

Code Android games like a pro

Android Arcade
Game App

A Real World Project - Case Study Approach

J.F. DiMarzio

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iv

Contents at a Glance

About the Author... viii

About the Technical Reviewer... ix

About the Game Graphics Designer.. x

Acknowledgments... xi

Chapter 1: Introduction to Android Gaming■■ ...1

Chapter 2: What Is an Arcade Game?■■ ..7

Chapter 3: Creating a Menu■■ ...13

Chapter 4: Drawing the Background■■ ...23

Chapter 5: Creating the Player Character and Obstacles■■39

Chapter 6: Collision Detection■■ ...67

Chapter 7: Keeping Score■■ ..79

Chapter 8: Adding New Levels■■ ...87

Index...89

1

Chapter 1
Introduction to Android
Gaming

Welcome to Android Arcade Game App. In this book, you will learn how to
create an Android arcade-style game “from project to publish.” While I will walk
you through solutions to some gaming development problems, this book is not
necessarily for beginner developers.

You chose this book because you are passionate about Android as a platform
and you want to develop arcade-style, Android-based games. By the time you
have finished reading this book, you will have the knowledge you need to create
a fun and compelling game on Android’s latest flavor: Ice Cream Sandwich.
The advantage of this is that the games you build in this book will run on both
Android-based phones and Android tablets.

It is hugely satisfying to sit down and play a game that you wrote. This is
especially true of arcade games, which lend themselves perfectly to the casual
mobile gamer experience.

What You Should Know
Before reading this book, you should have a good working knowledge of
Android development. This means that you are well-versed in Java and the
Android SDK, and you have tried your hand at building projects and applications
in Android.

CHAPTER 1: Introduction to Android Gaming2

Finally, you should have at least beginner-level knowledge of game development
to get the most out of this book. You may never have written a game on your
own, but you should know what it takes to develop one. What this means, in
practice, is that you should have a basic knowledge of OpenGL ES and how it is
used in Android gaming.

In creating the Prison Break game in this book, you will use glOrthof(),
GLSurfaceView, textures, vertices, and other OpenGL ES concepts. If none of
these sound familiar to you, I suggest you start with a more entry-level book,
such as Practical Android 4 Game Development by J. F. DiMarzio (Apress, 2011).

What You Will Learn
In this book, you will learn how to use your knowledge of Android development
and OpenGL ES to create an entertaining, interesting game. You will build a
game that follows the conventions of the arcade style. The game, Prison Break,
includes many of the elements of more complicated games—thus making it a
good learning tool.

By the end of this book, you will have learned key programming skills for
developing arcade-style Android games. The following is a list (in no particular
order) of some of the skills that you will pick up as you progress through this
book:

Displaying and manipulating graphics with OpenGL 	

Working with resources such as bitmaps	

Spawning and killing Android threads	

Creating a splash screen, a menu system, and a game 	
engine

You should also be familiar with the Eclipse IDE (integrated development
environment). While Android games can be developed in many different IDEs, all of
the examples in this book use Eclipse Indigo. If you do not have a current version of
Eclipse, download it from http://eclipse.org.

Note  While it is possible to debug your code using the emulator, get an Android
device if you are serious about game development. I have found that the emulator
does not always render as accurately or run as fast as a mobile device running a
comparable SDK level. And when you are writing a game, accuracy is key.

http://eclipse.org

CHAPTER 1: Introduction to Android Gaming

3

The Nintendo Game Boy featured a small, gray-scale screen and
interchangeable games. Until this time, the majority of portable “video games”
were single-function devices that played either one or a small set of preinstalled
games. But people could finally take their video games, albeit scaled-downed
versions, anywhere they wanted to. This put mobile games in the hands of the
masses, but what about the developers?

While there was an established base of casual or independent computer game
developers at the time, the Game Boy was not a practical platform for them
because it was still considered a gaming console. Games were developed using
proprietary C libraries and required the use of expensive, licensed, development
hardware. This put development out of reach of the casual game developers,
relegating them to PCs if they wanted to express themselves.

Around the same time the Game Boy was hitting its stride, two more revolutions
began to take form; revolutions that would lead us to Android as a gaming
platform. Cell phones and the Internet began to become widely used and
accepted by the late 1980s, just as portable gaming took off.

Early mobile phones were expensive to make and expensive to use. They
were toys for the rich and famous, and tools for the successful who wanted to
show off. The screens on these devices consisted of a single line of LCD text;
just enough to display the phone number being dialed. The idea of a business
tycoon or Hollywood producer sitting down to play Tetris on a single-line display
at anywhere from $15 to $25 per minute was simply not practical. It would take
a few more years before mobile-phone displays and per-minute rates would
allow for gaming.

A Brief History of Gaming
While mobile games have been around for hundreds of years in one form or
another (everything from card games to dice), the genesis of modern, popular,
mobile video gaming can be traced back to the Nintendo Game Boy. The Game
Boy may not have been the first and it may not have been the best, but it did
make every kid, teenager, and some adults want to walk around playing Tetris
and Super Mario; feats that until then could only be accomplished on large
consoles that still had the stigma of being “a child’s toy.”

Note  It is generally accepted that the first mobile gaming device was actually the
Microvision, which was released in 1979. Nintendo’s Game Boy, however, brought
mobile gaming to the masses, and popularized it as a viable gaming platform.

CHAPTER 1: Introduction to Android Gaming4

It wasn’t long after cell phones and the Internet became popular that the two
collided. At first, the marriage of the two produced crude, scaled-down versions
of web-like content that could easily run on the cell phone’s slow processors
and limited—mostly textual—displays. Slowly, mobile Java-based content and
applications began to pop up on cell phones everywhere. Although this added
the overhead of a Java virtual machine, it was definitely a good start. The first
Java-based games followed shortly thereafter.

Nokia finally attempted to fully merge cell phones with mobile gaming
devices with its N*Gage phone in 2003. The N*Gage, while generally viewed
as a commercial failure, opened the door to cell phone gaming as a true
multiplatform activity. Developers soon realized that games built specifically
to run on mobile phones could actually compete with those built for gaming-
specific handheld systems like the Game Boy, PSP, and DS.

Mobile gaming finally found consumer acceptance with the iPhone. There
is no denying that the iPhone did not just open the door for mobile phone–
based games, it blew the door away. This does not mean that the iPhone is
without fault. Developing iPhone games requires two things that not every
casual developer may possess: a Mac and a very good understanding of
Objective-C.

This is where Android picks up the story.

The Introduction of Android
I began developing on the Android beta platform in early 2008. At the time, no
phones were announced for the new operating system and we—as developers—
genuinely felt as though we were in at the start of something exciting. Android
captured all of the energy and excitement of the early days of open-source
development. Developing for the platform was very reminiscent of sitting around
an empty student lounge at 2:00 am with a Jolt Cola, waiting for VAX time to
run our latest code. It was an exciting platform. I am glad I was there to see it
materialize and take off.

As Android began to grow, and as Google released more updates to solidify
the final architecture, one thing became apparent: Android, based on Java
and including many well-known Java packages, would be an easy transition
for the casual game developer. Most of the knowledge that an existing Java
developer already had could be recycled on this new platform. The very
large base of Java game developers could use that knowledge to move fairly
smoothly onto Android.

So how does one begin developing games on Android? What tools are required?
The next section of this chapter aims to answer these questions.

CHAPTER 1: Introduction to Android Gaming

5

Android Game Programming
Developing games on Android has its pros and cons. You should be aware of
these before you begin. First, Android games are developed in Java, but it is not
full Java. Many of the packages that you may have used for OpenGL and other
graphic blandishments are included in the Android SDK. Many does not mean
all, however, and some packages that are very helpful to game developers,
especially 3D game developers, are not included. So not every package that
you may have relied on to build your previous games will be available to you in
Android.

With each release of new Android SDKs, more and more packages become
available. You will need to be aware of just which packages you have to work
with. We will cover these as we progress through the chapters.

Another pro (and a corresponding con) have to do with Android’s familiarity versus
its lack of power. What Android gains in familiarity and ease of programming, it
may lack in speed and power. Most video games, like those written for PCs or
consoles, are developed in low-level languages such as C and even Assembly.
This gives the developers the most control over how the code is executed by
the processor and the environment in which the code is run. Processors, of
course, only understand machine code, and the closer you can get to their native
language, the fewer interpreters you need to jump through to get your game
running. Android, while it does offer some limited ability to code at a low level,
interprets and threads your Java code through its own execution system. This
gives the developer less control over the environment the game is run in.

This book is not going to take you through the low-level approaches to game
development. Why not? Because Java, especially as it is presented for general
Android development, is widely known, easy to use, and can make some very
engaging and rewarding games.

In essence, if you are already an experienced Java developer, you will find that
your skills are not lost in translation when applied to Android. If you are not
already a seasoned Java developer, do not fear. Java is a great language to start
your learning. For this reason, I have chosen to stick with Android’s native Java
development environment to write our games.

We have discussed a couple of pros and a couple of cons to developing
games on Android. One of the best reasons for independent and casual game
developers to create and publish games on the Android platform is the freedom
granted in releasing your games. While some app stores have very stringent
rules about what can be sold on them—and for how much—the Android Market
does not. Anyone is free to list and sell just about anything he or she wants. This
gives developers more creative freedom.

Now that we have quickly reviewed the history of mobile gaming and discussed
some of the reasons why you might want to put your valuable time and effort

CHAPTER 1: Introduction to Android Gaming6

into developing games on the Android network, it’s time to take a look at the
tools you need to be a successful Android game developer.

Summary
In this chapter, you discovered what you will learn in this book. You were
introduced to the history of mobile gaming and the Android gaming platform.
In the next chapter, you learn what constitutes an arcade-style game and what
makes these games so playable on Android devices.

7

Chapter 2
What Is an Arcade Game?

In this chapter, you will learn what defines a game as an arcade-style game. You
will also form an operational definition of arcade-style gaming.

As the chapter comes to a close, you discover more about Prison Break, the
game that you will create in the remaining chapters of the book.

Where Did Arcade-Style Games Originate?
There are many styles of games in the gaming world today. From first-person
shooters to puzzle games to multigame hybrids, there are arguably as many
styles as there are games to play. Games such as N.O.V.A. 2 and Words with
Friends are great examples of these mobile games.

One of the most popular game styles right now is arcade. Arcade games,
as a style, are really hybrids that encompass many different game styles. To
understand what an arcade-style game is, let’s take a quick look at the history of
arcade gaming.

No doubt, you have seen—either in person or online—an old arcade game
cabinet like Pac-Man or Centipede. In the early days, gaming hardware was
expensive and was typically customized for every game. Developers worked
hand in hand with hardware creators, which resulted in very large, furniture-like,
game cabinets.

These large, all-in-one cabinets typically contained a monitor, a controller, and
all of the internal electronics needed to run the game. Because these units were
prohibitively expensive, however, the average person could not afford to buy
one; so they were usually found only in video-game arcades. The cabinets were
fitted with coin accepters and people eagerly fed quarters into them to play the

CHAPTER 2: What Is an Arcade Game?8

latest titles. Therefore, the root of the name for the “arcade” game style comes
from the place where the games were originally played.

Arcade owners quickly learned one thing: in order to recoup the high costs of
buying the game machines, they needed as many players as possible to play
each game. Today, people can play a single game for hours at a time. I have
been known to log 10, 20, or even 30 hours into a Final Fantasy game. This type
of hardcore gaming would have spelled doom for arcade owners at $.25 per
play.

Arcade owners and game developers quickly realized that three minutes was the
magic number. At an average game-time of three minutes, gamers felt they got
their quarter’s worth, and arcade owners could move a lot of players through the
game.

Game developers now had to create games that a player could walk up to,
understand the gameplay and objectives without any instruction, and stop
playing after three minutes. Thus began the development of games that were
addictive, had a clearly defined objective, and could be played in a relatively
short amount of time. These are the origins of the arcade-style game.

In the next section of this chapter, we discuss the game that you will develop in
this book.

Your Game: Prison Break
In the book’s remaining chapters, you learn how to create an arcade-style game
called Prison Break. Prison Break is a paddle game that involves deflecting
the trajectory of a ball into a wall of bricks in order to break them. The game is
loosely based on the game Breakout by Atari. Breakout was a very influential
game in the early days of arcade gaming, and its addictive gameplay and easy-
to-understand concept makes it a perfect example for this book.

Prison Break contains all of the elements needed to build a good, game
development knowledge base. You will learn about polygon and texture
rendering, basic game physics, and collision detection. These are all concepts
that you will undoubtedly use in other games.

This book will walk you through the development of Prison Break in a natural
order, from beginning to end. You will be provided with code samples and
explanations for creating the game and playing it on your Android device. By the
end of the book, you will have gained the knowledge you need to easily create
other games based on the same concepts. Figure 2-1 illustrates a scene from
the completed Prison Break.

CHAPTER 2: What Is an Arcade Game? 9

To give you a clear idea of what lies ahead, the next section lays out the content
and goals of the remaining chapters.

In This Book…
There are eight chapters in this book. And while the overall book may seem short
in length, it is going to be packed with a lot of useful information. Each chapter
aims to equip you with one key skill needed to complete the Prison Break game.
What follows is a brief overview of the goals of our six remaining chapters.

Chapter 3: Creating a Menu
In this chapter, you learn how to create the menu system for Prison Break. The
menu of the game is the main entry point, which guides the player into and out
of Prison Break. You will create options for starting and exiting the game using
the Android SDK.

Chapter 4: Drawing the Background
Chapter 4 teaches you how to create a background for the game and draw
that background to the screen. In the process, you are introduced to many

Figure 2-1. A screenshot from the completed Prison Break

CHAPTER 2: What Is an Arcade Game?10

aspects of OpenGL ES, including rendering, texture mapping, and vertices. The
background, while static for the Prison Break game, sets the theme for each
game you create, and is, therefore, very important.

Chapter 5: Creating the Player Paddle and Bricks
In Chapter 5, you learn how to create a paddle that is moved across the screen
based on where the player directs the character. You also add the ball that is
used to break the bricks. This involves the use of touch listeners and custom
classes in Android.

To finish this chapter, you create the bricks that the player character needs to
bust through to advance through the game. You will learn how to use Android
code loops to place multiple blocks on the screen without having to draw them
manually.

Chapter 6: Collision Detection and In-Game Physics
Chapter 6 walks you through the critical concept of collision detection. The
physics of collision detection is used to tell if the brick-breaking ball has hit a
brick (or the paddle). You then use physics and mathematics to either bounce
the ball in a new direction or destroy a brick. It is this in-game physics that adds
realism to your game and makes it enjoyable to play.

Chapter 7: Keeping Score
While it can be overlooked and considered simplistic, the ability to keep score is
very important to many arcade-style games. Chapter 7 teaches you how to keep
track of the current game score and how to save the score to one of Android’s
built-in MySQL databases.

Chapter 8: Adding More Levels
In Chapter 8, you learn how to add levels to the game. An exciting aspect of
designing arcade-style games is that you can add many levels—sometimes
hundreds of them—quickly and easily. You will apply the knowledge you gained
from previous chapters to create multiple levels for your game.

4

CHAPTER 2: What Is an Arcade Game?

11

Summary
In this chapter, you learned what defines an arcade game; you discovered more
about Prison Break, the game that you will create; and you got a brief overview
of the remaining chapters of this book.

In Chapter 3, you begin coding your game’s main menu screen.

13

Chapter 3
Creating a Menu

In this chapter, you will create a two-part menu screen for your Prison Break
game. The menu screen, shown in Figure 3-1, is made up of two different
“screens” containing a total of five different images.

Figure 3-1.  Prison Break menu screen

CHAPTER 3: Creating a Menu14

In the next section, you will learn what you need to do to prepare for the code
provided in this chapter.

Before You Begin
Before you begin to apply the code in this chapter, there are two things you
need to do to prepare. First, create a new Android project named prisonbreak.
This project will hold all of the code and images used in this book.

Second, gather or create some images for your Prison Break game. In this
chapter, you need a total of five images: a splash screen, two different Start
button states, and two different Exit button states. The images that I used are
shown in Figures 3-2 through 3-6.

Figure 3-2.  prisonbreaksplash.png

Figure 3-3.  startbtn.png

CHAPTER 3: Creating a Menu

15

If you have never worked with graphics or images in Android, I have a couple
of valuable tips. First, you can work with images in two different ways: natively
through the Android SDK (in this chapter) or by using OpenGL ES (in the
remaining chapters). Each method requires slightly different ways of storing and
treating the images.

The other important tip is that the image names must be all lowercase; this
is common with any method of dealing with Android images. If you use
capitalization or camel casing in the image names, Android will not recognize the
images.

Figure 3-5.  exitbtn.png

Figure 3-4.  startbtndown.png

Figure 3-6.  exitbtndown.png

Note  As with everything, there are exceptions, and this is no exception. Image
names only need to be lowercase if they are stored within the given Android project
structure (i.e. the res folder). If you store your images in a compressed file outside
of the Android project structure, and read it using a custom-made file reader, you
should be able to get away with casing your file names however you like. This issue,
though, is outside the scope of this book.

CHAPTER 3: Creating a Menu16

The five images in this chapter should be kept in the res/drawable-hdpi folder
because they will be read using common Android SDK methods.

In the next section, you will create the files needed to display your main menu.

Creating the Splash Screen and Main Menu
The main menu of Prison Break consists of a splash screen that fades out to the
menu screen. The menu screen contains the Start and Exit buttons.

For Prison Break, both the splash screen and the main menu background will be
the same image (see Figure 3-2). This gives the effect that the buttons are fading
into the background. It is a nice effect that looks better than a static screen.

PrisonbreakActivity
The first file you work with is PrisonbreakActivity. This is the main activity
that is created when you created the project. Listing 3-1 shows the code for
PrisonbreakActivity.java.

Listing 3-1.  PrisonbreakActivity.java

package com.jfdimarzio;
  
import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.os.Handler;
import android.view.WindowManager;
  
public class PrisonbreakActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 PBGameVars.display = ((WindowManager) getSystemService(Context.WINDOW_
SERVICE)).getDefaultDisplay();
  
 super.onCreate(savedInstanceState);
 /*display the splash screen image*/
 setContentView(R.layout.splashscreen);
 /*start up the splash screen and main menu in a time delayed
thread*/
 PBGameVars.context = this;
 new Handler().postDelayed(new Thread() {
 @Override
 public void run() {

CHAPTER 3: Creating a Menu

17

 Intent mainMenu = new Intent(PrisonbreakActivity.this,
PBMainMenu.class);

PrisonbreakActivity.this.startActivity(mainMenu);

PrisonbreakActivity.this.finish();

overridePendingTransition(R.layout.fadein,R.layout.fadeout);
 }
 }, PBGameVars.GAME_THREAD_DELAY);
 }
}

Looking at the code for PrisonbreakActivity, you can see that it references
a few other files. The first is multiple, shared variables in a class called
PBGameVars.java. Create a new class in your project with this name and add the
following public variables to it. (Please note that you will add to this class several
times as you progress through this book.)

public static Display display;
public static Context context;
public static final int GAME_THREAD_DELAY = 3000;
public static final int MENU_BUTTON_ALPHA = 0;
public static final boolean HAPTIC_BUTTON_FEEDBACK = true;

Next, PrisonbreakActivity referenced a layout located at res/layouts/
splashscreen. Listing 3-2 shows the contents of splashscreen.xml.

Listing 3-2.  splashscreen.xml

<?xml version = "1.0" encoding = "utf-8"?>
<FrameLayout
 xmlns:android = "http://schemas.android.com/apk/res/android"
 android:layout_width = "match_parent"
 android:layout_height = "match_parent">
 <ImageView android:id = "@ + id/splashScreenImage"
 android:src = "@drawable/prisonbreaksplash"
 android:layout_width = "match_parent"
 android:layout_height = "match_parent">
 </ImageView>
 <TextView
 android:text = "game by: j.f.dimarzio graphics by: ben eagel"
 android:id = "@ + id/creditsText"
 android:layout_gravity = "center_horizontal|bottom"
 android:layout_height = "wrap_content"
 android:layout_width = "wrap_content">
 </TextView>
</FrameLayout>

The next file called by PrisonbreakActivity is PBMainMenu.java. We are going
to skip this file for a minute and come back to it. First, let’s look at two more
layouts used in PrisonbreakActivity.java.

CHAPTER 3: Creating a Menu18

Look at the overridePendingTransition() call made in the main activity. This
call takes in two transitional layouts. The first layout defines the splash screen
fade-in, and the second defines the fade-out to the menu screen. Listing 3-3
and Listing 3-4 contain the code for both the fadein.xml and the fadeout.
xml, respectively. While they look the same at first glance, there are some key
differences.

The fundamental difference is that on fading in, an acceleration interpolator is
used; whereas on fading out, a deceleration interpolator is used.

Listing 3-3.  fadein.xml

<?xml version = "1.0" encoding = "utf-8"?>
<alpha xmlns:android = "http://schemas.android.com/apk/res/android"
 android:interpolator = "@android:anim/accelerate_interpolator"
 android:fromAlpha = "0.0"
 android:toAlpha = "1.0"
 android:duration = "1000" />

Listing 3-4.  fadeout.xml

<?xml version = "1.0" encoding = "utf-8"?>
<alpha xmlns:android = "http://schemas.android.com/apk/res/android"
 android:interpolator = "@android:anim/decelerate_interpolator"
 android:fromAlpha = "1.0"
 android:toAlpha = "0.0"
 android:duration = "1000" />

The PrisonbreakActivity displays the splash screen image and then fades that
image into the PBMainMenu.java call. Let’s take a look at what is in PBMainMenu.java.

PBMainMenu
PBMainMenu controls the starting and exiting of your main game loop; therefore,
it needs to display two buttons: the Start button and the Exit button. Listing 3-5
shows the current code for PBMainMenu.java (you will add to this code in the
next chapter).

Take notice that PBMainMenu is a new activity and must be defined as such in the
AndroidManifest for your project.

Listing 3-5.  PBMainMenu.java

public static Display display;
public static Context context;
public static final int GAME_THREAD_DELAY = 3000;
  
package com.jfdimarzio;

CHAPTER 3: Creating a Menu

19

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.ImageButton;
  
public class PBMainMenu extends Activity {
 /** Called when the activity is first created. */
 final PBGameVars engine = new PBGameVars();
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 PBGameVars.context = getApplicationContext();

 /** Set menu button options */
 ImageButton start = (ImageButton)findViewById(R.id.btnStart);
 ImageButton exit = (ImageButton)findViewById(R.id.btnExit);

start.getBackground().setAlpha(PBGameVars.MENU_BUTTON_ALPHA);

start.setHapticFeedbackEnabled(PBGameVars.HAPTIC_BUTTON_FEEDBACK);

exit.getBackground().setAlpha(PBGameVars.MENU_BUTTON_ALPHA);

exit.setHapticFeedbackEnabled(PBGameVars.HAPTIC_BUTTON_FEEDBACK);

 exit.setOnClickListener(new OnClickListener(){
 @Override
 public void onClick(View v) {
 int pid = android.os.Process.myPid();
 android.os.Process.killProcess(pid);
 }
 });
 }
  
}

Like PrisonbreakActivity, PBMainMenu also makes use of three different layout
files. The first is the main.xml. This layout defines the main menu screen that
the player sees. It contains the Start and Exit buttons. Listing 3-6 shows the
main.xml layout.

Listing 3-6.  main.xml

<?xml version = "1.0" encoding = "utf-8"?>
<RelativeLayout xmlns:android = "http://schemas.android.com/apk/res/android"
 android:orientation = "vertical"
 android:layout_width = "match_parent"
 android:layout_height = "match_parent"
 >

CHAPTER 3: Creating a Menu20

 <ImageView android:id = "@ + id/mainMenuImage"
 android:src = "@drawable/prisonbreaksplash"
 android:layout_width = "match_parent"
 android:layout_height = "match_parent">
 </ImageView>
 <RelativeLayout
 android:id = "@ + id/buttons"
 android:layout_width = "match_parent"
 android:layout_height = "wrap_content"
 android:orientation = "horizontal"
 android:layout_alignParentBottom = "true"
 android:layout_marginBottom = "20dp">
 <ImageButton
 android:id = "@ + id/btnStart"
 android:clickable = "true"
 android:layout_alignParentLeft = "true"
 android:layout_width = "wrap_content"
 android:src = "@drawable/startselector"
 android:layout_height = "wrap_content" >
 </ImageButton>
 <ImageButton
 android:id = "@ + id/btnExit"
 android:layout_width = "wrap_content"
 android:src = "@drawable/exitselector"
 android:layout_height = "wrap_content"
 android:layout_alignParentRight = "true"
 android:clickable = "true" >
 </ImageButton>
 </RelativeLayout>
</RelativeLayout>

The PBMainMenu also calls two layout files known as selectors. These files define
what happens when the player selects either the Start button or the Exit button.
For the Prison Break game, you want the visible Start and Exit buttons to be
swapped out for the ones that appear as though the player has crushed them
under his finger. The selector layouts handle the swapping of these images.
Listing 3-7 shows the contents of the exit selector and Listing 3-8 shows the
contents of the start selector.

Listing 3-7. exitselector.xml

<?xml version = "1.0" encoding = "utf-8"?>
<selector
 xmlns:android = "http://schemas.android.com/apk/res/android">
 <item android:state_pressed = "true" android:drawable = "@drawable/
exitbtndown" />
 <item android:drawable = "@drawable/exitbtn" />
</selector>

CHAPTER 3: Creating a Menu

21

Listing 3-8. startselector.xml

<?xml version = "1.0" encoding = "utf-8"?>
<selector
 xmlns:android = "http://schemas.android.com/apk/res/android">
 <item android:state_pressed = "true" android:drawable = "@drawable/
startbtndown" />
 <item android:drawable = "@drawable/startbtn" />
</selector>

You should now be able to compile and run your code. When you do, you
should see a splash screen that fades out to a menu. Touching the Exit button
kills the main activity and exits the game. Right now, however, touching the Start
button does nothing.

Summary
In this chapter, you added nine code files and five images to your first game
project. These files, when put together, created a compelling and professional
menu screen. You now have a working splash screen and a basic menu system
with two options.

In the next chapter, you add code to the Start button to kick off the main game
loop. You will also add the game’s background image to the screen.

23

Chapter 4
Drawing the Background

In the last chapter, you created and finalized the main menu to Prison Break.
You should have compiled and run your code on either the Android emulator or
an Android-based phone in debug mode, and seen a functioning main menu
screen. The Exit button of the main menu is wired to kill the game process. As of
right now, however, the Start button is not wired to any code.

In this chapter, you will write the code for the Start button and create the
background for Prison Break. To draw the game’s background to the screen,
you will use calls to OpenGL ES. In the previous chapters, you used Android
SDK methods to display graphics like the menu screen and the buttons. Moving
forward, you will work in the realm of OpenGL ES.

Let’s start by writing the code that is activated by the Start button on the main
menu.

Starting the Game
The Start button, located on the main menu, is used by the player to start the
game. When starting the game, a new Android Activity that controls all of the
games functions is launched. Why is the game launched as yet another new
Activity?

The game is launched as another Activity so that you, the game developer, have
more flexibility in controlling the way your game is executed. If you want to add
to your main menu other functions that are not tied directly to your game—for
example, a configurator or tally board—this is a good way to keep your game
from getting weighed down with superfluous code.

Listing 4-1 shows the PBMainMenu code that you started writing in Chapter 3.
The bolded code has been added to launch the PBGame Activity. Add this code to
your PBMainMenu. You will create the PBGame Activity next.

CHAPTER 4: Drawing the Background24

Listing 4-1. PBMainMenu.java

package com.jfdimarzio;
  
import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.ImageButton;
  
public class PBMainMenu extends Activity {
 /** Called when the activity is first created. */
 final PBGameVars engine = new PBGameVars();
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 PBGameVars.context = getApplicationContext();
  
 /** Set menu button options */
 ImageButton start = (ImageButton)findViewById(R.id.btnStart);
 ImageButton exit = (ImageButton)findViewById(R.id.btnExit);

start.getBackground().setAlpha(PBGameVars.MENU_BUTTON_ALPHA);

start.setHapticFeedbackEnabled(PBGameVars.HAPTIC_BUTTON_FEEDBACK);

exit.getBackground().setAlpha(PBGameVars.MENU_BUTTON_ALPHA);

exit.setHapticFeedbackEnabled(PBGameVars.HAPTIC_BUTTON_FEEDBACK);

 start.setOnClickListener(new OnClickListener(){
 @Override
 public void onClick(View v) {
 /** Start Game!!!! */
 Intent game = new Intent(getApplicationContext(),PBGame.class);
 PBMainMenu.this.startActivity(game);
 }
 });

 exit.setOnClickListener(new OnClickListener(){
 @Override
 public void onClick(View v) {
 int pid= android.os.Process.myPid();
 android.os.Process.killProcess(pid);
 }
 });
 }
}

CHAPTER 4: Drawing the Background

25

The code in your new PBGame Activity should look like that in Listing 4-2.

Listing 4-2. PBGame.java

package com.jfdimarzio;
  
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;

public class PBGame extends Activity {
 final PBGameVars gameEngine = new PBGameVars();
 private PBGameView gameView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 gameView = new PBGameView(this);
 setContentView(gameView);
 }
  
 @Override
 protected void onResume() {
 super.onResume();
 gameView.onResume();
 }
  
 @Override
 protected void onPause() {
 super.onPause();
 gameView.onPause();
 }
  
}

Notice that when you click the Start button now, the code is telling PBMainMenu
to launch the PBGame Activity. You do not have a PBGame yet. Let’s create one.

Create a new Activity named PBGame in your Prison Break project. The PBGame
is fairly simple as far as code is concerned. PBGame is going to set the content
view of the Activity to the game renderer, and control the onPause and onResume
events.

Note  Keep in mind that when I talk about onPause and onResume, these are
not game functions; rather they are Android methods that are called when Android
pauses or resumes your Activity.

CHAPTER 4: Drawing the Background26

Create a new class called PBGameRenderer in your Prison Break project. This
class needs to extend GLSurfaceView.Renderer, as shown in Listing 4-4.

Notice that the onCreate() method sets the content view of the Activity to a new
instance of PBGameView. PBGameView is a new class that extends GLSurfaceView.
The next section of this chapter introduces you to the GLSurfaceView as you
create the PBGameView.

Creating the SurfaceView and Renderer
In this section, you will create the SurfaceView and Renderer for your game.
PBGameView is a simple Android class that extends the OpenGL GLSurfaceView.

If you have never developed in OpenGL ES before, think of the GLSurfaceView as
the canvas on which OpenGL draws your game. The GLSurfaceView is what Android
displays to the screen. It cannot act alone, however. The GLSurfaceView needs a
corresponding GLSurfaceView Renderer to render the game onto the surface.

Starting with the GLSurfaceView, create a new class named PBGameView, and
extend GLSurfaceView, as shown in Listing 4-3.

Listing 4-3. PBGameView.java

package com.jfdimarzio;
  
import android.content.Context;
import android.opengl.GLSurfaceView;
  
public class PBGameView extends GLSurfaceView {
 private PBGameRenderer renderer;

 public PBGameView(Context context) {
 super(context);

 renderer = new PBGameRenderer();

 this.setRenderer(renderer);
  
 }
}

This is a rather small class. You can see that the purpose of the only constructor
in the class is to create an instance of a renderer (PBGameRenderer). There is
nothing fancy here, so let’s move on to creating the renderer.

Note  Before creating the PBGameRenderer, add the following to your PBGameVars:
public static final int GAME_THREAD_FPS_SLEEP = (1000/60);

CHAPTER 4: Drawing the Background

27

Listing 4-4. PBGameRenderer.java

package com.jfdimarzio;
  
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
  
import android.opengl.GLSurfaceView.Renderer;
  
public class PBGameRenderer implements Renderer{

 private long loopStart = 0;
 private long loopEnd = 0;
 private long loopRunTime = 0 ;

 @Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub
 loopStart = System.currentTimeMillis();
 // TODO Auto-generated method stub
 try {
 if (loopRunTime < PBGameVars.GAME_THREAD_FPS_SLEEP){

Thread.sleep(PBGameVars.GAME_THREAD_FPS_SLEEP - loopRunTime);
 }
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
  
 loopEnd = System.currentTimeMillis();
 loopRunTime = ((loopEnd - loopStart));
 }
  
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 // TODO Auto-generated method stub
 gl.glViewport(0, 0, width,height);

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 gl.glOrthof(0f, 1f, 0f, 1f, -1f, 1f);
 }
  
 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig arg1) {
 // TODO Auto-generated method stub

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);

CHAPTER 4: Drawing the Background28

You want to put all of the code that is called on every frame in the
onDrawFrame(). This includes frame-rate calculators, the code for drawing all of
the objects in the game, collision detection, and cleanup. The only code that is
running on each frame in Listing 4-4 is the thread marshal for the frame rate, as
well as an OpenGL method for clearing the buffers.

 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);
  
 }
}

The renderer has three methods that you need to override: onSurfaceCreated(),
onSurfaceChanged(), and onDrawFrame(). As a developer, you will not call any of
these methods in your code. The GLSurfaceView is responsible for calling all of
these methods at the correct times.

In short, the onSurfaceCreated() acts as the constructor for the renderer and
is called when the renderer is created. If everything is running smoothly, this
should only be called once; so all of your setup code goes into this method.
Right now, the only code that you are calling in your setup routine is OpenGL
functions, to set up the texture and depth buffers.

The onSurfaceChanged() method is called whenever the surface is changed.
Do not confuse this with onDrawFrame(), however. Drawing a frame does not
constitute a surface change. A surface change is more on the lines of a change
in screen orientation or a similar destructive event. The onSurfaceChanged()
method is also called the first time the renderer is called, after the setup.

In onSurfaceChanged(), you want to set up your game’s view port and call
OpenGL’s rendering pipeline to draw your objects. The game’s view port is the
area of the game world that is drawn on the screen. Think of the view port as the
display on a camera. When you point the camera in a specific direction, you only
see a small portion of the entire world. So too, when you create a game using
OpenGL: you may create more “objects” in your world than you can see at one
time. The view port tells OpenGL what you expect to see rendered to your display.

Caution  Be careful when you are using the width and height variables
that are passed into onSurfaceChanged(). When GLSurfaceView calls
onSurfaceChanged(), the width and height that are passed in are not necessarily
the true width and height of the screen. To get the full width and height of the screen,
use the context.display.width and context.display.height.

CHAPTER 4: Drawing the Background

29

Now it is time to set up the class to create your background. Create a new class
in your Prison Break project called PBBackground.java. You need three methods
in this class: a constructor, a draw() method, and a loadTexture() method.

Figure 4-1.  bg1.png, the background image for Prison Break

In the next section, you will create the class that draws the background; and
then, you will call that class from the onDrawFrame() and draw the background to
the screen.

Creating the Background Class
In Prison Break, you are going to create a class that handles the setup of the
indexes, vertices, and textures used to draw the background for your game.
Each new element that we add to this game follows the format of this class. The
background image that you use should be copied to the res/drawable-nodpi
folder in your project and named bg1.png. Add the following variable to your
PBGameVars file to help you reference the image later.

public static final int BACKGROUND = R.drawable.bg1;

The image that I am using is shown in Figure 4-1.

CHAPTER 4: Drawing the Background30

The constructor loads up the vertex, index, and texture arrays into buffers. Since
this is the most important step in determining what your background looks like
when it is rendered to the screen, let’s take a little time now to discuss what
these arrays are and how they are used.

The vertex array is used to define the corners of the polygon that your
background image is mapped to. The corners are defined using their x-, y-, and
z-axes on the Cartesian coordinate system. Therefore, in creating a square, you
would supply the x-, y-, and z-coordinates of the lower-left corner, upper-left
corner, upper-right corner, and lower-right corner, respectively.

Now, I need to clear up some potential confusion in the last paragraph. While
in the end, the polygon you draw is a square (or rectangle), OpenGL actually
draws in right-angled triangles. Two triangles placed next to each other create a
square. The purpose of the index buffer is to tell OpenGL the index order of the
triangle’s edges, thus telling OpenGL which order the corners in the vertex buffer
are drawn. In other words, if the index buffer is 0, 1, 2, 0, 2, 3—like the triangles
in Figure 4-2, then the corners in the vertex buffer are the lower-left corner,
upper-left corner, upper-right corner, and lower-right corner.

Tip  If you are working with a 3D polygon that has vertices using z-coordinates, and
you want to map a texture to the vertices, you still only need to provide the corners
of the texture using the x- and y-coordinates. In fact, your texture array will most
likely be repeated for every vertex you have. While the vertices will change, if you are
working with rectilinear polygons, your texture array will probably stay the same.

1 2

0 3

Figure 4-2.  Index triangles

Finally, the texture array tells OpenGL which corners of your texture (or image)
map to the particular corners of your vertices. Because there is no depth in
texture mapping, the texture array only has x- and y-coordinates.

h

CHAPTER 4: Drawing the Background 31

  

CHAPTER 4: Drawing the Background32

 private byte indices[] = {
 0,1,2,
 0,2,3,
 };
  
 public PBBackground() {
 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
 vertexBuffer.put(vertices);
 vertexBuffer.position(0);
  
 byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();
 textureBuffer.put(texture);
 textureBuffer.position(0);
 indexBuffer = ByteBuffer.allocateDirect(indices.length);
 indexBuffer.put(indices);
 indexBuffer.position(0);
 }
  
 public void draw(GL10 gl) {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);
  
 gl.glFrontFace(GL10.GL_CCW);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);
  
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
  
gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
  
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);
  
 gl.glDrawElements(GL10.GL_TRIANGLES, indices.length, GL10.GL_UNSIGNED_
BYTE, indexBuffer);
  
 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
  
gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
  
 gl.glDisable(GL10.GL_CULL_FACE);
 }
  
 public void loadTexture(GL10 gl,int texture, Context context) {
 InputStream imagestream = context.getResources().
openRawResource(texture);
 Bitmap bitmap = null;

CHAPTER 4: Drawing the Background

33

 try {
  
 bitmap = BitmapFactory.decodeStream(imagestream);
  
 }catch(Exception e){
  
 }finally {
 try {
 imagestream.close();
 imagestream = null;
 } catch (IOException e) {
 }
 }
 gl.glGenTextures(1, textures, 0);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);
  
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
GL10.GL_NEAREST);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
GL10.GL_LINEAR);
  
 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);
  
 bitmap.recycle();
 }
}
  
In the final section of this chapter, you take the PBBackground class and call it from
the PBGameRenderer, thus drawing your background to the screen using OpenGL.

Drawing the Background
In this section, you create a new instance of your background and call it from
the PBGameRenderer. The steps to draw your background are as follows:

1.	 Instantiate a new PBBackground. This is pretty self-
explanatory; before you can use the background class,
you must instantiate it.

2.	 Load your bg1.png image as the background’s texture.
Because the image only needs to be loaded once, you
call the background class’s loadTexture() method in the
onSurfaceCreated() method of the PBGameRenderer.

3.	 Create a new method in PBGameRenderer that adjusts
the size of the background’s polygons. If you do not
adjust the size of the polygons, they will not match the

CHAPTER 4: Drawing the Background34

size that you are expecting them to be on the screen. This
step may take some tweaking for you to get just right.

4.	 Call this new method from onDrawFrame(). This draws
your background to the screen on every frame. If you do
not call the method here, it will not render.

Listing 4-6 shows the code for PBGameRenderer; the new code for drawing the
background is in bold.

Listing 4-6. PBGameRenderer with Calls to Draw Background

package com.jfdimarzio;
  
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import android.opengl.GLSurfaceView.Renderer;
  
public class PBGameRenderer implements Renderer{
  
 private PBBackground background = new PBBackground();
  
 private long loopStart = 0;
 private long loopEnd = 0;
 private long loopRunTime = 0 ;
  
 @Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub
 loopStart = System.currentTimeMillis();
 // TODO Auto-generated method stub
 try {
 if (loopRunTime < PBGameVars.GAME_THREAD_FPS_SLEEP){
  
Thread.sleep(PBGameVars.GAME_THREAD_FPS_SLEEP - loopRunTime);
 }
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
  
 drawBackground1(gl);
  
 loopEnd = System.currentTimeMillis();
 loopRunTime = ((loopEnd - loopStart));
 }
  

CHAPTER 4: Drawing the Background

35

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 // TODO Auto-generated method stub
 gl.glViewport(0, 0, width,height);
  
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
  
 gl.glOrthof(0f, 1f, 0f, 1f, -1f, 1f);
 }
  
 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig arg1) {
 // TODO Auto-generated method stub
  
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);
  
 background.loadTexture(gl,PBGameVars.BACKGROUND, PBGameVars.context);
 }
  
 private void drawBackground1(GL10 gl){
  
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(1f, 1f, 1f);
  
 background.draw(gl);
 gl.glPopMatrix();
 }
}

Compile and run your project. At the main menu, click the Start button. You
should see the background, as shown in Figure 4-3.

CHAPTER 4: Drawing the Background36

Before closing this chapter, let’s have a quick word about OpenGL matrix
modes. Having seen the call in the PBGameRenderer, you may be confused by
what these do. OpenGL has three modes in which you can modify a different
matrix in the rendering pipeline. The three modes (and matrices) are ModelView,
Texture, and Projection. Working in these modes requires some abstract
thinking, but it is not too hard to grasp.

Placing OpenGL into ModelView mode loads the ModelView matrix. The
ModelView matrix controls every set of polygons in your OpenGL world.

The Texture mode, on the other hand, loads up the matrix for all of the textures
in your world. Keep in mind, while you associate a texture with a set of vertices,
in the OpenGL world, they are still contained within two different matrices. The
wording here is important. If there are 50 objects on your screen, each with a
texture, placing OpenGL in Texture mode gives you access to all 50 textures—
not just the one you think you want to work on.

The Project mode loads the matrix that controls OpenGL’s camera.

Note  OpenGL does not really have or understand the concept of a “camera” as
such. Most people understand that a camera is used to create a view and renderer,
so it is easy to equate what happens in the Project matrix to the common graphics
concept of a camera.

Figure 4-3.  The rendered background

CHAPTER 4: Drawing the Background

37

Within each matrix mode, there are specific commands that you can use to work
with the objects in those matrices.

The command glLoadIdentity() tells OpenGL to load an unaltered copy of the
matrix in question. Let’s say, for example, you are in Texture mode and you have
a red texture that you mapped to a square. While in Texture mode, you swap the
texture for a green one. Calling glLoadIdentity() loads the texture matrix with
the red texture.

The command glPushMatrix() performs a similar function. This command
gives you a copy of the current matrix, in its current state. Therefore, in our last
example, if you were to call glPushMatrix() rather than glLoadIdentity(), you
would get a copy of the matrix with a green texture. If you call glPushMatrix()
after you call glLoadIdentity(), however, then you would get a copy of the
matrix with a red texture.

Once you are done working with the copy of the matrix that you created using
glPushMatrix(), use glPopMatrix() to write that copy back to the OpenGL
pipeline. This is useful if you have multiple transformations that you want to
make on a matrix and you do not want to cause any inadvertent problems to the
main matrix.

Finally, there are three commands that you can use to transform your matrices:
glScale, glTranslate, and glRotate. As their names imply, glScale and
glRotate scale and rotate a matrix, respectively. Again, the effect of these
commands depends greatly on the matrix mode you are in. The glTranslate
command moves the matrix by the given set of coordinates. These commands
are explored in more detail in upcoming chapters.

Summary
In this chapter, you learned how to use OpenGL to create and draw a
background to the screen. You also worked with OpenGL Renderers and
SurfaceViews. Finally, you created classes that handled the support of OpenGL
vertices, textures, and indices.

In the next chapter, you begin to add the blocks and the player’s paddle.

39

Chapter 5
Creating the Player
Character and Obstacles

In the previous chapter, you learned how to add a background image to your
game, Prison Break. You created a class that, when instantiated, gave you all of
the resources you needed to add your background.

In this chapter, you are going to take that knowledge and apply it to the game’s
bricks, player paddle, and ball. This will give you all of the on-screen objects you
need to make the game.

Before you begin working on the bricks, paddle, or ball, however, there are some
things you need to do.

Before You Begin
You need to add a few things to your project to prepare for this chapter, the first
being the images that you will use for the bricks, the paddle, and the ball. The
image that I used for my bricks (there are a multitude of different bricks that
could be used in the game) is a spritesheet, which allows you to use different
images more easily by containing all of the images for the different bricks in one
physical file.

If you have never worked with one, a spritesheet is a single-image file that
contains within it all of the different images for a specific animation or set of
characters. For example, if you were making a game where the main character
could walk across the screen, the spritesheet for that character would contain all
of the frames used to make the character animation.

CHAPTER 5: Creating the Player Character and Obstacles40

Likewise, to give you—the game developer—some choice in how the game
looks, the image for the ball is in a spritesheet as well. This spritesheet has two
different ball images for you to choose from.

The images that I used in Prison Break for the brick spritesheet, the player
paddle, and the ball spritesheet are shown in Figure 5-1, Figure 5-2, and
Figure 5-3, respectively.

Figure 5-1.  The brick spritesheet

Figure 5-2.  The player paddle

Figure 5-3.  The ball spritesheet

You may notice that the bricks and the player paddle are nearly square, rather
than rectangular. This is good because it gives you a chance to stretch the
image into a rectangle using OpenGL.

Next, you need to add some more variables to the PBGameVars file. Add the
following lines to your PBGameVars. Don’t worry too much about the ones that
you don’t understand right now; I will explain them when we use them.

public static float playerBankPosX = -.73f;
public static int playerAction = 0;
public static final int PLAYER_MOVE_LEFT_1 = 1;
public static final int PLAYER_RELEASE = 3;
public static final int PLAYER_MOVE_RIGHT_1 = 4;

CHAPTER 5: Creating the Player Character and Obstacles

41

public static final float PLAYER_MOVE_SPEED = .2f;
public static final int PADDLE = R.drawable.goldbrick;
public static final int BRICK_BLUE = 1;
public static final int BRICK_BROWN = 2;
public static final int BRICK_DARK_GRAY = 3;
public static final int BRICK_GREEN = 4;
public static final int BRICK_LITE_GRAY = 5;
public static final int BRICK_PURPLE = 6;
public static final int BRICK_RED = 7;
public static final int BRICK_SHEET = R.drawable.bricksheet;
public static final int BALL_SHEET = R.drawable.ballsheet;
public static final float BALL_SPEED = 0.01f;
public static float ballTargetY = 0.01f;
public static float ballTargetX = -1.125f;

With this little bit of housekeeping taken care of, it is time to jump into creating
some items for the game. Let’s start with the player paddle.

Creating the Player Paddle Class
Add a new class called PBPlayer to your project. This class will look very much
like the class that you created for the background, PBBackground. The class
contains a constructor, a draw() method, and a loadTexture() method. The
code for the PBPlayer class is shown in Listing 5-1.

Listing 5-1. The PBPlayer Class

package com.jfdimarzio;
 
import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
 
import javax.microedition.khronos.opengles.GL10;
 
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.opengl.GLUtils;
 
public class PBPlayer {
 
 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;
 private ByteBuffer indexBuffer;
 

CHAPTER 5: Creating the Player Character and Obstacles42

 private int[] textures = new int[1];

 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.5f, 0.0f, 0.0f,
 1.5f, .25f, 0.0f,
 0.0f, .25f, 0.0f,
 };

 private float texture[] = {
 0.0f, 0.0f,
 1.0f, 0.0f,
 1.0f, 1.0f,
 0.0f, 1.0f,
 };

 private byte indices[] = {
 0,1,2,
 0,2,3,
 };

 public PBPlayer() {
 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
 vertexBuffer.put(vertices);
 vertexBuffer.position(0);

 byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();
 textureBuffer.put(texture);
 textureBuffer.position(0);

 indexBuffer = ByteBuffer.allocateDirect(indices.length);
 indexBuffer.put(indices);
 indexBuffer.position(0);
 }

 public void draw(GL10 gl) {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

 gl.glFrontFace(GL10.GL_CCW);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

b

CHAPTER 5: Creating the Player Character and Obstacles

43

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);
 
 gl.glDrawElements(GL10.GL_TRIANGLES, indices.length, GL10.
GL_UNSIGNED_BYTE, indexBuffer);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);
 }
 
 public void loadTexture(GL10 gl,int texture, Context context) {
 InputStream imagestream =
 context.getResources().openRawResource(texture);
 Bitmap bitmap = null;
 try {
 bitmap = BitmapFactory.decodeStream(imagestream);
 }catch(Exception e){

 }finally {
 try {
 imagestream.close();
 imagestream = null;
 } catch (IOException e) {
 }
 }
 
 gl.glGenTextures(1, textures, 0);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);
 
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
GL10.GL_NEAREST);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
GL10.GL_LINEAR);
 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);
 
 bitmap.recycle();
 }
}

In the next section, you will add the class for the bricks. Later in the chapter, you
add the code that instantiates and calls all of the classes together.

Creating the Brick Class
Just like the player paddle and the background, you need a class that will
represent your bricks. The class for the bricks is going to be a little different,
however. Because you are going to use a spritesheet with the bricks class, you

CHAPTER 5: Creating the Player Character and Obstacles44

will not call loadTexture() the same way that you would with the background
and the player paddle. Just to give you some perspective on how flexible the
code can be, you are going to load all of the spritesheets into an array and pass
them together. Therefore, we are going to remove the loadTexture() method
and create a new class to handle spritesheet textures.

The code doesn’t have to be written this way; rather, because this book is a
teaching tool, I am trying to show you different ways to do things. This is simply
a good place to take a look at a different way of getting something done. Feel
free, after you learn the differences, to use whichever method of texture loading
you feel is best for your situation.

First, create a new class called PBBricks. The code for PBBricks is shown in
Listing 5-2.

Listing 5-2. PBBrick

PBBRick
 
package com.jfdimarzio;
 
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
 
import javax.microedition.khronos.opengles.GL10;
 
public class PBBrick {
 
 public float posY = 0f;
 public float posX = 0f;
 public float posT = 0f;
 
 public boolean isDestroyed = false;
 
 public int brickType = 0;
 
 
 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;
 private ByteBuffer indexBuffer;
 
 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, .25f, 0.0f,
 0.0f, .25f, 0.0f,
 };
 

CHAPTER 5: Creating the Player Character and Obstacles

45

 private float texture[] = {
 0.0f, 0.0f,
 0.25f, 0.0f,
 0.25f, 0.25f,
 0.0f, 0.25f,
 };
 
 private byte indices[] = {
 0,1,2,
 0,2,3,
 };
 
 public PBBrick(int type) {
 brickType = type;
 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
 vertexBuffer.put(vertices);
 vertexBuffer.position(0);
 
 byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();
 textureBuffer.put(texture);
 textureBuffer.position(0);
 
 indexBuffer = ByteBuffer.allocateDirect(indices.length);
 indexBuffer.put(indices);
 indexBuffer.position(0);
 }
 
 public void draw(GL10 gl, int[] spriteSheet) {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, spriteSheet[0]);
 
 gl.glFrontFace(GL10.GL_CCW);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);
 
 gl.glDrawElements(GL10.GL_TRIANGLES, indices.length,
GL10.GL_UNSIGNED_BYTE, indexBuffer);
 
 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);
 }
}

CHAPTER 5: Creating the Player Character and Obstacles46

Since the PBBrick is using a spritesheet for its texture—as is the PBBall,
which you will create later in the chapter—you need to make a new class
that handles the texture loading for you.

Create a new class called PBTextures. The PBTextures class holds an array of
textures, and serves up the correct one to the proper class that needs it. You
should recognize the code in PBTextures as being from the loadTexture()
method. The code for the PBTexture class is shown in Listing 5-3.

Listing 5-3. PBTextures

package com.jfdimarzio;
 
import java.io.IOException;
import java.io.InputStream;
 
import javax.microedition.khronos.opengles.GL10;
 
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.opengl.GLUtils;
 
public class PBTextures {
 
 private int[] textures = new int[3];
 
 public PBTextures(GL10 gl){
 
 gl.glGenTextures(3, textures, 0);
 
 }
 
 public int[] loadTexture(GL10 gl, int texture, Context context,int
textureNumber) {

Caution  Pay close attention to the code in bold. It is different from the other
draw() methods that you have created and it is important for loading the
correct texture later in the chapter.

CHAPTER 5: Creating the Player Character and Obstacles

47

 InputStream imagestream =
context.getResources().openRawResource(texture);
 Bitmap bitmap = null;
 try {
 bitmap = BitmapFactory.decodeStream(imagestream);
 }catch(Exception e){
 
 }finally {
 try {
 imagestream.close();
 imagestream = null;
 } catch (IOException e) {
 }
 }
 
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[textureNumber - 1]);
 
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
GL10.GL_NEAREST);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
GL10.GL_LINEAR);
 
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S,
GL10.GL_CLAMP_TO_EDGE);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T,
GL10.GL_CLAMP_TO_EDGE);
 
 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);
 
 bitmap.recycle();
 return textures;
 }
}

With the PBTextures class out of the way, it is time to create the final object
class, PBBall.

Create the PBBall Class
Create a new class called PBBall. This class, like the PBBrick, uses a
spritesheet, so no loadTexture() is needed. The PBBall class is very much
like the PBBrick. Watch for the code in bold, however; it contains an important
change that is necessary for displaying the correct texture later.

CHAPTER 5: Creating the Player Character and Obstacles48

The code for the PBBall is shown in Listing 5-4.

Listing 5-4. PBBall

package com.jfdimarzio;
 
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import java.util.Random;
 
import javax.microedition.khronos.opengles.GL10;
 
public class PBBall {
 public float posY = 0f;
 public float posX = 0f;
 public float posT = 0f;
 
 public int ballMode = 0;
 
 private Random randomPos = new Random();
 private int damage = 0;
 private FloatBuffer vertexBuffer;
 private FloatBuffer textureBuffer;
 private ByteBuffer indexBuffer;
 
 private float vertices[] = {
 0.0f, 0.0f, 0.0f,
 0.25f, 0.0f, 0.0f,
 0.25f, 0.25f, 0.0f,
 0.0f, 0.25f, 0.0f,
 };
 
 private float texture[] = {
 0.0f, 0.0f,
 0.50f, 0.0f,
 0.50f, 0.50f,
 0.0f, 0.50f,
 };
 
 private byte indices[] = {
 0,1,2,
 0,2,3,
 };
 
 
 public PBBall() {
 posY = (randomPos.nextFloat() + 1f) * (float)(-1.75 - -1.6);
 posX = randomPos.nextFloat() * .75f;

CHAPTER 5: Creating the Player Character and Obstacles

49

 
 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 vertexBuffer = byteBuf.asFloatBuffer();
 vertexBuffer.put(vertices);
 vertexBuffer.position(0);
 
 byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 textureBuffer = byteBuf.asFloatBuffer();
 textureBuffer.put(texture);
 textureBuffer.position(0);
 
 indexBuffer = ByteBuffer.allocateDirect(indices.length);
 indexBuffer.put(indices);
 indexBuffer.position(0);
 }

}

 
 public void draw(GL10 gl, int[] spriteSheet) {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, spriteSheet[2]);
 
 gl.glFrontFace(GL10.GL_CCW);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);
 
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);
 
 gl.glDrawElements(GL10.GL_TRIANGLES, indices.length,
GL10.GL_UNSIGNED_BYTE, indexBuffer);
 
 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);
 }
}

Now that you have all of your classes ready for your bricks, paddle, and ball, it
is time to put them together and learn how to call them in the PBGameRenderer,
right? Not quite. There are two smaller helper classes that you are going to need
just to make life easier later on.

CHAPTER 5: Creating the Player Character and Obstacles50

The PBRow and the PBWall
Undoubtedly, you have seen a Breakout-style game in the past. In these games,
the bricks that you must break through are arranged in a brick wall pattern. This,
too, is the case in Prison Break.

You are going to create two classes, PBRow and PBWall, to help make the task
of instantiating multiple bricks and laying them out in a brick wall–style pattern.
The PBWall class is going to be made up of a specified number of rows. These
rows are separate instances of PBRow, which in turn is made of a predetermined
number and layout of PBBrick. Therefore, when you initialize your game, you will
only need to create an instance of PBWall and tell it how many rows you would
like; PBWall will take care of the rest.

Create a new class called PBWall. The code for PBWall is shown in Listing 5-5-

Listing 5-5. PBWall

package com.jfdimarzio;
 
public class PBWall {
 public PBRow[] rows;
 
 public PBWall(int numberOfRows){
 
 rows = new PBRow[numberOfRows];
 
 for(int x = 0; x < = numberOfRows - 1; x ++)
 {
 rows[x] = new PBRow(x);
 }
 }
}

Next, create a new class called PBRow in your project. The code for PBRow is
shown in Listing 5-6.

Listing 5-6. PBRow

package com.jfdimarzio;
 
import java.util.Random;
 
public class PBRow {
 public PBBrick[] bricks;
 private Random brickType = new Random();
 private boolean isRowOdd = false;

CHAPTER 5: Creating the Player Character and Obstacles

51

 private int numberOfBricks = 0;
 
 public PBRow(int rowNumber){
 
 if(rowNumber 2 > 0)
 {
 numberOfBricks = 4;
 isRowOdd = true;
 }
 else
 {
 numberOfBricks = 5;
 isRowOdd = false;
 }
 
 bricks = new PBBrick[numberOfBricks];
 
 for(int x = 0; x < numberOfBricks ; x++)
 {
 bricks[x] = new PBBrick((int) (brickType.nextFloat() * 7));
 if(isRowOdd)
 {
 bricks[x].posX = x - 2f ;
 bricks[x].posY = (rowNumber * .25f) + 1 ;
 }
 else
 {
 bricks[x].posX = x - 2.5f;
 bricks[x].posY = (rowNumber * .25f) + 1 ;
 }
 }
 }
}

I bolded one piece of code from PBRow to pay special attention to. This
line creates a random number and assigns it to the brickType. Later in the
PBGameRenderer, you will use this random brickType to determine the color (and
texture) of the brick.

Now we put everything together in the PBGameRenderer.

CHAPTER 5: Creating the Player Character and Obstacles52

Calling the Bricks, Paddle, and Ball in the
PBGameRenderer
In this section of the chapter, I highlight the code that you need to add to the
PBGameRenderer. After I highlight the code, I will give you the full code for the
PBGameRenderer class so that you can see it in context.

The first thing you will need to do is create variables for your wall, paddle, ball,
spritesheets, and so on. The following are the new variables you will need to add
to the PBGameRenderer:

 private PBPlayer player1 = new PBPlayer();
 private PBBall ball = new PBBall();
 private PBTextures textureLoader;
 private int[] spriteSheets = new int[3];
 private int numberOfRows = 4;
 private PBWall wall;

With the variables in place, you need to add some texture loaders to the
onSurfaceCreated() method. The code you need to add is bolded in the
following snippet:

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig arg1) {
 // TODO Auto-generated method stub
 initializeBricks();
 textureLoader = new PBTextures(gl);
 spriteSheets = textureLoader.loadTexture(gl, PBGameVars.BRICK_SHEET,
PBGameVars.context, 1);

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 background.loadTexture(gl,PBGameVars.BACKGROUND, PBGameVars.
context);
player1.loadTexture(gl,PBGameVars.PADDLE, PBGameVars.context);

 }

Notice that the onSurfaceCreated() calls a new method, initializeBricks().
This new method creates your wall for you.

 private void initializeBricks(){
 wall = new PBWall(numberOfRows);
 }

CHAPTER 5: Creating the Player Character and Obstacles

53

Now you need a method that draws the bricks on each frame; something that
can be called in the drawFrame() method, much like the drawBrackground()
method. A drawBricks() method calls on every frame and serves a couple of
functions. First, by iterating through the PBWall and reading the isDestroyed flag
of each brick, it determines whether a brick has been knocked out of the game.
If a brick has been destroyed, it is skipped in the drawing loop, thus preventing it
from being rendered to the screen, and causing it to disappear from the game.

Second, the drawBricks() method uses a case statement built around
the brickType of each brick to determine which of the images in the brick
spritesheet to use as a texture for that specific brick. This is an important part
of the code to pay attention to because it uses glTranslatef() to move the
spritesheet to the correct texture on each brick.

Think of it like this: the brick that is drawn in the game is the size of one brick,
but the spritesheet that holds all of the images is the size of seven bricks.
Therefore, using glTranslatef(), you are going to move the spritesheet around
on the brick until the correct brick image is mapped to the correct brick.

You see this in action in the code that is bolded, as follows:

 private void drawBricks(GL10 gl){
 for (int x = 0; x < wall.rows.length; x++)
 {
 for(int y = 0; y < wall.rows[x].bricks.length; y++)
 {
 if(!wall.rows[x].bricks[y].isDestroyed)
 {
 switch (wall.rows[x].bricks[y].
brickType){
 case PBGameVars.BRICK_BLUE:
 gl.glMatrixMode(GL10.
GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f,
1f);
 gl.glTranslatef(wall.
rows[x].bricks[y].posX, wall.rows[x].bricks[y].posY, 0f);

gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.50f, 0.25f , 0.0f);
 wall.rows[x].bricks[y].draw(gl, spriteSheets);

l

CHAPTER 5: Creating the Player Character and Obstacles54

 gl.glPopMatrix();
 gl.glLoadIdentity();

 break;
 case PBGameVars.BRICK_BROWN:
gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f,
1f);
gl.glTranslatef(wall.rows[x].bricks[y].posX, wall.rows[x].bricks[y].posY, 0f);

gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,
0.50f , 0.0f);
 wall.rows[x].bricks[y].
draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_DARK_GRAY:
gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f,
1f);

gl.glTranslatef(wall.rows[x].bricks[y].posX, wall.rows[x].bricks[y].posY, 0f);

gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.25f,
0.25f , 0.0f);
 wall.rows[x].bricks[y].
draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_GREEN:

gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f,
1f);

CHAPTER 5: Creating the Player Character and Obstacles

55

gl.glTranslatef(wall.rows[x].bricks[y].posX, wall.rows[x].bricks[y].posY, 0f);

gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,
0.25f , 0.0f);
 wall.rows[x].bricks[y].
draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_LITE_GRAY:

gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f,
1f);

gl.glTranslatef(wall.rows[x].bricks[y].posX, wall.rows[x].bricks[y].posY, 0f);

gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.25f,
0.0f , 0.0f);
 wall.rows[x].bricks[y].
draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_PURPLE:

gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f,
1f);

gl.glTranslatef(wall.rows[x].bricks[y].posX, wall.rows[x].bricks[y].posY, 0f);

gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.50f,
0.0f , 0.0f);
 wall.rows[x].bricks[y].
draw(gl, spriteSheets);

CHAPTER 5: Creating the Player Character and Obstacles56

 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_RED:

gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f,
1f);
gl.glTranslatef(wall.rows[x].bricks[y].posX, wall.rows[x].bricks[y].posY, 0f);

gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,
0.0f , 0.0f);
 wall.rows[x].bricks[y].
draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 default:

gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f,
1f);

gl.glTranslatef(wall.rows[x].bricks[y].posX, wall.rows[x].bricks[y].posY, 0f);

gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,
0.0f , 0.0f);
 wall.rows[x].bricks[y].
draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 }
 }
 }
 }
 }

CHAPTER 5: Creating the Player Character and Obstacles

57

Finally, you need two methods for moving the player paddle and the ball with
each new frame. First, in the moveBall() method you will notice that there is
some basic trajectory math being performed in the background, just to move it
from its random starting point to a point off the screen. This math does not take
into account any collision detection or angular deflections; that is covered in the
next chapter.

 private void moveBall(GL10 gl){
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 
 ball.posX + = (float) ((PBGameVars.ballTargetX - ball.posX)/
(ball.posY / (PBGameVars.ballTargetY)));
 
 ball.posY - = PBGameVars.ballTargetY * 3;
 
 gl.glTranslatef(ball.posX, ball.posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 ball.draw(gl,spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 }

The move paddle is similar; however, it uses some variables from the PBGameVars
to determine where to move the player.

 private void movePlayer1(GL10 gl){
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 
 if (PBGameVars.playerAction == PBGameVars.PLAYER_MOVE_LEFT_1 &&
PBGameVars.playerBankPosX > 0)
 {
 PBGameVars.playerBankPosX = PBGameVars.playerBankPosX -
PBGameVars.PLAYER_MOVE_SPEED;
 }

Caution  Keep a close eye on each case in the switch statement. While they may
look the same, there is an important difference. Notice the glTranslatef() call
of each case in the Texture mode. Each one moves to a different set of coordinates,
signifying the different brick images in the spritesheet.

CHAPTER 5: Creating the Player Character and Obstacles58

 else if(PBGameVars.playerAction == PBGameVars.PLAYER_MOVE_
RIGHT_1 && PBGameVars.playerBankPosX < 2.5)
 {
 PBGameVars.playerBankPosX = PBGameVars.playerBankPosX +
 PBGameVars.PLAYER_MOVE_SPEED;
 }
 gl.glTranslatef(PBGameVars.playerBankPosX, .5f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 player1.draw(gl);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 }

The playerAction variable in the previous code sample determines if the player
wants to move the paddle to the left or to the right. In the real world, the player
is touching either to the left or to the right side of the device’s screen to move
the paddle. To detect the screen touches and set the appropriate variable, add
the following bolded code to the PBGame file:

package com.jfdimarzio;
 

import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
 

public class PBGame extends Activity {
 final PBGameVars gameEngine = new PBGameVars();
 private PBGameView gameView;
 

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 gameView = new PBGameView(this);
 setContentView(gameView);
 }
 

 @Override
 protected void onResume() {
 super.onResume();
 gameView.onResume();
 }
 

CHAPTER 5: Creating the Player Character and Obstacles

59

 @Override
 protected void onPause() {
 super.onPause();
 gameView.onPause();
 }
 

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 float x = event.getX();
 float y = event.getY();
 int height = PBGameVars.display.getHeight() / 4;
 int playableArea = PBGameVars.display.getHeight() - height;
 if (y > playableArea){
 switch (event.getAction()){
 case MotionEvent.ACTION_DOWN:
 if(x < PBGameVars.display.getWidth() / 2){
 PBGameVars.playerAction = PBGameVars.PLAYER_
MOVE_LEFT_1;
 }else{
 PBGameVars.playerAction = PBGameVars.PLAYER_
MOVE_RIGHT_1;
 }
 break;
 case MotionEvent.ACTION_UP:
 PBGameVars.playerAction = PBGameVars.PLAYER_RELEASE;
 break;
 	 }
 }
 return false;
 }
}

The complete PBGameRenderer (as of this chapter) should appear as shown in
Listing 5-7. The code that you added in this chapter is in bold.

Listing 5-7. PBGameRenderer

package com.jfdimarzio;
 
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
 
import android.opengl.GLSurfaceView.Renderer;
 
public class PBGameRenderer implements Renderer{
 
 private PBBackground background = new PBBackground();
 private PBPlayer player1 = new PBPlayer();
 private PBBall ball = new PBBall();

s

CHAPTER 5: Creating the Player Character and Obstacles60

 private PBTextures textureLoader;
 private int[] spriteSheets = new int[3];
 private int numberOfRows = 4;
 private PBWall wall;
 
 private long loopStart = 0;
 private long loopEnd = 0;
 private long loopRunTime = 0 ;
 
 private float bgScroll1;
 
 @Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub
 loopStart = System.currentTimeMillis();
 // TODO Auto-generated method stub
 try {
 if (loopRunTime < PBGameVars.GAME_THREAD_FPS_SLEEP){
 Thread.sleep(PBGameVars.GAME_THREAD_FPS_SLEEP -
loopRunTime);
 }
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 
 drawBackground1(gl);
 movePlayer1(gl);
 drawBricks(gl);
 moveBall(gl);
 loopEnd = System.currentTimeMillis();
 loopRunTime = ((loopEnd - loopStart));
 }
 
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 // TODO Auto-generated method stub
 gl.glViewport(0, 0, width,height);
 
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 
 gl.glOrthof(0f, 1f, 0f, 1f, -1f, 1f);
 }
 
 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig arg1) {
 // TODO Auto-generated method stub

CHAPTER 5: Creating the Player Character and Obstacles

61

 initializeBricks();
 textureLoader = new PBTextures(gl);
 spriteSheets = textureLoader.loadTexture(gl, PBGameVars.BRICK_SHEET,
PBGameVars.context, 1);
 
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);
 
 background.loadTexture(gl,PBGameVars.BACKGROUND, PBGameVars.
context);
 player1.loadTexture(gl,PBGameVars.PADDLE, PBGameVars.context);
 }
 
 private void drawBackground1(GL10 gl){
 
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(1f, 1f, 1f);
 
 background.draw(gl);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 
 }
 
 private void initializeBricks(){
 wall = new PBWall(numberOfRows);
 }
 
 private void drawBricks(GL10 gl){
 for (int x = 0; x < wall.rows.length; x++)
 {
 for(int y = 0; y < wall.rows[x].bricks.length; y++)
 {
 if(!wall.rows[x].bricks[y].isDestroyed)
 {
 switch (wall.rows[x].bricks[y].brickType){
 case PBGameVars.BRICK_BLUE:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 gl.glTranslatef(wall.rows[x].bricks[y].posX,
wall.rows[x].bricks[y].posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();

CHAPTER 5: Creating the Player Character and Obstacles62

 

 wall.rows[x].bricks[y].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_DARK_GRAY:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 gl.glTranslatef(wall.rows[x].bricks[y].posX,
wall.rows[x].bricks[y].posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.25f, 0.25f, 0.0f);
 wall.rows[x].bricks[y].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_GREEN:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 gl.glTranslatef(wall.rows[x].bricks[y].posX,
wall.rows[x].bricks[y].posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f, 0.25f, 0.0f);
 wall.rows[x].bricks[y].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_LITE_GRAY:
 gl.glMatrixMode(GL10.GL_MODELVIEW);

CHAPTER 5: Creating the Player Character and Obstacles

63

 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 gl.glTranslatef(wall.rows[x].bricks[y].posX,
wall.rows[x].bricks[y].posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.25f, 0.0f, 0.0f);
  wall.rows[x].bricks[y].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_PURPLE:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 gl.glTranslatef(wall.rows[x].bricks[y].posX,
wall.rows[x].bricks[y].posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.50f, 0.0f, 0.0f);
   wall.rows[x].bricks[y].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_RED:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 gl.glTranslatef(wall.rows[x].bricks[y].posX,
wall.rows[x].bricks[y].posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f, 0.0f, 0.0f);
  wall.rows[x].bricks[y].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 default:
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 gl.glTranslatef(wall.rows[x].bricks[y].posX,
wall.rows[x].bricks[y].posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();

CHAPTER 5: Creating the Player Character and Obstacles64

 gl.glTranslatef(0.0f, 0.0f, 0.0f);
    wall.rows[x].bricks[y].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 }
 }
 }
 }
 }
 
 private void moveBall(GL10 gl){
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 
 ball.posX += (float) ((PBGameVars.ballTargetX - ball.posX)/ (ball.posY
/(PBGameVars.ballTargetY)));
 
 ball.posY -= PBGameVars.ballTargetY * 3;
 
 gl.glTranslatef(ball.posX, ball.posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 ball.draw(gl,spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 }
 
 private void movePlayer1(GL10 gl){
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 
 if (PBGameVars.playerAction == PBGameVars.PLAYER_MOVE_LEFT_1 &&
PBGameVars.playerBankPosX > 0)
 {
 PBGameVars.playerBankPosX = PBGameVars.playerBankPosX -
PBGameVars.PLAYER_MOVE_SPEED;
 }
 else if(PBGameVars.playerAction == PBGameVars.PLAYER_MOVE_RIGHT_1 &&
PBGameVars.playerBankPosX < 2.5)
 {
 PBGameVars.playerBankPosX = PBGameVars.playerBankPosX +
PBGameVars.PLAYER_MOVE_SPEED;
 }

CHAPTER 5: Creating the Player Character and Obstacles

65

 gl.glTranslatef(PBGameVars.playerBankPosX, .5f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 player1.draw(gl);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 }
}

Compile and run your game in the emulator or on your device. You will now see
a wall of bricks to destroy, a responsive player paddle, and a ball that quickly
moves off the screen.

Summary
In this chapter, you created a wall of randomly colored bricks, a movable player
paddle, and a ball. This is a lot of code to add to the game, and it brings you
very close to completing the Prison Break game. You also learned how to use a
spritesheet, and you created a great helper class that builds a wall of bricks with
a specified number of rows.

The ability to use helper classes to do some of the more tedious setup work in a
game is a valuable skill that you find yourself using more and more. Try to look
for places where you can use helper classes to handle character or object setup
in your games.

In the next chapter, you will create the collision detection logic that finishes the
playable physics of the game.

67

Chapter 6
Collision Detection

In the last chapter, you added all of the game elements to the game world:
bricks, a player paddle, and the ball. After running your code, however, you
found that although you could move the player paddle, it had no effect on
the gameplay. The ball starts in a random position and ends up falling off the
bottom of the screen. The reason for this is the distinct lack of collision detection
in your game.

In this chapter, you will add collision detection to the game.

The Purpose of Collision Detection
The strict definition of collision detection is, well, detecting when elements on
the screen have collided. It is much more crucial than that, however. A good
collision detection system tests for and evaluates when elements in the game
world come into contact with one another. It also provides you with a method by
which to react to those collisions.

The collision detection system for Prison Break is going to be basic, but it will
show you how collision detection works and it will allow you to expand upon it
as you see fit.

Keep in mind, OpenGL does not have any built-in collision detection or vertex
testing capabilities; it just isn’t built for that. It is your responsibility as a game
developer to provide that mechanism to the game.

CHAPTER 6: Collision Detection68

Collision Detection in Prison Break
Before we begin to write the collision detection system for Prison Break, we
need to discuss what it needs to do. It is always best to have a good idea of
how you want a system to work before you begin to code it.

The following is a list of the items that we need to test in the collision detection
system for Prison Break:

Has the ball hit the paddle?	

Has the ball hit a brick?	

Has the ball hit the right “wall” or edge of the screen?	

Has the ball hit the left “wall” or edge of the screen?	

Has the ball exited the upper boundary of the game?	

Has the ball exited the lower boundary of the game?	

In addition to these tests, the collision detection system has to perform the
following actions:

“Destroy” any brick that is hit by the ball.	

Calculate the angle of deflection and move the ball along if it 	
hits the paddle or the right or left edges of the game screen.

While this seems like a lot, this is a surprisingly basic collision detection system
for your game. Some collision detection systems are incredibly complex.

Creating the Collision Detection System
You will not need to create a new class for the collision detection system; rather,
it will reside in a method of the PBGameRenderer. It is important that the collision
detection system run on every frame of the game renderer. Therefore, the
method will be called from the onDrawFrame().

Create a new method in your PBGameRenderer called detectCollisions(). Let’s
take a step-by-step look at the code in detectCollisions(). Then I will give you
the full code of the PBGameRenderer so that you can see it in context.

The first thing the method does is test to see if the ball is off the bottom edge of
the screen. If it is, this indicates a game-over scenario. To determine if the ball is
off the edge of the screen, simply test its y-axis position to see if it is less than 0.

 if(ball.posY < = 0){
 //GameOver

 }

CHAPTER 6: Collision Detection

69

Next, you test each brick to see whether or not the ball has contacted it.

 for (int x = 0; x < wall.rows.length; x++)
 {
 for(int y = 0; y < wall.rows[x].bricks.length; y++)
 {
 if(!wall.rows[x].bricks[y].isDestroyed)
 {
 if (((ball.posY > wall.rows[x].bricks[y].
 posY - .25f)
 && (ball.posY < wall.rows[x].bricks[y].posY)
 && (ball.posX + .25f > wall.rows[x].bricks[y].posX)
 && (ball.posX < wall.rows[x].bricks[y].
 posX + 1.50f)))
 {
 wall.rows[x].bricks[y].isDestroyed = true;
 PBGameVars.ballTargetY = PBGameVars.
 ballTargetY * -1f;
 if(PBGameVars.ballTargetX == −2f){
 PBGameVars.ballTargetX = 5f;
 }else{
 PBGameVars.ballTargetX = −2f;
 }
 }
 }
 }
 }

Notice the if statement that tests if the ball has touched a brick. First, it tests if
the y-axis position of the ball (the upper-left corner) is greater than the y-axis
position of the brick minus 0.25. This is because the y-axis position of the
brick is the upper-left corner of the brick; but we want to see if the ball has hit
the bottom of the brick, so we subtract the height of the brick from its y-axis
position to get the y-axis position of the bottom.

If the ball hits a brick, the isDestroyed flag of the brick is set to true. As you have
seen from the drawBricks() method, any brick that has the isDestroyed flag set
to true is not drawn. Therefore, on the next iteration of the game loop, the brick
that has been hit will not be drawn and it will disappear from the game screen.

Note  When you are testing the x- or y-coordinate positions of anything on the
screen in Prison Break, the coordinate given represents the position of the upper
left-hand corner of the vertex that the texture is mapped on to. This is important to
note because you may need to take into account the width or height of the vertex
when testing certain collisions.

CHAPTER 6: Collision Detection70

After the brick is destroyed, the ball bounces off of it. Therefore, you now need
to calculate the ball’s angle of deflection. Luckily for you, all of the bricks lie
at 90-degree angles and the angle of attack for the ball is always going to
be (roughly) 45 degrees. This gives you a very clean and consistent angle of
deflection. In fact, all you have to do to deflect the ball correctly is set the y-axis
value to the inverse sign of itself.

Tip  The angle of attack is the angle at which the ball bounces off of an object and
continues on the game screen. In real-world physics, a ball bounces off a flat object
set to a 90-degree angle at an angle inverse to the angle at which it approached the
object. Therefore, a ball approaching a flat, 90-degree angle object at a 30-degree
angle would bounce off of it at a 60-degree angle. To avoid the need for having to
conduct a full physics lesson, the ball in Prison Break is always going to travel at a
45-degree angle, and every surface is going to be at a 90-degree angle. This way,
every time the ball is deflected, it does so at a 45-degree angle.

Finally, you need to set the target for the ball. This was not discussed in the
last chapter, but you are cheating a little to get the ball moving. By using the
ballTargetX variable, you are giving the ball an x-axis value to “aim for” as it
moves. This allows you to easily keep it on course. If the ball is moving right, the
target is on the positive side of the x-axis; if the ball is moving left, the target is
on the negative side of the x-axis.

When the ball has a collision, it is going to bounce; therefore, the target needs to
flip to get the ball moving in the opposite direction.

The final section of the collision detection method tests to see if the ball has hit
the player paddle. You will notice that the tests performed against the bricks, as
well as the deflections, are also applied to the paddle.

 if((ball.posY - .25f < = .5f)
 && (ball.posX + .25f > PBGameVars.playerBankPosX)
 && (ball.posX < PBGameVars.playerBankPosX + 1.50f)){
 PBGameVars.ballTargetY = PBGameVars.ballTargetY * -1f;
 if(PBGameVars.ballTargetX == −2f){
 PBGameVars.ballTargetX = 5f;
 }else{
 PBGameVars.ballTargetX = −2f;
 }
 }
 if(ball.posX < 0 || ball.posX + .25f > 3.75f)

CHAPTER 6: Collision Detection

71

 {
 PBGameVars.ballTargetX = PBGameVars.ballTargetX * -1f;
 }
 }

Let’s take a look at the finished method in context.

Tip  If you want to tweak the collision detection system, change the detection on the
ball using the y-axis position to use the y-position minus 0.125. This will give you a
detection point that is closer to the top of the ball. I used the corner of the ball in the
preceding code to destroy more bricks simultaneously and clear the screen faster.

The Finished PBGameRenderer
Listing 6-1 shows the finished PBGameRenderer. The collision detection method
and the call to it are bolded to make them easier to see.

Listing 6-1.  PBGameRenderer

package com.jfdimarzio;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class PBGameRenderer implements Renderer{

 private PBBackground background = new PBBackground();
 private PBPlayer player1 = new PBPlayer();
 private PBBall ball = new PBBall();
 private PBTextures textureLoader;
 private int[] spriteSheets = new int[3];
 private int numberOfRows = 4;
 private PBWall wall;

 private long loopStart = 0;
 private long loopEnd = 0;
 private long loopRunTime = 0 ;

 private float bgScroll1;

CHAPTER 6: Collision Detection72

 @Override
 public void onDrawFrame(GL10 gl) {
 // TODO Auto-generated method stub
 loopStart = System.currentTimeMillis();
 // TODO Auto-generated method stub
 try {
 if (loopRunTime < PBGameVars.GAME_THREAD_FPS_SLEEP){
 Thread.sleep(PBGameVars.GAME_THREAD_FPS_SLEEP -
 loopRunTime);
 }
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

 drawBackground1(gl);
 movePlayer1(gl);
 drawBricks(gl);
 moveBall(gl);
 detectCollisions();
 loopEnd = System.currentTimeMillis();
 loopRunTime = ((loopEnd - loopStart));
 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 // TODO Auto-generated method stub
 gl.glViewport(0, 0, width,height);

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();

 gl.glOrthof(0f, 1f, 0f, 1f, -1f, 1f);
 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig arg1) {
 // TODO Auto-generated method stub
 initializeBricks();
 textureLoader = new PBTextures(gl);
 spriteSheets = textureLoader.loadTexture(gl, PBGameVars.BRICK_
 SHEET, PBGameVars.context, 1);

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

CHAPTER 6: Collision Detection 73

 background.loadTexture(gl,PBGameVars.BACKGROUND, PBGameVars.context);
 player1.loadTexture(gl,PBGameVars.PADDLE, PBGameVars.context);
 }

 private void drawBackground1(GL10 gl){

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(1f, 1f, 1f);

 background.draw(gl);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 }

 private void initializeBricks(){
 wall = new PBWall(numberOfRows);
 }

 private void drawBricks(GL10 gl){
 for (int x = 0; x < wall.rows.length; x++)
 {
 for(int y = 0; y < wall.rows[x].bricks.length; y++)
 {
 if(!wall.rows[x].bricks[y].isDestroyed)
 {
 switch (wall.rows[x].bricks[y].brickType){
 case PBGameVars.BRICK_BLUE:

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);
 gl.glTranslatef(wall.rows[x].bricks[y].posX,
 wall.rows[x].bricks[y].posY, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.50f, 0.25f, 0.0f);
 wall.rows[x].bricks[y].draw(gl,spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_BROWN:

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();

CHAPTER 6: Collision Detection74

 gl.glScalef(.25f, .25f, 1f);

 gl.glTranslatef(wall.rows[x].bricks[y].posX,
 wall.rows[x].bricks[y].posY, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f, 0.50f, 0.0f);
 wall.rows[x].bricks[y].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_DARK_GRAY:

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 gl.glTranslatef(wall.rows[x].bricks[y].posX,
 wall.rows[x].bricks[y].posY, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.25f,0.25f , 0.0f);
 wall.rows[x].bricks[y].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_GREEN:

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 gl.glTranslatef(wall.rows[x].bricks[y].posX,
 wall.rows[x].bricks[y].posY, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f, 0.25f,0.0f);
 wall.rows[x].bricks[y].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_LITE_GRAY:

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

CHAPTER 6: Collision Detection

75

 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 gl.glTranslatef(wall.rows[x].bricks[y].posX,
 wall.rows[x].bricks[y].posY, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.25f, 0.0f, 0.0f);
 wall.rows[x].bricks[y].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_PURPLE:

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 gl.glTranslatef(wall.rows[x].bricks[y].posX,
 wall.rows[x].bricks[y].posY, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.50f, 0.0f, 0.0f);
 wall.rows[x].bricks[y].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 case PBGameVars.BRICK_RED:

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 gl.glTranslatef(wall.rows[x].bricks[y].posX,
 wall.rows[x].bricks[y].posY, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f, 0.0f, 0.0f);
 wall.rows[x].bricks[y].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 default:

CHAPTER 6: Collision Detection76

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 gl.glTranslatef(wall.rows[x].bricks[y].posX,
 wall.rows[x].bricks[y].posY, 0f);

 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f, 0.0f, 0.0f);
 wall.rows[x].bricks[y].draw(gl, spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 break;
 }
 }
 }
 }
 }

 private void moveBall(GL10 gl){
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 ball.posX + = (float) ((PBGameVars.ballTargetX - ball.posX)/
 (ball.posY / (PBGameVars.ballTargetY)));

 ball.posY - = PBGameVars.ballTargetY * 3;

 gl.glTranslatef(ball.posX, ball.posY, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 ball.draw(gl,spriteSheets);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 }

 private void movePlayer1(GL10 gl){
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glPushMatrix();
 gl.glScalef(.25f, .25f, 1f);

 if (PBGameVars.playerAction == PBGameVars.PLAYER_MOVE_LEFT_1
 &&PBGameVars.playerBankPosX > 0)

CHAPTER 6: Collision Detection

77

 {
 PBGameVars.playerBankPosX = PBGameVars.playerBankPosX -
 PBGameVars.PLAYER_MOVE_SPEED;
 }
 else if(PBGameVars.playerAction == PBGameVars.PLAYER_MOVE_RIGHT_1
 && PBGameVars.playerBankPosX < 2.5)
 {
 PBGameVars.playerBankPosX = PBGameVars.playerBankPosX + 
 PBGameVars.PLAYER_MOVE_SPEED;
 }
 gl.glTranslatef(PBGameVars.playerBankPosX, .5f, 0f);
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,0.0f, 0.0f);
 player1.draw(gl);
 gl.glPopMatrix();
 gl.glLoadIdentity();
 }

 private void detectCollisions(){
 if(ball.posY < = 0){
 //GameOver
 }

 for (int x = 0; x < wall.rows.length; x++)
 {
 for(int y = 0; y < wall.rows[x].bricks.length; y++)
 {
 if(!wall.rows[x].bricks[y].isDestroyed)
 {
 if (((ball.posY > wall.rows[x].bricks[y].posY - .25f)
 && (ball.posY < wall.rows[x].bricks[y].posY)
 && (ball.posX + .25f > wall.rows[x].bricks[y].posX)
 && (ball.posX < wall.rows[x].bricks[y].posX + 1.50f)))
 {
 wall.rows[x].bricks[y].isDestroyed = true;
 PBGameVars.ballTargetY = PBGameVars.ballTargetY * -1f;
 if(PBGameVars.ballTargetX == −2f){
 PBGameVars.ballTargetX = 5f;
 }else{
 PBGameVars.ballTargetX = −2f;
 }
 }
 }
 }
 }

 if((ball.posY - .25f < = .5f)
 && (ball.posX + .25f > PBGameVars.playerBankPosX)

CHAPTER 6: Collision Detection78

 && (ball.posX < PBGameVars.playerBankPosX + 1.50f)){
 PBGameVars.ballTargetY = PBGameVars.ballTargetY * -1f;
 if(PBGameVars.ballTargetX == −2f){
 PBGameVars.ballTargetX = 5f;
 }else{
 PBGameVars.ballTargetX = −2f;
 }
 }
 if(ball.posX < 0 || ball.posX + .25f > 3.75f)
 {
 PBGameVars.ballTargetX = PBGameVars.ballTargetX * -1f;
 }
 }
}

Compile and run your game. You should now be able to play a fairly complete
version of your game and break some bricks.

Summary
In this chapter, you learned how to make a basic collision detection system and
add it to your game. This gave you a fairly complete version of your game. In the
next chapter of the book, we explore several ways to keep score.

79

Chapter 7
Keeping Score

In the last chapter, you learned how to implement a basic collision detection
system in your Prison Break game. This collision detection system allowed you
to test for any collisions between the game ball and the bricks or the paddle. It is
now time to add the finishing touch to the game.

Most arcade-style games feature a scoring component. Whether it is a direct
score or a ranking that correlates to how a level was finished, the score is what
lets the player know how he played compared to other players.

In this chapter, you take a look at two possible ways to keep score in Prison
Break. The first method adds a specific number of points to the player’s score
for each brick broken. The second method awards the player a number of points
for each complete row of bricks eliminated.

Creating the Scoring Method
To keep score, you first need to add a new method to the PBGameRenderer() that
will track the player’s score. This method advances the score as you call it.

How will the score be written out to the screen? You create three small vertices
following the methods outlined in Chapter 4 and Chapter 5 for making the
background, bricks, ball, and paddle. Because we have gone through this
procedure four times already, it will not be repeated again here.

Create a new class called PBScoreTile and place instances of it in the upper
right-hand corner of your game screen. Next, add to your project a new
spritesheet that contains all of the numbers needed to build a score. This
spritesheet is shown in Figure 7-1.

CHAPTER 7: Keeping Score80

Each tile should default to the 0 when drawn. This is accomplished by
performing a glTranslatef() to the coordinates of 0,0,0 in the texture matrix.

gl.glMatrixMode(GL10.GL_TEXTURE);
gl.glLoadIdentity();
gl.glTranslatef(0.0f, 0.0f, 0.0f);

For each point scored, use glTranslatef() to move the spritesheet to the
corresponding number. This is best achieved in a loop that continues to add 1 to
the current score, move a 9 back to a 0 when needed, and advance to the next
scoring tile. Therefore, advance your score to the next number each time the
method is called by using glTranslatef() to move to the next 0.25 increment in
the spritesheet.

The following is an example in pseudocode:

private void advanceScore(){

...
 //advance glTranslatef() to the next image in the sprite sheet
 gl.glMatrixMode(GL10.GL_TEXTURE);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f, 0.0f, 0.0f);
...

}

When you have your scoring method finished, it is time to call it.

In the next section, you learn how to call it per brick.

Scoring per Brick
It is very simple to allow your player to score per brick. All you need to do is
modify the detectCollisions() method to advance the score when a brick is
taken out of play. Modify your detectCollisions() method (as per the following
bolded code) to advance the score each time the player destroys a brick.

Figure 7-1.  ScoreNumbers Spritesheet

CHAPTER 7: Keeping Score

81

private void detectCollisions(){
 if(ball.posY <= 0){
 //GameOver
 }

 for (int x = 0; x < wall.rows.length; x++)
 {
 for(int y = 0; y < wall.rows[x].bricks.length; y++)
 {
 if(!wall.rows[x].bricks[y].isDestroyed)
 {
 if (((ball.posY > wall.rows[x].bricks[y].posY - .25f)
 && (ball.posY < wall.rows[x].bricks[y].posY)
 && (ball.posX + .25f > wall.rows[x].bricks[y].posX)
   && (ball.posX < wall.rows[x].bricks[y].posX + 1.50f)))
 {
 wall.rows[x].bricks[y].isDestroyed = true;
 advanceScore();
 PBGameVars.ballTargetY = PBGameVars.
 ballTargetY * -1f;
 if(PBGameVars.ballTargetX == -2f){
 PBGameVars.ballTargetX = 5f;
 }else{
 PBGameVars.ballTargetX = -2f;
 }
 }
 }
 }
 }
...
}

To add a bit of variety to the scoring, you can also implement a way to give each
brick a different point value. First, modify your advanceScore() method to accept
an int value representing the number of points you want to advance the score
counter. Then, you can simply pass the brickType of the destroyed brick as the
number of points that it is worth, as shown in the following bolded code:

private void detectCollisions(){
 if(ball.posY <= 0){
 //GameOver
 }

 for (int x = 0; x < wall.rows.length; x++)
 {
 for(int y = 0; y < wall.rows[x].bricks.length; y++)
 {
 if(!wall.rows[x].bricks[y].isDestroyed)
 {
 if (((ball.posY > wall.rows[x].bricks[y].posY - .25f)

CHAPTER 7: Keeping Score82

Add a new property named numberOfBricksRemaining to your PBRow. This
property will track the number of bricks in the current row. When the counter
reaches zero, you can advance the score, as in the following example:

 && (ball.posY < wall.rows[x].bricks[y].posY)
 && (ball.posX + .25f > wall.rows[x].bricks[y].posX)
 && (ball.posX < wall.rows[x].bricks[y].posX + 1.50f)))
 {
 wall.rows[x].bricks[y].isDestroyed = true;
 advanceScore(wall.rows[x].bricks[y]. brickType);
 PBGameVars.ballTargetY = PBGameVars. 	
				 ballTargetY * -1f;
 if(PBGameVars.ballTargetX == -2f){
 PBGameVars.ballTargetX = 5f;
 }else{
 PBGameVars.ballTargetX = -2f;
 }
 }
 }
 }
 }
...
}

If you don’t want to score your players per brick broken, you can also increment
the score per row.

Scoring per Row
When you created the PBWall class, one of the features that you built into it
was the ability to specify the number of brick rows you want the user to have to
break through. You could, theoretically, instantiate this to hundreds of rows and
turn the game into more of an endurance game. In doing so, you could track the
number of rows the player has successfully cleared.

NOTE  While it is outside the scope of this chapter, if you wanted to create a new
game that contained hundreds of brick rows, you would have to create a method
that scrolled the screen when the ball moved above the view port. In pseudocode,
this would mean that if ball.posY > 4, then glTranslatef(ball.posY - 2,
0.0f,0.0f) in the projection matrix. The -2 keeps the ball in the center of the
screen as it scrolls.

CHAPTER 7: Keeping Score 83

public class PBRow {
 public PBBrick[] bricks;
 public int numberOfBricksRemaining = 0;
 public boolean rowIsScored = false;
 private Random brickType = new Random();
 private boolean isRowOdd = false;
 private int numberOfBricks = 0;

 public PBRow(int rowNumber){

 if(rowNumber 2 > 0)
 {
 numberOfBricks = 4;
 numberOfBricksRemaining = 4;
 isRowOdd = true;
 }
 else
 {
 numberOfBricks = 5;
 numberOfBricksRemaining = 5;
 isRowOdd = false;
 }

 bricks = new PBBrick[numberOfBricks];

 for(int x = 0; x < numberOfBricks ; x++)
 {
 bricks[x] = new PBBrick((int) (brickType.nextFloat() * 7));
 if(isRowOdd)
 {
 bricks[x].posX = x - 2f ;
 bricks[x].posY = (rowNumber * .25f) + 1 ;
 }
 else
 {
 bricks[x].posX = x - 2.5f;
 bricks[x].posY = (rowNumber * .25f) + 1 ;
 }
 }
 }
}

CHAPTER 7: Keeping Score84

This will initially set the number of bricks remaining in the row to the total
number of bricks in the row. Then, as you iterate through your collision detection
method, you subtract 1 from this property for every destroyed brick. Once the
property reaches 0, you call your scoring method.

private void detectCollisions(){
 if(ball.posY <= 0){
 //GameOver
 }

 for (int x = 0; x < wall.rows.length; x++)
 {
 for(int y = 0; y < wall.rows[x].bricks.length; y++)
 {
 if(!wall.rows[x].bricks[y].isDestroyed)
 {
 if (((ball.posY > wall.rows[x].bricks[y].posY- .25f)
 && (ball.posY < wall.rows[x].bricks[y].posY)
 && (ball.posX + .25f > wall.rows[x].bricks[y].posX)
 && (ball.posX < wall.rows[x].bricks[y].posX + 1.50f)))
 {
 wall.rows[x].bricks[y].isDestroyed = true;
 wall.rows[x].numberOfBricksRemaining -=;
 PBGameVars.ballTargetY = PBGameVars.
 ballTargetY * -1f;
 if(PBGameVars.ballTargetX == -2f){
 PBGameVars.ballTargetX = 5f;
 }else{
 PBGameVars.ballTargetX = -2f;
 }
 }
 }
 }
 if(wall.rows[x]. numberOfBricksRemaining = 0 && wall.
 rows[x].rowIsScored == false){
 advanceScore();
 wall.rows[x].rowIsScored = true;
 }
 }
...
}

This is all that is required to create a few different score-taking mechanisms.
I am sure that, with a little time, you can implement one that is even more
creative.

TIP  The rowIsScored property allows you to track whether or not you have
already awarded a score to the cleared row.

CHAPTER 7: Keeping Score

85

Summary
In this chapter, you learned how to create three different ways to let your player
track and compare his score with that of other players. This is vital to arcade
games because it gives your player a greater sense of accomplishment.

In the next (and final) chapter of this book, you will learn how to add new levels
to Prison Break.

87

Chapter 8
Adding New Levels

At this point in the book, you have created a functional arcade game. Prison
Break can be used as a template for many other games, and the knowledge that
you built in this short case study will help you create compelling arcade-style
games.

As it stands, however, Prison Break is a rather short game. This chapter takes
you through the theory of adding levels to the game. There are two ways you
can add new levels to Prison Break—and most arcade games for that matter.
You can hardcode each level into the game (static leveling); or you can write the
game code in such a way that it reads the level information from an outside,
changing source (dynamic leveling).

Let’s first take a look at the theory behind adding static levels to your game.

Adding Static Levels
If you add a finite number of levels to Prison Break—beyond the one already
supplied—you are creating static levels. Much of what you need to create
additional Prison Break levels is already built into the game.

First, you should create and add multiple backgrounds to your Prison Break
project. This will allow you to call a new background corresponding to the level
that the player chooses. To make your life easier, create new variables in the
PBGameVars to help call the new background images.

Next, create a new button for levels on your menu. Using Chapter 3 as a guide,
add a new button and the listener for it. Then, when the player selects the button
corresponding to the level he wants to play, call the game activity as the Start
button does now; but also set a variable in the PBGameVars similar to

CHAPTER 8: Adding New Levels88

PBGameVars.levelSelected = 5;

In the PBGameRenderer, you can now change your game load based on the level
the player selected. In the loading methods of the game renderer, you can swap
out the background image, load a different number of rows, or change the ball to
correspond to a different level.

Adding Dynamic Levels
A second option, and a far more labor-intensive one, is to modify the game code
to accept the dynamic creation of levels. Modifying the code to use dynamic
levels will give your players a more enhanced experience because they can
continually add to the game. The key to doing something like this is to use an
XML-based level definition sheet. You create a level definition sheet, like that
shown in Listing 8-1, which tells your code how to load up your level. Then,
using this definition sheet, you are able to create an endless number of levels.

Listing 8-1. Level XML

<prisonbreaklevel>
 <levelnumber>5</levelnumber>
 <levelbackground>background5.png</levelbackground>
 <levelwall>
 <numberofrows>6</numberofrows>
 <levelwall>
 <levelball>
 <type>normal</type>
</ prisonbreaklevel >

This sheet can be stored on a web server, or downloaded to the game via an
update and stored in the Android database. Looking at the information in the
sheet, it should be apparent how the code would need to be modified to use it.

When loading the PBGameRenderer, your code now opens and reads the
definition sheet that corresponds to the level that the player selected. The
appropriate definition sheet options are then loaded into game, and the level is
created.

Summary
In this, the final chapter of an expert case study on Android arcade games, you
learned how to change the Prison Break code to accept the creation of multiple
levels.

I sincerely hope you enjoyed this book and that it gave you further insight into
the creation of games using the Android platform.

89

Index

■ A
Android gaming

arcade games, 1
development, 4
history of, 3–4
IDEs, 2
Nintendo Game Boy, 3
OpenGL ES, 2
programming skills, 2
pros and cons, 5–6

Android SDK, 15
Arcade game, 1, 11

origin, 7–8
Prison Break

background coloring, 9–10
collision detection and in-game

physics, 10
game description, 8
game score, 10
levels addition, 10
menu creation, 9
player paddle and bricks

creation, 10
screenshot, 8, 9

■ B
Background

bg1.png, 29
code for drawing, 34–35
constructor, 30
draw() method, 31
loadTexture(), 31
PBBackground class code, 31–33
rendered background, 36

renderer (see Renderer)
steps to draw, 33–34
SurfaceView, 26

Ball class, 47–49
Brick class, 43–47

■ C
Collision detection

creation
ballTargetX variable, 70
drawBricks() method, 69
game-over scenario, ball test,

68, 69
PBGameRenderer, 68

finished PBGameRenderer, 71–78
Prison Break, 68
purpose of, 67

■ D, E, F
detectCollisions() method, 68
drawBricks() method, 69

■ G, H
GLSurfaceView, 26
glTranslatef(), 80

■ I, J, K, L, M
Integrated development environment

(IDEs), 2

■ N
numberOfBricksRemaining, 82

Index90

■ O
onCreate() method, 26
onDrawFrame() method, 28
onSurfaceChanged() method, 28
onSurfaceCreated() method, 28
OpenGL

background (see Background)
glLoadIdentity(), 37
glPopMatrix(), 37
glPushMatrix(), 37
glScale and glRotate, 37
glTranslate, 37
ModelView mode, 36
project mode, 36
texture mode, 36

■ P, Q
Player character and obstacles

brick class creation
PBBrick code, 44–45
PBTextures, 46–47

compile and run in emulator/
device, 65

PBBall class creation, 47–49
PBGameRenderer

code, 58–65
drawBricks() method, 53–57
glTranslatef(), 53–56
initializeBricks(), 52
moveBall() method, 57–58
PBGame file code for touch

event, 58–59
texture loaders, 52
variables, 52

PBGameVars file, 40–43
PBPlayer class creation, 41–43
PBRow creation, 50–51
PBWall creation, 50
spritesheet, 39–40

Player paddle class, 41–43
Prison Break

Android SDK, 15
arcade game

background coloring, 9–10
collision detection and in-game

physics, 10
game description, 8
game score, 10
levels addition, 10
menu creation, 9
player paddle and bricks

creation, 10
screenshot, 8, 9

background (see Background)
dynamic leveling, 88
exitbtndown.png, 15
exitbtn.png, 15
image names, 15
menu screen, 13
PBGame Activity code, 25
PBMainMenu

code, 23–25
exit button, 18
exitselector.xml, 20
game loop, starting and

exiting, 18
main.xml layout, 19–20
PBMainMenu.java code, 18–19
start button, 18
startselector.xml, 21

player character and obstacles
(see Player character and
obstacles)

PrisonbreakActivity
fadein.xml code, 18
fadeout.xml code, 18
overridePendingTransition(), 18
PBGameVars.java, 17
PBMainMenu.java, 17
PrisonbreakActivity.java code,

16–17
public variables, 17
splashscreen.xml, 17
transitional layouts, 18

prisonbreaksplash.png, 14
public static final int GAME_

THREAD_FPS_SLEEP =
(1000/60), 26

Index

91

res/drawable-hdpi folder, 16
score (see Score)
splash screen and main menu

creation, 16
startbtndown.png, 15
startbtn.png, 14
static leveling, 87–88

■ R
Renderer

onDrawFrame(), 28
onSurfaceChanged(), 28

onSurfaceCreated(), 28
PBGameRenderer code, 26–28

rowIsScored property, 84

■ S, T, U, V, W, X, Y, Z
Score

scoring method, 79–80
scoring per brick, 80–82
scoring per row, 82–84

ScoreNumbers spritesheet, 80
SurfaceView, 26

Android Arcade
Game App

J. F. DiMarzio

Android Arcade Game App

Copyright © 2012 by J. F. DiMarzio

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation
are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically
for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the
provisions of the Copyright Law of the Publisher’s location, in its current version, and permission
for use must always be obtained from Springer. Permissions for use may be obtained through
RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the
respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4545-2

ISBN-13 (electronic): 978-1-4302-4546-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The images of the Android Robot (01 / Android Robot) are reproduced from work created and
shared by Google and used according to terms described in the Creative Commons 3.0 Attribution
License. Android and all Android and Google-based marks are trademarks or registered trademarks
of Google, Inc., in the U.S. and other countries. Apress Media, L.L.C. is not affiliated with Google,
Inc., and this book was written without endorsement from Google, Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor: Tom Welsh
Technical Reviewer: Tony Hillerson
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan

Ertel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James
Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-
Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Katie Sullivan
Copy Editor: Kimberly Burton
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

Thank you to Suzannah, Christian, Sophia, and
Giovanni for always being there.

–J. F. DiMarzio

v

Contents

About the Author... viii

About the Technical Reviewer... ix

About the Game Graphics Designer.. x

Acknowledgments... xi

Chapter 1: Introduction to Android Gaming■■ ...1

What You Should Know..1

What You Will Learn...2

A Brief History of Gaming..3

The Introduction of Android...4

Android Game Programming...5

Summary...6

Chapter 2: What Is an Arcade Game?■■ ..7

Where Did Arcade-Style Games Originate?...7

Your Game: Prison Break...8

In This Book…...9

Chapter 3: Creating a Menu...9

Chapter 4: Drawing the Background..9

Contentsvi

Chapter 5: Creating the Player Paddle and Bricks...10

Chapter 6: Collision Detection and In-Game Physics...10

Chapter 7: Keeping Score..10

Chapter 8: Adding More Levels..10

Summary ..11

Chapter 3: Creating a Menu■■ ...13

Before You Begin...14

Creating the Splash Screen and Main Menu...16

PrisonbreakActivity...16

PBMainMenu...18

Summary...21

Chapter 4: Drawing the Background■■ ...23

Starting the Game...23

Creating the SurfaceView and Renderer...26

Creating the Background Class...29

Drawing the Background...33

Summary...37

Chapter 5: Creating the Player Character and Obstacles■■39

Before You Begin...39

Creating the Player Paddle Class..41

Creating the Brick Class..43

Create the PBBall Class...47

The PBRow and the PBWall...50

Calling the Bricks, Paddle, and Ball in the PBGameRenderer........................52

Summary...65

Contents

vii

Chapter 6: Collision Detection■■ ...67

The Purpose of Collision Detection..67

Collision Detection in Prison Break...68

Creating the Collision Detection System...68

The Finished PBGameRenderer...71

Summary...78

Chapter 7: Keeping Score■■ ..79

Creating the Scoring Method..79

Scoring per Brick...80

Scoring per Row..82

Summary...85

Chapter 8: Adding New Levels■■ ...87

Adding Static Levels..87

Adding Dynamic Levels...88

Summary...88

Index...89

viii

About the Author

J. F. DiMarzio is a game developer and web professional. He has more than
twenty years of experience in technology and design. Having authored eleven
books, he is a leading resource in Android and Android game development.

Currently, Mr. DiMarzio is a developer for the Walt Disney Company. He resides
in Central Florida with his wife, Suzannah, and three children. Suzannah’s blog is
at zannaland.com.

ix

About the Technical
Reviewer

Tony Hillerson is a mobile developer and cofounder at Tack Mobile. He
graduated from Ambassador University with a bachelor’s degree in Management
Information Systems. On any given day, he may be working with Objective-C,
Java, Ruby, CoffeeScript, JavaScript, HTML, or shell scripts. Tony has spoken
at RailsConf, AnDevCon, and 360|Flex. He is the creator of the popular O’Reilly
Android screencasts.

In his free time, Tony enjoys playing the bass and Warr Guitar, and making
electronic music. Tony lives outside Denver, Colorado, with his wife, Lori, and
sons, Titus and Lincoln.

x

About the Game
Graphics Designer

Ben Eagle has been working with computer graphics and web development
for 14 years, which he learned while serving in the Marine Corps. While working
with various companies, Ben has designed hundreds of sites, company signs,
logos, commercials, and marketing graphics. Currently he works as a senior
programmer, living in Davenport Florida. At the age of 34 he continues to pursue
his career and teaches graphics to students on the side. He has acquired two
associate’s degrees in digital media and web development. Ben also has his MCP
and C++/Java certification. In his leisure he continues his passion in computer arts
and programming and performs in a band.

xi

Acknowledgments

The author would like to acknowledge his agent, Neil Salkind, as well as Steve,
Katie, Tom, Tony, Kim, and the gang at Apress.

	Android Arcade Game App
	Contents
	About the Author
	About the Technical Reviewer
	About the Game Graphics Designer
	Acknowledgments
	Chapter 1: Introduction to Android Gaming
	Sec1
	What You Should Know
	What You Will Learn
	A Brief History of Gaming
	The Introduction of Android
	Android Game Programming
	Summary

	Chapter 2: What Is an Arcade Game?
	Where Did Arcade-Style Games Origin ate?
	Your Game: Prison Break
	In This Book…
	Chapter 3: Creating a Menu
	Chapter 4: Drawing the Background
	Chapter 5: Creating the Player Paddle and Bricks
	Chapter 6: Collision Detection and In-Game Physics
	Chapter 7: Keeping Score
	Chapter 8: Adding More Levels

	Summary

	Chapter 3: Creating a Menu
	Before You Begin
	Creating the Splash Screen and Main Menu
	PrisonbreakActivity
	PBMainMenu
	Summary

	Chapter 4: Drawing the Background
	Starting the Game
	Creating the SurfaceView and Renderer
	Creating the Background Class
	Drawing the Background
	Summary

	Chapter 5: Creating the Player Character and Obstacles
	Before You Begin
	Creating the Player Paddle Class
	Creating the Brick Class
	Create the PBBall Class
	The PBRow and the PBWall
	Calling the Bricks, Paddle, and Ball in the PBGameRenderer
	Summary

	Chapter 6: Collision Detection
	The Purpose of Collision Detection
	Collision Detection in Prison Break
	Creating the Collision Detection System
	The Finished PBGameRenderer
	Summary

	Chapter 7: Keeping Score
	Creating the Scoring Method
	Scoring per Brick
	Scoring per Row
	Summary

	Chapter 8: Adding New Levels
	Adding Static Levels
	Adding Dynamic Levels
	Summary

	Index

