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Abstract. The search for frequent patterns in transactional databases
is considered one of the most important data mining problems. Several
parallel and sequential algorithms have been proposed in the literature to
solve this problem. Almost all of these algorithms make repeated passes
over the dataset to determine the set of frequent itemsets, thus imply-
ing high I/O overhead. In the parallel case, most algorithms perform a
sum-reduction at the end of each pass to construct the global counts,
also implying high synchronization cost. We present a novel algorithm
that exploits efficiently the trade-offs between computation, communi-
cation, memory usage and synchronization. The algorithm was imple-
mented over a cluster of SMP nodes combining distributed and shared
memory paradigms. This paper presents the results of our algorithm on
different data sizes experimented on different numbers of processors, and
studies the effect of these variations on the overall performance.

1 Introduction

The discovery of Association Rules is one of the most productive fields in the
development of sequential algorithms as well as parallel algorithms for Data
Mining. Simultaneously, with the evolution of these algorithms the possible ap-
plications of Association Rule Mining (ARM) has also been extended together
with a corresponding increase in the volume of the databases to be mined. As
a consequence of the latter, even using the most efficient sequential ARM al-
gorithms, it is not possible to reduce the support threshold to the desired level
without causing a combinatorial explosion in the number of identified frequent
itemsets coupled with a corresponding computational overhead.

The situation described above confirms the relevance of the application of
Parallel Computing for Association Rule Mining, which is a very active global
research area. The main challenges of Parallel Computing are: load balancing,
minimization of the inter-process communication overhead, the reduction of syn-
chronization requirements and effective use of the memory available to each
processor.

These issues must be taken into account in the development of efficient parallel
algorithms for Association Rule Mining; basic references to consider are [8,9,10].
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The prototypical ARM application is the analysis of sales or basket data [1].
The task can be broken into two steps. The first step consists of finding the set of
all frequent sets of items that can be the transaction database. The second step
consists of forming implication rules among the sets of items found; the latter
can be done in a straightforward manner so we will focus on the first step.

In previous papers [11,12], we proposed a new algorithm called CBMine (Com-
pressed Binary Mine) for mining association rules and frequent itemsets. Its ef-
ficiency is based on a compressed vertical binary representation of the database.
CBMine has been compared with other efficient ARM algorithms to obtain fre-
quent itemsets, including: Fp-growth (implementation of Bodon), MAFIA and
Patricia Trie . The experimental results obtained showed that CBMine gives the
best performance in most cases, especially on big and sparse databases.

In this paper we propose a new parallel algorithm based in CBMine named
ParCBMine(Parallel Compressed Binary Mine). ParCBMine exploits efficiently
the trade-offs between computation, communication, memory usage and syn-
chronization. The algorithm was implemented over a cluster of SMP nodes com-
bining distributed and shared memory paradigms. Section 5 of this paper shows
the experimental results of our algorithm on different data sizes, evaluated on
different numbers of processors, and studies about the effect of these variations
on the overall performance.

The paper is organized as follows: the next section is dedicated to related work;
in section 3 we give a formal definition of association rules; section 4 contains
a description of ParCBMine algorithm; experimental results are discussed in
section 5; and some conclusions are presented in section 6.

2 Related Work

Until now the great majority of the parallel algorithms for Association Rule
Mining are based on the sequential Apriori algorithm. An excellent survey made
by Zaki in 1999 [18] classifies different algorithms up to that date, according to
the load balance strategy, the architecture and the type of parallelism used in
the algorithm. Other important references are [2,15,16,19,20,22].

Apriori algorithm has been the most significant of all sequential algorithms
proposed in the literature. Yet, directly adapting an Apriori-like algorithm will
not significantly improve performance over frequent itemsets generation. To per-
form better than Apriori-like algorithms, we must focus on the disadvantages as-
sociated with this approach. The main challenges include synchronization, com-
munication minimization, work-load balancing, finding good data layout and
data decomposition, and disk I/O minimization.

Recently interesting parallel ARM has increased as a result of this early work.
We can identify a number of early ARM algorithms: Count Distribution, Data
Distribution and Candidate Distribution. These algorithms were first presented
in [2] and offer a fairly simple parallelization of Apriori using different paradigms
of parallelization; namely data-parallelism and control-parallelism, or a combi-
nation of both. In Count Distribution the dataset is partitioned equally among
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the nodes of the parallel system. Each of these nodes computes the local support
for every candidate k-itemset in the iteration k. At the end of each iteration by
exchanging the local supports the global support is generated and the frequent
itemsets determined. The nodes must be synchronized to receive the candidate
itemsets and the coordinator node must wait for all local counts to generate
the global support. The former factors affects communication cost and load-
balancing; however the Count Distribution algorithm represents a good first
step and can be the core of subsequent implementations that address these is-
sues. In Data Distribution the set of candidate itemset is partitioned into disjoint
sets and these are sent to different nodes. The problem in this parallel version
of Apriori is the magnitude of the huge communications required at the end of
each iteration. In Candidate Distribution load-balancing is thus the main target,
selectively replicating the dataset so that each processor proceeds independently.
The algorithm requires redistribution of the dataset at level l, this is identified
using a heuristic approach.

There are other parallel versions of well-known sequential algorithms like PDM
(parallelizing DHP) [3]. But this was not a successful attempt due to its poor
performance with respect to the above algorithms. Other algorithms that ad-
dress the size of candidacy and better pruning techniques are DMA and FDM
presented in [4,5]. In [7] the Optimized Distributed Association Mining (ODAM)
algorithm is proposed based on Count Distribution which reduce both the size
of the average transaction and the number of message exchanges among nodes
in order to achieve better performance.

The Eclat(Equivalence CLass Transformation) algorithm [17] uses an itemset
grouping scheme based on equivalence classes and partitions them into disjoint
subsets among the processors. At the same time Eclat makes use of a kind of
vertical representation of the dataset and then selectively replicates it so that
each processor has the portion of the dataset it needs for calculations. After
the initial phase the algorithm eliminates the need for later communication or
synchronization. The algorithm scans the local partition of the dataset three
times, therefore diminishing the I/O overhead. Unlike other earlier algorithms,
Eclat uses simple intersection operations to compute frequent itemsets and does
not use complex hash tables structures. The main deficiency of this algorithm
lies in the need for a proper heuristic to achieve a suitable load balance among
the processors as of the L2 partitioning, because the equivalence classes do not
have the same cardinality.

In [15] a collection of algorithms with different partitioning and candidate
itemsets count schemes are described. Like Eclat, all of them assume a vertical
representation of the dataset (tidlits per item), which facilitates the intersection
operation of tids of items that make up an itemset. The dataset is duplicated
in a selective fashion to reduce synchronization. Two of these algorithms (Par-
Eclat and Par-MaxEclat) are based on the classes of equivalence formed by the
candidates first item, whereas the other two algorithms (Par-Clique and Par-
MaxClique) use the maximum closed hypergraph to partition the candidates.
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In [21], a parallel algorithm is proposed for Association Rule Mining that uses
a classification hierarchy named HPGM (Hierarchical Hash Partitioned Gener-
alized Association Rule Mining). In this algorithm, the available memory space
is completely used identifying the frequent occurrence of candidates itemsets
and replicating them to all processors, considering that frequent itemsets can be
locally processed without communication. This way the load asymmetry among
processors can be effectively reduced.

3 Problem Definition

In this section we define some necessary terminology to facilitate understanding
of the following sections. In this context it should be noted that we are only
focused on the problem of identifying frequent itemsets on large databases.

A dataset is a set of transactions and each of these is composed by a transac-
tion identifier (TID) and a set of items. The items in a transaction may represent
a shopping list in a supermarket by a customer (known as basket data) or words
in a document or stocks movements. A set of items, called itemset is frequent
if it is contained in a number of transactions above a user-specified threshold
(minimum support-minsup).

An itemset with k items will be referred to as k-itemset and its support will be
denoted as X.sup, where X is the k-itemset in question; support is represented
as a percentage rather than an absolute number of transactions.

More formally: I = {i1, i2, ..., in} be a set of n distinct items. Each transaction
T in the dataset D contains a set of items, such that T ⊆ I. An itemset is said
to have a support s if s% of the transaction in D contains the itemset.

4 ParCBMine

In this section we describe the parallel version of the CBMine algorithm which
we have named ParCBMine (Parallel CBMine).

ParCBMine takes advantage of the vertical representation of the dataset as in
CBMine and combines suitably the parallel programming models of shared and
distributed memory using the libraries pthreads (for multithreads programming)
and MPI (for message passing programming) respectively.

The mixture of multithreads programming and message passing in ParCB-
Mine was done based on the fact that the algorithm was implemented over a
cluster with SMP (Symmetric Multi-Processing) nodes for the parallel process-
ing managed by a GNU/Linux operating system; each node is composed by a
dual processor. All processors are Intel Xeon with hyperthreading technology,
which provides up to four threads on each node.

Although the algorithm is not tied to the number of real threads (proces-
sors) that could be deployed on each node, this is an important element on the
scalability of ParCBMine, because it allows the use of global information in the
shared memory of each node in a better way, i.e., in candidate generation and
support counting. Many authors refer to this as “intra-node parallelism”, and in
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certain way we have incorporated some aspects of the Candidate Distribution
algorithm, in this case by means of multithread programming using the Pthreads
library.

4.1 CBMine Algorithm

CBMine is a breadth-first search algorithm with a VTV organization, that uses
compressed integer-lists for itemset representation.

Let T be the binary representation of a database, with n filtered items and m
transactions. Taking from T the columns associated with frequent items, each
item j can be represented as a list Ij of integers (integer-list) of word size w, as
follows:

Ij = {W1,j , . . . , Wq.j} , q = �m/w�, (1)

where each integer of the list can be defined as:

Ws,j =
min(w,m−(s−1)∗w)∑

r=1

2(w−r) ∗ t((s−1)∗w+r),j. (2)

The upper expression min(w, m − (s − 1) ∗ w) is included to consider the case
in which the transaction number (s−1)∗w+ r does not exist due to the fact that
it is greater than m. The value ti,j is the bit value of term j in the transaction i.

This algorithm iteratively generates a prefix list PLk. The elements of this
list have the format: 〈Prefixk−1, CAPrefixk−1 , SuffixesPrefixk−1〉, where
Prefixk−1 is a (k − 1)-itemset, CAPrefixk−1 is the corresponding compressed
integer-list, and SuffixesPrefixk−1 is the set of all suffix items j of k-itemsets
extended with the same Prefixk−1, where j is lexicographically greater than
every item in the prefix and the extended k-itemsets are frequent. This repre-
sentation not only reduces the required memory space to store the integer-lists
but also eliminates the Join step described in Apriori algorithm.

The Prune step of Apriori algorithm is optimized by generating PLk as a
sorted list according to the prefix field and, for each element, by the suffix field.

In order to determine the support of an itemset with a compressed integer-list
CA, the following expression is considered:

Support(CA) =
∑

〈s,Bs〉∈CA

BitCount(Bs), (3)

where BitCount(Bs) represents a function that calculates the Hamming Weight
of each Bs.

Although this algorithm uses compressed integer-lists of non null integers
(CA) for itemset representation, in order to improve the efficiency, we maintain
the initial integer-lists (including the null integers) Ij = {W1,j , . . . , Wq,j} asso-
ciated with each large 1-itemset j. This consideration allows direct accessing for
any Ij the integer position defined in CA.
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The above allows us to define the following formula (notice that this func-
tion represents a significant difference and improvement with respect to other
methods):

CompAnd(CA, Ij) = {〈s, B′
s〉|〈s, Bs〉 ∈ CA, B′

s = (BsandWs,j), B′
s 	= 0}. (4)

Note that the cardinality of CA is reduced as the size of the itemsets increases
due to the downward closure property; thus the application of identities 3 and 4
becomes more efficient.

The complete CBMine algorithm is presented in Table 1.

Table 1. CBMine algorithm

Algorithm 1: CBMine
L1 = {large 1-itemsets} ; // Scanning the database1

PL2 = {〈Prefix1, CAPrefix1 , SuffixesPrefix1〉};2

for k = 3;PLk−1 �= ∅; k + + do3

forall 〈Prefix,CA, Suffixes〉 ∈ PLk−1 do4

forall item j ∈ Suffixes do5

Prefix′ = Prefix ∪ {j};6

CA′ = CompactAnd(CA,Ij);7

forall (j′ ∈ Suffixes) and (j′ > j) do8

if Prune(Prefix′ ∪ {j′}, PLk−1) and Support(CompactAnd(CA′ ,9

Ij′)) ≥ minsup then
Suffixes′ = Suffixes′ ∪ {j′};10

end11

if Suffixes′ �= ∅ then12

PLk = PLk ∪ {〈Prefix′, CA′, Suffixes′〉};13

end14

end15

end16

end17

end18

Answer=
⋃

k Lk ; // Lk is obtained from PLk19

Note that this algorithm only scans the dataset once in the first step.

4.2 Intelligent Block Partitioning

Given PLk−1 we need to partition it among the threads in the most efficient
manner. In the literature we can identified several partitioning techniques, such
as Bitonic Partitioning from Zaki [19]. Nevertheless, given the features of the
sequential algorithm, we achieve the best results making a block partitioning, so
the information to be processed by each thread was not fragmented.

For this purpose we develop Intelligent Block Partitioning (IBP), dynamically
recomputing the load balance for each thread in a straightforward manner. We



Distributed and Shared Memory Algorithm 355

use equation 5 to compute the work load generated by a Prefix based on the size
of its Suffixes. The pseudo-code of IBP is given in Table 2.

G (x) =
x (x − 1)

2
(5)

Table 2. Intelligent Block Partitioning algorithm

Algorithm 2: IBP

Total =
∑|PLk−1|

j=0 G(|SuffixesPrefixj |); /* Total Work Load */1

Ideal = Total
MaxThreads

; /* Ideal Work Load for each thread */2

i = 1;3

load = starts[0] = 0;4

forall 〈Prefix,CA, Suffixes〉 ∈ PLk−1 do5

load = load + G(|Suffixes|);6

if load > Ideal then7

/* Set block boundaries */
start[i] = stop[i − 1] = 〈Prefix,CA, Suffixes〉;8

/* Dynamically recompute Total and Ideal Work Load */
Total = Total- load + G(|Suffixes|);9

Ideal = Total
MaxThreads−i

;10

load = G(|Suffixes|);11

i++;12

end13

end14

stop[i] = 〈Prefix|PLk−1|, CAPrefix|PLk−1| , SuffixesPrefix|PLk−1| 〉;15

The aforementioned partition strategy is one of the improvements ParCB-
Mine introduces over its sequential counterpart, and this can be verified in the
experimental results.

4.3 ParCBMine Algorithm

Considering a master-slave framework, typical of parallel clusters, in the first
pass, the master node or coordinator determines the global L1 and partitions
the dataset D in N equitable segments and sends each one of them to the
corresponding node that makes up the cluster, of this way ParCBMine like Count
Distribution, adopts a horizontal partitioning of the dataset thus using “inter-
node parallelism”, in this case the communication among the nodes is made by
means of message passing using the MPI library.

The first pass is special. For all other passes k > 1, the algorithm works as
follows:

1. Each master-thread process Pj(j = 1, N) generates all the set Ck, using
all the frequent itemsets Lk−1 created at the end of pass k − 1. Notice
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that every process has the same Lk−1, so they will generate identical Ck.
Threads Pi(i = 1, N × MaxThreads) running in the same node, share the
same memory structure for Lk−1, Ck and Dj(j = 1, N).

2. The master-thread process Pj creates MaxThreads−1 new threads and each
one of these makes a pass over Dj data partition and develops local support
counts for a portion of the candidates in Ck which was previously partitioned
using the IBP strategy. With this, the local Ck at node j, is partitioned
equitably and each thread of the process develops the support count of its
candidates without making any synchronization to access the memory, since
the support count is developed on a reserved memory structure for each
candidate, taking advantage of the vertical representation of the dataset.

3. The master-thread process Pj sends the local counts of Ck to the master
node or coordinator, in order to make an all-reduce operation to generate
the global counts of Ck. Master-thread processes are forced to synchronize
in this step.

4. The master node or coordinator computes Lk from Ck. If Lk is not empty
the coordinator sends it to the master-thread process Pj and continues on
to the next pass.

Notice that unlike Count Distribution we have replaced the word processor by
process, since given the characteristics of the hardware of our cluster the amount
of processes is greater than the amount of processors, and can be expressed by
N × MaxThreads, where: N is the number of nodes and MaxThreads is the
maximum number of threads per node, in our particular case MaxThreads = 4
considering the use of the Hyperthreading technology.

Unlike PAR-DCI algorithm [13], in which the local dataset is partitioned yet
again into as many portions as threads that were possible to deploy, in step 2 of
ParCBMine a more efficient solution was adopted. We distribute the candidate
support count among the threads by partitioning the candidate set into disjoint
parts of approximately the same size, without the need for semaphoric operations
to control memory access.

4.4 Complexity Analysis

In this section we will evaluate the complexity of our algorithm in three different
contexts, first assuming the use of shared memory model, second employing the
distributed memory model, and lastly the solution proposed by us of fusing the
models of shared memory and distributed memory.

Given that our algorithm is intended for a parallel framework based on an
SMP cluster, it is important to indicate that if we had used only a distributed
memory model based on message passing, like other authors have done, the
performance of the algorithm would have suffered considerably.

It is well known that in any algorithm based on Count Distribution the scala-
bility degrades as the number of dataset partitions increases, due to the amount
of information that each MPI process receives in each pass when synchroniz-
ing the processes in order to develop global support counts of itemsets in the
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candidate set. The amount of information is (N − 1) × |Ck|, where: N is the
number of MPI processes with a dataset portion assigned to it and |Ck| is the
cardinality of the candidate set generated in each pass and for which each MPI
process computes a local support count. Bear in mind that whatever the value of
N is, the cardinality of Ck does not change. This is the reason why the reduction
of local set Ck is an issue that has been and continues to be a research objec-
tive. From the literature one suggested approach involves the use of probabilistic
estimations of local support, see [6,14].

Given that we are using SMP nodes the advantages offered by the data local-
ity would be wasted since all the MPI processes running in each node will try
to equitably distribute the total physical memory of the node, reserving equal
amounts of memory for data structures to store Lk−1 and Ck, as well as for the
dataset partition assigned to the node. For the analysis lets assume that the
problem size remains constant, so the amount of candidates will be the same in
each case and will be denoted as |Ck|.

In the development of a parallel algorithm the most common notation for the
execution times are (if we consider a problem of size m running in p processors):
Sequential computation denoted by σ (m), Parallel execution time (computa-
tion that can be performed in parallel) denoted by ϕ (m) and Parallel overhead
(communication and synchronization, etc) denoted by κ (m). For the experi-
ments performed, the sequential plus the parallel execution time was considered
as the parallel execution time because of the characteristic of the CBMine, the
part that can not be parallelized is less than 1% of total execution time. For that
reason, the two times measured were: Parallel execution time and Parallel
overhead.

Shared Memory: Lk−1 is partitioned in disjoint sets using IBP, support is
develop from the common data base.

Algorithm 3: Shared Memory
while(Lk−1 	= ∅) ; /* Level Iterator */

Ct
k = IBP (Lk−1, t) ; /* Ck =

⋃
Ct

k t=1,..,MaxThreads */
foreach(X ∈ Ct

k) ; /* Count each X in the DB */
if(sup(X, DB) ≥ minsup) Lk = Lk

⋃
{X}

where: ϕ(m) = |Ck| ∗ |DB|, κ(m) = ∅.

ShT ime =
∑

k

|Ck| ∗ |DB|
p

= . . . =
∑

k

max|Ct
k| ∗ |DB| (6)

Distributed Memory: The DB is partitioned among the quantity process de-
noted by P , each one has a copy of Lk−1, count the local support and
exchange it (i.e. Message Passing). For example: if the nodes are single pro-
cessor P = N ; in case that the nodes are SMP then P = N x p, where: N is
the quantity nodes, and p is the number of processors in each node.
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Algorithm 4: Distributed Memory
DBid = Partition(DB, id) ; /* Horizontal partitioning */
while(Lk−1 	= ∅) ; /* Level Iterator */

Ck = GenerateCandidate(Lk−1) ; /* Ck is the same for each
process */

foreach(X ∈ Ck) ; /* Count each X in the DBid */
local[x] = sup(X, DBid) ; /* Local support */

global = InterchangeAndSum(local) ; /* All to All */
foreach(X ∈ Ck) ; /* global support */

if(global[X ] ≥ minsup) Lk = Lk

⋃
{X}

where: ϕ(m) = |Ck|∗|DB|, κ(m) =
∑

k InterchangeAndSum =
∑

k |Ck|∗2∗P =∑
k |Ck| ∗ 2 ∗ N ∗ p.

DsT ime =
∑

k

|Ck| ∗ |DB|
N ∗ p

+ κ(m) =
∑

k

|Ck| ∗ max|DBid| + κ(m) (7)

Share + Distributed Memory Solution (Hybrid memory): In the pre-
vious cases the P processes were sharing the memory or completely dis-
tributed, in this case there will be N MPI-processes in correspondence with
the quantity of nodes and in each node p processes sharing memory, for that
reason P = N , because for the communication among nodes is not consider-
ing the quantity of processes in each node. In this case a process master for
each node is in charge of the communication with the remaining nodes and
of distributing tasks to the other processes that are in its node.

Algorithm 5: Hybrid Memory
DBN = Partition(DB, N) ; /* Horizontal partitioning */
while(Lk−1 	= ∅) ; /* Level Iterator */

Ct
k = IBP (Lk−1, t) ; /* Ck =

⋃
Ct

k t=1,..,MaxThreads */
foreach(X ∈ Ct

k) ; /* Count each X in the DBN */
local[x] = sup(X, DBN) ; /* Local support */

if(master(t)) then global = InterchangeAndSum(local)
foreach(X ∈ Ct

k) ; /* global support */
if(global[X ] ≥ minsup) Lk = Lk

⋃
{X}

where: ϕ(m) = |Ck|∗ |DB|, κ(m) =
∑

k InterchangeAndSum =
∑

k |Ck|∗2∗N .

HyT ime =
∑

k

|Ck| ∗ |DB|
N ∗ p

+ κ(m) =
∑

k

max|Ct
k| ∗ max|DBN | + κ(m) (8)
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If we are using the same processes quantity for each memory model it is very
simple to observe that:

ShT ime < HyT ime < DsT ime (9)

5 Results

All the experiments described in this section were performed on a SMP clus-
ter of which we used 6 nodes: the master node and five working nodes. Each
working node is equipped with two Intel Xeon processors at 2.4GHz based on
hyperthreading technology, 512MB of RAM, 40GB of disk space and 1Gb/s
Fast Ethernet card. The working nodes are connected to a master node by a
network switch Gigabit Ethernet. The master node is equipped with two Intel
Xeon processors at 3.06GHz based on hyperthreading technology too, 2GB of
RAM, and a disk array of five disks, 36.4GB of disk space each (total 145.6GB).

We ran two versions of the parallel algorithm: one using the distributed mem-
ory model implemented with MPI, so there were two processes for each node, i.e.
one process by physical CPU; and the other combining the distributed memory
model (MPI again) and the shared memory model implemented using Pthreads,
in this case there were 4 threads per node sharing the same memory, considering
the use of hyperthreading technology.

The experiments were made with one synthetic (T40I10D600K composed by
600000 transactions and 999 items) and one textual dataset (Kosarak com-
posed by 990007 transactions and 41935 items) (available from FIMI repository-
http://fimi.cs.helsinki.fi). The Kosarak Dataset was provided by Ferenc Bodon
and contains (anonymized) click-stream data of a Hungarian on-line news portal.
The T40I10D600K was created using an IBM generator(www.almaden.ibm.com/
cs/quest/syndata.html).

In the first experiment we compared the execution times between ParCBMine
using MPI plus Threads and ParCBMine using MPI only. The Figure 1 (a) and
Figure 1 (b) show that the parallel execution time is reduced to half when the
number of processors is doubled, for both implementations. The communication
time overhead is stable in the first case (with the use of MPI + Tthreads) but
increases linearly in the second (MPI only).

The second experiment was performed to analyze the SpeedUp (Figure 2)
and Efficiency (Figure 3) of both implementations of ParCBMine algorithm.
Figure 2 shows that the implementation of ParCBMine algorithm using MPI plus
Threads scales better when the number of processors is increased in spite of the
communication time overhead. Likewise, notice that in Figure 3 the degradation
of the efficiency for ParCBMine implementation using MPI plus Threads is much
slower with the increase of the communication time overhead.

In the third experiment we analyzed the algorithm scalability, thus we consid-
ered the case where both datasets were so big that they could not fit in the main
memory of any node, increasing databases size in proportion with the number
of nodes (N), these datasets were named T40I10D600KxN and KosarakxN. The
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(a) (b)

Fig. 1. Execution time comparison: (a) T40I10D600K, minsup = 0.01, (b) Kosarak,
minsup = 0.002

(a) T40I10D600K (b) Kosarak

Fig. 2. SpeedUp comparison

(c) T40I10D600K (d) Kosarak

Fig. 3. Efficiency comparison

minimum support values used in each case were the smallest that the sequential
version could process (for T40I10D600KxN the minimum support was set to
0.005 and for KosarakxN the minimum support was set to 0.003).
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(a) MPI + Threads (b) MPI

(c) MPI + Threads (d) MPI

Fig. 4. Scalability Analysis of ParCBMine in T40I10D600KxN (a y b) and
KosarakxN(c y d)datasets

Observe in Figure 4 that the parallel execution time remains constant, thus
the scalability of the algorithm does not depend on the database used.

As a conclusion of these experiments we can affirm that the shared-distributed
memory combination proved to be an effective way to avoid high traffic of data
and drastic reduction of the efficiency of the parallel algorithm.

6 Conclusions

The algorithms proposed by Rakesh Agrawal and John Shafer in [2] are recog-
nized as benchmarks for the development of parallel algorithms for Association
Rules Mining.

Making a general assessment of these algorithms we can say that the Count
Distribution reduces the communication overhead at the expense of ignoring
the system physical memory. In a cluster of workstations environment, with
monoprocessor nodes, this is probably the best approach; nevertheless it may not
be the best solution in the case where nodes are SMP, because it would not take
advantage of the combination of shared and distributed memory models. In order
to reach efficient implementations based on Count Distribution, determining new
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heuristics that allow a reduction of the cardinality of the local Ck obtained by
each processor continues to be a latent problem.

The Data Distribution algorithm can help us to explore this feature by fully
exploiting the physical memory with the risk of increasing communication over-
head. The ability to count in a single pass T times as many candidates as Count
Distribution makes this algorithm a strong contender.

If we include detailed background knowledge of the problem in the Candidate
Distribution, the joint benefits of Count Distribution and Data Distribution [2]
can be obtained. Yet, there are still some challenges for researchers in parallel
algorithms for association rule mining: to find a heuristic that allows (from a step
k = l) candidate itemsets partitioning so that synchronization among processors
is not needed, and to obtain a suitable load balance among the processors.

In conclusion we suggest that the purposed parallel algorithm described here
ParCBMine based on the sequential algorithm CBMine, and sustained on the
principles of Count Distribution in which some features of Candidate Distribu-
tion are also introduced, suitably combines the parallel programming based on
the message passing model with multithread programming. ParCBMine contin-
ues to be developed and in the future we expect to present new results oriented
to the reduction of the computational effort at synchronization level and to reach
a better load balance among processors.
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