Summing over the cyclic sum-
mands and over n, we obtain a chain complex C’ and a chainmap C’ — Cthat
induces an isomorphism on homology and on Bockstein spectral sequences.

The Bockstein spectral sequences {E"} of the " C(r) are trivial to compute.
Whenn =7, E], = Zand E}, = Oform # nforallr. Whenn = Z/g*forq # p,
E} =0forall nand r. When = = Z/p°, El = Fsis Fp in degrees nand n+1,
ds: E151+1 —> E} is anisomorphism, and E" = 0 for r > s. Returning to C, we
see that E*° = (H,(C)/TH,(C)) ® F,, where T'w denotes the torsion subgroup
of a finitely generated abelian group 7. Moreover, there is one summand Z/p°
in H,(C) for each summand Fy, in the vector space d°E®. The higher universal
coefficient exact sequences are easy to see from this perspective.

We conclude that complete knowledge of the Bockstein spectral sequences
of C for all primes p allows a complete description of H,(C) as a graded abelian
group.
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The previous example shows that if X is a space whose homology is of
finite type and if one can compute H,(X; Q) and H,(X;Fy) together with the
mod p Bockstein spectral sequences for all primes p, then one can read off
H,(X;Z). For this reason, among others, algebraic topologists rarely concern
themselves with integral homology but rather focus on homology with field
coefficients. This is one explanation for the focus of this book on rationalization
and completion at primes.

This is just one particularly elementary example of an exact couple. More
typically, D and E are Z-bigraded and, with homological grading, we have

degi=(1,—1), degj=1(0,0), and degk=(—1,0).
This implies that
degi" = (1,-1), degj = (—(r—1),r—1), and degk’ = (—1,0).
Since d" = j"k", we then have
ar: E;,q — E;f,,,ﬁ,,l,

as in our original definition of a spectral sequence.

24.3. Filtered complexes

Filtered chain complexes give rise to exact couples and therefore to spectral
sequences. This is one of the most basic sources of spectral sequences. The
Serre spectral sequence, which we describe in §24.5 below, could be obtained
as an example, although we shall construct it differently.

Let A be a Z-graded complex of modules. An (increasing) filtration of A is
a sequence of subcomplexes

<+ CFp 1ACF,ACF1AC -
of A. The associated graded complex E°A is the bigraded complex defined by
Ep A= (FpA/Fp 1A)piq,
with differential d° induced by that of A. The homology Hy(A) is filtered by
FpH.(A) = Im(H.(F,A) — H.(A)),

and thus E®H, (A) is defined.

Let A,y = (FpA)ptg¢- The inclusion F, 1A C FpA restricts to inclusions
i: Ap_14+1 = Apgand induces quotient mapsj: A, 4 — Eg’q. The short exact
sequence
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i J
243. 0 — Fp1A — = FyA EpA 0
of chain complexes induces a long exact sequence

i* .j* k*
- —> Hu(Fp—1A) —= Hy(FpA) — Hn(EgA) —> Hu_1(Fp—14) — ---

Let Dy . = Hp4(FpA) and E} ; = Hpq(Ep). Then
(Dly El; i*,j*, ki)

is an exact couple. It gives rise to a spectral sequence { E" A}, which is functorial
on the category of filtered complexes.

THEOREM 243.2. If A=U,F,A and for each n there exists s(n) such that
Fyn)An = 0, then Ex9A = EJ . Hi(A).

The proof is tedious, but elementary. We give it in the last section
of the chapter for illustrative purposes. The conclusion of the theorem,
EpqA = Eg,qH* (A), is often written

Ey A= Hyyq(A),

and E" is said to converge to H,(A).

The filtration of A is said to be canonically bounded if F_1A =0 and
FnA, = Ay for all n, and in this case E" certainly converges to Hy(A).

Dually, cohomology spectral sequences arise naturally from decreasing
filtrations of complexes. Regrading complexes cohomologically, so that the
differentials are maps §: A" —> A"!, a decreasing filtration is a sequence

- DFPAD FPHIAS ...

If we rewrite A as a complex, A, = A™", and define F,A = F7PA, then our
construction of homology spectral sequences immediately gives a cohomology
spectral sequence {E;A}. With evident changes of notation, Theorem 24.3.2
takes the following cohomological form.

THEOREM 2433. If A=U,FPA and for each n there exists s(n) such that
FMA" = 0, then EX A = EyTH*(A).

A decreasing filtration is canonically bounded if F’A = A and F"*1A" = 0
for all n, and in this case E, certainly converges to H*(A).
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In practice, we often start with a homological filtered complex and dualize
it to obtain a cohomological one, setting A* = Hom (A, R) and filtering it by

FPA* = Hom (A/Fy_1 A, R).

At least when R is a field, the resulting cohomology spectral sequence is dual
to the homology spectral sequence.

24.4. Products

Recall that a differential graded algebra (DGA) A over R is a graded algebra
with a product that is a map of chain complexes, so that the Leibnitz formula

d(xy) = d(x)y + (— 1)%€*xd (y)

is satisfied. When suitably filtered, A often gives rise to a spectral sequence
of DGA’s, meaning that each term E" is a DGA. It is no exaggeration to say
that the calculational utility of spectral sequences largely stems from such
multiplicative structure. We give a brief description of how such structure
arises in this section. We work more generally with exact couples rather than
filtered chain complexes, since our preferred construction of the Serre spectral
sequence largely avoids the use of chains and cochains.

Let 61 = (D1, E1; 1,1, k1), 62 = (D2, E2; i, j2, k2), and ¢ = (D, E, i,§, k) be
exact couples. A pairing

¢: E1QE, - E

is said to satisfy the condition p, if forany x € E1,y € E;,a € Dy and b € D,
such that k; (x) = if(a) and k;(y) = i5(b) there exists ¢ € D such that

k(xy) = i"(c)
and
j(e) = ji(@)y + (— 1)%€<xjy (b).

We write the pairing by concatenation rather than using ¢ to minimize nota-
tion. By convention, we set i{ = id and i = id. Then the only possible choices
are a = k1(x), b = k2(y), and ¢ = k(xy), so that o is the assertion that

Jk(xy) = jik(x)y + (— 1)2€*xjzka (y).

Since the differential on E is jk, and similarly for E; and E, o is precisely the
assertion that ¢ is a map of chain complexes, and it then induces

¢ E,@E, — E.

We say that ¢ satisfies the condition u if ¢ satisfies p,, for all n > 0.
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PROPOSITION 24.4.1. Assume that ¢ satisfies juo. Then ¢ satisfies ju, if and only
if¢': E] ® E;, — E' satisfies pip—1.

PROOF. Suppose that ¢ satisfies u,. Letx’ € Ej,y € E},a’ € D}, and b’ € D)
satisfy K, (x') = 771 (/) and Ky (y) = 'y 1 (¥). If ¥’ = %,y =, d’ = i1(a), and
b’ = iy(b), we find that

ki(x) = if(a) and ka(y) = i (b).
It follows that there exits ¢ € D such that
k(xy) = i"(c) and j(c) = ji(@)y + (— 1)*8 g (b).
Taking ¢’ = i(c), we find that
K (%) =K (x3) = i"7'(c))
and
J€) =i@)y + (= )L ).
The converse is proven similarly. O

COROLLARY 24.42. If¢ satisfies u, then sodoes¢’, and therefore so do all successive
¢ E{®E; —> E,
r > 1, where ¢"+1 is the composite
HL(E) ® Hi(E5) — H.(Ef ® E5) —> H,(E")
of the Kiinneth map and H,(¢"). Thus each ¢" is a map of chain complexes.
The point is that it is usually quite easy to see explicitly that ¢ satisfies u,

and we are entitled to conclude that the induced pairing of E" terms satisfies
the Leibnitz formula for each r > 1.

EXAMPLE 24.43. The cup product in the singular cochains C*(X) gives rise to
the product

¢: H*(X;Fp)@)H*(X;IFp) — H*(X;IFP).

Regarding H*(X; F}) as the E; term of the Bockstein spectral sequence of the
cochain complex C*(X), we find that ¢ satisfies u. Therefore each E™ in the mod
p cohomology Bockstein spectral sequence of X is a DGA, and E™+! = H*(E")
as an algebra.
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Now let A, B, and C be filtered complexes. Filter A® B by
Fy(A®B)= Y FA®FB.
i+j=p
Suppose ¢: A® B — C is a morphism of filtered complexes, so that
FyA-FyB C FpyyC.
Then ¢ induces a morphism of spectral sequences
E'(A® B) — E"(C).
Since E"A ® E" B is a complex, we have a Kiinneth map
E'A®E'B— E'(A® B),
and its composite with H,(¢) defines a pairing
E'AQE'B— E'C.
This is a morphism of complexes since an easy verification shows that
¢« E'A® E'B— E'C
satisfies the condition . If R is a field, or more generally if our Kiinneth
map is an isomorphism, then {E"A ® E" B} is a spectral sequence isomorphic
to {E"(A® B)} and the product is actually a morphism of spectral sequences.
In general, however, we are concluding the Leibnitz formula even when the
Kiinneth map of E" terms does not induce an isomorphism on homology.

If, further, each of the filtered complexes A, B, and C satisfies the hypothesis
of the convergence theorem, Theorem 24.3.2, then inspection of its proof
shows that the product

E*AQ® E*B — E*C
agrees with the product
E%H,(A) ® E°H,(B) — E°H,(C)

induced by passage to quotients from the induced pairing

H,(A) ® Hy(B) = H,(C).

24.5. The Serre spectral sequence

We give what we feel is perhaps the quickest construction of the Serre spectral
sequence, but, since we do not want to go into details of local coefficients, we
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leave full verifications of its properties, in particular the identification of the
E, term, to the reader. In applications, the important thing is to understand
what the properties say. Their proofs generally play no role. In fact, this is true
of most spectral sequences in algebraic topology. It is usual to construct the
Serre spectral using the singular (or, in Serre’s original work [124], cubical)
chains of all spaces in sight. We give a more direct homotopical construction
that has the advantage that it generalizes effortlessly to a construction of the
Serre spectral sequence in generalized homology and cohomology theories.

For definiteness, we take R = Z here, and we fix an abelian group = of
coefficients. We could just as well replace Z by any commutative ring R and &
by any R-module. Letp: E — Bbe a Serre fibration with fiber F and connected
base space B. Itis usual to assume that F too is connected, but that is not really
necessary. Fixing a basepoint b € B, we may take F = p~!(b), and that fixes an
inclusioni: F — E. Using[93, p. 48], we may as well replace p by a Hurewicz
fibration. This is convenient since it allows us to exploit a relationship between
cofibrations and fibrations that does not hold for Serre fibrations. Using [93,
p- 75], we may choose a based weak equivalence f from a CW complex with
a single vertex to B. Pulling back p along f, we may as well replace p by a
Hurewicz fibration whose base space is a CW complex B with a single vertex
b. Having a CW base space gives a geometric filtration with which to work,
and having a single vertex fixes a canonical basepoint and thus a canonical
fiber.

Give Bits skeletal filtration, F, B = BP, and define F,E = p~!(F, B). Observe
that FoE = F. By Lemma 1.3.1, the inclusions F,_1E C F,E are cofibrations.
They give long exact sequences of pairs on homology with coefficients in any
fixed abelian group 7. We set

Dy, = Hpiq(FpEs7) and  E,, = Hpi4(FpE, Fp1E; ),

and we may identify E;yq with I:Ip+q(FpE /Fp_1E; ). The cited long exact
sequences are given by maps

i's Hpiq(Fp1E; ) —> Hpsq(FpE; )

and

j't Hyiq(FpE; 1) —> Hyiq(FpE, Fpur E; )

induced by the inclusions i: F,_1E C FyE andj: (F,E, @) C (F,E, Fp_1E) and
by connecting homomorphisms

k': Hyiq(FpE, Fy_1E;w) —> Hpiq-1(Fp-1E; ).
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We have an exact couple and therefore a spectral sequence. Let C,(B) denote
the cellular chains of the CW complex B. Filter H,(E; 7r) by the images of the
H,(F,E; 7).

THEOREM 2451 (HOMOLOGY SERRE SPECTRAL SEQUENCE). There is a
first-quadrant homological spectral sequence {E", d"}, with

E,, = Cp(B; #4(F;)) and E,, = Hy(B; #4(F; 7))

that converges to Hy(E; ). It is natural with respect to maps
D
q l
A

of fibrations. Assuming that F is connected, the composite

g
S

o <— =
s

f

€
Hy(E; ) = FpHy(E; 1) —> FpHp(E; w)/Fp 1 Hy(E; ) = Epg —> E2
= Hy(B; )
is the map induced by p: E — B. The composite
Hy(F; ) = Ho(B; Hy(F; 7)) = E&q % Egz = FoHy(E; ) C Hy(E; )

is the map induced by i: F C E. The transgression : Hp(B; ) — Hp_1(F;m) is
the inverse additive relation to the suspension oy : Hy_1(F; ) —> Hp(B; 7).

SKETCH PROOF. Consider the set of p-cells
e: (DP,SP~Y) — (BP, BP7Y).

When we pull the fibration p back along e, we obtain a trivial fibration since
DP is contractible. That is, p~!(DP) >~ DP x F. Implicitly, since F = p~!(b) is
fixed, we are using a path from b to a basepoint in DP when specifying this
equivalence, and it is here that the local coefficient systems .%;(F) enter into
the picture. These groups depend on the action of 71 (B, b) on F. We prefer not
to go into the details of this since, in most of the usual applications, 71 (B, b)
acts trivially on F and J#;(F) is just the ordinary homology group Hy(F), so
that
E} , = Hy(B; Hy(F)).
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For p =0, the local coefficients have no effect and we may use ordinary
homology, as we have done when describing the fiber edge homomorphism.

Of course, F,B/F, 1B is the wedge over the maps e of the spheres
DP/sP~1 = SP. We conclude that F,E/F, 1E is homotopy equivalent to
the wedge over e of copies of SP A Fy. Therefore, as an abelian group,
Hp14(FpE, Fy_1E; ) is the direct sum over e of copies of Hy(F) and can be
identified with Cp(B) ® Hy(F). Using the precise description of cellular chains
in terms of cofiber sequences given in [93, pp. 96-97], we can compare the
cofiber sequences of the filtration of E with those of the filtration of B to check
that Ei’q is isomorphic as a chain complex to C,(B; 5(F)). This is straight-
forward when 71 (B) acts trivially on F, and only requires more definitional
details in general. The identification of E? follows. We shall return to the
proof of convergence in §24.7. The naturality is clear. The statements about
the edge homomorphisms can be seen by applying naturality to the maps of
fibrations

i r
F —— E — B

L

() —> B — > B.

The additive relation o,: Hy 1(F;m) — Hy(B;m), p > 1, admits several
equivalent descriptions. The most convenient one here is in terms of the
following diagram.

iy

Jx 9
Hp(E;7) — Hy(E,F;nr) —> Hp_1(F;n) —> Hy_1(E;7)

Hp(B, b; )

The additive relation oy is defined on Ker i, and takes values in Coker p.js.
If i, (x) = 0, there exists y such that 9(y) = x, and o, (x) = p«(y). Thinking
in terms of a relative spectral sequence or using (F,E, FoE) C (E, F), we see
that d"(p«(y)) = 0 for r < p, so that the transgression (p.(y)) = d¥(p«(y)) is
defined. Since i.(x) = 0, x cannot survive the spectral sequence. A check
from the definition of the differentials in terms of our exact couple shows that

dP(ps(y)) = x. O
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There is also a cohomological Serre spectral sequence. When 7 = Ris a
commutative ring, this is a spectral sequence of DGA’s by an application of
Corollary 24.4.2. To construct this variant, we use the cohomological exact
couple obtained from the long exact sequences in cohomology of the pairs
(FpE, Fy—1E). The diagonal map gives a map of fibrations

A
E —— EXE

"l lpxp

B —— BxB
A

and therefore gives a map of cohomological spectral sequences.

THEOREM 2452 (COHOMOLOGY SERRE SPECTRAL SEQUENCE). There is
a first-quadrant cohomological spectral sequence { E,, d.}, with

EP1 = CP(B; #(F; 7)) and E}? = HP(B; #(F;n))
that converges to H*(E; ). It is natural with respect to maps of fibrations. Assuming
that F is connected, the composite

HP(B;7r) = HP(B; HO(F; ) = EV° % E2) — HP(E;7)
is the map induced by p: E — B. The composite

HY(E; ) — Eod > E>? = HO(B; HU(F; ) = HI(F; )

is the map induced by i: F C E. The transgression t: HP~Y(F; ) — HP(B; ) is
the inverse additive relation to the suspension o*: HP(B; w) —> HP~Y(F; 7). If
7 = R is a commutative ring, then {E,} is a spectral sequence of DGA’s such that
E, = H*(B; s#*(F; R)) as an R-algebra and Ex, = E°H*(E; R) as R-algebras.

SKETCH PROOF. Up to the last statement, the proof is the same as in homol-
ogy. For the products, we already have the map of spectral sequences induced
by A, so it suffices to work externally, in the spectral sequence of E x E. Since
we are using cellular chains, we have a canonical isomorphism of chain com-
plexes Cy(B) ® Ci(B) = Cy(B x B) [93, p. 99]. Using this, it is not difficult to
define a pairing of E; terms

¢: C*(E;, A*(F)) ® C*(E; *(F)) —> C*(E; s*(F))

that satisfies p1. Then the last statement follows from Corollary 24.4.2. O
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A short exact sequence
1—G—-G—G —1
of (discrete) groups gives a fibration sequence
K(G,1) — K(G,1) — K(G",1),

and there result Serre spectral sequences in homology and cohomology. Focus-
ing on cohomology for definiteness, it takes the following form. This spectral
sequence can also be constructed purely algebraically, and it is then sometimes
called the Lyndon spectral sequence. It is an example where local coefficients
are essential.

PROPOSITION 24.53. (LYNDON-HOCHSCHILD-SERRE SPECTRAL SE-
QUENCE). Let G’ be a normal subgroup of a group G with quotient group G”
and let w be a G-module. Then there is a spectral sequence with

EY? = HP(G”; H1(G'; 7))

that converges to H*(G; A).

PROOF. The point that needs verification in a topological proof is that the
E, term of the Serre spectral sequence agrees with the displayed algebraic E;
term. The latter is shortened notation for

Ext!

2o (L Bxtyycry (Z,)),

ZIG']

where the group actions on Z are trivial. The algebraic action of G” on G’
coming from the short exact sequence agrees with the topologically defined
action of the fundamental group of 71 (K(G”, 1)) on 71 (K(G/, 1)). We can take
account of the G”-action on 7 when defining the local cohomology groups
H%(K(G',1); ) and identifying E;, and then the point is to identify the
displayed Ext groups with

HP(K(G",1); *(K(G', 1); 7)).

The details are elaborations of those needed to work [93, Ex. 2, pp. 127, 141]. O

24.6. Comparison theorems

We have had several occasions to use the following standard result. We state
it in homological terms, but it has an evident cohomological analogue.
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THEOREM 246.1. (COMPARISON THEOREM, [79, THM. XI.11.1]). Let
f: E—'E be a homomorphism of first-quadrant spectral sequences of modules
over a commutative ring. Assume that E; and’Ey admit universal coefficient exact
sequences as displayed in the following diagram, and that, on the E; level, f is given
by a map of short exact sequences as displayed.

0 —— E;O(X)Equ —_— E;,q — > Tong (Esfl,O’E(%,q) — 0

fef l J{f l Tor (ff)
0 /EZ ®/E2 /EZ T /EZ /EZ 0
> p.0 0.9 > 'Ey, — Tor1 (E, 19, Egg) ——

Write f, .2 Ey g —> ’E;’q. Then any two of the following imply the third.

(i) _7;%05 E;,o — /EIZ,YO is an isomorphism for all p > 0.
(i1) f(fq: Eg,q — ’Eé,q is an isomorphism for all g > 0.
(i) fog: Epqg — /E;f’q is an isomorphism for all p and q.

Details can be found in [79, XI.11]. They amount to well-arranged induc-
tion arguments. The comparison theorem is particularly useful for the Serre
spectral sequence when the base and fiber are connected and the fundamental
group of the base acts trivially on the homology of the fiber. The required
conditions on the E? terms are then always satisfied. In §13.3, we made use
of a refinement due to Hilton and Roitberg [64, Thms. 3.1, 3.2] that applies
when we allow the base spaces to be nilpotent and to act nilpotently rather
than trivially on the homology of the fibers.

THEOREM 24.6.2. Consider a map of fibrations

F E B

g

F—> F —> B,

in which B and B are nilpotent and act nilpotently on H,(F) and H,(F'), respec-
tively, where all homology is taken with coefficients in some fixed abelian group. The
following conclusions hold.

(i) Let P > 2 and Q > 0 be fixed integers. Suppose that
(a) Hq(f1) is injective for ¢ < Q, Ho (f1) is surjective,
(b) Hy(f2) is injective for p < P, and Hp(f) is surjective.
Then Hy,(f) is injective for n < N = min(P, Q) and Hn(f) is surjective.
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(it) Let P > 2 and N > 0 be fixed integers. Suppose that
(a) Hu(f) is injective for n < N, HN(f) is surjective,
(b) Hp(f2) is injective for p < P, and Hp(f2) is surjective.
Then Hy(f1) isinjective forq < Q = min(N, P — 1) and Ho ( f1) is surjective.

24.7. Convergence proofs

To give a little more insight into the inner workings of spectral sequences, we
give the proof of Theorem 24.3.2 in detail. In fact, the convergence proof for
filtered complexes will give us an alternative description of the entire spectral
sequence that avoids explicit use of exact couples. If we had given a chain-level
construction of the Serre spectral sequence, its convergence would be a special
case. The proof of convergence with the more topological construction that we
have given is parallel, but simpler, as we explain at the end of the section.

We begin with a description of the E*°-term of the spectral sequence of an
arbitrary exact couple (D, E; i,j, k). Recall that, for any (homological) spectral
sequence, we obtain a sequence of inclusions

0=BcB'c...cz?2cZ'cz=rF!

such that E™*! = Z"/B" for r > 1 by setting Z" = Ker (d") and B" = Im(d").

When (E'} arises from an exact couple, d" = j'k". Here Z" = k™ (Imi").
Indeed, jk"(z) = 0 if and only if k"(z) € Ker j" = Imi’. Since k" is the map
induced on homology by k, z € k~!(Im i"). Similarly, B" = j(Ker i"). Indeed,
b = j'k"(c) for some ¢ € C"! ifand only if b € j"(Im k") = j"(Ker i"). Since j"
is induced from j acting on D, b € j(Ker i"). Applying this to the calculation
of E" rather than E"t!, we obtain

24.7.1 E'=2Z""1B 1 =k Y(Imi"Y)/j(Ker i" 1)
and therefore
24.7.2 E® =k~ 'D*/jD°

where D* = N;>1Imi" and DY = Ur>1 Ker i".
Now let A be a filtered complex. Define a (shifted) analogue C" of Z" by

C;,q = {ala € FyAp4 and d(a) € Fy 1 Apyg-1}).
These are the cycles up to filtration r. We shall prove shortly that

2473 Ej A= (Cpot Fpo1Apig)/([A(Cy 0 14 42) + Fo-14pig)
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for r > 1 and therefore
2474 EpqA = (Cpa + Fpo1Ap19)/(A(C)p,g + Fp—1Ap+q),

-1
where C;f; = ﬂ,zlq’q and d(C®)pq = Urzld(C;+r71‘q7r+2).

Recall that j denotes the quotient map F,A — F,A/F, 1A = EI?A, which
fits into the exact sequence (24.3.1). Formula (24.7.3) rigorizes the intuition
thatanelementx € E, , canberepresented asj(a) for some cycle up tofiltration
r, say a € Cp, and that if d(a) = b € Fy_rA, then j(b) represents d'(x) in
E;;,fr,q+r71'
that avoids the use of exact couples. Historically, the alternative construction

The formula can be turned around to give a construction of {E" A}

came first. Assuming this formula for the moment, we complete the proof of
Theorem 24.3.2 as follows.

PROOF OF THEOREM 2432. We are assuming that A = UF,A and, for each
n, there exists s(n) such that Fy,) A, = 0. Give the cycles and boundaries of A
the induced filtrations

FyZpiqg = ZPYI(A)NF,A and F,B,q = BPT1(A) N FyA.

Then F,B C F,Z and H(F,A) = F,Z/F,B. Since F,H(A) is the image of
H(F,A) in H(A), we have

F,H(A) = (FyZ + B)/B and ES H(A) = F,H,(A)/F,_1 Hy(A).
With a little check for the third equality, this implies
E) ,Hi(A) = (Fy)Z + B)/(Fp-1Z+ B)

= (FpZ)/(FyZN (Fp—1Z + B))

= (Fp2)/(FyZ N (Fp—1A+ F,B))

= (FyZ + Fp_1A)/(FyB+ Fp_1A).
For each g and for sufficiently large 7, namely r > p — s(p + g — 1), we have

FyZpig+ Fp1Aprq = Cp g+ Fp1Apig = Cog + Fp14p1g.
Therefore
FpZ+Fp 1A= Cpy + Fp 1A

If b € FyBy,q, then b = d(a) for some a € A,y441. By assumption, a € F,A

t—p _ Crfl

tprari—t = Cprr1g-ry2 Where

for some ¢, and then, by definition, a € C
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r =t+1—p. Therefore
FyB+ Fp1A=d(Cpy) + Fp1A.

By (24.7.4), we conclude that EH(A) = E®A. 0

PROOF OF (24.73). To see the starting point, observe that j: F,A — EI?A
carries C;,q onto the cycles of Eg’qA and carries d(C}?’q 1) onto the boundaries
of Eg,qA. The proof of (24.7.3) has four steps. We show first that j induces a
map

<. -1
_]. C;,q +Fp*1Ap+q — Z;,q .

We show next that j is surjective. We then observe that

J@(Cyr pgr1) + Fpm1Apiq) C Byl

Finally, we show that the inverse image of B;,jll is exactly
d(C;jr},pi g+1) T Fp—1Ap1q. These statements directly imply (24.7.3).

Let x € C, ; and let y = d(x) € F,,A. Note that y is a cycle, but not gen-
erally a boundary, in the chain complex F,_,A and continue to write y for its
homology class. Note too thaty € C;2, .. ; since d(y) = 0. Write X for the
element of E;,qA represented by j(x). The connecting homomorphism

kit By g = Hpiq(EjA) — Hpig1(Fp14) =Dy 4,

takes X to i{ ! (y). Therefore X € Z;~! and we can set j(x) = X.

To see the surjectivity, consider an element w € ZIZ,_ql C E;’q. We have
ky(w) =i~ !(y) for some y € Hp4q-1(Fp—rA), and we again also write y for
a representative cycle. Let w be represented by j(x'), where x’ € F,A. Then
ki (w) is represented by d(x') € Fp_1A, and d(x’) must be homologous to y in
Fp_1A, say d(x") = d(x') —y. Let x = x’ — x”. Then d(x) = y and j(x) = j(x')
since x” € F,_1A. Therefore j(x) = w and j is surjective.

Now let v e d(C’ ! yc Ch

ptr—1,q—r+2 .9’
Again, v is a cycle but not necessarily a boundary in F,A, and we con-

say v =d(u), where u € Fyy, 1A.

tinue to write v for its homology class. Since v becomes a boundary when
included into Fyy,_14, il (v) = 0. Thus the class ¥ represented by j(v) is in
jx(Ker if71) = B~L.

) Conversely, suppose that j(x) € B{,El,
Jj(x) = j«(v) forsomev € Ker i7~!. Thenj(x)is achain, also denoted v, such that

where x € C; g This means that

v = d(u) for some chainu € Fp,,_1A. Sincej(x — d(u)) = 0, x — d(u) € Fy_1A.

Thus x = d(u) + (x — d(u)) is an element ofd(C;jr:,pqu) +Fp 1Ap4g. O
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PROOF OF CONVERGENCE OF THE SERRE SPECTRAL SEQUENCE. For
a large enough r, we have Ej¢ = Ej . Precisely, E,, consists of perma-
nent cycles when r > p and it consists of non-bounding elements when
r > q+ 1, since the relevant differentials land in or come from zero groups.
Fix r > max(p,q+1) and consider the description of E, ; given in (24.7.1).
Omitting the coefficient group 7 from the notation, we have the exact sequence
2 Jx
o s Hpig(Fp 1 E)—— > Hpy g (Fp B) —— >

k*
Hp4q(FpE, Fp1 E)—>Hpsq-1(Fp—1E) —> - -

With D, . = Hp4(FpE) and E} ; = Hpq(FyE, Fy—1 E), this displays our exact
couple. Consider Z!, which is k, ! (Im i ~"). The domain of if ™" is zero with
our choice of r, so that

Z;,El = Imj,.
Similarly, consider B;;;, which is j( Ker if~1). With our choice of r, Ker i~
is the kernel of the map

i Hpq(FpE) —> Hpy4(E),
so that
B! =Jx(Im(d: Hpiq+1(E, FyE) —> Hpiq(FpE))).
Recall that F,Hyy4(E) = Imi° and define

z. ~1,pr-1
J: FpHpg(E) — Z;,q /B;,q = E;X;

by
JOZ () = jx ().
This is well-defined since Ker i2° = Im 9, and it is clearly surjective. Its kernel

3 * - Ho o] 3 Ho o) — 100 : s - M
is Fp_al+q(E) =Im Ly, SINCE 12, =15 oy and Ker j, = Imi,. O
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total right —, 317 f-nilpotent
natural transformation, 318 group, 79
DG-category, 327 space, 79
divided polynomial Hopf algebra, factor a category, 272
440 functorially —, 272
divisible factorization system
uniquely g- —, 97 functorial weak —, 272
double strong —, 273
category, 336 weak —, 272
of quintets, 337 fiber
fiber, 33 double —, 33
mapping homotopy —, 6
cylinder, 25, 309 homotopy equivalence, 376
path fibration, 31 square, 249
pseudo-functor, 338 terms, 478
dual, 417 fibrant, 277
approximation, 277
E- L-—, 400
equivalence, 400 replacement, 277
local, 400 fibration, 4, 268
localization, 400 acyclic —, 274
model structure, 408 double mapping path —, 31
edge homomorphisms, 479 h-—, 340, 376
elements Hurewicz —, 340
indecomposable —, 423 Kan —, 360
primitive —, 423 L-—, 400
enriched category, 325 minimal —, 362
equalizer, 28 q- —, 345, 384
homotopy —, 33 r-—, 380
equivalence trivial —, 274
E-—, 400 filtered
f-—, 410 colimit, 40
Fr-—, 199 algebra, 425
h- —, 340, 374 bialgebra, 425
A -—, 410, 412 category, 40
q- —, 344,374 coalgebra, 425
Quillen —, 319 limit, 43
subcategory of weak —s, 270 filtration, 419, 482
weak —, 268 complete —, 419
Zr-—, 91 coproduct —, 425
Ex®, 364 decreasing —, 483
exact couple, 480 flat —, 419
extended increasing —, 482
A-module, 428 Lie —, 456
co— comodule, 428 product —, 425
genus, 145, 166 split —, 419

trivial —, 419



finite
H,-—, 264
TTy- —, 264
type

CW complex, 79
R-module, 418
finitely
generated, 418
T-generated, 107
first quadrant spectral sequence, 478
flat filtration, 419
formal
completion, 238, 257, 260
localization, 142, 155
free associative algebra, 454
Fr-equivalence, 199
functor
V- —, 327

functorial weak factorization system, 272

functorially factor a category, 272

generated
finitely —, 418
finitely T- —, 107
T-—, 107
generating
acyclic cofibration, 299
cofibration, 299
generic, 166
genus, 145, 166
adelic —, 240, 261
complete —, 240, 261
extended —, 145, 166
geometric realization, 358, 360
gluing lemma, 306, 347, 389
left —, 306
right —, 306
good
cylinder object, 280
left homotopy, 280
path object, 281
right homotopy, 281
spool, 313
very — cylinder object, 280
very — left homotopy, 280
very — path object, 281
very — right homotopy, 281
graded complex
associated —, 482

group
f-nilpotent —, 79
H-—,178
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nilpotent —, 46

p-compact —, 223

T-complete —, 207

T-local —, 97
grouplike

algbra, 437

H-monoid, 178

group, 178

monoid, 178

space, 16
co—, 128

cofibration, 340, 375
equivalence, 340, 374
fibration, 340, 376
model structure, 340, 379
H,-finite, 264
HELP, 387
co—, 54
HEP, 282, 340, 375
homological grading, 372
homologically graded spectral sequence,
477
homology isomorphism
R-—, 56
homotopic
relative to A, 376
under A, 376
homotopical functor, 315
homotopy, 284, 374
associative, 125
category, 268, 287, 289
classical —, 374
classical —, 334
coequalizer, 27
cofiber, 6, 7
colimit, 29
equalizer, 33
equivalence, 285
cofiber —, 376
fiber —, 376
extension and lifting property, 387
extension property, 282, 340, 375
fiber, 6
good
left —, 280
right —, 281
left —, 280
limit, 34
pullback, 31
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homotopy (continued)
pushout, 25, 309
right —, 281
very good
left —, 280
right —, 281
Hopf
algebra, 426
divided polynomial —,
440
universal covering —, 442
universal enveloping —,
441
ideal, 431
horizontal
1-cell, 336
2-category, 337
horn, 360
Hurewicz
cofibration, 340
fibration, 340
homomorphism, 179

T-cell A-complex, 294
relative —, 293
identity, 336
increasing filtration, 482
indecomposable elements, 423
A-—, 428
indexed
colimit, 328
limit, 328
injective model structure, 392
internal
category, 336
hom object, 323
isomorphism
Thom —, 446

7 -cell complex, 52
Jacobi identity, 454

equivalence, 410, 412
local, 409, 412
tower, 51
Kan
complex, 360
minimal —, 361
fibration, 360
k-small object, 295
Ken Brown’s lemma, 279

fibrant, 400

fibration, 400

local, 399

localization, 400
model structure, 401

% w-localization model structure, 412

A-sequence, 271

left
derived functor, 315
gluing lemma, 306
homotopy, 280
lifting property, 270
proper, 304
saturated, 271

Lie
algebra, 453

restricted —, 465

universal enveloping algebra of a

—, 454

universal enveloping algebra of a

restricted —, 466
filtration, 456
lifting property, 270

left —, 270

right —, 270
limit

filtered —, 43

homotopy —, 34
indexed —, 328

small —, 268
weighted —, 328
lim!, 29
LLP, 270
local
E-—, 400
f-—, 410
H - —, 409, 412
ZL-—, 399
T- — abelian group, 87
T- — group, 97
T- — space, 91
localization
at 7, 410, 412
atT

of a nilpotent group, 98
of a space, 91
of an abelian group, 88
Bousfield —, 395
E-—, 400
f-—, 410
formal —, 142, 155



localization (continued)
Z-—, 400
model structure, 395
of a category, 268
locally
presentable category, 299
small category, 268
Lyndon-Hochschild-Serre spectral
sequence, 491

cofibration, 349, 393

model structure, 348, 356, 392
map

o-—, 74

attaching —, 52

coattaching —, 52

cocellular —, 62
mapping

cocylinder, 374

cylinder, 374

double

— cylinder, 25
— path fibration, 31

microscope, 34

telescope, 29

torus, 27
microscope

mapping —, 34
minimal Kan complex, 361
minimal fibration, 362
Mittag-Leffler condition, 35
mixed model structure, 348, 392
mixing

Zabrodsky —, 186
model structure, 268, 274

compactly generated —, 299

classical —, 375

cofibrantly generated —, 299

colocalization —, 395

combinatorial —, 300

creates a —, 302

E-localization —, 408

h-—, 340, 379

injective —, 392

Z-localization —, 401

2w -localization —, 412

localization —, 395

m- —, 348, 356, 392

mixed —, 348, 392

monoidal —, 332

projective —, 375
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g-—, 345, 384
Quillen —, 375
r-—, 379

resolution —, 395
strongly creates a —, 303

V-—, 332

W -resolution —, 397
module

A-—, 427

co—, 428

coextended —, 428
extended A- —, 428
monoid
H-—, 178
monoidal
category, 323
closed symmetric —, 323
symmetric —, 323
model structure, 332

morphism
o-—, 74
n-ad, 358
CW —, 358

n-category, 327
natural transformation
derived —, 318
V- —, 327
nilpotent
group, 46
of - —, 48
completion at T of a —, 207
localization at T of a —,
98
space, 49
oA -—, 49
f-—79
nilpotently completable, 230
normal, 430

co—, 431

object
compact —, 295
k-small —, 295
sectioned —, 302
small —, 295

small — argument, 295

adic completion, 191
compact group, 223
complete abelian group, 193
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path object, 281

good —, 281

very good —, 281
perfect complex, 393
phantom map, 30
n.-finite, 264
w-module, 69
Postnikov <7 -tower, 61
power, 328

co—, 328
prespectrum

Thom —, 446
primitive

algebra, 424

co— algebra, 424

elements, 423

C-—, 429
primitively generated algebra,
424

principle refinement, 50
product, 421

co—, 422

co— filtration, 425

cotensor —, 429

filtration, 425

pushout —, 330

Samelson —, 180

tensor —, 428

Whitehead —, 183
profinite

abelian group, 43

T-—, 201
projective

model structure, 375

R-module, 418

proper, 305
left —, 304
right —, 305

Priifer ring, 433
pseudo-functor, 335
double —, 338
pullback
homotopy —, 31
pushout
homotopy —, 25
product, 330

cofibration, 345, 384
equivalence, 344, 374
fibration, 345, 384

model structure, 345, 384

quasi

bialgebra, 423
quasi-isomorphism, 374
Quillen

adjunction, 319

equivalence, 319

model structure, 375
quintets

double category of —, 337
quotient tower, 53

R-
cohomology isomorphism, 56
homology isomorphism, 56
split, 380

cofibration, 380
fibration, 380
model structure, 379
rank, 176
rationalization, 128
refects a property, 302
refinement
principle —, 50
regular
cardinal, 40
relative Z-cell A-complex, 294
relative
T-cell complex, 294
Z-cell A-complex, 293
regular — Z-cell A-complex, 294
sequential — Z-cell complex,

294
simple — Z-cell A-complex, 294
replacement
cofibrant —, 277
fibrant —, 277

resolution, 396
model structure, 395
resolvant
W-—, 396
restricted Lie algebra, 465
universal enveloping algebra of a —,
466
retract, 269
argument, 273
closed under —s, 269
right
derived functor, 316
gluing lemma, 306
homotopy, 281
lifting property, 270



right (continued)
proper, 305
saturated, 271
ring
Dedekind —, 433
Priifer —, 433
RLP, 270

Samelson product, 180

saturated
left —, 271
right —, 271
sectioned object, 302
sequential

relative Z-cell complex, 294
Serre spectral sequence

cohomology —, 490

homology —, 488

set
compact —, 295
small —, 295
shearing map, 178
simple
relative Z-cell A-complex, 294
space, 49

simplicial category, 327

slice category, 301

small
colimit, 268
limit, 268
locally — category, 268
object, 295

argument, 295, 297

set, 295

source, 336

space
combinatorial —, 299
completion at T of a —, 199
f-nilpotent —, 79
localization at T of a —, 91
nilpotent —, 49

simple —, 49
T-complete —, 199
T-local —, 91

spectral sequence
Bockstein —, 481
cohomologically graded —,

478

cohomology Serre —, 490
convergent —, 483
first quadrant —, 478
homologically graded —, 477
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homology Serre —, 488
Lyndon-Hochschild-Serre —,

491

spectrum

Thom —, 446
split

filtration, 419

R-—, 380
spool, 309

good —, 313

strong factorization system, 273
strongly creates

a model structure, 303
subcategory of weak equivalences, 270
subdivision, 364
supersolvable

T-—, 107
symmetric monoidal category, 323

T-
complete
abelian group, 197
group, 207
space, 199
generated, 107
local
abelian group, 87
group, 97
space, 91
profinite, 201
supersolvable, 107
target, 336
telescope
mapping —, 29
tensor, 328
algebra, 454
co—, 328
product, 428
of a space and a ring, 254
terms
base —, 478
fiber —, 478
Thom
isomorphism, 446
prespectrum, 446
spectrum, 446
topological category, 327
torus
mapping —, 27
total
left derived functor, 317
right derived functor, 317
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total (continued)
singular complex, 358, 360
tower, 43
Postnikov «/- —, 61
convergent —, 43
H-—, 51
quotient —, 53
transfinite composite, 271
transgression, 479
trivial
cofibration, 274
fibration, 274
filtration, 419
two out of three property, 270
type, 176

uniquely g-divisible, 97
unit, 421, 422
co—, 422
universal
covering Hopf algebra, 442
enveloping algebra
of a Lie algebra, 454

of a restricted Lie algebra, 466

enveloping Hopf algebra, 441

Y.
bicomplete category, 329
category, 325
functor, 327
model structure, 332
natural transformation, 327

vertical
1-cell, 336
2-category, 337

very good
cylinder object, 280
left homotopy, 280
path object, 281
right homotopy, 281

cofibrant, 397
cofibration, 397
colocal, 396
resolution model structure,
397
resolvant, 396
weak equivalence, 268, 360
combinatorial —, 360
subcategory of —s, 270
weak factorization system, 272
functorial —, 272

weighted
colimit, 328
limit, 328
WES, 272
whiskering, 316, 341
Whitehead

product, 183
theorem, 54, 55, 285, 290, 361

Zabrodsky mixing, 186
Zr-equivalence, 91



Mathematics

With firm foendations dating only from the 19508, algebraic topology is a relatively
young area of mathematics, There are very few textbooks that treat fundamental
fopics beyond a first course, and many topics now essential to the field are not
treated in any textbook. J. P May's previous book A Concise Course in Algebraic
Topology addresses the standard first course material, such as fundamantal
groups, covering spaces, the basics of homotopy theorny, and homaology and
cohomology. In this sequel, May and his coauthor, K. Ponto, cover lopics that are
essential for algebraic topologists and others interested in algebraic topology, but
that are not treated in standard fexts, Specifically, they focus on the localization
and completion of topolegical spaces, model calegories, and Hopl algebras.

The first half of the book sets out the basic theory of localization and comple-
tion of nilpotant spaces, using the most elemeantary treatmeant the authors know
ol It makes no use of simplicial technigues or model categories, and it provides
full details of other necessary preliminaries, With these topics as motivation, most
of the second half of the book sets out the theory of model categories, which is
the central omganizing framework for homotopical algebra in general. Examples
from topology and homological algebra are treated in parallel. A concise final sec-
fion develops the basic theony of bialgebras and Hopf algebras.

“May and Ponto have done an excellent job of assembling important results scat-
terad throughout the mathematical literature, primarily in research articles, into a
coherent, compeling wholke. All researchers in algebraic topology should have at
least a passing acguaintance with the material treated in this book, much of which
does not appear inany of the standand texts”

—Kathryn Hess, Boole Polytechnique Fédérale de Lausanne

J. P. May is professor of mathematics at the Uiniversity of Chicago; he isthe
author or coauthor of many papers and books, including Simplicial Objects in
Algabraic Topology and A Concise Cowrse in Algabraic Topology, both also in this
series, K, Ponto is assistant professor of mathematics atthe University of Ken-
Tucky.
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