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Abstract. In the paper, the problem of genome mapping is considered.
In particular, the restriction site approach is used for this purpose. A new,
efficient algorithm for solving the Simplified Partial Digest Problem is
presented. The ideal data as well as data with measurement errors can
be handled by this algorithm. An extensive computational experiment
proved a clear superiority of the presented algorithm over other existing
approaches. In addition, a thorough analysis of the Simplified Partial
Digest Problem and a discussion of common experimental errors are
given.

1 Introduction

Creation of a physical map is one of the basic steps of genome sequencing pro-
cess. Such a map of a DNA strand contains the information about locations
of short, specific subsequences called markers. There are many ways of physical
map construction. One of them is based upon splitting a target strand into many
shorter ones, called clones, that overlap each other. Next, each clone is subject
to hybridization with a set of short DNA fragments, called probes, unique within
the target DNA. The information upon which the original ordering of clones is
reconstructed is the set of probes that bind to each clone. Methods and algo-
rithms based on foregoing approach are presented among others in [1,13].

Another way to construct physical maps consists of a digestion of a DNA
molecule with restriction enzymes. These enzymes cut DNA strands within short,
specific patterns called restriction sites. After digestion, the lengths of obtained
fragments are measured and serve as the basic information in the process of a
reconstruction of the original ordering. In practice, several variants of this ap-
proach are used. Two of the best known are: the double digest and the partial
digest.
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96 J. B�lażewicz and M. Jaroszewski

In the former problem two restriction enzymes are used. A target DNA is
amplified, perhaps using a PCR reaction, and the copies are divided into three
sets. Molecules from the first set are digested by one enzyme, molecules from the
second set are digested by the other enzyme and molecules from the third set
are cut by both enzymes. All digestions are complete for the time span of each
reaction is long enough to allow the enzyme to cut the target strand at each
occurrence of the restriction site. As the result one obtains three collections of
short DNA fragments that correspond to three digestion processes. The lengths
of these fragments are measured during a gel electrophoresis process and recorded
as three multisets. On the basis of this data locations of restriction sites in the
target DNA are reconstructed. Unfortunately, from the combinatorial point of
view this is a hard problem and, in addition, a number of equivalent solutions
grows exponentially with the length of a strand being mapped [2,6,8,9,10,12,16].

A good alternative is, thus, the partial digest method where only one enzyme
is used [11,14,15]. After amplification, a target DNA is divided into three sets.
Molecules from each set are digested by the same enzyme, but the time span
allowed for digestion differs among sets. The reaction times are chosen in such
a way that in one of the sets most DNA strands were cut exactly once and in
another set, exactly twice. For the third set, the reaction time span must be
sufficient to let the enzyme cut all molecules in all ocurrences of the restriction
site. As the result one gets three collections of restriction fragments. Again, the
most important information are lengths of restriction fragments measured dur-
ing a gel electrophoresis process. The restriction mapping problem based upon
above-mentioned biochemical experiment is known as PDP (the Partial Digest
Problem). Efficient backtracking algorithm for solving PDP that fills out the
matrix of distances between restriction sites was designed by S. Skiena and co-
workers [14]. While the algorithm is known to have an exponential complexity
in the worst case, on average, however, it performs quite well. In addition, a
modification of the above algorithm was proposed by S. Skiena and G. Sun-
daram [15] that yields very promising results in the presence of measurement
errors. The computational complexity of PDP assuming error-free input data is
an open question [13]. M. Cieliebak and co-workers proved the NP-hardness of
PDP in the presence of unbounded errors [5].

In this paper, we propose an improved algorithm for solving the simplified
partial digest problem (SPDP), introduced in [3], where only two digestion pro-
cesses are performed. In what follows, we will compare the new algorithm to the
one discussed in [3] and to the backtracking algorithm designed by S. Skiena and
G. Sundaram [15]. The comparison will include two cases. The first one deals
with ideal data, involving no experimental errors, the second deals with data
containing measurement errors. As an error model we assume the one discussed
in [15] to unify the presentation and to enable comparison with the best ap-
proach to PDP known so far.

An organization of the paper is as follows. In Section 2, a description of
biochemical experiment and a mathematical formulation of SPDP are given. In
Section 3, the algorithm for ideal data case is presented along with a discussion
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of common experimental errors. Considering length measurement errors to be
the most important ones, we adopt the model of errors similar to the one pre-
sented in [15]. In Section 4, computational results are given and the comparison
with the results obtained in [3] and [15] is done.

2 The Problem and Its Basic Features

In the Simplified Partial Digest Problem (SPDP), similarly as in the Partial Di-
gest Problem, only one restriction enzyme is used [3]. However, in case of SPDP
only two digestions are performed. We will call them, respectively, a short diges-
tion and a complete digestion. After amplification, the copies of a target strand
are split into two sets. The goal of a short digestion is to have almost all molecules
from one of the sets cut in at most one ocurrence of the restriction site. This is
assured by properly chosen time span of the reaction. Molecules from the other
set are cut in all ocurrences of the restriction site due to the long reaction time
span (a complete digestion). Then, as in other methods, the lengths of restriction
fragments obtained are measured during a gel electrophoresis process.

Let us now define the problem more formally. Let Γ = {γ1, γ2, . . . , γ2n} be
a multiset of fragment lengths (excluding the length of a whole DNA strand)
that are obtained out of a short digestion and let Λ = {λ1, λ2, . . . , λn+1} be a
multiset of fragment lengths obtained out of a complete digestion, where n de-
notes a number of restriction sites in the target DNA. Furthermore, let us sort
the elements of multiset Γ in non-decreasing order. In this way we obtain list
A = 〈a1, a2, . . . , a2n〉. It is easy to observe that in the ideal case (assuming no
experimental errors) ai + a2n−i+1 = l, i = 1, . . . , n, where l denotes a length of
the target DNA strand. The restriction fragments whose lengths are equal to,
respectively, ai and a2n−i+1 will be called complementary and a pair of com-
plementary fragments will be denoted by {ai, a2n−i+1}, i = 1, . . . , n. Obviously,
each pair corresponds to exactly one restriction site in the target molecule. Un-
fortunately, the real ordering of complementary fragments within a pair is not
known as the actual information gets lost during digestion processes. Thus, let
Pi = 〈ai, a2n−i+1〉 and P2n−i+1 = 〈a2n−i+1, ai〉 denote permutations of pair
{ai, a2n−i+1}, i = 1, . . . , n. Next let us label restriction sites as r1, . . . , rn in
such a way that condition: s ≤ t ⇒ as ≤ at, s, t = 1, . . . , n would hold for any
restriction sites rs and rt. Additionally, let us arbitrarily label one of the ends of
the target molecule as r0, the other as rn+1 and let us call them, respectively, the
left end and the right end of the map. In what follows, by the notion of a labeled
site we will understand any restriction site or any one of the ends of the map.
Let Σ = {a1, . . . , an, ai − a1, . . . , ai − ai−1, l− an, l− an − a1, . . . , l− an − an−1},
i = 2, . . . , n denote a set of all distances between any two restriction sites rs

and rt, s = 1, . . . , n − 1, t = s + 1, . . . , n and between any restriction site rs

and the nearest end of the map (be it r0 or rn+1); only for rn two distances:
between r0 and rn and between rn and rn+1, respectively, are included. Some
elements of Σ may be identical with regard to the value but still represent dis-
tances between different restriction sites and thus Σ is a set. Furthermore, let
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Φ = {φ1, φ2, . . . , φ2n}, φk = 〈ck1, ck2, . . . , ck(n+1)〉, cki ∈ Σ, i = 1, . . . , n + 1,
k = 1, . . . , 2n, denote a set of all feasible orderings of n restriction sites. A fea-
sible ordering is defined as the result of a composition of n permutations, each
permutation being obtained out of a different complementary pair. A composi-
tion of two permutations Pi = 〈ai, a2n−i+1〉 and Pj = 〈aj , a2n−j+1〉 is defined
as triple 〈ai, aj − ai, a2n−j+1〉 if ai < aj or triple 〈aj , ai − aj , a2n−i+1〉 whenever
aj < ai, i = 1, . . . , 2n, j = 1, . . . , 2n, i �= j. Using the foregoing definition, one
can easily extend the notion of the composition to the case where i permuta-
tions are involved, i = 3, . . . , n. In addition, one should note that values cki and
ck(i+1), i = 1, . . . , n, k = 1, . . . , 2n are correlated. As the foregoing dependency
is essential to the problem formulation, we will examine it a little bit further.
Let us consider elements cki and ck(i+1) of φk, i = 2, . . . , n − 1, k = 1, . . . , 2n.
The values of elements cki and ck(i+1) are determined by locations of restric-
tion sites we will denote by rs, rt and rt, ru. Let {as, a2n−s+1}, {at, a2n−t+1}
and {au, a2n−u+1} denote complementary pairs that correspond, respectively, to
restriction sites rs, rt and ru. There are four different cases we will consider:

1. Restriction sites rs, rt and ru are located in the left half of the map (the half
that begins with r0). In this case cki equals at−as and ck(i+1) equals au−at.

2. Restriction sites rs, rt and ru are located in the right half of the map (the
half that ends with r(n+1)). In this case we obtain cki = as−at and ck(i+1) =
at − au.

3. Restriction sites rs, rt are located in the left half of the map, while restriction
site ru is located in the right half of the map. In this case cki = at − as and
ck(i+1) = l − au − at.

4. Restriction site rs is located in the left half of the map, while restriction
sites rt, ru are located in the right half of the map. In the mentioned case
cki equals l − at − as and ck(i+1) equals at − au.

One can also construct similar rules for i = 1 as well as i = n.

Clearly, Φ contains all feasible as well as unacceptable solutions of SPDP. At
the end, let us sort the elements of multiset Λ in non-decreasing order to obtain
list B = 〈b1, b2, . . . , bn+1〉.

Using the above denotations, the Simplified Partial Digest Problem
(the search version) can be formulated as follows:

Find element φ of Φ that satisfies the following criterion:

The list of elements of φ, sorted non-decreasingly, is identical to list B.

The above notions are illustrated in Fig. 1.
One can prove that a number of different feasible solutions of the Simplified

Partial Digest Problem grows exponentially with a number of restriction sites
for some instances.
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The original ordering:

Results of a short digestion:

14

16

20

Results of a complete digestion:

2 8 6 4 4

r0 r1 r4 r3 r2 r5

2
22

10
8

4

2

8

6
4 4

Fig. 1. An exemplary instance of the Simplified Partial Digest Problem with
number of restriction sites n equal to 4 and length l of a target molecule
equal to 24. Γ = {2, 22, 10, 8, 20, 4, 16, 14}, thus A = 〈2, 4, 8, 10, 14, 16, 20, 22〉,
while Λ = {2, 6, 4, 8, 4} and hence B = 〈2, 4, 4, 6, 8〉. There are four com-
plementary pairs: {2, 22}, {4, 20}, {8, 16}, {10, 14}, each pair having exactly
two permutations: P1 = 〈2, 22〉, P2 = 〈4, 20〉, P3 = 〈8, 16〉, P4 = 〈10, 14〉,
P5 = 〈14, 10〉, P6 = 〈16, 8〉, P7 = 〈20, 4〉, P8 = 〈22, 2〉. Set of distances
Σ = {2, 4, 8, 10, 14, 2, 6, 8, 12, 4, 6, 10, 2, 6}. Set Φ contains 24 = 16 elements, with
φ1 = 〈2, 2, 4, 2, 14〉, φ2 = 〈2, 2, 4, 6, 10〉, φ3 = 〈2, 2, 6, 6, 8〉, φ4 = 〈2, 2, 10, 2, 8〉,
φ5 = 〈2, 6, 2, 10, 4〉, φ6 = 〈2, 8, 6, 4, 4〉, φ7 = 〈2, 6, 6, 6, 4〉, φ8 = 〈2, 12, 2, 4, 4〉 and
with elements from φ9 to φ16 inversely ordered with regard to elements, respec-
tively, from φ1 to φ8. Only two solutions to the problem exist: φ6 and φ14, the
former one being a composition of permutations: P1, P4, P6, P7 and the later
one being a composition of permutations:P8, P5, P3, and P2



100 J. B�lażewicz and M. Jaroszewski

3 New Algorithm for the Simplified Partial Digest
Problem

As we already said in Introduction, the complexity status of the Simplified Par-
tial Digest Problem is open. In [3], an exact algorithm for SPDP was proposed
and in the worst case its running time was exponential in the input size. On
average, however, this time was much lower. In this paper, new algorithm for
SPDP is proposed, which compares favorably with the previous one [3] and with
the algorithm proposed for PDP [15].

3.1 Neighbourhood Rules

A construction of neighbourhood rules for each restriction site is an essential
step in the process of the algorithm creation. The position of each restriction
site is determined by a selection of a permutation of a pair that corresponds to
the site. Firstly, let us consider any restriction site ri, i = 1, . . . , n − 1 and its
position in a feasible ordering. Clearly, the following possibilities exist:

1. Restriction site ri is located in the left half of the map. On its left side it
has labeled site rs, s ∈ {0, . . . , i − 1}, while on the right side it neighbours
restriction site rt, t ∈ {i + 1, . . . , n}.

2. Restriction site ri is located in the right half of the map. On its left side it
has restriction site rs, s ∈ {i+1, . . . , n}, while on the right side it neighbours
labeled site rt, t ∈ {n + 1, 1, . . . , i − 1}.

Now, let us analyze the situation for restriction site rn:

1. Restriction site rn is located in the left half or in the middle of the map. On
its left side it has labeled site rs, s ∈ {0, . . . , n−1}, while on the right side it
neighbours labeled site rt, t = n− 1 if s < n− 1 and t ∈ {1, . . . , n− 2, n + 1}
if s = n − 1.

2. Restriction site rn is located in the right half of the map. On its left side
it has labeled site rs, while on its right side it neighbours labeled site rt,
t ∈ {1, . . . , n − 1, n + 1}, s = n − 1 if t �= n − 1 and s ∈ {0, . . . , n − 2}
whenever t = n − 1.

The neighbourhood rules are based upon analyses presented above. To make the
rules as brief and consistent as possible, we will use Boolean variables. Let αji

denote a Boolean variable that is equal to one whenever difference aj − ai is
present in a feasible ordering, and is equal to zero otherwise, i = 1, . . . , n − 1,
j = i + 1, . . . , n. Furthermore, let αj0 and α(n+1)i denote Boolean variables that
are equal to one whenever, respectively, aj − a0 and l − an − ai are present in
a feasible ordering, i = 0, . . . , n − 1, j = 1, . . . , n, a0 = 0. Otherwise, respective
variables are equal to zero. Notice that equality: αj0 = 1 may hold even if
restriction site rj is not a neighbour of r0. In such a case rj is located in the
right half of the map and neighbours rn+1 on the right side. Adding the fact that
each restriction site has exactly one neighbour on either side, we can formulate
the neighbourhood rules as follows:
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1. r1: α10 ∩ (α21 ∪α31 ∪ . . .∪αn1 ∪α(n+1)1) = 1. Additionally, (αs1 ∩αt1) = 0,
s, t = 2, . . . , n + 1 and s �= t.

2. r2: (α20 ∪ α21) ∩ (α32 ∪ α42 ∪ . . . ∪ αn2 ∪ α(n+1)2) = 1, i.e. (α20 ∪ α21) = 1
and (α32 ∪ α42 ∪ . . . ∪ αn2 ∪ α(n+1)2) = 1. Additionally, (α20 ∩ α21) = 0 and
(αs2 ∩ αt2) = 0, s, t = 3, . . . , n + 1 and s �= t.

3. . . .
4. rk, k = 3, . . . , n− 2: (αk0 ∪ αk1 ∪ αk2 ∪ . . . ∪ αk(k−1)) ∩ (α(k+1)k ∪ α(k+2)k ∪

. . . ∪ αnk ∪ α(n+1)k) = 1,i.e. (αk0 ∪ αk1 ∪ αk2 ∪ . . . ∪ αk(k−1)) = 1 and
(α(k+1)k ∪ αk+2)k ∪ . . . ∪ αnk ∪ α(n+1)k) = 1. Additionally, (αsk ∩ αtk) = 0,
s, t = k +1, . . . , n+1, s �= t and (αks ∩αkt) = 0, s, t = 0, . . . , k−1 and s �= t.

5. . . .
6. rn−1: (α(n−1)0 ∪ α(n−1)1 ∪ α(n−1)2 ∪ . . . ∪ α(n−1)(n−2)) ∩ (αn(n−1) ∪

α(n+1)(n−1)) = 1, i.e. (α(n−1)0 ∪ α(n−1)1 ∪ α(n−1)2 ∪ . . . ∪ α(n−1)(n−2)) = 1
and (αn(n−1) ∪ α(n+1)(n−1)) = 1. Additionally, (αn(n−1) ∩ α(n+1)(n−1)) = 0
and α(n−1)s ∩ α(n−1)t, s, t = 0, . . . , n − 2 and s �= t.

7. rn: (αn0∪αn1∪αn2∪. . .∪αn(n−2)∪αn(n−1))∩(α(n+1)0∪α(n+1)1∪α(n+1)2∪. . .∪
α(n+1)(n−2) ∪ α(n+1)(n−1)) = 1. Additionally, (αn(n−1) ∪ α(n+1)(n−1)) = 1,
(αns ∩ αnt) = 0, (α(n+1)s ∩ α(n+1)t) = 0 and (αns ∩ α(n+1)s) = 0, s, t =
0, . . . , n − 1 and s �= t.

8. The additional rule: (α20 ∪ . . . ∪ α(n+1)0) = 1 and (αs0 ∩ αt0) = 0, s, t =
2, . . . , n + 1 and s �= t.

3.2 Construction of Distance Matrix M

For each restriction site rj , j = 1, . . . , n, the neighbourhood rules contain the
product of two sums, each sum representing the set of feasible candidates for
the left or the right neighbour of the restriction site. At most one element of
each sum equals one for, as it has been pointed out above, each restriction site
neighbours exactly one labeled site on the left and exactly one labeled site on the
right. Moreover, at least one element of each sum equals one, as each restriction
site clearly must have a neighbour on either side. For j = 1, . . . , n − 1 let ∆j =
〈δj0, . . . , δj(j−1), 0, . . . , 0〉 and Ωj = 〈ω(j+1)j , . . . , ω(n+1)j , 0, . . . , 0〉, δji = aj − ai,
i = 0, . . . , j − 1, ω(n+1)j = l − an − aj and ωij = ai − aj, i = j + 1, . . . , n,
denote the n dimensional vectors of differences that correspond, respectively,
to the first and the second sum in the product given for restriction site rj .
Furthermore, let us extend the above denotations to restriction site rn. Thus,
let ∆n = 〈δn0, . . . , δn(n−1)〉 and Ωn = 〈ω(n+1)0, . . . , ω(n+1)(n−1)〉, δni = an − ai,
i = 0, . . . , n− 1, ω(n+1)i = l− an − ai, i = 0, . . . , n− 1 denote the n dimensional
vectors of differences that correspond to the first and the second sum in the
product given for restriction site rn. Moreover, let Ω0 = 〈ω20 ∪ . . . ∪ ω(n+1)0〉,
ω(n+1)0 = l− an and ωi0 = ai, i = 2, . . . , n denote the n dimensional vector that
corresponds to sum α20 ∪ . . . ∪ α(n+1)0. Square matrix M of distances between
labeled sites, based on the neighbourhood rules, is constructed in the following
way:

1. The i-th row of matrix M equals ∆i+1, i = 1, . . . , n − 1.
2. The n-th row of matrix M equals Ωn.
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One can prove the following properties of matrix M :

1. j-th column of M equals Ωj−1, j = 1, . . . , n.
2. Construction of a feasible solution of SPDP consists in picking up exactly

one element in each row and exactly one element in each column of the
matrix, however, these elements may not be chosen arbitrarily.

The algorithm to be described in the next subsection is based on the above
property 2.

3.3 The Algorithm

The proposed algorithm operates on matrix M of distances between restriction
sites in order to eliminate all elements, but one, in each row and each column
(see property 2 above), according to the rules that are specified below. In what
follows by the notion of a main element we will understand such an element
of M that forms any feasible solution of SPDP. One can prove that there is
always at least one main element in each row and in each column of the matrix,
however, no two main elements in any row or in any column form the same
solution (see property 2 above). Due to the ambiguity that arises whenever
it is impossible to establish the main element in a row or in a column (to
establish means to distinguish the main element, that belongs to a solution
constructed, from other non-zero elements in a row or in a column basing
upon available knowledge), the algorithm performs random choices that may
lead to non-feasible solutions to the Simplified Partial Digest Problem. Thus,
the algorithm is recursive and enables backtracking to the stage where a false
random choice has been made if a non-feasible solution has been obtained.
Firstly, we will introduce some basic notions and definitions, then the stages of
the algorithm will be presented.

Let p denote a level of recurrence. At the beginning p = 1. Let f(p),
f(p) = 1, . . . , n− 1 denote an index of the first row for which it is impossible to
establish the main element at current level of recurrence p (one can prove that
any unprocessed row at a current level of recurrence may be selected for that
purpose). Furthermore, let NM (value) and NB(value) denote, respectively, a
number of occurrences of elements of matrix M and a number of occurrences of
elements of list B that are equal to value. Additionally, while considering any
element mij of matrix M we will assume that j = 1, . . . , i+1 for i = 1, . . . , n−1
and j = 1, . . . , n for i = n. Let v denote an auxiliary variable used to indicate
whether, at current level of recurrence p, a random choice of the main element
(in f(p)-th row) is necessary.

Now let us present some definitions:

A disposable element - positive element mij for which NB(mij) = 0.
Thus, a disposable element does not have its counterpart on list B and, as list
B contains only the lengths of fragments of the original ordering, a disposable
element cannot form any feasible solution.
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A solitary element of a column - positive element mij for which the following
holds: ¬(∃k : mkj > 0), where k = j − 1, . . . , i − 1, i + 1, . . . , n if j �= 1 and
k = 1, . . . , i− 1, i + 1, . . . , n otherwise. Any solitary element of a column forms a
feasible solution of SPDP (see property 2 of the matrix), unless a false random
choice has been made before.

A solitary element of a row - positive element mij for which the fol-
lowing holds: ¬(∃k : mik > 0), where k = 1, . . . , j−1, j +1, . . . , i+1 if i �= n and
k = 1, . . . , j − 1, j + 1, . . . , n otherwise. Any solitary element of a row forms a
feasible solution of SPDP (see property 2 of the matrix), unless a false random
choice has been made before.

A unique element - positive element mij for which the following holds:
NM (mij) = NB(mij). Any unique element forms a feasible solution of SPDP
(see property 2 of the matrix), unless a false random choice has been made before.

A deletion - an operation that may proceed in two separate ways, de-
pending on the kind of the element being deleted: a deletion of a disposable
element consists in an assignment of 0 to the corresponding entry of the
matrix, while a deletion of any other element of M or element of B consists
in an assignment of −p to the proper entry. These assignments allow for easy
backtracking in the case a non-feasible solution of SPDP were constructed.

A consistency check - an operation performed on positive element mij , just
deleted, which consists in comparison of both NM (mij) and NB(mij). The
result of a check is negative whenever NM (mij) < NB(mij), since in such a
case there are too few elements of the matrix that equal mij to construct any
acceptable solution of SPDP.

A labeling - an operation performed on main element mij of a con-
structed solution. A labeling consists in an assignment of −p to the proper
entry of the matrix and in a deletion of an element of list B that equals mij .
The deletion is performed in order to prevent a usage of elements of the matrix
that equal mij too many times in the constructed solution.

Now, we may give a description of Algorithm 1 that finds a feasible solution
of SPDP. On Fig. 2, a high-level description of the algorithm is given, while
performed steps are described below in a greater detail.

Algorithm 1

1. Delete all disposable elements from matrix M .
2. Label mij . Delete all positive elements, but mij , in i-th row and j-th column

of the matrix. After a deletion of each element perform the consistency check
for this element. Mark i-th row and j-th column as processed. If the result
of any check is negative, a feasible solution cannot be constructed anymore,
thus, proceed to step 7.
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Perform step 1

Check if there exist a unique
element m in the matrixij

Perform step 2

v v:= + 1

Check if there exist a solitary
element m of a rowij

Perform step 3

v v:= + 1

Check if there exist a solitary
element m of a columnij

Perform step 4

v v:= + 1

Check the value of v

Check whether each row
and each column has been
processed

Perform step 5

p p:= + 1

Perform step 6

yes

yes

yes

no

no

no

no

START

v = 0

yes

Perform step 7

p p:= - 1

A feasible solution has been
constructed

STOP

v > 0

v := 0

Fig. 2. A high-level description of the algorithm
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3. Label mij . Delete all positive elements, but mij , in j-th column of the ma-
trix. After a deletion of each element perform the consistency check for this
element. Mark i-th row and j-th column as processed. If the result of any
check is negative, a feasible solution cannot be constructed anymore, thus,
proceed to step 7.

4. Label mij . Delete all positive elements, but mij , in i-th row of the matrix.
After a deletion of each element perform the consistency check for this ele-
ment. Mark i-th row and j-th column as processed. If the result of any check
is negative, a feasible solution cannot be constructed anymore, thus, proceed
to step 7.

5. Choose the first, not selected previously, positive element mf(p)j , where j =
1, . . . , f(p) + 1, in f(p)-th row of the matrix. If no such element is found, a
feasible solution cannot be constructed anymore, thus, proceed to step 7.

6. Label mf(p)j . Delete all positive elements, but mf(p)j , in f(p)-th row and
j-th column of the matrix. After a deletion of each element perform the
consistency check for this element. Mark f(p)-th row and j-th column as
processed. If the result of any check is negative, a feasible solution cannot
be constructed anymore, thus, proceed to step 7.

7. Backtrack to the stage of the last random choice undoing all the changes
made during current level of recurrence p. They are fairly easy to track as
each time an element of M or B is deleted, value −p is assigned to the
corresponding entry.

The above algorithm finds only the first feasible solution of the considered
problem, but it can be modified to find all of them as it has been done for
the needs of testing. Due to the ambiguities that may arise during construction
of a solution, the algorithm has an exponential complexity in the worst case.
However, its mean behavior is much better, what has been verified by the series
of tests, results of which are shown in Section 4.

Algorithm 1 in its basic form could handle ideal data. However, it can be
modified to handle data containing errors. This issue is briefly discussed below.
The most common experimental errors are caused by imprecise measurement of
the lengths of restriction fragments. According to [4], a 2%-5% relative measure-
ment error is achievable. Thus, we have adopted the same model of measurement
errors as given in [15], assuming a relative measurement error to range from 0.5%
to 5% of the measured length.

Another type of errors is caused by missing restriction fragments. This can
be due to approximately equal lengths of fragments, which cannot be then dis-
criminated on a gel. On the other hand, this type of errors may be caused by
the fact that certain sites are less likely to be cut than the others, so some frag-
ments might not occur in sufficient quantity to be measured. However, in our
SPDP approach such fragments are rather easily traced because there are only
two digestion processes, respectively, with a quite short time span and with a
very long one, which result in a relatively low number of restriction fragments
as compared to the standard Partial Digest Problem. What is more, resulting
fragments of a short digestion must form complementary pairs of the known



106 J. B�lażewicz and M. Jaroszewski

total length. Adding the fact that the number of restriction sites is known, one
can usually reconstruct missing fragments.

Summing up, we assume that measurement errors are the most important
ones and for the model of such errors adopted from [15] we propose the algorithm
that is very similar to the one for error-free input data. There are only two
differences:

1. Instead of numbers, intervals are used that correspond to the lower and
upper bound of the length of each fragment obtained out of the biochemi-
cal experiment (i. e. for measured length l and relative error r, an interval
〈lmin, lmax〉 such that l(1−r) ≤ lmin ≤ l and l ≤ lmax ≤ l(1+r) is assumed).

2. All operations performed by the algorithm for ideal data have been changed
to fit the rules of interval arithmetic.

In the next section, extensive computational experiments are described, that
characterize favorably the approach proposed.

4 Computational Results

In this section, we present the results of tests of the new algorithm in the case
of error-free as well as noisy input data. The algorithm has been implemented in
DJGPP C++. The tests were run on the PC with Pentium 670MHz processor
and 128MB RAM under Windows 98 system. For the sake of comparison, the
results obtained for the algorithm solving PDP, presented in [15], and those
obtained for the first algorithm solving SPDP, presented in [3], have been added.
Running times, numbers of equivalent solutions and relative error rates (in the
case of noisy data) of all algorithms are compared. The number of equivalent
solutions can be decreased by applying the grouping percentage factor [15], but
it can also lead to the loss of feasible solutions. Since no grouping factor has
been implemented for both algorithms solving SPDP, the results presented for
PDP correspond to the grouping percentage factor equal to zero. In the tables
below APDP stands for the algorithm presented in [15], ASPDP stands for the
algorithm presented in [3]. ANEW denotes our just proposed approach, while
msec stands for miliseconds.

4.1 Error-Free Input Data

At first, we have compared all three algorithms, i.e. solving PDP and two our
SPDP approaches on randomly generated instances. Table 1 presents running
times for tested algorithms.
The value of each entry in Table 1 represents an average of ten runs of the
algorithm. We see that ASPDP as well as ANEW outperform the other algorithm.

The other series of tests for error-free input data have been performed for
ANEW only. The data have been obtained by cutting DNA chains taken from [7]
in the sites recognizable by restriction enzymes AluI, HaeIII, HhaI and NlaIII.
The lengths of restriction fragments created in such a way are indistinguishable
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Table 1. Computational results for randomly generated instances (error-free
input data)

Running time

n APDP [sec] ASPDP [msec] ANEW [msec]

10 0.02 − 0.03 < 10 < 10

12 0.02 − 0.06 < 10 < 10

14 0.03 − 0.05 < 10 < 10

16 0.03 − 0.06 < 10 < 10

18 0.05 − 0.08 < 10 < 10

20 0.05 − 0.08 < 10 < 10

from data coming from an ideal biochemical experiment. Table 2 shows the
results of computations for 11 instances based on real DNA chains, whose lengths
range from 2, 7 kbp to 8, 9 kbp.

Table 2. Computational results of SPDP for instances based on real DNA chains
(ANEW , error-free input data)

Accession number Restriction Number of res- Computation
in GenBank enzyme triction sites time [msec]

L13460F HaeIII 5 < 10

K00470F HhaI 8 < 10

K00470F NlaIII 12 < 10

J00277F NlaIII 19 < 10

D26561F HaeIII 21 < 10

K00470F HaeIII 21 < 10

L13460F NlaIII 22 < 10

D26561F NlaIII 33 < 10

D26561F AluI 36 < 10

J00277F HhaI 38 < 10

J00277F HaeIII 99 < 10

4.2 Data with Measurement Errors

As a test instance for erroneous data, the restriction map of bacteriophage λ,
see [15], was used, as well as randomly generated instances with even number of
restriction sites n ranging from 10 to 20. In all cases length l of any restriction
fragment was replaced by an interval 〈lmin, lmax〉 such that l(1 − r) ≤ lmin ≤ l
and l ≤ lmax ≤ l(1 + r), where r denotes a relative error rate. Table 3 shows
the results of computations for the restriction map of λ bacteriophage cut by
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enzyme HindIII. It resulted in seven restriction sites, the distances between ad-
jacent sites being, respectively, 23130, 2027, 2322, 9416, 564, 125, 6557, 4361 (cf.
[15]). For each instance of the problem, numbers of equivalent solutions and
running times are presented. Again, both algorithms for SPDP compare favor-
ably with the other algorithm as far as running times are concerned, while having
the same numbers of equivalent solutions.

Table 3. Computational results for erroneous instances based on bacteriophage
λ (∞ means that no solution has been found in 5 minutes time span)

Running time Number of solutions

Relative error r APDP [sec] ASPDP [msec] ANEW [msec] APDP ASPDP ANEW

1.0% 0.04 < 10 < 10 1 2 1

2.0% 0.53 < 10 < 10 1 2 2

3.0% 5.55 < 10 < 10 2 2 2

4.0% 24.17 < 10 < 10 2 2 2

5.0% ∞ < 10 < 10 − 2 2

Additionally, we have performed similar tests, for ANEW only, on randomly
generated instances with number of restriction sites n equal to 10 and relative
measurement error rate r ranging from 1% to 5%. The results of the test are
shown in Table 4.

Table 4. Computational results for randomly generated erroneous instances (n
= 10, ANEW )

Running time[msec] Number of solutions

Relative error r minimal maximal

1.0% < 10 1 2

2.0% < 10 1 2

3.0% < 10 1 8

4.0% < 10 3 10

5.0% < 10 12 48

Next all algorithms have been compared on randomly generated erroneous in-
stances. The results of the tests are reported in Table 5. Ten different problem
instances were created for each value of n and r. The left bound of the given
time interval denotes the best (shortest) and the right bound the worst (longest)
running time.
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Table 5. Computational results of SPDP for randomly generated instances (∞
means that no solution has been found in 5 minutes time span

r = 0, 5 r = 1, 0

n APDP [sec] ASPDP [msec] ANEW [msec] APDP [sec] ASPDP [msec] ANEW [msec]

10 0 − 1, 10 < 10 < 10 0 − 7, 70 < 10 < 10

12 0 − 4, 42 < 10 < 10 10, 6 − 131 < 10 < 10

14 0 − 127 < 10 < 10 ∞ < 10 < 10

16 75, 9 − 94, 9 < 10 < 10 ∞ < 10 < 10

18 ∞ < 10 < 10 ∞ < 20 < 10

20 ∞ < 20 < 10 ∞ < 20 < 60

r = 1, 5 r = 2, 0

n APDP [sec] ASPDP [msec] ANEW [msec] APDP [sec] ASPDP [msec] ANEW [msec]

10 0 − 25, 5 < 10 < 10 0 − 152 < 10 < 10

12 ∞ < 10 < 10 ∞ < 20 < 10

14 ∞ < 40 < 10 ∞ < 400 < 50

16 ∞ < 20 < 10 ∞ < 100 < 50

18 ∞ < 460 < 60 ∞ < 5400 < 60

20 ∞ < 12060 < 60 ∞ < 83000 < 110

5 Conclusions

In the paper, the Simplified Partial Digest Problem, important for genome map-
ping, has been considered. The new algorithm for SPDP has been described.
Again, computational experiments prove its clear superiority over the other ap-
proaches: PDP one [15] and the previous SPDP algorithm [3]. The advantage of
the new algorithm is evident for both: error-free data and data with measurement
errors.
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