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Preface

I returned, and saw under the sun, that the race is not to the swift, nor the battle to the 
strong, neither yet bread to the wise, nor yet riches to men of understanding, nor yet favor 
to men of skill; but time and chance happeneth to them all. (Ecclesiastes, 9:11)

This book is about time and chance as they affect projects. More specifically, the 
main objective of this text is to provide foundations for the assessment of uncer-
tainty and risks on engineering projects of all types. It deals with the spectrum of 
uncertainty, from the variability in construction operations to the risks in unique, 
complex, first-of-a-kind projects. In looking at field operations or other project 
activities, we use probabilities to try to describe the natural variability of work, and 
we are concerned with answering the question: Is the reported performance on this 
activity merely reflecting these inherent variations, or is it sending a message that 
the activity is about to go seriously out of control? In looking at major risks on 
complex projects, we use data, information, and knowledge about the underlying 
behavior to express the confidence in our risk estimates. In general, the text places 
emphasis on building data-driven models, and these models are of necessity math-
ematically inspired. As the British physicist William Thomson (Lord Kelvin) said 
(1883), “when you cannot measure it, when you cannot express it in numbers, your 
knowledge is of a meager and unsatisfactory kind.” And “meager and unsatisfac-
tory” is a good description of many project risk assessments.

It may be argued that project managers should place their confidence in experi-
ence, judgment, and gut feel, not mathematics. However, learning about risk by the 
trial-and-error method can take a long time, and the lessons can prove to be very 
expensive. The view here is that it is much easier for a project manager to have 
confidence in a decision after he/she has examined a risk model from all possible 
views and played out a number of scenarios, alternates, and options, than to rely on 
his/her judgment alone. One of the reasons why project risk assessment and man-
agement has become such an active topic for research as well as education in the 
past few years is that experience and judgment alone have been inadequate. 
Therefore, the principle used here is that model building should be informed by, and 
consistent with, judgment and experience, but any model beats no model nine times 
out of ten.
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The text covers risk identification and assessment methods for projects that are 
already defined in terms of objectives, specifications, resource plans, sequencing, 
and work breakdown structure. In other words, the methods we cover deal with 
assessment of risks, not making decisions in response to the risks. This is deliberate 
as the text is looking to be general, not be specific to owners, subcontractors, and 
contractors, their risk attitude, or the type of contracting strategy and project deliv-
ery method being used.

The content is considered suitable for graduate students in engineering, con-
struction, or project management, as well as practitioners aiming to develop, 
improve, and/or simplify corporate project management processes. This book is 
based on the class lecture notes developed from Fall 2001 to Spring 2018 and taught 
as a part of the graduate course in Project Risk Management at Texas A&M 
University. This text is perhaps more mathematical than many other texts, and this 
is deliberate. The mathematics contains nothing beyond what an engineering gradu-
ate is expected to know: some algebra, a little calculus, a little statistics, and, espe-
cially, undergraduate-level understating of the probability theory.

The field of project risk assessment and management is actively evolving, and we 
may anticipate that better methods will continue to be developed. This text is an 
attempt to provide a bridge from the qualitative and anecdotal to the quantitative 
and analytical way of thinking. The authors encourage students and practitioners to 
make their own contributions to the advancement of project risk management.

Alea iacta est. (Gaius Julius Caesar, 49 BC)

College Station, TX, USA� Ivan Damnjanovic 
October 2018� Kenneth Reinschmidt 

Preface
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Kenneth Reinschmidt (March 26, 1938–December 31, 2018)

It was Spring 2014, when Ken and I embarked on this writing endeavor. By then, Ken 
had been teaching Project Risk Management for more than 10 years, while I had just 
began. Over the next 5 years, across countless afternoons, we discussed the content, 
combined the notes and problem sets, and drafted and revised the chapters. When Ken 
fell sick, the settings of our meetings changed, but Ken remained as focused and devoted 
as ever. Unfortunately, as this book was headed to publication, on December 31, 2018, 
Ken passed away. At this juncture therefore, I would like to take few moments to reflect 
on Ken’s remarkable career and share the influence he has imparted both personally on 
myself and on the field in general.

Ken was a military veteran, dedicated public servant, industry visionary, and brilliant 
researcher and engineer. Over his long and esteemed career, Ken achieved excellence in 
all areas he pursued. He entered military active duty in January 1966, while on a leave of 
absence from MIT, and led the team development of an integrated computer-based sys-
tem for planning and management of military operations. He was honorably discharged, 
in December 1967, at the rank of captain. Further dedicating his energy to the public, he 
chaired multiple National Research Council committees and initiatives, provided testi-
mony to Congress on Electric Power System Reliability, and served on numerous other 
committees. During his time working in industry, Ken raised through the ranks to be 
become the Elected President and Chief Executive Officer of Stone & Webster Advanced 
Systems Development Services, Inc. and through that work he impacted the nuclear 
industry as a whole. Finally, in academia, as a professor at both MIT and TAMU, Ken 
was fundamental in developing of what is now known as Building Information Modeling 
(BIM), use of Artificial Intelligence and expert systems in engineering and construction, 
and implementation of advanced computing methods to project management. In essence, 
Dr. Kenneth Reinschmidt was instrumental in introducing the application of computer to 
Civil Engineering. His contributions have been acknowledged by his peers, culminating 
in 1991, in which Ken was elected to the National Academy of Engineering and became 
a Fellow of the American Association for the Advancement of Science.

To conclude, although the time that we collaborated was relatively short in light of 
Ken’s long career, I am grateful for the opportunity and honor to have Dr. Kenneth 
Reinschmidt as a friend, colleague, and co-author.

In Memoriam
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Chapter 1
Introduction to Uncertainty and Risk

Abstract  In this chapter we discuss the concept of uncertainty and risks from the 
two different viewpoints – the theoretical and the project management viewpoint. 
We provide an overview of uncertainty classification that extends beyond the two 
typical approaches and discuss the types of uncertainty project managers are often 
challenged with – volitional, agonistic, and dialectic uncertainty. Further, we pro-
vide evidence of a divergence in approaches adopted by project managers and deci-
sion theorists as well as of the link that allows us to develop a holistic approach to 
project risk management.

Keywords  Uncertainty · Project manager · Managerial attitude · Probabilities and 
decisions

1.1  �Viewpoints on Uncertainty

The differences in what people mean when they say “uncertainty” depends on a 
philosophical position they take. One school of thought says that the universe is 
based on chance, and uncertainty is essentially characterized by relative frequencies 
of observed phenomena. Others, starting from the time of Plato, say that the uni-
verse must be deterministic, and all uncertainty is caused by our feeble capabilities 
to measure it or to understand it (“God does not play dice with the universe”  – 
Albert Einstein). However, this strictly deterministic view was laid to rest by quan-
tum mechanics: at the most fundamental level, the universe appears to be random. 
In other words, even when one controls all causal factors, some outcomes of the 
experiment will vary randomly. For example, see Heisenberg’s Uncertainty 
Principle, which shook the foundations of classical physics at the beginning of the 
twentieth century.

Corresponding to these two philosophical viewpoints we classify uncertainty 
into: (a) aleatory uncertainty, from the Latin word alea, die; plural aleae, dice, and 
therefore referring to gambling (an aleator is a gambler); this type of uncertainty 
is characterized by variability in repeated experiments, such as flipping a coin or 
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rolling dice; and (b) epistemic uncertainty, from the Greek word επιστημη (skill, 
understanding, experience, or knowledge) is due to lack of information or only 
partial knowledge of the phenomena on the part of the observer. Epistemic uncer-
tainty is subjective, not objective; it does not exist independent of the observer, 
and can differ between observers.

However, from the project viewpoint these two categories can be limiting in 
expressing the uncertainty as we experience it on projects. What is being missed 
here are the conditioning and feedback, confidence in assumptions, and the capacity 
to define and evaluate events beyond already materialized and studied phenomena. 
For example, in project setting the likelihood of a safety incident could be reduced 
just by a project team being aware of it; technical risks could materialize due to 
erroneous assumptions that were never explicitly stated or considered; similarly, 
project cost overruns could occur due to events that contradict broadly accepted 
knowledge. In a strict theoretical interpretation this ignorance can be considered 
epistemic uncertainty, but from the practical perspective this uncertainty is typically 
not part of a deliberate risk assessment process. The general state of knowledge 
about the systems’ phenomena and project behavior rarely, if ever, show up in proj-
ect documentation. Therefore, for practical reasons it is useful to highlight its 
importance explicitly. We will refer to this class of uncertainty as agnostic uncer-
tainty, from the Greek word ἄγνωστος (ignorant, not knowing). It is not uncertainty 
about the knowledge, rather it is uncertainty about our ignorance; often, far more 
dangerous of the two.

The classification of uncertainty in aleatory, epistemic and agnostic components 
could be considered analogous to the popular classification of project uncertainties 
into knowns and unknowns. The uncertainty behind known knowns could be con-
sidered of aleatory nature if it is based on validated theoretical foundation (e.g. 
Newton’s laws). Unknown knowns, on the other hand, relate to a spectrum of alea-
tory or epistemic uncertainties that are derived from either large data sets or rooted 
in deterministic assumptions with unknown parameters; finally, unknown unknowns, 
unforeseen, unimaginable, surprise, black swans and white ravens’ events result 
from our overconfidence in assumptions and understanding of the phenomena and 
the system behavior in general.

1.1.1  �Aleatory Uncertainty

Aleatory uncertainty is measured or characterized by relative frequencies: the num-
ber of times a particular event occurs out of N repeated experiments. In gambling, 
for example, with dice, there is complete knowledge about the potential states to be 
encountered (in a modern die, the integers 1–6, and with two dice, the integers 
2–12). This type of uncertainty is objective, it is a characteristic of the real world, 
and it can be measured, at least approximately. This type of uncertainty is the busi-
ness of statisticians. It is external to and independent of the observer; e.g., a 
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radioactive cesium atom is presumed to decay with a certain probability whether or 
not anyone observes it. Presumably any number of experimenters or observers of 
identical experiments would observe the same relative frequencies in the long run. 
The relative frequencies, either derived from observations or from deductive prin-
ciples, are then called probabilities. A probability is a relative frequency taken to the 
limit. For example, let the relative frequency of some event j be given by the ratio 
fj = nj/N, in which nj is the number of observations of event j and N is the total num-

ber of observations. Then the probability of event j is p f n Nj N j N j= =  →∞ →∞
lim lim / . 

But we can never do an infinite number of observations, so these relative frequen-
cies or probabilities are actually based on the outcomes of experiments that are 
never run. Or, in observing a die, we may say the probability of each side coming up 
is (or, rather, should ideally be) 1/6 without making any observations of the actual 
relative frequencies; this set of probabilities (the probability distribution) is assumed 
to be characteristic of some ideal die, even if may be a poor assumption for any die 
you happen to be betting on.

We may subdivide this classification of aleatory uncertainty in the following 
subtypes.

Type 1, in which we know the form of the probability distribution and the parame-
ters of the probability distribution. For example, we say the probability distribu-
tion for the flip of a fair coin is the binomial distribution, and the probability of 
obtaining a head on one flip is 1/2. Similarly for the six-sided die: the probability 
for each side is said to be equal, and lacking any better information, equality 
implies the probability of each is 1/6. This is the type of probability commonly 
covered in probability courses and with which most people are familiar.

Type 2, in which the form of the probability distribution is known (or believed to be 
known based on some theory), but the parameters are unknown. This might be 
the case with a coin that may have been tampered with, or a pair of dice that we 
may have suspicions about. There is no question about the form of the probabil-
ity distribution, but determining the actual values of the parameters (in the case 
of the dice, the actual relative frequencies of getting each of the 11 outcomes) is 
a point at issue.

Type 3, in which the parameters (relative frequencies) are known (through observa-
tions) but the form of the probability distribution is unknown. This often occurs 
when one has a lot of data, including relative frequencies of various events, but 
has no theory to tie them together. Here the reasoning is inductive: given these 
observations, what probability function best describes the data? We may either fit 
some probability distribution to the data, or else use the observed relative fre-
quencies themselves as the empirical probability distribution.

Type 4, in which neither the form of the probability distribution nor any values for 
the parameters are known. Hence, if the form is not known, even the identity of 
the parameters is not known. Our job, then, may be to determine both the form 
of the distribution and its parameters simultaneously.

1.1 � Viewpoints on Uncertainty
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1.1.2  �Epistemic Uncertainty

Epistemic uncertainty is the uncertainty that does not derive from variability in 
repeated experiments. It arises because of our limitations; reality is thought to be 
deterministic but we cannot see or know the true reality, only shadows of it. Pushed 
to the limit, this position would say that the future could be predicted without error 
if we only had enough information. For example, from this viewpoint, the classical 
gambling problem that motivated the development of probability theory could 
finally be solved: the outcome of shooting dice would not be random, because, 
given knowledge of the initial positions and orientations of the dice, and all the 
forces acting on them during the roll, one could predict with certainty how the dice 
would come up. Thus, we use the roll of dice as a standard for randomness simply 
because we cannot (the casino won’t let us) or do not choose to make all these 
measurements and computations. If we could, of course, no one would ever again 
shoot dice.

Epistemic uncertainty is not based on relative frequencies, as the “experiments” 
of interest are not repeated, and an event may happen only once or not at all. As 
such, it is the business of managers and engineers. Although some people object to 
the use of subjective probabilities, the issue in practice typically is whether to use 
subjective probabilities or no probabilities at all; that is, to stay with deterministic 
analysis (which is equivalent to probabilistic analysis with all probabilities either 
zero or one). One may adopt the viewpoint that we would use relative frequencies if 
we had any data, but as typically we do not, and as managers we must nevertheless 
make decisions, we may have use subjective probabilities as better than nothing.

1.1.3  �Agnostic Uncertainty

Agnostic uncertainty is about our confidence and completeness of knowledge and 
assumptions upon which we develop probabilities and judgments. In a strict sense it 
cover both frequentist and epistemic viewpoints as they both are associated assump-
tions. We may further subdivide agnostic uncertainty in the following subtypes.

Volitional uncertainty is a type of uncertainty in the area of projects, in which 
the subjective probability distributions are not objective or “out there,” but are 
capable of being manipulated by the very people who develop them and use them. 
(Volitional derives from the Latin uolo, I wish for something, want something, or 
choose something with free will – cf. uoluntarie, of one’s own accord.). This uncer-
tainty does not derive from that fact that we may not know the probabilities on the 
roulette wheel the casino is using, but from the possibility that the casino may be 
consciously capable of affecting these probabilities in its favor, based on the distri-
bution of bets. This may sound like a nonscientific position, but people and institu-
tions often modify their behavior based on what they perceive to be (or are told to 
be) probabilities of various outcomes, and these changes in behavior in turn change 
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the probabilities. Therefore, the problem of predicting behavior under uncertainty 
is not one of linear extrapolation; it involves nonlinear feedback loops, psychology, 
and game theory.

Suppose you were asked to give the probability that you will spend this evening 
doing homework, as opposed to going to the movies, watching TV, or playing poker. 
You may give the odds for each, but these are not odds that someone else would care 
to bet on, as the actual outcome depends entirely on your volition. Someone placing 
a bet on what you will do this evening would have to consider your psychological 
state, peer pressure (to play poker), and whether you stand to profit from the bet.

As another example, suppose that a contractor is informed by an objective, 
unbiased risk analyst that the probability that the contractor will overrun his 
schedule and thereby forfeit a substantial incentive payment is 50%. We may 
expect that this contractor will take whatever steps he can to change this probabil-
ity. In fact, the amount that this probability changes due to contractor actions may 
depend on the amount of the incentive payment relative to the costs to the contrac-
tor of getting earlier completion. We would expect the contractor to be able to 
change this probability by any of a number of actions, until the probability of 
overrunning is much less than 50%, but if he/she had not been informed of the 
50% probability of overrunning, he might have taken no action, and the 50% 
would have continued to be true. Conversely, if the contractor had been informed 
that the probability of overrunning on this job was 1%, the contractor would prob-
ably place his attention and resources on other jobs, and the probability of over-
running might increase as a result.

Under such conditions, what does the term “probability” mean? It certainly has 
nothing to do with relative frequency. This job will ultimately finish; the contractor 
will get incentive payment or won’t; there will be no repetitions of this experiment 
from which to gather statistics.

A true probabilist might argue that the apparent issue arises because the problem 
is miss-specified. What was called a probability is really a conditional probability; 
the quoted 50% probability is really a value that is conditional on everything remain-
ing the same, that is, the contractor taking no action, or being unaware of the prob-
ability statement. There are then multiple conditional probability distributions, for 
the probability of overrunning conditional on the contractor taking no action, some 
action, moderate action, a lot of action, etc. That is, volitional risk is not a property 
of an event or a project, but rather is something that can be mitigated or managed 
through actions of people. Thus, if X is some risk event, we may characterize the 
uncertainty about whether the event X will occur in one of the following ways:

•	 There is an aleatory probability P[X] that is characteristic of X and that can be 
estimated objectively from the relative frequency of past occurrences of X.

•	 There is an epistemic or subjective probability P[X] that reflects the observer’s 
degree of belief that X will occur, whether or not X has ever occurred in the past.

•	 There are volitional risks P[X|no  mitigation], P[X|mitigation of type  1], 
P[X|mitigation of type n] etc., depending on what somebody chooses to do after 
obtaining some information about P[X].

1.1 � Viewpoints on Uncertainty
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Agonistic uncertainty (from the Greek αγοv, a contest or struggle), derives from 
the competitive nature of projects. A contractor’s profit on a project is at risk not 
only due to uncertainties regarding quantities, prices, performance, etc., but also 
due to the competitive nature of award of projects and the competition or coopera-
tion during the project with clients, subcontractors, suppliers, regulators, etc. This 
form of risk is not typically covered by texts on risk analysis (which deal largely 
with aleatory uncertainty), but is significant for projects. Contrary to some belief, a 
contractor’s price on a job is not determined by some percentage markup over the 
estimated project costs, it is determined by the number of competitors making bids 
and how much they need the business. The theory of competitive and cooperative 
games can contribute to understanding these risks by examining what the various 
actors or players in a project will do if they act so as to maximize their own utility. 
For example, a solution to the interactions of all the actors on a project is a stable 
equilibrium if all players play their best strategies and no player has any incentive 
to unilaterally deviate from the equilibrium position.

Dialectic uncertainty (from the Greek διαλεκτική, a discourse of investigation, 
development through the stages of thesis, antithesis, and synthesis in accordance 
with the laws of dialectics e.g. transiency and tipping points, contradictions, nega-
tions). Dialectical uncertainty summarizes all dogmatism and narrowness of thought 
about process dynamics and transformation for which we seek warnings. For exam-
ple, previous data and even the current observations on a project may imply arrival 
of rework items at a stable trend. However, how stable is this trend? Will the project 
come to a tipping point when suddenly the number of rework items increase expo-
nentially and the completion rate reverses to negative? Being blindsided by apparent 
stability in observed data and the effect of dynamical transitions with “longer ampli-
tudes” can be best summarized by a prologue from a film La Haine by an acclaimed 
French director Mathieu Kassovitz: “…Heard about the guy who fell off a sky-
scraper? On his way down past each floor, he kept saying to reassure himself: So far 
so good… so far so good… so far so good…”.

One could, perhaps, continue this process of defining agnostic uncertainty as it 
relates to our ignorance: i.e. uncertainty as it relates to complex coupling of projects 
and work packages, nonlinearities human responses to work load requirements, etc. 
However, this is not the objective of the text, nor the intention of this section. What 
we here try to illustrate is that uncertainty is more than just frequentist or epistemic 
definition of the underlying behavior, it involves confidence and completeness of 
underlying knowledge, scientific theories, assumptions, and dogmas that constitute 
the basis upon which we quantify and express the uncertainty, regardless of the two 
approaches. This takes us outside of the comfortable position of defining and quan-
tifying uncertainty from probabilistic viewpoint into a domain where some mea-
sures are required to express confidence and completeness of knowledge, underlying 
scientific theories and assumptions. Recent advances in risk analysis focus on 
expressing these in measurable quantities and detectable events (i.e. strength of 
knowledge, assumption-based planning, early warnings signs), or indices and met-
rics that could provide an implicit indication of the level of ignorance upon which 
the risk assessment was based (i.e. risk network measures, project leading indica-
tors) In fact, project managers have historically relied on indices to weigh the level 
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of overall project risk. For example, rather than relying solely on the experts’ judge-
ment of scope increase probabilities, project managers would use scope definition 
indices such as Project Definition Rating Index (PDRI) to provide a leading indica-
tor of future risks or to reflect the overall level of uncertainty.

This is not implying that probabilistic methods are outdated or feeble, but that 
more complete definition of uncertainty should be considered when risks are 
assessed and managed. In fact, this text is all about applying probabilistic methods 
to the assessment of project risks, on the basis that probability theory has a long 
history of development and an existing calculus allows us to deal with uncertainties. 
Moreover, many people are at least familiar with fundamental probabilistic con-
cepts through courses in probability and statistics, although this familiarity may be 
an impediment to making the transition from probabilities as relative frequencies to 
probabilities as expressions of subjective belief. Rather than invent a new calculus, 
one can adopt the calculus of probabilities to applications in project risk assessment. 
For example, we will wish to ask questions such as, How can risks be quantified and 
compared (one risk is greater than another)? How can risks be considered objective 
and independent of the observer? How can risks be combined or added? How can 
risk assessments by different observers be combined? How can risks be allocated 
and compared to rewards? How much risk should one take on? How much contin-
gency (safety margin) should one keep in reserve? All these questions, and many 
more, are addressed by classical probabilistic methods. The answers probability 
gives may not always be right (and who could tell?) but are better than no answers 
at all. That is, any computations regarding probabilities should be taken not as 
descriptions of physical reality but in conjunction with the assessment of underlying 
knowledge and assumptions as a guide or a support to management decisions and 
actions.

1.2  �Representation of Uncertainty

On the fundamental level, we represent uncertainty in terms of outcome probabili-
ties. In the frequentist interpretation this probability reflects the occurrence of the 
event in the study/experiment. Clearly some problems, conceptual as well as com-
putational, arise when one departs from the comfortable territory of probabilities as 
relative frequencies of physical events to probabilities as degrees of belief in some 
future outcome, conditional on acts of some decision makers. Is it possible to use 
probability theory, which after all was originally invented to describe how one 
might win at gambling tables (that is, aleatory uncertainty)? In fact, there are other 
approaches than the relative frequency approach, including the following:

Bayesian methods, which use probabilities but regard the parameters of probabil-
ity distributions as random variables in themselves (not acceptable to a classi-
cal relative-frequentist) that are re-estimated whenever new data appear 
(Gelman et  al. 2013). Bayesian methods are discussed later, in a number of 
different contexts.

1.2 � Representation of Uncertainty
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Theory of Evidence and Dempster-Shafer Theory, which deal with degrees of belief 
and how to change them based on new evidence (Dempster 1976; Pearl 2014). 
Thus, when the hypothetical unbiased observer says that the probability of over-
running is 50%, what he means is that his degree of belief that the project will 
overrun, based on observed conditions, past history, and other factors, is about 
midway between no chance at all and dead certainty. This degree of belief may 
well change if the contractor takes some action that changes the observer’s belief 
in the outcome. We might then inquire, what actions could the contractor take 
that most cost-effectively change the observer’s degree of belief that the project 
will overrun? If there is more than one observer, with different degrees of belief, 
how can they be combined into one? Or should they be?

Fuzzy Sets, which assign quantitative values (membership functions) to linguistic 
terms, such as “risky.” Fuzzy sets are super sets of classical set theory or Boolean 
logic, in which a proposition is either true or false (1 or 0). In fuzzy set theory 
and fuzzy logic, propositions may take on any values in the interval from 0 to 1. 
Therefore, fuzzy set theory is said to be more general than classical set theory, 
although Boolean logic is general enough to power all digital (really, binary) 
computers (Klir and Yuan 1995). Subjective or Bayesian probabilities do not 
derive from classical set theory, but rather are a part of the mathematical field of 
measure theory. Therefore, fuzzy sets and subjective probabilities are two com-
pletely different, incommensurate ways of dealing with uncertainty. A simplified 
example of the difference is the following. When categorizing some object, in 
fuzzy set theory the parameters of the object are known with perfect certainty, 
but classification is difficult because the boundaries of the classes (sets) are 
vague or ambiguous (i.e., fuzzy), due to the limitations (ambiguity, lack of preci-
sion) of language. In the probabilistic approach, the boundaries of the classes are 
known with perfect precision, but classification is difficult because the values of 
the parameters (measurements) are uncertain.

In addition to the above-mentioned, there are many other theories and methods 
to represent uncertainty in decision process including possibility theory, interval 
probabilities, entropy, ambiguity, and info-gap theory. In attempt to obtain more 
realistic representation of uncertainty in the system behavior, researchers and scien-
tist will continue to look for new methods.

1.2.1  �Process Variability

Project outcomes and data can also be analyzed probabilistically from a time-series 
perspective. In fact, this text also examines the dichotomy of uncertainty suggested 
by the methods of Statistical Quality Control (SQC), Statistical Process Control 
(SPC), and, most recently, Six-Sigma. Here, adopting the viewpoint of Statistical 
Process Control, we make a distinction between processes (that is, project time 
series) that are in control and those that are out of control.

1  Introduction to Uncertainty and Risk
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Stating that a process is in statistical control does not mean that it doesn’t vary, 
or that is completely deterministic. Rather, this term recognizes that there are uncer-
tainties or variability in the process, due to the action of common causes, but the 
process stays within the limits of this variability. This variability or uncertainty is 
inherent to the nature of the process (Thompson and Koronaki 2002). As long as the 
variability in the process stays within bounds, the process is said to be under control. 
In the language of statistical quality control or Six-Sigma, σ is the natural or inher-
ent standard deviation of the variability of the process, and as long as the output of 
the process is randomly variable but remains within the bounds defined by the mean 
plus or minus 3σ, it is considered to be in control.

However, the fact that a project or process is in statistical control does not mean 
that it is acceptable. The natural variability may be larger than we can tolerate. The 
outputs may be in control, but they may not meet our requirements. In this case, the 
process as defined is not capable of producing acceptable work. For example, sup-
pose that we are concerned with the total cost (or duration) of a project. Each work 
package in the project has some expected cost, and also some uncertainty or vari-
ability due to the nature of the work, local conditions, etc. However, it may happen 
that, when one examines the variability or uncertainty in the total project cost, which 
is in some sense the sum of the cost uncertainties in all the work packages, the likeli-
hood of exceeding the project budget is unacceptably large. The solution to this 
problem is to change the process. Some or many of the work packages may have to 
have their work processes changed in order to reduce the expected cost or the vari-
ability (uncertainty) in the costs to an acceptable level.

Conversely, a project or process may go out of control due to some extraordinary 
external or internal cause. The solution to this problem, if it occurs, is to track down 
the cause and eliminate it. A better solution is to identify such causes before they 
happen and take steps to assure that they don’t happen, or that their impact is much 
reduced. This is the objective of risk analysis and mitigation.

In this text, the first kind of uncertainty is that associated with the natural vari-
ability of processes, even those under control. Incremental risks include risks that 
are not major in themselves but can accumulate to constitute a major risk. For 
example, a cost overrun in one subcontract may not in itself constitute a risk to the 
project budget, but if a number of subcontracts overrun simultaneously, due to 
coincidence or to some common cause, then there may be a serious risk to the proj-
ect budget. Individually, such risks may not be major or difficult to identify; the risk 
really lies in the combination of a number of them, and the lack of recognition that 
these could occur simultaneously. These incremental risks are typically analyzed 
using probability distributions, in the form of either probability density functions or 
probability mass functions. Often we use probability distributions because they can 
represent our lack of information or state of ignorance by relatively few parameters 
(usually two or three), and who wants to have to specify a lot of parameters to 
express one’s ignorance? In this case, the variability in each activity or process is 
considered to be incremental or differential; it is the combination of all the activi-
ties that is of concern.

1.2 � Representation of Uncertainty
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In the second case, attention is focused on specific, discrete events that are 
uncertain in that they may or may not occur. These catastrophic risks include risks 
that could be major threats to the project performance, cost, or schedule. Such risks 
might include dependence on critical technologies that might or might not prove to 
work, scale-up of bench-level technologies to full-scale operations, discovery of 
waste products or contamination not expected or not adequately characterized, 
dependence on single suppliers or sources of critical equipment, etc. These risks 
are typically discrete events, and must be individually managed. This is the area 
usually considered to be risk mitigation or risk management, but in fact both these 
cases require management. In the first case, the project manager must identify the 
control limits and design and manage the project execution process such that it 
stays within the required limits relative to time, cost, and quality. In the second 
case, he/she identifies and manages discrete risks.

Further, there are situations when variations and changes in trend are due to tran-
sitions in internal behavior, rather than external risk; projects, in fact, often experi-
ence changes in trend over time and exhibit non-stationarities and tipping points. 
This dynamic nature of uncertain systems’ behavior can be represented using sto-
chastic/probabilistic processes. However, as this is rather a very broad area of prob-
ability theory, for practical purposes, we limit the scope of this text to time-series, 
process control, and few fundamental processes such as Poisson process.

1.2.2  �Probabilities and Decisions

Uncertainty assessment and risk analysis are generally done for the purpose of mak-
ing risk-informed decisions. Hence, it is upon the decision-maker to interpret the 
result of the analysis. Figure 1.1 illustrates this process. The two typical paths are 
illustrated with a blue and orange colored lines; the former shows when system/
project data is available (blue line  – frequentist approach), and the latter shows 
when the data is not readily available and when the experts’ judgements are required 
(orange line – epistemic approach). In both cases the probability estimates are based 
on the analyst’s assumptions. However, there is a path, illustrated with a maroon 
colored line, that doesn’t involve the same level of assumptions. It feeds processed 
data about the system directly to the decision-maker. This type of data is representa-
tive of the system behavior, but not expressed in terms of outcome probabilities.

There are two reasons why one may want to consult other-than probability mea-
sures when making decisions. First, probabilities are sometimes hard to interpret 
and/or can be misleading; for example, one may be tempted to replace flight data 
with the cockpit indicator that reports the results of a risk analysis for a stall prob-
ability. However, from the pilot’s perspective (i.e. decision-maker), this informa-
tion would be counterproductive as flight data i.e. the position of an aircraft and 
speed are much informative and easier to map into decisions than the estimates of 
the event probabilities. How much one should be one worried if this probability is 
1%? Would 50% probability warrant an immediate mitigation decision? Pilots 
regularly make maneuvers that significantly increase this probability, yet they are 
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in full control. This doesn’t imply that providing such probabilities is wrong; in 
fact all commercial aircrafts have a similar feature i.e. an alarm, but it stresses the 
fact that proper decisions cannot be made in isolation of system-level data. Second, 
by relying only on probability measures one allows for convolution of assump-
tions. For example, we regularly make decisions about distribution type, sample 
independence, and stability of the underlying process that has generated the data. 
Similarly, subject-matter experts assign probability based on their experience 
about the systems behavior but based on many conscious and subconscious 
assumptions and biases (Damnjanovic and Aven 2018). The bottom line is – How 
valid are these assumptions?

To overcome this issue project managers supplement the probability measures 
with indicators developed using system-level data that have no, or only few embed-
ded assumptions. Here the system feature is used as an implicit indicator of out-
come probabilities; this is similar, or perhaps the same as leading indicators. For 
example, task completion times are highly sensitive to resource availability; if the 
tasks share common resources, then such set up is more risky from the perspective 
of completion time, as any event affect the common resource will be propagated to 
all tasks. Hence, having a measure of resource-task dependences is informative 
about the risk, but not defined in terms of probabilities. Similarly, as mentioned 
before, project managers often use scope index to assess potential risks with scope 
creep, and feedback loops in design to reflect design rework risk. Some may refer to 
these as explanatory variables in a propensity function. But then again, this would 
imply adding assumptions such as type of the function, which is precisely what we 
try to avoid.

Fig. 1.1  Uncertainty and risk assessment decision process

1.2 � Representation of Uncertainty
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1.3  �Is Uncertainty Always Bad?

In general, most people prefer less uncertainty to more uncertainty. In fact, they may 
take many actions to buffer or protect themselves from uncertainties and their con-
sequences. Also, risk is generally a pejorative term. Although there are people who 
like to take risks (e.g., skydivers), the intent is still to avoid the unpleasant conse-
quences of the risk; if the risk actually happens (the parachute doesn’t open), it is 
generally considered bad.

However, in many cases uncertainty may mean opportunity. In fact, one may 
say there are no opportunities without uncertainties (if there were, someone would 
have found them already). Even Chinese language symbol for risk reflects its dual 
nature ; it encompasses a symbol reflecting danger and a symbol representing 
opportunity. Hence, if one wants to make a lot of money on Wall Street, one has to 
look at the stocks that are volatile (have large variability, called). However, this is 
also the way to lose a lot of money on Wall Street.

The judicious use of alternates or options may add value to projects even when 
(or especially when) these options have uncertainties (or risks). As an introduc-
tory example to what will follow, consider a manager on some project with the 
following conditions: if, after engineering is complete, the construction cost esti-
mate less than $8,000K, then he is a hero; if it is more than $10,000K then he is 
the goat. Suppose that he will know the cost with sufficient certainty to make a go 
or no-go decision after the end of the detailed design phase. Suppose also that 
there are two alternate technologies. Technology 1 is conventional and straight-
forward, with an a priori (before the design phase) expected value of $9000K and 
a standard deviation of $1000K. Assuming these cost uncertainties are approxi-
mated by the well-known Normal probability distribution, then the project man-
ager calculates that the probability of exceeding the maximum allotted budget if 
he chooses this design option is about 16%, which is not bad, but the probability 
that he will get positive recognition for coming in less than the lower target is also 
not better than 16%. See Figs. 1.2 and 1.3 for the probability density functions 
and the cumulative distribution functions.

Even though the probability distribution is symmetric, the project manager’s 
view of the outcomes is not necessarily symmetric. He/she may feel that being a 
hero is good, but the utility of being a hero is a lot less than the disutility of being a 
goat. That is, he may be risk averse.

The project manager also has available an alternate process, technology 2, with 
a higher a priori expected value of $10,000K and a much higher standard deviation 
of $4,000K. Technology 2 is not only expected to cost more than technology 1, it is 
far riskier. Using the Normal assumption, the project manager calculates the 
chances of overrunning the maximum budget with method 2 to be 50%. On the 
other hand, the chances of being a hero with this technology are 31%. Assume that 
the project manager has to make a decision on the technology before the design 
starts; he/she does not have enough time in the schedule to perform one design and 
then do the other if the first one does not come out satisfactorily. Probably under 
these conditions the project manager chooses technology 1; the chances of winning 
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Fig. 1.2  Probability density functions of project cost outcome

Fig. 1.3  Cumulative probability distributions for project cost outcome
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big are small but so are the chances of losing big. Technology 2 has an attractive 
likelihood of doing very well, but too much chance of doing really badly.

However, the project manager might consider designing the project using both 
technologies concurrently, choosing the best one after the design phase has estab-
lished the construction cost. In this case, the probability that the maximum budget 
of $10,000K would be exceeded is the likelihood that both technologies cost more 
than that (the project manager always chooses the lower of the two). Assuming that 
the technologies are independent (a higher than expected cost for one does not 
imply a higher than expected cost for the other), then the probability of exceeding 
the maximum budget is just the probability that both technologies result in higher 
than acceptable cost estimates. More personally, the probability that the project 
manager is a goat is the probability that technology 1 exceeds $10,000K and tech-
nology 2 exceeds $10,000K = (0.16)(0.50) = 0.08.

Conversely, the probability of beating the minimum target is the probability 
that either technology is less than $8000K, or 1 – the probability that both are 
greater than $8000K. This comes to [1.0 − (1.0 − 0.16)(1.0 − 0.31)] = 0.42. That 
is, by designing using both technologies and then exercising the option to choose 
the one with the lower cost, the project manager reduces the chance of looking 
like a goat by one-half, from 16% to 8%, while at the same time increasing his 
chances of looking like a big hero from 16% to 42%. In probability notation, let x1 
represent the construction cost using technology 1, and let x2 be the construction 
cost using technology 2. Then,

	

P PM Goat P x x

P PM

=[ ] = >( )∩ >( )  = ( )( ) =1 210000 10000 0 16 0 50 0 08. . .

==[ ] = ≤( )∪ ≤( ) 
= − >( )∩ >( )

Hero P x x

P x x
1 2

1 2

8000 8000

1 8000 8000 
= − −( ) −( ) = − ( )( ) =1 1 00 0 16 1 00 0 31 1 0 84 0 69 0 42. . . . . . .

	

Of course, there is no free lunch; designing using both technologies will cost 
more than designing just one, and additional analysis would be needed to deter-
mine if it is worth it; here the point is that variability or uncertainty can be a good 
thing if it is used to create additional opportunities and decision options for the 
project manager.

So, is variability good or bad? It could be either. Generally speaking, variability 
is more valuable or more desirable if it is optional, or constitutes an alternative 
that can be used or taken advantage of by the project manager, and less desirable 
when it is inescapable. If technology 2 were the only option available, then the 
high variance of this alternative would be undesirable, but really makes little dif-
ference, because the probability of overrunning the maximum allowable cost is 
1/2, regardless of the uncertainty in the cost of technology 2. However, the pres-
ence of technology 2 makes a high variability in technology 1 desirable. If the 
project manager decides to pursue both design options simultaneously, he can 
never do worse than the results with technology 1, and he might do a lot better 
with technology 2. Of course, real projects are not as simplistic as this example, 
but in any case it is up to the project manager to identify options that can make 
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variability an advantage and add value to this project. As in the old saw, if fate 
hands you a lemon, make lemonade.

1.4  �Managerial Attitudes to Risk and Uncertainty

Project managers are concerned with ways to manage projects in the face of uncer-
tainty, to analyze risks and to mitigate them. Projects continually face new risks, 
which must be identified, analyzed, and understood in order to develop a frame-
work for selecting projects and successfully executing them. However, the term 
risk has different meanings to different people. For example, to economists and 
financial analysts risk and uncertainty are synonyms; the smaller the variations, 
the lower the risks. In engineering and decision-theory, on the other hand, risk is 
often defined as expectation over a set of unfavorable outcomes. Many books have 
been written in an attempt to define the terms risk and uncertainty precisely. That 
will not be attempted here. The difficulty with precise academic definitions of 
these terms is that no one in project management feels obliged to use these defini-
tions. Perhaps it would be less ambiguous if they did. Perhaps, on the other hand, 
academic decision theorists should learn to deal with ambiguity. But under the 
circumstances, in order to promote improved communication between all partici-
pants in a project, it is necessary to use the terms as they are used; that is, vaguely. 
It is clear from observation that academic decision theorists (those who know how 
decisions ought to be made) and project managers (those who make decisions) use 
the terms risk and uncertainty with very different meanings (March and Zur 1987). 
In fact, to most managers “risk is not primarily a probability concept.” Therefore, 
risk is not evaluated on the basis of uncertainty or probability distributions, as used 
in decision theory.

Risk is Exposure.  Managers often look at risk as their exposure to loss. That is, the 
term risk is usually applied to negative events, although a large variance simply 
means large variability in either direction around the mean. As a result, one might 
hear statements such as “You have a high risk of a heart attack” but utterances such 
as “You are at a high risk of winning the state lottery” are rare. Some quantification 
of the corporate exposure may be made by such means as scenario analysis, but 
identification of exposure is more commonly the response to “what if” type ques-
tions. Risk assessment may largely consist of meetings in which participants try to 
think of “what if’ questions that would lead to organizational financial or other 
exposure. Lawyers are particularly good at this exercise. It is a useful exercise, but 
it is often arbitrary and inconsistent. Risks are weighted by outcomes and not likeli-
hoods, so that the process can be highly conservative, given that relatively low prob-
ability events can be considered high risks if the consequences are great. Equally, it 
can be very unconservative, if major risk factors are overlooked or forgotten.

It is clear that, if risk means exposure, then risks are not additive. One may say, 
“Our investment in this project is $10,000,000, and if Event X happens, our expo-
sure is the loss of our entire investment of $10,000,000.” And similarly, “If Event 
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Y happens, then our exposure is the loss of our entire investment of $10,000,000.” 
But one cannot then say, “If both events X and Y happen, then our exposure in this 
project is twice our investment.” When deciding to undertake a project or not, 
management may perform a maximization calculation, in which the largest of all 
exposures due to all credible events is taken as the measure of the risk of the 
project.

In this approach, risk is typically denominated in dollars, the financial exposure 
of the firm if something goes wrong with the project. The risk may be equivalent to 
the cost of getting out of the project once one is in. Thus, a manager may say, “Our 
risk in this project is $10,000,000,” meaning that the firm has invested that amount 
or more (in cash or in some other way) in the project and will not be able to recover 
that amount if the project fails. If the project has some salvage value, then the expo-
sure is the difference between the initial investment and the price for which it can be 
sold if it fails.

This focus of managers on exposure, or the consequences of failure, does not 
mean that they are oblivious of probabilities. They may not like to emphasize prob-
ability because that is related to gambling, and that implies that the managers are not 
in control, but rather subject to chance. But, even if managers may not calculate 
probabilities objectively and mathematically, they may have general subjective, 
qualitative ideas of what constitutes greater or lesser risk. This qualitative assess-
ment or feel for probability or likelihood is then merged with the numerical assess-
ment of exposure, as in, “For this kind of project, we need to keep our risk (that is, 
exposure) under $1,000,000.” This kind of project is, based on the manager’s experi-
ence, a member of a class of projects that have similar subjective probabilities of 
going bad. In some way, this may relate to relative frequencies: “Of the last six of 
this kind of project done, two have been outright failures.” But in many cases, the 
probabilities are obtained from a sample of one: “We did something like this before, 
and we won’t do one again.”

It is common for decision theorists to denigrate this gut feel for project risks as 
not being quantitative or objective, but this does not prove that managerial experi-
ence is not valuable. Many knowledge-based (expert) systems have tried to capture 
this expertise about how to assess projects. It is not at all dissimilar to a physician’s 
experience in diagnosing diseases: some do it better than others; in general, more 
experience means better results. Some progress has been made in automating diag-
nosis, but no one knows how physicians do it, and good diagnosticians continue to 
be in high demand.

One may indeed explain gut feel in Bayesian terms: initially, inexperienced man-
agers have little knowledge about projects, and therefore have prior probability dis-
tributions on project outcomes that have very high variance. Each project constitutes 
a new set of information, which modifies the manager’s prior distribution into a 
posterior distribution. Over a number of years, this distribution evolves to one with 
less variance. When a prior distribution has high variance, any data point has a great 
influence on the posterior distribution, but when the prior has a low variance, a new 
data point has very little effect on the posterior distribution. Hence, managers may 
seem set in their opinions to outsiders, but to themselves they have simply learned 
from many experiences.
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Risk is Multidimensional Concept.  Another difference between the decision theo-
retic view and the managerial view is that theorists like to summarize project risks 
into a single risk probability, whereas managers have very limited desire to reduce 
the risk to aggregate probabilities. Instead, managers look on risks as multidimen-
sional, with a maximum exposure considered for each risk category. The combina-
tion of all risks in a single a priori number is useful in a decision whether or not to 
proceed with the project. Obviously, this decision is important, but it is only one 
part of total risk management. The academic focus on reduction of risks to a single 
number has actually had a deleterious effect on the development of methods for risk 
assessment and management. People refer to risk assessment as if it were nothing 
more than the simplification of many risks and circumstances into a single number, 
often by Monte Carlo simulation, and much of the available software reflects this 
simplified viewpoint. In this area, project managers are much more sophisticated 
than the decision theorists, in that they are able to consider and balance a number of 
risk factors and circumstances independently. In fact, this is the essence of holistic 
risk management as opposed to simplified risk assessment: holistic risk manage-
ment deals with the total risk environment of the project, not just at the initial deci-
sion, but also throughout the life of the project.

In fact, the holistic view on risk management requires not just the synthesis or 
integration of risks into a single number, but the analysis, or differentiation, of risks 
into manageable parts. Only when the risks are identified and differentiated can 
management come up with policies on how to deal with them.

Moreover, and possibly the most serious objection, the focus on combining risks 
into some single risk index or number diverts attention from the most serious issue 
at the core of risk assessment: the inference problem. What are the probability dis-
tributions, where do they come from, and how do we estimate them, in the almost 
total absence of relative frequency data?

Taking Risk Depends on Situations.  Higher-level organisms as well as organiza-
tions survive by taking only reasoned risks and avoiding excessive risks. Large 
organizations protect themselves against unwarranted risks by internal and external 
reviews and signoffs. For example, a major commercial aircraft manufacturer is said 
by one of its engineers to require a huge number of signoffs on all engineering 
changes – a policy that is frustrating to those engineers who feel that they have great 
new ideas, but no doubt is reassuring to all the passengers flying in its products, 
who, if asked, would probably feel that corporate restraints on risk-taking in aircraft 
design are a very good idea. On the other hand, time plays a big role in distributed 
decision-making, and risks often need to be taken at the level where the problem 
arises. For example, if a new technical challenge appears on the site, valuable time 
would be lost if the decisions are not made promptly. Hence, there is a balance 
between too much risk-taking and too-little risk taking at different levels of the 
organizational structure.

In general, managers typically warrant risk taking when faced with likely failure. 
By this principle, contractors will take more risks (for example, by submitting very 
low bids to “buy” jobs) when business is bad and their survival is under threat. Also, 
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by this principle, project managers would be more likely to take risks on a bad proj-
ect than on a project that is going well. As an example, consider two similar proj-
ects: for one, Earned Value Analysis indicates that the Cost at Completion will be 
$1,000,000 over budget; for the other, $1,000,000 under budget. So in the first case, 
the contractor would show a loss of $1,000,000, and in the second case a profit of 
$1,000,000. Suppose that there were some new process that had some chance of 
reducing costs by $1,000,000. Which project would take the risk of using this pro-
cess: the first one, which might reduce the loss from $1,000,000 to break-even, or 
the second, which might increase the profit from $1,000,000 to $2,000,000? In line 
with the principle stated here, most people would probably say the project showing 
the loss would take the risk – even though the monetary gain would be the same for 
either. In fact, this behavior may be entirely rational, and even optimal.

Risks are Perceived Controllable.  Managers much like other people find patterns 
and underlying rules in sequences of events that are in fact completely random. The 
difficulty here is, what if the set of events is really indeterminate, and the fact that the 
project manager imposes his/her logic on them does not make them determinate?

This principle is very important in assessing the actual behavior of managers 
when assessing and managing risks. Senior managers in particular have arrived at 
senior positions by making good decisions or having good luck (which may be hard 
to distinguish). Naturally, they prefer to think it is good decision-making. Therefore, 
they are led by the very circumstances of their positions in the organization to 
believe that they control events, and not that events control them. Successful corpo-
rate executives may be like generals with a string of victories, who come to believe 
that they are – think of Napoleon invading Russia. Unfortunately for him, subse-
quent events did not follow Bonaparte’s logic, and the result was a disaster for the 
French and their allies.

While the empirical managerial approaches to risk show a sharp contrast with the 
decision-theoretic viewpoints, the comparison is somewhat misleading. Just as we 
may admire the nerve of a tightrope walker, without seeing the safety net stretched 
below him, or of a steelworker on a tall building, while failing to notice the safety 
belt tying him off, so we may think managers are taking risks when they have the 
skills derived from experience to mitigate them, avoid them, or hedge them, in ways 
not immediately apparent. This text is concerned with how to acquire some of these 
skills without spending so many years to do it.

In summary, the empirical managerial approach to risk is:

•	 Break down the total risk into its components
•	 Analyze the risk for each component, largely in terms of its maximum exposure 

for loss, in the total context of the project, the environment, and historical 
performance

•	 If any risk is unacceptable, take steps to reduce it, manage it, and control it
•	 Revise the project definition until all risk dimensions are acceptable before 

commitment

The more experienced and successful a manager is, the more he/she believes that 
he/she can control risks because the manager has gotten where he/she is by succeed-
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ing in previous circumstances; he/she does not attribute this success to luck. 
Therefore, project managers are more willing to accept risks if they have more expe-
rience with successful previous projects. Conversely, project managers may be 
unwilling to accept risks if they have not had experience successfully managing 
projects under relevant conditions of public scrutiny, regulations, outside stake-
holder influence, tight budgets, fixed price contracts, adversarial relations with con-
tractors, etc. Successful project managers may not always be correct in their 
assumptions that they can control risks, and making a mistake in this regard can 
have serious consequences.

We can summarize the differences in the two approaches to risk in Table 1.1.
At this point, the reader may wonder, with all these managerial approaches to 

risk assessment, why should one consider probability theory and decision analysis? 
The reason, of course, is that the common or intuitive management approach does 
not necessarily give good results. There are some managers who are very good at 
risk assessment and management. Unfortunately, there are too few of them. The 
method of education of managers in this field is essentially one of apprenticeship: 
junior managers observe more senior ones and apply what they have learned to 
projects of their own, until they either rise in the organization and replace their men-
tors, or they fail. Unfortunately, too many fail. In Table 1.1 the skills on the left can 
be taught; the skills on the right can be learned, but cannot be taught. Therefore, 
industry is interested in better methods for risk management that are more consis-
tent, more objective, and reproducible; that can be formally taught; and also that 
give better results. This text is intended to try to help meet that need by bridging (or 
at least straddling) the gap between the decision theoretic approach and the manage-
rial approach.

1.5  �Holistic Approaches to Risk

Although the viewpoints on risk summarized above are different, they are not mutu-
ally exclusive. As noted above, managers take risks when they have sufficient expe-
rience to understand the nature of the risks involved, when to take risks and when 
not, and how to control and manage risks. Conversely, project managers who may 
not have enough experience with fixed-price contracts, project management, and 

Table 1.1  Decision-theoretic vs. managerial viewpoint on risk

Decision-theoretic view Managerial view

Sees risks as probabilities Sees risks as exposure
Synthesizes individual risks into one risk 
factor

Breaks out risks into individual components for 
mitigation

Quantifies risks numerically Characterizes risks verbally and qualitatively
Looks at probability distributions over 
(ideally) all possible outcomes

Looks at relative few possible outcomes

Sees risks as random events Sees risks as avoidable or controllable
Finds optimal solutions under uncertainty Incrementally moves to intuitively satisfactory 

solutions (“satisfices”)
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budget and schedule control to have developed the confidence to take (i.e., to accept 
responsibility for controlling) risks may be perceived, and may perceive themselves, 
as risk averse.

One solution lies in integrating the analytical and experiential approaches to 
risk described above. By identifying, objectifying, quantifying, and estimating 
risks, by inferring appropriate probabilities, and by assessing these individual risks 
through simulation, scenario analysis, decision analysis, and other techniques, 
project managers should be able to overcome lack of experience by means of ana-
lytics. By synthesizing the managerial approach to risk with decision theoretic and 
analysis methods, project managers should be able to take appropriate risks 
because the analysis should quantify the risks and simulation should indicate how 
they can be controlled.

This text is concerned with the use of the probabilistic approach to examine 
managers’ assumptions and methods, to try to determine to what extent managers 
may actually conform to decision theoretic methods and principles. That is, we will 
use some of the theory to try to analyze what managers are really doing, to deter-
mine to what extent decision theory is descriptive and not merely prescriptive. 
Considering the long history of projects, it would be remarkable of project manag-
ers, contractors, and others involved had not developed techniques for buffering 
themselves from the effects of uncertainty. These risk mitigation or safety factors 
may be so ingrained that they are not actually highly visible, but they may be there. 
In this process, we will try to build some models of managerial approaches to risk 
assessment and management and to compare these with our beliefs about the opera-
tions of the real world of projects.
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Chapter 2
Project Risk Management Fundamentals

Abstract  In this chapter we present the fundamentals of project risk management. 
We provide an overview of the overall process including risk identification, qualita-
tive and quantitative risk assessment, and risk mitigation/treatment. We discuss dif-
ferent approaches to modeling project risks and provide a context for the materials 
we cover in the following chapters.

Keywords  Project uncertainty and risks · Risk management framework · 
Representation methods

2.1  �Uncertainty and Risks in Projects

It is often not obvious why projects may have large amounts of uncertainty. In many 
straightforward projects, both duration and cost are largely determined by the quan-
tity of work units to be done and the unit rates. In placing concrete, for example, the 
number of yards of concrete is determined from the design drawings. The number 
of yards that can be placed in a day by a crew determines the duration, and the cost 
per yard for concrete and formwork, materials and labor, determines the cost. In this 
type of situation, uncertainty may be introduced primarily by lack of foreknowledge 
of external factors such as weather, which may affect productivity.

Excavation can be very similar to concrete placement, in that the gross volume 
is known. But in addition to being weather dependent, often uncertainty is intro-
duced by lack of knowledge of the quantities of various materials that may not be 
known until the work is actually performed, due to inadequate subsurface sam-
pling. The differences in time and cost to excavate rock, compared to loose mate-
rial, can introduce risks.

The risks described above, due to weather, subsurface conditions, etc., would 
seem to be well understood and quantifiable. There are, however, many types of 
projects, the duration and cost of which are not primarily determined by a fixed 
quantity of work to be done multiplied by a unit rate. These include, for example, 
engineering projects that must execute multiple design cycles, iterating until some 
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design objectives are met. The number of cycles may depend on the difficulty of 
meeting these objectives, which is not really known until it is done. In general, this 
type of uncertainly applies to all kinds of projects that consist of a number of steps 
with acceptance tests or quality control tests at the end of each step. In these proj-
ects, if the acceptance test is successfully passed, then the project enters a new step 
or phase, but if the acceptance test is not passed, the previous step (or even a number 
of previous steps) must be repeated until the acceptance criteria are met. Construction 
projects may fall into this category if the quality assurance requirements are strin-
gent compared to the level of quality achieved, as in the case of pipe welding, for 
which welds that do not pass radiographic examination must be cut out and redone 
until they do. In such a case, the time and cost of producing an acceptable weld are 
not determined by unit rates so much as by the reject rates; higher quality means 
shorter durations and lower costs, whereas lower quality means the opposite.

Similar examples abound in a number of fields. Software development is an area 
in which attempts to predict time and cost based on quantity of work, that is, esti-
mated number of lines of code, have proven to be unreliable, and various organiza-
tional structures have been tried, such as prototyping and spiral development model, 
to reduce the probability of rework and recycling. In the construction examples 
cited earlier, even concrete placement can be driven by rework considerations if the 
acceptance criteria are stringent, either for high strength or dimensional accuracy. 
Uncertainty is increased by high reject rates, and these are often characterized by 
acceptance criteria that are at the margin or the boundary of the processes being 
used. In such cases it may be useless or even counterproductive to focus on unit 
rates and unit costs; to reduce uncertainty one must focus on methods to achieve 
higher quality or adoption of alternate improved processes, in order to increase the 
acceptance rates, or relax the acceptance criteria.

Many projects may fall into this category including most notably: (a) Scientific 
and R&D projects. In cases in which new science is being brought along from the-
ory to bench-scale laboratory tests to pilot plants to full-scale operations, there may 
be a number of places in which acceptance tests need to be applied. These points 
may be addressed in the form of readiness-to-proceed reviews or Critical Decision 
points. If performance, for example, is not adequate at the end of one step or phase, 
then that step should be prolonged or repeated until it is acceptable. Pushing for-
ward into the next step without a readiness review or before the acceptance condi-
tions in the prior step have been achieved, in order to meet predetermined project 
schedules or budgets, almost invariably generates poor results; and (b) Environmental 
restoration projects. Some projects may adopt an incremental approach to cleanup, 
in which restoration proceeds in steps based on permit requirements, characteriza-
tion of the pollutants, cleanup technologies, etc. For example, permits may require 
that cleanup technology developed in one phase be demonstrated to be at a certain 
level before proceeding with the next phase. Therefore, the time and cost for com-
plete cleanup depends on the probability that these acceptance tests will be success-
ful and the readiness reviews will be passed.

Some of the risks that might apply to projects are listed below. As no such list can 
be comprehensive you may want to start with this list and add your own favorites. 
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In addition to thinking about risks that affect project cost and duration, do not forget 
to include risks associated with the mission, use, business case, or economic viabil-
ity of the project.

•	 Accidents
•	 Availability of third-party, nonrecourse financing
•	 Changes in owner’s need for facility
•	 Client/user scope changes
•	 Competitive factors (reduced priced, reduced sales) compared to economic 

projections
•	 Construction cost increases
•	 Construction delays
•	 Contractor default
•	 Contractor inexperience or incompetence
•	 Costs of borrowing money
•	 Costs of termination
•	 Decommissioning and cleanup costs
•	 Economic and business conditions (for example, recession)
•	 Enforceability of contracts
•	 Engineering changes and design development
•	 Environmental factors
•	 External influences: delays, changes
•	 Failure of equipment to perform to specifications
•	 Failure of technology to perform as required
•	 Force majeure
•	 High bids
•	 Inability to accept product
•	 Inability to deliver raw materials
•	 Inaccuracy of operating cost estimates
•	 Inaccuracy of construction cost estimates
•	 Inadequate number of bidders, inadequate competition
•	 Inflation
•	 Interest rate increases
•	 Late delivery of equipment
•	 Late start due to upstream conditions
•	 Low availability, reliability, or throughput
•	 Low bidder unreasonably low
•	 Maintenance costs higher than expected
•	 Managerial experience
•	 Mismatch of technology and project conditions
•	 Operating costs higher than expected
•	 Operational accidents, equipment failures
•	 Operational performance: productivity, efficiency, availability, reliability
•	 Permitting and licensing delays or rejections
•	 Poor quality of construction; failure to meet specifications
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•	 Reduced patronage of the facility (compared to economic projections)
•	 Regulatory or legal challenges
•	 Service or economic life less than projected
•	 Scale-up of technology from laboratory or pilot plant
•	 Site conditions
•	 Spills or leaks of toxic materials
•	 Startup problems
•	 Strikes and work stoppages
•	 Unavailability of skilled labor
•	 Use of new or unproved technology
•	 Waste characterization
•	 Weather

It is rather unsatisfying to have one large incomplete list of risks, from both prac-
tical and theoretical viewpoint. So, one may be tempted to structure this list around 
some common principles. For example, first we may think of classifying risks that 
relate to different stakeholders’ objectives; therefore, we typically have:

Performance, scope, quality, or technological risks.  These include the risks that the 
project when completed fails to perform as intended or fails to meet the mission or 
business requirements that generated the need for it. Performance risks can lead to 
schedule and cost risks if scope creep is permitted to increase the time and cost of 
the project.

Schedule risk.  This is the risk that the project takes longer than anticipated or 
scheduled. Schedule risk may lead to cost risks, as longer projects always cost more, 
and to performance risk, if the project is completed too late to perform its intended 
mission fully.

Cost risk.  This is the risk that the project costs more than budgeted. Cost risk may 
lead to performance risk if cost overruns lead to scope reductions to try to stay 
within the baseline budget. Cost risk may also lead to schedule risk if the schedule 
is extended due to lack of funds to accomplish the project with increased costs.

All of these risks may come in two varieties:

Incremental risks.  These include risks that are not major in themselves but can 
accumulate to constitute a major risk. For example, a cost overrun in one subcon-
tract may not in itself constitute a risk to the project budget, but if a number of 
subcontracts overrun simultaneously, due to coincidence or to some common cause, 
then there may be a serious risk to the project budget. Individually, such risks may 
not be serious or difficult to identify; the risk really lies in the combination of a 
number of them, and the lack of recognition that these could occur simultaneously.

Catastrophic risks.  These include risks that could be major threats to the project 
performance, cost, or schedule. Such risks have included dependence on critical 
technologies that might or might not prove to work, scale-up of bench-level  
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technologies to full-scale operations, discovery of waste products or contamination 
not expected or not adequately characterized, dependence on single suppliers or 
sources of critical equipment, etc.

We can continue further with the classification process and distinguish risks 
based on systems notation (i.e. internal or external to the system); when the risk is 
introduced and when it realizes in the project life-cycle (planning, design, execu-
tion); what type of operation it is linked to (welding, compaction, assembly, logis-
tics, drilling), is it technical, product related, or non-technical, process related, and 
so forth. This and similar classification methods are useful from the perspective of 
trying to provide structured input for future analysis; however, there is a danger in 
over-classification and ignoring the fact that many of them are interdependent. For 
example, technological risks could easily affect the schedule, and vice versa; or the 
same risk could affect multiple activities e.g. weather, change of regulation, or 
material shortages could affect the outcomes of a number of activities.

To summarize, uncertainty and risk in projects is driven not only by external fac-
tors such as weather and site condition affecting well-defined operations (i.e. con-
crete placing or excavation), but also by a combination of internally-defined 
conditions and requirements, organizational structure, and distributed decision-
making which makes the outcomes highly uncertain and the list of risks that apply 
to the project rather long. Faced with this challenge it is critical to develop a method 
to “break-down” this list into categories, yet making sure that the interdependencies 
among them are fully accounted for.

2.2  �Risk Management Framework

Managing risks is one of the most important functions of the owner in making any 
major project successful. In general, the owner initially owns all of the risks, as it is 
the owner’s decision to execute the project. Of course, it is also true that not execut-
ing the project may entail risks, to the ability of the owner to perform its mission.

Risk management is not a function the owner can delegate to contractors. 
Contractors and consultants can play major roles in identification and assessment of 
risks, but there remains an essential role for the owner that cannot be delegated: the 
identification, mitigation, acceptance, and management of the owner’s risks.

The definition of the major steps to be taken in the process of analyzing and 
managing risks is somewhat inconsistent among different organizations. 
International Organization for Standardization (ISO) defines four main processes 
that constitute risk management process: assessment, treatment, monitoring, and 
communication. Society for Risk Analysis (SRA), on the other hand, has a different 
classification approach. The SRA defines the overarching term as risk analysis 
which then covers assessment, characterization, communication, management, and 
policy. Finally, Project Management Institute (PMI) has its own definition of steps 
required to make risk-informed decision-making: identification of risks, qualitative 
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risk analysis, followed by a quantitative risk analysis, then planning for risk 
responses, and finally controlling risks. This is in addition to establishing the con-
text for doing risk management activities to start with (PMI 2008).

As previously discussed, there is really no point in debating definition of the term 
“risk” and which of the project risk management definition is more elaborate and 
encompassing as project managers are not compelled to adopt any. Hence, our 
approach does not emphasize either definition; rather, it is focused on typical activi-
ties associated with understating the impact of risk and uncertainty in project 
decision-making; although, it is closest to the PMI classification. To this aim, one 
needs to do the following: (a) identify risks, (b) assess their impact using qualitative 
and quantitative methods, and (c) develop transfer and mitigation strategies; in other 
words – treat the risks. These three steps are performed at various levels during 
project life-cycle phases including planning, design and execution. Next, we discuss 
these three steps in more details.

2.2.1  �Risk Identification

The owner may not be in a position to identify all the risks of a project unassisted, 
due to lack of familiarity with similar projects, but it is the responsibility of the 
owner’s representative to make sure that all the significant risks are identified. The 
actual identification of risk may be carried out by the owner’s representatives, by 
contractors, and by internal and external consultants or advisors. The risk identi-
fication function should not be left to chance, but should be explicitly covered in 
the Statement of Work (SOW) for the project, the project Work Breakdown 
Structure (WBS), the project budget, the project schedule, and the Project 
Execution Plan.

Risk identification is one of the most important functions of the integrated 
project team (IPT), and is one major reason why IPTs should be formed very 
early in the project and should meet face-to-face as soon as possible. Members of 
the integrated project teams should be selected on the basis of their ability to 
bring breadth of experience and viewpoints to the risk identification process. 
Ample examples exist of ill-advised projects that have gone forward because only 
the viewpoints of those with vested interests in the project were ever heard. 
Participation of all the members of the IPT is necessary to make sure that all sig-
nificant project risks are identified. The owner’s representative should be present 
at all such meetings.

There are a number of methods in use for risk identification. Typically, they 
involve brainstorming sessions by the IPT or a significant subset of it. In general, 
personal contact and group dynamics are involved in successful risk identification. 
Assigning the risk identification process to a contractor or individual member of the 
project staff is rarely successful, and may be considered to be a way to achieve the 
appearance of risk identification without actually doing it. However, objective, 
impartial external consultants and advisors may provide useful inputs on risk  
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identification. In fact, risk identification should be specified as one of the major  
functions and contributions of the IPT. Projects should be required to include all 
risks identified in the project risk assessments. In the risk identification process, it is 
essential first to elicit all possible risks, without necessarily analyzing them. As in 
any brainstorming process, no idea should be rejected and every participant should 
be encouraged to expand on the ideas of others.

Although risk identification is a process that should be performed early in the 
project life cycle (starting even before the project is committed), and which should 
be formalized by project management, risk identification should not stop after this 
phase. Risk identification is not perfect, and therefore should be an ongoing process 
throughout the project life cycle, especially as new people or contractors are added 
to the project and may bring different experiences and viewpoints to the risk identi-
fication. For this reason, the project risk management plan should provide at least 
for periodic updates.

2.2.2  �Risk Assessment (Qualitative)

Following the initial risk identification phase, the project should have a working list 
of risks that have been identified as potentially affecting the project. From this list, 
the project should screen out those that require follow up and those that seem minor 
and do not require further attention. This process requires some qualitative assess-
ment of the magnitude and seriousness of each identified risk. There are various 
methods to facilitate this. One common method is based on the well-known Failure 
Modes and Effects Analysis (FMEA), which was developed to assess failures in 
equipment and systems, but which has also been applied in one form or another to 
project risks. This type of analysis goes one step beyond risk identification to 
include a qualitative assessment, typically based on a subjective assessment of the 
magnitude of the impact of the risk event on the project (often on a scale from one 
to ten) multiplied by the likelihood that the risk event will occur (often on a scale 
from one to ten). We can also including a third parameter – the degree of warning 
that the project will have regarding the actual occurrence of the risk event (also on 
a scale from one to ten). This third parameter may give some support for the project 
establishing early warning indicators for specific serious risks, which might not 
otherwise have been done.

This form of risk assessment is qualitative and relative, not quantitative and 
absolute. It is primarily for screening out the identified risks that require follow-up, 
because of high impact or high likelihood, or both, from the risks that do not appear 
to require follow-up, because of both low impact and low likelihood (see Fig. 2.1). 
However, due to changes in project conditions or perceptions, risks that appear to 
have low impact or low likelihood at one time may appear differently at another. 
Therefore, the project has to re-evaluate risks periodically to assure that some risk 
previously considered negligible has not increased in either impact or likelihood to 
the level requiring management attention.
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2.2.3  �Risk Assessment (Quantitative): Low Impact, High 
Probability

Low impact, high probability risks are those largely due to uncertainties – about the 
actual costs of materials and labor, the actual durations of activities, deliveries of 
equipment, productivity of the work force, changes due to design development or 
owner’s preferences, etc. These uncertainties are normally considered to lie within 
the natural variability of the project planning, design, construction, and startup pro-
cess. Each of these uncertainties, taken alone, would have little impact on the proj-
ect. However, taken together, there is the possibility that many of the estimates of 
these factors would prove to be too optimistic, leading to cumulative effects such as 
loss of performance, schedule overruns, and cost overruns.

There are basically two methods for addressing this type of uncertainty: (a) 
Apply project contingencies to cover the uncertainties; and (b) Change the process 
to one in which there is less uncertainty (variability).

The second approach is no doubt preferable, but is not always used. The use of 
lump-sum, fixed-price contracts instead of cost-plus contracts is one obvious way to 
reduce the cost uncertainty for the owner, although it also certainly increases the 
cost uncertainty for the contractor. But lump-sum, fixed-price contracts may increase 
the tendency for the development of adversarial relations between the owner and the 
contractor, whose interests are not completely aligned. Teaming, partnering, and 
incentive-based contracts in general may be regarded as efforts to align the interests 
and objectives of both the owner and the contractors and thereby to reduce the 
uncertainties and risks that may be associated with misalignment of interests. Often, 
however, the preference among contractors is to cover increased uncertainty by 
application of higher contingencies, which are limited by what competitors do in the 
bidding process. That is, contingencies are in effect set by competition and market 
forces rather than risk analysis.

Due to the incremental nature of this type of uncertainties, they may often be 
covered by contingency. Contingency is an amount included in the schedule or 

Fig. 2.1  Qualitative screening of risks
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budget that is not identified with specific factors, but is included to cover a  
reasonable amount of process uncertainty. To be effective, contingency must be 
held at a high level in the project. The frequent practice of assigning contingencies 
to work packages of contracts only assures that the contingencies will be expended; 
there will be little opportunity to transfer contingency allowances from one work 
package or contract to another unless these funds are controlled at the project 
level. For this reason, contractors may be highly disposed to the assignment of 
contingencies to contracts.

Contingencies should be controlled and managed at the same level at which 
changes are controlled. Any change approved should be offset against the remaining 
contingency. The quantitative determination of the proper amounts of schedule and 
cost contingencies can be made through the application of simple probability the-
ory, in which probabilities are used to represent uncertainties.

2.2.4  �Risk Assessment (Quantitative): High Impact, Low 
Probability

By definition, high-impact, low-probability events are rare occurrences, and there-
fore it is very difficult to assign probabilities to them. Data do not exist, and subjec-
tive estimates of probabilities may be unreliable due to the lack of experience of 
personnel with such rare events. However, the objective is not the assignment of 
accurate probabilities to rare events, but the determination of what management 
actions should be taken to mitigate and manage them. If a certain specific risk is 
identified as plausible, and if management determines that this risk should be explic-
itly managed if it had a likelihood of more than 1 in 100 of occurring, then the only 
issue is whether it is more than 1 in 100 or less than 1 in 100; a determination that 
the probability is 1 in 50 is irrelevant.

High-impact, low-probability events in general cannot be covered by contingen-
cies. The computation of the expected loss for an event as the product of the loss 
given the event occurs times the probability of the event is largely meaningless. For 
example, suppose a certain project is expected to cost $1,000,000 if a certain event 
does not occur, and $50,000,000 if it does. One will certainly not assign a contin-
gency of $50,000,000 to a $1,000,000 project. If the probability of this event is 
estimated as 0.02, the expected loss due to the event is $1,000,000. One will not 
assign this number as a contingency either. If one did, the estimated cost with con-
tingency would rise 100% to $2,000,000. If the event occurs, the contingency of 
$1,000,000 is completely inadequate to cover it. If the event never occurs, experi-
ence shows that the extra $1,000,000 is likely to be spent anyway.

The only way to deal with high-impact, low-probability events is to mitigate 
them, by reducing the impact or reducing the likelihood, or both. However. risk 
mitigation and management certainly is not cost-free. In the simple illustration 
above, it might be worth it to the owner to expend as much as $1,000,000 more to 
mitigate the $50,000,000 risk (and perhaps more than $1,000,000, if he owner is 
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very risk-averse). (If the risk is the owner’s; no contractor is going to expend 
$1,000,000 for risk mitigation on a $1,000,000 project.) To mitigate the high-
impact, low-likelihood risks, it is necessary to identify specific risk mitigation activ-
ities. These activities should be estimated and scheduled, and should be included in 
the project budget and the project network schedule. This means that risk mitigation 
activities will be tracked and managed just as other critical project activities are.

2.2.5  �Risk Mitigation and Treatment Approaches

Insurance  Many of the risks associated with projects, especially with construction 
projects, are insurable. The insurer operates on the same statistical principles as 
discussed in this course. Insurance spreads out the risk. The insurer sells a large 
number of insurance policies to various customers. If all these risks are indepen-
dent, by the law of large numbers the relative combined risk to the insurer declines, 
compared to the individual risks. If the risks are not actually independent, the insurer 
has a problem.

Insurance may then be used for those aspects of a project that are common to 
many projects but independent of other projects, and hence for which the insurer has 
a large number of customers. Some organizations that do projects have organized 
their own insurance companies, partly on the belief that they know the risks better 
than general insurance companies, and can therefore carry the risk at lower 
premiums.

Risk Transfer  Risk transfer is like insurance in that the person or organization hold-
ing the risk transfers it to someone else, for a fee of some kind, although not in this 
case to an insurance company. The risk transfer is like any other transfer in a mar-
ketplace, but rather than transferring goods in exchange for other goods or money, 
the risk market transfers bads, accompanied by money or other considerations.

For example, the owner may seek to transfer some risk to a contractor, and a 
general contractor may seek to transfer some risk to subcontractors. In general, the 
owner starts with the risk, as it is the owner’s project before any contracts have been 
let. Of course, the owner has the prerogative to eliminate project risk by not under-
taking the project at all, although this leaves the owner with the risks attendant on 
not doing the project.

Risk transfer can be entirely appropriate when both sides fully understand the 
risk and the rewards. The side that assumes the risk may do it on the basis that it has 
knowledge, skills, or other attributes that will reduce the risk, compared to the risk 
if the owner assumes the risk. If this is true, then it is equitable and economically 
efficient to transfer the risks, as each party believes to be better off after the exchange 
than before. This means that net project value has increased by the risk transfer.

Symbolically, we can say that, before any risk transfer, the owner has risk R and 
amount of money M, and his value placed on this is Vo(R, M). The contractor origi-
nally has no risk and no rewards associated with this project, so his value is 

2  Project Risk Management Fundamentals



33

Vc(0, 0) = 0. The owner transfers to the contractor some of his risk, say RT, along 
with money MT, and retains residual risk Ro. The contractor receives money MT and 
assumes risk Rc. The total value of the project, after the transfer, increases: Vo(Ro, M 
− MT) + Vc(Rc, MT) > Vo(R, M) + Vc(0, 0). Note that it is not claimed that Ro + Rc = R, 
as the risks may not be additive.

As rewards are quantitative (that is, dollars), proper understanding of the risk-
reward tradeoff on both sides depends on a quantitative assessment of the risk. Also, 
in a perfect market with free flow of information, each side would know not only his 
quantitative assessment of the risk, but also the other side’s assessment.

Unfortunately, all too often the risks are not quantitatively assessed and one or 
both sides may seek to gain an advantage over the other side by concealing his own 
risk assessment from the other. Such attempts lead to competition and secrecy (or 
even misrepresentation). As a result of one side trying to gain advantage over the 
other, the value of the project is not maximized. That is, the total value of the project 
does not attain the value that could have been reached by full disclosure.

Sometimes owners try to coerce contractors, through market power, to accept 
risks they would not otherwise assume. If there is a buyer’s market in construction, 
for example, owners can shop around for some contractor willing to accept the 
owner’s risk at less reward than anyone else. Sometimes these attempts are not 
legally enforceable – such as owners requiring contractors to accept the risk of the 
owner’s own negligence. Even if legal, the outcome may be bad for all concerned, 
even the owner. For example, the contractor may believe that the combination of 
risk and reward provide by the owner is unacceptable – the risk is too high or the 
reward is too low. By taking this contract, the contractor may see that he would 
face a risk of going bankrupt. However, the contractor may see another risk – the 
risk of going bankrupt if he does not take the contract. That is, perhaps Vc(Rc, MT) < 0 
but Vc(Rc, MT) > Vc(0, 0). The contractor accepts the risk on the basis that going 
bankrupt in the long term is better than going bankrupt in the short term, and, 
besides, the risk may never happen. This method may work as long as the risk in 
question never materializes, but if the critical risk does occur, the contractor goes 
bankrupt and the project is jeopardized. One would hardly say that this is a win for 
the owner.

Risk Buffering  Risk buffering or risk hedging is the establishment of some 
reserve or buffer that can absorb the effects of many risks without jeopardizing 
the project. A contingency is a buffer. A large contingency reduces the risk of run-
ning out of money before the project is complete. If two people go to Las Vegas, 
one with $10,000 in his pocket and the other with $1000, it is clear that, although 
the odds may be identical for both, the one with the larger stake has much better 
chance of survival.

Buffering applies to time as well as budget. It can also apply to the provision of 
reserves of manpower, machines, or other resources used by the project. Contingency 
is useful when the risks are incremental and additive, and no single risk is dominant. 
Note that, as discussed elsewhere, contingency is not necessarily a good way to 
manage risks of very high impact coupled with low probability.
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Although contingency can be (a part of) a successful risk strategy, in the end, 
adding contingency simply means increasing the project budget (or schedule). 
Therefore, increasing contingency should not be the first resort; unless all the risks 
are small, efforts to avoid, transfer, or otherwise mitigate risks should be investi-
gated before recourse is had to increased contingency.

Risk Avoidance  Risk avoidance is the elimination or avoidance of some risk, or 
class of risks, by changing the parameters of the project. It is related to the question, 
“How can this project be redesigned so that the risk in question disappears (or is 
reduced to an acceptable value?” The solution may be engineering, technical, finan-
cial, political, or whatever else addresses the cause of the risk. Often, redesign to 
avoid risks results in a much-improved project. One must take care, however, that 
avoiding one known risk or set of risks does not lead to taking on unknown risks of 
even greater consequence.

Risk avoidance is an area in which quantitative, even if approximate, risk assess-
ments are needed. For example, the project designers may have chosen some solu-
tion, say A, over the alternative, say B, because the cost of A is estimated or quoted 
to be less than the cost of B – on a deterministic, single point basis. However, quan-
titative risk analysis might show that the least-cost approach A is much riskier than 
the alternative, B. The function of quantitative risk assessment is to determine if the 
predicted reduction in risk by changing from alternative A to alternative B is worth 
the cost differential.

Risk Control  Risk control refers to assuming a risk but taking steps to reduce, miti-
gate, or otherwise manage its impact or likelihood. Risk control can take the form 
of installing data gathering or early warning systems that provide information to 
assess more accurately the impact, likelihood, or timing of a risk. If warning of a 
risk can be obtained early enough to take action against it, then information gather-
ing may be preferable to more tangible (and expensive) actions.

Risk control, like risk avoidance, may not be free, or even inexpensive. If the 
project is about developing a new product, and competition presents a risk, then 
one might buy out the competitors, but this could be expensive. A less-expensive 
alternative might be to team up with one’s major competitor to develop and market 
a joint product. Another solution might be to accelerate the development project, 
even at some considerable cost, to reduce market risk by beating the competition 
to market.

Options and Alternatives  Options and alternatives refer to changes in the project 
to create optional courses of action. For example, if technical risks related to 
some new technology are of concern, one could set up parallel development 
teams to pursue different technological options concurrently. This might be 
expensive, but necessary to increase the likelihood that one would succeed. In the 
Manhattan Engineering District project, nuclear physicists were unsure whether 
an enriched uranium device or a plutonium device would work, so they developed 
both. It turned out that both worked, but the additional cost was considered to be 
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justifiable. Of course, the ultimate risk, that this project was intended to forestall, 
that the enemy would develop the weapon first, turned out not to exist at all.

There are many places in which options can be inserted to deal with virtually any 
project technical, market, financing, or other risks. The use of these options may, 
however, require some imagination and changes from the usual methods and prac-
tices. Many options involve the creation or purchase of information, because risk is 
uncertainty and information reduces uncertainty. It must be stressed, however, that 
creating options to generate new information is not the same as simply postponing 
decisions to wait for some new data to materialize.

Organizational Structures  Sometimes organizational restructuring can reduce 
risks. Whether the best organization is tight, with central control and high account-
ability, or loose and decentralized, with decisions made primarily at the local level, 
depends on the project and the nature of the risks. That is, the proper organizational 
structure is contingent on the situation; there is no universally best form of project 
organizational structure.

Risk Assumption  Risk assumption is the last resort. It means that, in the end, if risks 
remain that cannot be avoided, transferred, insured, mitigated, eliminated, or con-
trolled, then they must simply be accepted in order that the project may proceed. 
Presumably, this implies that the risks associated with going ahead are nevertheless 
less than (or more acceptable than) the risks of not going forward.

In summary, in this text we use the term project risk management as the overall 
framework consisting of three distinct activities: (a) identification, (b) assessment, 
and (c) transfer and mitigation. While this somewhat departs from ISO and SRA 
approaches, it is done for the purpose of fitting risk analysis into project manage-
ment process, rather than vice versa. In fact, many project managers look at identi-
fication process as a unique task not part of the larger assessment process. 
Nevertheless, these differences are superficial as they only to terminology rather 
than substance of the process.

2.3  �Representation of Project Risks

As previously mentioned we classify the quantitative risk assessment into two dif-
ferent categories: Low Impact  – High Probability and High Impact  – Low 
Probability risk assessments. The representation of Low Impact – High Probability 
risks follows the general process for representing uncertainty associated with ran-
dom outcomes such as probability density distributions, stochastic processes, and 
others. Here the outcome can be defined as any element of design or construction 
process where multiple incremental and often hard-to-distinguish risks result in 
output variability. For example, this output is typically defined as duration and cost 
of elements in project’s WBS such as activities, tasks, and work packages, but is 
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could also be defined as the arrival rate of rework items and design changes. Any 
elementary textbook in statistics and probability theory would provide a good ref-
erence point to survey commonly used models. This text is has no ambition of 
being such reference.

In practice the representation of High Impact – Low Probability risks is often 
limited to the outputs from qualitative risk identification and assessment methods 
such as FMEA. As previously mentioned, this is typically a form of risk score that 
is based on categorical data and ordinal numbers for likelihood and consequence; 
for example Very High likelihood = 5 and Moderately-severe consequences = 4. The 
risk score is then calculated by a product or similar arithmetic operation between the 
numbers assigned to the likelihood and the consequence (e.g. Risk Score of 20 = 
5 × 4). While this score measure is simple for communication purposes and useful 
for determining if the risk warrants a mitigation strategy, it persistent use in projects 
as a quantitative measure is unfortunate. This is because it is mathematically incor-
rect, and dangerously misleading to decision-makers.

In order to provide a High Impact – Low Probability representation of that can 
be used a basis for quantitative assessment and analysis we feel the need to provide 
the link between general principles of engineering design risk analysis and project 
risk management.

A typical approach in engineering design is to decompose risk into a triple 
defined by the hazard, vulnerability, and consequence (HVC) components 
(McLaughlin 2001; Mander et al. 2012). For example, given a known location of 
future building and the exposure of such location to seismic risks (i.e. hazard) a 
structural engineer design a building with features that can provide structural 
responses (i.e. vulnerability) such that it minimizes the overall expected damage 
over the facility’s life-cycle (i.e. consequences). Here, there is first a hazard compo-
nent defined by a model that maps frequency or probability to some intensity mea-
sure. Then, there is a structure response model that maps how the structure would 
respond to different level of hazard intensity, and it is followed by a function that 
maps structural responses to damage.

These HVC components can be viewed as more general and decomposed repre-
sentation of the individual risk. This representation is flexible and can be further 
reduced to more aggregate forms based on the available data and applicability. For 
example, in projects (in contrast to engineering design) it is not always possible to 
obtain data on hazards and vulnerability separately; or furthermore, it is often not 
feasible as hazard and vulnerability components are not independent.

Hence in this kind of situation one can combine hazard and vulnerability compo-
nents into a single measure i.e. probability and create a risk representation that is 
now commonly used in project management: Risk = Probability × Consequence.

Figure 2.2 illustrates the four-step process that defines the risk by modeling haz-
ard, vulnerability, and consequence functions separately. These functions are typi-
cally exponential; hence we can use log-log transformation to show their relationship 
in a close-to-linear form. This is only for the purpose of illustration and the process 
can be applied to any function type.
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In the upper right corner one defines the hazard in terms of the frequencies and 
intensity. In many instances in projects this is, arguably, the key source of uncer-
tainty; for example, the occurrence of a significant weather event that will shut 
down the construction site. However, it is natural to think that weather events differ 
in their intensity; hence the graph in upper right quadrant represents frequency vs. 
intensity of the hazard. Structures, teams, projects, and organizations respond dif-
ferently to the same hazard intensity. In other words they show different vulnerabil-
ity to the condition. The graph in upper left quadrant shows a functional relationship 
between project response and the hazard intensity. The vulnerability can also be 
referred to as exposure to hazard and it is often a decision variable; in order words, 
we make project or design decisions that will expose our project or structure/prod-
uct to the hazard at different levels. One would be tempted to say that we should 
address this by avoiding vulnerability in the system, but this is often not feasible, or 
if it is, then it is often too costly.

Fig. 2.2  HVC representation of risk
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The next step in this HVC risk modeling approach is to account for the  
consequences given how the project or the process responds to it. This is shown 
in a bottom left quadrant. Finally, based on the available information in the first 
three quadrants, one can derive the probability distribution of consequences 
given the frequency/probability. This is shown in a bottom right quadrant. Hence, 
the integral over the function defined in a bottom right quadrant is also an 
expected value of the risk.

As shown in Fig. 2.2, the four-step HVC modeling approach to risks requires 
separate functional representation of hazards, responses, and consequences. As such 
it can be extended to account for different types of responses and outcomes or dif-
ferent types of variables i.e. continuous or discrete. By doing this one can assess 
correlation and dependency between the activities and objectives. However, note 
that the only source of uncertainty in Fig. 2.2 is the hazard intensity – frequency 
function; response and consequence functions are deterministic. This is also not a 
limitation as the representation can include model uncertainty in vulnerability and 
consequence components as well.

Risk defined in FMEA or in a similar risk identification methods can also be 
represented using Condition-If-Then constructs (Garvey 2008). The condition 
event represents the early warning sign or the root cause; the risk events are proba-
bilistic events that may occur because the condition is present, while the 
consequence(s) events represent the impact of the risk event on the objectives. 
Figure 2.3 illustrates this construct. Suppose the condition is that high traffic vol-
ume is present in and around the project site. A risk event might be that the access 
to the site is inadequate, and the consequences of the risk event include delays, 
which could cause an increase in the required resources, namely construction man-
agement and labor.

The Condition-If-Then representation provides a logical framework for defin-
ing and monitoring risk and is consistent with HVC representation of risk; 
Condition Event represents Hazard, Risk Event represents Vulnerability, and 
Consequence remains Consequence. From Fig. 2.3 we can also see that Condition-
If-Then representation provides a causality-based relationship that can easily be 

Fig. 2.3  The condition-if-then risk representation
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integrated with Fault Tree Analysis (FTA), Event Trees (ET), and probability 
models including Bayesian networks.

To illustrate how Low-Impact High-Probability and High-Impact Low-
Probability risk representation fits into project networks consider Fig. 2.4. At the 
lowest level of detail when incremental risk can be capture as the overall variability, 
see the top network (Fig. 2.4a), the risks is captured as probability distributions of 
activity durations and associated costs. To account of High-Impact Low-Probability 
risk consider figure at the next level (Fig. 2.4b); if the available data allows for 
identifying independent risk factors, the risk events can be modeled using probabilities 

Fig. 2.4  Network 
representation of risk. (a) 
Agregrate representation 
(low impact, high 
probability). (b) Discrete 
risk representation (high 
impact, low probability). 
(c) Discrete risk 
representation with 
resource loaded schedule 
(high impact, low 
probability)
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(RE node) and the consequence on the particular activity (activities). This RE rep-
resentation can be further expanded to use the typical Condition-If-Then network 
for each risk. Finally, if a resource-loaded schedule is available one can link 
Condition-If-Then network to resources as shown in Fig. 2.4c. The key difference 
between this and the previous network representation is the intermediate layer 
between the risk event and project activities. This layer defines project response 
given different kind of project structures, typically defined in terms of resource 
bundle required to complete the activity (Govan and Damnjanovic 2016).

One can observe that the two bottom network formulations have risks with com-
mon conditions. In other words, the risks connected with the common cause will be 
inherently correlated. Further, one also observe common dependency not only on 
based on the condition, but also on a common resources bundle. This implies that 
risks can be correlated without having a common cause event, but having common 
resources i.e. vulnerability.

2.4  �Scope of This Text

From what we said until this point even novices can see that project risk manage-
ment covers not only technical concepts coming from statistics, probability and 
decision theory, but also principles that define how individuals, companies and 
organizations in general perceive, process, and respond to uncertainty. Attempting 
to cover all aspects of project risk management in details in a single textbook hence 
require providing relevant background that we feel may distract the reader from the 
original objective – introduce holistic and data analytics based approach to project 
risk management. Perhaps the reader looking to find the ultimate guidebook on the 
theory and practice of project risk management may find this limitation in scope 
unsatisfactory, but in our experience such reference would be difficult to assemble 
anyways. There is just too much “variance” in how projects are planned and exe-
cuted across different industry segments. Therefore we here focus on the elements 
of project risk management theory and practice that are in common and relatively 
consistent across industry segments – quantitative assessment of low impact high 
probability risks, and variance in project activities in general. In our viewpoint, the 
majority of texts on project risk management already provide content on high 
impact low probability risks, while rigorous treatment of incremental low impact 
high-probability risk to a large degree is missing.

2.5  �Organizations of the Content

The remaining of this text is organized as follows. In the next part (Part II: Risk 
Assessment in Project Planning – Chaps. 3, 4, 5, 6, 7, 8, and 9) we provide a com-
prehensive review of the formulations for cost and duration functions, evaluation 
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of functions of random variables using second moment approach including 
estimating mean and variances from data and/or expert judgements, modeling the 
effect of independence and correlations, and estimating management reserves and 
contingencies. In Part III: Risk Monitoring and Reassessment in Project Execution 
(Chaps. 10, 11, 12, 13, and 14) we focus on applying Bayesian revision to manag-
ing contingencies, forecasting project completion using S-curves, implementing 
statistical process control methods for earned-value analysis, and using learning 
curves for forecasting.
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Chapter 3
Second Moment Approach 
for the Probability Distribution of Project 
Performance Functions

Abstract  In this chapter we present the second moment methods for evaluating 
project performance functions where random variables can be continuous and/or 
discrete. We provide a comprehensive review of the method in context of its accu-
racy when compared to the results from the Monte Carlo simulation. Furthermore, 
we analyze the effect of correlations among the random variables and the lineariza-
tion of the project performance functions.

Keywords  Method of moments · Project performance functions · Correlations

3.1  �Introduction

Quantitative assessments of project risks require use of linear or nonlinear project 
performance models. For example, the total project cost as one of the most impor-
tant project indicators is simply the linear sum of work package costs; similarly, 
project duration is the sum of activity durations on the critical path. On other hand, 
there are several instances when quantitative risk assessment requires nonlinear 
models; for example, parametric cost models or productivity-based models are 
often nonlinear. But, as will be seen below, some approximate methods may be used 
to linearize even these functions, without the need for numerical methods such as 
Monte Carlo simulation. There are many instances in which Monte Carlo simula-
tion is the best, or even only, method, especially when the model is discontinuous, 
involves decisions, or cannot be readily expressed in closed mathematical form. In 
this chapter, however, it will be seen that simple second moment methods give 
essentially the same answers as Monte Carlo simulation.

The second moment approach does not deal with full probability distributions 
but uses only the means and variances (the first two moments) to characterize 
uncertainty. Of course, the first two moments are actually measures of central ten-
dency and say little about the probabilities in the tails of the distributions. The 
second moment approach given here is based on some simplifying approximations 
about the forms of the probability distributions, and these assumptions define the 
tails of the distributions. However, in most cases of project risk assessment the 
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probability distributions used to quantify uncertainty are largely subjective and 
based on judgment and experience rather than hard data. If there are historical data, 
they are typically sparse, and probably give little or no information about the tails 
of the distributions anyway. Therefore, it may be unnecessary to perform long sim-
ulations or detailed calculations when the inputs are at best known only to perhaps 
two significant digits.

The second moment approach may be used when one is interested in total project 
variability or uncertainty. Using this approach, one may wish to find the risk func-
tion or probability distribution of, for example, the total cost of a project. This prob-
ability distribution may then be used to determine if the process is capable, in the 
statistical process control sense, of meeting the requirements. For example, suppose 
that the user’s specification or requirement is that a certain project be executed for a 
total budget of $10,000,000, including contingencies, and that the likelihood of 
overrunning this budget should be less than 10%. Suppose that the second moment 
analysis gives a total cost probability distribution such that the likelihood of exceed-
ing $10,000,000 is 5%. Then the project as structured is capable of meeting the 
specification. On the other hand, if the analysis shows that the probability of exceed-
ing $10,000,000 is 20%, then the project is not capable of meeting the sponsor’s 
requirement. Either the process that generates this project must be reengineered or 
managed such that the probability of exceeding the budget is reduced to the accept-
able number, or the sponsor must agree to add more budget or contingency, or the 
project will be cancelled.

There is another reason for performing this analysis, in addition to determining 
whether or not the project is too risky as it stands. It was stressed earlier that one 
major function of the project manager is to manage the project risks, and the risks 
are typically associated with individual project elements (work packages, activi-
ties, contracts, etc.). However, given that a complex project may have many work 
packages, and that the project manager has limited time and resources, how does 
he/she know which work packages should get his/her attention? As will be shown, 
the variability or uncertainty in the total cost of a project can be estimated, and if 
this variability is too high, then those work packages that make the greatest contri-
bution to this uncertainty can be identified, and these should receive the most atten-
tion from the project manager. That is, the project manager can use these results for 
time management.

One variable of interest in all projects is cost. But there may be other variables 
related to project performance. For example, in aircraft design, performance con-
siderations may place an upper limit on the weight of the aircraft. The weight of 
the aircraft is the sum of the weights of all the systems and components comprising 
the aircraft. Before the aircraft is designed, engineers make estimates of the 
weights of each system and component, but these estimates may have significant 
uncertainties, depending on how much this aircraft differs from previous models. 
If the analysis of the a priori probability distribution on the weight of the total 
aircraft indicates that there is too much chance of exceeding the weight limit, then 
some actions need to be taken to reduce the weights of some components, or to 
reduce the uncertainty associated the weights. Therefore, the project manager for 
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the aircraft design process should be interested in which components are making 
the greatest contributions to the total weight uncertainty.

Software development projects may have performance criteria such as execution 
time. Electronic products, consumer products, medical equipment, and many other 
types of development projects have performance criteria as well. Depending on the 
state of the technology used, the final product performance, and the engineering 
cost to meet this performance, may be highly uncertain before the project begins.

This chapter presents a simple method for answering these questions, without the 
need for Monte Carlo simulation. It is applicable to project risks that meet the defi-
nitions given here, of differential risks or uncertainties. That is, it applies to pro-
cesses that are in statistical control, in which the variability is due to common 
causes, but that may or may not be capable of meeting the specifications. This 
method is not necessarily applicable to processes that are out of control, that is, for 
which there is some unique external cause with very low probability of occurrence 
but very high impact on the project if it does occur.

3.2  �Formulation of the Second Moment Method

Suppose there are p work packages or other cost elements and suppose that experts 
are available to estimate some parameters of the subjective probability distributions 
for each work package or activity. The usual practice in engineering analysis as well 
as project cost estimation is the bottoms-up method: the parameters of the lowest 
level elements (activities, work packages, or line items) are estimated, and then 
these are combined based on known principles to find the parameters of the total 
system. The logic behind this exercise is that different specialists or cost estimators 
may be able to estimate some specific processes, work packages or subcontracts, but 
none of them is qualified by knowledge or experience to estimate the statistical 
properties of the total project all at once. It may be the case that whoever makes the 
cost estimate (or bid) for a work package is most qualified to estimate the probabil-
ity distribution on that cost. For example, suppliers or subcontractors may make 
initial cost estimates for equipment or subcontracts before sufficient design infor-
mation is available to make firm offers. As more engineering information becomes 
available, the uncertainty in these estimates can get smaller. Therefore, it seems 
reasonable to perform the estimate for each work package separately and then com-
bine the results in some way using probability concepts.

Methods for making subjective judgments about probability distributions are dis-
cussed elsewhere. Here, it is assumed that for each work package j there is a cost Xj, 
assumed to be uncertain but characterized by some probability distribution, and that 
some experts have estimated some parameters, from which the mean value μj = E[Xj] 

and the standard deviation σ µj j jE X= −( )





2
 can be derived for all work pack-

ages. The goal is to determine the probability distribution for the sum of these terms 
over all line items.
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The common assumption that all the work package costs are statistically  
independent may be a poor assumption and may result in very unconservative esti-
mates of the total risk. Therefore, some experts familiar with the interaction 
between work packages j and k can estimate the correlation coefficients ρj, k, where 
ρj, k is a number between −1 and +1. The meaning of ρj, k can be interpreted as fol-
lows: suppose that there are two work packages, j and k, with variances σ σj

2 2and k ,  
and correlation coefficient ρj, k. The quantity ρ j k,

2  is the fraction of the variance of 
Xj that is explained or removed by knowledge of Xk. That is, suppose the project 
manager initially does not know the true values of Xj or Xk, but attributes to them 
the variances σ j

2  and σ k
2 , respectively. Suppose then that work package k finishes, 

and the project manager now knows the true value of Xk. The project manager’s 

uncertainty in work package j is now σ ρ σ σ ρj j k j j j k
2 2 2 2 21− = −( ), , . If ρ j k,

2 0= , then 

knowledge of the true value of Xk provides no information about the value of Xj, 

because the estimate of the variance does not change. If ρ j k,
2 1= , then the project 

manager’s estimate of the variance of work package j is zero; knowledge of the true 
value of Xk provides complete information about the value of Xj. Clearly, most 
cases are somewhere between these limits. The critical question is this: If knowl-
edge of the true value of the cost of work package k would cause you to revise your 
estimate about work package j, then you believe that activities j and k are corre-
lated. Conversely, if knowledge of the true value of the cost of work package k 
would not cause you to revise your estimate about work package j, then you believe 
that activities j and k are independent (for more about estimating correlation coef-
ficients using expert judgments see Chap. 6).

Using the correlation coefficients, the covariances are computed as ρj, kσjσk. For 
the general case:

	

Mean total cost = =








 =   =

= = =
∑ ∑ ∑µ µT
j

p

j
j

p

j
j

p

jE X E X
1 1 1 	

Here, the symbols E X Xj j j
  , ,µ  all have the same meaning, the average value, 

the mean value, or the expected value of the unknown variable Xj

	

Variance of the total cost = =
= =
∑∑σ ρ σ σT
j

p

k

p

j k j k
2

1 1
,

	

That is, the variance of the sum is the sum of all the variances and covariances. This 
may be proved, but the proof is given elsewhere and is omitted here. Noting that 
symmetry requires that ρj, k = ρk, j, then the previous equation may be rewritten as:

	

Variance of the total project cost = = +
= =

−

=
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1
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∑
1

ρ σ σ,

	

In this last equation note that the variance of the sum of the costs is the sum of 
the variances of all the individual work package costs plus the sum of all the 
off-diagonal covariances. From this it is easily seen that, if the correlations are  
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generally positive, that is, ρj, k > 0, then assuming independence when the variables 
are not independent is equivalent to neglecting all of the off-diagonal covariance 
terms, which would result in a low value for σT

2  and would underestimate, perhaps 
grossly underestimate, the true value of the total variance.

In this derivation it is not assumed that all the probability distributions for all 
the work packages are Normally distributed, or follow any other particular distri-
bution. In fact, the work package costs may well not be Normally distributed, as 
they certainly cannot be negative. There are a number of reasons for believing that 
the work package costs are nonnegative, asymmetric, and skewed to the right. To 
put it another way, the probability distributions for the individual work package 
costs may have third, fourth, fifth, and even higher moments, but the method given 
here uses only the first and second moments (the mean and the variance respec-
tively). We are not assuming that the moments higher than the second are zero; we 
are just not using them. This is, of course, an approximate method, and the justifi-
cation for these approximations will be discussed below.

It is readily apparent that all of the calculations given above can be easily imple-
mented. To express these equations in compact matrix form, define the covariance 
matrix as the p-by-p matrix V, in which the elements are:

	
v j k j p k pj k j k j k j k, , , , ,= = ≤ ≤ ≤ ≤σ ρ σ σ for all and 1 1

	

with the definitions

	
ρ σ σ σ σj j j j j j j, ,,= = =1 2

	

Then the covariance matrix is, taking advantage of symmetry:
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In general, the covariance matrix may be fully populated. Also, it should be 
assumed that all that the work package cost correlation coefficients are nonzero, 
unless it is explicitly shown otherwise.

Consequently, Monte Carlo simulation is unnecessary to find the mean and vari-
ance of the total cost or duration of a project; one simply has to sum all the work 
package means to find the mean of the total, and to sum all the variances and covari-
ances to find the variance of the total. This method has the following two mnemon-
ics: (a) the mean of the sum is the sum of the means; and (b) the variance of the sum 
is the sum of the covariances.

This method gives only the first two moments (the mean and the variance) of 
the total cost and does not give a specific probability distribution on the total, nor 
does it account for skewness, kurtosis, and other higher moments. Therefore, it 
may be argued, Monte Carlo simulation is necessary to determine the form of the 
probability distribution and the values in the tails.
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First, Monte Carlo Simulation gives useful results in the tails only when a large 
number of repetitions is performed. Second, the Central Limit Theorem indicates 
that the probability distribution of a sum of independent random variates, drawn 
from any probability distribution, approaches the Normal. Of course, the Central 
Limit Theorem is not strictly applicable to the general case considered here, as 
independence is not assumed. However, “any linear combination of normally dis-
tributed variables, not necessarily independent, is normally distributed” (Denrell 
2004) by the replication property of the Normal distribution. The issue concerns 
linear combinations of variables in general, not necessarily independent and not 
necessarily Normal. An extensive set of Monte Carlo experiments have been per-
formed with linear combinations (that is, sums) of individual work package costs 
drawn from symmetric or highly skewed asymmetric distributions, with negative, 
zero, or positive correlation coefficients. From these experiments, it can be con-
cluded empirically that the probability distribution of the sum is nearly Normal, 
with mean μT and variance σT

2  as computed from the expressions given above, 
regardless of the skewness or correlation of the individual terms in the summation. 
In other words, empirically, the Central Limit Theorem seems to give good approxi-
mations even when the variates are not independent. And good approximations are 
all that we need here, because the probability distributions of the individual work 
package costs are subjective to start with.

Therefore, the conclusion is that a Normal distribution, with mean and variance 
computed as above, is a reasonable approximation, which allows us to determine 
the entire probability distribution, such as the quantiles in the upper tail, using the 
tables of the standardized unit Normal distribution. Some confirmations of this prin-
ciple are given next.

These conclusions apply to variates that are the sum (or the weighted sum) of 
dependent or independent random variates. Therefore, this method can be used to 
approximate the uncertainty in the duration of a path through a project network, as 
the path length is the sum of the durations of the individual activities along the path. 
Of course, for project durations using the critical path (the longest path from start to 
finish), this method requires that the critical path does not change for random varia-
tions in all of the network activities. If, for some values of the random variables, 
different paths can become the critical path, the total duration will not be the sum of 
a fixed set of activity durations. Application of the maximization operator to the set 
of all possible paths is not a linear operation, and other methods, for example Monte 
Carlo simulation, become necessary.

Of course, populating the complete covariance matrix may be necessary, but not 
easy. Estimating the mean values requires one estimate per work package, for a total 
of p means. Estimating the variances, or the main diagonal terms, requires one esti-
mate per work package, or p variance estimates. However. estimating the 

dependencies, or off-diagonal terms, requires estimating 
p p −( )1

2
 correlations. As 

the number of variances increases as p but the number of covariances to estimate 
increases as p2, the estimation process is not trivial if p is large. Nevertheless, expe-
rience has shown that it is quite feasible for engineers and constructors in industry 
to estimate these correlation coefficients on the basis of experience.
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Example 3.1
An actual power plant under construction some years ago is used as an example 
application. The project was large, but the example is small; all the calculations here 
can be done by spreadsheet or even by calculator. The project costs were summa-
rized into 18 cost accounts. For each of these accounts, the cost engineers on the 
project estimated three points on the probability distribution for the cost. These 
three points corresponded to the 10th, 50th, and 90th percentiles, x10, x50, x90. 
However, other percentiles could be used by suitably modifying the expressions 
below. The cost accounts and the estimated values are given in the table below. Note 
the following:

•	 Account 1 represents the costs expended up to the date of the estimate.
•	 Account 44, the largest single account, is interest on funds used during construc-

tion and therefore depends on the other costs.
•	 Accounts 51, 53, 55, 57, and 59 represent additional costs if the schedule slips.
•	 The accounts vary considerably in size.

The second moment method described earlier requires moments, and these 
moments are computed from the engineers’ estimates for three points for each 
account, using equations developed by Keefer and Bodily (1983).

The values for the computed means (μ) and standard deviations (σ) are given in 
the last two columns of Table 3.1.

Summing the mean values in this table gives an expected value for the total proj-
ect cost of $3043 million. Assuming the cost accounts are all independent, the 
square root of the sum of the variances of all accounts gives a standard deviation for 
the total project cost of $97 million.

However, the cost engineers on the project also estimated the correlation coeffi-
cients, which are given in the matrix below.
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Using these correlations and the standard deviations for the account costs, the 
covariance matrix can be easily computed using the equations given earlier. 
Summing all the terms in the covariance matrix gives the variance of the total 
cost; the square root of this is the standard deviation of the total cost, $170 mil-
lion. Note that this is considerably higher than the $97 million computed under 
the assumption of independence. The difference, $73 million, is not trivial. 
(Moreover, there is some reason to believe that the correlations should be gener-
ally higher that those given.)

Looking at the comparison another way, the mean and standard deviation can be 
used to compute the 90th percentile for the total project cost; this is the value that 
has a 10% likelihood of being exceeded. For the two cases, independent and corre-
lated, the 90th percentile costs are estimated to be:

Table 3.1  Three-point cost estimates (in $1,000,000); means and standard deviations

Account 
no

10th 
percentile x10

50th 
percentile x50

90th 
percentile x90 Work package name Mean (μ)

Std Dev 
(σ)

1 1035 1036 1037 Expenses prior to 1 
July

1036 0.78

10 135 185 220 Manual labor 180 33.3
12 50 76 100 Construction 

services
75 19.5

14 1 2 10 Equipment 3.4 4.36
16 10 14 30 Bulk materials 17.7 8.29
18 20 36 60 Distributable 

materials
38.1 15.8

22 20 91 100 Construction 
services (labor)

71.7 34.4

24 100 134 175 Engineering 136 29.3
26 100 123 150 Project direction 124 19.5
28 50 67 100 Quality control 71.9 19.9
32 125 144 150 Owner’s project 

management
140 10.2

44 1050 1083 1135 Interest during 
construction

1089 33.4

45 −15 −5 10 Escalation −3.4 9.82
51 −20 20 120 AFUDC with 

slippage
38.7 56.4

53 −1 1 10 Distributable 
materials slippage

3.2 4.6

55 −3 3 20 Engineering with 
slippage

6.4 9.34

57 −3 3 20 Project direction 
with slippage

6.4 9.34

59 −4 4 25 Owner’s costs with 
slippage

8 11.7
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•	 Independent: $3168 million
•	 Correlated: $3261 million

That is, the project manager’s estimate for the owner of the cost such that there 
would be a 90% likelihood that the estimate would not be exceeded, would be $93 
million low if the figure based on the independence assumption were used.

Figures 3.1 and 3.2 show the probability density function for the costs, obtained 
from this computation.

Fig. 3.1  Probability density function for cost to complete

Fig. 3.2  Cumulative density function for cost to complete
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3.3  �Second Moment Approximations for Nonlinear 
Functions

Second moment approximations can be obtained for many nonlinear functions or 
combinations of variables, not necessarily independent. Suppose that 
G(x1, x2,  … , xm) is some known function of x1, x2, … , xm and we wish to find  
the mean and variance of this function given that the means and variances of  
the random variates, x1, x2,  …  , xm have been estimated. Let 

x E x x E x x E x G E G x x xm m m1 1 2 2 1 2= [ ] = [ ] … = [ ] = …( ) , , , , , , , . Howard (1971) 

gives a second moment approximation for a nonlinear function of m variables, 
G(x1, x2,  … , xm):

	

G E G x x x G x x x
G

x xm m
i

m

j
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i j
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∑∑1 2 1 2
1 1

21
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∂
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∑∑σ 2
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All the partial derivatives ∂G/∂x1,   ∂G/∂x2,    … ,   ∂G/∂xm are evaluated at the 
mean values x x x x x xm m1 1 2 2= = … =, , , . If analytic derivatives of the function 
G(x1, x2,  … , xm) are not available, but the output G(x1, x2,  … , xm) can be computed, 
the partial derivatives ∂G/∂x1,   ∂G/∂x2, … ,   ∂G/∂xm may be approximated by tak-
ing finite differences over multiple values of the output. Note that Howard’s formu-
lation has a term in the approximation such that the expected value of the function 
is dependent on the values of the second derivatives of the function.

Suppose, as an example, we are considering a project where its future cost can be 
approximated using a nonlinear cost function that considers a similar project and 
adjusts the estimate based on differences in the scope.

Let a represent a factor adjustment, x1 the cost of previous project, x2 the unit 
capacity of a similar project, x3 the unit capacity of the currently considered project, 
and x4 the fixed cost of the item that was only needed in the previous project then we 
have a difference in project cost defined as: a[x1(x2 − x3) − x4]

Also we can write the general expression for G(x1, x2,  … , xm) as:

	
G x x x x a x x x x1 2 3 4 1 2 3 4, , ,( ) = −( ) −  	

We can now write the partial derivatives of G(x1, x2, x3, x4):
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These derivatives are to be evaluated at the mean values of the variables. 
Similarly, the second derivatives are:
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We may now write the approximation for the expected value of the annual reve-
nue as:
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Where the covariance may be written as cov[xi, xj] = ρi, j σi σj.
And the double summation can be written as the sum of all the terms in a 4 by 4 

matrix:
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Here, Sum is the summation of the terms in the following matrix

	

1 2 3 4
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We can now substitute the values for the partial derivatives into the general 
expression for the variance:
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Here Sum is the summation of all the terms in the following matrix:

3.3 � Second Moment Approximations for Nonlinear Functions



56

	

1 2 3 4

1
2 3

2

1

2

1 2 3 1 2 1 2 1 2 3 1 3 1 3 2 3
x x x x x x x x x x− − − − − −( ) ( ) ( ) (σ ρ σ σ ρ σ σ

, ,
))

( )− − −

ρ σ σ

ρ σ σ σ ρ σ σ ρ σ σ
1 4 1 4

1 2 3 1 2 1 2 1

2

2

2

1

2

2 3 2 3 1 2 4 2 4
2

3

,

, , ,
x x x x x x

−− − −

− −

( )
( )
x x x x x x

x x

1 2 3 1 3 1 3 1

2

2 3 2 3 1

2

3

2

1 3 4 3 4

2 3 1
4

ρ σ σ ρ σ σ σ ρ σ σ

ρ
, , ,

,, , ,4 1 4 1 2 4 2 4 1 3 4 3 4 4

2σ σ ρ σ σ ρ σ σ σ−





















x x

	

Note that: The equations given earlier are approximations, and are not exact 
under all circumstances. The validity of the approximations can be gauged by com-
paring the approximation results with results from Monte Carlo simulation.

Example 3.2
Assume that the means and standard deviation of the four variables are as given in 
Table 3.2.

To simplify the presentation, take a = 1.

Case 3.1  As a first comparison, we assume that all the variables are independent. 
That is, we take the correlation matrix to be:

	

1 2 3 4

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1





















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We now compute the answers in two ways:

•	 Compute the approximate mean G  and variance var[G] from the equations 
above.

•	 Simulate the process by Monte Carlo, compute the histograms of the results, and 
compute the mean and variance from the computed values for [x1(x2 − x3) − x4].

The Table 3.3 shows the results for this case. The Monte Carlo simulation used 
32,000 random trials.

Table 3.2  Example 3.2 data

Variable Mean (μ) Standard deviation (σ) Coefficient of variation (COV)

x1 100 20 0.20
x2 50 10 0.20
x3 40 10 0.25
x4 500 10 0.02
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Note the large value for the standard deviation, nearly three times the mean, 
computed by both methods. The largest coefficient of variation of any of the input 
variables was 25%, but the coefficient of variation of the resulting function is 293%. 
This results in a large probability that the cost difference is negative.

Figure 3.3 plots the probability density functions computed from the results. 
The Monte Carlo curve is the histogram computed by the simulation, the curve for 
the approximate method is a Normal distribution using the computed mean and 
variance. The approximate method determines two moments of the resulting 
distribution, but does not determine the entire distribution. Therefore, a Normal 
distribution is used.

From these comparative results, we can observe that:

•	 The difference in the means is negligible.
•	 The difference in the standard deviations is negligible.
•	 The Monte Carlo simulation histogram is very close to Normal. The computed 

skewness coefficient shows minor skew to the right, but this is negligible.
•	 There is a large probability of negative cost difference.

Therefore, we can conclude that for this comparison, with no correlations among 
the input variables, the approximate method gives results indistinguishable from 
Monte Carlo simulation with 32,000 trials.

Table 3.3  Case 3.1 results

Method Mean Standard deviation Skewness

Approximation 500.00 1428.32 NA
Monte Carlo simulation 502.58 1463.49 0.16

Fig. 3.3  Comparison of Monte Carlo with second moment method
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Case 3.2  Here, we consider a situation in which the correlation matrix is taken to 
be:

	

1 2 3 4

1 1 0 0 0

2 0 1 0 8 0

3 0 0 8 1 0

4 0 0 0 1
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We now compute the answers in the same two ways to obtain the results (the 
Monte Carlo simulation used 32,000 random trials) (Table 3.4):

Note that the standard deviation computed by both methods has decreased con-
siderably compared to the case with all independent variables. The coefficient of 
variation of the resulting cost difference has fallen to 133%, much less than in Case 
3.1, but still very large compared to the inputs.

Figure 3.4 plots the probability density functions computed from the results. The 
Monte Carlo curve is the histogram computed by the simulation, the curve for the 
approximate method is a Normal distribution using the computed mean and vari-
ance. Note that the scale on the abscissa is not the same as in the figure accompany-
ing Case 3.1.

From these comparative results, we can observe that:

•	 The difference in the means is negligible.
•	 The difference in the standard deviations is negligible.
•	 The Monte Carlo simulation histogram is very close to Normal. The computed 

skewness coefficient shows a slightly larger skew to the right, but this is negli-
gible, and not readily visible on the plot.

•	 There is a large probability of negative cost difference, but smaller than in 
Case 3.1.

Therefore, we can conclude that for this comparison, with positive correlation 
between x2 and x3 the approximate method gives results indistinguishable from 
Monte Carlo simulation with 32,000 trials.

Case 3.3  Here, we consider a situation in which the correlation matrix is taken to 
be (blank cells signify 0.0):

1 2 3 4

1 1 0 8 0 0

2 0 8 1 0 0

3 0 0 1 0

4 0 0 0 1
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We now compute the answers in the same two ways to obtain the results (the 
Monte Carlo simulation used 32,000 random trials) (see Table 3.5):

Note that in this case the means computed by each method have decreased from 
500 to about 340, due to the correlation specified. We can see from this that ignoring 
correlation and assuming all variables to be independent result in errors not only in 
the variances but also in the mean values. The standard deviation computed by both 
methods, however, is large, almost as large as in the independent case (Case 3.1). 
The coefficient of variation of the resulting revenue is now 386%, more even than in 
Case 3.1, due to the high standard deviation and lower expected value. The skew-
ness computed from the Monte Carlo simulation is now negative, indicating a skew 
to the left, toward lower cost difference, which can be seen in the figure below.

Figures 3.5 and 3.6 plot the probability density functions and the cumulative 
probability distribution functions computed from the results. The Monte Carlo 
curve is the histogram computed by the simulation, the curve for the approximate 
method is a Normal distribution using the computed mean and variance. Note that 
the scale on the abscissa is not the same as in the figures given before.

From these comparative results, we can observe that:

•	 The difference in the means is negligible.
•	 The difference in the standard deviations is negligible.
•	 The Monte Carlo simulation histogram deviates from the Normal. The computed 

skewness coefficient shows a visible skew to the left. Note that the second 

Table 3.4  Case 3.2 results

Method Mean Standard deviation Skewness

Approximation 500.00 663.40 NA
Monte Carlo simulation 505.94 679.59 0.33

Fig. 3.4  Comparison of Monte Carlo with second moment method
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moment approximation cannot match results that are skewed, as skewness is a 
third moment property, under the assumption that the result is Normal. Some 
other assumption would have to be made regarding the third moment.

•	 However, the differences between the two solutions on the cumulative probabil-
ity distribution plot are small. The probability of negative revenues, for example, 
is larger for the second moment method using the Normal curve than for the 
Monte Carlo simulation, 0.398 versus 0.328, a difference of about 0.070 at the 
maximum.

Therefore, we can conclude that, for this comparison, with negative correlation 
the approximate method gives results that are conservative compared to Monte 
Carlo simulation with 32,000 trials. However, this conclusion is not necessarily 
valid for other conditions involving nonlinear combinations of variables. More 
research needs to be done on suitable second moment approximations for typical 
cases used in practice.

Table 3.5  Case 3.3 results

Method Mean Standard deviation Skewness

Approximation 340.00 1311.53 NA
Monte Carlo simulation 338.00 1345.87 −0.59

Fig. 3.5  Comparison of Monte Carlo with second moment method – histogram
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3.4  �Discrete Random Variables in Linear and Nonlinear 
Models

In some project performance functions discrete random variables must be combined 
with continuous. Therefore, we discuss here how to get the first two moments of 
these types of variables.

Consider, for example, some cost element of a project that may be incurred – or 
may not. We might be seeking a building permit, for example, and there may be 
some factor that may or may not be required by the permitting agency. The regulator 
might require a flood control system that we do not feel is necessary, but the regula-
tor could nevertheless impose it. Call this factor y. Let p represent the probability 
that this factor will be required (that the regulator insists on it in order to issue a 
building permit). Then we have the situation that either:

	(i)	 The value of y is zero, with probability 1 − p.
	(ii)	 The value of y is Y with probability p. Here we assume that Y is known with no 

error.

Then the mean value of y is:

	
µy E y pY p pY= [ ] = + −( ) =1 0

	

The expected value of y2 is:

	
E y pY p pY2 2 21 0  = + −( ) =

	

Fig. 3.6  Comparison of Monte Carlo with second moment method – cumulative
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Then the variance of y is given by:

	
σ y Var y E y E y pY pY p p Y2 2 2 2 2 21= [ ] =   − [ ]( ) = − ( ) = −( )

	

And the standard deviation of y is:

	
σ y Y p p= −( )1

	

As an extension of the above, suppose that the value of y if the factor is required 
is not a fixed number but is drawn with probability p from a probability density 
function f(x), which has mean and standard deviation μx, σx. Then the above expres-
sions become:

	

µ µ

σ σ µ
y x

y x x

p

p p p

=

= + −( )2 2 21
	

(These reduce to the previous expressions if μx = Y and σx = 0).
These two moments, μy, σy

2 may be added along with the moments for continu-
ous variables, as discussed earlier in this chapter. Note however that, if there is a 
large proportion of these discrete variables, the actual probability distribution of 
the sum may deviate from the Normal distribution. The problem is not in sum-
ming the moments; it lies in identifying what the distribution of the resulting sum 
should be.

3.5  �Practice Problems

Problem 3.5.1  You are in charge of a small project comprised of six sequential 
activities. VP for Engineering asked you to prepare a presentation updating the 
project review board on the uncertainty about the project cost outcomes. Project 
engineers have prepared for you project schedule and cost estimates shown in 
Table 3.6. Determine the mean and standard deviation of the cost distribution and 

Table 3.6  Problems data

Activity
Schedule Labor/equip cost per period Total material cost
Mean Variance Mean Variance Mean Variance

A 17 9 10 2 500 40
B 9 5.44 5 1 50 0
C 6 1.78 4 0 40 0
D 5 1.78 5 0 150 20
E 4 0.44 5 2 50 0
F 9 5.44 10 3 300 20
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calculate one-sided upper 95% confidence interval for the total project cost. 
Assume that the random variables are independent.

Problem 3.5.2  Consider a project situation defined in Problem 3.5.1; how would 
your answer change if you consider that the activities are correlated? (see the cor-
relation matrix below).
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Problem 3.5.3  Now consider four discrete risk factors that if materialize can result 
in an increase in activity duration (see Problem 3.5.1). These risk factors are listed 
in Table 3.7.

Table 3.7  Problem data

Risk factor Affects activity Probability Consequence

I A, D 0.05 C(A) = 4; C(D) = 1
II B 0.10 C(B) = 2
III C 0.01 C(C) = 6
IV E 0.05 C(E) = 1

	(A)	 Find one-sided upper 95% confidence interval on project completion time that 
includes both discrete risk factors and general variances in duration of the 
activities defined in Problem 3.5.1. What are the key assumptions?

	(B)	 How would your answer change if you consider that the risk factors above are 
correlated? (see the correlation matrix below)

	(C)	 How would your answer change if you consider that the consequences of the 
risk factors are uncertain with coefficient of variation = 0.5

	(D)	 Can you define the distribution of the extra time added due to risk factor for 
project completion time?
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Problem 3.5.4  Formulate a cost function for an activity A given the following 
information: X1 = Daily cost of the crew and tools/equipment required to complete 
a task A; X2  =  Unit production rate of the crew per day of the scope of work 
defined by task A; X3 = The total cope of work defined by task A; X4 = Total cost 
of materials required to complete the scope of work defined by task A; and 
X5 = Profit and overhead percentage. Assuming these are random variables with 
parameters shown in Table 3.8, determine a two-sided 95% confidence interval for 
the cost of activity A.

Problem 3.5.5  Determine the mean and the variance of the future project cost X 

[μx, σx] using the following parametric scaling cost model X Y
C

C
x

m

=










0

 where, X 

is the cost of project X; Cx is the unit capacity of project X = 80; C0 is the unit capac-

ity of a similar project Y = 100; Y is the cost of project Y = $10,000,000; and m is 
the scaling parameter considered to be a random variable [μm = 0.6; σm = 0.1].
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Table 3.8  Problem data
Variable Mean (μ)

Standard 
deviation (σ)

X1 150 20
X2 60 10
X3 20 10
X4 50 5
X5 0.1 0.05
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Chapter 4
Monte Carlo Simulation Approach 
for the Probability Distribution of Project 
Performance Functions

Abstract  In this chapter we discuss the implementation of Monte Carlo simulation 
evaluating of project performance functions such as the total project cost and the 
total project duration. We focus on the key considerations that are often ignored 
when Monte Carlo simulation is implemented in project risk analysis – the effect of 
correlation and the sample size selection. Further, we provide the methods to deter-
mine if the correlation matrix is positive-semi definite, if not, how to fix it. Finally 
we show the method to evaluate the effect of sample size on the confidence intervals 
of decision variables.

Keywords  Monte Carlo simulation · Correlated random variates · Sample size · 
Confidence intervals

4.1  �Introduction

The availability of inexpensive and fast computing systems has brought Monte 
Carlo simulation within reach of practically everyone. This is a great advance in the 
ability of project teams to develop models and to perform analyses, as Monte Carlo 
simulation is a very flexible and versatile tool for project engineers and managers. 
Unfortunately, in a hurry to get answers, many engineers make mistakes. Two most 
common types are: (a) ignoring the effect of correlation among simulated random 
variables and (b) underestimating the number of trials needed to achieve reasonable 
confidence limits on the results of a Monte Carlo simulation.

In many ways, a Monte Carlo simulation is like a physical experiment. The simu-
lator makes a number of random draws from specified probability distributions over 
the population. However, unlike physical experiments, the population probability 
distributions are known in advance, as the analyst specifies them therefore the 
results become very sensitive to the underlying assumptions. Therefore selecting 
the type of probability distributions and determining the correlation among the vari-
ables must be done in a rigorous manner. Unfortunately many engineers and risk 
analysts skip this step all together and proceed with the simulation experiment 
assuming the variables are normal and uncorrelated.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14251-3_4&domain=pdf
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Like physical measurements, Monte Carlo simulations are also subject to errors 
due to small samples. That is, the observed relative frequencies in a Monte Carlo 
simulation may differ considerably from the population probability distribution due 
to small sample size. To overcome small sample size errors, the analysis must per-
form enough Monte Carlo runs to achieve acceptable confidence bounds on the 
derived parameters. Therefore, determination of the number of runs depends on the 
confidence bounds, which must be explicitly stated. Many analysts do not under-
stand confidence bounds, and do not bother to state them, which means that the 
results of Monte Carlo simulations are virtually meaningless, just as the results of 
physical experiments would be if there were no attempt to quantify the measure-
ment errors and confidence limits. Managers who use (or pay for) Monte Carlo 
simulations should insist that explicit confidence limits be provided for all derived 
decision variables.

4.2  �Generating Independent Random Variates 
from a Normal Distribution

There are a number of methods for generating normal random variates. Here we 
present a method based on independent Uniform variates, just to provide context. 
Any textbook on simulation and/or probability and statistics should provide a more 
detailed description of the methods for generating independent random variates.

Let z be a standard unit Normal variate [N(0, 1)], which means that it has zero 
mean and variance 1. Let K be a number of repetitions of the random number gen-
erator, yielding successive independent Uniform variates r1, r2, … , rj, … , rK. on the 
interval [0, 1]. Then we can approximate the unit Normal variate z by:

	
z

r K

K

j

K

j

=
−

=
∑

1

2

12

/

/ 	

An obvious choice of K to simplify this expression is K = 12, in which case:

	

z r
j

j= −
=
∑

1

12

6

	

That is, we generate an approximately Normal variate by taking the sum of 12 
instances of the variate and subtracting 6. It can be seen that K = 12 truncates the 
Normal distribution to within the interval [−6, +6], which is to say, six standard 
deviations above or below the mean.

Another common approach to generating independent Normally distributed ran-
dom variates is to use z variates and then generate Normal random variates from the 
inverse of cumulative Normal distribution function.
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4.3  �Consistency in Covariance Matrices

If the variances and covariances are subjective estimates, perhaps elicited from  
different experts, is it guaranteed that the covariance matrix is consistent and valid? 
Unfortunately, no. Consider a simple 3-by-3 example:
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In which the correlation estimates are ρ12 = 0.9, ρ13 = 0.8, and ρ23 = −0.6.
Each individually may be valid, but the set is inconsistent. This set of correla-

tions states that the cost of work package 1 is highly positively correlated with the 
cost of work package 2 and is highly correlated with the cost of work package 3. 
This implies that, if the cost of work package 1 is higher than average, the costs of 
work packages 2 and 3 are likely to be higher than average as well; the costs of work 
packages 2 and 3 tend to move in the same direction as the cost of work package 1. 
But this matrix also says that the costs of work packages 2 and 3 are rather highly 
negatively correlated; that is, the cost of work package 3 would tend to be higher 
than average when the cost of work package 2 is lower than average, and vice versa, 
so the costs of work packages 2 and 3 move in the opposite direction. These state-
ments are inconsistent. Therefore, the correlation coefficients must be 
mis-specified.

The variances are always consistent; so any positive number suffices; but the off-
diagonal covariances may be inconsistent and this inconsistency shows up in com-
puting the determinant of the covariance matrix. This determinant must be positive. 
We will not discuss determinants here in any depth; they are covered in any elemen-
tary textbook on linear algebra. We can, however, write out explicitly the determi-
nant for a general 3-by-3 matrix V. Let
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The determinant of V is:

	
V = − − + + −v v v v v v v v v v v v v v v v v11 22 33 11 23 32 12 21 33 12 23 31 13 21 32 13 22vv31 	

If V is a covariance matrix, then substitution of the covariances as in the above 
matrix gives:
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This value can be positive only if

	
1 2 012

2
13

2
23

2
12 13 23− + +( ) + >ρ ρ ρ ρ ρ ρ

	

In the specific example above, this becomes

	
1 0 0 81 0 64 0 36 2 0 9 0 8 0 6 1 0 1 81 0 432 1 2. . . . . . . . . . .− + +( ) + ( )( ) −( ) = − − = − 442 0<

	

which clearly violates the condition. Hence, the determinant is negative and the 
specified correlation coefficients are not consistent.

4.4  �Generating Correlated Random Variates

Suppose we have some function or process y y x= ( )  in which x  is a vector of 
input variables and y is the output variable of interest. Note that y x( )  may be a 
closed form algebraic function or a whole computer program. If all the inputs x  are 
assumed to be deterministic (that is, we have absolutely x  no uncertainty about any 
of them), then we simply use the equation (or the computer program) to compute 
y y x= ( ) .

Suppose, however, that we have considerable uncertainty about the values of the 
inputs. These values are not deterministic, but are drawn from some histogram (if 
we have lots of data) or some assumed probability distribution. Therefore, what we 
are seeking is the uncertainty, or probability distribution, on the output y given the 
uncertainties about all the values for x .

If y x( )  happens to have the special linear form:

	

y y x a x
j

m

j j= ( ) =
=
∑

1 	

then we know from the previous work that we can use the sum of the means of the 
x  and the sum of all the terms in the covariance matrix for x  to compute the means 
and variance of y. In addition, we know that, for this special case of linear addition, 
y will be distributed approximately as the Normal. Therefore, we can determine the 
risk for any desired value of y.

However, if y x( )  does not have this special form, we cannot use these simplifi-
cations. We use Monte Carlo simulation when we desire to find the uncertainty 
(probability distribution) of y for any type of y x( ) . We do this by, in effect, per-
forming numerical experiments: we generate a random set of values for the input 
variables x  using the assumed probability distributions and the correlation coeffi-
cients, and then compute the value of y for this particular random set of x . Then we 
repeat the process with a new set of random inputs. Each instantiation of y is input 
to a histogram, in which we count the number of times we get a value of y within a 
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given interval. When we have done a great number of these numerical experiments, 
we have the histogram for the outputs y, from which we can compute the risks for 
any particular value.

To use Monte Carlo simulation to generate random variates that are not statisti-
cally independent, we need to satisfy a covariance matrix V. Suppose that one 
wishes variates that are Normally distributed. Any programming language will pro-
vide random numbers drawn from a Uniform distribution on the interval [0, 1]. 
From these Uniform random variates one can generate unit Normal variates by one 
of several methods, and from these generate variates that are Normally distributed 
with any desired mean and variance and are statistically independent. To generate 
correlated random variates, an additional step is required. If there are m correlated 
variates, they must be generated all at once, in order to accommodate all the 
cross-correlations.

Let:

z be a vector of m standard unit Normal variates (generated independently by any 
algorithm)

x be a vector of the desired m dependent Normal variates
μ be a m-vector of the mean values of x
C be a m*m lower triangular matrix, such that x = Cz + μ

Then it can be shown that the vector x − μ has the m-by-m variance-covariance 
matrix V, where:

	 V CCT= 	

The objective is to factor the covariance matrix V into the lower triangular matrix 
C; the values of C are generated by the following algorithm, Cholesky 
decomposition:
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Because C is a lower triangular matrix, ci,j = 0 for all values of j > i. Having com-
puted the elements of the matrix C, from the above, then one obtains the m Normal 
random variates xn~N[μxn, σxn], 1 ≤ n ≤ m, from the matrix multiplication:

	 x Cz= +µµ 	
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Caveat: note the square root function in the calculation for ci,i. If at any step the 
term inside the square root is negative, the process fails. That is, it is impossible to 
find a set of dependent random variates satisfying the given covariance matrix. 
Hence, Monte Carlo simulation will fail if the covariance matrix is not consistent.

It turns out that, for the covariance matrix to be consistent, and the algorithm 
given above to succeed, the matrix V must be positive semidefinite. If the covariance 
matrix is indefinite, the algorithm fails.

A method to determine if a square matrix is positive semidefinite is to compute 
its eigenvalues, or characteristic values. Then, If all the eigenvalues are strictly 
positive (nonzero), the matrix is positive definite. If all of the eigenvalues are non-
negative, then the matrix is positive semidefinite; otherwise the matrix is indefinite.

Suppose than that a covariance matrix is generated based on subjective estimates 
of various experts and computation of the eigenvalues of this matrix shows that the 
matrix is indefinite; hence inconsistent. What is to be done?

The first step is to examine the matrix for any obvious inconsistencies, such as 
shown in the 3-by-3 example above. If there are apparent inconsistencies, these 
should be fixed, and the eigenvalue computation repeated for the revised covari-
ance matrix.

In many cases, however, the inconsistencies may not be apparent, especially if 
the covariance matrix is large. A heuristic that often helps in this case is based on 
computing the eigenvalues.

If there are any negative eigenvalues, set all the negative eigenvalues equal to 
zero (or some small positive number). Then, using the computed eigenvector 
matrix, back-compute a revised covariance matrix V′. This matrix will probably be 
positive definite; to make sure, recompute the eigenvalues for the revised covari-
ance matrix. If all are positive or zero, the revised covariance matrix is consistent 
and can be used; if some of the eigenvalues for the revised matrix V′ are negative, 
set them to zero, back-compute a new revised matrix V″, and continue if necessary 
until a positive definite or positive semidefinite matrix is obtained. Of course, there 
are other methods to fixing inconsistent correlation matrix based on minimizing 
differences between original matrix values and the corrected semi-definite version 
(Higham 2002).

4.5  �Generating Correlated Lognormal Variables

Log-normal probability distribution is of particular interest to project data analysts. 
This is because it is always positive and skewed to the right.

Let Yj and Yk be two out of a set of Normally–distributed random variates, nor-
malized to zero means, with variances σ σj k

2 2,  and correlation coefficient ρY j,k. Now, 

let X e X ej

Y

k
Yj k= =,  . Then Xj and Xk are lognormally distributed (Law and Kelton 

1991). The correlation between Xj and Xk is given by:
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Or, inverting this last expression, we have
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Note that there may be some values of ρXj, k that are excluded (that is, cannot be 
valid) by the requirement that the argument of the natural logarithm must be posi-
tive. That is,
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Therefore, to generate random variates Xj and Xk that are lognormally distributed, 
with correlation ρXj,k:

•	 First, determine the desired parameters (mean, shift factor, variance, and correla-
tion ρXj,k) for the original lognormal variables Xj and Xk.

•	 From these, find the parameters of the associated Normally distributed vari-
ables, Yj and Yk, and the correlation between them, ρYj,Yk, from the above 
expression.

•	 From these, generate the full correlation matrix with correlations ρYj,k for all j 
and k. Equivalently, generate the full covariance matrix ρYj,k𝜎j𝜎k for all j and k. 
Then, generate the set of Normally distributed variables Yk for all k.

•	 Then convert to the desired lognormal variates by X e X ej

Y

k
Yj k= =,
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4.6  �On the Number of Trials in Monte Carlo Simulation

Many engineers who use Monte Carlo simulation specify the number of runs in the 
order of several hundreds. However, the actual number required for reasonable con-
fidence limits may be more in the order of tens of thousands.

As an example, suppose that a sponsor of a prospective project is interested in 
estimating the risk before deciding whether or not to proceed with it. One view of 
risk assessment with Monte Carlo is to compute in each simulated run an attribute 
of the simulated project that depends on whether the project meets or does not 
meet some criterion. For example, the attribute might be whether the project costs 
overrun the budget, or risk-adjusted cost estimate, or that the project will be late, 
compared to the risk-adjusted schedule. It might be based on whether the present 
worth of the project, considering all future costs and benefits discounted to the 
present, exceeds some specified value. It might whether the rate of return on the 
project investment (that is, the discount rate for which the net discounted present 
worth is zero) exceeds some value. It might be some weighted combination of 
many factors.

One might ask, how can one determine the risk-adjusted budget or schedule? By 
repeated Monte Carlo simulations. That is, one runs the Monte Carlo simulator for 
various values for the risk adjustment (or contingency) until one determines the 
budget (or risk-adjusted cost estimate) such that both the budget and the probability 
of overrunning it are acceptable to the project sponsor. Or, until one determines that 
there is no budget acceptable to the sponsor that meets the sponsor’s risk 
requirements.

Suppose that the Monte Carlo simulation computes the criterion or attribute for 
each of a number of projects using random numbers as inputs. Then the output attri-
bute is a random variable. To be specific, suppose that the Monte Carlo simulator 
computes the rates of return (ROI) for some number, n, of simulated projects. The 
sponsor would naturally prefer projects that maximize his ROI (if the criterion is 
cost or duration, he would prefer to minimize the critical attribute). For the discus-
sion here, we will assume that the critical attribute is to be maximized, and that there 
is some critical value of this attribute, set by the sponsor, such that a project with a 
ROI greater than this value is considered a success, and one with a ROI less than this 
valued is considered a failure. Thus, each random simulation has two possible attri-
bute outcomes:

•	 Success, that is, the simulated ROI is greater than or equal to the sponsor’s mini-
mum rate of return (often called the hurdle rate); or

•	 Failure, the simulated ROI is less than the minimum rate of return.

For brevity, call a project in the first class a good project and a simulated out-
come in the second class a bad project. If the probability of failure (that is, the prob-
ability of a rate of return less than the specified hurdle rate) is greater than some 
value, the sponsor will not proceed with the project. Suppose the number of simula-
tion trials is n, a number to be determined. The probability of financial failure, that 
is, the probability that the ROI will be less than the minimum, is then estimated 
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from the Monte Carlo results as the ratio of the number of bad projects to the total 
number of good and bad simulated projects. Let psim be this ratio and let pcrit be the 
sponsor’s critical probability. Then,

If psim ≤ pcrit then the risk is acceptable to the sponsor and the project goes forward, 
but

If psim > pcrit then the risk is too great, and the project is terminated.

This decision process may be regarded as an instance of hypothesis testing. 
Because sponsors typically feel that the burden of proof is on the project to justify 
proceeding, we may say that the null hypothesis is:

Ho: the project is not acceptable by the critical decision attributes and should not be 
done.

The alternate hypothesis is:

Ha: the project meets the financial or other criteria and should proceed.

Then to proceed with the project, the sponsor must reject the null hypothesis, 
which is equivalent to accepting the alternate hypothesis. The sponsor is assumed to 
make a decision between Ho and Ha based on the Monte Carlo ratio psim, the fre-
quency of failing projects out of the number of random trials n. However, psim is 
itself a random variable and therefore it has a probability distribution of its own. We 
will consider how to determine the number of Monte Carlo trials needed to achieve 
some specified confidence bounds with respect to the hypothesis test, considering 
the probability distribution of psim.

Note that this error analysis does not consider modeling error. That is, the dis-
cussion here deals only with the random errors in the Monte Carlo simulation due 
to small sample size. This analysis does not address the issue of the degree to which 
the simulation model actually represents the performance of the real project. This 
does not mean that modeling error is not important; it only means that modeling 
error cannot be addressed by statistical means. Modeling error is not a random 
error, it is a bias, and no amount of random testing can reduce it. In fact, modeling 
error may be much more serious than statistical error, and modeling error may 
actually vitiate the Monte Carlo simulation, but this is a separate problem, consid-
ered elsewhere.

The binary definition of the outcomes (simulated projects are good or bad, by the 
specified criteria) means that the results can be described by the Binomial distribu-
tion. Suppose that x is the number of bad projects in n simulation trials. Then, by the 
Binomial distribution,
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the population considered here is the population of all Monte Carlo simulation runs, 
not the population of real-world projects. Of course, the value of p is unknown, 
being the value that is being estimated by the simulation. For any x, let ˆ /p x n=  be 
an estimate of p (is the value that the simulation would produce if it did an infinite 
number of trials). In the Binomial distribution,
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Also, for the Binomial distribution,
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By the definition of variance, then,
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Then the mean plus k standard deviations is ˆ /p k pq n+
The Binomial distribution can be approximated by the Normal distribution with 

good agreement if np > 5 and n(1 − p) > 5. Then, the values for mean and variance 
of the estimate p̂  can be used in a Normal distribution if n is chosen large enough 
to meet these conditions. Suppose that this is true (we will check these conditions 
later). To define confidence intervals, we will consider several alternate approaches.

In the first example, we will define a simple symmetric confidence interval 
around the value of the population proportion of bad projects, p. Then,
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Using the equation above, we can write:
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If the Monte Carlo simulation has been performed, n and p̂  are known, and so 
the confidence band p̂∆  can be computed for any significance level defined by k. 
This confidence band is taken to be symmetric, so we use a two-tailed test based on 
the Normal approximation, discussed above. For example, if we want a 95% confi-
dence band, this corresponds to probabilities of 0.025 in each tail in a two-tailed 
test, and k = 1.96 from tables of the Normal distribution.

To compute a required value of n before performing the Monte Carlo simulation, 
we take the square of both sides of the above equation, to give:
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To compute this equation before the simulation, we must guess a value for p. We 
might assume that the value of p of interest will be of the order of pcrit, the critical 
decision value. As an example, suppose that the sponsor wants a probability of 1% 
or less that the project will be bad (fail to meet the financial and other criteria). 
Then set p = 0.01. Suppose that the sponsor will accept a confidence band that is 
10% of this value, above and below. Then, set ∆p = 0.001. That is, the confidence 
interval will be

	 0.009 0.011p≤ ≤ 	

If the sponsor wants 95% confidence that this confidence interval includes the 
true population value p, then set k = 1.96. Using these numerical values in the equa-
tion for n, above, gives:
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Earlier, it was noted that the Normal approximation to the Binomial distribu-
tion is approximately accurate if np > 5 and n(1 − p) > 5. From this solution we 
see that np = 380 ≫ 5 and n(1 − p) = 37, 652 ≫ 5. Therefore, the Normal approxi-
mation is valid.

Although the numerical values used above are invented, they are not necessarily 
unrealistic. If we widen the confidence band by a factor of five, by setting 
Δp = 0.0025, so the confidence interval is

	 0.0075 0.0125p≤ ≤ 	

then the equation for the required n gives:

	
n = 






 ( )( ) = =

1 96

0 0025
0 01 0 99 6085

2
.

.
. . iterations
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which shows that it takes a substantial number of Monte Carlo trials to obtain  
narrow confidence bands on the computed attributes.

A second example takes a more detailed approach. Here, the sponsor sets two 
statistical criteria:

	1.	 The probability of rejecting a project that would really be a good project, with a 
true population failure rate less than pα < pcrit, should not be greater than α. This 
is the probability that the project will be terminated (that is, the sponsor does not 
reject the null hypothesis) for being too risky, based on the limited number of 
Monte Carlo simulations, when it is not too risky, by the sponsor’s criteria.

	2.	 Conversely, the probability of accepting a project that will really turn out to be a 
bad project, with a true population failure rate pβ < pcrit, should not be greater 
than β This is the risk that the project will be given the go-ahead (that is, the 
sponsor rejects the null hypothesis), based on the limited Monte Carlo simula-
tions, when it is actually too risky, by the sponsor’s criteria.

Note that α and β do not have to be identical. Also, many sponsors would say that 
it is better to miss an opportunity than to take on a bad situation, and therefore 
would require that the probability of mistakenly going ahead with a project that is 
too risky should be much less than the probability of mistakenly rejecting a project 
that is not risky, or β < α.

Let kα be a coefficient taken from the tables for the Normal distribution corre-
sponding to the error α and let kβ be a coefficient taken from the tables correspond-
ing to the error β. Then we have the confidence band around the (unknown) value of 
the true risk factor p given by:

	
p k p q n true population p p k p q nα α α α β β β β− ≤ ≤ +/ /

	

Hence, the width of the confidence band is given by:

	
k p q n k p q n

n
k p q k p q p pα α α β β β α α α β β β β α/ /+ =









 +( ) = −

1

	

By rearranging this equation we get:

	

n
k p q k p q

p p

n
k p q k p q

p p

=
+

−

=
+

−













α α α β β β

β α

α α α β β β

β α

2

	

As a numerical example, suppose the sponsor is somewhat risk averse and will 
accept only a 5% chance of going forward, based on the Monte Carlo simulations, 
with a project for which the failure rate would really be more than 1%. Then, say, 
pβ = 0.011 and β = 0.05 Suppose that, in addition, the sponsor wants only a 10% 
chance of rejecting a good project as being too risky, based on the Monte Carlo 
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simulations, for which the failure rate would really be less than 0.01. Then, say, 
pα  = 0.009 and α  = 0.10. For these calculations, we use one-sided values in the 
Normal distribution tables. Therefore, kβ = 1.645 and kα = 1.282. Substituting in the 
above equation for n:

	

n =
( ) + ( )













1 282 0 009 0 991 1 645 0 011 0 989

0 002

2

. . . . . .

.
	

which evaluates to n = 21,411 Monte Carlo iterations required. Suppose that the 
sponsor is now willing to accept a 20% chance of mistakenly rejecting a good proj-
ect. Then pα = 0.009, α = 0.20 and kα = 0.842. Then, substituting these values with 
the previous:

	

n =
( ) + ( )













0 842 0 009 0 991 1 645 0 011 0 989

0 002

. . . . . .

.
	

which evaluates to n = 15,762 Monte Carlo iterations. Thus, if the sponsor is willing 
to accept a larger risk of missing good projects, the number of random trials may be 
reduced. Other results for n will be obtained for different assumptions about accept-
able risks. Nevertheless, the number of iterations is likely to remain above 10,000.

There are other approaches to determining the stopping criteria for sampling 
including a double sampling plan. In this approach, for Monte Carlo simulation,

	1.	 A random sample of size n1 is simulated.
	2.	 If the sample contains c1 or fewer failures (bad projects), then the project is 

accepted (the null hypothesis is rejected).
	3.	 If the sample contains more than c2 failures, then the project is rejected (the null 

hypothesis is not rejected).
	4.	 If there are x1 failures, where c1 ≤ x1 ≤ c2, then a second run of n2 simulation trials 

is made.
	5.	 If the number of failures in both runs, x1 + x2 ≤ c3, then the project is accepted 

(the null hypothesis is rejected); if not, the project is rejected.

This method often allows the project to be accepted or rejected at a smaller num-
ber of trials than a single-step sampling plan. One could extend this approach to a 
multiple-step sampling plan, in which the number of failures would be tested after 
every iteration, with three outcomes: reject the project, accept the project, or con-
tinue simulating. The details of how to do this are left to the reader.

4.7  �Practice Problems

Problem 4.7.1  Consider correlation matrix from Practice Problem 3.5.2 from Chap. 
3 (i.e. a small project comprised of six sequential activities). Is the correlation 
matrix consistent? If not, why not?
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Problem 4.7.2  Consider a small project comprised of four activities A, B, C, and 
D. The correlation matrix, developed by a project manager, of the activity duration 
for such project is shown below:

	

A B C D

A

B

C

D

1 0 9 0 7 0 1

0 9 1 0 3 0 3

0 7 0 3 1 0 3

01 0 3 0 3 1

. . .

. . .

. . .

. .























	

Is this correlation matrix positive semi-definite? [explain your answer] If it is 
not, how would you make it positive semi-definite without significantly affecting 
the results? What would be the new correlation matrix?

Problem 4.7.3  A project engineer employed by an asphalt paving contractor col-
lected data one summer’s day on the arrival and processing of asphalt trucks at a 
paving job (see Table 4.1). For each of the following observed or derived quantities, 
determine the frequency diagrams (histograms) of the actual data:

•	 The inter-arrival time between trucks arriving at the site.
•	 The processing time for the paving machine (time actually paving).
•	 The time spent by trucks waiting to go on line.
•	 The number of trucks waiting in the queue at any time.
•	 Turnaround time for individual trucks.

For each of the above quantities, recommend a type of probability distribution 
that seems to give a good fit to the histogram, if there is one. For example, does it 
appear that the inter-arrival time for trucks has the same frequency distribution for 
the entire job? Does it appear that the frequency distribution for the paving machine 
processing time is the same over the period of the job? Determine the parameters of 
each of these distributions from the dataset. Compare the functional form of the 
probability mass function or probability density function to the histogram. (That is, 
if you believe the underlying probability function for truck inter-arrival times is 
exponential [trucks arrive by a Poisson process], determine the best value for the 
single parameter of the exponential and plot the function along with the histogram. 
Similarly, for the other quantities.)

Develop a Monte Carlo simulation and simulate the job above assuming that the 
critical probability is defined when the total job time exceeds 700 minutes; in other 
words the operation will need to be redesigned (i.e. project fails) if the total job time 
exceeds 700 minutes. Assume that the job size is always 58 truckloads. From the 
Monte Carlo results, show frequency diagrams for:

•	 Truck delays
•	 Paving machine delays (time waiting for loaded trucks and not paving)
•	 Total job time

4  Monte Carlo Simulation Approach for the Probability Distribution of Project…
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Repeat the Monte Carlo simulation for a situation in which you change one or 
more of the parameters. For example, what if you increase the frequency of truck 
arrivals? Decrease the frequency of truck arrivals? If the paver processing time is 
exponential, the standard deviation is the same as the mean time. Can you think of 
a way to reduce the standard deviation without changing the mean time? What 
would be the effect of this on the production efficiency?

Table 4.2 shows definition of the terms used in Table 4.1.
Warning: Check the data. The information was recorded under field conditions. 

The construction engineer who collected the data is no longer employed by this 
firm. You are responsible for detecting and resolving any omissions, discrepancies, 
or other issues about the data.

Table 4.1  Problem data

I II III IV V VI VII VIII IX X XI

1 0 6:25 6:27 0:02 6:32 0:05 CT1 0:03
2 1 6:28 6:35 0:07 0:03 6:38 0:03 W365 0:00
3 2 6:28 6:38 0:10 0:00 6:40 0:02 DL1 0:00
4 2 6:33 6:40 0:07 0:05 6:41 0:01 RT1 0:02
6 2 6:40 6:43 0:03 0:07 6:49 0:04 JH12 0:03
5 1 6:44 6:50 0:06 0:04 6:52 0:02 SCH1 0:24
7 0 7:14 7:16 0:02 0:30 7:20 0:04 JS2K 0:00
8 1 7:14 7:20 0:06 0:00 7:22 0:02 BH1 0:02
9 2 7:17 7:24 0:07 0:03 7:26 0:02 CT1 0:45 0:01
10 1 7:25 7:27 0:02 0:08 7:29 0:02 W365 0:47 0:01
11 1 7:24 7:30 0:06 0:01 7:32 0:02 DL1 0:44 0:05
12 0 7:35 7:37 0:02 0:10 7:44 0:03 AE6 0:05
13 1 7:35 7:50 0:15 0:11 7:53 0:03 DJ2 0:06
14 1 7:35 7:45 0:10 0:00 7:47 0:02 RT1 0:54 0:01
15 1 7:37 7:48 0:11 0:02 7:50 0:02 JH12 0:48 0:00
16 2 7:45 7:59 0:14 0:08 8:19 0:20 SCH1 0:53 0:00
17 1 7:58 7:59 0:01 0:13 8:00 0:01 RG23 0:16
18 0 8:15 8:16 0:01 0:17 8:19 0:03 CT1 0:49 0:07
19 0 8:25 8:26 0:01 0:10 8:50 0:24 JS2K 1:05 0:05
20 2 8:25 8:27 0:02 0:00 8:29 0:02 BH1 1:03 0:04
21 0 8:30 8:33 0:03 0:05 8:40 0:07 W365 1:01 0:02
22 1 8:31 8:40 0:09 0:01 8:41 0:01 DL1 0:59 0:01
23 2 8:35 8:42 0:07 0:04 8:45 0:03 RT1 0:48 0:01
24 3 8:40 8:46 0:06 0:05 8:48 0:02 AE6 0:56 0:00
25 2 8:45 8:55 0:10 0:05 8:58 0:03 DJ2 0:52 0:02
26 2 8:47 9:00 0:13 0:02 9:02 0:02 JH12 0:57 0:01
27 1 9:00 9:03 0:03 0:13 9:05 0:02 TD4801 0:01
28 2 9:02 9:06 0:04 0:02 9:12 0:06 TD4802 0:02
29 2 9:03 9:13 0:10 0:01 9:16 0:03 TD4806 0:04
30 3 9:03 9:20 0:17 0:00 9:21 0:01 TD4800 0:01
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Table 4.2  Description of terms

Table term Description

I Load number
II Number of trucks in queue when a loaded truck arrives
III Truck arrival time – clock time when a truck arrives on site
IV Time on line – clock time when truck reaches paving machine
V Truck waiting time = elapsed time from arrival to paver
VI Inter-arrival time = elapsed time between truck arrivals
VII Truck time out – clock time when a truck leaves site
VIII Process time = elapsed time when truck is at paving machine
IX Truck number
X Truck turnaround = elapsed time from empty truck leaving to full truck arriving 

back
XI Elapsed time, paving crew waiting for full truck
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Chapter 5
Correlation in Projects

Abstract  In this chapter we extend our discussion on the assumption of statistical 
independence among the work packages and provide the theoretical justification 
why such assumption can lead to poor results. We also provide an overview of 
autoregressive models and the examples of how such models can be applied to fore-
casting of project outcomes and ultimately risk assessment and management.

Keywords  Statistical independence · Correlation · Autoregressive models

5.1  �Introduction

In all of the discussion of risks so far, the issue of statistical dependence and inde-
pendence of the variates has been raised. Dependence (correlation) does make a 
difference, and we shall see here, and later, that neglect of correlation can lead to 
poor results. So, in order to handle variables that are not statistically independent or 
perfectly dependent, we need to define independence and dependence more pre-
cisely. Suppose there are two events, X and Y, and that P{X} is the marginal prob-
ability of event X happening, P{X} is the marginal probability of event Y happening, 
and P{X ∩ Y} is the joint probability of both events X and Y happening together. The 
general expression for the joint probability is

	
P X Y P X Y P Y P Y X P X∩{ } = { } { } = { } { }| |

	

Where, P{X|Y} is the conditional probability of event X, given that event Y 
occurs. In fact, we may consider that most probabilities of interest are conditional, 
even though they may not be written that way. For example, we may say that X is 
the event that a project overruns its schedule, and P{X} is the probability that the 
project overruns its schedule, but what we may really mean is P{X|Y}, the probabil-
ity that the project overruns, conditional on (given that) event Y, the project manager 
takes no action to stop it from overrunning. All predictions of project costs and 
durations are really of this conditional nature.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14251-3_5&domain=pdf


82

The necessary and enough condition for X and Y to be statistically independent 
is that the joint probability of the two events be the product of the two marginal 
probabilities:

	
P X Y P X P Y∩{ } = { } { } 	

This is the same as requiring that the conditional probabilities be equal to the 
marginal probabilities, that is,

	
P X Y P X P Y X P Y{ } = { } { } = { }and

	

In the independent case, the probability that event X occurs, given that event Y 
also occurs, is just the probability that X occurs regardless of what happens with Y. 
That is, event X is independent of event Y if P{X|Y} = P{X}.

This is the condition for complete statistical independence, but of more concern 
are the degrees of dependence, as defined by the correlation coefficient ρ, where 
−1 ≤ ρ ≤  + 1. Consider the case of the joint Normal distribution of two continuous 
variates x and y, defined over ∀x,    −  ∞  ≤ x ≤  + ∞ and ∀y,    −  ∞  ≤ y ≤  + ∞. 
The joint probability density function for the bivariate Normal is:
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Where μx is mean value of x, μy is mean value of y, σ x
2  is variance of x, σ y

2  is 
variance of y, and ρ is correlation between x and y.

If ρ = 0, then it can be easily seen the equation above separates into two parts, 
such that f(x, y) = f(x)f(y), where f(x) is the marginal univariate Normal probability 
density function for x, and therefore x and y are statistically independent. This not 
a sufficient condition in general, however; it is possible that two variates with zero 
correlation are not independent. If ρ = 0 and 𝜎x = 𝜎y, the contours of equal probabil-
ity plot in the x − y plane as circles. If ρ > 0, the contours of equal probability are 
ellipses, inclined upward to the right, and if ρ < 0, the ellipses of equal probability 
are inclined upward to the left. If ρ → +1, the ellipses contract toward a straight line 
with positive slope; as ρ → −1, the ellipses flatten out to a straight line with nega-
tive slope.

Note that one of the features of the Normal distribution that is not present in 
other probability distributions is that the correlation coefficient (sometimes called 
the Pearson correlation coefficient) appears explicitly as a parameter in the 
mathematical expression for the joint probability density function. This fact 
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determines how the correlations are to be determined; correlation can be  
computed only one way (see below) when one is using the Normal distribution. 
However, there are other possible definitions for correlations. One may define 
higher order correlations (third, fourth, fifth, etc.), or one may use different defini-
tions entirely (e.g., Spearman’s rank order correlation coefficient). Random vari-
ables may be correlated even if their marginal probability distributions are not 
Normal. This is because correlation (or covariance) is a property of the data, and 
if data are available, one can determine estimates for any definition of correlation. 
If data are not available, which is true much of the time; one can still estimate 
subjective values for correlations, for any form of probability distribution.

Recall from elementary probability (Walpole et al. 1993) that the Expectation 
Operator, written usually as E[⋅], computes the mean value of any function inside 
the brackets. In the discrete case, with data zj

	

E z
n

z
j

n

j[ ] =
=
∑1

1 	

In the continuous case, if f(z) is the known probability density function on z, then

	

E z zf z dz
z

z

[ ] = ( )
=−∞

=+∞

∫
	

Also, for any function of z, say g(z),

	

E g z g z f z dz
z

z

( )  = ( ) ( )
=−∞

=+∞

∫
	

Some obvious but useful results of the definition are as follows:

•	 E[a] = a, where a is a constant

•	 E ax aEx a axx[ ] = = =µ  where µx x E x= = [ ]  and x is a random variate

•	 E[ax + by] = aE[x] + bE[y] = aμx + bμy, where b is a constant and y is a random 
variate

The expectation E[z] is also known as the first moment of z. The second moment 
of z is E[z2]. The second central moments of x and y are the variances of x and y, σ x

2  
and σ y

2 , defined by the expectations taken around the means:

	
σ µ σ µx x y yE x E y2 2 2 2

≡ −( )



 ≡ −( )





and
	

That is, the variance of x is defined to be the average of the squares of the devia-
tions of x taken about the mean of x. Expanding the expression for the variance, by 
simple algebra,
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σ µ µ µ µ µx x x x x xE x E x x E x E x E2 2 2 2 2 22 2≡ −( )



 = − +  =   − [ ]+   	

	
σ µ µ µx x x xE x E x E x2 2 2 2 22≡   − [ ]+ =   − 	

	
σ x E x E x2 2 2

≡   − [ ]( )
	

This last result is a useful expression.
More generally, the k-th central moment of any probability distribution is defined 

by the equation:

	
ν µk x

k
E x k= −( )



 ∀ ≥, 1

	

Note that the first moment of the probability distribution f(x) is μx but the first 
central moment of f(x) is 0, because:

	
E x E x Ex x x x−[ ] = [ ]− [ ] = − =µ µ µ µ 0

	

The variances of x and y, σ x
2  and σ y

2 , were defined above by the expectations 
of the squares of the deviations from the mean:

	
σ µ σ µx x y yE x E y2 2 2 2

= −( )



 = −( )





and
	

and the covariance of x and y, σxy, is then defined by the expectation of the cross-
product of the deviations from the means in x and y:

	
σ µ µxy x yE x y= −( ) −( )  	

The linear correlation coefficient between x and y is defined as

	

ρ
σ

σ σx y
xy

x y
, =

	

If there is a set of statistically independent variates x(1), x(2), … , x(j), … , x(n), with 
means μ(1), μ(2), … , μ(j), … , μ(n); variances σ2(1), σ2(2), … , σ2(j), … , σ2(n); and k-th 
central moments νk

(1), νk
(2), … , νk

(j), … , νk
(n), k ≥ 2; then the moments of the prob-

ability distribution of the sum of all the x(1), x(2), … , x(j), … , x(n) variates are1:

1 Conventionally, the symbol for the third central moment is μ3, but μ is already used here for the 
mean.
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The third central moment is associated with skewness, which is a departure from 
symmetry; the fourth central moment with kurtosis, or the flatness or pointedness of 
the distribution. Note that the odd central moments, ν1,   ν3,   ν5,   ν7, etc., are identi-
cally zero for the Normal distribution, and for any other distribution that is sym-
metric about its mean. For the specific case of the Normal distribution, the central 
moments are given by:
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The Normal distribution, conventionally abbreviated as N[μ, σ2], has many 
moments but only two parameters, μ and σ, as shown in the general equation. The 
unit standard Normal distribution, N[0, 1], has zero mean and variance equal to one.

The second moment approach is a method for approximating probability distribu-
tions using, as the name implies, only the first two moments, the mean and variance.

Consider the linear combination of random variates xj given by:

	 y a a x a x a xn n= + + +…+0 1 1 2 2 	

in which the value of aj are constants. Then,
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Expanding the last equation by multiplying out all the terms in the square of the 
summation gives:
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Here σjk is the covariance between xy and xk, and, by convention, σkk ≡ σk
2.

If all the xj are statistically independent, then the cross-product terms in the cova-
riance vanish for ∀j ≠ k, and the variance of y reduces to
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But only if all the variates are statistically independent.
In matrix notation, the variance-covariance matrix (often written as simply 

covariance matrix), V, consists of all the variance and covariance terms, with σjk the 
entry in row j, column k:

	
V jk=  σ

	

The terms on the main diagonal are the variances σkk = σk
2 and the off-diagonal 

terms are the covariances. If all the covariances (all the correlation coefficients) 
are zero, then the matrix is diagonal and all the variables are independent.

Thus, there is substantial mathematical simplification if the variates are statisti-
cally independent, but there is also potential for substantial error if they are assumed 
to be independent when they are not. To get a simple bound on the possible error, 
rewrite the equation for the variance of y as
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and assume that all the aj,   ρjk and σk are the same; i.e.,
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Then the variance of y reduces to:
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When ρ = 0 this reduces further to σ σy na2 2 2=  but as ρ σ σ→ + →1 2 2 2 2, y n a . 
This indicates that, for ρ > 0, an assumption that the variates are statistically inde-
pendent can greatly underestimate the variance, by as much as a factor of n. The 
standard deviation is an indicator of uncertainty or risk, so assuming statistical inde-
pendence, ρ = 0, may underestimate the risk, and therefore lead to unconservative 
results if ρ > 0 (A corresponding bound cannot be stated for ρ < 0, as it is not pos-
sible for all the variates to be negatively correlated simultaneously).

5.2  �Project Time Series and Autocorrelation

Another indication of the effects of statistical dependence can be obtained by con-
sidering a project as a time series, and applying some simple results from time series 
analysis (Hamilton 1994). Consider the simplest case, the first order stationary 
autoregressive process AR(1) (note that this is a Markov process):

	
z z ut t t= + −( ) +−ρ µ ρ1 1

	

in which,

•	 zt is a random variate representing the value of the time series at time t; and
•	 ut is a random disturbance, usually assumed to be Normal, with zero mean and 

variance σ u
2 , which is uncorrelated with any previous disturbance, ut − k, or with 

any value of the series zt.

The equation just above may also be written, by subtracting μ from both sides, 
as:

	
z z ut t t−{ } = −{ }+−µ ρ µ1 	

This discrete time series is first-order because it considers only the first-order 
difference zt − zt − 1; it does not consider the second-order term zt − zt − 2; the third-
order term zt  −  zt  −  3; etc. One needs higher-order processes to cover these 
situations.

As this process is assumed to be stationary, the mean of the process is constant, 
or

	
E z E z E z k tt t t k[ ] = [ ] = [ ] ∀ <− −1 for

	

Then, taking expectations of all the terms in the AR(1) equation given above,

	
E z E z E u E zt t t t[ ] = [ ]+ −( ) + [ ] = [ ]+ −( ) +−ρ µ ρ ρ µ ρ1 1 1 0

	

	
1 1−( ) [ ] = −( ) [ ] =ρ µ ρ µE z E zt tor
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Here μ us the (constant) mean of the process, which can be determined by  
computing the average of the process. Similarly, it is possible to find a simple 
expression for the variance of the process: First write the defining equation for the 
variance of zt:

	
E zt −( )



µ 2

	

Then substitute the AR(1) equation for zt, expand the terms in the squares, take 
advantage of the terms assumed to be zero, and clean up the algebra:
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The result is a relationship between the variance of zt (the signal), the variance of 
ut (the noise), and ρ, the correlation between zt and zt−1.

Similarly, for the autocovariance,

	

E z z E z u z

E z z

t t t t t

t t

−( ) −( )  = − +{ } −( )





−( )

− − −

−

µ µ ρ ρµ µ

µ

1 1 1

2

1 −−( )  = −( )



 + −( ) 

−( ) −( )

− −

−

µ ρ µ µ

µ µ

E z E u z

E z z

t t t

t t

1

2

1

1  = −( )



 + =−ρ µ ρσE zt z1

2 20
	

The first order autocorrelation coefficient between zt and zt−1 is ρ, the second 
order autocorrelation coefficient between zt and zt−2 is ρ2, and the kth order auto-
correlation coefficient between zt and zt−k is ρk. Hence the variates in the first order 
stationary time series are correlated with each other in an exponentially decreas-
ing pattern.

Thus, one may be able to model a stationary process as a first-order autoregres-
sive process that predicts the one-step-ahead value of the variable zt from the 
observed value zt−1 using the equation:

	
z z ut t t= + −( ) +−ρ µ ρ1 1

	

where,

zt−1 is the observation at the previous time
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μ is the observed mean value (computed from the historical data)
ρ is the observed value for the autocorrelation between zt and zt−1 (computed from 

the previous data).
σ z

2  is the observed value of the variance of zt (computed from the previous data).

μt is a Gaussian random number drawn from a Normal distribution with mean 0 and 
variance σ σ ρu z

2 2 21= −( )
Note that in the equation zt = ρ zt − 1 + μ(1 − ρ) + ut , ut is a residual term and hence 

is a random variable does not have any deterministic value. In Monte Carlo simula-
tion, one often plots the histogram of these residuals to determine the goodness of 
fit of the model to the data.

By substituting

	
z z ut t t− − −= + −( ) +1 2 11ρ µ ρ

	

the first order autoregressive AR(1) series can be written as the equivalent infinite 
moving average [MA(∞)] series zt = μ + ut + ρut − 1 + ρ2ut − 2 +  …  + ρk ut − k + ….

Note that this last equation is in the same form as the finite linear combination of 
variates examined earlier,

	 y a a x a x a xn n= + + +…+0 1 1 2 2 	

and all the disturbances or noise terms are statistically independent. Then, by the 
Central Limit Theorem, zt, the sum of many independent random variates, should, 
in the limit, be Normally distributed. Actually, recourse to the Central Limit 
Theorem is not necessary if all the disturbances are approximately Normally dis-
tributed; the weighted sum zt will then be Normal by the reproductive property of 
the Normal distribution.

Now to put this in a project context, assume that yt represents the time at which 
the job reaches milestone t, and zt represents the time a job takes in the t − th state; 
that is, the time elapsed from milestone t − 1 to milestone t. Then zt is the change in 
yt, the incremental time between milestone t − 1 and milestone t:
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The total time to reach milestone t is yt, where
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where y0 is the start time.
The problem is to find the mean and variance of yt, the predicted time to reach 

any milestone t, including the completion time, t = n, given that the time spent in 
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any state is represented by the autocorrelated AR(1) process. To do this, we use the 
moving average representation because the variates in it, the ut−k terms, are uncor-
related. However, the series is not infinitely long, as the actual job has a definite 
starting point and an ending point. The finite MA(t) series is not equivalent to the 
original AR(1) series. Hence, using the finite MA(t) series instead of the [MA(∞)] 
series introduces some error, especially for small t and large ρ, but this error dimin-
ishes for large t (say, t > 20).

To predict the future state of the project, set y0 = 0 for convenience, and substitute 
zt into the equation for yt. To show the pattern, we do this explicitly for t = 5, and 
then generically for any t:
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Now, the expression above for yt is also a linear combination of statistically inde-
pendent variates, ut−k, each with zero mean. We can then see that the mean of yt is:

	
E y tt[ ] = µ

	

The variance of yt is, using the previous results,

	

var

var

y E y t

y

t t
k

t

k u

t
k

t

u
j

k

( ) = −( )



 =

( ) =

=

−

=

−

=

∑

∑ ∑

µ σ

σ

2

0

1
2 2

0

1
2

0

Ψ

ρρ j











2

	

5  Correlation in Projects



91

This expression can be simplified by using the well-known identity for the sum 
of an infinite series:
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Using this result, with x = ρ, gives:
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Hence,
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Squaring the term inside the summation and then applying the same identity for 
a partial series gives
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To recap, what was done here was:

	1.	 The milestones, or states of a job or work package are defined such that the 
expected or average time to successfully complete each state is a constant, μ. 
Then the time to accomplish a given state t of the job, zt = yt − yt − 1 = Δyt, is 
expressed as a stationary autoregressive time series with constant mean μ, first 

order autocorrelation ρ, and variance σ
σ
ρz
u2
2

21
=

−
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	2.	 This one stage autoregressive series is converted to an infinite moving average 
series in the uncorrelated noise disturbances ut−k.

	3.	 The infinite moving average series is approximated by a finite moving average 
series of length t.

	4.	 The series in the increments zj is summed to give the time at which the t-th mile-

stone is reached y y y z yt
j

t

j
j

t

j= + = +
= =
∑ ∑

1
0

1
0∆  expressed in terms of the random 

disturbances ut−k

	5.	 Taking expectations gives the mean and variance of the completion time yt. From 
these parameters we can forecast the completion time at any level of confidence, 
using the assumption that the resulting probability distribution on the time at any 
milestone is Normal.

Note that the assumptions here are consistent with the Markov process, with the 
transition probability λ constant for all states. One could also interpret zj as the 
progress achieved in reporting period t, and yt as the total cumulative progress 
reported up to time t. That is, in one approach we establish certain levels of progress 
(milestones or states) and report the time it takes to reach each of these milestones; 
in the other approach we set certain fixed reporting intervals and report the progress 
at the end of each interval. However, the assumption that the expected value of the 
progress in each interval, E[zj] = μ = a constant would not be consistent with the 
assumptions used in deriving the logistic curve, in which it was assumed that 
Δyt = byt(S − yt). Which of these assumptions, or others, may be more realistic is up 
to the user to determine; the only recommendation that can be given here is that the 
assumptions, whatever they are, be made explicit and open, and checked against 
reality whenever possible.

Using the equation above, we can estimate the variance of the completion time 
for Var[yt] if we assume some disturbance variance σ u

2  and correlation ρ between 
successive states. As an illustration, suppose that we instead neglected ρ and  
the complication of this equation and computed Var[yt] simply as the sum of the 
variances of each state, Var y tt z[ ] = σ 2 . Call the variance computed in this way 
Var yt[ ] , which as we have seen before will underestimate the variance if ρ > 0, and 
call the variance computed from the equation in ρ derived above Var∗[yt]. Then,  
at t  =  30, which is sufficient to virtually eliminate the error due to truncating  

the infinite moving average series, the ratio 
Var y

Var y
t

t

∗ [ ]
[ ]

 is well over a factor of three 

as ρ → +1. On the other hand, Var yt[ ]  greatly overestimates the variance if ρ → −1.
Positive ρ indicates that, if zt−1 is greater than the mean, μ, then zt will tend to be 

greater than the mean, because (zt − μ) = ρ(zt − 1 − μ) + ut. Conversely, if zt−1 is less 
than the mean, then zt will tend to be less than the mean, or successive deviations 
from the mean will tend to be of the same sign. Negative ρ indicates the opposite: 
successive deviations from the mean tend to be of the opposite sign. There seems 
to be no theoretical reason why negative correlations should not be as prevalent as 
positive correlations, but in reality, just as with matter and antimatter, positive cor-
relations seem to be very much more common than negative correlations. This is 
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perhaps because the observed variables zt,   zt − 1, etc., are in fact conditioned on 
common underlying or hidden variables that are not or cannot be observed. 
Recalling an earlier discussion, we have here Type 2 uncertainty, which is attribut-
able to our ignorance of the values of the real underlying variables. Whatever the 
reason, in our experience, positive correlations are almost universal and negative 
correlations are rare.

Example 5.1
As an illustration of a very simple project process model, let: μ  =  1; n  =  100; 
σz = 0.4; σu = 0.4; and ρ = 0. That is, the example is a simple linear process with 100 
steps, each with expected time 1 week. Then using the equations developed above, 
the Autoregressive (1) process predicts the future job progress as in the following 
figure. The central line is the expected time to reach each milestone, and the other 
lines represent probability contours representing confidence bands on the predic-
tions: Mean ± 1 standard deviation; Mean ± 2 standard deviations; and Mean ± 3 
standard deviations.

There is about one chance in a thousand of a random data point lying outside the 
3σ line, so we might estimate a probability of about 0.001 that the project would 
take longer to finish than 112 weeks. Therefore, as shown in Fig. 5.1, we would be 
very confident in committing to a job completion in 112 weeks.

However, if there is correlation, the uncertainty becomes greater. Figure  5.2 
shows the same process but now with correlation coefficient ρ = 0.50. Note that the 
confidence bands have gotten wider, due entirely to the increased correlation.

Figure 5.3 shows the predictions for project completion if the time series is 
highly correlated.

Note that the prediction bands are now very wide, indicating the greatly height-
ened degree of uncertainty with high values of the correlation coefficient. There is 
now a significant probability that the project will take longer than 112 weeks to 
complete.

Fig. 5.1  Time series forecast ρ = 0
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Qualitatively, the effect may be explained as follows: suppose the actual time 
to the first milestone is much longer than the mean. If the values in the time series 
are independent, the incremental time between the first and second milestones 
could be higher or lower than average; if lower, this would offset the high value in 
the first step. However, if the autocorrelation coefficient is large (and positive), the 
time between the first and second milestones is much more likely to be higher than 
average than lower than average. This process continues, and the project is likely 
to fall further and further behind. Runs of durations longer than the expected value 
become common. The same logic applies if the time to the first milestone is shorter 
than average; high autocorrelation is likely to lead to a project that finishes earlier 
than scheduled. Either way, the variance (uncertainty) increases.

Fig. 5.2  Time series forecast ρ = 0.50

Fig. 5.3  Time series forecast ρ = 0.95
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5.3  �Statistical Dependence and Independence in Project 
Costs

The discussion above of statistical dependence has mainly considered examples of 
job progress. In looking a project costs, consider the straightforward case in which 
the total job cost is the sum of a number of work package costs (or estimates). Then, 
if T is the total cost of n work packages, each of which has cost xj, using the linear 
expression above with all coefficients equal to 1 gives the total cost as:
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giving the variance of the total cost as:

	

σ σT
j

n

k

n

j k
2

1 1

=
= =
∑∑ ,

	

Where σj, k is the covariance between xj and xk. If all the xj are statistically inde-
pendent, then the cross product terms in the covariance vanish for j ≠ k, and the 

variance of T reduces to σ σ σT
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independent.
Thus, there is substantial simplification if the variates are truly statistically inde-

pendent, but there is also the potential for substantial error if they are assumed to be 
independent when they are not. To get a simple bound on the possible error, rewrite 
the equation for the variance of T as
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The previous discussion has pointed out that the assumption that the ρj,k are zero 
when they are not zero can lead to a significant underestimation of the variance and 
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hence of the risk. However, why should it not be the case that all the ρj,k are zero or 
close to it? After all, just earlier in discussing the Moving Average MA(∞) time 
series, we postulated the existence of an infinite number of disturbances, the white 
noise variates uj, all of which were supposed to be uncorrelated. If there can be an 
infinite number of uncorrelated uj, why shouldn’t there be a finite number, n, of cost 
variables xj? In fact, there is no prohibition to all the xj being statistically indepen-
dent, but the difference between the uj and the xj is that the former are mathematical 
constructs generated specifically to be statistically independent, whereas the latter 
are variables that arise in the real world. As an analogy from linear algebra: it is 
certainly possible for n vectors to be orthogonal in n-space, but n vectors picked at 
random would almost certainly not be orthogonal.

Therefore, one reason to question whether xj are statistically independent is their 
number: in a complex project, there may be hundreds of work packages or cost ele-
ments. Is it reasonable to believer that none of these is correlated with another, or 
with some unspecified underlying variates? Let us consider some of the implica-
tions of this assumption.

To simplify the discussion for a moment, let all the xj have the same mean and the 
same variance; that is,
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Then E[T] = μT = nE[xj] = nμx and, if the xj values are assumed all statistically 
independent, then
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As an aside, note that the mean and standard deviation have dimensions (dollars, 
tons, man-hours, whatever). A non-dimensional measure of dispersion is the coef-
ficient of variation, COV, which is defined by COV = standard deviation/mean. Then
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That is, the relative dispersion or coefficient of variation of the sum of statisti-
cally independent variables is not only smaller than the COV of one of its elements, 
but it becomes vanishingly small as n becomes large, unless we were to assume that 
all the COV(xj) simultaneously become very large (as n ) as n becomes large. So, 
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if one were to subdivide a project into more and more cost elements by increasing 
n, either the relative dispersion of the total would approach zero, or the relative 
dispersion of each cost element would have to approach infinity as n → ∞. As it is 
very difficult to accept that either of these could be true, then it becomes very  
difficult to accept the assumption of statistical independence.

Now consider the situation when determining the budget, or total estimated cost, 
for a project. Let ξj be the estimate prepared for work package or cost element j. 
Now suppose that ξj is not necessarily the expected value of the cost xj, but is some-
thing more, to provide a safety factor, just to be on the safe side. Let us assume that 
the estimator or some manager adds some percentage of the estimate as a safety 
factor or contingency. That is, if η is the fraction of the expected value added to the 
expected value to produce the estimate, then

	
ξ η µ ηµ µ ηj j j j j xE x E x=   +   = + = +( )1

	

The Coefficient of Variation was defined above by:

	
COV x

x

=
σ
µ 	

Then the equation above may be rewritten as:

	
ξ µ ηµ µ

ησ
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η
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x x x xCOV COV
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




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δ

η
=
COV 	

In this expression, it may be seen that the safety factor or buffer can written as a 
fraction δ of the standard deviation. Then we can write the estimate as

	
ξ µ δσj x x= +

	

With this expression, we can get some idea of what this contingency factor 
might be. Suppose that the cost estimate is adjusted upward from the expected 
value by 10%, so η = 0.1. Suppose the work package in question has a substantial 
amount of variability, so the standard deviation is, say, 40% of the mean value, so 
COV = 0.4. Then

	
δ

η
= 





 = =

COV

0 1

0 4
0 25

.

.
.

	

Using the Normal distribution, this corresponds to a probability of about 40% 
that this cost would overrun the estimate.
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If the cost estimate is adjusted upward by 20%, so η = 0.2, and the work package 
in question has the same amount of variability, COV = 0.4, then

	
δ

η
= = =
COV

0 2

0 4
0 5

.

.
.

	

Using the Normal distribution, this corresponds to a probability of about 31% 
that this cost would overrun.

If the adjustment factor on the cost estimate is 10% (η = 0.1) and the work pack-
age in question has relatively little variability, say 10%, so COV = 0.1, then

	
δ

η
= = =
COV

0 1

0 1
1 0

.

.
. .

	

Using the Normal distribution, this corresponds to a probability of about 16% 
that this cost would overrun.

Notice that, from a risk viewpoint, the practice of adding some percentage of 
the expected value to get the estimate, without regard for variance, provides the 
largest safety factor where it is least needed – for work packages with the least 
variability.

Does this happen? Do cost estimates include a cushion? Some estimators assert 
that their estimates represent the expected values, but conversely many project 
managers admit openly that contingency has been pushed down into the individual 
estimates, that conservatism has been built into each work package estimates. That 
is, in our statistical terms, δ > 0. Although it is difficult to establish what value may 
be used for δ, because for one thing there are no estimates of σx, it is highly likely 
that people at several levels respond to perceived variability or risk by trying to 
increase their margin for error. This behavior is to be expected, and it is certain that 
project managers and corporate managers expect it, as they often cut estimates to 
reduce the perceived safety factors in order to make projects happen when the total 
estimate is larger than the available budget.

Using the expression just above, we can see that the estimate ξj corresponds to 
some confidence factor, the probability that the estimate will not be exceeded. 
(Note that ξj is not a random variable, it is a number; xj is the corresponding random 
variable). For example, if we assume that xj is Normally distributed, and apply 
some modest safety factor, δ = 0.25, say, then ξj = μx + 0.25σx corresponds to a 
confidence factor of 60% or a probability of 0.60 that ξj will not be exceeded and a 
probability of 0.40 that ξj will be exceeded. This, or even more, might seem to be a 
reasonable adjustment. Now consider the distribution of the total estimate, say τ, 
under the assumption of statistical independence of all variables:

	

τ ξ µ δσ µ δσ µ δσ= = +( ) = +( ) = +
= = =
∑ ∑ ∑
j

n

j
j

n

j j
j

n

x x x xn n
1 1 1 	

Using the previous results,
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	 τ µ δ σ µ σ δ σ σ= + = + =n n n nx x T T T xbecause 	

Let η δ= n  then τ = μT + ησT corresponds to some probability that the project 
estimate τ will be exceeded. Table 5.1 illustrates this probability for various values 
of n, using δ = 0.25, and the Normal distribution:

According to this table, the probability of a cost overrun decreases greatly with 
increasing n, so that large projects with many work packages are much less likely to 
have cost overruns than small projects, according to this approach. In fact, the prob-
ability of a cost overrun for large n is so low that, using these assumptions, one 
would have to say that no large project has ever overrun in the history of projects 
since the pyramids.

Obviously, this result is untenable. Large projects are known to overrun, at least 
as often as small projects. We must therefore reject one or more of the assump-
tions; either

•	 Cost estimates do not ever have adjustments for conservatism, so δ  =  0 and 
τ = nμx;

•	 The variates cannot be statistically independent.

The subjective arguments as to why one expects δ > 0, even δ ≫ 0, were given 
earlier. We now repeat the above simplified analysis by relaxing the assumption of 
statistical independence. We have, from the results above,
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To simplify the expressions, assume that all the cost variables xj are correlated, 
with the same correlation coefficient ρj, k = ρ. Then the equation for the variance of 
the total cost reduces to:
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Table 5.1  Probability of not exceeding the estimates given n work packages

n η
Confidence factor = P{τ = μT + ησT} will not be 
exceeded

1 0.25 0.60
10 0.80 0.79
100 2.53 0.9943
1,000 8.01 0.99999999999…
10,000 25.3 0.9999999999999999999….
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Modifying an earlier expression, we have, for the total project cost estimate:

	

τ µ δ σ µ
σ δ
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τ µ ησ η
δ

= + = +
+ −( ) { }

= + =
+ −(

n n
n

n n

n

n n

x x T
T

T T

1 1

1 1
,where
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Suppose we would like the confidence level in the total estimate τ to be the same 
as the confidence level in the estimates for each work package. Then we set η = δ 
and solve for ρ; the solution is ρ = 1, for any value of n. That is, if the total project 
estimate has the same probability of being exceeded as each of the individual cost 
elements, then the work package costs must be perfectly correlated. This is consis-
tent; if all the variables are completely dependent, then there is really only one vari-
able. All the rest can be determined exactly from any one.

With these assumptions, there is no way that the confidence level in the total 
estimate τ can be less than the confidence level in the individual elements sepa-
rately, as this would require η < δ which in turn would require ρ > 1, which is impos-
sible by the definition of ρ .

This result cannot be accepted either, as it is not possible that all the cost ele-
ments are perfectly correlated. Actually, an assumption that would better explain the 
observed facts, that

•	 The probability of a cost overrun on a project is greater than the probability of an 
overrun on any of its individual work packages; and

•	 The probability of a cost overrun on a project increases with the size and com-
plexity of the project, that is, as n increases

would be to assume that each individual work package estimate is slightly less than 
the expected value; that is

	
ξ δσ µ δσ µ δσ δj j j j j x xE x=   − = − = − >; 0

	

Under what circumstances might this occur? It might be true if some cost ele-
ments are omitted from the estimate or if some manager reduces the cost estimates 
in order to win a contract, for example. Another possibility might be that the esti-
mate ξj corresponds to the median of an asymmetric probability distribution, in 
which, mode < median < mean. Suppose that each work package cost xj is distrib-
uted as an Erlang distribution with k  =  2, λ  =  4. Then the mode is 0.5000, the 
median is 0.6685, and the mean is 0.7500 (all in millions of dollars). Although 
there is no simple expression for the median, it can easily be calculated numeri-
cally. It can be seen that the median is below the mean. Suppose then that the 
estimate is the median, the value that would be exceeded half the time, as might 
seem to be reasonable. That is,
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ξ ξj = =median ˆ

	

and, assuming for simplicity of presentation that all the work packages are  
identically distributed, then the total estimate is

	

τ ξ ξ= =
=
∑
j

n

j n
1

ˆ

	

The Erlang distribution has the property of being locking or self-reproducing; 
That is, if n statistically independent variates are Erlang, each with parameters (λ, 

kj), the sum is Erlang with parameters λ,
j

n

jk
=
∑











1

. If the n variates are identically 

distributed, 
j

n

jk nk
=
∑ =

1

. We can then easily compute the probability, using the Erlang 

distribution with parameters (λ, nk), that the total cost estimate τ will not be 
exceeded, for various values of n (Table 5.2).

Here we see the opposite behavior from that in the previous table; because the 
individual work package cost estimates are the medians, which are less than the 
means, the probability of a cost overrun (1 − Confidence Factor) for the whole 
contract is greater than that for any single work package, and increases with the 
number of work packages. Using the sample numbers here, a modest sized project 
with 125 work packages has only about a 1% chance of meeting the total cost 
estimate, if these are based on the medians. If the estimates are the modes, which 
are even less than the medians, the decrease in the confidence factor with n will be 
even more pronounced. Of course, if the probability distribution is symmetric, 
then the mode = median = mean, and no bias is introduced either up or down.

The self-reproducing property of the Gamma or Erlang would be useful in 
quickly estimating the probability distribution of the sum of variables, as this distri-
bution represents the skewness that is likely in the probability distributions of cost 
estimates, if it were not for the fact that these variates must be statistically indepen-
dent. As we have seen, statistical dependence may have a significant effect on the 
distribution of the total, unless there is a clear justification for believing that all the 
variates are uncorrelated.

Table 5.2  Probability of cost overrun given n work packages

n
Confidence factor (CF) =  P nτ ξ={ }ˆ  
will not be exceeded P{cost overrun} = 1 − CF

1 0.5000 0.5000
5 0.3631 0.6369
25 0.1740 0.8260
125 0.0151 0.9849
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The situation we have illustrated, in which the confidence level in meeting the 
total project estimate is very sensitive to the number of work packages, is unsatis-
factory, and the reason for this problem is the use of point estimates for the costs. 
Point estimates, being single numbers, cannot convey information about both the 
mean and variance (let alone any other parameters) of the individual work pack-
age costs. If one is determined to use point estimates, then the best estimates are 
the means,

	
ξ µj j jE x j j n=   = ∀ ≤ ≤; , 1

	

The means don’t convey any information about the variances, obviously, but they 
are at least unbiased. Estimates that are either above or below the mean, as in

	
ξ δσ µ δσ δj j j j jE x=   + = + ≠; 0

	

contaminate information about the means with information about the variances. 
This is a case in which individual work package or subcontract estimators may think 
they are doing the right thing by adding a little to the estimate so that their work 
package is less likely to overrun, or their subcontract less likely to lose money. But 
when every work package does the same, for the same reasons, the result can be 
seriously in error. The position here is that contingency is appropriate, but the 
amount of contingency should be based on the determination of the total project 
uncertainty, not buried and hidden in individual cost estimates. Therefore, some 
good advice is: If you have to give a point estimate, then use the expected value. 
Much better advice is: Don’t use point estimates. Notice that, to determine that a 
point cost estimate is the mean, we would have to know something about the prob-
ability distribution on the cost. And if we knew something about the probability 
distribution, we would know something about the variance.

This chapter has spent a lot of time trying to illustrate the consequences of statis-
tical dependence or independence. All the examples have been made to demonstrate 
the point that the assumption of statistical independence can be highly erroneous 
and may be seriously unconservative. From the simple models above, it seems that 
it would be good practice not to assume that the cost elements are independent 
unless there is definite reason to believe that this is the case. Therefore, a much bet-
ter approach to estimating total project costs (material quantities, resource require-
ments, and other factors) is to provide information on the probability distributions 
of all the xj, plus the correlation coefficients ρj,k.

Given this information, one can perform Monte Carlo simulation to estimate the 
probability distribution of the total project cost. Monte Carlo simulation is widely 
used, and even spreadsheet programs now provide this capability. However, one 
must always be sure to execute enough random trials in order to get reasonably tight 
confidence bounds on the results. The number of iterations required can be quite 
high (often greater than 10,000), and often to save time users do not do enough, and 
do not specify correlations between variables.
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5.4  �Practice Problems

Problem 5.4.1  An offshore platform project was built to provide natural gas, 55 
million SCF per day, to a Power Plant. The project was hampered by weather delays 
and mechanical failures. The pile driving activity (including the weld-splice activi-
ties considered here) finished 52 days behind schedule. Each day over the drill hole 
cost the contractor over $100,000. Moreover, these delays pushed the project dura-
tion into seasonally bad weather, which magnified the effect.

The man-hours recorded on the platform for various pipe welding activities are 
given in Table 5.3. Welding activities are:

•	 Prepare and preheat
•	 Preheat
•	 Weld splice
•	 Cool and clean.
•	 Ultrasonic test

Consider each welding-related operation given above as a time series. Compute 
the first few lagged autocorrelation coefficients for each process. The autocorrelation 
coefficients describe how much of the cost of one activity can be explained (pre-
dicted) by the cost of the preceding activity (lag 1), etc. Could each separate process 
be adequately modeled as a first-order autoregressive process? Explain why or why 
not. What conditions have to be met for a process to be first-order autoregressive? If 
a process is not first-order autoregressive, can you devise another appropriate model 
to fit the data? Are there any time trends in the data? Is it better to generate one 
model to predict total time for each splice or to fit five separate models and then add 
them up?

Examine the cross-correlations. For example, is Weld Splice time correlated with 
the Prep time or Preheat time for each splice? Is Cool and Clean correlated with 
Preheat time? Are the separate processes independent of each other or dependent? 
Is this what you would have expected? Explain your results.

Problem 5.4.2  Suppose a project manager is involved in a commercial speculative 
building development. For economic viability, the cost estimate for the structure, 
after engineering and design are complete, cannot exceed $Budget. The project 
manager can retain a structural engineer to design the building in steel or in con-
crete, or both, and to make the necessary engineer’s cost estimates, $Steel and 
$Concrete, when the designs are complete. If one or both of the designs is less than 
the budget, the project manager will choose the smaller and the project will proceed; 
otherwise it will be terminated. Therefore, using the identity between joint probabil-
ity distributions and conditional probability distributions, the probability of termi-
nation of the project before the engineering work has started, is:

	

P P Steel Budget Concrete Budget

P C

Termination[ ] ( ) ( )[ ]= > ∩ >

=
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Table 5.3  Problem data

Welding

Prepare and 
preheat 
(hours)

Preheat 
(hours)

Weld splice 
(hours)

Cool and 
clean 
(hours)

Ultrasonic test 
(hours)

Total 
welding 
(hours)

1 18.2 2.5 7.2 6.3 1 35.2
2 18.2 2.5 7 6.5 1 35.2
3 11.5 1.8 7.1 3.3 2.5 26.2
4 13.2 1.8 7.3 5.6 3 30.9
5 3.5 2.8 11.7 7.1 1.5 26.6
6 5 2.9 10.4 7.3 1.5 27.1
7 9.5 6.8 11.3 5.3 1.2 34.1
8 10 4.3 9.8 5.8 1.3 31.2
9 1.5 3.8 8.8 13 0.8 27.9
10 2.5 2.3 8.4 8.7 1.1 23
11 3.5 3 8.1 7.2 1.2 23
12 5.7 2.8 7.8 6.5 1.2 24
13 3.8 2.4 8.7 3.3 0.8 19
14 2 3.8 7.7 3.3 1.5 18.3
15 2.2 2.2 9 3.8 0.7 17.9
16 1.7 2.3 8 4.5 1 17.5
17 1.4 2.8 6.5 3.9 1.1 15.7
18 2 2.5 8.3 4.3 1.2 18.3
19 1.5 2.3 6 4.8 0.9 15.5
20 1.5 1.5 6.5 5.3 0.7 15.5
21 2.3 4 7 4 1.1 18.4
22 1.3 2.8 7.5 4.3 1.3 17.2
23 2 2.5 6.7 5.2 0.7 17.1
24 1.5 2.5 7.6 5.3 0.6 17.5
25 2.2 2.5 6.5 4.9 0.8 16.9
26 2.2 2.3 6.8 5.5 0.7 17.5
27 1.5 4 8.2 3.5 0.8 18
28 1.3 3.8 7 4.5 1.1 17.7
29 3.2 3.6 11 4.1 0.5 22.4
30 5 3 12.8 5.8 0.8 27.4
31 1.7 3.3 10.5 5 0.7 21.2
32 1.5 3 11.3 4.2 0.8 20.8
33 2.1 2.9 7.6 5 1 18.6
34 2.6 2.2 11.5 6.6 0.7 23.6
35 1.8 2.2 10.8 5 1 20.8
36 2 2.1 11.6 5 1 21.7
37 2 4.3 6 4.3 1.2 17.8
38 2.5 3 6.7 5.9 2.8 20.9
39 1.7 3.4 9.4 4.2 0.4 19.1
40 2.6 3.8 8.6 4.2 0.8 20

(continued)
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Table 5.3  (continued)

Welding

Prepare and 
preheat 
(hours)

Preheat 
(hours)

Weld splice 
(hours)

Cool and 
clean 
(hours)

Ultrasonic test 
(hours)

Total 
welding 
(hours)

41 3.6 2.4 8.8 4.7 0.8 20.3
42 3.7 5.1 11.1 4.9 0.6 25.4
43 2.2 3.5 6.5 4.8 1 18
44 2 3.6 7.1 4.8 1.2 18.7
45 7 4 11.8 5.5 1 29.3
46 12.1 3 11.2 5.5 0.8 32.6
47 10.8 4.2 14.1 5.5 0.5 35.1
48 11.7 1.9 12.8 5.5 1.2 33.1
49 4.5 4 14.8 5.5 0.8 29.6
50 3 3.1 14.9 5 0.6 26.6
51 3.8 2.4 14 6 0.6 26.8
52 7.5 3.7 15.1 5 1.8 33.1
53 3 3.5 15.3 5.5 1 28.3
54 2.8 3.3 15.8 6.5 1 29.4
55 2.8 2.3 14.8 6.5 0.6 27
56 2.5 2.6 14.3 6.2 1 26.6
57 2.6 2.8 9.5 4 1 19.9
58 4 2.8 12.7 6.5 1 27
59 4.5 3 15.5 6.7 1.2 30.9
60 5.7 2.8 12.8 5.8 1.5 28.6
61 1.9 3.5 16.1 5.8 1 28.3
62 1.4 19 18 18 0.8 57.2
63 4.8 10 19 10 0.8 44.6
64 3.8 4.5 14.2 7.3 0.8 30.6
65 3.2 3.8 19.2 4.9 0.7 31.8
66 1.7 3.5 18.5 5.3 1 30
67 2 3.5 17.8 4.2 1.3 28.8
68 2 3.5 14.8 4.5 1.3 26.1
69 1.8 4.5 13.8 5.1 0.7 25.9
70 1.8 2.4 15.1 3.4 0.8 23.5
71 1.3 2 14.2 3.5 0.7 21.7
72 3 5.7 14.1 4 0.9 27.7
73 3 2.5 19 3.9 1 29.4
74 1.9 3.5 17.5 3.5 0.8 27.2
75 1.7 3.3 19.2 4 0.8 29
76 3.8 3.5 19.9 4.1 1 32.3
77 2.5 2.3 14.5 4 0.8 24.1
78 1.6 3.8 15.8 3.3 0.8 25.3
79 3.2 3.6 14.6 3.9 0.9 26.2
80 3.8 3.4 15.7 4 1 27.9

(continued)
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The question is, Are the two cost estimates, $Steel and $Concrete, independent 
or correlated, and how does correlation affect the project manager’s decision 
whether to contract for one of them or both of them?

If the two cost estimates are independent, then:

	

P Concrete Budget Steel Budget P Concrete Budg$ $ $ $ $ $>( ) >( )  = >| eet

P Concrete Budget Steel Budget
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∴ [ ] = >( ) >Termination $ $ $ $(( ) 	

If the two cost estimates are positively correlated, then:
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In the limit, as the correlation between the two estimates approaches 1.0.
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Conversely, if the two cost estimates are positively correlated, then:
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Table 5.3  (continued)

Welding

Prepare and 
preheat 
(hours)

Preheat 
(hours)

Weld splice 
(hours)

Cool and 
clean 
(hours)

Ultrasonic test 
(hours)

Total 
welding 
(hours)

81 2.1 4.6 14.5 3.5 0.8 25.5
82 2 4.6 13.7 3 0.8 24.1
83 3 3.7 14.2 3.1 0.9 24.9
84 2.1 3.4 15 3.2 0.7 24.4
85 2.3 2.4 19.3 3.5 1 28.5
86 1.4 2.8 13.9 4.8 0.8 23.7
87 3.2 3.4 19.2 3.3 0.8 29.9
88 3.5 2.5 13.5 5.1 0.9 25.5
89 2 2.5 14 2.8 0.8 22.1
90 1.3 3.2 14.7 3.2 1 23.4
91 1.3 2.2 14.7 3.8 0.8 22.8
92 3 1.8 15.2 3.6 1.6 25.2

5  Correlation in Projects



107

In the limit, as the correlation between the two estimates approaches −1.0

	

P Concrete Budget Steel Budget

P
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Questions:

•	 What factors would cause the two cost estimates to be positively correlated?
•	 What factors would cause the two cost estimates to be negatively correlated?
•	 Do you think, on balance, that the two cost estimates would be positively corre-

lated, negatively correlated, or uncorrelated?
•	 Given your answer to the question above, should the project manager contract for 

a steel design, a concrete design, or both?

NB: For the purposes of this exercise:

•	 A steel building is one in which the primary structural elements are made of 
structural steel, with concrete used for floor slabs, pile caps, piles, footings, shear 
walls, and other purposes.

•	 A concrete building is one in which the primary structural elements are made of 
reinforced concrete, with reinforcing steel used in the concrete, and steel used for 
piles, bar joists, and other purposes.
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Chapter 6
Estimating Means, Variances, 
and Correlations Based on Experts’ 
Judgment

Abstract  In this chapter we introduce the methods to estimate statistical moments 
and correlation coefficient based on expert judgements. We provide an overview of 
probability density functions that are suitable for integration with subjective data, 
and the elicitation procedures for estimating correlation coefficients.

Keywords  Expert judgements · Statistical moments · Correlation · Probability 
distribution

6.1  �Introduction

In the second moment approach or in stochastic simulation (i.e. Monte Carlo simu-
lation), it is assumed that random variables (activity costs, durations, etc.) range 
across a continuum and the uncertainties about the true values of these variables 
can therefore be expressed by continuous probability distributions. The total risk, 
or uncertainty, in the project cost, for example, is the sum of all the uncertainties in 
the individual cost elements, assuming these elements are independent. Conversely, 
the total uncertainty in the project duration is the sum of all the activity uncertain-
ties along the critical path, assuming these activities are independent. Of course, 
they are not independent, and so the correlation matrix is used to express how they 
are linked together.

As previously mentioned, bottoms-up risk assessment is based on the principle 
that the uncertainties in each individual element can be estimated more easily and 
more accurately than trying to estimate the uncertainty in the total project all at once 
(top-down risk assessment). That is, we break down the risk problem into individual 
elements (which are not necessarily independent) in order to estimate the uncertain-
ties of each, and then we aggregate these risks by the second moment approximation 
or by stochastic simulation. Even in the case of simple summations, such as the sum 
of work package costs upward through the Work Breakdown Structure, or the sum 
of activity durations along a path through a network, we need the joint probability 
of all the random variables. Joint probability distributions are hard to come by so we 
are forced to deal with marginal distributions combined with correlation matrices. 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14251-3_6&domain=pdf
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And, even more, in the second moment approach we have only the mean and 
variance of each element. To apply stochastic simulation, we need the entire joint 
cumulative probability distribution, which again is approximated by the marginal 
probability distributions plus the correlations between all pairs of elements. These 
quantities can be estimated in various ways, as discussed below. Because project 
risk assessment is about the future, there are most often insufficient historical data 
from which to derive these probability distributions, and so the risk analyst is forced 
to use subjective estimates. This chapter is concerned with various methods for 
making subjective estimates of means, variances, and correlation coefficients.

6.2  �Empirical Data

The obvious point, to use whatever historical data are available to estimate the 
expected value and uncertainty in future costs or durations, should not be over-
looked. For example, if work package j has been performed under the same condi-
tions in N previous projects, with reported values xj, k for 1 ≤ k ≤ N, such that all the 
sample data can be considered to have been drawn from the same population, then 
the first and second moments (mean and variance) of these data are given by:
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Of course, one problem with this method in practice is that the work packages or 
activities in the N previous jobs were most likely not performed under the same 
conditions. This assumption could be true in manufacturing, in which the environ-
mental conditions are controlled to assure that the work stays within the specifica-
tion limits. But projects differ, and because the external conditions cannot be 
controlled, the way to control the data is to use statistical methods, for example 
multivariate regression analysis, to correct for variable project conditions. However, 
to do this requires that all the conditions surrounding each historical project be 
recorded. This is, unfortunately, rarely done.

Therefore, even if one has some historical data about work package costs or 
activity durations, one may wish to adjust the computed sample means and vari-
ances to reflect the best judgment about the project at hand. For example, if there are 
N sample data for work package costs, all assumed to be from the same population, 
and xmax is the largest of these, then the probability that in the next occurrence (that 
is, the project being assessed) of this work package the cost will be greater than xmax 

is 
1

1N +
. So, for example, if N = 19, then xmax is approximately the 95th percentile 

value, and the smallest value of the N data, xmin, is approximately the 5th percentile. 
One might use this empirical information in setting the 5th and 95th percentiles in 
the following methods.
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6.3  �Subjective Methods Depending on Expert Judgment

If there are historical data, the mean and variance of each element can be computed 
from them. If not, one might suppose that the solution is simply to ask experts to 
give their best judgments about the mean and variance (or mean and standard devia-
tion), or the entire cumulative probability distribution, of each work package. 
Experience, and some experiments, have shown that this straightforward approach 
doesn’t always work well, for the following reasons:

	1.	 There is an effect known as anchoring, by which a person familiar with the 
(deterministic) estimated cost for a work package will cite this estimated value, 
or something very close to it, as the mean of the probability distribution. The 
deterministic estimate is not necessarily the mean, or even close to it. In many 
cases, the deterministic estimate is closer to the most optimistic value than to 
the mean. If one has substantial historical data on actual costs or durations, the 
frequency at which the deterministic estimates are exceeded provides an indi-
cation of the relation of the estimate to the mean – the mean and the estimate 
only coincide if approximately 50% of the actual costs are below the 
estimates.

	2.	 Estimators tend to give consistently low values for uncertainty (or standard 
deviation) and therefore underestimate risk. This behavior is consistent with the 
position that the costs are deterministic (and hence have no uncertainty), but 
inconsistent with the objective of quantifying uncertainty in order to estimate 
project risks.

To overcome this bias due to anchoring, several methods for eliciting judgments 
about probability distributions have been developed. A few are discussed here. 
Many of these have the common approach, in which:

	1.	 Two or three points on the cumulative probability distribution are estimated, 
typically with one point in the lower tail, another in the upper tail, and a third 
near the middle (median or mode), to avoid reliance on subjective estimates of 
the mean, which may be contaminated by anchoring.

	2.	 These points are used to fit the two or three parameters (mean and variance, typi-
cally) of the probability distribution believed to be most suitable.

6.3.1  �The Beta Distribution

The Beta distribution is widely known as the foundation for the PERT method. The 
developers of PERT (Malcolm et al. 1959; Clark 1962) chose the Beta distribution 
because it is unimodal, and because it can represent a whole family of distribu-
tions: symmetric, skewed to the left, or skewed to the right, by varying the two 
parameters, α and β. The equation for the Beta distribution in the standardized 
variable x (0 ≤ x ≤ 1) is:

6.3 � Subjective Methods Depending on Expert Judgment
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Here, Γ(α) represents the Gamma function. In the special case that N is an inte-
ger, then Γ(N) =  (N − 1)! The mean and variance of the Beta distribution in the 
standardized variate x are given by:
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A function defined on the unit interval is not particularly useful, so the more 
general function for the variable y defined on the interval [a, b], or y = a + (b − a)x, 
is:
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From the expressions above for the mean and variance of x, the mean and vari-
ance of y are easily obtained from the transformation relations:
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The most likely value of y is the mode of the distribution. As the Beta distribution 
is unimodal, the mode is the value of y at which f(y) is a maximum. Therefore, the 
mode, m, is the value of y at which the first derivative of f(y) is zero:
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After some manipulation, this evaluates to:
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In PERT, the user estimates, for the duration of each activity, the three values for:

a, the most optimistic (shortest) value;
b, the most pessimistic (longest) value;
m, the most likely value (mode)

Using the Beta distribution, one can get just about any shape one wants (sym-
metric, skewed to the left, skewed to the right) by varying the two parameters. If 
one believes that the distribution is skewed to the right, then one should estimate 
(b − m) > (m − a). On the other hand, the limits a and b are hard boundaries: the 
duration will never be less than a nor greater than b. Certainly a = 0 is a fixed lower 
limit for real variables such as cost and duration, and there may be values of a > 0 
that delimit the absolute lowest value. However, one may be dissatisfied with the 
fixed upper bound b, and it is not appropriate to set b = ∞ in the Beta distribution. 
The difficulty with the hard upper bound b is not so much that one expects that 
costs could go to infinity or that project durations could last for eternity; the prob-
lem is that one doesn’t know where the upper bound should be. In the general 
expression given earlier, if xmax is the largest value actually observed in N instances, 

there is always some probability 
1

1N +
 that the next observation will be greater 

than xmax no matter how large xmax is, conflicting with the presumption that there is 
some known upper bound.

The Beta distribution can also be used for the probability distribution on cost for 
each work package: simply let a = the lower bound on cost; b = the upper bound on 
cost; and m = the most likely cost. The pros and cons of the use of the Beta in PERT 
of course apply here as well.

In PERT, the mean and variance of each activity duration are then derived from 
these three-point estimates, as follows:
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Equating the PERT expression for the mean to the mean of the Beta distribution 
gives:
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After some straightforward algebraic manipulation, this reduces to:
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Equating the PERT expression for variance to the equation for the variance of the 
Beta distribution gives:
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Substituting α = ϕβ into this expression gives:
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This expression reduces to:
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Then,
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However, the actual parameters of the Beta probability distribution are needed 
only if one is doing Monte Carlo simulation. If one is simply interested in obtaining 
the mean and variance, for an activity duration or for a work package cost, to be 
used in the second moment approach, using subjective three-point estimates (a, m, 
b), the process is:

	1.	 Estimate the three values a, m, b, based on knowledgeable sources or the best 
expert advice.

	2.	 Compute the mean and variance of each work package or activity for use in the 
second moment calculations from the following equations:
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6.3.2  �The Triangular Distribution

The Triangular distribution is similar in concept to the Beta distribution, although, 
of course, a different shape. Like the Beta distribution, it can be symmetric, skewed 
to the right, or skewed to the left. If, as before, a is the estimated lower limit, b is the 
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estimated upper limit, and m is the estimated mode, the peak of the triangular  
density function, then the mean and variance are given exactly by:
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The Beta distribution and the Triangular distribution give quite different results 
for the same estimates. If the distribution is skewed to the right, the mean of the Beta 
distribution will be less than the mean of the Triangular distribution. The Triangular 
distribution will always have much more variance than the Beta distribution. For 
illustration, assume that the estimates are: a = 100, m = 125, and b = 200 for both 
cases. Then the means and standard deviations by the two distributions are:

Beta: (μβ = 133.333; σβ = 16.667) and Triangular: (μTri = 141.667; σTri = 90.139)

In short, the Triangular distribution conveys a much higher level of uncertainty 
than the Beta distribution with the same bounds. Figure 6.1 plots the probability 
density functions for the Beta and the Triangular for this set of values.

Figure 6.2 plots the cumulative probability functions for the Beta and Triangular 
distributions for the same set of values.

The PMBOK® Guide provides an example of the use of triangular distributions 
(PMI 2008, p. 297). Table 6.1 gives the data for a project of three work packages. In 
the notation used herein, a is the lower limit, b is the upper limit, and m is the mode 
(most likely value) of the triangular probability density function.

Fig. 6.1  Beta and triangular density distribution
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Plots showing the three probability density functions are shown in Fig. 6.3. (Note 
that: This figure is not given in the PMBOK® Guide).

Also, note from the table above that the PMBOK® Guide gives the “Most 
Likely” total project cost estimate as $41M, the sum of the “most likely” values of 
all the work package probability density functions. This procedure is not founded 
in or justified by probability theory. As noted earlier, the n-th moment of a sum of 
random variates is the sum of the n-th moments of all the terms. That is, the first 
moment (the mean) of the sum is the sum of the means, and the second moment 
(the variance) of the sum is the sum of the second moments (variances and covari-
ances). There is no rule about summing the most likely values (except in the spe-
cial case that the density functions are symmetric and the modes are the same as 
the means). It is not generally true that the most likely value for the total project 
cost is the sum of the most likely values of all the work packages.

The probability distribution for the total project cost in this example is found, in 
the PMBOK® Guide, by Monte Carlo simulation. There is nothing wrong with 
using Monte Carlo simulation, but for this type of problem it is unnecessary. A solu-
tion by the second moment approach is indistinguishable from the Monte Carlo 

Fig. 6.2  Beta and triangular cumulative distribution

Table 6.1  Range of project cost estimates

WBS element Low (a) Most likely (m) High (b)

Design $4 M $6 M $10 M
Build $16 M $20 M $35 M
Test $11 M $15 M $23 M
Total project $41 M

Adapted from Project Management Institute (2008, p. 297)
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simulation, can be easily done by spreadsheet, and is faster. The PMBOK® Guide 
does not indicate how many Monte Carlo iterations were used to obtain the answer 
given. It also does not mention independence or dependence, so it is assumed that 
the PMBOK® Guide deals only with the independent case, without mentioning the 
assumptions used.

Table 6.2 shows the means and variances for the three work packages as deter-
mined by the equations given earlier and repeated here:
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By the second moment approach, the variance of the total project cost is the sum 
of the variances and covariances in the variance-covariance matrix. Assuming inde-
pendence of all work packages, the covariance matrix is:
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The matrix is symmetric as the correlations between different work packages are 
zero. The sum of the elements in the covariance matrix is 24.5, and the standard 
deviation is $4.95 M. The cumulative distribution function for the total project cost 

Fig. 6.3  Three triangle density functions
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is shown graphically in Fig. 6.4. The Monte Carlo solution (the solid line) is that 
given in Figs.  11, 12, and 13 Cost Risk Simulation Results, on page 300 of the 
PMBOK® Guide. The second moment solution (the dashed line) is shown as a 
Normal distribution with mean $46.67 M and standard deviation $4.95 M, as com-
puted above using the second moment method. The two solutions are identical. The 
probability of completing the project in $41 M or less (the so-called “Most Likely” 
value) is about 0.12. The “conservative organization” that wants a 75% chance of 
success (not overrunning the budget) should then have a budget of $50 M, that is, 
including a contingency of $9M above the “Most Likely” value.

However, the second moment approach allows for a straightforward analysis of 
the effects of dependencies. For example, suppose that one assumes a correlation of 
0.9 between the work packages Design and Build. (For example, if the project turns 
out to be more complex that originally estimated, then it is likely that both the 

Table 6.2  Moments of the three work packages

WBS element Mean (μ) Variance (σ2) Standard deviation (σ) Coefficient of Variation (COV)

Design 6.666667 1.555556 1.247219 0.187083
Build 23.66667 16.72222 4.089281 0.172787
Test 16.33333 6.222222 2.494438 0.152721
Total project 46.66667

Note that the mean of the total project cost is the sum of the means of the work packages, in this 
case $46.67 M, as given by the PMBOK® Guide, Figs. 11, 12, 13, 14, 15, and 16, page 300

Fig. 6.4  Cumulative distributions, Monte Carlo and second moment
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Design costs and the Build costs will overrun). The other possible correlations are 
taken as zero. The covariance matrix for this case is:

	

Design Build Test

Design

Build

1 55556 4 590207 0

4 590207 16 72222

. .

. . 00

0 0 6 22222Test .



















	

With this matrix, and everything else the same, the plot of the cumulative prob-
ability distribution on total cost is shown in Fig. 6.5. The plot for the Monte Carlo 
solution is the same as in the figure above, because the PMBOK® Guide provides 
no guidance on the condition of correlation between work packages (it does not 
even mention correlation). In this case, the effect of one correlation is not great, but 
it does indicate that the contingency allowance should be increased by perhaps $1 
M, compared to the independent case.

Fig. 6.5  Cumulative distribution, Monte Carlo and correlated second moment
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6.3.3  �Other Three Point Approximations

Many other approaches have been proposed for estimating the mean and variance of 
a probabilistic variate by eliciting three points on a subjective probability distribu-
tion. Many of these approaches are summarized and compared in Keefer and Bodily 
(1983), who ran a large set of computations to determine which approximations 
were the best. To do this, they assumed a set of Beta distributions with different 
parameters as the underlying probability functions. Then they compared the esti-
mates made for the mean and variance, using various proposed approximation equa-
tions, with known true values for mean and variance.

In estimating the mean, the best approximation formulas were found to be the 
following.

Pearson-Tukey (Pearson and Tukey 1965):

	
µ = + +( )0 63 0 18550 5 95. .x x x

	

In this notation, xk represents the estimated value of the random variable at the 
k-th percentile of the probability distribution. Therefore, x50 is the value of the 
random variable at the 50th percentile, hence the median; x5 is the estimated 
value of x at the 5th percentile; and x95 is the value of x at 95th percentile. Keefer 
and Bodily (1983) found that the maximum percentage error using this formula 
in their experiments as less than 0.1%, and the average percentage error was 
about 0.02%.

Other expressions giving good approximations to the mean were the following.

Perry-Greig (Perry and Greig 1975):

	
µ = + +( )1

2 95
0 955 95.
.x m x

	

Here, as in PERT, m is the mode, or most likely value. However, using the median 
rather than the mode gives better results, as shown by Perry and Greig (1975), who 
proposed “the extraordinarily accurate” equation:

	
µ = + + −( )x x x x50 95 5 500 185 2.

	

Modified Davidson-Cooper (Davidson and Cooper 1976):

	
µ = + +( )0 16 0 42 10 90. .m x x

	

Swanson-Megill (Swanson, in Megill 1977):

	
µ = + +( )0 40 0 3050 10 90. .x x x
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Conversely, according to Keefer and Bodily (1983), “especially poor  
performances are provided by the original PERT approximation … and the … 
triangular model.” “The Pearson-Tukey approximation for the mean outperforms 
the PERT and the … triangular approximation by more than three orders of mag-
nitude on average absolute error” (Emphasis added). Despite this “poor perfor-
mance,” the PERT approximation is still used, and the triangular distribution is 
very popular in Monte Carlo simulations using canned software packages.

In estimating the variance, Keefer and Bodily (1983) found the following 
approximation “to be the best”:

Truncated Pearson-Tukey (1965):
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Extended Pearson-Tukey (1965):
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Perry and Greig (1975) favored the following expression for the standard devia-
tion, which is identical to the Extended Pearson-Tukey equation:

	
σ =

−x x95 5

3 25. 	

Again, for estimating the variance, “particularly poor approximations are the … 
triangular model (unfortunately perhaps the most commonly used model), [and] the 
original PERT” (Keefer and Bodily 1983).

Other approximations were documented by Keefer and Bodily (1983) but are 
not reproduced here; for further information see their paper. The conclusion from 
this is that there are much better approximations for the means and variances than 
the original PERT formula or the results derived from the triangular distribution, 
and these better approximations should be preferred, inasmuch as “the differ-
ences in performance between the best and the worst are very large” (Keefer and 
Bodily 1983). If, for some reason, it is absolutely imperative to use a triangular 
distribution in a Monte Carlo simulation, Keefer and Bodily (1983) give three 
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other forms of triangular distribution that give more accurate results for means 
and variances than the one in the earlier figure.

Triangular distributions are often used in Monte Carlo simulations to represent 
skewed distributions, which the Normal distribution cannot. If a probability distri-
bution is thought to be skewed, Keefer and Bodily (1983) recommend the used of 
the lognormal distribution with parameters estimated by the Pearson-Tukey approx-
imations given here.

6.3.4  �The Normal Distribution

The Normal distribution can be used in a somewhat similar way, if one believes that 
the probability distribution should tail away and not come to abrupt stop, as with the 
Beta and the Triangular distributions. Of course, two limitations of the Normal dis-
tribution are:

	1.	 It tails away on the low side as well as on the high side, and this may not seem 
realistic.

	2.	 It is symmetric, and cannot represent skewness.

The primary justification for using the Normal is that it is so familiar. To use it, 
first define some probability level or percentile at which the points on the distribu-
tion will be estimated. Because only two values are to be computed, the mean and 
the variance, only two points are needed. To avoid anchoring, these points should be 
far from the mean.

Establish convenient, symmetric percentiles at the lower and upper ends of the 
range. Call the lower value Flow(x) and the upper value Fhigh(x) = 1.0 − Flow(x). The 
expert then estimates the values for the duration at these percentiles. That is, the 
expert estimates an optimistic value, xlow, such that the probability is Flow(x) that the 
actual duration will be less than this. Conversely, the expert estimates the pessimis-
tic value of the activity, xhigh, such that the probability is Fhigh(x) that it will not be 
exceeded. Some typical values are:

	1.	 Flow(x) = 0.10; Fhigh(x) = 0.90. With these figures, it is assumed that the expert 
judgment on the most pessimistic value, xhigh, has a likelihood of 10% of being 
conservative (that is, too low).

	2.	 Flow(x) = 0.05; Fhigh(x) = 0.95. With these figures, it is assumed that the expert 
judgment on the most pessimistic value, xhigh, has a likelihood of 5% of being 
conservative (too low). Note that this definition gives a smaller variance that that 
in case 1 above, for the same values of xlow and xhigh.

	3.	 Some people believe that experts can more easily deal with odds rather than 
probabilities, and therefore set the percentiles accordingly. For example, if the 
odds are believed to be 10 to 1 that the duration (or cost) xlow will be exceeded, 
then the probability of a duration less than xlow is 1/11 and the probability of a 
duration greater than xlow is 10/11. Then Flow(x) = 0.09091; Fhigh(x) = 0.90909. 
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The expert then adjusts his estimates of xlow and xhigh to achieve the desired  
condition of odds of 10 to 1.

As the Normal distribution is symmetric, and assuming that symmetric values of 
Flow(x); Fhigh(x) are specified, the mean is determined from:

	
µ = = + −( ) = +( )x x x x x xlow high low low high

1

2

1

2 	

The standard deviation is obtained from the published tables for the Normal 
distribution.

	1.	 In case 1, the distance from the mean to the 10th percentile is 1.282σ, so the 

standard deviation is σ =
−x xhigh low

2 564.
.

	2.	 In case 2, the distance from the mean to the 5th percentile is 1.645σ, so the stan-

dard deviation is σ =
−x xhigh low

3 29.
.

	3.	 In case 3, the distance from the mean to the cumulative at 0.09090 is 1.3347σ, so 

the standard deviation is σ =
−x xhigh low

2 6694.
.

6.3.5  �The Gumbel Type II Extreme Value Distribution

This distribution is a limiting extreme value distribution. If there are a number of 
parallel paths to an activity; if all the paths are independent; if the number of 
independent paths is large; if the duration of each is exponentially distributed; and 
if the durations are unlimited to the right but not less than some specified mini-
mum γ; in the limit the largest order statistic approaches the probability distribu-
tion is known as the Gumbel Type II Extreme Value Distribution, which is defined 
by the cumulative probability distribution Fx(x) and the probability density func-
tion fx(x) below:
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Here, γ is a location or shift parameter that shifts the distribution to the right. 
(That is, the probability is zero for x < γ). The distribution has the properties:
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This function is bounded from below by γ. It is not bounded from above and the 
values of x can be indefinitely large. Of course, if one uses this distribution for real 
projects, the parallel paths for an activity cannot be all independent, so the condi-
tions of the derivation cannot be met. However, this origin suggests that this distri-
bution might be a reasonable approximation for actual activity durations, even with 
dependence. Generally speaking, it is highly skewed to the right.

We can fit this function to our best judgment by the following process:

	1.	 Estimate the shift factor γ. This is the absolute lower limit for the variate x; x can 
never take on values less than γ.

	2.	 Establish a convenient percentile at the lower end of the range, for example, 
0.10. Call this value Flow(x), with value 0.10 or 0.05, say. The expert then esti-
mates the value for the duration at this percentile; that is, has probability Flow(x) 
that this value will not be exceeded. Call this value xlow.

	3.	 Establish a suitable percentile at the upper end of the range, for example, 0.90. 
Call this value Fhigh(x), with value 0.90 or 0.95, say. Then estimate the value of 
the activity duration at this percentile; that is, the duration that has probability 
Fhigh(x) that it will not be exceeded. Call this value xhigh

Then the two parameters of the Type II distribution are computed as follows:
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These three parameters, α, β, γ, define the Type II distribution. However, the 
values needed for the second moment process are the mean and variance. There 
are closed-form equations for the mode and median, but unfortunately there are no 
closed-form solutions for the mean and variance. This would seem to be an imped-
iment to the use of this distribution in practice, but this is not necessarily so. The 
numerical integrations needed to find the values of the mean and variance are eas-
ily set up and performed by a spreadsheet program. This process is as follows:
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	1.	 Input γ, Flow, xlow, Fhigh, xhigh

	2.	 From these, compute α, β from the equations above.
	3.	 Using α, β, γ, compute the probability density function fx(xk) from the equation 

given above, for a number of values at regular intervals, δ. There should be 
enough intervals to cover the range from x = γ to x > xhigh, until the computed 
values of fx(xk) become negligible.

	4.	 Compute the mean by:

	
µ = = ( )

=
∑x x f x
k

n

k x k
1

δ
	

	5.	 Compute the variance by:

	
σ2

1

2
= −( ) ( )

=
∑
k

n

k x kx x f x δ
	

The integrations above essentially use the trapezoidal rule; more accurate results 
might be obtained with Simpson’s rule or some other integration rule. The com-
puted mean and variance are then used in the second moment process. The numeri-
cal integration is not quite as elegant as a closed form equation, but in practice the 
computation takes no more time on a spreadsheet. And, the spreadsheet can plot a 
picture of what the probability density looks like; if it seems too skewed, or not 
skewed enough, one can easily adjust the input parameter values until it looks right.

Figure 6.6 shows an example of a Gumbel Type II distribution with shift zero, 
10th percentile 1100, and 90th percentile 2300.

6.3.6  �Fitting the Gumbel Type II Distribution to a Histogram

If one has some data, sufficient to define a histogram, it is possible to fit a Gumbel 
Type II distribution to three points on the cumulative probability function, rather 
than two points and the shift factor, as above. To do this, consider three percentiles 
of the cumulative distribution: a low value, the median value, and a high value. Let 
these be denoted (Flow, xlow), (F50, x50), (Fhigh, xhigh). Here x50 is the median, and so 
F50 = 0.50. The low and high values will be left unspecified for the moment. The 
cumulative distribution function for the Gumbel Type II was given above as:

	

F x
x

x ( ) = −
−
















< < ∞

−

exp
γ

α
γ

β

for all x

	

The shift factor can be eliminated by considering three points on the 
cumulative:
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Now take the natural logarithms of all three expressions:
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Fig. 6.6  Gumbel type II probability density function
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Using these relations, form two ratios, as follows:
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Taking logarithms of both sides of both expressions gives:
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Solving both expressions for β gives:
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Obviously, the values for β from both expressions must be identical, so the two 
expressions on the right can be equated:
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Or, rearranging,
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This equation must be solved for the shift factor, γ. The general solution of this 
equation would be difficult. However, the percentiles Flow and Fhigh have been left 
unspecified, so we may chose specific values of these parameters to make the solu-
tion easier. An obvious simplification would be to set Flow and Fhigh so that:
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Thus,
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Rearranging,
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That is, we choose the lower percentile, Flow ≡ F15, to correspond to approxi-
mately the 15th percentile of the cumulative histogram, and the upper percentile, 
Fhigh ≡ F77, to correspond to approximately the 77th percentile of the cumulative. 
With these specific values, the equation above,
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becomes
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The solution to this is:
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This value for the shift factor may then be used in the Gumbel Type II distribu-
tion, instead of estimating it directly. Note: this method of fitting three points is not 
the best fit or the least squares fit of the Gumbel Type II to observed data. An equa-
tion fitted by least squares will be that distribution with the minimum sum of squares 
of the deviations between the data and the function; the three-point fit matches the 
function to the data at exactly three points, and not necessarily elsewhere.

6.3.7  �The “Binormal” Distribution

The “binormal” distribution was documented by King et  al., in the aptly named 
paper “An Alternative to Monte Carlo Sampling in Stochastic Models” (1975). 
Their “… approach was to seek a single function that could be treated both as the 
underlying cdf of each xi and as an approximation for the cdf of the sum, y. A prom-
ising candidate should be a mathematically tractable three-parameter function capa-
ble of approximating a wide variety of distribution shapes. In addition, if such a 
function were assumed to be the true cdf of each xi, it then should provide a close 
approximation to the cdf of y for values on n in the practical range….”

“After screening a number of candidates, [the authors] selected a function which 
may be called “binormal” with the cumulative density function (cdf):
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where Φ(x) is the cdf of a standardized unit normal distribution. The density func-
tion consists of the left half of one normal curve and the right half of another, both 
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having the same mean, m. The parameters σ1 and σ2 are, in effect, the standard 
deviations of the two original Gaussian curves, and the parameter m becomes the 
median of the composite distribution. The special case of a normal distribution is 
obtained when σ1 = σ2.

The authors recommend the estimation of three values corresponding to the 10th, 
50th, and 90th percentiles, x10, x50, x90. However, other percentiles could be used by 
suitably modifying the expressions below. With these estimates, the three parame-
ters of the binormal are computed from:
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Of course, the factor 1.282 is obtained from tables of the Normal distribution, 
and should be changed if other percentiles are used. For example, if one prefers the 
5th, 50th, and 95th percentiles, corresponding to the judgmental estimates x05, 
x50,   and  x95, the factor would be 1.645.

With these three parameters estimated, the first three moments of the binormal 
can be computed. Only the first two moments are given here, because the second 
moment approach uses only the mean and the variance. They are:
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King et al. used three estimates in order to fit a three-moment approach, but they 
assumed for ease of use that all the individual variables were independent. Therefore, 
their method as given cannot be applied when the variables are correlated, as is 
assumed in these notes. Here, we use a second moment method plus correlations.

Comparing the Gumbel Type II distribution and the King et al. binormal distribu-
tion, assume that the estimates are, with values at the 10th and 90th percentiles: 
shift = 500, x10 = 1200, x90 = 2000. Then the resulting means and variances are:

Type II distribution:

mode = 1315, median = 1442, μ = 1519, σ = 350

Binormal distribution:

mode = 1315, median = 1315, μ = 1492, σ = 340

Figure 6.7 plots the cumulative probability distributions for the Gumbel Type II 
and the binormal for the parameters given just above. As would be expected, the 
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binormal is not particularly suitable around the junction point (1315), but the binor-
mal and the Gumbel give very similar results in both tails.

The Gumbel Type II distribution seems to be satisfactory, and perhaps more the-
oretically justified than the binormal, the origin of which, in combining two Normal 
distributions may seem somewhat arbitrary. Based on limited comparisons, how-
ever, the binormal distribution seems to give comparable results, and is easier to use, 
given than no numerical integration is required. Therefore, if one can accept the 
rather heuristic origin of the binormal, it seems sufficiently accurate to determine 
the mean and variance from three point estimates.

6.3.8  �Reality Checks

Some students and practitioners object that they may be able to estimate  
single point values for some random variables, but they have no basis for  
estimating variances. Obviously, experience is valuable in making these esti-
mates. Nevertheless, variances can be estimated by practically anyone. Instead  

Fig. 6.7  Gumbel type II vs. binormal

6.3 � Subjective Methods Depending on Expert Judgment



132

of dealing with the variance directly, consider dealing with the Coefficient  

of variation, COV x
x

E x
x

x

[ ] = [ ]
[ ]

=
var

.
σ
µ

 If E[x] ≠ 0, and we can estimate COV[x], 

then we can get the standard deviation from σx = COV[x]μx. So how can one get 
COV[x]? One thing people can do to develop their intuition for uncertainty is to 
determine the coefficients of variation on ordinary activities for which they have 
abundant data.

For example, consider the time it takes you to travel from your home to your first 
class, or your last class to home, or to run 2 miles every morning, or some other 
activity you do nearly every day. Record these times every day for a month or more, 
then compute the means, standard deviation, and coefficients of variation for each 
activity. Now use these values for the coefficients of variation to calibrate estimates 
of project times. This does not mean that everything has the same coefficient of 
variation. However, there have been many cases of project proponents estimating 
the variability for first of a kind, new technology, complex projects to have much 
smaller coefficients of variation than the variability in driving to work every morn-
ing. This doesn’t imply that your daily experiments tell you what the variability in 
the duration of a new project might be, but they can tell you when the estimated 
coefficients of variation are absurdly small.

6.3.9  �Expert Judgment for Correlations

Less work has been done on the best methods for eliciting expert judgment on cor-
relation coefficients than has been done with means and variances. This is no doubt 
because most researchers assume all correlations to be zero. It appears that the best 
way found so far to elicit correlation coefficients from experts is simply to ask them 
to give their best estimates of the correlation coefficients. Some background discus-
sion of the meaning of correlations is desirable. It may also be helpful to show scat-
ter diagrams representing different values of the correlations between two 
variables.

The following method has been found to be workable in risk analyses for indus-
trial and commercial engineering and construction projects:

	1.	 Set up a small number of admissible correlations, associated with verbal descrip-
tors that are comprehensible to the experts, such as, for example:

High = 0.9
Moderate = 0.6
Low = 0.3
Zero = 0.0

	2.	 Ask each expert evaluator to identify all the pairs of variables (such as work 
packages or activities) that are related by each of the verbal descriptors.
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	3.	 Crosscut the above by asking each evaluator to identify potential common mode 
risks that would affect multiple work packages and lead to correlations between 
them.

	4.	 Check for consistency by asking each evaluator to estimate the correlations for 
specific pairs of work packages.

	5.	 Compare results across all evaluators and follow up on any apparent inconsisten-
cies between experts.

	6.	 Form the complete covariance matrix and determine if it is admissible; that is, it 
is positive definite and invertible. If it is not positive definite, adjust the correla-
tion values until the matrix is positive definite.

	7.	 Perform a sensitivity analysis of the risk analysis results to determine if the com-
puted risks are sensitive to any particular correlation coefficients.

6.3.10  �Other Methods for Estimating Correlation Coefficients

Assume that for every pair of work packages or cost accounts, j and k, there is a 
correlation coefficient ρjk such that
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The correlation coefficient describes the stochastic interaction between cost 
account j and cost account k. The correlation coefficient does not define causal rela-
tionships, such as Xj = f(Xk), where f is some deterministic function. Without correla-
tion, all the uncertain components would be independent entities; correlation links 
all these components together into a system.

•	 If, when the cost of WPk is above its mean, the cost of WPj also tends to be above 
its mean, then the two work packages are positively correlated, ρjk > 0

•	 If, when the cost of WPk is above its mean, the cost of WPj tends to be below its 
mean, then the two work packages are negatively correlated, ρj  k < 0

The meaning of ρjk can be interpreted as follows: suppose that there are two work 
packages, j and k, with variances σ j

2 , σ k
2  and correlation ρjk. Then the square of the 

correlation ρ jk
2  is the fraction of the uncertainty (i.e., the variance) in the cost of 

Work Package j that is explained or removed by knowledge of the true cost of Work 
Package k.

That is, suppose the project manager initially does not know the true values of 
the Work Package costs Xj and Xk but attributes to them the uncertainties σ j

2  and 
σ k

2 , respectively. Then suppose that work package k finishes, and the project man-
ager now knows the true value of Xk. If the two work packages are correlated, this 
knowledge of the true value for Work Package k then tells the project manager 
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something about the cost of the incomplete Work Package j. As the square of the 
correlation ρ jk

2  is the fraction of the uncertainty in the cost of Work Package j that 
is explained or removed by knowledge of the true cost of Work Package k, then this 
knowledge reduces the variance of Work Package j by the amount ρ σjk j

2 2 . Then the 
remaining variance in Work Package j, the uncertainty remaining in this work pack-
age cost, is equal to the original uncertainty (before Work Package k was known) 
minus the reduction in variance due to the knowledge of Work Package k. Call the 
prior variance (before k) σ j

2  and the posterior variance (after k) σ
˜

j

2

, where

	
σ σ ρ σ σ ρ σj j jk j j jk j
2 2 2 2 2 2 21= − = −( ) 	

The result states that, no matter what the actual value of Xk is, the project man-
ager’s uncertainty in the cost is always reduced by knowledge of Xk. The knowledge 
of Xk reduces the uncertainty in Xj due to the linkage ρjk between these two 
activities.

If the correlation is 0, then knowledge of the actual cost of the Work Package 
WPk provides the project manager with no information about the cost of incomplete 

Work Package WPj, as σ ρ σ ρ σ σj jk j jk j j
2 2 2 2 2 21− = −( ) = .

If the correlation is +1 or −1, then knowledge of the actual cost of WPk provides 
the project manager with complete information about the cost of uncompleted Work 
Package WPj:

	
σ σ ρ σ ρ σj j jk j jk j
2 2 2 2 2 21 0= − = −( ) =

	

If the knowledge of the actual cost of WPk would induce the project manager to 
consider revising the estimate of the cost of incomplete WPj (either up or down), 
then the project manager believes that the two WP costs are correlated.

The amount of the project manager’s revision depends on the value of the cor-
relation coefficient. This does not imply that an overrun in WPk necessarily causes 
an overrun in WPj (there may be a common cause).

The most common method for eliciting subjective estimates of correlation coef-
ficients from people with experience is simply to ask them to estimate the values. 
Experience has shown this method to be workable. However, some people may not 
relate to estimating correlation coefficients directly, but may be more able to esti-
mate changes (ratios) in parameters such as variance due to additional knowledge 
about the values for some work packages. Let’s define:

σ j
2  = the variance or uncertainty in Work Package j when the costs of both Work 
Package j and Work Package k are unknown.
σ j
2

 = the variance or uncertainty in Work Package j if the true cost of Work Package 
k were known (Work Package j remains unknown)

Then the ratio of the variance (uncertainty) of WPj after WPk is known to the 
value before WPk is known is:
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Figure 6.8 shows a plot of this relationship between variance ratio and  
correlation coefficient.

For example, if someone familiar with the project estimates that knowledge of 
Work Package k would reduce the estimated Coefficient of Variation of Work 
Package j to 60% of its value before this knowledge became available, then the 
estimator implicitly values the correlation between these two work packages at 
0.90, as shown in Fig. 6.9.

6.3.11  �Correlations Derived from Work Breakdown Structures

Assessment of correlations is not optional; it is necessary. If one defines a new 
model for a project, it is possible or at least conceivable that one can choose vari-
ables that are independent. However, when using common models, such as the 
Work Breakdown Structure (WBS) for project costs and the Critical Path Method 

Fig. 6.8  Estimating correlation coefficient from the ratio of variances
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(CPM) for project schedules, the usual variables (Work Package costs and Activity 
durations) are definitely not independent. Assuming that all variables are indepen-
dent can be, as shown in various places in these notes, very unconservative, and so 
correlations must be assessed.

When dealing with means and variances, one has to estimate N values in each 
case, where N is the number of variables, but the obvious difficulty with correlations 
is that one must estimate all the correlation coefficients in the correlation matrix. 

Taking advantage of symmetry, this means estimating 
N N −( )1

2
 values, but this is 

still a large number.
However, there may be a source of information about correlations readily at 

hand, in the form of the Work Breakdown Structure. The WBS is the standard 
method for dissecting projects into manageable parts for planning, estimating, 
scheduling, and reporting, and is required on virtually all projects that follow com-
mon project management principles. Although Work Breakdown Structures vary 
considerably from project to project, they all have the common factor that Work 
Packages are grouped by association. That is, the WBS is a subjective or qualitative 
expression of correlation between Work Packages.

For example, consider the common form of WBS, a tree structure rooted at the 
top level and branching at each level down to the Work Packages. Table 6.3 indi-
cates one form of WBS:

Each branch at each level is given an identification number in the WBS diction-
ary, and the Work packages, in this arrangement, have five digit numbers. As an 
illustration, suppose that some project is the first project for the first program or 
client. Then the Project has the number 1.1. Suppose, for convenience in discussion, 
there are three branches from every node, so the project will have three tasks: 1.1.1, 

Fig. 6.9  Estimating correlation coefficient from the ratio of variances
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1.1.2, and 1.1.3. Assuming three subtasks per task, there are nine subtasks, labeled 
1.1.1.1, 1.1.1.2, 1.1.1.3, etc. And assuming three Work Packages per subtask, there 
are 27 WPs. Table 6.4 shows the hierarchical tree, turned sideways to fit the paper.

Looking at the tree, one may say that work packages are associated if they have 
the same parent, that is, subtask. Therefore, work packages 1.1.1.1.1, 1.1.1.1.2, and 
1.1.1.1.3 are associated because all have the same parent, subtask 1.1.1.1. This 

Table 6.3  WBS level 
description

Level Description

Level 1 Program or client
Level 2 Project
Level 3 Task
Level 4 Subtask
Level 5 Work package

Table 6.4  WBS levels

Level 1 Level 2 Level 3 Level 4 Level 5
Program Project Task Subtask WP

1.1.1.1.1
1.1.1.1 1.1.1.1.2

1.1.1.1.3
1.1.1.2.1

1.1.1 1.1.1.2 1.1.1.2.2
1.1.1.2.3
1.1.1.3.1

1.1.1.3 1.1.1.3.2
1.1.1.3.3
1.1.2.1.1

1.1.2.1 1.1.2.1.2
1.1.2.1.3
1.1.2.2.1

1 1.1 1.1.2 1.1.2.2 1.1.2.2.2
1.1.2.2.3
1.1.2.3.1

1.1.2.3 1.1.2.3.2
1.1.2.3.3
1.1.3.1.1

1.1.3.1 1.1.3.1.2
1.1.3.1.3
1.1.3.2.1

1.1.3 1.1.3.2 1.1.3.2.2
1.1.3.2.3
1.1.3.3.1

1.1.3.3 1.1.3.3.2
1.1.3.3.3
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association was built into the Work Breakdown Structure when the WBS was made, 
and, because association is correlation, now we can take advantage of this effort to 
generate the correlation matrix.

Thus, we may say that work packages 1.1.1.1.1, 1.1.1.1.2, and 1.1.1.1.3 are cor-
related with a common correlation coefficient, say ρ4, because they are associated 
through their common parent at level 4. Similarly, work packages 1.1.1.2.1, 
1.1.1.2.2, and 1.1.1.2.3 are associated with their common parent, subtask 1.1.1.2. 
Then we may say that these WPs have a common correlation coefficient, ρ4, because 
they are associated through their common parent at level 4. This logic continues for 
all WPs with common parents.

However, the set of WPs 1.1.1.1.1, 1.1.1.1.2, and 1.1.1.1.3 shares a common 
grandparent (task) with the set of WPs 1.1.1.2.1, 1.1.1.2.2, and 1.1.1.2.3. Therefore, 
we may say that these two sets are associated with correlation coefficient ρ3, because 
they are related by a common grandparent at level 3. We would normally expect that 
ρ3 ≤ ρ4. This logic continues for all WPs with common grandparents (tasks).

However, the set of WPs 1.1.1.1.1, 1.1.1.1.2, and 1.1.1.1.3 does not share a com-
mon grandparent (task) with the set of WPs 1.1.3.3.1, 1.1.3.3.2, and 1.1.3.3.3. These 
two sets do share a common great-grandparent (the project), and so are associated 
with correlation coefficient ρ2, because they are related by a common great-
grandparent at level 2. We would normally expect that ρ2 ≤ ρ3. This logic continues 
for all WPs in the project. There may also be correlations between projects in pro-
grams, but multiple projects are not considered here.

Thus, by use of the project Work Breakdown Structure, the correlation issue has 
been reduced to the estimation of only three correlation coefficients: ρ2,   ρ3, and ρ4, 
for any size of project. Of course, this reduction may not suit all projects, but it may 
be used as a starting point, and values provided for specific correlations for any two 
WPs j and k, ρjk, by overriding the default values.

Figure 6.10 shows a portion of a 27 × 27 spreadsheet correlation matrix (trun-
cated to fit the page) with three branches at every node, as discussed above, and 
ρ4 = 0.9;   ρ3 = 0.7; and ρ2 = 0.5.

6.4  �Aggregating Expert Judgments

Expert judgments about the moments of probability distributions of random vari-
ables in project management are typically obtained in a group setting utilizing tech-
niques such as Delphi or Kaplan method. Here the objective is to for the group of 
experts to converge to a single representation of the probability distribution. The key 
advantage of such a group-based exercise that comes typically in the form of 2-day 
workshop is to expose knowledge of many experts and get a broader backgrounds 
and more complete picture of the factors that may contribute to the project risks. 
However, often such exercises end up with a one-sided and skewed perspective due 
to a number of reasons such as organizational bias; for example, it is not too uncom-
mon to have sideline conversations with participants that doubt the group logic and 
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judgements but would like remain anonymous. Hence, in some instances is to our 
advantage to elicit experts’ judgment on an individual basis which bring the ques-
tion – How do we aggregate expert judgments of probability distributions?

Mathematical aggregation combines individual probability distributions into one 
single distribution. Opinion pooling is the most common method of aggregation. In 
linear opinion pool we consider a weighted average of the individual distributions 
with weights wi summing to 1.

	
f w f

i

n

i iθ θ( ) = ( )
=
∑

1 	

Simple average (equal-weighted) is wi = 1/n (for n experts). Generally, weights 
are chosen depending on the expertise of the experts.

In logarithmic option pool we take weighted geometric mean of the n individual 
distributions.

	
f k f

i

n

i

wiθ θ( ) = ( )
=
∏

1 	

where k is a normalizing constant that ensures that f(θ) integrates to 1.

Fig. 6.10  Truncated correlation matrix
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So when to use Linear Pool and When to use a Logarithmic Pool? Suppose there 
are two experts, then the logarithmic pool implies stronger information than that 
given by either expert separately, whereas the linear pool represents less knowledge 
than either expert alone.

There also other more complex methods of aggregating expert opinion including 
Cooke’s method that takes advantage of information about experts’ performance in 
a separate elicitation, as well as the methods that process aggregation based on 
monetary stake such as prediction markets. To choose the right approach in mathe-
matical aggregation, one should consider the type of information available (full or 
partial probability distributions); the individuals performing the aggregation of 
probabilities; the degree of modeling to be undertaken (e.g. risk assessment team); 
the form of the combination rule (e.g. weighted average); the specification of param-
eters for the combination rule (e.g. weights); and the consideration of simple vs. 
complex rules (e.g. simple averages vs. complex models) .

6.5  �Practice Problems

Problem 6.5.1  A construction company keeps records of cost and duration of 
certain standard work packages on previous projects, for example, the total cost 
and duration per cubic feet (cf) of reinforced concrete installed for standard foun-
dation work. During planning and estimation phase of the project, the project 
manager needed to know what cost and schedule risks are associated with instal-
lation of 50,000 ft3 of reinforced foundation on the project. The previous projects 
were deemed similar enough to provide a basis for the analysis. The data is shown 
in the Table 6.5.

•	 Assuming that distributions are normally distributed find the mean and variance 
of the distribution?

•	 What is the correlation coefficient between the two random variables (schedule 
and cost)? Explain your results and provide logic.

Table 6.5  Problem data Project Cost per cf ($) Schedule per cf (days)

A 65 4
B 66 3
C 59 2
D 38 2
E 110 5
F 89 3
G 200 6
H 40 2
J 160 5
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Table 6.7  Problem data

Expert

New Orleans, LA – Stockton CA Stockton CA – project site
5-th 
percentile

50-th 
percentile

95-th 
percentile

5-th 
percentile

50-th 
percentile

95-th 
percentile

Susan 15 22 35 1 2 3
Rodney 10 12 25 1 2 5
Maria 12 15 30 1 2 5

Table 6.6  Problem data

Work package 5-th percentile 50-th percentile 95-th percentile

1 950 1000 1050
2 900 1000 1100
3 600 1000 1400

Problem 6.5.2  Archie is the project manager for a short-term retail sales facility 
development and Bernie is the construction manager. Archie gives Bernie the task 
of estimating the risk function of the construction cost. Bernie breaks down the 
construction phase into three work packages, all of which are performed in 1 year. 
Bernie makes three-point estimates of the optimistic cost (the 5th percentile, or 
x05), the median (the 50th percentile, or x50), and the pessimistic cost (the 95th 
percentile, or x95). These three point estimates are shown in Table 6.6. All figures 
are in thousands of dollars. All costs are incurred in the same year. Use the 
Pearson-Tukey approximations to compute the mean and variance of each work 
package cost.

Bernie estimates the correlations between work packages at 0.95. Determine the 
probability function. What is the probability that the project will cost more than 
$3500?

Problem 6.5.3  Michael is in-charge of assessing risks associated the company 
logistics operations. More specifically, he was given a task to determine the risk that 
sensitive equipment will not be arriving on-time to be installed. As no empirical 
data for this is available for this job he has interviewed 3 “experts” to determine a 
probability density function including the estimates of mean time and the variance 
that would take the equipment to travel from New Orleans, LA to Stockton, CA and 
then from Stockton, CA to the project site. The experts’ responses (days of travel) 
are shown in Table 6.7.

If the travel times are modeled using Beta distribution determine the total travel 
time by aggregating estimates using linear opinion pooling method (hint: use equal 
weights).

6.5 � Practice Problems
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Chapter 7
Sensitivity and Common Cause Effects

Abstract  In this chapter we discuss the sensitivity of the project performance 
outcomes such as the total project cost to the uncertainty in work packages. We 
provide two approaches to this critical step for developing risk mitigation strate-
gies, one based on calculating derivatives of the total variance with the respect to 
work package of interest, and the other one based on the correlation between the 
total cost and the work package. Further, this chapter introduces another important 
analysis for designing proper mitigation strategies  – determining the effects of 
common cause events on the correlation and ultimately on the total cost.

Keywords  Sensitivity · Common cause events · Correlation

7.1  �Introduction

The total cost of a project is, according to the engineering or “bottom-up” model, 
the sum of the costs of all of its individual work packages. In a deterministic 
approach, it is obvious which work package makes the greatest contribution to the 
total cost: it is the largest work package. However, we are concerned here with the 
uncertainty in the total cost, which is, in some way, the combination of the uncer-
tainties in all the individual work packages. Given that a project has many work 
packages, and that the project manager has limited time, it is of some importance 
to be able to assess priorities, in order to be able to determine which work pack-
ages are making the most contribution to the total uncertainty. In this chapter we 
discuss methods that can help determine which work packages should receive the 
most attention from the project manager. We focus on the sensitivity of the total 
cost to each work package as well as the impact of common cause factors on 
correlation.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14251-3_7&domain=pdf
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7.2  �Total Cost Sensitivity to Work Packages

Let T be the total cost of a project and let Xk be the cost of the k-th work package. 
All work package costs are assumed to be random variates, and so T is also a ran-
dom variate. There are N work packages. Then the total cost is the sum,
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The expected value of the total cost is given by
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That is, the mean value of the sum is the sum of the means for all the work 
packages.

In order to consider the risk associated with the total project cost, T, it is 
desirable to compute the uncertainty in the value of T. Consider the variance of 
T as a measure of this uncertainty or ignorance about the total cost of the project. 
Then,
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In this expression, cov[xi, xj],  σi, j and ρi, jσiσj are just different symbols standing 
for the same thing, namely the covariance of the variables xi and xj.

All these variances and covariances can be written compactly in the symmetric 
N × N Covariance matrix, V, as,
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In words, the variance of the sum of a number of random variates is the sum of 
all the terms in the covariance matrix; that is, the sum of the N2 variances and 
covariances of the individual work package costs. This is true regardless of whether 
the individual costs are correlated or uncorrelated.
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The summation can be compactly written in matrix notation. Define the N  
column vector consisting of all 1s:
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Then the summation above may be written as:

	
var T T[ ] = 1 V1

	

In order to concentrate our efforts on risk mitigation and management on the 
right areas, we will be interested in knowing which of the work package costs has 
the greatest impact on the total project cost. If the project had no uncertainty, and all 
values were deterministic, this question would be trivial: obviously a dollar increase 
in the cost of any work package would increase the total cost by 1 dollar. More for-
mally, in the case of the mean values, we can write the sensitivity of the expected 
project cost to any of the work package costs as the rate of change of the expected 
value of the total cost with respect to the expected value of any work package cost, 
or, using the above expression for E[T],

	

∂ [ ]
∂ [ ]

=
∂
∂

=
E T

E xk

T

k

µ
µ

1

	

This is trivial, but now we move on to the situation when there is uncertainty, 
which is not so trivial. We now look at the sensitivity of the variance in the total cost 
with respect to the uncertainty in any work package cost. This may be written as the 
rate of change in the variance of T with respect to the standard deviation of any work 
package cost. (We use the variance of T and the standard deviation of xk to avoid 
square roots and to make the differentiation easy). Then, using the equation above 
for var[T],
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Therefore, if we wish to know which work packages have the greatest impact on 
the uncertainty in the total project cost, we can compute the above expression for all 
values of k and then rank them from largest to smallest (that is, as a Pareto chart) 

(Wilkinson 2006) . The value of k that maximizes the quantity 
j

N

j k j
=
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ρ σ,  has the 

7.2 � Total Cost Sensitivity to Work Packages



146

greatest influence on the uncertainty in the total cost (the multiplier 2 doesn’t affect 
the ranking and may be omitted). That is, if we want to know where to look in 
order to reduce the uncertainty (or risk) in the total project cost, a good place to 
start would be work package k, where k is the work package that maximizes the 

quantity 
j

N

j k j
=
∑

1

ρ σ, .

Some of the correlation coefficients may be negative. However, the variance of 
T must be positive, in order that the total cost may have a non-negative variance 
and a real standard deviation. Therefore,
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This condition places a constraint on the values of the correlation coefficients, as 
it is impossible to have so many negative correlation coefficients that σT

2 0< . We 
may also feel that the sensitivity of the uncertainty in the total cost should also be 

positive; that is, that 
∂ [ ]
∂

>
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kσ
0 . If this were not true, then there would be some 

work package such that we could reduce the uncertainty in the total project cost by 
increasing the uncertainty in this work package cost. This would seem very unlikely, 
if not a contradiction, so we should have that

	

∂ [ ]
∂

= >
=
∑

var
,

T

k j

N

j k jσ
ρ σ2 0

1 	

This can be rewritten as
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Therefore, for consistency, the correlation coefficients should be specified such 
that
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In the special case in which it is established that all N of the work package costs 
are statistically independent, then ρj, k = 0, ∀ j ≠ k. Then the above expression for 
∂ var [T]/∂σk reduces to

	

∂ [ ]
∂

= =
=
∑

var
,

T

k j

N

j k j kσ
ρ σ σ2 2

1 	
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Therefore, in the special case of statistically independent work package costs, to 
identify the work package with the greatest impact on the uncertainty in the total 
project cost, look at the work package with the highest variance.

Suppose we do this for a project of, say, 20 work packages, sort them according 
to the largest values of the sensitivities, and plot the Pareto diagram as shown in 
Fig. 7.1. (The absolute values of the sensitivities have no importance; the only con-
cern is the relative values).

7.3  �Correlations Between Work Packages and Total Cost

The same question can be addressed by means of the correlation between the total 
project cost and each work package cost. To find the correlation coefficient between 

the total cost T x
j

N

j=
=
∑

1

 and any work package cost xk, first compute the covariance 

between T and xk, which is given by
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By definition, the correlation coefficient between the work package costs xj and 
xk is

	

correlation x x
x x

x x E x
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Similarly,
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σ
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Then, the correlation between the total cost T and the cost of any work package, 
xk is

	

ρ
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The work package with the largest correlation with the total cost is work package 
k, where k is the value that maximizes the numerator in the above expression. That 
is, to determine the work package with the greatest correlation with the total project 

cost, find the value of k for which 
j

N

j k j
=
∑ =

1

ρ σ, max .

This is the same expression obtained above by the use of derivatives.
If it is known for a fact that all the work package costs are statistically  

independent, then

Fig. 7.1  Pareto sensitivity chart
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ρ j k j k, = ∀ ≠0 for

	

	
ρk k, = 1

	

Then, in the case of complete statistical independence,

	

cov cov

var

T x x x E x

T

k
j

N

j k k k k

j

N

, ,[ ] =   = −( )



 =

[ ] =
=

=

∑

∑

1

2 2

1

µ σ

σ jj
2

	

	

∴ =
[ ]

=

=
∑

ρ
σ

σ

σ

σ
T k

k

k

k

j

N

j

T
,

var

2

1

2

	

In this case, the work package with the highest correlation with the total cost is 
the work package with the largest standard deviation (i.e., with the largest variance). 
Again, this is the same result as obtained before.

7.4  �Finding the Correlation Due to Common Cause

Many people automatically assume that random variates such as work package 
costs or activity durations must be independent if there is no obvious direct causal 
relationship between them. However, this is an error. Although a causal relation-
ship definitely means a dependency (although not necessarily a nonzero linear 
correlation coefficient), the converse is not true: correlation does not require or 
imply cause and effect. Variates can be and often are correlated because they all 
depend on some other variate, sometimes called the common cause (Wright 1921). 
This section is concerned with finding the correlation between work package vari-
ates that are affected by some common cause.

7.4.1  �No Common Cause

First, for comparison, consider the case in which there is no common cause; the 
common factor will be added in the next section. Let xj and xk be two work package 
costs, for work package j and k, respectively. (Actually, they could just as well be 
activity durations, but they will be called costs here for simplicity). Now write xj as 
the summation of a constant term plus a variable term:

	
x m uj j j= +
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in which mj is a constant (that is, having no uncertainty) representing the point esti-
mate for work package j; and uj is a random variate representing the uncertainty in 
the cost for work package j.

Some simplifying assumptions are made in order to make the model tractable. 
The uncertainty term uj is assumed to be additive (rather than, say, multiplicative), 
and further, it is assumed to have zero mean. In other words, if the uncertainty term 
had any nonzero mean value, that value would be incorporated into the constant mj, 
so that uj would be unbiased (have zero mean).

The uncertainty term, being a random variate, also has an associated variance, 

var uj uj
  = σ

2 . In this derivation it is not assumed that the probability distribution 

of the uncertainty uj is necessarily Normal. Then define the following terms for the 
mean, the variance, and the covariance of the uncertainty uj:

	

E u u

E u u E u

E u u u u

j j

j j j u

j j k k

j
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2 2 2σ

 =   = = ∀ ≠E u u k jj k u u u u u uj k j k j k
σ ρ σ σ ;

	

Here, ρu uj k
 is the linear correlation coefficient between the uncertainty in work 

package j and the uncertainty in the cost of work package k.
Using the above definitions and identities, the mean value of the work package 

cost xj is determined by taking expectations of the terms in the expression given 
earlier:

	

x m u

x E x E m u E m E u m m

j j j

j j j j j j j j

= +

=   = +  =   +   = + =0
	

This result shows that the point estimate mj of the cost of work package j cannot 
be any arbitrary number, it must be the mean or expected value of the cost xj, so that 

m E x xj j j=   = .

The variance of the cost of work package j is determined as follows:

	

σ

σ

x j j j j j

j u

j

j
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2 2
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=   = 	

That is, all the variance or uncertainty in the work package cost xj is contributed 
by the estimation error term uj.

The covariance between any two work packages, j and k, is given by:
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E x x x x E m u m m u m

E u u

j j k k j j j k k k

j k u

−( ) −( )  = + −( ) + −( ) 
=   = ρ

jj k j ku u uσ σ
	

This leads to the result:

	
ρ ρx x u uj k j k

=
	

That is, all the correlation between the costs for any two work packages j and k 
is contributed by the correlation between the estimation error terms, uj and uk.

7.4.2  �With an Underlying Common Cause

Suppose that, in the model given just above, the estimation errors in two work pack-
age costs are uncorrelated, so that ρu uj k

= 0  for ∀j ≠ k. It will be shown here that 

work package costs xj and xk can nevertheless be correlated, if they both depend on 
some common factor.

Now, for all j, write xj as an extended form of the model in the previous section:

	
x m u b zj j j j= + +

	

Here, xj, uj, and mj are the same as before, and uj is normalized so that:

	
E uj
  = 0

	

and z is a random variate representing some external cause or risk factor; and bj is a 
coefficient, constant for each work package j.

That is, the work package cost is represented as a constant (the point cost esti-
mate mj), an uncertainty term (the random variate uj), an external random process 
(z), and a multiplier, bj.

For example, the external process z might represent the weather. The cause must 
be quantified, so let z be the number of work days lost to rain during the period of 
activity of work package j. Then the coefficient bj represents the additional cost for 
work package j for each work day lost to rain, in dollars per day.

As before, some assumptions are made in order to make the model tractable. As 
stated above, the uncertainty term uj is assumed to be additive and to have zero 
mean. (In other words, any mean value of the uncertainty is incorporated into the 
constant mj, so that uj is unbiased). The uncertainty term also has an associated vari-
ance, var uj uj

  = σ
2 . In this derivation it is not assumed that the probability distri-

bution of the uncertainty uj is necessarily Normal. The random variates uj representing 
the estimation error in different work packages may be independent or correlated 
with other estimation error terms.
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However, the uncertainty estimation error terms are assumed to be independent 
of (uncorrelated with) the external causal factor, z. Then:

	

E z z

E z z

E u u z z E u z z j

z

j j j
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That is, if z represents the number of rain days and uj represents the uncertainty 
in the cost estimate made without regard to weather considerations (for example, if 
the cost estimate is based on the implicit assumption that the weather will be per-
fect), then uj and z are independent.

Now, the mean value of the cost for work package j can be found using the 
expression xj = mj + uj + bjz:

	

E x E m u b z E m E u E b z

x m b z
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= + +0 == + ∀m b z jj j ,

	

Suppose now that, for some work package j, there is no effect of the external 
cause, z. Then the equation above becomes:

	
x m b zj j j= = =if or if0 0

	

This shows again that mj must be the mean or expected value of the work pack-
age cost when the estimation error is unbiased (E[uj] = 0) and there is no effect of 
any external cause z.

Having found the expected value of the work package cost, the variance of that 
cost is obtained from the defining equation using the relations derived above. That 
is,
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Expanding the squared term and taking expectations gives:
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Note that the term E u z zj −( )   is zero in the last expression by use of the 

assumption that the variability in the external common cause is independent of the 
estimation errors in the individual work packages. Using this result gives an expres-
sion for the variance (and standard deviation) of the cost for work package j:

	

σ σ σ

σ σ σ

x u j z

x u j z

j j

j j

b for j

b

2 2 2 2

2 2 2

= + ∀

= +
	

That is, the variance in the work package cost is the estimation uncertainty 
increased by the product of the variance of the common cause and the square of the 
influence coefficient.

Having derived the expression for the variance of each work package cost, the 
next step is to determine the covariance between any pair of work packages. 
Proceeding as before from the defining equation and the results already obtained, 
some straightforward algebraic manipulation gives:
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Two terms in the expansion are zero by the assumption that the uncertainties in 
the cost estimates for different work packages are independent of the external cause. 
Using the linear correlation coefficient, the correlation between the costs of any two 
distinct work packages is:

	
cov covx x u u b b b bj k j k j k z u u u u j k z x xj k j k j k
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where, σ σ σx u j zj j
b= +2 2 2

Note that, if one sets j = k to find the main diagonal elements, then:
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as they should be.
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The derivation shows that, if xj and xk are influenced by a common factor z, this 
hidden variable creates a correlation between xj and xk, even if the estimation errors 
are uncorrelated (E[ujuk] = 0). For example, assume that E[ujuk] = 0; the expression 
for the correlation then becomes (for j = k distinct) :

	

ρ
σ

σ σ
σ σ σx x

j k z

x x
x u j zj k

j k

j j

b b
j k b, ; ,= ∀ ≠ = +

2
2 2 2where

	

If the common cause has a large variance, so that

	
b bj z u k z uj k
σ σ σ σ and

	

then ρx xj k, →1  if bj and bk have the same signs, and ρx xj k, → −1  if bj and bk have 
opposite signs.

This gives the perhaps unexpected result that, the larger the variability in the 
underlying common cause, the greater the correlation between the work package 
costs. As the variance σ z

2  of the common cause increases, the probable values for z 
get larger, increasing the impact terms bjz, and these dominate the expression for xj 
i.e. xj = mj + uj + bjz, and as a result xj → bjz and xk → bkz, which are perfectly 
correlated.

In summary, if the work package costs (or activity durations) xj and xk are to be 
considered statistically independent, then there must be no underlying common fac-
tor, either overt or latent, which affects both work packages. Or, if there is some 
common factor, it must have very small variance for the work package costs to be 
approximately uncorrelated. Whether or not this is true must be established by risk 
analysis for each project’s conditions. An assumption that work packages are inde-
pendent when in fact they are not, due to some common cause, may lead to a sub-
stantial underestimation of the project risk.

It is worth noting here that specification of all the work package correlations 

individually requires the estimation of 
N N −( )1

2
 correlation coefficients (allowing 

for symmetry of the correlation matrix). If all the work packages are dependent to 
some degree on a single underlying factor, z, then the entire covariance matrix is 
determined by the N values for bj plus one variance σz

2 for the underlying cause. 

Thus the number of parameters to be estimated falls from 
N N −( )1

2
 to N  +  1, 

which is about the same as the number of means and the number of variances to be 
estimated.

Table 7.1  Example 1 work package cost estimates

Fifth percentile Fiftieth Ninety-fifth Mean Standard deviation

$55,125 $60,000 $64,875 $60,000 $3000
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Example 7.1
Assume that a simple project has N = 10 work packages, and each work package j 
has an unknown cost, xj. The estimated 5th, 50th, and 95th percentiles are as follows 
(for simplicity here, it is assumed that all N work packages are identically distrib-
uted) (see Table 7.1).

The mean value given in the table is computed from the Pearson-Tukey formula 
(Pearson and Tukey 1965)

	
µ = + +( )0 63 0 18550 5 95. .x x x

	

and the standard deviation is computed by the extended Pearson-Tukey formula.

	
σ 2 95 5

2

3 25
=

−


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




x x

. 	

This particular three-point estimate gives a symmetrical distribution, but in a 
more general case the distribution might be skewed to the right to reflect the prob-
ability of costs in the upper tail.

Assuming that all the N work packages are independent and identically distrib-
uted; the expected value of the total cost is easily computed. The total cost is the 
random variate T, where

	

T x
j

N

j=
=
∑

1 	

Therefore the expected total job cost is:

	

E T T x
j

N

j[ ] = = = ( ) =
=
∑

1

10 60 000 600 000, $ ,

	

Suppose that a contractor wishes to determine the cost for this job in preparation 
for making a bid. The contractor’s problem is to determine the value that he/she 
should use as the cost (including contingency but not including overhead and profit) 
such that the probability of exceeding this cost is less than or equal to some number, 
say 0.10. Clearly the value that fits this requirement is not the median (which in the 
symmetric case is the same as the mean), because the probability that the cost would 
exceed the median is 0.50. The value needed must be the median (or mean) plus 
some contingency.

First, the contractor can estimate the variance of the total cost using the second 
moment equation:
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7.4 � Finding the Correlation Due to Common Cause



156

As the work packages are considered independent, this reduces to:

	

σ σ

σ

T
j

N

x j
N2

1

2 2
3000 90 000 000

90 000 000 9487

= = ( ) =

= =

=
∑ , ,

, ,T $ 	

Using the Central Limit Theorem, the probability distribution of the total cost 
should be approximately Normal, with mean $600,000 and standard deviation 
$9487. (Note that this is the only time in this discussion that the assumption of 
Normality is made). The 90th percentile of the Normal distribution is 1.282 stan-
dard deviations above the mean, or:

	
90 600 000 1 282 9487 612 162th $% , . ,= + ( ) = 	

Thus, if the contractor wants to be 90% confident that his cost estimate will not 
be exceeded, he should add a contingency of $612, 162 − $600, 000 = $12, 162 to 

the estimated mean value. This amounts to a contingency of 
12 162

600 000
2

,

,
%=  of the 

estimated mean, which is a very small amount. The coefficient of variation of each 

individual work package is 
3 000

600 000
5

,

,
%= , whereas the coefficient of variation of 

the total job is 
9 487

600 000
1 6

,

,
. %= . Therefore, as measured by the coefficient of varia-

tion, the total job is less variable than any of the individual work packages. This is 
a consequence of the work packages being independent (or assumed independent). 
However, an experienced project manager may find it difficult to accept the 
proposition that increasing the number of work packages (N) makes the total project 
less uncertain. And so, in this exercise, the contractor may find it difficult to accept 
that a contingency of only 2% of the mean cost is adequate to provide a 90% confi-
dence that the bid will be high enough to cover costs.

Example 7.2
Now suppose that, for the project in the previous case, it is recognized that all N 
work packages may be affected by the weather. Let z represent the total number of 
days of production lost to inclement weather on this job. Of course, z is, a priori, 
unknown. The contractor estimates that on the average he expects 12 days to be lost 
on the job, with a standard error of 1 day. (The estimates may be obtained by the 
three-point method as used above; here for brevity it is simply assumed that this has 
been done and the mean and standard deviation have been obtained). Using the 
notation developed above,

	
bj = $ per day lost due to weather1000

	

	
E z[ ] = 12 days
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	 σ z day= 1 	

	
mj = $48 000,

	

Here the value of the point estimate for each work package, mj, has been adjusted 
for comparison with the previous exercise, by factoring out the expected cost of the 
12 days lost to bad weather. By this adjustment, the total cost in this exercise will be 
the same as in Exercise 1.

Again, all work packages are assumed to be identically distributed, for simplic-
ity. Then the expected value of each work package cost is:

	
x m b zj j j= + = + ( ) =$ $ $48 000 1000 12 60 000, ,

	

The expected total job cost is then, as in Exercise 1:

	

E T T x
j

N

j[ ] = = = ( ) =
=
∑

1

10 60 000 600 000, $ ,

	

The standard deviation of each work package cost is:

	
σ σ σx u j zj j

b= + = ( ) + ( ) ( ) = =2 2 2 2 2 2
3000 1000 1 10 000 000 3162, , $

	

The covariance between any two work packages j and k, j ≠ k is:

	
cov cov , ,x x u u b b b bj k j k j k z j k z,  =   + = + =σ σ2 20 1 000 000

	

The variances on the main diagonal of the covariance matrix are:

	
σ x j

2 23162 10 000 000= = , ,
	

The sum of the terms in the covariance matrix may easily be determined in any 
case by a spreadsheet program. In this particular case, it is also easily done by 
pocket calculator. There are N = 10 main diagonal elements with variance 10,000,000 
and 90 off-diagonal elements with covariance 1,000,000, which add up to a variance 
of the total cost of:

	

σ
σ

T

T

2 90 1000 000 10 10 000 000 190 000 000

13 784

= ( ) + ( ) =
=

, , , ,

$

, ,

, 	

Addressing the same question as in the earlier exercise: if the contractor wishes 
to be 90% confident that the number will not be exceeded, the contractor should use 
as his estimate of the total cost,

7.4 � Finding the Correlation Due to Common Cause
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90 600 000 1 282 13 784 617 671th $ $ , $% , . ,= + ( ) = 	

In this case, the contingency of 1.282 × 13,784 = $17,671 is added to the expected 
value to reach the 90% confidence value. This reflects a contingency of 2.9% of the 
expected cost, more than in the independent case, but still a very small 
contingency.

The correlation coefficients between work package j and work package k were, 
in the independent case, zero for all j ≠ k. In this case, the common cause, weather, 
implies correlation coefficients for all j ≠ k given by:

	

ρ
ρ σ σ σ

σ σ

σ

σ σx x

u u u u j k z

x x

j k z

x x
j k

j k j k

j k j k

b b b b
=

+
= =

( )
(

2 2 2
1000

3162))
=

2
0 10.

	

This slight amount of correlation has increased the coefficient of variation for 
each work package to 3162/600,000 = 5.3%, compared to 5% for the independent 
case. The coefficient of variation of the total job cost has increased to 13,784/600,000 
= 2.3% compared to 1.6% for the independent case. By all these metrics, the uncer-
tainty in the weather has had very little effect on the dependence of the work pack-
ages and the uncertainty in the total job cost.

Example 7.3
Suppose, for the project in the previous case, that the contractor now recognizes that 
his meteorological forecasts are not very accurate. The contractor makes a three-
point estimate of the probability distribution on the number of days lost to weather, 
as in the Table 7.2.

(Here, as in previous exercises, the values have been chosen to make the arithme-
tic easier. This probability distribution is highly skewed to the right, as one might 
expect).

If everything else remains the same as in the previous case, on the average the 
contractor expects 12 days to be lost on the job, except now the contractor believes 
that his standard error is 10 days.

Again, all work packages are assumed to be identically distributed, for simplic-
ity. Then the expected value of each work package cost is the same as before (add-
ing in the mean weather effect):

	
x m b zj j j= + = + ( ) =48 000 1000 12 60 000, ,$

	

Table 7.2  Example 3 work package cost estimates

Fifth percentile Fiftieth Ninety-fifth Mean Standard deviation

2.5 8 35 12 10

7  Sensitivity and Common Cause Effects
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The standard deviation of each work package cost is now:

	
σ σ σx u j zj j

b= + = ( ) + ( ) ( ) = =2 2 2 2 2 2
3000 1000 10 109 000 000 10 440, , ,$

	

The covariance between any two work packages j and k, j ≠ k is:

cov covx x u u b b b b
j k j k j k z j k z
,    ( )= + = + = =σ σ2 2 20 1000 1000 10 1000 000 000 108, , =

The variances on the main diagonal of the covariance matrix are:

	
σ x j

2 2 610 440 109 000 000 109 10= = = ( ), , ,
	

There are N = 10 main diagonal elements with variance 109(10)6 and 90 off-
diagonal elements with covariance 108, which add up to a variance for the total job 
cost of:

	

σ

σ
T

T

2 8 6 6 7 690 10 10 109 10 9000 10 1090 10 10 090 10= ( ) + ( )( ) = ( ) + ( ) = ( ),

== $100 449, 	

Addressing the same question as in the earlier exercises, the contractor, if he 
wishes to be 90% confident that the estimated cost will not be exceeded, should use 
as his estimate of the total cost:

	
90 600 000 1 282 100 449 728 776th $ $ , $% , . ,= + ( ) = 	

In this case, the contingency of 1.282(100,449) = $128,776 is added to the 
expected value to reach the 90% confidence value. The contingency is now 21% of 
the estimated average cost.

In this example, the common cause, weather, implies correlation coefficients:

	

ρ
ρ σ σ σ

σ σ

σ

σ σx x

u u u u j k z

x x

j k z

x x
j k

j k j k

j k j k

b b b b
=

+
= =

( ) ( )2 2 2 2
1000 10

110 440
0 92

2
,( )

= .

	

The correlation coefficients have increased due to the greater uncertainty in 
the weather forecasts, and in consequence the 90% confidence cost value has 
increased from $612,162 to $728,776. In another way of looking at this result, if 
the contractor had assumed independence, and estimated the total cost including 
contingency at $612,162, when the work packages are actually highly correlated, 
the probability of the cost overrunning this amount would be not 10% but 45%. 
The contractor, by assuming independence, would have seriously underestimated 
the risk of the project.

7.4 � Finding the Correlation Due to Common Cause
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Example 7.4
Figure 7.2 shows how the correlation coefficients ρx xj k

j k, for ≠ , vary with the 
standard error of the weather forecast, σz, with all other parameters the same as in 
the previous exercise. The correlation is, of course, asymptotic to 1.0. Figure 7.2 is 
a plot of the required contingency, as a percentage of the expected value of the total 
project cost, needed for the contractor to have 90% confidence that the estimate will 
not be overrun. (This is also known as the Value-at-Risk).

Figure 7.3 shows how the required contingency increases approximately linearly 
with the standard deviation of the error in the weather forecast. The figure below 
combines the two figures just above to show how the required contingency (as a 
percentage of the expected job cost) varies with the correlation coefficient. As can 
be easily seen, the required contingency increases rapidly if the correlation coeffi-
cient exceeds 0.80.

Example 7.5
In the previous exercises, for simplicity, all work packages were assumed to be 
equally affected by the weather. This may be the case, for certain types of projects 
in which all the work is outdoors, but in many projects the individual work packages 
are differentially affected by some common cause.

Consider a simplified version of Exercise 3, in which N  =  6 for simplicity. 
Assume that everything is the same as in Exercise 3, except that only work packages 
1, 2, and 3 are affected by the weather, and work packages 4, 5, and 6 are completely 
unaffected by the weather. Then

	
bj = =$ per day for j1000 1 2 3, ,

	

Fig. 7.2  Contingency vs. weather forecasting error
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bj = =0 4 5 6for j , ,

	

Then the expected value of each work package cost depends on the influence of 
the weather factor:

	
x m b zj j j= + = + ( ) = =48 000 1000 12 60 000 1 2 3, , , ,$ for j

	

	
x m b zj j j= + = + = =48 000 0 48 000 4 5 6, , , ,$ for j

	

The standard deviation of each work package cost is now:

	

σ σ σx u j zj j
b= + = ( ) + ( ) ( ) =

=

2 2 2 2 2 2
3000 1000 10 109 000 000

10 440

, ,

,$ forr j = 1 2 3, , 	

	
σ σ σx u j zj j

b= + = ( ) + ( ) = =2 2 2 2 2
3000 0 10 3 000 4 5 6$ for j, , ,

	

Fig. 7.3  Contingency vs. correlation

7.4 � Finding the Correlation Due to Common Cause



162

The covariance between any two work packages j and k, j ≠ k is:

cov covx x u u b b b b
j k j k j k z j k z
,    ( )= + = + = =σ σ2 2 20 1000 1000 10 100 3 3

0 4 4

8

2

if j and k

, if j or k

≤ ≤

= + = ≥ ≥   cov covx x u u b b
j k j k j k z

σ

The variances on the main diagonal of the covariance matrix are:

	

σ

σ
x

x

j

j

2 2

2 2

10 440 109 000 000 1 2 3

3000 9 000 000

= = =

= =

, , , , ,

, ,

for j

for j == 4 5 6, ,
	

The total 6 by 6 covariance matrix is, then:

Landscaping Pave Lot Ext Paint Wiring Conduit Int Paint

Landscapi

. .

nng

Pave Lot

109000000 100000000 100000000 0 0 0

100000000 109000000 1100000000 0 0 0

100000000 100000000 109000000 0 0 0Ext Paint

Wiring

.

00 0 0 9000000 0 0

0 0 0 0 9000000 0

0 0 0 0 0 9000000

Conduit

Int Paint.





























The sum of all the terms in the covariance matrix is the variance of the total 
cost, or:

	

σ
σ

T

T

2 954000000

30 887

=
= $ , 	

The correlation matrix is then:

	

Landscaping Pave Lot Ext Paint Wiring Conduit Int Paint

Landscapi

. .

nng

Pave Lot

Ext Paint

1 00 0 92 0 92 0 0 0

0 92 1 00 0 92 0 0 0

0 92 0 92 1

. . .

. . .

. . . ..

.

.

. .

00 0 0 0

0 0 0 1 00 0 0

0 0 0 0 1 00 0

0 0 0 0 0 1 00

Wiring

Conduit

Int Paint




























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The correlation matrix shows, for example, that the costs of Exterior Painting 
and Interior Painting are independent, although both are about painting. 
(Independent, at least, with regard to the weather; there might be other common 
causes, such as a shortage of painters, that would affect both Interior and Exterior 
Painting). On the other hand, Parking Lot Paving and Exterior Painting are highly 
correlated, although paving and painting have nothing to do with each other, other 
than the fact that both are weather-sensitive. If a bidder on this job were to assume 
that all the work packages are independent, he would seriously underestimate his 
risk of cost overrun on this project.

7.5  �Practice Problems

Problem 7.5.1  Consider Practice Problem 3.5.1 from Chap. 3 (i.e. a small project 
comprised of six sequential activities). Calculate the covariance between the cost of 
each the six activities and the total project cost.

Problem 7.5.2  Weather is only one of many possible common causes that might 
affect the costs and durations of multiple activities on a project. A few other possible 
causes are listed below. Based on your experience, list another five or six possible 
common causes.

	1.	 Weather
	2.	 Power failure
	3.	 Escalation in prices of steel or other basic commodities
	4.	 Changes in government regulations or regulators
	5.	 Shortages of construction craftsmen in the area

Problem 7.5.3  Suppose that w is another underlying common factor similar to z, 
with the following conditions:

	

E w w

E w w

E w w u u for k

E w w z z

w

k k

[ ] =
−( )



 =

−( ) −( )  = ∀

−( ) −( )

2 2

0

σ

 = ρ σ σwz w z 	

That is, the underlying variable w is uncorrelated with the work package vari-
ables but may or may not be correlated with the other common factor z. Then, let:

	

x m u b z c w

x m u b z c w

j j j j j

k k k k k

= + + +

= + + +
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By a derivation similar to that above, show the following, for all values of j and 
k:

	

x m b z c w

b c b c
k k k k

x u k z k w k k wz w z

x x

u

k k

j k

= + +
= + + +

=

σ σ σ σ ρ σ σ

ρ
ρ

2 2 2 2 2 2 2

,
jj k j k

j k

u u u j k z j k w j k k j wz w z

x x

b b c c b c b cσ σ σ σ ρ σ σ

σ σ

+ + + +( )2 2

	

Thus, with two common factors, the entire N × N correlation matrix for the work 
package costs can be generated from 2N + 3 terms: N terms for the bk coefficients, 
N terms for the ck coefficients, two variances for the underlying factors, and one 
(possible) correlation between the two common factors.
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Chapter 8
Approximate Risk Function for Project 
Durations

Abstract  In this chapter we discuss the application of the second moment 
method in scheduling networks. The issue we focus here is on finding the proba-
bility distribution for the project completion time when there are multiple net-
work paths in the project and therefore the critical path is itself uncertain. We 
present an approximate method to this problem and discuss its validity in a larger 
managerial context.

Keywords  Scheduling networks · Longest path · Approximate methods · 
Probability distribution

8.1  �Introduction

The estimation of the probability distribution, and hence the risk of overrunning 
the budget, for project costs is relatively straightforward, given the usual cost 
model, in which the total project cost is the sum of the work package costs. In this 
case, as we have seen, the probability density function for the total project cost is 
approximately Normal, regardless of the probability distribution of the work pack-
age costs, whether or not the work package costs are correlated. Moreover, by the 
properties of the moments of sums of random variables, the mean of the distribu-
tion on total project costs is the sum of the work package means, and the variance 
of the total project cost distribution is the sum of the terms in the work package 
covariance matrix.

Networks, however, introduce another issue. The expected length of each path 
through the network is the sum of the expected durations of all the activities on that 
path, but the critical path (that is, the longest path) may change depending on the 
random values of the individual activity durations. The issue is to find the (approxi-
mate) probability distribution for the project completion time when there are mul-
tiple paths through the project network, and which path may be critical (that is, 
controls the project duration) is itself uncertain. This chapter explores this topic 
further, using an approximate approach.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14251-3_8&domain=pdf
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8.2  �Project Paths Model

Suppose that the project network consists of a total of N activities. Let xj be a  
random variate representing the length of activity j, and let the mean and standard 
deviation of this variate be given by (MacCrimmon and Ryavec 1964):

	

E x x

E x x

j j

j j j

  ≡

−( )




≡

2 2σ
	

Suppose that the correlation between the duration of activity j and the duration of 
activity k is ρjk, and so the N × N covariance matrix V for all project activities is:

	

V =
σ ρ σ σ ρ σ σ ρ σ σ

ρ σ σ σ ρ σ σ ρ σ σ
ρ σ

1
2

12 1 2 1 1 1 1

12 1 2 2
2

2 2 2 2

1

 

 

k k N N

k k N N

N 11 2 2
2σ ρ σ σ ρ σ σ σN N N Nk k N N 

















	

Now assume that, based on the mean durations x j , the network algorithm com-
putes the critical (longest) path, the next-to-longest, the third longest, etc., up to 
some reasonable number M of longest paths. Thus there are no remaining paths 
through the network longer than the shortest path in this set, based on the mean 
activity durations. Number the M longest paths such that path 1 is the longest, path 
2 the second longest, path 3 the third longest, etc. Then, let A1 be the set of all the 
activities in path 1, let A2 be the set of all activities in path 2, Ak the set of activities 
in path k, etc. Let Nk be the number of activities in path k, etc. Of course, these sets 
are not mutually exclusive, because there may be many activities that appear in 
more than one path.

Then, define T1 as a random variable representing the length of path 1. This is the 
sum of the (random) lengths of all N1 activities in path 1, or,

	

T x
i A

i1

1

=
∈
∑

	

It is important that the network algorithm uses the mean activity durations, so 
that the mean length of path 1 as calculated by the algorithm is given by:

	

T x
i A

i1

1

=
∈
∑

	

Similarly, for paths 2, 3, …, k, …, and M.
The variance of the length of path 1 is obtained by the usual approach for finding 

the variance of a sum of random variables, as in the case of work package costs.  
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In this case a square N1 × N1 path covariance matrix V1 is set up to contain only the 
N1 activities on path 1. That is, we extract the variances and covariances for the N1 
activities on path 1 from the total network covariance matrix V defined above. Or, it 
may be easier when using spreadsheets to obtain V1 by deleting from the network 
covariance matrix V all the rows and columns corresponding to the activities that 
are not in path 1.

The variance of the length of path 1, var[T1], is obtained by summing all the N1
2 

terms in the V1 covariance matrix. Of course, it is not actually necessary to construct 
a new matrix V1; one can compute the variance var[T1] from the network variance 
matrix V simply by extracting the N1

2 terms corresponding to the activities in path 
1. Similar calculations for paths 2 though M produce the variances for all the sepa-
rate paths through the network: var[T2], var [T3], … , var [Tk], … , var [TM].

Of interest now is the correlation between any two paths in the set of M paths. 
Consider just paths 1 and 2, the longest and the second longest paths. The covari-
ance of the lengths of path 1 and path 2 is given by:

	

cov T T E T T T T E x x
j A

j
j A

j
k A

1 2 1 1 2 2

1 1

,[ ] = −( ) −( )  = −










∈ ∈ ∈
∑ ∑

22 2

1

1 2

∑ ∑

∑

−






















[ ] = −( )





∈

∈

x x

T T E x x

k
k A

k

j A
j jcov ,






−( )























∈

∑
k A

k kx x
2 	

The product of the terms in the summation signs will result in N1 × N2 terms, 
x x x xj j k k−( ) −( )  for ∀j ∈ A1, ∀ k ∈ A2, corresponding to each of the N1 activities 

in path 1 multiplied by each of the N2 activities in path 2. There are two causes of 
correlation between path 1 and path 2:

If the same activity appears in both paths, then:

	
j k so that E x x x x E x xj j k k j j j= −( ) −( )  = −( )




=,

2 2σ
	

If there are two different activities on the two paths, then the lengths of these 
activities are correlated if there is a nonzero term in the correlation matrix [ρjk]:

	
j k so that E x x x xj j k k jk j k≠ −( ) −( )  =, ρ σ σ

	

Now, by definition,

	

cov var var
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var var
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T T T T
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Correlations between path lengths will typically tend to be positive, because 
common activities on two paths will obviously contribute to positive correlation, 
unless the covariance between two particular activities is very large and negative. 
Negative correlation between activity durations means that there would be a ten-
dency for a larger than expected duration for activity j on one path to be associated 
with a shorter than expected duration for activity k ≠ j on another path. This might 
happen, for instance, if the two activities occur at about the same time and have 
common resource requirements, and these resources are limited. Then, assigning 
more resources to activity k than expected would make that activity’s duration 
shorter than expected, and would result in fewer resources than expected for activity 
j, which would make that activity take longer than expected, and the two activities 
could be negatively correlated.

As path 1 is, by the construction above, the critical path (based on the mean 
activity durations), the length of path 1 will at least heavily influence the total proj-
ect completion time. Consequently, the correlations between T1 and the remaining 
M − 1 paths are of most interest. Suppose the correlation between path 1 and path j 
is large; that is, ρT Tj1 ,  is high. High correlation means that there is a tendency for a 
greater than expected length on path j to be associated with a greater than expected 
length on path 1. But path 1 is the longest path by definition, and so E[Tj] ≤ E[T1]. 
Thus, if E[Tj] is significantly less than E[T1], with high positive correlation between 
path j and path 1, it is unlikely that path j would ever be the critical path. For exam-
ple, if path j were to take much longer than expected, then path 1 probably also takes 
much longer than expected, and therefore may still be the critical path. Hence, in 
these circumstances, path j can be ignored, as it is unlikely to contribute much 
uncertainty to the total project duration. The question remains, how large does the 
correlation have to be, to be considered to be large, and to justify dropping path j 
from further consideration? As an approximation, we might say that any correlation 
greater than some cutoff value could be considered highly correlated and therefore 
the correlated path could be neglected.

On the other hand, the correlation between path 1 and some path k could be 
small. This means that the durations on path 1 and on path k are independent, and 
path k could become the critical path in some circumstances, depending on the 
actual values of the random activity durations. Whether path k becomes the critical 
path also depends on the values for E[T1], E[Tk], var [T1], and var[Tk]:

If E[Tk] ≪ E[T1] and/or var[Tk] ≪  var [T1], then it is unlikely that path k will ever 
be critical. If this is true for all paths 2, 3, …, M, then path 1 is a dominant path and 
will almost always be the critical path. Then the probability density function for the 
completion time of the project will be nearly the same as the probability density 
function for the length of path 1. As the length of path 1 is simply the sum of the 
durations of the activities on this path, the probability density function will be 
approximately Normal, using the same reasoning as we used when considering 
work package costs.

If E[Tk]] ≅ E[T1] and var[Tk] >  var [T1], then there may be a reasonably high 
probability that path k is the critical path, even though, on the basis of the mean 
activity durations, path 1 is critical. If this is the case, then the probability density 
function for the project finish time can become highly skewed to the right.

8  Approximate Risk Function for Project Durations
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The question remains, how small does the correlation have to be, to be  
considered to be approximately zero, and to justify treating the length of path k as 
independent of the length of path 1? As an approximation, we might say that any 
correlation less than some cutoff, say 0.3 or so, could be considered uncorrelated 
and therefore that the two paths in question are independent.

It is easy to see that if path 1 and path k are negatively correlated, then path k is 
also of concern, because then path k would tend to become longer when path 1 is 
shorter, increasing the likelihood that the critical path would shift to run through 
path k.

Suppose now we are interesting in assessing the risk that a project will overrun. 
Here we will look only at path 1 and path k, where these two paths are judged to be 
independent on the basis of the computation of ρT Tk1 ,

. Consider some finish time of 
interest, say t, computed from the project start at time 0. Then the probability of no 
overrun is the probability that neither path exceeds time t, which is just the probabil-
ity that both paths are less than t. That is, we wish the probability:

	
Pr T t T tk1 ≤ ∩ ≤[ ] 	

Then, the risk of an overrun (on either path 1 or path k) is just the probability that 
one or the other overruns, which is just 1.0 – the probability that neither overruns:

	
Pr Pr Proverrun T t T t T t T tk k[ ] = > ∪ >[ ] = − ≤ ∩ ≤[ ]1 11

	

From elementary probability theory, the joint probability is given by the product 
of the conditional probability times the marginal probability:

	
Pr Pr Pr Pr PrT t T t T t T t T t T t T t T tk k k k1 1 1 1≤ ∩ ≤[ ] = ≤ ≤[ ] ≤[ ] = ≤ ≤[ ] ≤[ ]| |

	

In this expression, Pr[T1 ≤ t| Tk ≤ t] is the conditional probability that the length 
of path 1 is less than t given that the length of path k is less than t. Similarly, 
Pr[Tk ≤ t| T1 ≤ t] is the conditional probability that the length of path k is less than t 
given that the length of path 1 is less than t. Unfortunately, conditional probability 
distributions are difficult to determine. Therefore, we take recourse in the low cor-
relation between path 1 and path k and make the assumption that low correlation 
implies that these two paths are approximately independent. With this assumption 
of independence, the above equation simplifies to:

	
Pr Pr PrT t T t T t T tk k1 1≤ ∩ ≤[ ] ≅ ≤[ ] ≤[ ] 	

and the risk of an overrun is, approximately:

	
Pr Pr Pr Proverrun T t T t T t T tk k[ ] = − ≤ ∩ ≤[ ] ≅ − ≤[ ] ≤[ ]1 11 1 	

Now, Pr[Tk ≤ t] is just the cumulative probability distribution for Tk evaluated at 
the duration t, and similarly for Pr[T1 ≤ t]. These values can easily be obtained if we 
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assume some form of the cumulative probability distribution. As noted earlier, the 
path length T1 is simply the sum of the N1 random activity durations along path 1. 
We saw before that the total path length is also approximately Normal, whether the 
individual activities are independent or correlated. We have already computed the 
mean and the variance of path length T1 above. The same arguments apply to Tk.

Let Φ(τ) represent the value of the cumulative probability distribution for the 
unit Normal (the Normal with mean 0 and standard deviation 1) evaluated at point 
τ. Then we have, from the equation above,
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in which the transformations
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are made to convert to unit Normal variates.
It is then straightforward to compute these functions for many values of t and 

then to plot the cumulative distribution function of the probability of an overrun 
versus t. To make the tails more visible to the eye, it is often helpful to plot the prob-
ability density function, which is of course just the derivative of the cumulative 
distribution function. If this is done in the general case, it will be seen that there are 
certain combinations of T T Tk1 1,var ,[ ]  and var[Tk] that produce probability density 
functions that are nearly symmetrical and Normal, and there are other combinations 
of T T Tk1 1,var ,[ ]  and var[Tk] that produce probability density functions that are very 

highly skewed to the right. The latter condition occurs especially when var Tk[ ]  is 
large compared to T Tk1 − .

This point can be seen more clearly by making the transformations
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Then, the cumulative probability of not overrunning is given by:
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for all values − ∞  ≤ τ ≤ ∞.
This derivation can be extended to a greater number of paths, as long as they all 

can be considered to be independent of each other. That is, there might be three 
paths in the above expressions if all the possible correlations between path 1, path j, 
and path k were small. However, if path j and path k were not correlated with path 
1, but were highly correlated with each other, there would be only two independent 
paths; either j or k would be dropped.

This chapter shows one way to get an approximate relation for the risk of a proj-
ect schedule overrun without recourse to Monte Carlo simulation (McCabe 2003). 
The significant approximations are as follows:

All paths through the network that are highly correlated with the critical path 
length are neglected, on the basis that, if they were perfectly correlated, they would 
never become critical. However, some cutoff value of the correlation coefficient 
must be chosen, such that any computed correlation above this value will be consid-
ered to be equivalent to perfect dependence. This approximation may introduce 
error, as the neglected paths might have become critical under some rare combina-
tion of random variates.

All paths that have low correlations with the critical path are assumed to be inde-
pendent of the critical path. However, some cutoff value of the correlation coeffi-
cient must be chosen, such that any computed correlation below this value will be 
considered to be equivalent to perfect independence. This approximation may intro-
duce error, as the computation assumes that the joint probability is the product of 
the marginal probability distributions, which is true only if all the variables are 
independent.

If one defines a critical correlation ρind such that any computed path correlation 
ρ ≤ ρind is considered to be equivalent to ρ = 0, and a critical correlation ρdep such 
that any computed path correlation ρ ≥ ρdep is considered to be equivalent to ρ = 1, 
then there may be some computed values ρind < ρ < ρdep that fall into neither cate-
gory. In the simple model given here, such situations cannot be handled. In cases in 
which this situation occurs, the value of ρind should be adjusted upward and the criti-
cal value ρdep should be adjusted downward until the set of correlations lying 
between them is empty. For example, set ρind = ρdep = 0.5.

Example 8.1
Consider a very simple project network shown in Table  8.1. The initial node is 
START and the completion is FINISH. The table below gives, for the activities 1 
through 8, the precedences, the Most Likely duration (the mode), the Lower Bound 
duration (5-th percentile), and the Upper Bound duration (the 95-percentile). 
Durations are all in weeks.
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The values for the means were estimated from the given estimates for the Lower 
Bound, Most Likely, and Upper Bound using the Pearson-Tukey formula:

	
µ = + +( )0 63 0 18550 5 95. .x x x

	

In this notation, xk represents the estimated value of the random variable at the 
k-th percentile of the probability distribution. Therefore, x50 is the value of the ran-
dom variable at the 50th percentile, hence the Median; x5 is the estimated value of x 
at the 5th percentile, or Lower Bound; and x95 is the value of x at the 95th percentile, 
or Upper Bound. Keefer and Bodily (1983) found that the maximum percentage 
error using this formula in their experiments as less than 0.1%, and the average 
percentage error was about 0.02%.

The standard deviations in the table were estimated by the Extended Pearson-
Tukey formula (1965):

	
σ =

−x x95 5

3 25. 	

The correlation coefficients between the durations of the various activities are 
given by the following 8 × 8 correlation matrix:
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Table 8.1  Project network for Example 8.1

Activity 
(j) Predecessors Successors

Lower 
bound (x5)

Median 
(x50)

Upper bound 
(x95)

Mean 
(μ)

Standard 
deviation (σ)

1 START 2, 5 8 9 18 10 3
2 1 3 8 9 18 10 3
3 2 4 8 9 18 10 3
4 3, 5 FINISH 8 9 18 10 3
5 1 4 8 15 24 15 5
6 START 7 6 8 22 10 5
7 6 8 3 15 29 15 8
8 7 FINISH 6 8 22 10 5
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The covariances for the durations of the various activities are computed from the 
correlation matrix and the standard deviations shown in the first table above. They 
are easily obtained from the correlation matrix by multiplying each correlation 
coefficient by the standard deviations of the activity in its row and the activity in its 
column: Doing so gives the following 8 × 8 variance-covariance matrix:

	

1 2 3 4 5 6 7 8

1 9 0 1 8 1 8 1 8 3 0 0 0 0

2 1 8 9 0 1 8 1 8 3 0 0 0 0

3 1 8 1 8 9 0 1
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6 0 0 0 0 0 25 0 3

.

. . . . .
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Critical path calculations are often, as in PERT, based on the most likely dura-
tions. The most likely durations are the modes, but here the medians are estimated, 
not modes. However, when the probability distributions are skewed to the right, as 
these are, the median values are greater than the modes. Thus, using the medians as 
single point estimates of the modes is conservative. Based on the median values for 
the activity durations from the table above, the three longest paths through the net-
work (the only paths through this simple network) are:

Path 1: START – 1–2–3–4 – FINISH; duration = 36 weeks
Path 2: START – 1–5–4 – FINISH; duration = 33 weeks
Path 3: START – 6–7–8 – FINISH; duration = 31 weeks

However, based on the mean values for the activity durations, the three longest 
paths through the network (the only paths through this simple network) are:

Path 1: START – 1–2–3–4 – FINISH; duration = T1  = 40 weeks
Path 2: START – 1–5–4 – FINISH; duration = T2  = 35 weeks
Path 3: START – 6–7–8 – FINISH; duration = T3  = 35 weeks

The mean path lengths are longer than the sum of the median activity durations 
because the probability distributions for these activities are all skewed to the right; 
the means are greater than the medians. Note that the median path length is not 
equal in general to the sum of the medians of the activities along that path. In fact, 
it was argued above that the path length is approximately Normal, so the median 
path duration is equal to the mean path duration, hence the median path duration is 
greater than the sum of the activity medians.
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For these three paths, the variance of each path is computed from the sum of the 
covariances of all the activities on that path. For illustration, the variance-covariance 
matrices are shown for each of these paths.

For Path 1, the variance-covariance matrix is obtained from the above matrix by 
deleting all the rows and columns for activities not in this path:

	

1 2 3 4

1 9 0 1 8 1 8 1 8

2 1 8 9 0 1 8 1 8

3 1 8 1 8 9 0 1 8

4 1 8 1 8 1 8 9 0

. . . .

. . . .

. . . .

. . . .























	

Summing all the elements of this matrix gives the variance of the duration of 
Path 1 var[T1] as 57.6, so the standard deviation is 7.59 weeks.

For Path 2, the variance-covariance matrix is obtained from the total covariance 
matrix by deleting all the rows and columns for activities not in this path:

	

1 2 3 4

1 9 0 1 8 1 8 1 8

2 1 8 9 0 1 8 1 8

3 1 8 1 8 9 0 1 8
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Summing all the elements of this matrix gives the variance of the duration of 
Path 2 var[T2] as 58.6, so the standard deviation is 7.66 weeks.

For Path 3, the variance-covariance matrix is obtained from the total covariance 
matrix by deleting all the rows and columns for activities not in this path:

	

6 7 8

6 25 0 36 0 22 5

7 36 0 64 0 36 0

8 22 5 36 0 25 0
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Summing all the elements of this matrix gives the variance of the duration of 
Path 3 var[T3] as 303, so the standard deviation is 17.41 weeks.

It is now possible to compute the correlation coefficients between paths 1 and 2. 
Using the equation derived above,
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Here, Path 1 has four terms and Path 3 has three. The 12 product terms are then:
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Taking the expectation of each term gives the matrix:
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Note that, even if all the correlation coefficients between activities were zero, the 
covariance of paths 1 and 2 would still contain the terms σ1

2 + σ4
2 because activities 

1 and 4 appear in both paths. Replacing the terms in the above matrix by numbers:
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Adding up all these terms gives cov[T1, T2] = 40.8. From this covariance, the cor-
relation coefficient between the two paths is:
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Similar reasoning shows that ρ ρT T T T1 3 2 3
0, ,= = .

Suppose that the project manager wishes to set a schedule date for project com-
pletion such that the risk of overrunning this date is approximately 5%. What value 
should he commit to for the scheduled completion date? If he/she considers that the 
correlation 0.70 is large, then Path 2 is dependent on Path 1 and so Path 2 can be 
ignored (because its mean duration is less than that of Path 1, and has about the 
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same standard deviation as Path 1. Path 3 is independent of path 1, so both paths 1 
and 3 must be considered. Using the equation derived earlier,

	
Pr Pr Pr≅ − ≤[ ] ≤[ ]1 1 3T t T t

	

The probability of overrunning any specified schedule date is shown in the fol-
lowing Fig. 8.1.

Here the project manager can read off the schedule date that has a probability 
of 5% (or any other value) of being overrun; this value is 64 weeks. Also shown 
in the figure are the plots for the probability of overrun for Path 1 and Path 3 
taken separately. Path 3 has a lower expected value (35  weeks) than Path 1 
(40 weeks), but the higher variance of Path 3 means that it has a higher probabil-
ity of controlling the total project length at longer durations. That is, if the project 
manager considers only Path 1, schedule duration with a 5% chance of being 
overrun is 52  weeks, which is 12  weeks too early. The possibility that Path 3 
might become the critical path requires the 64 week schedule; neglecting Path 3 
because of its lower mean value is unconservative and can lead to serious sched-
ule overruns.

What, however, if the project manager considers the 0.70 correlation between 
Path 1 and Path 2 to be small rather than large? With this view, all three paths would 
be independent. The equation above then becomes:

	
Pr Pr Pr Pr≅ − ≤[ ] ≤[ ] ≤[ ]1 1 2 3T t T t T t

	

Fig. 8.1  Path 1 and Path 3 probability of overrunning
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Figure 8.2 below compares the results when Path 2 is considered to be dependent 
on Path 1 (as in the previous figure) and the results when Path 2 is considered to be 
independent of the other paths.

The two solutions in the figure constitute bounds on the true solution. As the 
correlation coefficient between Path 1 and Path 2 lies in the interval 0 < 0.70 < 1, 
so must the probability distribution lie between the results for zero correlation and 
perfect correlation. In the area of interest, that is, the upper tail, above about 
55 weeks, there is no detectible difference between the two curves. Therefore, the 
result is not sensitive to the determination of whether a correlation of 0.70 is high 
(that is, can be taken as 1.0) or low (that is, can be taken as 0).

Figure 8.3 compares the results shown in the previous figure with the probabil-
ity distribution for the longest path determined by a Monte Carlo simulation using 
correlated Normal random variables with the means, variances, and correlation 
matrix given earlier. The Monte Carlo simulation was run for 32,000 critical paths. 
As can be seen, the Monte Carlo results are close to those obtained by the method 
described in this chapter. The curves in the figure deviate somewhat, but are close 
in the tails, and the answer to the project manager’s question, What is the schedule 
date with a 95% probability of being met, is again 64 weeks.

8.3  �Practice Problems

Problem 8.3.1  The following table summarizes the precedence relationship among 
the activities on a project (see Table 8.2). Also, it provides 3-point estimates for the 
duration of each activity. Determine how many paths are in this network and which 
one is the critical i.e. the longest.

Fig. 8.2  Comparison with Path 2 (Dependent and Independent)
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Find one-sided upper 95% confidence interval on project completion time. How 
would your answer change if the activities are correlated (see the correlation matrix 
below)?

	

Activity A B C D E F

A

B

C

D

E

F

1 0

1 0 0 8 0 8 0 8 0 8

0 8 1 0

0 8 1 0

0 8 1 0

0

.

. . . . .

. .

. .

. .

.88 1 0.





























	

Fig. 8.3  Comparison with Monte Carlo simulation

Table 8.2  Problem data

Activity Predecessor
Estimated duration
Optimistic Most likely Pessimistic

A – 12 15 30
B A 4 8 18
C B, D 2 6 10
D A 3 4 11
E B, D 2 4 6
F C, E 4 8 18
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Problem 8.3.2  A Monte Carlo simulation of a simple project network was exe-
cuted for various degrees of correlation between the network activities. The results 
for three primary paths and two values of the correlation coefficients, 0.00 and 
0.90, are tabulated below (see Table 8.3).

Assuming that this single example is representative of the general case, describe 
what appears to be happening with regard to the simulated critical paths as the 
activity-to-activity correlation is increased.

Problem 8.3.3  Susan was provided the following information about the project she 
is managing (see Table 8.4); it includes duration and cost of project activities for a 
normal schedule that utilizes the existing technologies and is predictable and accel-
erated schedule using innovative methods. Also, she was told that the activities can 
be accelerated/crashed in increments of 1 day with the cost that is proportional. For 
example, activity A can be crashed at most 4 days which will result in $28,000 of 
additional cost ($38K − $10K), and so forth.

Assuming that the cost of all crashed activities are random variables with 
COV = 0.3 what is the mean and standard deviation of the cost of the project if it’s 
to be completed 2 day earlier?

Table 8.3  Problem data

Path
Mean path length, 
correlation = 0.00

Probability of being 
the critical path

Mean path length, 
correlation = 0.90

Probability of being 
the critical path

1–3–
6–8–9

55.92 0.36 47.52 0.33

1–4–
5–7–9

57.35 0.34 57.70 0.44

1–2–
5–7–9

57.33 0.30 61.11 0.23

Table 8.4  Problem data

Activity Predecessor
Normal Crashed
Duration Cost Mean duration Mean cost

A – 6 10 2 38
B – 4 12 4 12
C – 4 18 2 36
D A 6 20 2 40
E B, D 3 30 2 33
F C 10 10 6 50
G F, E 6 20 2 100
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Chapter 9
Contingency and Management Reserves

Abstract  In this chapter we introduce the concept of contingency and management 
reserves. We provide the formal definition and a discussion on its use and misuse. 
We further provide the mathematical formulation of the contingency and the contin-
gency factor, the consideration of contingency in program management, and the 
effect of correlation.

Keywords  Contingency · Program management · Correlation · Probability 
distribution

9.1  �Introduction

In discussions of risk, the term contingency is often used. Contingency levels should 
be set for each project based on acceptable risk, degree of uncertainty, and confi-
dence levels for meeting baseline requirements. The process of evaluating potential 
project contingency funding requires the application of risk assessment and proba-
bilistic estimating techniques. Contingency may be added by the person or organi-
zation making the original estimate, or by some person or organization higher in the 
organizational structure, by owners, clients, or sponsors. Contingency may be added 
at all management levels connected with a project. The estimate to which the con-
tingency is added may itself contain contingency applied by lower levels in the 
project organization. Some people use the terms allowance or management reserve, 
in order to avoid the use of the term contingency, but it is not necessarily the case 
that all these are synonymous.

The dictionary definition of contingency is (Merriam-Webster 1983):

Contingency … a (1): the condition that something may or may not occur: the condition of 
being subject to chance (2): the happening of anything by chance: fortuitousness … 2 a: 
something that is contingent: an event or condition occurring by chance and without intent, 
viewed as possible or eventually probable, or depending on uncertain occurrences or coin-
cidences … b: a possible future event or condition or an unforeseen occurrence that may 
necessitate special measures <a reserve fund for contingencies> c: something liable to 
happen as a chance feature or accompaniment of something else.
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Note the frequent appearance of the word “chance,’ as well as its synonyms  
“possible,” “probable,” fortuitous,” and “without intent.” From the dictionary defi-
nition it might be supposed that a contingency would be for the purpose of cover-
ing “the happening of anything by chance … uncertain occurrences or coincidences 
… [or] an unforeseen occurrence” and therefore, the expenditure of the contin-
gency would be a result of chance, and should happen only if the “unforeseen 
occurrence” actually occurred. In that case, the actual expenditure of the contin-
gency would be itself “an event occurring … by chance,” and one would not expect 
the contingency to be exhausted in the normal course of activities. However, the 
term contingency is not understood in this way by many people; the term is often 
taken to refer to funds that will be completely expended in the course of the proj-
ect, no matter what happens.

It is useful to distinguish between systematic error and random error in the esti-
mation of costs, durations, and other factors (Taylor 1997). Systematic error refers 
to a bias or offset in our measurements or estimates. Systematic error is illustrated 
in Fig. 9.1a.

If we are hitting consistently below the aiming point, we need to adjust our 
sights. If we are surveying and measuring a baseline with a chain, and we fail to 
adjust for thermal expansion of the chain, then there may be a systematic error in all 
the readings, depending on the ambient temperature. The objective of engineering 
measurements is to identify and eliminate all sources of systematic errors. When all 
systematic errors have been corrected, then any errors remaining are random errors, 
as in Fig. 9.1b: One could also say that random errors are errors the causes of which 
have not (yet) been identified and therefore cannot (yet) be eliminated. The question 
is whether these residual errors are small enough that they do not lead to bad deci-
sions and do not prevent the successful accomplishment of the project objectives.

Random errors may also result in compensation. If we feel that shooting low is 
much less desirable than shooting high, as in the case of the asymmetric target (see 
Fig. 9.1c), then we may want to adjust our aim in order to do better, even when the 
errors are random. This asymmetric situation occurs when we have different prefer-
ences for being high or low.

Fig. 9.1  Types of errors. (a) Systematic error, (b) random error, and (c) random error with  
asymmetric target
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It may be that the errors, although random, are excessive, and should be reduced. 
This may require a change in the process. If a firm is subject to excessive random 
errors in cost estimates, it may need a new cost estimation process. This general 
subject is discussed at greater length in Chap. 12.

An example may help in illustrating the point. Suppose that someone tabulates 
the number of valves used on a substantial set of previous similar projects, and finds 
that, in every case, the number of valves actually installed was always 1.17 times the 
number of valves taken off of the engineering drawings by the quantity development 
function. Then a rule might be to plan on purchasing 17% more valves than the 
number of valves counted by quantity takeoff from the engineering drawings. This 
17% allowance for undercounting is not a contingency in the sense of the dictionary 
definition, because there is nothing about it referring to events due to chance. In this 
example, it would be an empirical fact that valves are consistently undercounted, 
and the 17% factor is to offset this inherent bias or systematic error. Therefore, the 
additional 17% for the valves not counted would always be spent. Note that the rule 
does not say to add 17% to the number of valves in the preliminary cost estimate, 
because this cost estimate might already have some adjustment factor in it.

Suppose now that the above example is slightly different, that is, from the histori-
cal data, the investigator determines that the factor relating actual valves used to 
valves counted on drawings is a random number, with average or mean 1.17, and 
standard deviation 0.10. Then the systematic error or bias is 17% of the valve take-
off, but there is a random component as well, which depends on chance events, and 
hence is contingent. To account for both the systematic error and the random error, 
we have to add 17% allowance to the number of valves actually counted, and then 
add another contingency to account for chance (for example, design changes or 
damage to valves in storage). When talking about chance, or contingency by the 
above definition, we must make probabilistic statements. If we want to be sure that 
we order enough valves 95% of the time, then we need to add 33% to the number 
counted (17% for the mean or systematic bias and 1.645 times the standard devia-
tion for the chance variation). Note that we would expect to have 16% of the counted 
valves left over, as these were ordered for protection against running out, and were 
expected to be unused. The term expected is used here in the probabilistic sense: 
expected means on the average. Therefore, the expected number of valves needed is 
1170, but this is not at all inconsistent with actually using 1250, for example. 
Table 9.1 summarizes the procurement and use of valves on this project.

Table 9.1  Project valve use

Valves Number

Valves actually counted on drawings 1000
Valves added to correct for undercount (systematic error) 170
Valves added to reduce the probability of running out of valves due to chance to 5% or 
less

164

Total number of valves to be ordered 1334
Expected number of valves to be installed 1170
Expected number of valves to be left over 164
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In these notes, the proper allocation of contingency, whether denominated in  
dollars or in valves, depends on the risks to the project of running out of resources; 
contingency is a buffer against this eventuality. Suppose that Project A is a refinery 
in Houston. Then the penalty for running out of valves is relatively low, as the lead 
time in the valve supply chain is relatively short (unless these valves are some spe-
cial type not in stock). However, suppose that Project B is an LNG facility on a 
deepwater platform far off the coast of equatorial Africa. Running out of valves 
might cause a work stoppage, and so replacement valves might have to be sent from 
Houston by chartered aircraft. Then the project manager for Project B should have 
a lower probability of running out of valves, and hence a larger contingency.

It is generally easier to deal with contingency in monetary terms, as money is 
fungible (can be used for various purposes), whereas we may not know what to do 
with 164 left-over valves (spare parts, perhaps?). The ambiguity arises because the 
term contingency is often used for both the amount needed to cover the systematic 
error and the amount needed to buffer against the risk attributable to chance. This 
usage can cause confusion, as some people, referring to contingency as systematic 
error or bias, expect that they will use it all up, whereas others, referring to random 
error or chance, expect that the contingency funds will be left over, and all funds not 
necessary to cover random or chance events ought to be returned to the project 
sponsor. Not surprisingly, those who claim the right to expend all contingency funds 
tend to be project managers, and those who expect to see at least some of the con-
tingency allowance returned tend to be owners.

In practice, relatively few projects return leftover contingency funds to the spon-
sor unless the project sponsor’s program manager holds the contingency from the 
start. In general, project managers may regard cost contingency funds as theirs to 
use; if the risks fail to materialize, the funds will be expended on something else, 
such as out-of-scope project improvements. Therefore, not only is there no consen-
sus on how large a contingency should be, there is no agreement on the basic point 
of whether the contingency is an unassigned cost that is intended to be spent or 
insurance that is intended not to be spent.

Beyond these bare minima, there is little consensus about the specific meaning 
of the term contingency. The term management reserve is often also used, some-
times as a virtual synonym of contingency, sometimes in distinction to it. The EIA 
Standard (EIA 1998) does not define the term contingency, but does define budget 
and management reserve, as follows:

BUDGET AT COMPLETION – The total authorized budget for accomplishing the pro-
gram scope of work. It is equal to the sum of all allocated budgets plus any undistributed 
budget. (Management Reserve is not included.) (Emphasis added.)

MANAGEMENT RESERVE – An amount of the total budget withheld for management 
control purposes rather than being designated for the accomplishment of a specific task 
or set of tasks.

However, virtually the same language is used by others to mean contingency.
The Guide to the Project Management Body of Knowledge (PMBOK® Guide) – 

Fourth Edition, (PMI 2008), defines both contingency reserves and management 
reserves:
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Budget reserve analysis can establish both the contingency reserves and the management 
reserves for the project. Contingency reserves are allowances for unplanned but poten-
tially required changes that can result from realized risks identified in the risk register. 
Management reserves are budgets reserved to unplanned changes to project scope and 
cost…. Reserves are not part of the project cost baseline, but may be included in the total 
budget for the project.

The Guide to the Project Management Body of Knowledge (PMBOK® Guide) – 
Fourth Edition, (PMI 2008), starts out well by stating the contingency exists “to 
account for cost uncertainty” (page 173) but then goes off-track by suggesting that 
contingency may be a percentage of the estimated cost or a fixed number:

Cost estimates may include contingency reserves (sometimes called contingency allow-
ances) to account for cost uncertainty. The contingency reserve may be a percentage of the 
estimated cost, a fixed number, or may be developed by using quantitative analysis 
methods.

As more precise information about the project becomes available, the contingency 
reserve may be used, reduced or eliminated. Contingency should be clearly identified in 
schedule documentation. Contingency reserves are part of the funding requirements.

Later, The Guide to the Project Management Body of Knowledge (PMBOK® 
Guide) (PMI 2008), states (page 301):

Estimates are made of potential project schedule and cost outcomes listing the possible 
completion dates and costs with their associated confidence levels. This output, often 
expressed as a cumulative distribution, can be used with stakeholder risk tolerances to 
permit quantification of the cost and time contingency reserves. Such contingency reserves 
are needed to bring the risk of overrunning stated project objectives to a level acceptable 
to the organization.

For cumulative distribution, see the example in this chapter, below.
To provide more consistency, in this book the terms contingency and manage-

ment reserve will be defined precisely. However, the reader is cautioned, as dis-
cussed above, that these definitions are not universally accepted.

We assume here a probabilistic view of costs and risks. That is, we assume that 
there is some underlying probability density function on the activity (or project) 
costs (or duration). This probability distribution may not be known, and is certainly 
not derived from data on relative frequencies, but is assumed to exist as a subjective 
probability distribution, although it may exist only in the minds of the project par-
ticipants. Being subjective rather than objective, different people may have (radi-
cally) different ideas about what it is. Given this probabilistic viewpoint, contingency 
is, then, an amount of money (or time, in the case of project schedules) added to the 
mean (or expected value) of this probability distribution in order to bring the total 
of the expected value plus the contingency up to a certain acceptable risk of overrun 
(that is, the remaining probability that the actual cost or duration would be above the 
mean plus contingency). Contingency may be added (or even subtracted) at all 
levels connected with a project. The estimate to which the contingency is added may 
itself contain contingency, applied by lower levels in the project organization.

Note that by the definition used here, contingency is added to the mean. Note 
especially that the expected value is not necessarily the deterministic or single point 
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value that may be given as the estimate. Although some people assume that the 
single point estimate may be taken as the mean of a probability distribution, there is 
no reason to believe that there is any direct connection between the point estimate 
and the expected value. The point estimate might be the mode of the distribution, or 
the median, or have no relationship whatsoever with a probability distribution. The 
estimate may already include some allowance for contingency.

9.2  �Setting Contingencies

The only project risk that is affected by the level of project contingency is the risk 
that the project will run out of money or time before it is completed. In projects that 
have absolutely fixed spending limits; for example, a public agency that has to issue 
bonds to cover a project, the spending limit should contain enough contingency so 
that the likelihood of running out of funds is acceptably small, as it may not be pos-
sible to gain additional funding. In private sector projects, a project manager who 
runs over his budget may have to appeal to the CEO, to the board of directors, or to 
outside bankers for additional funds to complete the project. This necessity creates 
a decision point at which the owner or the funding or lending source may decide to 
terminate the project by refusing further funds. Therefore, the initial funding alloca-
tion may include contingency such that a request for additional funds would precipi-
tate a management review of the feasibility of the project. But adding contingency 
raises the project budget, and hence in effect raises the project cost. Similarly, add-
ing schedule contingency increases the schedule duration, which implies that the 
project must start earlier.

Setting the contingency is then a matter for some negotiation between the project 
manager, who naturally wants the contingency allowance set high, and the funding 
source, who may want the contingency set low to maintain greater control over the 
project. The smaller the contingency, the more often the higher level of management 
would be asked for additional funds. Although the proper set point along this axis is 
subject to dispute, there is some point at which the upper management level would 
be considered to be micromanaging. Basically, the higher level of management typi-
cally takes the view that there are uncertainties associated with estimating and with 
executing jobs; and that they have hired the lower level managers to manage these 
activities, and they should be allowed to go and do it, without constantly coming 
back for additional funding approval. This point will, of course, vary with the 
organization.

The defining equation for contingency as used here is:

B = μ + aσ

B = Budget for a project or a work package
μ = Expected value of the project or WP cost
σ = Standard deviation of the project or WP cost
a = Contingency factor
aσ = Contingency allowance
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The contingency should be added to the expected value because the mean value 
is the only single number that gives an unbiased value uncontaminated by the vari-
ance (uncertainty). Any other number used as an estimate conflates the mean and 
some fraction of the standard deviation into a single figure. If all the cost estimates 
for all the work packages in a project were known to be the mean values of their 
individual distributions, the mean value of the total project would be the sum of 
these values. However, if the individual work package estimates are not the mean 
values of their distributions, then the sum of these estimates is not the mean value of 
the total cost (or duration). The total is the mean value plus some multiple of the 
standard deviation, but there is no information contained in it with which to estimate 
the standard deviation. Therefore, summing the estimates for all work packages 
without the discipline of using the mean value gives an estimate of the total cost that 
is not related to any identified level of uncertainty.

Typically, work package estimates, even at the lowest level, contain some contin-
gency factor. There is built-in bias from the estimator, who may expect to be criti-
cized more severely for an underestimate than for an overestimate. Also, there is a 
need to cover errors in estimating, which are usually errors of omission. That is, in 
taking off quantities from drawings, a quantity estimator may miss some, but is less 
likely to over count. Moreover, even if a computer does the quantity development, 
some instances may be missing from the drawings, and others may be added later, 
contributing to a bias toward undercounting, and adding contingency is a bias 
intended to offset this bias.

In the field, construction personnel will certainly take the position that the 
adverse impact of having material left over due to overestimation is far less than the 
adverse impact of running out before the job is finished. For these and other reasons, 
estimators may tend to add some contingency or safety factor. For similar reasons, 
the next level upward typically also adds contingency. Each person or organization 
that adds contingency does so to protect itself from the consequences of uncertainty, 
and these consequences are generally considered to be more dire if the number is 
underestimated rather than overestimated.

Therefore, by the hypothesis that each management level wishes to set the risk 
adjusted cost estimate at some preferred quantile of the underlying probability dis-
tribution, that management level must have some view of how much contingency 
has been already incorporated in the estimates they receive. If a manager wishes to 
set the risk adjusted cost estimate at approximately the 80th percentile, and the 
manager believes that the estimate is at the 50th percentile, then the difference in 
dollars (or time) between the 50th and the 80th percentiles must be added. If the 
manager believes the estimate has already been adjusted, up to the 70th percentile, 
for example, then less should be added. This process does not require that the 
manager know or state explicitly what the lower level contingency or risk is; only 
that the manager is familiar with the organization and how it works.

Conversely, if a manager believes that the estimates have already been adjusted 
up to, say, the 90th percentile, then the manager may cut the estimate. This may also 
occur if the manager’s knowledge of the business is such that he has a different view 
of the underlying uncertainties than others have. Then, the manager may wish a risk 
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adjusted cost estimate at the 80th percentile, and his subordinates or subcontractors 
may have already adjusted their estimates at the 80th percentiles, but their subjec-
tive probability distributions do not agree as to where the 80th percentile is. Or, a 
high-level contractor manager may feel that, regardless of the contingency or safety 
factor deemed desirable, competitive conditions won’t permit it. That is, there is a 
risk in setting contingencies too low, but also a risk in setting them too high, if one 
has to bid for a contract fixed price or get financial authorization from the sponsor’s 
management. In general, as estimates flow upward through different levels of orga-
nizations, we may expect that higher levels have better knowledge of strategic busi-
ness or political conditions, and so may make different decisions about contingencies. 
This may be untrue in specific cases, however. At the owner’s level, we may assume 
that knowledgeable owners can make better decisions about contingencies than 
inexperienced owners or owners that do not take the effort to be knowledgeable 
about project costs and durations.

9.3  �Project Policy and Procedures

Project policy and procedures documents should include precise and consistent 
definitions for terminology. The term contingency is in particular need of a consis-
tent definition, as it means different things to different people. Equally important are 
discussions and examples of approaches to setting budget contingency and setting 
schedule contingency. Contingency is not like value engineering, change control, or 
other cost control methods. Contingency is an allowance for error or a safety margin 
on budget overruns that is not based on reducing costs or risks, but on increasing the 
budget. By itself, contingency is not a cost control method, as its purpose is simply 
to have enough funds to pay for uncontrolled costs.

The definition of contingency as a percentage of the estimated cost to complete, 
instead of a percentage of the original estimate, is an improvement, but is a change 
from past practices in many cases. Project contingencies should be reported and 
reviewed in a consistent way, and this should be emphasized in policy documents in 
order to achieve consistency across all projects. Also, providing recommended or 
standard values or ranges for overall contingency allowances is a questionable prac-
tice, as it encourages project managers to use these values instead of performing 
project-specific risk assessments. A contingency percentage that might be adequate 
for some conventional infrastructure projects will be totally inappropriate for big 
science projects, waste remediation projects, and other one-of-a-kind or first-of-a-
kind plants, for which the technology may be new and unproven or the volume and 
characterization of the wastes uncertain, and which may need to retain much larger 
contingencies even at the final design stage.

There are at least two distinct issues in setting contingency. One purpose of con-
tingency is an allowance for unknowns in making estimates. Because these errors 
are predominantly errors of omission, some allowance must be added to cover them. 
But systematic undercounting reflects a bias. This is an uncertainty in the sense that 
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the actual systematic error is unknown. This type of contingency is bottoms-up, and 
is estimated at the work package or activity level. Adding all these work package 
contingencies would be valid if they all represented systematic errors, but is not, 
however, justified by statistical analysis insofar as these contingencies represent 
random errors. Adding random errors can easily result in a very large number, which 
then becomes the project budget. However, there is another kind of contingency 
needed for risk mitigation. This is not due to omissions in making estimates or any-
thing else at the activity level. It is needed to allow for unknowns at the overall 
project level. A construction project that is really a research and development proj-
ect may use new technology, which requires more project-level contingency. A 
waste remediation project needs contingency to cover the possibility that the in-situ 
waste may differ from the original characterization, but this is not an activity-level 
contingency. This kind of distinction is not merely verbal; there is an important dif-
ference in how such risks are estimated and project policies and procedures ought to 
make this distinction clear.

Moreover, there is a difference in how these different contingency factors are 
managed. If the project’s base budget includes those costs that are known and count-
able, with a separate allowance for the unknowns in estimating these costs, then one 
expects that over the life of the project all or most of this allowance will be trans-
ferred to budget, as these actual quantities and costs are identified. But project con-
tingency or management reserve may cover risk factors that would have very high 
impact if they occurred but are also highly unlikely to occur. If the contingency 
allowance for a possible flood is not used because no flood occurs, then this contin-
gency allowance should not be transferred to the base budget to cover overruns in 
other areas.

Who owns this contingency and what should happen to it if it is not necessary 
to expend it is a very important issue that should be addressed in the policies and 
procedures documents. It can be argued that management reserves for high conse-
quence, low probability events should be held at the program level, not at the proj-
ect level. Policies and procedures should address the different kinds of contingency, 
the need for contingency allowances, who controls them, and what should happen 
to them.

If a contract is for a fixed price, the contractor owns the contingency inside the 
bid price, and the contractor gets it if there is any left at the end. But this is not the 
case with cost-plus contracts. Even with a fixed-price contract, the owner needs to 
hold some contingency to cover potential change orders. Contingency policies need 
to distinguish between fixed-price, cost-plus, cost plus incentive fee, and other com-
mon types of contracts in the discussion of risk and contingency, and should state 
whether contingency is controlled at the project manager level or at the owner’s 
program level.

Why does anyone add contingency? Herein, it is assumed that the organization 
adding the contingency wishes to insulate itself from some of the consequences of 
overruns. Suppose for the sake of specificity, that a management level sets the  
contingency at that amount that will set the budget (for some activity, work package, 
subcontract, or total project, depending on the level of management) at, say, the 
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80-th percentile. That is, the probability of overrunning the risk-adjusted budget is 
20%. The probability of underrunning the risk-adjusted budget would seem to be 
80%, but it is more like zero. That is, it is likely that the entire contingency will be 
spent on the activity or project. If the actual cost of the activity turns out to be more 
than the risk-adjusted budget, for whatever cause, then the level of the organization 
responsible for this activity will have to request additional funding (or time) from 
the next higher level (or the owner), or terminate the project for lack of funds. 
Conversely, if the actual cost of the activity turns out to be less than the risk-adjusted 
budget, for whatever cause, then the level of the organization responsible for this 
activity is unlikely to return the excess funds to the next higher level (or the owner). 
Therefore, the risk-adjusted cost estimate provides a floor on the cost (or time) but 
does not provide a ceiling.

Why then do people use contingency? If the activity budget was set at, say, the 
50-th percentile of the (assumed) probability distribution on the total cost, then the 
management level responsible for that activity would have to go back to the next 
higher level for more funds (or time) about 50% of the time. This might seem exces-
sive. Certainly the organization doing the work would feel that asking for more 
funding with this frequency would be excessive, and therefore would want to add 
contingency so that this necessity would arise less often. The next higher level of 
management, which presumably controls the funds for the lower levels, might not 
wish to be bothered so much either, and therefore also has some reason for permit-
ting contingency.

Of course, there is no need to set the budget with contingency at the 50th percen-
tile. One could use the 40th, 30th, 20th, or 10th percentile. The smaller the percen-
tile, the more often the higher level of management would be asked for additional 
funds. Although the proper set point along this axis is subject to dispute, there is 
some point at which the upper management level would be considered to be micro-
managing. Basically, the higher level of management typically takes the view that 
there are uncertainties associated with estimating and with executing jobs; and that 
it has hired the lower levels to manage some activities, and they should be allowed 
to go and do it, without constantly coming back for additional funding approval. 
This point will, of course, vary with the organization.

Why is the contingency here said to be added to the expected value? Because 
the mean value, as a single number, gives a precise and unbiased estimate of the 
expected value uncontaminated by the variance. Any other number used as an 
estimate conflates the mean and some fraction of the standard deviation into a 
single figure. If all the cost estimates for all the work packages in a project were 
known to be the mean values of their individual distributions, the mean value of 
the total project would be the sum of these values. However, if the individual 
work package estimates are not the mean values of their distributions, then the 
sum of these estimates is not the mean value of the total cost (or duration). The 
total is the mean value plus some multiple of the standard deviation, but there is 
no information on which to estimate the standard deviation. Therefore, summing 
the estimates for all work packages gives an erroneous, and usually high, estimate 
of the total cost.
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In short, the view used here is that the term contingency applies to a single proj-
ect, or to sub projects; the risk adjusted cost estimate (including contingency) may 
be exceeded but will never be underrun. Many people differ on whether the contin-
gency, so -called, is supposed to be spent or not supposed to be spent. Here, the view 
is that it will be spent.

By distinction, management reserve is an amount of money (or time) controlled 
by a higher level of management that may be used at the discretion of that level, and 
may be moved between project and activities according to need. The fundamental 
attribute of management reserve is that it relies on having a number of projects that 
are statistically independent (or approximately so), so that the management reserve 
for the total program (of multiple projects) is not the sum of the management 
reserves for each project (or sub project).

Examples can help to illustrate this. Suppose that a construction project deter-
mines that one significant risk is that of a 100-year flood occurring during the con-
struction period. Suppose we say the probability of this is 0.01, and the estimated 
cost of the damage if it occurs is $50 million. Then the expected loss is 0.01 times 
50,000,000 = $500,000. If this amount is added to the project budget as a contin-
gency, then there are two possible outcomes:

The flood risk actually materializes, with probability 0.01, and the damage is $50 
million, which is far above the $500,000 contingency allowance. The project will 
have to ask for $49,500,000 in additional funding to cover the loss.

The flood risk does not materialize, with probability 0.99, and the $500,000 con-
tingency will be spent on something connected with the project.

That is, the net result of this approach is only to increase the project cost by 
$500,000.

However, suppose that instead of this contingency, the owner were to set aside 
a management reserve to cover the potential losses. One may expect that there are 
other projects with similar risks, and if they are statistically independent of this 
project (they are not all located on the same river, for example), then a loss on one 
will not be associated with losses on others; the owner will allocate the manage-
ment reserves to the project requiring them. To do this, the owner needs deep 
pockets.

A private owner with inadequate funds to cover such management reserves might 
buy flood insurance. Based on the expected value, the premium for this insurance 
should be, from the owner’s viewpoint, less than $500,000. This premium, whatever 
it is, becomes a part of the budget for the project, and is neither management reserve 
nor contingency, but simply an additional cost.

Or, the owner might take $500,000 and build a cofferdam around the project site 
to protect it from the 100-year flood. This is a scope increase, and is part of the 
budget, and is neither a contingency nor a management reserve, by the definitions 
used here – whether or not the flood occurs, the cofferdam is there, so the cost of the 
cofferdam is a project cost incurred to mitigate (avoid) the risk of a $50,000,000 
loss due to flooding.
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9.4  �Contingencies and Management Reserves in Program 
Management

Often project contingencies are set too low, due to an absence of risk analysis, but 
just as important as the size of the contingency is, who should control it.

It is often stated that project budgets and contingencies should be based on risk 
assessments, that is, on probabilities. However, probabilistic statements are impos-
sible to verify on the basis of a single observation. But if a program or contractor 
performs a large number of projects, statistical statements could in principle be veri-
fied over the population of all projects. As an illustration, if all project budgets are 
assigned contingencies such that the probability of overrunning is, say, 15%, then 
over a large number of projects one would expect that 15% would finish over budget 
but 85% would finish under budget. Does this actually happen? Quantitative com-
parisons are unfortunately limited, due to the absence of post mortem analysis of 
completed projects for lessons learned. However, even qualitatively, there may be 
serious questions about whether the assumptions made in assigning risk-based bud-
gets are in fact validated by experience. The objective of this section is to examine 
some of these assumptions and the conclusions that follow from them, to evaluate 
whether they are even qualitatively justified. This section also tries to examine the 
issue of contingency at a higher level than the single project, from the viewpoint, 
say, of a program or contractor with a large number of projects. The following mate-
rial is highly simplistic, but represents some elementary principles that might be 
kept in mind when seeking new approaches to risk and contingency management.

One inherent difficulty in the application of probability to projects is the fact that 
the probability distributions used in cost estimating (or scheduling) are not based on 
objective physical measurements or relative frequencies, which can in principle be 
measured and reproduced by independent observers. The probability distributions 
used for risk assessment generally are not based on adequate data, because adequate 
data often are not collected, but rather are based on judgments, experience, and 
other subjective factors, and cannot be objectively reproduced by different observ-
ers. That is, these probabilities are subject to bias and to manipulation. It is a natural 
human trait to try to protect oneself against the effects of uncertainties, and there-
fore individuals at all stages in the process of risk assessment and cost estimation 
may increase or decrease, consciously or unconsciously, safety margins of their own 
which are hard to identify.

To begin very simply, suppose there is one project, for which there is assumed to 
be a known, objective, probability distribution on the project cost. Let this probabil-
ity distribution have the expected value (mean) μ and variance σ2. Let the budget be 
given as the expected value plus some safety margin above the expected value. That 
is, let a ≥ 0 be a factor such that the budget (B) for this project is specified as a 
standard deviations above the mean; that is, B = μ + aσ. That is, a is set such that 
there is some acceptable probability that the actual cost will exceed the budget, and 
this probability is just the area under the probability density function above 
B = μ + aσ.
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To be more specific, assume that the project cost probability density is  
approximated by the Normal distribution (which is generally a good working 
assumption, if there are insufficient data to justify another specific distribution, 
such as the log Normal or the Erlang). If we set a = 1, for example, then the bud-
get B is one standard deviation (σ) above the mean (μ). Then, by the Normal 
assumption, there is roughly a 16% chance that the actual cost will exceed the 
budget. If a = 2 the probability that B would be exceeded is about 2%, and if a = 0 
the probability that B = μ would be exceeded is 50% (assuming the mean and the 
median are the same). As a numerical example, let μ = $400 and let σ = $1000 (in 
thousands of dollars); this is a moderately risky project with coefficient of varia-
tion σ/μ = 0.25. If we are satisfied with a budget with 84% probability of being 
adequate (that is, not being overrun), then set a = 1 and B = μ + aσ = $4000 + 
$1000 = $5000.

Now assume there is a second project with exactly the same statistical proper-
ties (to make the comparison easier). Consider a higher level of management, for 
example a program or a contractor performing fixed-price work, with cogni-
zance over both projects. Simply adding together the budgets for the two indi-
vidual projects would indicate that the higher management level needs a budget 
BT = 2B = $10,000.

However, the expected value of the total expenditure at the higher level is the 
sum of the expected values for the two projects, or μT = μ + μ = 2μ = $8000.  
Also, if the two projects are statistically independent, the total variance at the higher 
level is just the sum of the variances, or σ σ σ σT

2 2 2 22= + = . Thus, 

σ σ σT =   = =2 2 14142 $ . But, if we were to apply the same confidence factor 

to the total costs at the higher management level, namely a 84% probability of being 
sufficient, aT = 1 (as used for each project) and so BT = μT + aTσT = $8000 + 1($1414) 
= $9414 , which is not the answer BT = 2B = $10,000 obtained above.

Therefore, adding together the individual budgets for independent projects (or 
Work Packages within a project) overestimates the required reserve margin, if it is 
desired to have the same probability of overrun at the higher management level as 
for the individual projects. Actually, the sum of the budgets for the two projects, 2B 

= $10,000, corresponds to a value for aT = =2 1 414.  which in turn corresponds 

to a probability of 92% of underrunning, and 8% of overrunning (using the Normal 
distribution). The reason for this difference, obviously, is that at the higher manage-
ment level there is an opportunity for an overrun in one project to be offset by an 
underrun in the other. This possibility does not occur at the single project level, so 
the higher management level needs less margin to provide the same level of confi-
dence, as long as the projects are statistically independent.

Generalizing the above, now let there be N projects with exactly the same prop-
erties (to avoid having to make up new numbers and more complicated notation), 
such that all N projects report to the same higher level of management. The scope of 
this higher management level, say the company, is just the sum of all the projects 
under its cognizance. Adding the N individual project budgets given above would 
indicate that the higher level needs a budget of NB = $5000N.

9.4 � Contingencies and Management Reserves in Program Management



194

Again, the expected value of the total expenditure at the higher level is the sum 
of the expected values for the N projects, or μT = Nμ = $4000N. Also, if all N 
projects are statistically independent, the total variance at the higher level is the 

sum of the variances, or σ σT N2 2= . Thus, σ σ σT N N N= = =2 1000$ . 

Then, if we apply the same confidence factor to the higher management level, 
namely a 84% probability of its budget being sufficient, aT = 1 and

	 B a N NT T T T= + = +µ σ $ $4000 1000 	

which is much less than the conservative total budget NB = $5000N.
Suppose that N = 100, say, which might be the order of magnitude of projects in 

a large industrial owner or a contractor. Then N = 10 . Then the budget at the 
higher management level corresponding to 84% probability of being sufficient, 
would be

	 B a N NT T T T= + = + = + =µ σ $ $ $ $ $4000 1000 400 000 10 000 410 000, , , . 	

Thus, the sum of the individual budgets for the N projects, NB = $500,000, would 
greatly overestimate the required reserve margin if the projects are all independent, 
and would imply a value for a NT = = 10 , so if the budget at the program or com-
pany level were set at NB it would be ten standard deviations above the expected 
value. This would correspond to an infinitesimal probability of overrunning and a 
virtual certainty of underrunning (standard tables for the Normal distribution do not 
even give values at the 10σ level).

If the company were satisfied with a safety margin of 84% (that is, the probabil-
ity of exceeding its entire program budget for 100 jobs is 16%), then the budget at 
this level,

	 B a N NT T T T= + = + =µ σ $ $ $4000 1000 410 000, 	

if divided equally over the N  =  100 projects would give a budget for each of 
B

N
T = =

$
$

410 000

100
4100

,
 (recall that, for simplicity of illustration, all N projects 

have the same individual risk). This would correspond to a margin for each indi-
vidual project of,

	
a

a

N

a N

N
T T T

σ
σ σ

σ= =
( )

= 0 1.
	

which (by the Normal assumption) corresponds to a probability of 54%. That is, for 
the company to have a 16% risk of exceeding its total budget, each individual proj-
ect would have a probability of 46% of exceeding its individual budget, if the proj-
ects were all independent. A probability of 16% of a company exceeding its budget 
may be too high (or it could explain why the failure rate for contractors is relatively 
high), but any reasonable figure greater than zero will still show that the sum of the 
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individual project budgets is far too high, for N a large number and the projects all 
independent. Again, this is because, for large N, the assumption of randomness 
requires that surpluses on some projects will tend to offset overruns on others.

The discussion above is, obviously, just an illustration of the principle on which 
insurance is based: the larger the base over which risks are distributed, the smaller 
the margin needs to be. A possible project budgeting approach, based on this exam-
ple, might be for the owner’s program or the contractor (or other higher authority) 
to assign a budget to each project equal to its expected value and to hold all the 
reserve margin at the higher management level. Then projects that overrun (and 
about half would be expected to overrun in this scenario) would request additional 
funding from the contingency pool (management reserve) held at the higher man-
agement level. Projects that underrun (and about half would be expected to under-
run) would be expected to return the excess to the higher management level to cover 
the overruns on the others. This method would substantially reduce the total amount 
of margin needed, compared to treating each project separately.

As continually reiterated above, the results here are crucially reliant on the 
assumption that all projects (or work packages) are statistically independent. If 
there is some dependency or correlation between the costs for different projects, 
then the beneficial effect of grouping risks is reduced. (As it is in insurance: an 
insurance company may make money selling fire insurance as long as fires are ran-
dom and independent, but a major disaster such as an earthquake centered in one 
location could far exceed its reserves.) If project costs are positively correlated, then 
the variance at the higher management level is increased. If all correlation coeffi-
cients are +1.0, then the required budget at the higher level reverts to the sum of the 
individual project budgets. (Negative correlations would have the opposite effect, 
but it is easy to see that more projects would be positively correlated than negatively 
correlated, unless the contractor takes specific steps to obtain jobs that are diversi-
fied, that is, negatively correlated.) For most companies, whether project costs are 
statistically independent or dependent, or the value of the correlation coefficients 
between them, is presently unknown, although in principle at least this is subject to 
empirical determination. An extensive discussion of correlation and dependence is 
beyond the intent of this chapter; the main point to be stressed here about indepen-
dence is that it cannot be simply assumed to be true, and assuming that it is true 
could be very unconservative if it is not true.

Examining the performance of large companies, however, leads to an apparent 
contradiction: risk analyses almost invariably assume that projects (or work pack-
ages) are independent, but if the program (or contractor) is the sum of its projects, 
then adding all the separate project budgets together is, in effect, acting as if the 
projects are statistically dependent. If projects are treated as completely indepen-
dent and each budgeted for a 16% probability of overrunning, projects would under-
run 84% of the time, and statistically 84% of all projects should return budget 
surpluses as profits to the (fixed-price) contractor or as savings to the owner. This 
doesn’t happen.

An alternate hypothesis, based on some data from many different types of proj-
ects, is that the project costs are in fact consistently underestimated, such that the 
reserve margins are negative and actual project budgets are less than the expected 
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values. Then each project budget might be a standard deviations below the mean, 
or B = μ − aσ (for a ≥ 0). Using, as before, μ = $4000 and σ = $1000 but a = 0.25, 
then a project budget one-quarter of a standard deviation below the expected value 
would be

	
B a= − = − ( ) =µ σ $ $ $4000 0 25 1000 3750.

	

which would have a probability of about 60% of overrunning and a probability of 
40% of underrunning. The sum of the individual budgets for N projects would be 
NB = $3750N.

But the expected value of the total expenditure at the higher corporate level 

would be µ µ σ σ σ σT T TN N N= = =, ,2 2 and . Taking N = 100, if the higher-level 
budget is the sum of the individual project budgets,

	
B NB a N a N a

T T T T T T
= = = − = − = −( )$ $ $ $375 000 4000 1000 400 000 10 000, , ,µ σ

	

This implies aT  =  2.5, so the higher-level budget is 2.5 standard deviations 
below its expected value. This corresponds to a probability greater than 99% that 
the higher-level organization would exceed its total budget and less than 1% that it 
could meet its budget. Under these assumptions, if each project is budgeted below 
its expected cost, then the sum of the individual budgets for the N projects, BT = 
NB = $375,000, greatly underestimates the required reserve margin, and the higher 
management level (almost) always overruns. Id enough projects overrun, this can 
lead to bankruptcy if the contractor or owner is a corporation. This simple example 
illustrates one reason why the failure rate for construction contractors is higher 
than that in other businesses: if, by chance, a number of projects overrun, the con-
tractor fails.

Under what circumstances might project budgets be biased on the low side (less 
than the expected values)? Some possibilities might be:

•	 Projects are pushed by proponents, who recognize that their probability of get-
ting funded decreases with increasing project cost estimates. They also recognize 
that, even if a project is underfunded, some funding is better than none, and they 
expect to go back to the owner or funding agency to rebaseline the budget once 
the project is under way and past the point of no return. So, there may be major 
incentives for project proponents to lowball the cost estimates, and disincentives 
for accurate estimating. (Gresham’s Law says that bad money drives out good, so 
we may say that bad estimates drive out good ones. From an evolutionary 
perspective, unbiased estimators don’t get their projects funded and hence they 
die out.) The above analysis shows that even a small lowball bias at the project 
level would lead to virtual certainty that budgets would be overrun at a higher 
management level.

•	 Another possibility is that project estimates are unbiased at the project level, but 
are arbitrarily reduced at a higher corporate level, on the basis that estimates are 
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too large to be competitive or contain too much contingency (aka fat). Or, trying 
to do more projects than the funds available would support, program managers 
may simply divide their fixed resources among their projects regardless of proj-
ect estimates. This may be characteristic of some public agencies, in which proj-
ects are politically mandated but program funds are inadequate. This behavior is 
also a self-reinforcing, positive feedback loop.

Another, not mutually exclusive, hypothesis is an asymmetry in how funds are 
handled. In the above analysis, it was assumed that cost overruns in some projects 
are (statistically) offset by underruns in others; hence reserve margins can be (pro-
portionately) lower when taken over many projects. To take a different view, sup-
pose that every project that overruns its budget appeals for relief for a higher 
program level, and gets it, but that projects that underrun hold on to all or part of the 
budget surplus instead of passing it back. This may be more characteristic of cost-
plus contracts.

The discussion above has used the term “projects” as the lowest level entities, 
summing up to “programs” at the corporate level. An identical analysis could be 
made with “Work Packages” replacing “projects” as the basic elements. The statisti-
cal results for large numbers would be reinforced, because a typical major project 
could have 100–1000 Work Packages, so N = 1000 in the above examples. Work 
Packages would then sum up, in two or more steps, to projects, which would sum up 
to programs, etc. This would give a hierarchy of five or more levels from Work 
Packages up to owner or corporate management. However: although it may be plau-
sible (although not probable) that all projects in one company’s program are statisti-
cally independent, it is not possible that all Work Packages in a single project could 
be statistically independent (although they are often assumed to be, without any 
analysis). Therefore, account would have to be taken of correlations or dependen-
cies between Work Packages, which is an interesting subject that has been insuffi-
ciently investigated.

The discussion above applied to costs. Similar observations and conclusions can 
be reached by substituting “duration” for “cost” and “schedule” for “budget.” 
Actually, there are some new and interesting issues and results when considering 
durations and schedules rather than cost estimates and budgets, but these are again 
beyond the intent of this chapter.

9.5  �Correlation Effect

As previously noted, the variance of the sum of a number of correlated work pack-
ages is the sum of all the covariances in the covariance matrix. Sometimes in these 
notes, for expository reasons, the covariance matrix is simplified by assuming that 
all work packages have the same standard deviation σ. A simplified correlation 
matrix may be the following, in which all pairs of work packages have the same 
correlation, ρ, as in the 10 by 10 correlation matrix below:
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If the number of work packages is N, then the variance and the standard deviation 
of the total cost for this pattern of correlations may be written:

	

Var T N N

N N

T

T

( ) = = + −( ) 

= + −( ) 

σ σ ρ

σ σ ρ

2 2 1 1

1 1
	

Figure 9.2 shows the variance of the total project cost 
σ
σ

T
2

2
 versus σ2 for several 

values of ρ. (Multiply the ordinates by σ2 to obtain the true values for the variance 
of the total project cost.)

Fig. 9.2  Variance of total project costs
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Figure 9.3 shows the standard deviations of the total project cost 
σ
σ
T  versus N 

for several values of ρ. (Multiply the ordinates by σ to obtain the true value for the 
standard deviation of the total project cost.)

Another simple correlation pattern that uses exponentially-decaying correla-
tions is:
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If the number of work packages is N, then the variance and the standard deviation 
of the total cost for this pattern of correlations may be written:

Fig. 9.3  Standard deviation of total project costs
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Figure 9.4 shows the variance of the total project cost 
σ
σ

T
2

2
 versus N for several 

values of ρ. (Multiply the ordinates by σ2 to obtain the true values for the variance 
of the total project cost.)

Figure 9.5 shows the standard deviations of the total project cost 
σ
σ
T  versus N 

for several values of ρ. (Multiply the ordinates by σ to obtain the true value for the 
standard deviation of the total project cost.)

An example illustrates the effect of correlations on the assessment of the project 
or program risk. Consider the example stated above, with N = 10; μ = 4000 for all 
the work packages; σ = 1000 for all the work packages; ρ = 0.00 for the case with 
independent work packages; and ρ = 0.75 using the exponentially decaying correla-
tion pattern above.

Figure 9.6 compares the risk function or probability density function for the case 
with correlated work packages and the case with all independent work packages. 
Figure 9.6 shows that the mean values for the two cases are identical, but the stan-
dard deviations are greatly different, the standard deviation of the total project cost 
being much greater for the correlated case than for the independent case.

Figure 9.7 below plots the same information in the form of the cumulative prob-
ability distribution functions for the correlated and uncorrelated cases. In this fig-
ure it is easily seen that, if the project owner wishes to set a project budget at the 

Fig. 9.4  Variances vs number of activities; exponential decay

9  Contingency and Management Reserves



201

95% confidence level, the budget including contingency would be about $45,000 
if all the N work packages were independent. However, if the N work packages are 
correlated, with ρ = 0.75 as shown earlier, then the required budget would be about 
$57,000. Conversely, if the project manager assumed that all the work packages 
were independent, and set a budget with contingency at the 95% level of $45,000, 

Fig. 9.5  Standard deviations vs. number of activities; exponential decay

Fig. 9.6  Project total cost probability density functions
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Fig. 9.7  Project total cost cumulative probability density functions

the risk that this budget would be overrun is, from the graph below, about 32%. 
That is, in this example, if the project manager assumes that all work packages are 
independent, then he believes that there is only one chance in 20 of overrunning 
his budget of $45,000. However, if the work packages are actually correlated 
(using the decaying exponential pattern given), then the project manager has 
under-estimated the risk and there is really one chance in three of overrunning this 
budget amount.

9.6  �Practice Problems

Problem 9.6.1  Consider Problem 3.5.1 from Chap. 3. Assuming that uncertainty 
comes from the schedule only (i.e. the cost of materials and labor are deterministic 
and set at their mean value), calculate the required contingency funds to meet 95% 
confidence level. How would your result change if all the activities are positively 
and negatively correlated?

Problem 9.6.2  A state highway engineer has to determine contingency funds for 
asphalt paving program for next planning period. There 12 jobs to be executed and 
the engineering estimate of the total tons of asphalt to be placed are available and 
shown in Table 9.2. Assuming that the estimates are mean values and that the typi-
cal coefficient of variation for asphalt placing jobs is 0.2, calculate contingency 
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level (in tons of asphalt) at the program level that meet confidence interval of 95%. 
How would your results change if the asphalt quantities are positively or nega-
tively correlated? What can cause quantities to be correlated? If the agency’s bud-
get allows only for 40,000 tons extra, what is the probability that the program will 
run out of money?
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Table 9.2  Problem data

Job index Job title Job number
Tons of asphalt to be placed
Estimated (mean)

1 Guilford Road Resurfacing 1035 11,936
2 Mebane Oaks Road and Highway 119 1036 9,900
3 State Highway 49 at Trollingwood Road 1037 31,900
4 State Highway 49 at Orange Street 1038 12,753
5 Alamance at Guilford Road 1040 15,389
6 Davidson County Resurfacing 20,452 62,039
7 City of Reidsville 20,454 3,143
8 US 52 Northbound Lanes Shoulder 20,461 11,900
9 US 52 Southbound Lanes Shoulder 20,462 12,450
10 US 220 at Guilford Road 20,466 7,941
11 City of Thomasville 20,469 2,842
12 Business 40 and US 431 Ramps 20,474 4,112
Sum 186,305
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Chapter 10
Bayesian Revision of Probability Estimates

Abstract  In this chapter we introduce Bayesian methods for updating model 
parameters based on new project-specific data. We provide formal introduction of 
Bayes theorem to update parameters of probability distributions used in project risk 
analysis. We discuss examples of updating the probability of arrival of machine 
breakdown and new change orders using Bayes theorem.

Keywords  Bayes law · Estimation of parameter distribution · Poisson process

10.1  �Introduction

Generating models is an essential element of risk management. After all, it is diffi-
cult to manage risks if you don’t what the risks are. Lacking clairvoyance, our prem-
ise is that the past is some kind of guide to the future – although by no means a 
perfectly reliable guide. Therefore our first aim in modeling is to create a represen-
tation of the process that is applicable to the past. Developing a model is to devise 
the form of the model or models that we think are potential candidates for this rep-
resentation. There is no unique form of model for any situation, because a model 
must also meet the test of parsimony – it should be as complex as necessary to 
represent the process, but not more so. Clearly, a model has to run (on a computer 
or in the brain) faster than the real world – a model that is so complicated that its 
execution lags the real process is of no use to us. (Although such a model may be of 
use to scientists – early computer models of the weather ran more slowly than actual 
atmospheric processes).

After formulating a possible form for a model, the next step is to fit the parame-
ters of the model to the available historical data. Therefore, a model has to contain 
at least one free parameter that can be adjusted to fit the data. The step of fitting the 
parameters to the model requires that we have some definition of what we mean by 
fitting, and what constitutes a good fit versus a bad fit. In a large number of cases, 
best fit means choosing the parameters to minimize the sum of the squares of the 
deviations of the model predictions from the actual data. Here, predictions means 
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backcasting, not forecasting: that is, using the model to predict the past, not the 
future. Of course, no one can make a living by predicting the past, so this step is 
only to establish the validity of the proposed model when compared to the measured 
results. Hence, this step is called model validation or model verification.

To provide forecasting potential our models should also be able to make the use 
of the data that project itself generates; in other words, we should be able to revise 
our “generic” value of the estimated parameters with the parameters that fit the 
newly observed – project data. One may argue this is still backcasting, but it is a 
backcasting based on the actual project circumstances, not on the “average” circum-
stances of all projects done in past. To provide this model update based on new 
project-specific data we rely on Bayes’ theorem.

In probability theory and statistics, Bayes’ theorem (also known as Bayes’ law or 
Bayes’ rule) describes the probability of an event, based on conditions that might be 
related to the event. Bayes law for events X and Y can be derived as follows (DeGroot 
and Schervish 2012):

	

P X Y P X Y P Y P Y X P X

P X Y
P X Y

P Y

P Y X
P X Y

P X

∩{ } = { } { } = { } { }

{ } =
∩{ }
{ }

{ } =
∩{ }

{ }
==

{ } { }
{ }

P X Y P Y

P X
	

One way of looking at this formulation is as an expression of the conditional 
probability distribution of cause given the observed evidence using the converse 
conditional probability of observing evidence given the cause:

	

P Cause Evidence P Evidence Cause
P Cause

P Evidence
( ) = ( ) ( )

( ) 	

Bayes theorem can be easily extended to update the parameters of a model given 
observed outcomes

	

P D P D P P D P D

P D
P D

P

P D
P D

P D

∩{ } = { } { } = { } { }

{ } = ∩{ }
{ }

{ } = ∩{ }
{ }

Θ Θ Θ Θ

Θ
Θ

Θ

Θ
Θ

	

where, P{D|Θ}= Conditional probability that outcome D would be observed given 
parameters Θ.
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P{Θ|D}= Posterior conditional probability that Θ is the value of the parameters 
given observed outcomes D.

If we have two sets of observations D1 = first set of observations (data) and D2 = 
second set of observations (data) then

	

P D
P D

P D

P D P

P D

P D P D

P D
Θ

Θ Θ Θ Θ Θ
2

2

2

2

2

2 1

2

{ } = ∩{ }
{ }

=
{ } { }

{ }
=

{ } { }
{ } 	

Where, P{Θ|D2}= posterior conditional probability Θ is the value of the param-
eters given observed outcomes D1 and D2.

For example, let’s consider a situation when one would like to determine if the 
coin unbiased based on consecutive observations of the coin flip outcomes. Let θ = 
probability of heads be our initial uncertainty about the value of the parameter. Here 
θ = 0.5 implies that the coin is unbiased. Table below summarizes our prior esti-
mates. Since we are unsure what estimates are more likely than the others we will 
assume that they are all equally likely; this is often referred as noninformative prior 
(see Table 10.1).

Figure 10.1 illustrates probability mass function for a uniform noninformative 
prior (tabulated in Table 10.1).

After one flip of the coin; D = Tails, given that

	

P D
P D P

P D P
j

j j

j
j j

θ
θ θ

θ θ
{ } = { } { }

{ } { }
=
∑

1

5

	

Now we have the following results (See Table 10.2).
After five flips of the coin, D = Tails-Tails-Tails-Tails-Tails, our estimates change. 

Table 10.3 shows the posterior mass function.
Figures 10.2 and 10.3 show estimated probability given the Run of eight con-

secutive Tails and alternating Tail-Head sequence.

Table 10.1  Prior probability 
distribution of θj

Index j
Parameter 
value θj

Prior 
probability 
P[θj]

1 0.48 0.20
2 0.49 0.20
3 0.50 0.20
4 0.51 0.20
5 0.52 0.20
Sum 1.00
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Fig. 10.1  Probability mass function for a uniform noninformative prior

Table 10.2  Posterior probability distribution of θj after D = Tails

Index 
j

Parameter value 
θj θj = P{Heads}

Prior 
probability 
P[θj] P{D = Tails|θj}

P{Tails|θj

}P{θj}
Posterior 
probabilityP{θj|D = Tails}

1 0.48 0.20 0.52 0.104 0.208
2 0.49 0.20 0.51 0.102 0.204
3 0.50 0.20 0.50 0.100 0.200
4 0.51 0.20 0.49 0.098 0.196
5 0.52 0.20 0.48 0.096 0.192
Sum 1.00 0.500 1.000

Table 10.3  Posterior probability distribution of θj after D = Tail-Tails-Tails-Tails-Tails

Index 
j

Parameter value 
θj 
θ j P Heads= { }

Prior 
probability 
P[θj] P{D = Tails|θj}

P{Tails|θj}P
{θj}

Posterior 
probabilityP{θj|D = Tails}

1 0.48 0.20 (0.52)5 0.00760408 0.2414
2 0.49 0.20 (0.51)5 0.00690051 0.2191
3 0.50 0.20 (0.50)5 0.00625000 0.1984
4 0.51 0.20 (0.49)5 0.00564950 0.1793
5 0.52 0.20 (0.48)5 0.00509608 0.1618
SUM 1.00 0.03150017 1.000
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Fig. 10.2  Bayesian P(Heads) run of tails

Fig. 10.3  Bayesian P(Heads) alternating head-tails

10.1  Introduction
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10.2  �Poisson Process

The model most commonly used to represent systems of random events, indepen-
dent of each other, occurring in time, is the Poisson model (Kingman 1992). Many 
real processes in engineering project management have been successfully modeled 
as Poisson processes. The Poisson model assumes that events occur at some rate, 
and the process has no memory (that is, the time of an event is completely unrelated 
to the timing of any previous events.

A derivation of the Poisson process can be found in virtually every undergradu-
ate probability textbook. An abbreviated version is presented here primarily to 
expose some of the assumptions that underlie the Poisson model.

Let T be a time interval, with the starting point of the interval at any random point 
in time. The derivation is predicated on the following assumptions or stipulations:

•	 The probability of observing exactly n events in the time interval T is the same, 
no matter where the starting point of the time interval is located. That is, the 
Poisson process is a memoryless equilibrium process, the same everywhere in 
time.

•	 The probability that exactly one event will be observed in an interval dT is λdT.
•	 The probability that two or more events in the interval dT is proportional to (dT)2, 

which is of higher order than dT.

Let P{n, T} be the probability that exactly n events occur in time period T. Then 
exactly n events can occur in time period T + dT in the following ways:

•	 n events in time T and no events in time dT;
•	 n − 1 events in time T and one event in time dT;
•	 n − 2 events in time T and two events in time dT; etc.

Then the probability of this is:

	
P n T dT P n T P dT P n T P dT P n T P dT, , , , , , ,+{ } = { } { }+ −{ } { }+ −{ } { }+…0 1 1 2 2

	

Note that the conditions with n events and with n −  1 events are mutually 
exclusive.

The following probability identity holds:

	

1 0 1 2

0 1 1 2

= { }+ { }+ { }+…
∴ { } = − { }− { }+…

P dT P dT P dT

P dT P dT P dT

, , ,

, , ,
	

Substituting P{0, dT} into the equation above gives:

	
P n T dT P n T P dT P dT P n T P dT, , , , , ,+{ } = { } − { }− { }+…  + −{ } { }+…1 1 2 1 1

	

Rearranging and dividing by dT gives:
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P n T dT P n T

dT

P dT

dT
P n T P n T P dT

, , ,
, , ,

+{ }− { }
=

{ }
−{ }− { }  + { }+…

1
1 1

	

Under the assumption that the probability distribution is differentiable, the term 
on the left of the above equation is the derivative of P{n, T} with respect to T. The 
higher-order terms on the right hand side go to zero in the limit, and using the 
identity.

P{1, dT} = λdT
gives the equation

	

dP n T

dT
P n T P n T

,
, ,

{ }
+ { } = −{ }λ λ 1

	

Solution of this differential equation recursively for values of n starting with 
n = 0 gives the Poisson probability mass function:

	
P n T

e T

n

T n

,{ } = ( )−λ λ
! 	

The cumulative probability distribution must be found by summing up the prob-
abilities for n = 1,2,3, etc.

10.3  �Failure Rates Using the Poisson Distribution 
and Bayes’ Law

Consider the case in which events, such as equipment breakdowns, occur indepen-
dently in time, with N(t) the number of events in time t. As noted earlier that, if the 
hazard rate is constant, if the process has no memory, and if at most one event can 
occur in infinitesimal time ∆t, then the probability of exactly N(t) = m events in any 
finite time interval t is given by the Poisson distribution:

	
P t

e t

m
mm

t m

( ) = ( )
= …

−λ λ
!

, , , , ,for 0 1 2 3 4
	

Of course, to use this equation one must have information on the value of the 
failure rate λ (equipment breakdowns per day) or the reciprocal, 1/λ, the mean time 
between breakdowns (MTBF). Often, the only data available on the breakdown rate 
are obtained from observing the equipment itself. To escape this dilemma, we com-
bine subjective information possessed by the project manager and construction 
engineer, based on experience on past projects with similar equipment with data 
collected on the present job for the specific equipment of interest.
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To do this, we can apply Bayes’ Law to update our estimate of the failure rate as 
additional failures are observed. Here, the parameter λ is treated as a random vari-
able and is described by a probability distribution, not a deterministic value. By the 
discrete form of Bayes’ Theorem, if X and Y are events,

	
P X Y P X P Y X P Y P X Y∩{ } = { } { } = { } { }

	

The variables X and Y may be considered logical values; that is, they have either 
the value True or the value False. The meaning of the terms above is as follows:

•	 P{X}, the marginal probability of X is the probability that X has value True, 
regardless of the value taken on by Y.

•	 P{Y}, the marginal probability of Y is the probability that Y has value True, 
regardless of the value taken on by X.

•	 P{X ∩ Y}, the joint probability of event X and event Y, is the probability that 
events X and Y are both True at the same time.

There are four logical possibilities, as given in Table 10.4.
From a relative frequency viewpoint, one would say that, of all the occurrences 

of event X and event Y, as given in the above truth table,

•	 P{X ∩ Y} is the relative number of times both X and Y have the value True, or the 
frequency of being in the cell on the northwest corner in the table.

•	 P{X|Y}, the conditional probability of X given Y, is the probability one would 
assign to X being True if it were known for a fact that Y is True.

•	 P{Y|X}, the conditional probability of Y given X, is the probability one would 
assign to Y being True if it were known for a fact that X is True.

If knowledge of Y has no effect on the assignment of probability that X is True, 
then:

	

P X Y P X

P X Y P X Y P Y P X P Y

{ } = { }
∩{ } = { } { } = { } { }

	

The last equation is the condition of independence; X and Y are said to be statisti-
cally independent if P{X|Y} = P{X} and P{Y|X} = P{Y}.

Suppose now that Y is actually a set of mutually exclusive and collectively 
exhaustive events,

	 Y Y Y Yk n1 2, , , , ,  	

Table 10.4  Logical 
outcomes of X and Y

Y = True Y = False

X = True X is true and Y is true X is true and Y is false
X = False X is false and Y is true X is false and Y is false
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Assume that the occurrence of one or another of these events is a necessary con-
dition for the occurrence of event X. That is, one of these events must be True in 
order for X to be True. Then the Bayes’ equation may be written:

	
P X Y P X P Y X P Y P X Yk k k k∩{ } = { } { } = { } { }

	

We are interested in the conditional probability that some Yk is True, given that 
we observe that X is True, so the above equation is rewritten as:

	

P Y X
P Y P X Y

P X

P Y X
P Y P X Y

P X Y P Y P X Y

k

k k

k

k k

{ } { } { }
{ }

{ } { } { }
{ } { } { }

=

=
+

1 1 2
PP Y P X Y P Y P X Y P Y

k k n n2
{ } { } { } { } { }+…+ +…+

	

This is the probability that one of the events Yk is True, given that we have 
observed X. We assume that the machine or process in question has an underlying 
failure rate, λ, which we cannot observe directly. We can directly observe, however, 
the failures or breakdown events. So, we now use the Bayes equation to infer a value 
for the failure rate, given that we observe a series of breakdowns (time between 
failures).

A formulation using probability density functions for λ as a continuous random 
variate is possible, but we use the discrete form here because the derivation is 
straightforward, and its application is simple to implement. Suppose then that λ is 
considered a discrete random variate that can take on any one of n discrete values, 
λk, 1 ≤ k ≤ n; then, let Yk represent the specific event λ = λk.

Also let X represent the event that exactly N(t) = m breakdowns are observed in 
the interval from time 0 (when we start counting) to time t. Then we wish to find the 
probability that the underlying breakdown rate has the value λk, conditional on the 
fact that we have observed m breakdowns in time t. Note that we are assuming a 
constant underlying failure rate.

Bayes’ law (above) becomes, substituting in the above general case:

•	 Yk is the event λ = λk; that is, Yk is true if λk is the underlying failure rate
•	 X is the event that m failures occur in time t; this is the event that is directly 

observed
•	 X|Yk is the event that we observe m failures in time t, conditional on the underly-

ing failure rate being λk, and so P{N(t) = m|λ = λk} is the probability that we 
would observe exactly m failures in time t if the underlying failure rate were λk

•	 P{X} = P{N(t) = m} is the probability that we would observe exactly m failures 
in time t, taken over all values of λk

•	 P0{λk} is the prior probability (that is, prior to observing any breakdowns) we 
assign to the event that the underlying failure rate is λk

With these substitutions, Bayes’ equation becomes:
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This can be rewritten as:

	

P N t m
P N t m P

P N t m
k

k k

1

0
λ λ

λ λ λ λ
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( ) = ={ } ={ }
( ) ={ } 	

That is, the posterior (after the fact) probability that λ is some particular value λk, 
given that we have observed exactly N(t) = m events in time t, is P{λ = λk|N(t) = m}. 
This probability can be determined for all values of k from the above equation, in 
which:

•	 P{N(t) = m|λ = λk} is the probability of getting exactly m breakdowns in time t, 
given that the underlying breakdown rate is λk. This probability is obtained from 
the Poisson equation:

	
P m P t

e t

mk m

t
k

m
k

λ
λλ

{ } = ( ) = ( )−

! 	

•	 P N t m P N t m P
k

n

k k( ) ={ } = ( ) = ={ } ={ }
=
∑

1
0λ λ λ λ  is the total probability of 

observing exactly m failures, summed over all values of λ.
•	 P0{λ = λk} is the prior (before the fact) probability assigned to λk.

Then the Bayesian procedure (for discrete values) is as follows.

•	 Set some number n of possible discrete values of λ
•	 Set discrete values for all λk

•	 Estimate some prior distribution P0{λ = λk} on the probability of each λk, with the 

restriction that 
j

n

jP
=
∑ ={ } =

1
0 1λ λ

(Note that, in the Bayes equation, if the prior probability is zero for some value 
of λk, such that P0{λk} = 0, then, P1{λk} = 0; that is, the posterior probability will 
always be zero for that λk. Note also that the mean value of the prior distribution is 

λ λ λ= { }
=
∑
j

n

j jP
1

0 )

•	 At the first breakdown, m  =  1, note the time t1. Then, for all values of j, 
compute:
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•	 The total probability of exactly one event in time t1 is the sum of the terms 
P{m = 1|λj}P0{λj} for all values of j:

	

P m
e t P

t e P
j

n
t

j j

j

n

j

t

j

j

j={ } = ( ) { }
= { }

=

−

=

−∑ ∑1
11

1

1

0

1
1

0

1

1

λ
λλ λ

λ λ
!

	

•	 Application of the general Bayes’ equation gives:
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This last equation, applied to all k, gives the posterior probability of each λk, 
based on the prior distribution P0{λk} and the observed time at the first breakdown. 
Note that now the mean value of the breakdown rate, based on the revised (poste-

rior) set of probabilities, is: λ λ λ= ={ }
=
∑
j

n

j jP m
1

1 1 .

When the next event, m = 2 at t = t2, occurs, we update the probability mass func-
tion for λ by using the previous posterior distribution P1{λk|m  =  1} as the prior, 
computing the new posterior distribution P2{λk|m = 2}. There are two equivalent 
methods for doing this.

Method A. Use the original prior distribution P0{λk} as the prior, updated by the 
Poisson equation for m = 2. (That is, two events occur in time interval t2). Then:
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This process continues for m  =  3,4,5, etc., using the Poisson equation for m 
events but the original prior P0{λk} at each update.

Method B. Set Δt2  =  t2  −  t1 and use the computed posterior distribution 
P1{λk|m = 1} as the prior, based on one observed event in time t1, updated by the 
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Poisson equation for m = 1, the probability that one additional event occurs in time 
∆t2). Then:
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Example 10.1
A certain process was started, and the prior probability distribution was taken as the 
uninformative prior, that is, one in which all discrete values of λk are equal. Here, the 
user is in effect saying that he cannot distinguish between different values of the 
failure rate from λ1 = 0.05 to λ20 = 0.20. As there are 20 possible values for λ, each 
has prior probability 0.05.

The first observed period from start to the first failure is 9.8 days, resulting in the 
following plot of the posterior probability for each of the λk (see Fig. 10.4; the uni-
form prior is the dotted line, the posterior is the heavy solid line).

The second failure occurs after an interval of 11.7 days, so the new posterior 
distribution is shown below (as the heavy solid line; the posterior after one failure is 
the light line): (see Fig. 10.5).

Fig. 10.4  Prior and posterior distributions after one observation
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Fig. 10.5  Prior and posterior distributions after two observations

Fig. 10.6  Prior and posterior distributions after three observations

The third failure occurs after an interval of 7.0  days; the revised posterior is 
shown in Fig. 10.6.

After 12 failure periods, the times between failures are given in Table 10.5:
The resulting posterior distributions after each of the 12 periods are shown in 

Fig. 10.7.
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Table 10.5  Time between 
failure data Period

Time between 
failures, days

1 9.8
2 11.7
3 7.0
4 5.7
5 14.4
6 7.7
7 6.5
8 6.3
9 4.4
10 9.6
11 11.3
12 7.7

Fig. 10.7  Prior and posterior distributions after 12 observations
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10.3.1  �Continuous Probability Density Function

As noted before, random events, such as earthquakes, machine breakdowns, and 
other phenomena occur independently in time. Call N(t) the number of events 
observed in time t. Then N(t) is called a counting process. It was noted earlier that, 
if the hazard rate is constant, if the process has no memory, and if at most one event 
can occur in infinitesimal time ∆t, then the probability of exactly N(t) = m events in 
any finite time interval t can be approximated by the Poisson distribution:

	
P t

e t

m
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t m
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−λ λ
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, , , , ,for 0 1 2 3 4
	

Of course, to use this equation one must have information on the value of the 
failure rate λ (earthquakes per year, equipment breakdowns per day) or the recipro-

cal, 
1

λ
, the mean time between events (MTBF). Often, the only data available on 

the breakdown rate for some construction equipment are obtained from observing 
the equipment itself. However, subjective information possessed by the construction 
engineer, based on experience on past projects with similar equipment, can be com-
bined with data collected on the present job for the specific equipment of interest.

As previously, we assume that the machine or process in question has an under-
lying failure rate, λ, which we cannot observe directly. We can directly observe, 
however, the failures or breakdowns. So, we now use the Bayes equation to infer a 
probability distribution on the value for the failure rate, given that we observe a 
series of breakdowns (time between failures). A formulation using probability 
density functions for λ as a continuous random variate, rather than discrete-valued, 
assumes that λ can take on any positive value, 0 < λ < ∞.

Suppose that exactly N(t) = m breakdowns are observed in the interval from time 
0 (when we start counting) to time t. Then we wish to find the probability that the 
underlying breakdown rate lies in some interval [λ,   λ + Δλ], conditional on the fact 
that we have observed m breakdowns in time t. Note that we are assuming a constant 
underlying failure rate. P{N(t) = m} is the Poisson probability that we would observe 
exactly m failures in time t, conditional on λ. This is a counting process, so we 
assume that m is a nonnegative integer.

The prior probability density function on the failure rate (that is, prior to observ-
ing any breakdowns) is assumed to be the Erlang (or Gamma) probability. (The 
reason for this choice will be seen below). The Erlang formula (for α an integer) is:
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Here the random variable is λ, and α and β are the parameters of the Erlang 
distribution.
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The mean value and the variance of this probability density function are
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Note that, if α  =  1, then the Erlang distribution reduces to the exponential 
distribution:
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After some integration of the Bayes function, it can be shown that the posterior 
probability density function for λ using the Erlang prior distribution (conditional on 
having observed m events in time t) is:
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This function is also an Erlang probability distribution, with updated parameters, 

such that the parameter α in the prior is replaced by m + α in the posterior, and 
1

β
 

in the prior is replaced by t +
1

β
 in the posterior. The Erlang distribution is said to 

be conjugate because an Erlang prior distribution generates an Erlang posterior dis-
tribution, and vice versa (Forbes et al. 2011).

The mean and variance of this probability density function are
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Then the Bayesian inference procedure is summarized as follows:

•	 Estimate the mean and variance E[λ], var[λ] of the prior (Erlang) distribution;
•	 Determine the prior values of the Erlang parameters α, β from
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•	 Adjust the mean and variance estimates such that α is an integer. If α is not an 
integer, then the term (α − 1)! in the Erlang density functions must be replaced 
by the gamma function Γ(α).

•	 The prior probability distribution on λ is then
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•	 After any number of events, m, note the time t. Then the posterior probability 
distribution on λ, after m observed events in time t, is given by
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This can be applied any number of times, with the posterior being the prior in the 
next cycle. Note that, as m is the number of observed events since time 0, the inter-
pretation of our expert judgment, as expressed in the prior probability distribution, 
is equivalent to having observed α breakdowns in our prior experience before time 
0. This interpretation depends on α being an integer.

10.3.2  �Derivation of the Posterior Probability Density 
Function

We assumed, in the above argument, that the prior probability density function on 
the rate of occurrence of events λ is given by the Erlang function (for α an 
integer):
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We also assumed that the arrival of events is Poisson, so:
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As usual when using Bayes’ Law, we write the joint probability distribution (in 
this case the continuous probability density function) as the product of the two dis-
tributions above:
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Then the marginal distribution on m is obtained by integrating λ out (integration 
replaces summation because here λ is a continuous variable rather than discrete, as 
before). Then:
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Integrating then gives the marginal density function:
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Then the posterior density function for λ, conditional on the observation N(t) = 
m, is the quotient of the joint distribution divided by the marginal:

	

p N t m
f N t m

f N t m

p N t m

t

λ
λ

λ
λ

( ) =  =
( ) = ∩ 
( ) = 

( ) =  =
− +exp

1
ββ

λ
β

α

α
α



















 +











+ −( )

+ −
+

m

m

t

m

1 1

1 !
	

Example 10.2
Consider the prior distribution as the Gamma Distribution with the failure data the 
same as in the previous example (E[λ]  =  0.2; var[λ]  =  0.0064; σ[λ]  =  0.08; 
COV[λ] = 0.4; α = 6.25; β = 0.032; 1/β = 31.25). Figure 10.8 shows, for each event, 
the revised posterior probability distribution on the rate.
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10.4  �Project Change Orders Using the Poisson Model 
and Bayes’ Law

Suppose that, on some project, a contractor is concerned about change orders. 
Change orders most often increase the cost or the duration of the project, or both. 
Consequently, the contractor is worried that the number of change orders he might 
get on this project would exceed the resources available. He decides that he needs 
some contingency factor to cover the possibility of an unexpected number of change 
orders.

This contingency could be expressed in dollars, representing a management 
reserve on the project costs to cover change orders, or expressed in time, represent-
ing a contingency in the project duration to allow for delays due to change orders. 
Touran (2003) considers both types of contingency, and applies probability distribu-
tions to the costs and delays of each change order to quantify these contingencies. 
Here we deal only with contingency expressed in change orders. For example, the 
project manager may wish to increase the number of engineers, construction per-
sonnel, or others assigned to the project in order to process these change orders.

Suppose the schedule for the project mentioned above is 50 weeks, and the proj-
ect manager estimates, based on judgment, that the change order rate on the project 
would be one change every 4 weeks on the average. Hence, λ = 0.25 change orders 

Fig. 10.8  Bayesian revision with gamma distribution
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per week, T = 50 weeks, and λT = 12.5 change orders over the life of the project. 
Figure 10.9 shows a plot of the cumulative Poisson distribution for these parame-
ters, and the complementary cumulative, 1 – CDF, which gives the probability that 
there will be more than X change orders during the project. From the figure it is seen 
that, if the project manager wants to be 95% confident about his ability to handle 
these change orders, he must have a contingency plan adequate for 18 major change 
orders over the life of the project. This implies an average rate of 0.36 change orders 
per week, about 50% more than the project manager’s expected value. The contin-
gency is the number the project manager chooses to prepare for, above the expected 
value. That is, the contingency at the 95% confidence level is 18−12 = 6 change 
orders over the life of the project. Note that the impact of the change orders on the 
project duration is not considered in this example, so any project delays due to 
change orders would increase the length of time that the project is exposed to addi-
tional change orders.

The contingency determine here is dependent on the project manager’s attitude 
to risk. At the 95% confidence level, there is only a 5% chance that the project man-
ager will be unpleasantly surprised by receiving more than 18 change orders. If the 
project manager will accept a greater risk of surprises, then the contingency may be 
reduced. At the 50% confidence level, for example, the value for the number of 
change orders is equal to the mean, and contingency is zero if one defines contin-
gency to be the difference between the value used for planning and risk manage-
ment and the expected value. If the project manager chooses a 50% confidence 
level, then he is risk neutral; risk averse project managers will choose some confi-
dence level above 50%.

Fig. 10.9  Cumulative poisson distribution using mean rate
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The Poisson model assumes that the change order rate is constant in time, 
although it is possible to use an average rate if the rate is not believed to be constant. 
For example, the project manager might expect that the rate of receipt of change 
orders will not be constant but will vary like an inverted U, with a peak some time 
during the project duration. Note that it would be extremely difficult, based only on 
the data generated on one job, to discriminate between a constant rate and a variable 
rate, due to the random nature of the change orders. The Poisson model has the limi-
tation that it has only one parameter, λ, and by estimating the mean time between 

change orders 
1

λ






  we automatically set the variance as well 

1
2λ

. On the other 

hand, this means that we only have to estimate one parameter.
Given the above model, the project manager wishes to estimate the underlying 

rate at which change orders are issued based on observations of the times at which 
new change orders are received. That is, the assumption is that the change orders 
follow the Poisson process, and that there is some rate λ that governs this process, 
which we don’t know but can try to estimate from some available information, in 
addition to experience. Consequently, there are two errors the project manager can 
make:

•	 The process is assumed to be Poisson but really is not, because the arrival of a 
change order is not independent of those previously issued. This is model mis-
specification error, the error due to using the wrong model. For example, in the 

Poisson model, the mean time between events is 
1

λ
 and the variance of the inter-

event time is
1
2λ

. Hence, the coefficient of variation for a Poisson process is 

always 1. Consequently, if we estimate the mean and standard deviation of the 
times between events and the coefficient of variation is not 1, then the process is 
not Poisson.

•	 The process is in fact approximately Poisson in nature, but the project manager 
estimates the rate incorrectly. This is model-fit error.

To revise our initial estimate of the rate, based on information gained form the 
on-going project, we will use Bayesian analysis, as discussed previously, to update 
our beliefs about the rate of change orders every time one is received. Hence, this is 
a learning process. For conceptual simplicity, we will here use the discrete form of 
Bayes’ Rule. Those readers who have taken more advanced courses in Bayesian 
statistics will wonder why we do not use a more elegant closed-form solution. There 
is no doubt that there are better solutions to this problem, but the point here is to 
demonstrate that the Bayesian analysis can be applied in a relatively simple and 
straightforward way, and those who are aware of more elegant approaches can use 
them and see how close the answers given here are.

As mentioned above, for the simple Poisson model we will assume that there is 
a finite set of discrete values for the rate. Call these values λj, 1 ≤ j ≤ J. Let n repre-
sent the number of change orders observed in time t, where t is measured from the 
start of the project. Then the Poisson probability distribution for n change orders in 
time t, given that λ is the change order rate, is:
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If λj is some assumed particular value of λ, then, as we discussed before, the 
Poisson distribution, conditional on λ = λj, is:
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Bayes’ Law relates the joint distribution of n and λj to the conditional distribu-
tions at every time t, when n is the number of change orders in time t, by:
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Rearranging the above equation:
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The denominator in the equation above is the likelihood of receiving n change 
orders, which is just the numerator summed over all possible values of j:
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Then one possible Bayesian approach for estimating the value of the change 
order rate from the observations is as follows:

•	 Assign values for the set of discrete breakdown rates [λj].
•	 Estimate a priori probabilities P[λj] based on experience, judgment, etc.
•	 When a change order is received, at time t, update the total number of change 

orders n = n + 1.
•	 Using the updated values of n and t, compute P[n|λ = λj] from the Poisson equa-

tion for all values of j.

•	 Using P[n|λj] from the last computation, and the prior estimates of P[λj], compute 

P n P n P
j

J

j j[ ] =    
=
∑

1

λ λ .

•	 Compute P[λ = λj|n] for all values of j. These are the updated posterior λ esti-
mates for the probability of each discrete change order rate.

•	 Go to step 3.
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•	 The best single point value for λ is the mean value obtained from

	

E P
j

J

j jλ λ λ[ ] =  
=
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1 	

Assume that the job has just begun, and there are as yet no change orders. We 
have no experience with this client, so how do we set the prior probabilities?

•	 We can use our experience on other jobs with other clients.
•	 We can ask other people who are familiar with this client.
•	 We can ask other people who are familiar with similar types of projects.

It may be easier for people to estimate the Poisson parameter by thinking of the 

time between change orders 
1

λ






  rather than the change order production rate, λ.

Suppose that we do ask other people, and based on their experience and ours, we 
decide that:

•	 The least value for the mean time between change orders that is credible is 
2 weeks, or λ = 0.50 change orders per week, approximately (λT ≅ 25 change 
orders).

•	 The greatest value that one can assume for the mean time between change orders 
is 40 weeks, or λ = 0.025 change orders per week, approximately (λT ≅ 1.25)

•	 This range is divided into 20 discrete values, as given by the following relation-
ship: λj = 0.025j,   1 ≤ j ≤ 20;   0.025 ≤ λj ≤ 0.50.

•	 If we plead ignorance or any prior information about the probability distribution 
on the λj, we assume a priori that each of these values is equally probable, or 
P[λj] = 1/20,   1 ≤ j ≤ 20. This is the noninformative prior, and implies that our 
estimates of λ will be based on the actual observations of change orders on this 
job, not experience on any other jobs.

Now we use the actual data as reported in the Bayesian revision algorithm. The 
first three change order arrives at times 3, 4, and 10 after the start of the project, as 
in the Table 10.6.

Figure 10.10 shows the posterior probability distributions on the rate λ after each 
of the three change orders. Also shown is the uniform (uninformative) prior distri-
bution. After the first change order, the mode (most likely value) of λ is about 0.325 
but he distribution is very flat after only one change order. After the second change 

Table 10.6  First three 
change order arrivals Change order number n

Time 
interval

Time 
since start

1 3 3
2 1 4
3 6 10
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Fig. 10.10  Bayes’ results based on observations of three change orders

Fig. 10.11  Bayes’ results based on observations of seven change orders

order, the mode moves up to about 0.425, and after the third change order the mode 
is down somewhat to 0.350.

Figure 10.11 shows a plot of the results after seven change orders. Time has pro-
gressed to 24 weeks out of 50 scheduled (see Table 10.7).
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The probability density curves are getting noticeably tighter, as the additional 
information reduces the variance in (uncertainty of) the value of the parameter λ. 
The most likely value (mode) of λ is still, however, about 0.35.

10.5  �Practice Problems

Problem 10.5.1  Consider “Truck Arrival Time” on the project site in Problem 4.7.3 
from Chap. 4. Assume that prior to collecting data project engineer assumed that 
truck arrivals can be modeled using a homogeneous Poisson process with an arrival 
rate defined with a uniform prior with the minimum of 0.2 and the maximum of 1. 
How did the project engineer’s estimates of the arrival rate changed with each new 
observation?

Problem 10.5.2  The new office building project has been using a pile construction 
subcontractor, AABB, with a single pile drilling machine, as site restrictions prevent 
more than one machine from operating at a time. After a period of time on the job, 
the project manager for the general contractor has raised some questions about the 
productivity of this subcontractor, and in particular about the reliability of its equip-
ment, and whether it breaks down more often than would be expected, to meet the 
schedule date. Your assignment as field construction engineer is to review the per-
formance of the AABB subcontractor so far and recommend any decisions or 
actions that should be taken for the remainder of the job.

The project records show the number of meters of concrete piles in each day that 
the subcontractor has been on the job. The table below shows the number of meters 
of piles driven on each day after mobilization by the subcontractor. The days with 
zero production represent days in which the pile driver is believed to have been 
broken down and under repair. To simplify the problem conceptually, assume that:

•	 Every morning after a day of production, an attempt is made to start up the equip-
ment and it either works or it doesn’t. If it works, it does a day’s work and if it 
doesn’t it is sent to repair for the entire day, producing nothing.

Table 10.7  First seven 
change order arrivals Change order number n

Time 
interval

Time 
since start

1 3 3
2 1 4
3 6 10
4 1 11
5 2 13
6 1 14
7 10 24
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•	 Every morning after a day under repair, an attempt is made to start up the equip-
ment and it either works or it doesn’t. If it works, it does a day’s work and if it 
doesn’t it remains under repair and out of service for the entire day.

Assume there are two separate processes going on, which affect the productivity, 
and build two separate probability models, concerning:

•	 Reliability of the equipment, with respect to time between breakdowns and time 
to repair; and

•	 Productivity of the equipment and crew given that the pile driver is working.

Assuming that (a) the critical (i.e. maximum) failure rate that would make the 
project still complete on time is 0.2; and (b) the data from previous projects indicate 
that the mean and standard deviation of the arrival rate is 0.15 and 0.05 respectively, 
calculate the probability that the equipment failure rate will not result in project 
delays after each new observation. Assume Erlang distribution can be used to repre-
sent distribution of the arrival rate parameter.

Similarly, assuming that (a) the critical (i.e. minimum) productivity rate that 
would make the project still complete on time is 50 m per day per; and (b) the data 
from previous projects indicate the mean and standard decision of the productivity 
is 60 and 15 respectively, calculate the probability that the productivity rate will not 
result in project delays after each new observation. Assume Normal distribution can 
be used to represent distribution of the productivity rate; and true standard deviation 
is σ = 20. Posterior distributions for unknown mean (assuming Normal distribution) 
are shown in Table 10.8.
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Table 10.8  Problem data

Days since 
start

Meters of piles 
reported

Number of 
piles

Days since 
start

Meters of piles 
reported

Number of 
piles

1 22.10 1 45 60.2 3
2 40.00 2 46 42.3 2
3 20.00 1 47 95.4 4
4 43.30 2 48 23 1
5 23.85 1 49 70.4 3
6 44.50 2 50 23 1
7 24.90 1 51 24 1
8 0 0 52 70.8 3
9 0 0 53 47.5 2
10 0 0 54 70.7 3

(continued)
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Table 10.8  (continued)

Days since 
start

Meters of piles 
reported

Number of 
piles

Days since 
start

Meters of piles 
reported

Number of 
piles

11 0 0 55 72 3
12 0 0 56 71 3
13 0 0 57 48 2
14 0 0 58 0 0
15 0 0 59 0 0
16 47 2 60 24.3 1
17 0 0 61 72.4 3
18 22 1 62 47.85 2
19 0 0 63 69 3
20 20.1 1 64 46 2
21 46 2 65 46 2
22 23.5 1 66 0 0
23 69.7 3 67 0 0
24 45.6 2 68 0 0
25 46 2 69 0 0
26 46 2 70 46 2
27 0 0 71 0 0
28 46.5 2 72 23 1
29 0 0 73 0 0
30 22.8 1 74 23 1
31 40.6 2 75 0 0
32 69.5 3 76 0 0
33 70.4 3 77 46 2
34 24.1 1 78 0 0
35 48 2 79 0 0
36 48 2 80 67 3
37 47.8 2 81 22 1
38 48.4 2 82 66 3
39 69.8 3 83 66 3
40 67.8 3 84 44 2
41 24 1 85 40 2
42 71 3 86 66 3
43 23 1 87 65 3
44 23.3 1 88 69 3
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Chapter 11
Managing Contingency and Budget 
to Complete

Abstract  In this chapter we discuss methods for updating and managing project 
contingency as the outcomes work packages become known. More specifically we 
provide bivariate and multivariate formulation with a number of examples to illus-
trate different situations in which the presented methods can be implemented.

Keywords  Budget to complete · Contingency · Correlation · Bayesian update

11.1  �Introduction

Projects are learning experiences, and project organizations should learn as much as 
possible about risk and performance from the execution of the project under way. 
This chapter addresses the reassessment of project risks and the revision of budget 
and schedule contingencies as a project progresses, based on elementary probability 
theory. Projects are characterized as networks of activities or work packages, and as 
noted elsewhere in this book, the costs and durations of these activities may be (and 
most likely are) correlated. If the costs of work packages are correlated, then infor-
mation about the actual cost of one completed activity or work package conveys 
information about the probability distributions of the others. The process that does 
this revision of the estimates is known as Bayes’ law.

Using Bayes’ law (discussed in more detail in Chap. 10), and the assumption that 
the activity costs and durations are Normally distributed, it is then possible to re-
compute the probability distribution on the total project cost and duration every 
time a work package is completed. The revised risk functions are then available for 
use by project or program management to assess the best predictions of the final 
project cost and duration. This process starts with estimating the risk function on 
cost and duration during project planning, and continues with the revisions to these 
risk functions as the project progresses, until it completes.

If the revised predictions of total cost and duration exceed the acceptable val-
ues, the project manager or sponsor may take some steps, up to and including 
termination of the project in mid-course. This chapter does not deal with possible 
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risk mitigation actions if that should occur. Here, the focus is on project budgets 
and contingencies. The principle is that the project manager sets a budget, which 
includes an amount for contingency, appropriate to the project when the project 
begins, and that this contingency is reset, up or down, as the project evolves. That 
is, if actual costs on the early work packages are less than the original expected 
values, then the project manager may believe that the risk of cost overrun is less 
than originally anticipated and some of the contingency (or management reserve) 
can be released to other projects where it is needed. Conversely, if the initial actual 
costs are higher than originally estimated, then more contingency may be needed, 
or, if this is not possible, then the risk that the project will overrun the existing 
budget (including contingency) will increase above the allowable risk.

Figure 11.1 shows a generic illustration of the method. At the project go-ahead, 
the estimated expected project cost is 70, plus a contingency or management reserve 
of 30, for a total budget of 100. Here, contingency has been set at the 95% confi-
dence level; that is, there is only a 5% likelihood that the total budget will be 
exceeded. Actual costs for work packages, as they are obtained, are higher than the 
expected values, so the mean estimated cost at completion rises, as shown in the 
figure. However, the overall project budget, the sum of the expected cost at comple-
tion plus the contingency, remains at 100, while the management reserve falls. This 
is because, in this case, the increased actual costs are offset by a reduction in risk 

Fig. 11.1  Contingency vs. work completed
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due to the progress in completing the project. At about 30% complete, the project’s 
risks have been reduced to such an extent that not only can the contingency be 
reduced, but the total project budget can be reduced. This can free up resources for 
other projects.

Cost and schedule contingencies should be established at the outset of projects, 
in order to set project budgets and schedules with allowances for uncertainties, and 
this chapter addresses how to revise these initial contingencies as new information 
is being obtained during the project execution. People with project experience 
acknowledge that the performance on the earlier activities can be diagnostic of the 
performance to be expected for the rest of the project. What is needed is a usable 
method for doing this diagnosis.

Of course, even as a project progresses, the remaining work continues to have 
risks and therefore the project continues to need contingency, until all the work 
packages are complete, and there is no further need for contingency. This chapter 
describes an approach for setting and managing project budgets and schedules, 
including the revisions of contingencies, throughout the project duration, using a 
consistent definition of contingency. The method given here adopts a dynamic 
approach for revising the estimates of remaining project risks throughout the project 
duration. This method uses past results on the project to determine the uncertainties 
and contingencies on the future cost to complete. The method is founded on the 
most elementary project models: additive models for total project cost (the sum of 
all the individual work package costs) and for total project duration (the sum of the 
activity durations on the critical path). Although other models are possible, additive 
models are the most familiar. As will be seen, the method treats each work package 
identically, and is therefore suited for automatic operation. At any time during the 
project, the total budget is the sum of the sunk costs (the actual costs of the work 
packages completed), plus the expected value of the estimated cost to complete, 
plus the remaining contingency required to meet an acceptable level of risk.

Chapter 9 has discussed methods for setting contingencies in budget and sched-
ule in order to reflect the existence of uncertainty or variability in knowledge 
about future costs, resources, and durations. At this point, one might reasonably 
raise the question: Should these initial contingencies be revised as the project 
progresses, given that information is being obtained in the process about how well 
the early stages of the project are doing compared to the estimates? When count-
ing the votes on election night, analysis of the early returns is believed to give a 
good idea about the final results, and similarly many project managers and others 
with project experience acknowledge that the performance on the early work 
packages and activities can be diagnostic of the performance to be expected for the 
rest of the project. The problem is, none of these authorities gives a method for 
doing this diagnosis.

In the method presented here, it is assumed that work package or task costs (and 
activity durations) are not necessarily independent, but may in fact be correlated, 
and these dependencies permit information from past work package costs to be used 
to modify the estimates of future work package costs. Consider two work packages, 
say WP1 and WP2, numbered from the last to the first, such that WP2 is completed 
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before WP1 finishes. Consider that you make an estimate of the cost of WP1 and 
WP2 before either is started. Then, after WP2 is complete, but before WP1 finishes, 
you are given the actual cost of WP2 and asked to make a re-estimate of the cost of 
WP1. Would you take the known cost of WP2 into consideration, or would you stay 
with your original estimate for WP1, regardless of the actual cost of WP2? If infor-
mation about the actual cost of WP2, no matter what it is, would not cause you to 
change your estimate of the cost of WP1, then you believe that these two work pack-
ages are independent. Conversely, if information on the actual cost of WP2 would 
cause you to revise your estimate of the cost of WP1, either up or down, then you 
believe that the two work packages are correlated (either positively or negatively). 
Note that correlation does not necessarily imply causality – that something about 
WP2 causes the cost of WP1 to be higher or lower. It may be that WP2 and WP1 are 
related only through some third factor, perhaps even a hidden factor.

In the approach discussed here, as each work package is completed, the correla-
tion between work package costs is used to re-estimate the future work package 
costs and cost to complete, and to recompute the contingency required to cover the 
risks for the remainder of the project. That is, the total project budget, the cost to 
complete, and the remaining contingency are recomputed on the basis of project 
cost experience, and continually adjusted as the project progresses. Because actual 
cost performance can provide information that reduces the uncertainty about future 
costs, it may be true that the required contingency, and hence the project budget 
including contingency, declines over the project lifetime, providing unused contin-
gency funds that may be reallocated to other projects. Of course, it may also be true 
that the required contingency goes up, because the additional information about 
actual performance shows that the original contingency was inadequate. In this cir-
cumstance, additional contingency may be needed, and if it is not available, then the 
risk of over-running the budget may be higher than the original risk assessment or 
the risk desired.

The method described here is based on the assumption that the project manager 
holds or controls all the contingency. Each work package (or network activity) may 
draw upon the contingency as it needs to, but no predetermined amount of contin-
gency is assigned to each work package. Therefore, the cost of the work does not 
expand to fill the contingency – at the work package level or at the project level. If 
the initial project contingency is not needed to cover the risk of overrun, then the 
project budget may be reduced and the available amount used for other projects in 
the owner’s program. The objective here is to define one method for rationally 
assigning and managing contingencies over the entire project or program. To do so, 
the project manager must be able to reallocate contingencies among work packages 
as necessary.

Note that the method discussed here does not apply to certain events, such as 
natural causes (sometimes call Acts of God), the occurrences of which are described 
by the Poisson distribution (for example, Markov processes). Such Poisson events 
are by definition independent; the time between arrivals is Exponentially distrib-
uted, and knowledge of the time since the last event says nothing about the time of 
arrival of the next event.
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11.2  �Bivariate Case

To understand the method, it is assumed here for simplicity of exposition that the 
project under consideration consists of only two work packages. The general case 
with N work packages will be presented later. Let x1 and x2 be random variates rep-
resenting the costs of work packages 1 and 2, respectively. (They could also be 
activity durations.) Let μ1, μ2 be the mean values for the work package costs and let 
σ1, σ2 be the standard deviations of the work package costs. That is, μ1 and σ1 are the 
parameters in the marginal distribution for x1, which is assumed here to be approxi-
mated by the Univariate Normal distribution:
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A similar expression holds for the marginal distribution of x2. Now, let ρ12 repre-
sent the correlation coefficient between the two work package costs. Assume that 
the joint probability density function for the work package costs is Bivariate Normal, 
the expression for which is:

	

f x x
x

1 2 1 2

1 2 12
2

12
2

1 11

2 1

1

2 1
, exp,( ) =

−













−
−( )







−

πσ σ ρ ρ
µ

σ11

2

1 1 2 2

1 2

2 2

2

2
2

















−
−( ) −( )

+
−




















ρ µ µ
σ σ

µ
σ

x x x

	

The marginal distribution of the random variate x1 may be obtained by integrat-
ing the expression for the joint distribution, given above, over all values of x2 in the 
interval [−∞, +∞]. The result of this integration is the Univariate Normal density 
function, as given before:
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That is, the marginal distribution of the cost for work package 1 is Normal with 
mean μ1and standard deviation σ1. Similarly, the marginal distribution of the random 
variate x2 may be obtained by integrating the expression above for the joint distribu-
tion over all values of x1 in the interval [−∞, +∞]. The result of this integration is:
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That is, the marginal distribution of the cost for work package 2 is Normal with 
mean μ2 and standard deviation σ2, and the two marginal or univariate distributions 
are related through the bivariate distribution through the parameter ρ12. These same 
relationships will hold for the more general case of the Multivariate Normal distri-
bution, discussed later. In the general case, if one has a N-dimensional multivariate 
distribution, one can find the marginal distribution for any single variate by integrat-
ing out all the other N − 1 variates. Or, one may obtain the bivariate distribution for 
any pair of variates by integrating out all the remaining N − 2 variates, and so on.

11.2.1  �Prior Distribution of Total Project Costs

The total project cost is a random variate T, because it is determined by the sum of 
the individual work package costs, which are random variates:

	 T x x= +1 2 	

[If the variables are sequential activities in a project network, then the sum T is 
the length of the path composed of these two activities. This may be generalized to 
the sum of the sequential activities on each path from the project start to completion. 
This method can be used to find the uncertainty on the length of any path through 
the network, but it does not necessarily define the critical path length].

The a priori expected value of the total project cost is:

	
E T[ ] = +µ µ1 2 	

The covariance matrix is given as usual by
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The a priori variance of the total cost is the sum of all the terms in the covariance 
matrix, or

	
var T T[ ] ≡ = + +σ σ ρ σ σ σ2

1
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12 1 2 2
22
	

Having determined the first two moments, E[T] and var[T], of the total cost, the 
next step is to set the budget based on these parameters such that the risk of over-
running this budget is acceptable. The total project budget is presumed to be set 
such that the risk, or probability, that this budget will be exceeded is some predeter-
mined value α, which may depend on the type of project, the owner’s aversion to 
risk, etc. Equivalently, if B0 is the a priori budget including contingency, before any 
work packages have been executed, the probabilities of under-running and over-
running this value are, respectively:
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To relate B0 and α, it is necessary to assume some probability density function for 
T. If all the work package costs were independent, then T would be Normally dis-
tributed, by the well-known Central Limit Theorem. But the independent case is not 
very interesting, for, as will be seen below, a known value for one variate says noth-
ing about the values of all the others, and is not very realistic, either. The Central 
Limit Theorem is not applicable if the variates are correlated, but this fact does not 
imply that T is not Normally distributed; it only implies that the Normality of T can-
not be proven theoretically. There are many true statements that cannot be proven 
mathematically, and this is one of them.

Extensive Monte Carlo computer simulations have shown that the empirical 
probability distributions for the sum of a number of correlated variates are indistin-
guishable from Normal distributions, for all values of the correlations. That is, 
empirically if not theoretically, it is valid to assume the Normal distribution for T. 
Then the a priori budget B0 is set as the expected value of the sum T plus some 
multiple k of the standard deviation of the total cost:
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The appropriate value of k is determined from the tables of the Normal distribu-
tion, corresponding to the probability of exceedance α determined by the client. 
For example, if α ≅  0.15, then k ≅  1 standard deviation; or, if α ≅  0.05, then 
k ≅ 1.645.

Another way to look at this is as follows. The integral of the probability density 
function for the total cost T from the value T = B0 to the value T = +∞ is, of course, 
α, the probability that there is a cost overrun:

	 B

f t dt
0

+∞
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In a similar way, one could compute the expected value of the cost overrun, 
which is the integral from T = B0 to T = +∞ of the product of the cost times the prob-
ability density (Jorion 2001):

	

E tf t dt Value at Risk VaR
B
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+∞

∫
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Or, one may compute the conditional expected value of the overrun, given that 
there is an overrun, from the ratio:
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This integral, the Value-at-Risk (VaR), is the conditional expected value of the 
cost overruns on the project, whereas α is the probability of a cost overrun, no mat-
ter how large. If one chooses to use this approach, then B0 is determined such that 
the VaR is an acceptable value.

Once the budget B0 is determined from the acceptable risk level, the contingency 
is defined as the increment to be added to the mean value to reach the desired risk 
level,

	
B E T0 = [ ]+ contingency or,

	

	
contingency = − [ ] = + +B E T k0 1

2
12 1 2 2
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The contingency, as defined here, is added to the expected cost of the project; it 
is not added to the project estimate, the most likely cost, the median cost, or any 
other value than the mean, because project work package cost estimates may con-
tain hidden contingencies of unknown magnitude.

11.2.2  �Posterior Distribution of Project Costs

Now, suppose that the work packages are performed in sequence, and that work 
package 2 has been completed, and the cost is known for certain to be X2. (In this 
exposition, it is always assumed that the values of the costs, once the work is com-
pleted, are known exactly, with no errors. Permitting the case in which the costs are 
reported inaccurately would add excessive complexity to this introductory argu-
ment.) The notation here uses lower case letters for random variates, and upper case 
letters for specific values (or realizations) of these variates. Then the conditional 
probability distribution on cost x1, given that x2 is some specific value X2, is f1 |2(x1|x2), 
which is determined from the joint probability density function and the marginal 
distribution by a fundamental law of probability, also often known as Bayes’s Law 
or Bayes’s Theorem (Gelman et al. 2013):

	
f x x f x x f x f x x f x1 2 1 2 12 1 2 2 2 21 2 1 1 1, ,( ) ≡ ( ) ( ) ≡ ( ) ( )

	

That is, the joint probability density function on two variables is the product of 
one conditional distribution and one marginal distribution. The joint probability 
distribution was given above as the Bivariate Normal, and it was also shown above 
that the marginal distributions can be derived by integrating the joint distribution. 
With this information, it is possible to solve for the conditional probability density 
function as:
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It can be readily shown by this division that the conditional probability density 
function f1 |2(x1|x2) is Normal with parameters
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With x2 = X2 known, the cost to complete the project is x1, which is still a random 
variable. If x1 and x2 are independent, then ρ12 = 0 and knowing the value x2 = X2 
provides no information about the remaining cost. This can be easily seen by substi-
tuting ρ12  =  0  in the two equations above; the result is E[x1|x2  =  X2]  =  μ1 and 

var x x X1 2 2 1
2=  = σ , the a priori values. Knowing the value of x2 = X2 does 

reduce the project risk, of course, as now there is no risk associated with the cost of 
work package 2, and this reduced risk can be reflected in the contingency needed 
after x2 = X2 has been determined.

On the other hand, if x1, x2 are dependent, that is, ρ12 ≠ 0, then knowing that 
x2 = X2 provides new information about the probability distribution of the remain-
ing work package, that is, the remaining cost to complete. For example, if x1, x2 
are positively correlated, that is, ρ12 > 0 and if the actual cost of work package 2 
is less than its expected value, that is, X2 < μ2, then E[x1|x2 = X2] < μ1. That is, the 
a posteriori expected cost of the remaining work package is less than the a priori 
expected value.

Of course, different results may be obtained, as can be seen by substituting 
ρ12 < 0 or X2 > μ2 in the above expressions. If the correlation coefficient is nega-
tive, then the values of x1 and x2 tend to move in opposite directions, and a value 
X2 < μ2 leads to E[x1|x2 = X2] > μ1. However, any dependence, positive or nega-
tive, that is, ρ12 ≠ 0, reduces the variance of the remaining work package cost, 
compared to the a priori value, regardless of the value of x2 = X2, because 
var[x1|x2 = X2] depends on ρ12

2 . That is, any information about x2 reduces the 
uncertainty in x1, if they are correlated. Hence, if there is dependence, informa-
tion about the actual cost of work completed can be used to generate better esti-
mates of the cost to complete, with lower variance. If there is no dependence, 
then the actual cost of the work completed provides no information about the 
cost of the work remaining.

To explore this fact, assume that the project manager has a consistent view of 
contingency, in that the budget for the project after the completion of work package 
2 should be set such that the probability of overrunning this amount is the same 
probability, α, that was used in the a priori situation. That is, whatever risk factor α 
was appropriate at the beginning of the project remains appropriate throughout the 
project life cycle. This means, of course, that the value of k also remains constant, 
even though the standard deviation changes. Therefore, after the completion of 
work package 2, a new budget value, B2, is set, such that:
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	 B2 = + +cost of work completed expected cost to complete continggency. 	

Hence, using the above expressions:
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Thus, knowledge of the actual cost of work package 2 may result in a change to 
the total project budget (shown here as a budget reduction) of B0 − B2:
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This budget differential (reduction) can be seen to consist of three parts:

•	 μ2 − X2, which represents the direct saving due to an underrun on work package 
2 (assuming the case that μ2 > X2);

•	 ρ
σ
σ

µ12
1

2
2 2









 −( )X ,  which represents the expected saving on work package 1, 

based on the reported under-run on work package 2 and the correlation between 
the two work packages. It also depends on the ratio of the two standard devia-
tions: the greater the standard deviation of work package 1 relative to work pack-
age 2, the greater the saving; and

•	 k σ ρ σ σ σ σ ρ1
2

12 1 2 2
2

1 12
22 1+ + − −




,  which represents a reduction in the con-

tingency necessary to cover the risk, corresponding to a reduced uncertainty 
caused by the information provided by the fact that one work package is com-
plete. Note that this term is independent of the actual reported cost, X2.

This situation might have one of two possible outcomes:

•	 The budget could be reduced, and the difference could be returned to the client 
for use on other projects.

•	 The budget could be held constant. This would correspond to a greater contin-
gency and a reduction in the risk factor α, as long as scope changes are not per-
mitted to consume the available budget.
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Of course, if the experience on the work completed was unfavorable, that is, if μ2 
< X2, or if the correlation were negative, then the differential might be negative, and 
if increasing the budget is not acceptable to the client, then the available contin-
gency would go down. This would increase the risk of a cost overrun above the 
original maximum desired value α.

Note that it is not necessary to assume that the only possible policy is to maintain 
a constant value for the risk of cost overrun α throughout the entire project. The 
project manager might, for example, wish to have the risk of a cost overrun decrease 
over the life of the project, if possible. That is, he might be willing to start a project 
with a risk of cost overrun of, say, α = 0.25 a priori, with the goal that this should 
be reduced to, say, α = 0.05 when the project is three-quarters complete. Other strat-
egies may also be imagined.

Example 11.1
To illustrate the points above, assume the following a priori data:
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Then, the coefficient of variation for both work packages is 40%, and the value 
of k corresponding to the risk 0.05 is k = 1.645. Consider two conditions:

	(a)	 Independence, ρ12 = 0.0
	(b)	 High correlation, ρ12 = 0.9

In both conditions, the a priori expected value of the total project cost, E[T] = 
$200K. However, the covariance matrices differ for the two dependence 
conditions:
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By summing the terms in the covariance matrices, the a priori variances of the 
total project costs for the two dependency conditions are:

•	 Condition A: var[T] = 3200, so σT = $57K and coefficient of variation = 28%.
•	 Condition B: var[T] = 6080, so σT = $78K and coefficient of variation = 39%.

The contingency kσT at the 5% level for the independent condition is $93K, and 
for the correlated condition is $128K. This gives budgets including contingency of 
$293K for condition a, and $328K for condition B. Clearly, in this case, the depen-
dency between the work package costs raises the required budget with contingency 
at the 5% level by a significant amount, $35K.
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Suppose that the actual cost of work package 2 is reported to be 
x2 = X2 = $100K = μ2. As the actual value is exactly the mean, it implies that the best 
estimate for the cost to complete is the a priori mean of x1. For the independent 

condition A, var x x X1 2 2 1
2=  = σ  for any value of X2, so the covariance matrix for 

the cost to complete is just V = 1600. Hence, for the independent condition, the total 
a posteriori project budget to maintain a constant risk factor is:

	 B X k KT2 2 2 100 100 1 645 1600 266= + + = + + =µ σ . $ 	

The required budget with contingency has gone down from $293K to $266K, 
which implies that $27K of contingency could be reallocated to other projects.

In the correlated condition, b, the best estimate for the cost to complete is also the 

a priori mean of x1. For this condition, the conditional variance depends on the values 

of σ1 and ρ12; that is, var . .x x X1 2 2 1
2

12
21 1600 1 00 0 81 304=  = −( ) = −( ) =σ ρ  for 

any value of X2, so the covariance matrix for the cost to complete is just V = 304. 
Hence, for the dependent condition, the total a posteriori project budget is:

	 B X k KT2 2 1 100 100 1 645 304 229= + + = + + =µ σ . $ 	

The required budget with contingency has gone down from $328K to $229K, 
which implies that $99K could be returned to the sponsor. Hence, the initial bud-
get was higher for the dependent condition, but the budget reduction after work 
package 2 is also much higher, due to the reduction in the uncertainty caused by 
the dependency. As a result, condition B. now has a lower budget than the inde-
pendent condition.

Suppose instead that the actual cost of work package 2 is reported to be lower 
that the expectation, say x2 = X2 = $80K < μ2 = 100. For the independent condition 
A, the actual value of X2 has no influence on the cost to complete or the remaining 
uncertainty. Hence, for the independent condition, the total a posteriori project bud-
get is:

	 B X k KT2 2 1 80 100 1 645 1600 246= + + = + + =µ σ . $ 	

In this case, the required budget with contingency has gone down from $293K to 
$246K, which implies that $47K could be put to more productive uses, without 
affecting the risk on this project, which is still 5%.

In the positively correlated condition B, the reported value of x2 below  
its mean implies that the best estimate for the cost to complete is now  
less than the a priori mean of x1. For this condition, 

µ µ
ρ σ
σ

µ1 2 1
12 1

2
2 2 100 0 9 80 100 82= +









 −( ) = + −( ) =X K. $ . The covariance 
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matrix for the cost to complete is still V  =  304. Hence, for the dependent  
condition, the total a posteriori project budget is:

	 B X k KT2 2 1 2 80 82 1 645 304 191= + + = + + =µ σ# . $ 	

Due to the favorable result on work package 2, and the reduction in uncer-
tainty due to dependence, the required budget with contingency has gone down 
from $328K to $191K, which implies that $137K could be otherwise allocated. 
As a result, condition B now has a much lower budget than the independent con-
dition A.

Suppose now that the actual cost of work package 2 is reported to be 
x2 = X2 = $127K > μ2 = 100. For the independent condition A, the total a posteriori 
project budget is:

	 B X k KT2 2 1 127 100 1 645 1600 293= + + = + + =µ σ . $ 	

The over-run on work package 2 used up some of the project contingency, but the 
required a posteriori budget with contingency now happens to be exactly the same 
as the original a priori budget. The risk is still 5%.

In the correlated condition B, the reported value of x2 above its mean implies that 
the best estimate for the cost to complete is now more than the a priori mean of x1. 

For this condition, µ µ
ρσ
σ

µ1 2 1
1

2
2 2 100 0 9 127 100 124# = +









 −( ) = + −( ) =X K. $ . 

The variance of the cost to complete is unchanged. Hence, for the dependent condi-
tion, the total a posteriori project budget is now:

	 B X k KT2 2 1 2 127 124 1 645 304 280= + + = + + =µ σ# . $ 	

Even with the unfavorable result on work package 2, the reduction in uncer-
tainty due to the dependence means that the required budget with contingency has 
gone down from $328K to $280K, which implies that $48K could be put to other 
uses.

As a final example, suppose that the actual cost of work package 2 is reported to 
be x2 = X2 = $152K > μ2 = 100. For the independent condition, the total a posteriori 
project budget is:

	 B X k KT2 2 2 152 100 1 645 1600 318= + + = + + =µ σ . $ 	

The required budget with contingency is now more than the original a priori 
budget. This means that the owner must add $25K to the original budget to maintain 
the risk at the original 5%. More likely, however, the original budget, $293K, will 
remain the same and the $25K will be taken out of the contingency. That is, the 
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result on work package 2 used up $25K of contingency, which reduces the total 
contingency ($293K − $252K) to $41K. This value corresponds to k = 1.025, and a 
risk of project overrun of 15%.

In the correlated condition 

µ µ
ρ σ
σ

µ1 2 1
12 1

2
2 2 100 0 9 152 100 147= +









 −( ) = + −( ) =X K. $ . Hence, for the 

dependent condition, the total a posteriori project budget is now:

	
B X k KT2 2 1 2 152 147 1 645 304 328= + + = + + =µ σ . $

	

In this case, the reduction in uncertainty due to the dependence has offset the 
very unfavorable result on work package 2, and so the required budget with contin-
gency is the same as the original budget; all the overrun on work package 2 has 
come out of contingency and the risk remains at 5%.

One might pose the question: Does the risk of a project necessarily decline over 
the life of the project? Here, risk is taken to mean the probability of a cost over-run, 
α. Consider the case that this risk remains constant. For α to remain constant, then 
k must remain constant. Then, from the equations above, one can determine the 
values that X2 can take on such that the a priori and the a posteriori budgets are the 
same, and the factor k remains the same. That is,

	 B B2 0= 	
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The value of X2 from the equation above marks the boundary between the regime 
in which the risk is increasing and the regime in which the risk is decreasing. Even 
in the simple bivariate case, the value of this expression depends on almost all the 
parameters: μ2, σ1, σ2, ρ12, k.

Substituting into the equation for the parameters of condition A, with ρ12 = 0, 
gives the value X2 = $127K. That is, if the actual reported cost of work package 2 is 
exactly $127K, then the risk of over-running with a constant budget remains 
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constant; if the actual value is less than $127K, then the risk decreases; if the actual 
value is more than $127K then the risk increases.

Substituting into the equation for the parameters of condition B, with ρ12 = 0.9, 
gives the value X2 = $152K. That is, if the actual reported cost of work package 2 is 
exactly $152K, then the risk of over-running with a constant budget remains con-
stant; if the actual value is less than $152K, then the risk decreases; if the actual 
value is more than $152K then the risk increases.

The conclusion from this is that whether the risk decreases or increases is a com-
plex function of virtually all the parameters of the problem, but can be determined 
easily by a computer calculation.

11.3  �General Multivariate Case

Of course, projects have many more than two work packages. The general expres-
sion gives the joint multivariate Normal probability density function in N random 
variates x1, x2, x3, … , xN (Hald 1952). Let

x = N × 1 column vector of work package costs (random variables) {x1, x2, x3,  … , xN}T

μ = Ν × 1 column vector of mean values of work package costs {μ1, μ2, μ3,  … , μN}T

V = N × N covariance matrix
|V| = determinant of the covariance matrix.
V−1 = inverse of the covariance matrix.

then,

	

f x
V

x V xX N

T( ) =
( )

− −( ) −( )







−1

2

1

2
2

1

π
exp µ µ

	

Note that the equation just above puts a restriction on the covariance matrix V: it 
must be invertible. And in order that its inverse exist, V must be positive definite. 
That is, any square symmetric matrix is not necessarily a valid covariance matrix; to 
be a valid covariance matrix, a matrix must be square, symmetric, and positive 
definite.

To use this equation, we first consider the situation before any actual cost reports 
are available; this is the a priori condition, and we compute the required contin-
gency to meet the defined level of risk as before. That is, we compute the mean 
value of the total project cost as:

	
E T

i

N

i[ ] =
=
∑

1

µ
	

and the variance of the total cost is the sum of all the terms in the covariance matrix:
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var T V
i

N

j

N

ij[ ] =
= =
∑∑

1 1 	

From the mean and the standard deviation of T we compute the risk of overrun-
ning any chosen value of the cost from the tables of the Normal distribution.

Suppose that the work packages are numbered (or renumbered) such that work 
package N is completed first. Then the process is to use the known value xN = XN to 
revise the means and variances of the other N − 1 work packages as appropriate, 
using the approach described earlier. Then this is repeated for the next work pack-
age to be completed, say xN−1 = XN−1, and so on until the only remaining work pack-
age is x1.

In the case with N random variables, we first partition the x and μ vectors. 
Partition x into a vector of N − 1 values, called x1, plus a scalar, called xN; and simi-
larly for μ1, a (N − 1) vector, and μN, a scalar:

	

x
x

x
=


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;µµ
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



( )Nx1 	

We then partition the N × N covariance matrix V in a conformal way:

	

V
V

V
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VN N
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N x N

N N x
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

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By this partitioning, xN is a univariate Normal random variable, with mean μN and 
variance VNN. And, x1 is distributed as (N −  1) multivariate Normal with mean 
(N − 1) vector μ1 and covariance ((N − 1) × (N − 1)) matrix V11.

As soon as the actual value xN = XN is observed, the conditional distribution of x1 
given xN = XN, or x1|xN = XN, is multivariate ((N − 1) × (N − 1)) Normal with mean 
(N − 1) vector μ1|N and ((N − 1) × (N − 1)) covariance matrix V11 ∣ N, given by the 
equations:

	

µµ µµ1 N 1 1N

11 N 11 1N N1

V

V V V V

= + −( )
= −

−

−

V X

V

NN N N

NN

1

1

µ

	

In the a posteriori condition, we know the reported value. From this, we compute 
the revised conditional mean vector and covariance matrix from the equations 
above. Using these, we compute the required contingency to meet the defined level 
of risk by computing the a posteriori mean of the total remaining cost, by:

	
E T x XN N

i

N

Ni=  =
=

−

∑
1

1

1µ
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and the variance of the total remaining cost as the sum of all the terms in the  
conditional covariance matrix:

	

var ,T x X VN N
i

N

j

N

N i j=  =
=

−

=

−

∑∑
1

1

1

1

11

	

From the known value XN and the mean and the standard deviation of T|xN = XN 
we compute the risk of overrunning any chosen value of the cost from the tables of 
the Normal distribution.

For the next cycle, we reset N ← N − 1 and repeat the process, step by step, until 
N = 2, at which point we have reached the situation discussed in the earlier part of 
this text.

The recursive operations stated in the general case are actually quite straightfor-
ward, but the difficulties of notation make the equations appear more complex than 
they really are. Perhaps the most difficult computation is the determination of 
whether the given original covariance matrix is invertible; that is, positive definite. 
The process above does not actually require the inversion of the whole covariance 
matrix, but it does require that the matrix be invertible in order that the multivariate 
joint Normal distribution should exist. Obviously, one can determine whether the 
covariance matrix is invertible by trying to invert it; the process either succeeds or 
fails. Unfortunately, if the inversion process fails, it provides little guidance on what 
to do about the problem. The computation of the eigenvalues of the covariance 
matrix, to determine if it is positive definite, and to adjust the covariances if it isn’t, 
is discussed elsewhere in this book (see Chap. 4).

The process in the general multivariate case is illustrated below by the trivariate 
problem (that is, for N = 3). (Space limitations make it difficult to show larger matri-
ces.) Here, we will start with three work packages, and reduce the trivariate case to 
the bivariate case, as illustrated in Part a of this chapter.

Therefore, we consider three work package costs: x1, x2, and  x3. To help distin-
guish the parameters in the revision process, here we use the following notation:

a priori means for each work package: m1, m2, and m3

a priori standard deviations for each work package: s1, s2, and s3

a priori correlation coefficients for each pair of WPs: r12, r13 and r23

The third work package will be finished first, so we wish to use the actual value 
reported for this work package to revise the estimates for the remaining two. The a 
priori covariance matrix, using the above notation, is:
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Note the partitioning of the covariance matrix between rows 2 and 3 and columns 
2 and 3; this will be used later. To perform the a priori analysis, we compute the 
expected value and the variance of the total cost, T:

	
E T m m m[ ] = + +1 2 3 	

	
var T s s s s s r s s r s s r[ ] = + + + + +1

2
2
2

3
2

1 2 12 1 3 13 2 3 232 2 2
	

With this mean and variance, we determine the a priori budget B0 at the risk 
level α:

	

B E T k T

B m m m k s s s s s r s s r

0

0 1 2 3 1
2

2
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2
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var

22 2 3 23s s r
	

In this notation, the work packages are numbered backward, so that work pack-
age N is the first to complete and work package 1 is the last. Thus, when work pack-
age 3 reports, we observe the actual value x3 = X3. We now use the equation above,

	
µµ µµ1 N 1 1NV# = + −( )−V XNN N N

1 µ
	

with N = 3 to compute the revised means for the two remaining work packages. Let 
μ1|3 be the revised expected value for work package 1, conditional on obtaining the 
actual cost X3 for work package 3, and let μ2|3 be the revised mean for work package 
2, given x3 = X3. Then the N − 1 = 2 equations for these revised expected values are:
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µ
13 1 13 33
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3 3

2 3 2 23 33
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3 3
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−

−
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Note that, in this process, the only term actually inverted is the scalar term VNN. 
Substituting into the above equations, the revised means are:
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Now use the general equation given above for the revised covariance matrix,

	
V V V V11 N 11 1N N1= − −VNN

1

	

With N = 3, this becomes
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Substituting in the values for the a priori variances gives:
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However, we know from the bivariate case discussed earlier that the covariance 
matrix, after work package 2 has reported its costs, must be given by the following, 
in which σ1 and σ2 represent the revised standard deviations for work packages 1 and 
2, respectively, and ρ12 represents the correlation coefficient between the costs of 
work package 1 and work package 2:
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From the main diagonal terms in this expression, we can immediately determine 
the revised variances,
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Substituting these values into the off-diagonal terms (which are of course equal, 
by symmetry), gives
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We now have revised values for the expected values, variances, and correlation 
coefficient for the case with two work packages, which is just the situation covered 
in the bivariate case. We compute the revised mean and variance of the total cost as 
before:
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In terms of the original parameters for the a priori case of three work packages, 
these are,
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Example 11.2
To illustrate the trivariate example, assume the following a priori data:
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Inserting these numerical values into the a priori equations given above,

	
E T m m m[ ] = + + =1 2 3 300$ K

	

	
var T s s s s s r s s r s s r[ ] = + + + + + =1
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With this mean and variance, we determine the a priori budget B0 at the risk level 
α = 0.15:

	
B E T k T K0 300 1 0 111 7 411 7= [ ]+ [ ] = + ( ) =var . . .$

	

This implies a contingency of $111.7K or 37% of the expected value of the total 
cost, corresponding to a 15% probability of a cost overrun.
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Now suppose that work package 3 is completed at a cost of $95K. The revised 
expected values for the two work packages remaining are, from the above 
equations,
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The revised variances are, similarly:
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And, the revised correlation coefficient is:
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The revised expected value and variance of the total cost, with one work package 
known, are:
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This give an overall coefficient of variation for the total cost of 0.14, compared 
to 0.37 in the a priori case. The revised budget is

	
B K K3 287 1 0 40 8 327 8= + ( ) =$ $. . .

	

This represents a substantial reduction from the a priori budget, including con-
tingency, of $411.7K.

Note that the coefficient of variation of the cost for each work package in the 
original case is 40/100 = 0.4, which falls to 24/96 = 0.25 for the two work packages 
after work package 3 reports. Also, the original correlation coefficients, 0.8, fall to 
0.44 after one work package is known. Although the specific results of course vary 
according to the initial parameters and the number of work packages, this behavior 
is typical. As more information becomes available on actual costs, the variability 
and the correlation between the remaining variables decrease.
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11.3.1  �Discussion

Unfortunately, there are few data on how project managers actually manage project 
contingencies. The analysis above shows that a consistent contingency strategy can 
be developed based on maintaining a constant risk of cost overruns throughout the 
project life. In the case that tasks or work packages are correlated, the project man-
ager can learn, from experience on early work packages, to modify the predictions 
of costs on later work packages and therefore to reduce the uncertainty in project 
total cost. In this approach, a reduction in uncertainty reduces the need for contin-
gency. Then, given moderately favorable cost experience, the project manager may 
be able to reduce the contingency amount and to release money from the contin-
gency pool to other uses.

In this approach, contingency is never parceled out to individual tasks or work 
packages; it is always retained by the project manager and thus is available for real-
location to other work packages that overrun, or for return to the owner, or for other 
uses. In this second moment model, contingency is related to uncertainty, or igno-
rance about the true costs in the future. Contingency is not an appropriate way to 
deal with risks of extraordinary events, with very high impact but very low likeli-
hood, which may or may not occur.

It is often recommended that, if there is some high magnitude risk, with very low 
probability p and very high cost C, then one should apply a contingency equal to the 
expected loss, pC. This view is not taken here, on the basis that a contingency so 
derived is never of any use. If the event never occurs, which almost always will be 
true, with probability Pr = (1 − p) ≅ 1, then one has simply increased the cost of the 
project by pC. On the other hand, if the event occurs, the contingency in reserve, 
pC ≪ C, is always inadequate to cover the need. That is, there are other and better 
ways to handle rare events than through contingency reserves.

The first priority is to assure that there are enough funds in reserve to get the 
project done. The risk of overrunning cannot be made zero, but it can be analyzed 
as shown above and reduced to some acceptable value, given as α. In some projects, 
poor cost performance coupled with excessive risk values will mean that all the 
original contingency is used up, and then some. However, there will be projects with 
adequate original contingency and favorable cost experience, and these projects will 
be able to free up contingency reserves for other uses.

The best use of released contingency reserves would be to return them to the 
owner, or to whomever is funding the project, who can then allocate these funds to 
other projects or other uses. That is, the contingency funds belong to the owner or 
sponsor, not to the project, to use in whatever manner it wishes, and if the contin-
gency is not being used, it should be returned to its rightful owner.

Example 11.3
The second moment method provides a simple, convenient way to adjust the risks, 
and hence the required contingencies to cover the risks, as a project proceeds and 
evidence is obtained on how well (or badly) it is going, compared to the initial esti-
mates. The objective of this approach is to react as soon as possible to information 
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on recent project performance that confirms or disconfirms the current estimates. 
The key parameter is the expected cost at completion (or, the expected time at com-
pletion). If the best estimate of the cost at completion, updated with the most recent 
progress information, is higher than the original estimate, then, assuming no scope 
changes, more contingency may be required or some program management correc-
tive action may be needed to bring the project back on target. Conversely, if the 
updated best estimate of the cost at completion is the same as or lower than the 
original estimate, then the contingency required can be decreased and this contin-
gency released to the program manager, as needed elsewhere. In the approach dis-
cussed here, the estimates of all future work packages are updated as the actual costs 
for each completed work package become available.

This point is illustrated by an example, very much simplified for exposition. To 
keep the example small enough to present here, we consider a project of only six 
work packages; real projects might have hundreds of work packages. Also, to keep 
it simple, we assume that the expected cost (the mean, the median, and the mode) 
for each work package is $100,000, and the uncertainty in each work package cost 
is given by the coefficient of variation, which is assumed in this example to be 
40% for every work package. As the coefficient of variation is the standard devia-
tion divided by the expected value (times 100), the estimated values for the stan-
dard deviations for all work packages are $40,000 each. Then the best estimate of 
the total cost at completion is the sum of the expected values for the work pack-
ages, or $600,000.

The correlation matrix used in this example is as follows:
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These correlations were computed from the formula:
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Then the second moment method described above gives a computed value for the 
standard deviation of the total cost of $217,830 (the detailed equations and calcula-
tions are not reproduced here). This means that the coefficient of variation of the 
total project cost is 36.3%, which is less than the coefficient of variation for each of 
the six work packages taken separately. Assume that we wish to set the contingency 
at the 90% confidence limit; which is to say that the budget is to be set such that 
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there is a 10% chance or less that the budget will be overrun, and a 90% chance that 
the budget will not be overrun. The normal factor for one-sided 90% confidence is 
1.283, so the required budget at the 90% confidence value is $600,000 plus 
1.283($217,830) = $879,480.

Now suppose that the first work package is completed for an actual cost of 
$140,000, or 40% higher than the expected value of $100,000. Given this informa-
tion, the revised best estimates for the remaining work packages, based on the 
method descried earlier, are as given in Table 11.1.

The fact that the first work package was completed for substantially more than 
the best prior estimate of $100,000, and the correlation between the work package 
costs, means that there is some evidence that the cost estimates on this project may 
be low, and accordingly we should revise our estimates of the costs of the remaining 
work packages upward. The table above shows these revised cost estimates. The 
best estimates for the remaining work packages, after obtaining the information 
about the actual cost of work package one, vary from $135,960 to $123,590. 
Consequently, the best estimate of the total cost at completion is now $787,240, up 
$187,240 from the initial estimate of $600,000. Assuming that the sponsor does not 
increase the budget, so that the budget with contingency remains constant at the 
original value of $879,480, the remaining contingency is only $879,480 − $787,240 
= $92,240. This is positive, but less than the required contingency to cover the 
remaining costs at the 90% confidence level. That is, step one has actually used up 
some of the project contingency, even though no specific contingency was assigned 
to step one, and now the probability of overrunning the budget is more than 10%. In 
fact, the probability of overrunning the established budget with contingency is now 
20%, and the budget corresponds to the 80% confidence level. The revised values 
for cost at completion and budget with contingency after step one are plotted in 
Fig. 11.2 below. (At this point, of course, only the step one results are known.)

The original best estimate of the cost at completion, the required contingency, 
and the 90% confidence value for the budget including contingency are shown on 
the axis for zero steps complete. When the first activity (step) is completed, for 
$140,000, the best estimate of the cost at completion increases, the available contin-
gency falls, and the budget remains the same, although this now corresponds to the 
80% confidence limit rather than the 90% confidence limit.

Suppose now that the second activity is completed for a cost of $135,000. This is 
actually very slightly lower than the updated prediction (the best estimate for the 
step two cost after step one was completed was $135,960) but $35,000 higher than 
the original estimate. This additional evidence tends to confirm that the project costs 
are running higher than the estimates (or, that the estimates were low). The revised 
values for the best estimates of the incomplete steps are now given in Table 11.2.

Table 11.1  Revised best estimate of cost

Work package 1 2 3 4 5 6 Total cost

Best estimate 
of cost

$140,000 $135,960 $132,360 $129,120 $126,210 $123,590 $787,240

Actual
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Even though step two was much higher than the original estimate, the best esti-
mate of the cost at completion has fallen somewhat, from $787,240 to $783,340. 
After two of the six work packages have been completed, and assuming that the 
project budget has not been increased, the available contingency is now $96,140, 
slightly above the $92,240 after step one, but still below the value to meet the 90% 
confidence limit. In fact, the established budget with contingency corresponds to 
the 87% confidence value; there is a probability of 13% of exceeding the value 
$879,480.

Suppose now that the third activity is completed for a cost of $132,000. This is 
modestly higher than predicted (the best estimate for this cost after step two was 
completed was $128,350). The revised values for the best estimates of the incom-
plete steps are now given in Table 11.3.

Table 11.3  Revised best estimate of cost

Work package 1 2 3 4 5 6 Total cost

Best estimate 
of cost

$140,000 $135,000 $132,000 $128,800 $125,920 $122,970 $785,050

Actual Actual Actual

Fig. 11.2  Time history of revision

Table 11.2  Revised best estimate of cost

Work package 1 2 3 4 5 6 Total cost

Best estimate 
of cost

$140,000 $135,000 $131,500 $128,350 $125,520 $122,970 $783,340

Actual Actual
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After the third work package has been completed, the best estimate of the cost of 
completion has gone up slightly to $785,050, but the required contingency has gone 
down to $77,280 (it goes down even though the cost of activity three was higher 
than estimated, because there are fewer remaining risks), and the 90% confidence 
budget can now actually be decreased to $862,330, even though all the three work 
packages have been higher than the original estimates.

Suppose now that the fourth activity is completed for a cost of $130,000, slightly 
higher than predicted. The revised best estimates of the incomplete steps are now 
given in the Table 11.4.

After four of the six work packages have been completed, the best estimate of the 
cost of completion has gone up to $788,300, but the required contingency has gone 
down to $47,890 (it goes down even though the cost of activity four was high, 
because there are fewer remaining risks), and the 90% confidence budget can 
actually be decreased to $836,200.

Suppose now that the fifth activity is completed for a cost of $129,000, slightly 
higher than predicted. The revised best estimate of the single incomplete step is now 
given in Table 11.5.

After five of the six work packages have been completed, the best estimate of the 
cost of completion has crept up again, to $792,110, but the required contingency has 
gone down to $22,200, and the 90% confidence budget can be decreased to $814,310.

Suppose finally that the sixth activity is completed for a cost of $131,000. The 
actual costs are as given in Table 11.6.

The variations in the revised budgets and expected costs at completion, after 
each work package or step is completed, are shown in the figure given above. The 
objective of using the confidence limits is to keep the confidence band positioned 
so that it envelops the (unknown) actual cost at completion. That is, no one can 
predict the future (the actual cost at completion) with certainty, but we can try to 
define a confidence band that bounds where we expect to find it (with probability 
90%, in this case). Although the lower confidence bound is not shown in the figure 

Table 11.4  Revised best estimate of cost

Work package 1 2 3 4 5 6 Total cost

Best estimate 
of cost

$140,000 $135,000 $132,000 $130,000 $127,000 $124,300 $788,300

Actual Actual Actual Actual

Table 11.5  Revised best estimate of cost

Work package 1 2 3 4 5 6 Total cost

Best estimate 
of cost

$140,000 $135,000 $132,000 $130,000 $129,000 $126,110 $792,110

Actual Actual Actual Actual Actual

Table 11.6  Revised best estimate of cost

Work package 1 2 3 4 5 6 Total cost

Best estimate $140,000 $135,000 $132,000 $130,000 $129,000 $131,000 $797,000
Actual Actual Actual Actual Actual Actual Actual
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(it is the expected cost at completion minus the contingency), it is clear that, for 
this example at least, the method has achieved the goal of keeping the 90% confi-
dence limit above the actual cost at completion (that is, above $797,000) for every 
step in the process up to project completion. Of course, even though the costs 
increased over the original estimates, this example was actually well behaved in 
that it never ran out of contingency (although contingency was being used up for 
some period of time).

Figure 11.3 shows the change in uncertainty regarding the final cost at comple-
tion as every work package is completed, providing additional information about 
where the project is going. Before any work is done, the prior estimate of the prob-
ability for the cost at completion is centered on $600,000, but has a very high vari-
ance (uncertainty), as shown in the figure below. After the completion of step one, 
the probability distribution shifts to the right, and is centered $787,240. As each 
subsequent work package is completed, the best estimate or most likely value for 
the cost at completion creeps up somewhat, depending on the latest actual cost 
reports, but the uncertainty (the width of the distribution) always lessens. The figure 
illustrates how the method starts with a high degree of uncertainty and zeros in on 
the target as more information becomes available about actual project 
performance.

Example 11.4
As another numerical example, the project is the same as in Example 11.3, but with 
different realizations. That is, all the work packages, estimates, correlations, etc., 
are identical to those in Example 11.3, but the actual project outcomes are differ-
ent. Thus, as in Example 11.3, the expected value of the total project cost is 

Fig. 11.3  Uncertainty on cost at completion
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$600,000, and the standard deviation of the total cost is $217,830, and the required 
budget at the 90% confidence value is $879,480.

The first work package is completed, this time at an actual cost of $90,000, lower 
than the expected value. The revised best estimates for the remaining work packages 
are shown in Table 11.7.

The fact that the first work package was completed for less than the best prior 
estimate of $100,000 means that there is some evidence that the cost estimates may 
be high on this project, and accordingly we should revise our estimates of the costs 
of the remaining work packages downward, given the correlations between the 
work package costs. That is, our best estimate of the total cost at completion is now 
$553,190, down from $600,000. The required contingency to cover the remaining 
costs at the 90% confidence level has gone down to $142,580, a significant reduc-
tion from the initial value of $217,830, freeing up $75,250 in contingency funds to 
be deployed elsewhere. The 90% confidence budget is now $695,770, down 
$183,710 from the original value of $879,480.

The second activity is completed for a cost of $95,000. This is lower than the 
original estimate but somewhat higher than the updated prediction (the best estimate 
for this cost after step one was completed was given in the table above as $91,010). 
The revised values for the best estimates of the work packages and cost at comple-
tion are now showing in Table 11.8.

After two of the six work packages have been completed, the best estimate of the 
cost of completion has gone up somewhat from $$553,190 to $569,490 (still less 
than the original estimate), but the required contingency has gone down to $109,110 
and the 90% confidence budget has decreased to $678,600. The third activity is 
completed for a cost of $105,000. This is higher than predicted (the best estimate for 
this cost after step two was completed was $95,490). The best estimates of the costs 
of the incomplete steps are shown in Table 11.9:

After three work packages have been completed, the best estimate of the cost of 
completion has gone up to $602,190, but the required contingency has gone down 

Table 11.7  Revised best estimate of cost

Work package 1 2 3 4 5 6 Total cost

Best estimate of cost $90,000 $91,010 $91,910 $92,720 $93,450 $94,100 $553,190

Actual

Table 11.8  Revised best estimate of cost

Work package 1 2 3 4 5 6 Total cost

Best estimate of cost $90,000 $95,000 $95,490 $95,940 $96,350 $96,710 $569,490

Actual Actual

Table 11.9  Revised best estimate of cost

Work package 1 2 3 4 5 6 Total cost

Best estimate of cost $90,000 $95,000 $105,000 $104,500 $104,050 $103,640 $602,190

Actual Actual Actual
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to $77,280. The 90% confidence budget has remained approximately steady at 
$679,470. The fourth activity is completed for a cost of $106,000, slightly higher 
than predicted. The revised best estimates of the incomplete steps are shown in 
Table 11.10.

The expected cost at completion goes up to $606,260, but the required contin-
gency goes down to $47,890 and the 90% confidence budget decreases to $654,150. 
The fifth activity is completed for a cost of $93,000, lower than predicted. The 
revised best estimate of the single incomplete step is shown in Table 11.11:

After five of the six work packages have been completed, the best estimate of 
the cost of completion has gone down again, to $590,250, and the required contin-
gency has gone down to $22,200, and the 90% confidence budget decreases to 
$612,450.

Finally, the sixth activity is completed for a cost of $103,000. The actual costs 
are shown in Table 11.12.

The variations in the revised budgets and expected costs at completion, after each 
work package or step is completed, are plotted in Fig. 11.4.

Figure 11.5 shows the change in uncertainty regarding the final cost at comple-
tion as every work package is completed. As each work package is completed, the 
estimated cost at completion goes down, then up, then down again, but the uncer-
tainty in the cost at completion always decreases, zeroing in on the target as 
information becomes available.

11.4  �Managing the Contingency: Cost to Complete

Suppose that a project consists of M work packages and that at some time N work 
packages remain to be done. (That is, M−N work packages have been completed 
and reported.) Let z represent the remaining cost to complete the project, recalling 
that the work packages are numbered from M down to 1, the last:

Table 11.10  Revised best estimate of cost

Work package 1 2 3 4 5 6 Total cost

Best estimate of cost $90,000 $95,000 $105,000 $106,000 $105,400 $104,860 $606,260

Actual Actual Actual Actual

Table 11.11  Revised best estimate of cost

Work package 1 2 3 4 5 6 Total cost

Best estimate of cost $90,000 $95,000 $105,000 $106,000 $93,000 $97,250 $590,250

Actual Actual Actual Actual Actual

Table 11.12  Revised best estimate of cost

Work package 1 2 3 4 5 6 Total cost

Actual $90,000 $95,000 $105,000 $106,000 $93,000 $103,000 $596,000
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Fig. 11.5  Uncertainty on cost at completion

Fig. 11.4  Time history of cost revisions
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It is assumed that the expected values of the remaining work packages, along 
with their variances and the correlation matrix, have been updated at the completion 
of each work package by the method described earlier. Then,
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var var
	

That is, the uncertainty in the remaining cost to complete is just the uncertainty 
in the total cost at completion, because completed work packages have no uncer-
tainty. Let f(z) be the probability density function for the remaining cost to com-
plete, where f(z) is conditional on the actual reported values XM, XM − 1, … , XN + 1. 
Let Bz,N be the budget, including contingency, to cover the cost to complete the 
last N work packages (not the total cost at completion). The Expected Value-at-
Risk is then:
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This represents the expected value of the budget overrun when N work packages 
remain and Bz,N is the budget to complete. The expected value of the cost to com-
plete is:
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(Note that the lower limit of integration is merely for notational convenience; the 
cost to complete can never be negative.)

Now let’s define the ratio R as:
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Then 100R is the expected budget overrun as a percentage of the expected cost to 
complete, when Bz,N is the remaining budget to complete. In the previous examples, 
the contingency was adjusted in order to keep the probability of a budget overrun 
constant throughout the project. One alternate approach to contingency manage-
ment might be to adjust the contingency (contained in Bz,N, the remaining budget to 
complete) so that R is a constant, where 100R is the expected budget overrun as a 
percentage of the expected cost to go. For example, one might set R = 0.05, which 
means that the budget to go should be set such that the expected budget overrun is 
always 5% of the cost to go.
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In the current notation, αN is the probability of exceeding the budget Bz,N when 
there are N work packages yet to be done:

	

αN

Bz N

f z dz= ( )
∞

∫
, 	

Given that f(x) is Normal, which is the assumption here,

	
VaR k k= ( ) + − ( ) σφ µ 1 Φ

	

Here ϕ(k) and Φ(k) are, respectively, the probability density function and the 
cumulative probability distribution for the Unit Normal. In the notation used here, 
this equation becomes:
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Dividing this by E[z] gives:
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Note that 
var z

E z

[ ]
[ ]

 is the Coefficient of Variation of the cost-to-complete when 

N work packages remain, and E[z] and Var[z] are conditional on the reported costs 
for the work packages M through N + 1, computed by the method described above. 

Then, with R specified and 
var z

E z

[ ]
[ ]

 computed, the contingency to maintain a 

constant R can be found by solving the following equation for k:
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Then the contingency to go is k zvar [ ] , the budget to go is 

B E z k zz N, var= [ ]+ [ ] , and the probability that this budget will be overrun is 

αN = 1 − Φ(k).
Figure 11.6 shows the variation of αN for various values of the Coefficient of 

Variation (COV) of the cost to go, when R is held constant (at R = 0.05 and R = 0.10). 
Note that higher values of the COV imply lower probabilities of overrunning the 
budget, when R is fixed. (Why?) As one might expect the COV of the cost to com-
plete to decrease as the project moves forward, holding R constant implies that the 
budgets to go have an increasing probability of being overrun.
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Example 11.5
The second moment method provides a simple, convenient way to adjust the risks, 
and hence the required contingencies to cover the risks, as a project proceeds and 
evidence is obtained on how well (or badly) it is going, compared to the initial 
estimates. The objective of this approach is to react as soon as possible to informa-
tion on recent project performance that confirms or disconfirms the current esti-
mates. The key parameter is the expected cost at completion (or, the expected time 
at completion). If the best estimate of the cost at completion, updated with the 
most recent progress information, is higher than the original estimate, then, assum-
ing no scope changes, more contingency may be required or some program man-
agement corrective action may be needed to bring the project back on target. 
Conversely, if the updated best estimate of the cost at completion is the same as or 
lower than the original estimate, then the contingency required can be decreased 
and this contingency released to the program manager, as needed elsewhere. In the 
approach here, the estimates of all future units are updated as the actual cost for 
each completed unit becomes available.

Consider a project of 20 units. For ease of understanding, the units are consid-
ered to be identical. This is not required by the analysis, which can handle cases 
in which all units are different, but the simpler assumption is easier to follow. 
Then assume that the expected cost (the mean, the median, and the mode) for each 
unit is $100, and the uncertainty in each unit cost is given by the COV, which is 
assumed in this example to be 40% for every unit. As the COV is the standard 
deviation divided by the expected value (times 100 to give a percentage), the esti-
mated values for the standard deviations for all units are $40 each. Then the best 
estimate of the total cost at completion is the sum of the expected values for the 
20 units, or $2000.

The correlation matrix used in this example is as follows:

Fig. 11.6  Alpha (α) for various coefficients of variation
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These correlations were computed from the formula:
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Although the 20 by 20 covariance matrix is too large to show here, all the terms 
are computed by the equations given above, and the sum of all the covariances in 
the matrix is 355014.1. This is the a priori variance of the project total cost, and 
the square root of this, $595.83, is the a priori standard deviation of the total proj-
ect cost. Assume now that the project manager has some aversion to risk, and 
wants to be 90% confident of successful completion of the project within the 
budget. This level of risk aversion implies, using the one-sided Normal distribu-
tion, that the available budget must be $2000 + 1.282($595.83) = $2763.86. That 
is, the probability of a cost overrun at this project budget is 10% and this level of 
risk is acceptable to the project manager. As has been seen before, this value 
($2763.86 in this case) is called the Value-at-Risk (VaR). Note that if one were to 
set the budget at the expected total cost, $2000, the probability of an over-run 
would be 50% and the project manager would have only a 50–50 chance of suc-
cess. This would typically be considered an excessive probability of over-run. 
This does not imply that such risky budgets are never set; only that the high prob-
ability of failure should be recognized.

To summarize: before the project begins, the project manager concludes that the 
best estimate of the total project cost is $2000, based on an average unit cost of 
$100, and the project manager has access to an amount of $2763.86 for 90% confi-
dence that the cost will not exceed the available funding. This figure represents a 
contingency or markup of 38% over the expected cost, but it is not computed from 
the expected cost, it is computed from the risk in the unit costs. Note that $2763.86 
is not necessarily the bid price, because it does not include explicit allowance for 
overhead and profit.

Now suppose that the first unit (denoted here as N = 20) is completed for an 
actual cost of $105, or 5% higher than the expected value of $100. The fact that the 
first unit was completed for somewhat more than the best prior estimate of $100 
means that there is some evidence that the cost estimates on this project may be low, 
and accordingly we should revise our estimates of the costs of the remaining units 
upward. Given this information, the revised best estimates for the remaining 19 
units, based on the method described earlier, are as given in the Table 11.13:
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This result is also shown in the following figures. Figure 11.7 below represents 
the prior situation, in which the predicted cost of each unit is $100.

Figure 11.8 just above shows the predicted values for all of the 19 remaining 
units, given that the first unit cost $105. These predicted values approach $100 for 
the later units, as the impacts of the $105 actual cost are diminished down the chain 
(diminished because the correlation coefficients are <1). The total job cost at com-
pletion, the sum of all the unit costs, actual and predicted, is forecast to be $2043.92, 
which is over the expected value but well under the allocated funding including 
management reserve of $2763.86.

The figure below shows the revised cost estimates for each remaining unit after 
the second unit has been completed at cost $111 (and the first unit at $105). The 
effect of these costs above the prior is to increase the estimate for the costs for each 
unit in the future, as shown graphically in Fig. 11.9.

Suppose now that the third unit is completed for a cost of $97. This is actually 
slightly lower than the prior estimate ($100) and the updated prediction (the best 
estimate for the third unit after the completion of the second unit is $109.90). This 
additional evidence tends to indicate that the unit costs are running both above 
and below the estimates. The revised values for the best estimates of the costs of 
the 17 incomplete units, using the same algorithm as before, are now given in the 
table below.

Table 11.13  Revised unit cost estimate

Unit Prior expected cost of future units, $ Revised predicted cost of future units, $

20 105 actual cost 105.00
19 100 104.50
18 100 104.05
17 100 103.64
16 100 103.28
15 100 102.95
14 100 102.66
13 100 102.39
12 100 102.15
11 100 101.94
10 100 101.74
9 100 101.57
8 100 101.41
7 100 101.27
6 100 101.14
5 100 101.03
4 100 100.93
3 100 100.83
2 100 100.75
1 100 100.68
Total 2005 2043.92
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Figure 11.10 show the revised forecasts for the cost for each unit after the third 
unit has been shown to cost $97 (the curve with the large box symbols). The com-
bined effect of these actual costs both above and below the previous forecasts is to 
give a new estimate close to the original estimate – in fact, somewhat below the 
original estimate ($1990.50 vs. $2000.00).

Fig. 11.7  Predicted unit cost with no units complete

Fig. 11.8  Predicted unit costs after one unit complete
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Continuing on with this example, the fourth unit when complete is found to cost 
$108, again above the prior expected value and also above the latest prediction (see 
Fig. 11.11).

The fifth unit is completed at cost $112, above the prior expected value and 
above the latest prediction (see Fig. 11.12).

The sixth unit is found to cost $101. (See Fig. 11.13).

Fig. 11.9  Predicted unit costs after two units complete

Fig. 11.10  Predicted unit costs after three units complete
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Figure 11.14 shows the revised predicted costs per unit after the seventh unit 
completed has been shown to cost $112 (the curve with the large box symbols).

This series goes on as shown above, until all the units have been completed. 
Table 11.14 shows the actual costs for all units, the revised predictions of the cost at 
completion after each unit is completed, and the total project cost at completion. 

Fig. 11.11  Predicted unit costs after four units complete

Fig. 11.12  Predicted unit costs after five units complete
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The actual cost at completion is $2586 or 29% more than the a priori estimated cost 
of $2000. However, this actual cost is less than the a priori 90% confidence budget, 
which was $2763.86. Therefore, the project ended up over the estimate but under 
the budget.

Fig. 11.13  Predicted unit costs after six units complete

Fig. 11.14  Predicted unit costs after seven units complete
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11.5  �Practice Problems

Problem 11.5.1  Carlos is the project manager for a project that has two activities or 
work packages (so that this assignment can be done on a pocket calculator). Using 
a three-point estimation process, Carlos estimates the 5th, 50th, and 95th percentiles 
of the probability distributions for work package 1 and work package 2 (see 
Table 11.15). Then he uses the Pearson-Tukey equations to estimate the means and 
standard deviations of the two work packages.

Based on experience, Archie estimates the correlation coefficient between the 
two work packages to be 0.50. He also determines that he wants to be 90% confident 
that the total actual cost for the project will not exceed his budget, which is to be 
determined. Using α = 0.10 and a table of the Normal distribution, what is the risk 
multiplier k Archie needs to use?

The a priori expected value of the total project cost is:

	
E T[ ] = +µ µ1 2 	

The covariance matrix V is given by:

Table 11.14  Revised unit 
cost estimate Unit

Actual unit 
costs, $

Predicted cost at 
completion, $

20 105 2000.00
19 111 2043.92
18 97 2100.14
17 108 1990.50
16 112 2079.66
15 101 2118.76
14 112 2040.94
13 115 2126.55
12 124 2157.87
11 123 2233.22
10 145 2242.82
9 160 2401.09
8 155 2520.55
7 160 2526.24
6 158 2581.02
5 150 2599.76
4 155 2590.76
3 142 2625.15
2 136 2604.82
1 117 2601.40
Total 2586 2586.00
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The a priori variance of the total cost is the sum of all the terms in the covariance 
matrix, or:

	
var T T[ ] ≡ = + +σ σ ρ σ σ σ2
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What is the a priori expectation, variance, and standard deviation of the total 
cost? What is the a priori contingency kσT (that is, the contingency before any work 
is done)? What is the a priori project budget?

Problem 11.5.2  Now, suppose that the two work packages are completed in 
sequence, first work package 2 and then work package 1. Carlos is informed that 
work package 2 has been completed, and the cost is now known for certain to be X2 
= $150K, which is well over the original estimated cost. Because the two work 
packages are correlated, this means the re-estimated cost of work package 1 will be 
higher than the original estimate too. As a result, Archie is going to request a 
budget increase in order to keep his risk of overrunning the project budget at the 
prior value α = 0.10.

The conditional probability distribution on cost, given that x2 is the known 
reported value X2, is f1 |2(x1|x2), which is determined from the joint probability den-
sity function and the marginal distribution by Bayes’s Law. Then the conditional 
probability density function f1 |2(x1|x2 = X2) is Normal with parameters

	

mean E
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with x2 = X2 = 150K known, the cost to complete the project is x1.
What is the variance of x1 given x2 = X2 from the above equation? What is the 

contingency kσT? And What should be the proposed revised budget, after work 
package 2 is completed? Is it higher or lower than his original a priori budget? What 
is the expected value of x1, the cost to complete?

Table 11.15  Problem data

Work package X05 X50 X95

1 $120K $200K $280K
2 $ 60K $100K $140K
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Chapter 12
Statistical Project Control

Abstract  In this chapter we introduce statistical project control methods. We focus 
on the problems of determining whether project-generated data fall within or out-
side specification limits. The examples included in this chapter address construction 
quality problems, earned-value management, and project performance prediction.

Keywords  Statistical project control · Control charts · Range charts · 
Specification limits

12.1  �Introduction

As has been discussed so far, all quantities and processes associated with project are 
subject to natural variation. These variations are due to common causes, which may 
be internal causes, external causes, or simply inability to predict the future. One of 
the central questions that derives from the areas of Statistical Quality Control (SQC) 
or Statistical Process Control (SPC) is to determine whether the observed variation 
in a process lies within its natural variability or is outside it.

If the process lies within its natural or inherent variability, it is said to be in sta-
tistical control. A process that is in statistical control may or may not be satisfactory 
from the viewpoint of the project requirements or specification (Thompson and 
Koronaki 2002). A process that is in statistical control and meets the specifications 
for variability is said to be capable of achieving the specifications; otherwise it is 
not capable. A process that does not stay within its natural variability is said to be 
out of statistical control. Therefore, any project process may be in one of three 
states:

	1.	 The output of the process is controlled by common causes and lies within its 
natural process variability and meets the requirements and specifications for 
variability; it is capable and in statistical control.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14251-3_12&domain=pdf


278

	2.	 The output of the process is controlled by common causes and lies within its 
natural process variability but does not meet the requirements and specifications 
for variability; it is in statistical control but not meeting the requirements.

	3.	 The output of the process is controlled by some assignable cause or causes; it 
lies outside its natural process variability; it is not in statistical control.

Of these three states, one is acceptable and two are not acceptable. The response 
of project management to theses states is as follows:

	1.	 Do nothing; the process is working.
	2.	 The natural variability of the process as defined is excessive; it is necessary to 

find a process with lower variability. For example, the process could be stainless 
steel pipe welding, performed manually by welders. The variation in product 
quality (percentage of welds accepted or rejected after radiographic examina-
tion) may be within the natural variability of the manual welding process, but 
may be excessive compared to the requirements of the project. Hence, a switch 
to automatic pipe welding may be required to reduce weld quality variability. As 
another example, the process could be writing code in a software development 
project. The variation in product quality (number of software bugs) could be 
within the natural variability of software coding, but may be excessive to meet 
the requirements for completing the project on time. Hence, some change in the 
coding process may be required.

	3.	 The process, which may originally have been capable and in statistical control, 
has changed in some (perhaps unknown) way. The assignable cause of this 
change in process must be found and corrected, or the entire process (and proj-
ect) is at risk.

The project manager is faced with determining, from the available evidence, 
which of these three states the project is in and whether or not the process is in con-
trol. In this decision, the project manager is susceptible to two kinds of errors:

•	 Type I (error by obliviousness). The project manager determines that the process 
(or project) is in statistical control when it is actually out of control. Hence, no 
changes are made to the process when change would be beneficial, and the grow-
ing risks are not mitigated. The cost of this error is that the process may degrade 
until it is uncorrectable, leading to large risks, potential failure of the project, and 
failure on the part of the project manager.

•	 Type II (error by panic). The project manager determines that the process is out 
of control when it is in fact in control. Hence, changes are made when no changes 
are needed. The cost of this error is that the project is disrupted, the changes may 
be in fact detrimental, the credibility of project management is lost, and the proj-
ect manager does not succeed.

Unfortunately, an attempt to avoid Type I errors may only lead to increasing the 
likelihood of Type II errors, and conversely. The best way to reduce the likelihood 
of each type of error is to learn how to distinguish the three states reliably.
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12.2  �Earned Value Management

Quality Control (QC) and Earned Value Management (EVM) are two project areas 
in which statistical process control may be applied. In EVM, project progress 
reports typically track Earned Value data by tabulations or graphs of the plan – the 
Budgeted Cost of Work Scheduled (BCWS), and the performance - the Budgeted 
Cost of Work Performed (BCWP) and the Actual Cost of Work Performed (ACWP), 
versus time (reporting period) (Solomon and Young 2007). Also, one may track the 
variance, or cumulative deviation of the actual performance compared to the plan. 
[The term variance as used in Earned Value and in this chapter has no statistical 
meaning or connection to σ2. In Earned Value parlance, variance simply means 
diference.

However, these conventional forms of presentation, which track the cumulative 
BCWP and ACWP over time, may obscure short-term effects. That is, when well 
into the job, the cumulative BCWP and ACWP numbers are largely determined by 
history and little impacted by recent events. It takes a substantial change in any 
single reporting period to have any visible effect on the accumulated BCWP and 
ACWP. Moreover, differences in rates from period to period are shown as changes 
in slope, and it may be difficult for an observer to judge derivatives. It is easy to 
discern long-term trends after the fact, but difficult to see what is happening cur-
rently, due to the necessary scale of the cumulative plot and the inertial effect of the 
past data.

Also, commonly tracked are the two dimensionless EV indices, the Schedule 
Performance Index (SPI) and the Cost Performance Index (CPI), where, by 
convention,

	
SPI

BCWP

BCWS
=

	

	
CPI

BCWP

ACWP
=

	

However, these dimensionless ratios, although useful, also suffer from the same 
problem, that after some time they are largely determined by the inertia of history. 
Therefore, they cannot serve the function of leading indicators. The question 
addressed here, as discussed above, is, how can a potentially adverse trend in the 
process be distinguished from mere random fluctuations in progress reporting? That 
is, how should a project engineer decide when some intervention is necessary, wish-
ing to avoid the error of taking action when no action is needed, and to avoid the 
error of not taking action when action is needed?

Useful leading indicators may be obtained by applying the methods of Statistical 
Process Control (SPC). Statistical Process Control (or Statistical Quality Control, 
SQC) has been used in the manufacturing industries for over 70 years (e.g., Shewhart 
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1931). The SPC control charts also form an essential part of Total Quality 
Management (TQM) and Six-Sigma (Eckes 2001).

The standard EVMS reporting quantities are defined as:

•	 BCWS(t)= cumulative Budgeted Cost of Work Scheduled through reporting 
period t;

•	 BCWP(t) = cumulative Budgeted Cost of Work Performed through reporting 
period t;

•	 ACWP(t) = cumulative Actual Cost of Work Performed through reporting period 
t;

•	 SPI t
BCWP t

BCWS t
( ) = ( )

( )
 = Schedule Performance Index cumulative through report-

ing period t

•	 CPI t
BCWP t

ACWP t
( ) = ( )

( )
 = Cost Performance Index cumulative through reporting 

period t

To apply control charting methods, it is necessary to track metrics that are sta-
tionary throughout the life of the activity. BCWP(t) varies over job duration as the 
logistic or S-curve, whereas CPI(t) and SPI(t) should be constant over a job. The 
earned value quantities for each reporting period t (such as week or month) may be 
written as follows (in which upper case denotes cumulative, lower case denotes 
incremental or period-by-period):

•	 bcws(t) = incremental budgeted cost of work scheduled in reporting period t;
•	 bcwp(t) = incremental budgeted cost of work performed in reporting period t;
•	 acwp(t) = incremental actual cost of work performed in reporting period t;

•	 spi t
bcwp t

bcws t
( ) = ( )

( )
 = incremental schedule performance index

•	 cpi t
bcwp t

acwp t
( ) = ( )

( )
 = incremental cost performance Index

The cumulative and incremental definitions are linked by:

•	 bcws(t) = BCWS(t) − BCWS(t − 1) or BCWS(t) = BCWS(t − 1) + bcws(t)
•	 bcwp(t) = BCWP(t) − BCWP(t − 1) or BCWP(t) = BCWP(t − 1) + bcwp(t)
•	 acwp(t) = ACWP(t) − ACWP(t − 1) or ACWP(t) = ACWP(t − 1) + acwp(t)

That is, acwp(t) is the actual cost of work performed in the time period t, whereas 
ACWP(t) is the cumulative cost of the work performed from the start through time 
t. Note that CPI(t) is not equal to CPI(t − 1) + cpi(t).

Due to random fluctuations in project conditions, the dimensionless indices spi(t) 
and cpi(t) will vary with reporting date. If the project is in a state of statistical con-
trol, the sample statistics will be characteristic of the underlying population and 
hence will be stable, varying around their constant central values. The mean values 
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of spi(t) and cpi(t) should be 1.0 and the variances (that is, period-by-period varia-
tions) of both should be within the inherent limits of the process. If a job has gone 
out of statistical control, either the mean of spi(t) or cpi(t) is changing or the vari-
ance is changing, or both. We accept random variations as representing the effects 
of the common causes acting on the project process, as long as the variation is ran-
dom and stable. If the spi(t) or cpi(t) plots are not random, but exhibit some pattern, 
then there is some assignable cause operating that is changing the process. If the 
process was in control to begin with, it may be going out of control due to the 
assignable cause. And this may mean that the job will go over schedule or over 
budget.

To evaluate whether a change is occurring in the mean or variance, one should 
first establish statistics based, if possible, on historical data on jobs that are consid-
ered to have been good performers. Then Upper and Lower Natural Process Limits, 
which are conventionally three standard deviations above and below the mean, can 
then be derived from experience. Then, the probability that the measured spi(t) will 
be below the three sigma Lower Natural Process Limit (based on the Normal distri-
bution), due to statistical fluctuations alone, is 0.0013, and the probability that spi(t) 
would be above the Upper Natural Process Limit is also 0.0013.

Formally, we say that if the value of spi(t) falls outside the natural process limits, 
we reject the null hypothesis that this is a random draw from a probability distribu-
tion describing a stable population. This is an indicator that the process may be 
going out of control, as the probability that this value would occur with the process 
in control (stable) is only about 1/400. More specifically, if project management 
were to follow up on every value of spi(t) outside the Natural Process Limits to 
investigate a possible change in the process, management would be wasting its 
effort only once in 400 times.

As an indicator of variability, control charting methods often use the period-to-
period range, which is the absolute magnitude of the difference between the current 
period value and that in the previous period, e.g.,:

•	 spirange(t) = spi(t) − spi(t − 1)| for the range of the schedule performance index.
•	 cpirange(t) = cpi(t) − cpi(t − 1)| for the range of the cost performance index.

The mean and the variance for the range can be determined by statistical meth-
ods, and the Upper Control Limit and the Lower Control Limit for the range estab-
lished. Note that the mean of the process, E[cpi(t)], could be changing with no 
change in the variance, or vice versa. Also, some changes will appear to be benefi-
cial: a decrease in E[cpi(t)] may indicate that the job is running over budget but an 
increase in E[cpi(t)] may mean finishing under budget. Similarly, a reduction in the 
standard deviation of cpi(t) appears to be favorable, whereas an increase in the stan-
dard deviation may be indicative of future problems. People are naturally more 
interested in adverse trends than favorable trends, but both kinds indicate that some 
assignable cause we don’t know about is apparently changing a project process that 
we thought was stable, and the cause of this instability should be investigated and 
understood. That is, if cpi(t) is decreasing, the project may go over budget, and so 
the project manager needs to identify the assignable cause and correct it before the 
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problem becomes intractable. If, however, cpi(t) is increasing, the project is trend-
ing under budget, and so the project manager wants to identify the assignable cause 
so that he can take advantage of it on other jobs.

Of course, the ±3 sigma process limits are simply points on a Normal probability 
distribution, and by themselves say nothing about quality. To use the reported prog-
ress data for control, one must know what acceptable performance is. That is, one 
must establish the Upper and Lower Specification Limits (USL and LSL), which 
define the band of acceptable performance; that is, the band in which the values 
should lie under acceptable project practices and specifications. Then, if 
LSL < LNPL < UNPL < USL, the process lies within the specification requirements; 
or if LNPL < LSL < USL < UNPL, the process lies outside the specification require-
ments, and management should be taking action.

A comparable metric is the capability index, Cp, which may be defined as 

Cp
USL LSL

=
−( )
6σ

 if Cp < 1, the process is not capable; that is, it cannot produce 

acceptable quality performance. As an obvious example, in the case of spi(t) and 
cpi(t) variables, the Natural Process Limits should include the target value 
1.0: μ − 3σ   ≤ 1   ≤   μ   + 3σ  . If not, the process is incapable of being on time or 
on budget.

Then, in the statistical analysis of a project process, we are interested in two 
separate issues:

•	 Is the process inherently capable of meeting the specification limits?
•	 Is the process consistent (stays within the Natural Process Limits)? Note that a 

process may be consistently within its own limits and still not meet the specifica-
tion limits.

Generally, three sigma quality is regarded as excellent quality. It means that there 
is only one chance in 400 that any progress observation will lie outside the (two-
sided) Specification Limits (which, of course, must be outside the Natural Process 
Limits). If the project process is highly variable, then the ±3 sigma process limits 
may be too wide. Suppose that the Specification limits lie inside the ±3 sigma con-
trol limits, μ − 3σ   < LSL < USL < μ + 3σ but lie outside the four-sigma limits 
LSL ≤ μ − 2σ < μ + 2σ ≤ USL.

Then one might say that management has achieved two sigma but not three sigma 
quality. This is not as good as three sigma, but it might be all that is achievable.

One of the difficulties in applying statistical process control to project is, how to 
set the specification limits. Appropriate specification limits for variability in con-
crete breaking strengths, for example, may be available from engineering consider-
ations and long histories of concrete tests, but management may have little 
experience in specifying variability limits for the process of placing concrete. It is, 
of course, difficult to achieve high quality in anything if one doesn’t know what 
quality is.

Because spi(t) and cpi(t) are normalized dimensionless ratios, they are not influ-
enced by job size or duration. The spread between the upper and lower process 
limits can be considered a measure of the quality of job management. If this band 
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gets smaller over a number of jobs, then management is improving. If reasonable, 
acceptable specification limits are set, and the ±3 sigma process limits consistently 
lie inside the specification limits, then one could say that project management has 
achieved three sigma quality.

12.3  �Creating Control Charts for Project-Related Processes

If data are available from other projects or activities which are similar to the activity 
at hand and considered to be jobs under control, then the Control Limits should be 
set from these data. It is preferable that these data be within the specifications for the 
process, if the specifications are known, but this is not essential. It is essential that 
these baseline projects should be consistent; that is, in statistical control.

If comparable baseline projects are not available, then the initial period of the job 
at hand can be used to set the baseline control limits, if it appears from the data that 
the process starts off in control. Perhaps the only practical way to really determine 
this is to use the initial period to derive the Natural Process Limits and then to check 
if the initial baseline data are consistent with these limits. If they are not consistent, 
then the job has gotten off to a bad start and management attention is needed imme-
diately. The discussion here assumes that there is an initial period in which the 
process starts in statistical control. If the subsequent data (after the baseline period) 
also appear to be consistent with the derived Control Limits, then the baseline may 
be extended and the Natural Process Limits recomputed with the additional data. Do 
not, however, use inconsistent (out of control) data to derive Control Limits.

Let Xj represent either the period j schedule performance index spi(j) or the 
period j cost performance index cpi(j), or some other measure of productivity at the 
project or activity level that is expected to be stationary over the period of the job. 
Assume that we have data on m periods in the baseline, which we will use to deter-
mine the Natural Process Limits for Xj (that is, for spi(j) and cpi(j)). The best esti-
mate of the population mean (in the baseline period, it is assumed that all observations 
are drawn from the same population) is the mean over the m samples:

	

X
m

X
j

m

j=
=
∑1

1 	

In a typical statistical quality control application, there are multiple (for example, 
m) observations in each sample, and these were averaged. In a process control appli-
cation, there is only one observation per sample (that is, one cpi(t) per reporting 
period), so that observation is the sample average.

The range is used to estimate the standard deviation, but in this application, with 
only one observation per period, the Range, Rj, is defined as the absolute difference 
between successive observations; that is,

	
R X Xj j j= − −1 	
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Note that there are only m − 1 ranges if we start counting with j = 1. Then the 
Mean Range is the average:

	

R
m

R
m

X X
j

m

j
j

m

j j=
−

=
−

−
= =

−∑ ∑1

1

1

12 2
1

	

We can get an estimate for the standard deviation of the population σX by divid-
ing the mean range by a number called d2 (this nomenclature was established by 
Shewhart 70 years ago). Values of d2 are given in Table 12.1 for various values of n, 
the number of observations in each sample:

In the case of the moving range, use the value of d2 for n = 2, that is, d2 = 1.128.
The natural process limits for the observations are then defined by the mean plus 

and minus three standard deviations (for ±3 sigma limits):

	

LNPL X X R d X E R

UNPL X X R d X E R
X

X

= − = − = −
= + = + = +

3 3

3 3
2 2

2 2

ˆ

ˆ

/

/

σ
σ 	

where E2 is given in the table above for both ±3 sigma process limits. [Note: 
ˆ ˆσ σM X= , the estimated standard deviation of the mean is equal to the process mean 

when there is only one observation per sample.] This defines the control chart for 
X  [spi(t) and cpi(t)].

To obtain the control limits for the range plot, we observe that the standard devia-
tion of the range, σR, is a multiple of σX, σR = c2σX, where c2 is given in Table 12.1. 
Then,

σ σR Xc c R d= =2 2 2/
UNPL R R Rc d R c dR= + = + = +[ ]3 3 1 32 2 2 2σ / /
UNPL D R= 4  where D4 = 1 + 3c2/d2

LNPL D R= 3  where D3 =  max {0, 1 − 3c2/d2}
The factors D4 and D3 for the ±3 sigma limits are also given in Table 12.1. For the 

moving range, n = 2, D4 = 3.267, and D3 = 0.0 for ±3 sigma. For two sigma, replace 
3 by 2 in the equations for UNPL and LNPL.

Table 12.1  Control charts parameters

n d2 E2 A2 C2 D4 D3

2 1.128 2.660 1.880 0.853 3.267 0.000
3 1.693 1.772 1.023 0.888 2.574 0.000
4 2.059 1.457 0.729 0.880 2.282 0.000
5 2.326 1.290 0.577 0.864 2.114 0.000
6 2.534 1.184 0.483 0.848 2.004 0.000
7 2.704 1.109 0.419 0.833 1.924 0.076
8 2.847 1.054 0.373 0.820 1.864 0.136
9 2.970 1.010 0.337 0.808 1.816 0.184
10 3.078 0.975 0.308 0.797 1.777 0.223
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12.3.1  �Control Charts for Quality Control and Process Control

To compare Quality Control and Process Control expressions, sees Table 12.2. Use 
the column at the left for Quality Control (the mean of n observations per sample) 
and the column on the right for Process Control (one observation per reporting 
period) (Breyfogle 1999).

Figures 12.1 and 12.2, respectively, show quality and process control charts. 
Figure 12.1 shows a control chart for the mean of three concrete cylinder tests, with 
two sigma upper and lower natural process limits, plotted against pour number.

Table 12.2  Quality control and process control comparison

Quality control Process control

n observations for sample j: Xj, 1, Xj, 2, Xj, k, … , Xj, n 1 observation for period j: Xj

Mean for sample j: X
n

Xj
k

n

j k=
=
∑1

1
,

Mean for period j: Xj

Estimated process mean: 

X
m

X
m n

X
j

m

j
j

m

k

n

j k= =










= = =
∑ ∑ ∑1 1 1

1 1 1
, Estimated process mean: X

m
X

j

m

j=
=
∑1

1

Range for sample j: Rj = maxk{Xj, k} − mink{Xj, k} Range for period j: 
R X X for jj j j= − ≥−1 2

Average range: R
m

R
j

m

j=
=
∑1

1

Average range: 

R
m

R
m

X X
j

m

j
j

m

j j=
−

=
−

−
= =

−∑ ∑1

1

1

12 2
1

Estimate of population standard deviation: 

σ̂ X

R

d
=

2

Estimate of population standard deviation: 

σ̂ X

R

d
=

2

In which d2 is taken from the table for n = number 
of observations used in the computation of range

In which d2 is taken from the table for n = 2 
(number of observations used in the 
computation of range)

Estimate of the standard deviation of the mean: 

ˆ
ˆ

σ
σ

M
X

n
=

Estimate of the standard deviation of the 
mean: 

ˆ
ˆ

σ
σ

M
X=
1

Center line of the control chart for X: CL X= Center line of the control chart for X: 
CL X=

Upper natural process limit (±3 sigma) for the 
control chart for X:

Upper natural process limit (±3 sigma) for 
the control chart for X:

 � UNPL X X nM X= + = +3 3ˆ ˆ /σ σ  � UNPL X XM X= + = +3 3ˆ ˆσ σ

 � UNPL X R d n X A R= + ( ) = +3 2 2/  � UNPL X R d X E R= + = +3 2 2/

(continued)
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Table 12.2  (continued)

Quality control Process control

In which In which

A d n2 23= ( )/
E2 = 3/d2

See table for values of A2 vs. n See table for values of E2 (using n = 2)
Lower natural process limit (±3 sigma) for the 
control chart for X: LNPL X A R= − 2

Lower natural process limit (±3 sigma) for 
the control chart for X: LNPL X E R= − 2

Center line of the control chart for range: CL R= Center line of the control chart for range: 
CL R=

Upper natural process limit (±3 sigma) for the 
control chart for range:

Upper natural process limit (±3 sigma) for 
the control chart for range:

 �  ˆ ˆ /σ σR Xc c R d= =2 2 2  �  ˆ ˆ /σ σR Xc c R d= =2 2 2

 � UNPL R R cR X= + = +3 3 2
ˆ ˆσ σ  � UNPL R R cR X= + = +3 3 2

ˆ ˆσ σ

 � UNPL R c R d R c d= + = +( )3 1 32 2 2 2/ /  � UNPL R c R d R c d= + = +( )3 1 32 2 2 2/ /

 � UNPL RD in which D c d= = +4 4 2 21 3 /  � UNPL RD in which D c d= = +4 4 2 21 3 /
Lower natural process limit (±3 sigma) for the 
control chart for range:

Lower natural process limit (±3 sigma) for 
the control chart for range:

 � LNPL RD= 3  � LNPL RD= 3

 �   in  which  D3 =  max {0,   1 − 3c2/d2}  �   in  which  D3 =  max {0,   1 − 3c2/d2}
See table for values of D3 and D4 vs. n See table for values of D3 and D4 (recall that 

n = 2 for range)

Fig. 12.1  Control chart for mean 7-day strength
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Figure 12.2 shows a plot of the month-to-month incremental cost performance 
index for a major (over $1,000,000,000) project with ±3 sigma upper and lower 
natural process limits. Is this process in statistical control? Is this process capable?

12.4  �Statistical Quality Control

The underlying issue in statistical quality control is variability. Suppose an engineer 
is performing receipt inspection at a site, by examining one item of a shipment of 
parts or equipment to see if it meets the engineer’s specification. If there were no 
variability, examination of one item would be conclusive: if that part is good, then 
the whole shipment is good; if that part is unacceptable, then so are all the rest. In 
this ideal case, statistical quality control is irrelevant. But, of course, there is vari-
ability, and so inspection of a single item in a shipment is not conclusive evidence 
of the remaining items.

At the other extreme, the engineer could perform 100% inspection. All the good 
parts would be identified and accepted; all the bad parts would be identified and 
rejected. There would never be any doubt about the quality of the uninspected parts 
because there would be no uninspected parts. In this ideal case, statistical quality 
control would be irrelevant.

Fig. 12.2  Project cpi series
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In the presence of variability, inspection of one part is inadequate but 100% 
inspection is expensive. (And probably even fallible; there is some evidence that 
even 100% inspection is only about 80% effective, due to human factors (Breyfogle 
1999).) Therefore, it is desirable to inspect some number or some proportion of the 
total shipment of parts, and to base a decision whether to accept or reject the entire 
shipment based on this sample. However, this sample is subject to small sample size 
limitations, such that there is always some probability of an error, insofar as the 
small sample is not representative of the population of all items. If, based on a 
sample, we decide to accept the entire shipment, then there is some probability that 
there is actually an excessive number of bad parts in the shipment. Conversely, if, 
based on a sample, we decide to reject the entire shipment, then there is some prob-
ability that the parts in the shipment actually meet the specification. The first case is 
sometimes called the consumer’s risk (the risk of accepting a shipment when the 
parts are actually no good; the second case is sometimes called the producer’s risk 
(the risk that the purchaser will reject the material when it actually meets his speci-
fication). Both risks decrease as the sample size gets larger (and theoretically 
become zero if the sample is 100% of the shipment).

Statistics is then just a way of estimating the risk (probability) that we will make 
an error by accepting a shipment of bad parts or rejecting a shipment of good parts. 
Either error costs money, wastes time, and makes us look bad. However, there is no 
way of avoiding these risks, short of inspecting every part.

Quality may be measured by the proportion of bad parts in a shipment, or in 
other ways, and quality-related decisions may go further than simply accepting or 
rejecting a shipment. Consider another type of quality that is determined by mea-
surements: cast in place concrete. As a quality control measure, typically three test 
cylinders are cast along with the concrete placement, for every batch of concrete. 
These cylinders are tested 7  days after placement, and the compressive strength 
measured. The values for the three sample cylinders are averaged. If the measure-
ments do not meet the specification requirements, then either the engineers have to 
be called in, to determine if the low strength concrete can be accepted, or the 7-day 
old concrete has to be jack hammered out. These things are expensive. But if the 
concrete strength is much larger than necessary, this costs money too. Because of 
variability, we cannot design the concrete mix to be exactly the strength desired; we 
must make it stronger. The cost of variability can be seen from a simple example.

Suppose we want concrete with ultimate strength of, say, 3000 at 7 days. If X j  
represents the average for the j-th sample of n cylinders broken at 7 days, then we 
may require that X j ≥ 3000 . But, due to variability in the test specimens, we must 
restate this requirement in a probabilistic sense: P X j <{ } ≤3000 α , where α is the 
probability of an error in accepting that the entire concrete batch has strength >3000 
when it actually has strength <3000. Suppose that the true distribution of the mea-
sured values has mean value μ and variance σ2. That is, each cylinder test is a ran-
dom draw from a population (assumed Normal) with mean value μ and variance σ2. 
Of course, we don’t know what these values are. Because of our uncertainty (or 
ignorance) about the strength parameters, we have to break the test cylinders to 
make some estimates of these parameters. From the tests, we compute the sample 
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mean X j  and use it as an estimate of the population mean μ. Since, by definition, if 
Xj,k is the breaking strength for cylinder k, in sample j, then

	
X

n
Xj

k

n

j k=
=
∑1

1
,

	

If we have tested m samples, then we can compute the average over all samples 
as:

	

X
m

X
m n

X
j

m

j
j

m

k

n

j k= =










= = =
∑ ∑ ∑1 1 1

1 1 1
,

	

Here X  is a better estimate of the process mean than the single sample mean. We 
know from elementary statistics that the variance of the sample mean is:

	

σ σ

σ
σ

M

M

Var X
n
Var X

n

n

2 21 1
=   = [ ] =

=
	

In this case, we will call the value 3000 the Lower Specification Limit (LSL), 
that is, the lowest value for the sample mean that is acceptable by the specification 
and let α = 0.025. That is, we will accept a process in which 1 out of 40 sample 
means is below the specification limit and 39 out of 40 are above the specification 
limit. This value of α corresponds approximately to the 4σ level. That is, using the 
standard tables for the Normal distribution, the probability that X j is less than the 
mean minus 2σM (or greater than the mean plus 2σM) is 0.023 (close enough for this 
work). Let n = 3. If we know the population standard deviation, say σ = 125, then 

σ
σ

M = = ≅
3

175

3
100 . Then we must design the concrete mix to have a mean 

strength of 3000 + 2σM = 3200 (see Fig. 12.3).
Suppose, however, that the concrete mix process was more variable, such that the 

population standard deviation was, say, σ  =  865. Then σM = ≅865 3 500/ . To 
overcome the variability and assure that the Lower Specification Limit is violated 
not more than α% of the time, we have to raise the mean strength. In this case, the 
mix design would require a mean of 3000 + 2σM = 4000. Clearly the higher vari-
ability is going to increase the requirement for cement and hence the cost of the 
concrete.

The quality of the concrete is represented by the probability that a sample will be 
accepted as satisfying the specification. It is conventional to refer to this quality in 
terms of numbers of standard deviations. That is, in the concrete case we set the 
Lower Specification Limit to be μ − tσM, where t is an integer, 1, 2, 3, etc. We con-
sider only the one-sided or one-tailed case, because in general we don’t reject con-
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crete for being too strong, only for being too week. Table 12.3 shows the probability 
of rejecting a batch of concrete for different values of t, and the mean design strength 
we must use to meet this level of quality for the cases in which σ = 175 and σ = 865.

Therefore, if we aspired to 6σ quality, we would reject only one batch in a billion, 
but we would have to design for a mean strength of 6000 to achieve this, if σ = 865. 
It is unlikely that anyone pouring concrete would require 6σ quality, as one would 
never see a batch rejected in a lifetime. However, setting the Lower Specification 
Limit (LSL) at μ − 3σM is not unreasonable, and would produce concrete such that 
about one in 740 batches would be rejected. In some cases, LSL = μ − 4σM might be 
appropriate, but this level of quality would require raising the mean design strength 
to 5000.

The above example illustrates why many people say that quality in costs a lot of 
money. It does, if quality is obtained by over design, as in this case. If LSL = μ − 3σM, 
for example, about 98% of all batches have mean strength over 3500, when only 
3000 is required, so a lot of cement is being wasted. The objective of the Six Sigma 

Table 12.3  Probability of rejecting concrete batch

LSL % Batches rejected Design μ  if σ = 865 Design μ  if σ = 175

μ − σM 15.87% ~1/6 3500 3100
μ − 2σM 2.28% ~1/44 4000 3200
μ − 3σM 0.135% ~1/740 4500 3300
μ − 4σM 0.00317% ~1/32,000 5000 3400
μ − 5σM 0.0000287% ~1/3,500,000 5500 3500
μ − 6σM 0.0000000987% ~1/1,000,000,000 6000 3600

Fig. 12.3  Concrete mix – low and high variability
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process is to meet the quality objectives by process improvement rather than gross 
over-design. In this example, if the process can be improved to the point that 
σ = 175, then the LSL = μ − 3σM criterion can be met by designing the concrete to 
achieve a mean sample strength of 3300 instead of 4500. Reduction in process vari-
ation can actually save money. For example, increasing quality by lowering the LSL 
from μ − 2σM to μ − 3σM reduces the frequency of rejects from 1 in 44 to 1 in 740. 
In other words, for every batch rejected at the 3σ quality level, 17 batches would be 
rejected at the 2σ level. As, by assumption, the concrete has been in the forms for 
7 days prior to the tests, removing this rejected concrete could cost a lot of money, 
even if it were possible.

How can the process variation be reduced? That is what the engineer is paid to 
determine.

Suppose that instead of (or in addition to) specifying a constraint on the average 
breaking strength of n specimens per batch, the specification writer put a constraint 
on the minimum value of the n specimens.

In each batch, one computes the sample mean strength X j  from the three (or n) 
test specimens. It is also necessary to compute the sample variance. It is conven-
tional in Statistical Quality Control to compute the sample standard deviation from 
the Range of the sample, where Range is defined as

	
R X X jj k k k k= [ ]− [ ]max min for sample

	

This usage may be in part because, when SQC was developed (by Shewhart and 
others), computing the squares and square roots in the usual equation for sample 
standard deviation was difficult, without computers or even pocket calculators, so 
simpler formulations were preferred. Also, the sample sizes are very small, so cor-
rections were applied to these calculations to compensate for small sample size. 
These corrections are tabulated and are so widely used that they are essentially part 
of the method. Therefore, they will be used here.

If there are many samples in each batch, then one can approximate the sample 
standard deviation by:

	
σ̂ =

Rj

6 	

Here, σ̂  is an approximation to the true, but unknown, standard deviation, σ. 
This approximation is based on the fact that, for the Normal distribution, the area 
(probability) between the mean minus three standard deviations and the mean plus 
three standard deviations is 0.9974, which is close to 1.00. Then, the Range is very 
close to being six standard deviations (6 − σ), and one can estimate the standard 
deviation as one-sixth of the observed Range. However, this approximation cannot 
be used for small sample sizes.

Let R  be the average range over some number of samples (that is, concrete 
batches). That is, there are m samples (or batches), indexed by j, and n specimens in 
a sample, indexed by k, then:
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Then, an estimate for the population standard deviation that is valid for small 
samples is:

	
σ̂ X

R

d
=

2 	

Here d2 is a function of n, the sample size, and is tabulated in Table 12.1 for n 
from 2 to 10. For values of n greater than 10, use d n2 ≅ .

From the above discussion, an estimate for the standard deviation of the mean 
strength is:
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In using Statistical Quality Control, one often displays the information on a 
Control Chart. On a control chart for the mean sample strength X  are shown the 
following, plotted for the number of samples (see figure below):

•	 The desired mean, μ, as given in the specification
•	 The Center Line, or CL, determined by the sample mean, X
•	 The Upper Specification Limit, USL, usually given by μ + 3σM

•	 The Lower Specification Limit, LSL, usually given by μ − 3σM, defining the Six 
Sigma specification USL − LSL = (μ + 3σM) − (μ − 3σM) = 6σM. (However, in the 
example above we defined the LSL as μ − 2σM)

•	 The Upper Natural Process Limit, UNPL, given by the estimated process param-

eters, UNPL = + = + = +








 = +X X
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. The table in 

Chap. 20 gives values for A2

•	 The Lower Natural Process Limit, LNPL, using the estimated process 
parameters,

	

LNPL = − = − = −
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•	 The observed sample means X j

Figure 12.4 shows a control chart for sample means with the Lower Specification 
Limit (LSL) indicated at the μ − 3σM = 3300 – 3(100) =3000 level. Also shown are 
the computed values for the process mean and the Lower Natural Process Limit 
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Fig. 12.4  Process capable

(LNPL). Here it is clear that the LNPL lies inside of (above) the LSL, at about the 
3100 level. That is, the process is producing results that are acceptable or even better 
than the specification. If the process has LNPL > LSL, and, if appropriate, UNPL < 
USL, then the process is said to be capable of meeting the quality specification.

Figure 12.5 shows a control chart for sample means with the Lower Specification 
Limit (LSL) indicate at the μ − 3σM = 3300 – 3(100) =3000 level. Also shown are 
the computed values for the process mean and the Lower Natural Process Limit. 
Here it is clear that the LNPL lies outside of (below) the LSL, at about the 2850 
level. That is, the process is actually producing results that, statistically, do not meet 
the specification because a higher number than permitted are below the LSL due to 
higher variation than the baseline. If the process has LNPL < LSL, and, if appropri-
ate, UNPL > USL, then the process is said to be not capable of meeting the quality 
specification.

The values for the horizontal lines in the control chart are determined based on a 
process that is in statistical control. That is, there is variation, but this variation is 
considered an acceptable part of the process. If the process is under statistical 
control, the variations in the actual observations are random. Random variations are 
generated by some common cause or causes. If the variations are not random, then 
the variations are due to some assignable cause, and the process is not under statisti-
cal control. This means that the engineer must find the assignable causes and elimi-
nate than before the process goes off track. The function of the control charts is to 
help the engineer identify whether the process is under control, in order to do some-
thing about an assignable cause before it becomes a major problem.

Are the actual sample averages in the figure just above random? Why or why 
not?
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Suppose, in the example above, we wanted a process with the LSL set as μ − 3σM 
= 3000. Then, assuming we consider a standard deviation of 500 to be acceptable 
variation, we must design the concrete mix for a mean strength of 4500 (that is, the 
Coefficient of Variation is 500 / 4500 = σ/μ = 11%). If this process as observed is 
performing under statistical control, the likelihood that a sample mean strength 
would be less than 3000 is 0.0013, or about 1 in 1000. Suppose that some sample 
average is in fact less than 3000. Then there are two possible hypotheses:

	1.	 The process is in statistical control but just happened to generate a random event 
with probability 1 in 1000.

	2.	 The process is not in statistical control.

If we consider 1 in 1000 to be a small probability, then we can reject hypothesis 
1 and go looking for the assignable cause. Still, there is 1 chance in 1000 that we are 
wrong, that hypothesis 1 is correct, and the process is still in control.

12.4.1  �Range Charts

In addition to the control charts for X , the sample mean, one can define a number 
of other control charts. The chart that will be discussed here is the control chart for 
Range. Range was defined above. The control chart for range has a center line at the 
mean Range,

Fig. 12.5  Process not capable
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The UNPL, also called the Upper Control Limit (UCL), and LNPL, also called 
the Lower Control Limit (LCL), are given by:

	

UCL D R

LCL D R

=
=
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3 	

The coefficients D3 and D4 for various values of n, the sample size, are given in 
the Table 12.1.

Example 12.1
Consider project data in Table 12.4 (this example is adopted from Breyfogle (1999), 
pages 165–166).

Is X  process in statistical control? How about Range process? Is it in statistical 
control? Figure 12.6 shows the data and natural process limits and process mean.

Note the three points indicated by arrows that lie outside the 6σ band. This pro-
cess is not in statistical control and the engineer should seek to identify the assign-
able cause or causes for these three points. Figure 12.7 shows Range Control Chart 
for the same data.

Table 12.4  Project data

Sample no. X1 X2 X3 X4 X5 Mean X Range R

1 36 35 34 33 32 34 4
2 31 31 34 32 30 31.6 4
3 30 30 32 30 32 30.8 2
4 32 33 33 32 35 33 3
5 32 34 37 37 35 35 5
6 32 32 31 33 33 32.2 2
7 33 33 36 32 31 33 5
8 23 33 36 35 36 32.6 13
9 43 36 35 24 31 33.8 19
10 36 35 36 41 41 37.8 6
11 34 38 35 34 38 35.8 4
12 36 38 39 39 40 38.4 4
13 36 40 35 26 33 34 14
14 36 35 37 34 33 35 4
15 30 37 33 34 35 33.8 7
16 28 31 33 33 33 31.6 5
17 33 30 34 33 35 33 5
18 27 28 29 27 30 28.2 3
19 35 36 29 27 32 31.8 9
20 33 35 35 39 36 35.6 6
Mean 33.55 6.2
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Fig. 12.7  Sample range control chart

Fig. 12.6  Sample mean control chart
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Note the two points indicated by arrows that lie outside the 6σ band. The ranges 
for two of the samples are significantly greater than the ranges for the other 18 
samples. This process is not in statistical control and the engineer should seek to 
identify the assignable cause or causes for these two points.

12.5  �Control Charts and Statistical Project Control

Suppose the project manager wishes to use Project Control Charts for a project. A 
simple form of run chart could be obtained by plotting the cost of each sequential 
unit against unit number as completed. This is shown in Fig. 12.8. The mean cost is 
of course 100, and the standard deviation of each cost is 40, so the Upper Natural 
Process Limits are at mean+σ = 140, mean+2σ = 180, and mean+3σ = 220; only 
mean+σ = 140 and mean+2σ = 180 are shown. The run chart indicates that this pro-
cess, consisting of the construction of identical units, is in statistical control; no 
points break through the mean+2σ line, much less the mean+3σ line. However, there 
is some question about a long run, with 14 consecutive values above the mean line, 
a highly improbable event, perhaps indicating that the project is not in statistical 
control. However, by the time the project manager could detect such a long run the 
project is nearly over.

Where on this run chart would one place the Specification Limit? One could put 
it at the mean line, or 100, implying the specification that unit costs should not 
exceed the estimated $100 per unit, but this would result in, on the average, 50% of 
the units being declared out-of-spec. Is the process shown in the figure below in-
spec or out-of-spec? Where should the Specification Limit be placed?

Fig. 12.8  Run chart for unit cost
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Fig. 12.9  Control chart for total project cost

An alternate approach could be to generate a run chart for the expected cost at 
completion, as shown in Fig. 12.9, rather than the individual unit costs. The a priori 
mean cost at completion is $2000 and the standard deviation of the cost at comple-
tion was determined previously to be $595.83, so mean+1σ is $2595.83 and 
mean+2σ is $3191.66. Again, the process appears at first to be in statistical control, 
with no value making it to the mean+2σ limit, let alone a mean+3σ limit. Still, this 
chart has 17 values in a row all above the mean line, a statistically highly improba-
ble event, so the process may be declared out of statistical control. However, this run 
length criterion may be suitable for manufacturing operations, which are generally 
unlimited in time, but projects are limited in duration and detecting out-of-control 
situations based on run lengths may not be very helpful.

But, where is the Specification Limit? Again, it might be placed at the mean, but 
this gives a 50% probability of being out-of-spec, too large to be helpful. It might be 
placed at the mean+1σ line, where the probability of being out-of-spec is about 
16%, but this is rather arbitrary. In fact, the location of the Specification Limit has 
nothing to do with the location of the Natural Process Limits; the two concepts 
measure different things.

The control chart in Fig. 12.10 adopts a statistical approach. It was stated earlier 
that the project manager wanted a budget such that the probability of success would 
be 90% or more and the probability of failure (exceeding the budget) would be 10% 
or less. That budget was determined to be $2763.86. Therefore, the project manag-
er’s clear specification for this project is that the probability of over-running the 
$2763.86 limit should be less than 10%. This is reflected in the chart below. The 
Specification Limit is the horizontal line representing a 10% probability of overrun-
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Fig. 12.10  Probability of cost overrun

ning. The probability of a cost overrun is computed by the approach given above 
and plotted in the control chart. Here it is seen that the probability of overrun 
exceeds 10% when 13 of the 20 units have been completed, and so the process is 
out-of-spec at that point.

Computing the probability of an overrun is not difficult is not difficult if a spread-
sheet is used for the control chart. After seven units have been completed, the pre-
dicted cost at completion is $2126.55. The standard deviation of this prediction is 
calculated by the equations above to be $329.12. Then the probability that the cost 
at completion will under run the available funding, namely $2763.86, is 0.9736, so 
the probability of overrunning is 1.0–0.9736  =  0.0264. Therefore, based on the 
results from the first seven units completed, the project manager has only a proba-
bility of about 2.6% of failing to meet the available funding limitation, as shown in 
Fig. 12.10.

An alternate metric for tracking through a control chart is the Value-at-Risk. 
Before the project began, the project manager (or his client) was willing to accept a 
VaR at the 90% confidence level of $2763.86. As each unit is complete, the poste-
rior VaR can be computed from the newly-acquired cost information. For example, 
after the completion of seven units, the revised expected value of the cost at 
completion is computed to be $2126.55. The computed standard deviation of the 
cost at completion is $329.12. The VaR at this time may be 2548.33. Hence the 
posterior VaR is less than the initial VaR by the amount $215.53, and the project is 
in-spec with regard to cost. Figure 12.11 shows the Specification Limit as the hori-
zontal line at the initial or prior value of the VaR, at $2763.86. Any VaR below this 
line is in-spec; any VaR above it is out-of-spec with regard to cost.

12.5  Control Charts and Statistical Project Control
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Fig. 12.11  Probability of cost overrun

The variations in the revised budgets and expected costs at completion, after each 
work package, unit, is completed, are shown in the figures given above. The objec-
tive of using the confidence limits is to keep the confidence band positioned so that 
it envelops the (unknown) actual cost at completion. That is, no one can predict the 
future (the actual cost at completion) with certainty, but we can try to define a con-
fidence band that bounds where we expect to find it (with probability 90%, in this 
case). Although the lower confidence bound is not shown in the figure (it is the 
expected cost at completion minus the contingency), it is clear that, for this example 
at least, the method has achieved the goal of keeping the 90% confidence limit 
above the actual cost at completion for every step in the process up to project com-
pletion. Of course, even though the costs increased over the original estimates, this 
example was actually well behaved in that it never ran out of contingency (although 
contingency was being used up for some period of time).

Figure 12.12 shows the change in uncertainty regarding the final cost at comple-
tion as each unit is completed, providing additional information about where the 
project is going. (Some units have been omitted from the figure for clarity; plotting 
all 20 units results in a graph too difficult to read.) Before any work is done, the 
prior estimate of the probability for the cost at completion is centered on $2000, but 
has a very high standard deviation (uncertainty), as shown in the figure below. After 
the completion of the first unit, the probability distribution becomes narrower and 
shifts to the right. As each subsequent unit is completed, the best estimate or most 
likely value for the cost at completion increases somewhat, depending on the latest 
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Fig. 12.12  Posterior probability density function

actual reported cost, but the uncertainty (the width of the distribution) always 
decreases. The figure illustrates how the method starts with a high degree of uncer-
tainty and zeros in on the target as more information becomes available about actual 
project cost performance.

12.6  �Practice Problems

Problem 12.6.1  You are a Construction Engineer working for an asphalt paving 
contractor. The general superintendent is concerned about the allowances for small 
tools and supplies that are included in bids for jobs. Obviously, a bid allowance 
that is too low leads to loss of profits, whereas an allowance that is too high may 
lead to loss of jobs to competitors. The allowance for small tools and supplies cur-
rently used in bid development is 10 cents per ton of asphalt placed, and the 
superintendent wants to know if this factor is still valid, if any particular jobs have 
significantly overrun the allowance, and if there is any time trend in the small tools 
expense. Data on 19 actual jobs, showing the actual tons of asphalt placed and the 
actual expenditures on small tools and supplies, are shown in Table 12.5, in chron-
ological order.

12.6  Practice Problems
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Table 12.5  Problem data

Description Job # Tons asphalt placed $ small tools

Guilford road resurfacing 1035 8961 2080
Mebane Oaks road and highway 119 1036 17,406 2726
State highway 49 at Trollingwood road 1037 32,048 3380
State highway 49 at Orange street 1038 12,377 1954
Alamance at Guilford road 1040 16,921 5973
Davidson county resurfacing 20,452 56,836 9217
City of Reidsville 20,454 2632 704
City of Winston 20,459 15,885 2882
US 52 Northbound lanes shoulder 20,461 9524 2626
US 52 Southbound lanes shoulder 20,462 10,196 2467
US 220 at Guilford road 20,466 6189 379
City of Thomasville 20,469 2905 1083
WBS 37193 20,472 4833 1899
Business 40 and US 431 ramps 20,474 3599 1158
WBS 36788 20,475 10,116 4641
Bluff school road 20,476 1684 442
Kivett drive 20,477 2561 1397
Orange and Caswell 20,480 13,725 2275
Davidson county 20,484 20,998 1560

Show a control chart for dollars expended on small tools per ton of asphalt, as a 
function of time. Is this process homogeneous (in statistical control)? Explain why 
or why not. Show upper and lower process limits. Is it possible to define specifica-
tion limits? If so, what should they be? Do any jobs stand out, high or low? Is the 
actual expense for small tools a linear function of the job size, as is implied by the 
10 cents per ton factor, or is some other relationship with job size better?

Problem 12.6.2  When the Wehner Building was under construction, project engi-
neers made observations on the time it took to drill in foundations. The raw data for 
eight sampled holes are shown in Table 12.6, in order of drilling. The total drilling 
time for each hole is the sum of the shaft drilling time and the bell drilling time. 
Movement of the drilling equipment, etc., from one hole to another is not included. 
Setting of rebar cages is not included. Many other holes were drilled but not 
recorded, but there is no reason to believe that they differed statistically from this 
limited sample.

•	 Compute the means and standard deviations for the bell, the shaft, and the total 
drilling time per hole.

•	 Compute the Three Sigma Upper Natural Process Limit and the Lower Natural 
Process Limit for the bell and the shaft.

•	 Plot the run chart with LNPL and UNPL for the bell and the shaft (both on the 
same plot).
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•	 By examination of the run plots, are the bell times and the shaft times correlated? 
Compute the correlation coefficient between the bell time and the shaft time.

•	 Compute the mean and the standard deviation for the total time, and then plot the 
run chart with LNPL and UNPL for the total time.

•	 Repeat the above for the Range Charts for the bell, the shaft, and the total time 
each hole.

Is this process under statistical control? Why or why not? What is your recom-
mendation about this process? Do you think there should be specification limits? If 
so, what should they be?
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Table 12.6  Problem data

Hole Shaft Drilling Time Bell Drilling Time
(Number) (Hours) (Minutes) (Seconds) (Hours) (Minutes) (Seconds)

P48K 0 33 41 0 55 50
P48H 0 30 57 0 52 12
P48G 0 47 9 1 15 47
P48A 0 25 34 0 48 23
P48U 0 31 46 1 6 52
P48R 0 42 49 1 3 43
P48M 0 40 52 1 10 24
P48L 0 38 57 1 3 38
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Chapter 13
Forecasting Project Completion

Abstract  In this chapter we discuss methods for forecasting future job progress. 
More specifically we focus on forecasting two important project performance crite-
ria – completion time and cost-at-completion, on the basis of past progress data. We 
introduce a class of S-curves that is suitable for representing job progress as well as 
discuss how to develop the confidence intervals around the forecasts. In addition we 
show how Bayesian methods can be used to update the parameters of the S-curve 
models.

Keywords  Earned value · Forecasting · S-curves

13.1  �Introduction

One might say that project management is all about forecasting, because a project 
manager constantly needs to forecast future job progress, and in particular to fore-
cast completion time and cost at completion, on the basis of past progress. If the 
predicted cost is close to the project budget, and the predicted completion date is 
close to the project schedule, then the project manager may not need to do anything. 
On the other hand, if the predicted cost at completion is much greater than the bud-
get, or the predicted time at completion is much greater than the schedule, the proj-
ect manager may need to do something immediately.

One might also like to place confidence intervals around the forecasts, in order to 
assess the reliability of the prediction, so that the project manager does not err by 
taking action when no action is needed, or by taking no action when action is 
required. Clearly, this approach has its limitations, one of which is the lack of data 
to work with, especially early in the job. Nevertheless, forecasting project comple-
tion is essential to effective project management, and often the lack of precision in 
all of the forecasting approaches means that there is value to be gained from using 
multiple, independent forecasting methods.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14251-3_13&domain=pdf
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13.2  �Prediction Using Earned Value Management

At some time t, it is desired to estimate the cost at completion, EAC or ECAC, from 
the progress to date. Then,

•	 BAC is the Budget at Completion, or the total budgeted cost.
•	 EAC(t) is the estimated cost-at-completion based on information at time t, to be 

determined.
•	 BCWS(t) is the plan, the Budgeted Cost of the Work Scheduled at time t.
•	 ACWP(t) is the reported actual cost of construction performed up to time t.
•	 BCWP(t) is the earned value reported at time t.
•	 CPI(t) is the Cost Performance Index at time t, CPI t

BCWP t

ACWP t
( ) = ( )

( )
Clearly, the estimated cost at completion has to exceed the cost of the project to 

date, if the project is incomplete, or EAC(t) > ACWP(t). The remaining work, or 
value, at the budgeted rates, is BAC − BCWP(t). Based on the project to date, the 

average ratio of actual cost to budgeted cost is 
ACWP t

BCWP t CPI t

( )
( )

=
( )

1 0.
Then, based on 

the assumption that the average CPI observed for the work done to date will be true 
of the work to be done,
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
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






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( ) ≅ (

ACWP t BAC
ACWP t

BCWP t
ACWP t

EAC t
BAC

CPI t )) 	

Therefore, to estimate the cost at completion at any time, one simply scales the 
original budget by the inverse of the current CPI.

Predicting the duration of the project is not so straightforward. Define

•	 SDAC = the original Scheduled Duration at Completion, or the earliest time T at 
which BCWP(t) = BAC.

•	 EDAC(t) = the Estimated Duration at Completion, made at time t.

By analogy with the cost estimate, one might say that

	

EDAC t
SDAC

SPI t1 ( ) ≅ ( ) 	

This estimate is here called EDAC1(t) because it is only one possible estimate. To 
arrive at another estimate, the average rate of accomplishing work, that is, earning 
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value, is 
BCWP t

t

( )
 (given that the project started at time 0). The remaining work, 

or value to go, at the budgeted rates, is, as above, BAC − BCWP(t). The time left 
until the estimated completion is EDAC(t)  −  t. That is, the remaining value, 
BAC − BCWP(t), has to be earned in the remaining time EDAC(t) − t. Assuming 
that the average rate of doing work (value earned per unit time) is the same in the 
future as it was to date,

	

BAC BCWP t

BCWP t t
EDAC t t

BAC

BCWP t
t t EDAC t t

EDA

− ( )
( )

= ( ) −

( )
− = ( ) −

/ 2

2

CC t t
BAC

BCWP t
t

BAC

BCWS t SPI t2 ( ) = ( )








 = ( ) ( )











	

Therefore, by the second method, to estimate the project duration, or the date at 
completion, one simply divides the current project time by the proportion of the 
value earned to date.

Unfortunately, the two methods do not usually give the same predictions. 
Consider a project where BAC = 100 and SDAC = 66.

Figure 13.1 shows BCWS(t) (dotted line) and BCWP(t) (solid line), while 
Fig. 13.2 shows SPI(t). The actual earned value starts slower than the plan but then 

Fig. 13.1  BCWS(t) vs. BCWP(t)
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Fig. 13.2  Schedule Performance Index SPI(t)

catches up, so that the actual project duration is exactly the scheduled duration, 
66 weeks.

Figure 13.2 shows the Schedule Performance Index SPI(t) determined at each 
time t.

Based on the SPI, the project manager would conclude that the project shown 
here is behind schedule up to the half-way point (t = 33 weeks), and ahead of sched-
ule after that.

Figure 13.3 shows the estimated dates of completion given by the two methods 
defined above. Method 1 (EDAC1) is the dotted line and Method 2 (EDAC2) gives 
the solid line. Both substantially overestimate the duration, up to the half-way point, 
and then both underestimate the duration. The second method gives more extreme 
deviations than the first.

Other methods for prediction have been proposed, but none is generally accepted. 
The two methods discussed here have the common characteristic of overestimating 
the project duration based upon early results, and underestimating the duration late 
in the project. If these prediction methods are actually used by project managers, as 
seen in the example, the forecasts (and the SPI) might encourage them to add 
resources early on, even though the project would have completed on time with no 
intervention. Then, later in the project, both methods underestimate the duration, 
possibly leading project managers to release resources prematurely, in the optimis-
tic expectation of early completion. Thus, erroneous forecasts could lead to stagna-
tion late in projects and hence lead to overruns.

13  Forecasting Project Completion
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Fig. 13.3  Estimated duration at completion

Table 13.1  Percentage job 
complete, first ten reporting 
periods

Period Progress %

0 0
1 1
2 2.4
3 3.2
4 4.7
5 6.1
6 7.8
7 12.3
8 14.1
9 25.1
10 27.3

13.3  �Linear Regression

Perhaps the first thing that comes to mind regarding forecasting is to plot the actual 
reported progress curve, BCWP, against time, t, fit a straight line to the past data 
points, and then extrapolate this line to obtain the Estimated Date at Completion 
(EDAC), when the BCWP equals the Budget at Completion (BAC). However, very 
often tasks, jobs, or projects start slowly and the rate of progress increases over 
time, rather than remaining constant, as the linear extrapolation would assume. 
Consider, as an example, the reported progress (in percentage of the total Budget at 
Completion) for the first ten reporting periods shown in Table 13.1.

Figure 13.4 shows the result of a linear fit to the reported data set. Clearly the fit 
is poor, and using this function to extrapolate to the date at which the job would be 
complete would not be credible.

13.3  Linear Regression
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Fig. 13.4  Linear fit to first ten periods in Table 13.1, and linear extrapolation

Fig. 13.5  Exponential fit to first ten periods in Table 13.1, and exponential extrapolation

If the linear fit is not very attractive, the next thought, based on the convex cur-
vature of the plot of the data, might be that a quadratic or exponential fit would be 
appropriate (Pindyck and Rubinfeld 1976). The following plot in Fig. 13.5 shows an 
exponential fit to the same data points. Clearly, the fit is somewhat better, but one 
might observe that real projects tend to slow down toward the end, and the exponen-
tial fit indicates that the rate of progress (the slope) is still accelerating just as the 
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project finishes (becomes 100% complete). A quadratic fit gives similar results. 
These results lead us to try sigmoidal, or S-shaped curves, as a better representation 
of how projects actually go through their life cycles.

13.4  �Sigmoidal Curves

The S-shaped, or logistic, curve is ubiquitous in projects. In fact, this curve might 
be said to be at the heart of all projects, because it has a beginning, a middle, and an 
end. Consider, as a simple model, that there are two pools of work: Work-done and 
Work-to-be-done, and the job consists of the process of transferring work units from 
Work-to-be-done to Work-done. When all the work has been transferred from Work-
to-be-done to Work-done, then the job is finished. Because the project is finite 
(indefinite work without a beginning or an end is not a project), there is a rising 
S-shaped curve that shows the cumulative Work-done as a function of time. There is 
also a falling, or reverse S-curve, which shows the decline of Work-to-be-done over 
time. The sum of Work-done plus Work-to-be-done is, of course, a constant (barring 
scope changes and rebaselining). The fundamental nature of the logistic in projects 
can hardly be overemphasized. Many projects are actually managed by the S-curves. 
Some people misunderstand the S-curve as the result of the changing levels of 
resources used during the successive stages of the life cycle. However, this state-
ment has it backwards, by confusing cause and effect: the changing levels of 
resources are the result, not the cause, of the inherent S-shape of progress on 
projects.

To generate a simple model, we first assume that we have some reliable metric of 
work performed on a project (Work-done). For example, in a construction field 
activity, this might be the number of units (such as piping spool pieces) installed to 
date. We assume that all the units are equal, or that each has been assigned some 
weighting factor to make them equivalent, so they can be added together. One typi-
cal weighting factor is the estimated number of man-hours for each type and size of 
spool piece, and progress is the cumulative sum of the product of spool pieces 
installed times man-hours per spool piece, expressed as equivalent man-hours. Here 
we assume that we know the total work at completion (the initial value of Work-to-
be-done) and the cumulative work accomplished (Work-done) at each reporting 
period.

13.4.1  �The Pearl Curve

To generate a simple model with enough generality for many types of jobs, let us 
consider the rate of doing work (the rate of flow of completed work out of Work-to-
be-done and into Work-done). Let ∆y(t) be the amount of work accomplished in a 
reporting period ∆t (for example, a week or a month). Let y(t) be the cumulative 
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Work-done accomplished up to time t, and let S be the initial amount of Work-to-be-
done (and the final amount of Work-done). Then S − y(t) is the amount of work 
remaining to be done at time t (see Fig. 13.6).

What might we say about the flow between these variables? One might reason, 

based on observation of projects, that the rate of doing work 
∆

∆

y t

t

( )
 is related to the 

Work-done, y(t). This seems reasonable because, on any project, some work must be 
accomplished in order to enable other work to be done. Work tends to fan out from 
the project inception, as shown by typical project networks. The work that can be 
done, based on the work already done, is sometimes called the work face. When 
little work has yet been accomplished, the work face is very limited, little can effi-
ciently be built on it or from it, and so progress initially is slow.

So, we may say, an approximate relation might be:

	

∆
∆

y t

y t
t

dy t

dt
y t

( )
( )

∝ =

( )
∝ ( )

constant

	

Conversely, we might also say that the rate of doing work 
∆

∆

y t

t

( )
 is related to the 

Work-to-be-done, S − y(t), the amount of work remaining at time t. Work tends to 
fan in toward the project completion, as shown by typical project networks. When 
little work remains to be done, the work face is again limited, less work can be 
accomplished in a given time period, and progress slows down. Then,

Fig. 13.6  Work-to-be-done schematic diagram
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Thus, we may combine these concepts into an approximate relation as:
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In this equation, b is a rate constant dependent on the nature of the job and the 

amount of resources applied to it. In this formulation, the rate of work 
∆

∆

y t

t

( )
 is 

zero when y(t) = 0, and approaches zero again as y(t) → S. In the limit this gives the 
differential equation:

	
lim ,∆

∆
∆

t
y

t

dy

dt
by S y→ → = −( )0

	

The solution to this differential equation is the well-known logistic equation 
(also called the Pearl curve):

	
y t

S

ae bt( ) =
+ −1 	

In this equation, the parameter b controls the slope, whereas the parameter a is a 
constant of integration that shifts the curve along the time axis. You may verify this 
solution by differentiating y(t) in the equation and comparing this with the deriva-
tive given above. This equation has the familiar S-shape, and is sometimes called 
the Pearl curve (Nelder 1961). Figure 13.7 shows the general shape of the Pearl 
curve, in which S = 100 and the duration of the job is 25-time units. Two additional 
S-shaped curves are also shown, which will be discussed later.

Note that the parameter b may depend upon the level of resources applied. If the 
resource level is increased, then b is increased, and the S-curve is steeper, but it is 
always S-shaped. The logic of the above derivation is, no matter how many resources 
are thrown at the project, the curve of Work-done is always S-shaped, due to the fan 
out – fan in characteristics discussed above. As applying too many resources would 
be inefficient and costly, the actual number of resources used is tailored to the 
amount of work ∆y(t) that can be done in each time period. That is, the changing 
level of resources in a project is the result of the inherent S-shape, not the cause of 
it. And this simple model produces the classic S-shape. It has only two parameters, 
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Fig. 13.8  First derivatives of three sigmoidal curves (Pearl, Gompertz, and Dual Gompertz)

Fig. 13.7  Three sigmoidal curves (Pearl, Gompertz, and Dual Gompertz)

so we don’t need a lot of data to define the parameters of the curve. However, this 
also means that we don’t have a lot of control over the shape of the curve.

The first derivatives of these curves are given in Fig. 13.8.
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13.4.2  �The Gompertz Curve

In deriving the Pearl curve, we assumed that the rate of doing work 
∆

∆

y t

t

( )
 was 

proportional to Work-done, y(t), multiplied by Work-to-be-done, S − y(t), the differ-
ence between the total project scope and the Work-done to date; that is:

	

∆

∆
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t
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∝ ( ) − ( ) y t S y t

	

Suppose instead we assume that the rate of work is proportional to the difference 
between the logarithms of the total project work and the Work-done to date, or
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That is, we assume that the rate at which work is accomplished is proportional to 
the work done to date, y(t), multiplied by the logarithm of the ratio of S to y(t) rather 
than the difference of S and y(t). The rate is zero when y(t) = 0, and approaches zero 
as y(t) → S. The resulting curve is sigmoidal, as with the Pearl formulation, but the 

rate is different, as the derivative approaches zero as ln
S

y t( )










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→ 0  rather than as 

S − y(t) → 0. The solution to this differential equation is:
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in which b is the rate coefficient and a is a constant of integration (shift constant). 
You may verify this solution by differentiating y(t) in the equation and comparing 
this to the derivative given above.

This is sometimes called the Gompertz curve. The Pearl curve given earlier is 
anti-symmetric about the median (the first derivative is symmetric), but the 
Gompertz curve is not anti-symmetric, and the inflection point is below the mid-
point. The inflection point can be seen in Fig.  13.7, but is most easily seen in 
Fig.  13.8, as the inflection point occurs when the first derivative goes through a 
maximum. The Gompertz curve is skewed to the right, because the curve, and its 
first derivative, have a short tail to the left and a long tail to the right, i.e., the job 
starts with a fairly rapid rate but takes a relatively long time to accomplish the last 
units of work. Compared to the Pearl curve, the Gompertz curve represents a job 
that is a fast starter but a slow finisher. See Figs.  13.7 and 13.8 above for the 
Gompertz curve and its first derivative, compared to the Pearl equation.
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13.4.3  �The Dual (Reverse or Complementary) Gompertz

Previously we assumed that the rate of work was proportional to the product of 
Work-done and Work-to-be-done, y(t)[S − y(t)], to derive the equation for the Pearl 
curve. Alternately, we assumed that the rate of work was proportional to the product 
of the work done to date and the logarithm of the ratio of the total work to the work 

done to date, y(t) y t
S

y t
( )× ( )













ln , to derive the equation for the Gompertz curve. 

Suppose now that we assume that the rate of work is proportional to the product of 
the Work-to-be-done and the logarithm of the ratio of total work to work remaining, 
or:

	

dy

dt
b S y

S

S y
= −( )

−
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





ln

	

Notice that this is similar to the differential equation that led to the derivation of 
the Gompertz function, except that S − y appears here where y appears in the 

Gompertz formulation. In this formulation, the derivative 
dy

dt
→ 0  as y(t) → S, and 

is zero for y(t) = 0, because ln
S

S y t− ( )











→ 0  as y(t) → 0. Therefore, the behavior 

is sigmoidal, similar to that obtained before, but the rates are somewhat different. 
This differential equation has the solution:
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ae bt
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This S-curve doesn’t seem to have a standard name, but because it is sort of the 
complement or reverse of the Gompertz, we may call it here the Dual Gompertz 
curve. It is in a way the mirror image of the Gompertz, skewed to the left, that is, it 
has its inflection point above the midpoint, with a shorter tail to the right and a lon-
ger one to the left, as shown in Figs. 13.7 and 13.8. A job described by this function 
is a slow starter but a fast finisher, compared to the Pearl curve.

13.4.4  �Fitting the Logistic Curves

As mentioned above, one practical problem with the Pearl equation and the dual 
Gompertz equations may be immediately observed: with the initial condition 

y(0) = 0, then 
dy

dt
0 0( ) =  and work never gets started, never mind completed. We 
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can never plot the point y(t) = 0 for it occurs at t =  − ∞. However, we can make an 
approximation, just as we use the Normal distribution, which is defined on the range 
− ∞  ≤ x ≤  + ∞, but apply it to a finite range.

One engineering approximation is to define an upper asymptote, say AU > S, and 
a lower asymptote, say AL < 0, such that the Pearl and Gompertz curves fit inside the 
asymptotic limits AL < y(t) < AU. Then, for example, the Pearl curve is given by:
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Then, we can use as a boundary condition the finite time at which the project 
starts, that is, the time t0 at which y(t0) = 0 using the offset equation. We use this 
boundary condition to solve for the shift factor, a, in the modified Pearl equation. 
Substituting in the modified equation above:
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With algebraic manipulation gives:
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So, given the start date t0, we can solve for the shift parameter a. If the time axis 

for the project is scaled such that t0 = 0, then this equation reduces to a
A

A
U

L

= − . 

Note that a > 0 because AL < 0 by definition.
If we specify the finite time at which the job finishes as ts, when y(ts) = S, then we 

have two points on the curve: y(t0) at t0 and y(ts) at ts. With these two endpoints, we 
can solve for the rate constant b and the shift coefficient a that fit the Pearl curve to 
the two time points t0 and ts:
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Some algebraic manipulation leads to:
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If the job starts at t0 = 0, then

	

a
A

A

b
t

a
A

A

S A

A S

U

L

S

U

L

L

U

= −

= −










−
−























1
ln

	

The simple Pearl and Gompertz equations are highly generic, as they assume that 
tasks typically follow the S-shape of the logistic. By adjusting the asymptotes AU 
and AL one can get tails as long or short as one likes. There are only two undeter-
mined coefficients, a and b, and one of these (a) is used up just defining the start 
time. The symmetric Pearl function may be used in default of any better informa-
tion, for example, if we don’t have good information about the work schedule (i.e., 
the BCWS(t) as a function of time) or if we just want a simple approximation. If we 
have data, then we use whichever equation fits the data best.

13.5  �Finding the Best Fit Curve

We can find the parameters of a sigmoid curve from the values at the endpoints t0 
and ts, but that gives no help in forecasting, as the finish date ts is what we are look-
ing for. Of course, we could use any two points to define the curve, because all of 
the functions above have only two undetermined parameters, but if there are three 
or more reporting dates it is not obvious which two to use. To generate the most 
reliable forecasts with any of these equations, we want to use all the reported data 
points. So, we find the best fit of the parameters to the reported progress data using 
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some curve-fitting technique and then use the equation to extrapolate from the pres-
ent to the future; that is, to job completion (when y(t) = S).

Suppose that earned value yj is reported at the end of reporting period j (that is, 
at time tj), for 1 ≤ j ≤ n. Then we would like to find values for a and b (solving for 
S is considered later) that minimize the sum of the squares of the deviations of the 
reported values from the postulated curve. That is, for the Pearl approximation, we 
want to find a and b that minimize
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The deviations are squared so that negative deviations count as much as positive 
deviations, and the square is used because there is a whole body of statistical devel-
opment and regression based on the sum of squares. The sigmoid functions are 
nonlinear, so we could solve for the optimal values of a and b that minimize SSD 
using some nonlinear optimization procedure, such as the Solver function in Excel. 
Here, however, we will use a more simple method, linear regression analysis, 
because it is familiar to most engineers and managers, and it provides the confi-
dence intervals we would like to have about the precision of the forecast.

To use standard linear regression with ordinary least squares, we need to linear-
ize the problem. One way this can be done is to rearrange, for example, the Pearl 

equation y t
S

ae bt( ) =
+ −1

into the form:
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and then take logarithms:
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This is equivalent to the linear equation Y  =  A  +  Bt if one makes the 
substitutions:
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This is a linear equation in time t and the transformed dependent variable 

ln
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 and basically the procedure is to plot reported values of the 

transformed variable Y t
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ln  against t, draw a straight line that best 

fits the points, and determine the equation of the line. Using the modified Pearl 
equation with the asymptotes AU and AL gives the equation derived earlier:
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Some algebraic manipulation leads to:
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That is, we plot Y t
A y t
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ln  against t and find the best-fit straight line 

through these points. Following that we can determine the intercept A and slope B 
and finally compute a = eA and b =  − B.

To forecast, we can either:

	1.	 Determine the Pearl parameters a = eA and b =  − B from the intercept and slope 
of the best fit straight line, and then forecast values of y(t) for some future time t 
using the Pearl equation;

	2.	 Forecast values of Y(t) for some future time t using the linear equation 
Y(t) = A + Bt and then transform these values back into the original dependent 
variable y(t) by

	
y t

S

eY t( ) =
+ ( )1 	

The same approach may be taken to linearize the Gompertz equation for linear 
fitting to the data. From above, the Gompertz equation was derived as:
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Performing some algebraic manipulations leads to:
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This is the form of a linear equation,
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Extrapolated forecasts Yt can be made with the linear equation for larger values 
of t and may be inverted to obtain forecasts in the original variables by reversing the 
above derivation:
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Thus, by transforming the original reported progress data y(t) into the new vari-
able Y(t), we can fit a straight-line Y(t) = A + Bt, and then determine the parameters 
a = eA  and b =  − B, from the intercept and slope of the linear equation. We can then 
either forecast y(t) directly, using these parameters in the Gompertz equation, or 
forecast Y(t)) using the linear equation Y(t) = A + Bt and transform back to the origi-

nal variables using y t
S

ee
Y t( ) = ( ) 

.

Finally, the same approach may be taken to linearize the Dual Gompertz equa-
tion for linear fitting to the data. From above, the Dual Gompertz equation was 
derived as:
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We can rewrite this as:
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Take the logarithm of both sides of the above equation:
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Take logarithms again:
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This is the form of a linear equation,
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Extrapolated forecasts Yt can be made with the linear equation for larger values 
of t and may be inverted to obtain forecasts in the original variables by reversing the 
above derivation:
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Thus, by transforming the original reported progress data y(t) into the new vari-
able Y(t), we can fit a straight-line Y(t) = A + Bt, and then determine the parameters 
a = eAand b =  − B, from the intercept and slope of the linear equation. We can then 
either forecast y(t) by using these parameters in the Dual Gompertz equation 
directly, or forecast Y(t) using the linear equation Y(t) = A + Bt and transform back 

to the original variables using y St Yt
= −












( )





1
1

e
e

.
We can use the entire record for completed jobs of the same type, to determine 

the equation that best fits the progress curve for the past work. Then, this equation 
can be used to plan and track future jobs of the same kind. For example, if the prog-
ress data for completed jobs of the same type are best fit by Gompertz functions, 
then this is evidence that we should use a Gompertz function to fit the data on a job 
in progress that we are trying to forecast. To eliminate the effect of job size, we can 
normalize the equation by dividing by the total number of units installed (or BAC) 
for each job, so that in the equation S = 1.0 (or S = 100%) and y(t) represents the 
fraction (or percentage) of the total work done at any time t, and at completion 
y(ts) = S = 1 (or 100%).

Then, for a job in progress, we can use the progress record up to the current date 
to find the best fitting line of the type selected in Part 1, and extrapolate the line to 
completion. For example, if

S = Budget at Completion (BAC), and
y = Budgeted Cost of the Work Performed [BCWP(t)],
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then we compute the transformed variable Y t
BAC

BCWP t
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1

 and plot 

Y(t) versus t. If the reported data points plot as (approximately) a straight line, then 
BCWP(t) is (approximately) following the Pearl curve. If the plotted points do not 
follow a straight line, even approximately, then some other equation is needed to fit 
the data.

Linear regression eliminates the guesswork and subjectivity from the forecasting 
process and at the same time determines the confidence band on the extrapolated 
values. Linear regression finds the values of A and B that minimize the sum of the 
squares of the deviations of the reported points from the straight line:
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in which n is the number of progress reporting periods prior to the time of the fore-
cast. Having found A and B for the first n reporting periods, we use the equation 

Y(t) = A + Bt to forecast Y(t) (and hence y t
S

eY
( ) =

+( )1
) for any time t in the future. 

Note that these regressions against the independent variable time often give very 
large values for R2 (R2 > 0.99) is not uncommon). This is because the amount of 
work completed is obviously highly correlated with the passage of time. Note also 
that, if the data are not well fit by the Pearl or Gompertz equations (which only have 
two unknown coefficients, a and b), then the regression residuals will not be ran-
domly distributed and independent, but will often show long runs of positive or 
negative values. The Durbin-Watson test may be used to evaluate whether the resid-
uals are autocorrelated.

Example 13.1
As an example, we use the n = 10 data points in Table 13.1 given earlier. In this 
example, we set S = 100, so y(t) represents the percentage of the total job completed 
at time t. Using these ten points, the linear regression method using the Dual or 
Reverse Gompertz equation gives the values A = 4.616 and B = 0.360. These values 
give the parameters a = eA = 0.00989, b = 0.360 in the Dual Gompertz equation, with 
R2 = 0.977. The closeness of the fitted values is indicated in the Table 13.2.

Figure 13.9 shows some results for these data. The reported progress percentages 
and the fitted Dual Gompertz curve are shown up to time period 10 to indicate the 
closeness of the fit. Then the fitted function is extrapolated forward to indicate com-
pletion in about time period 19. Of course, due to uncertainty, there is a likelihood 
of about 50% that the job would actually take longer. In forecasting, we use the 
best-fit equation plus some statistics output from the linear regression program to 
give the confidence intervals on the forecasts. In this case, an 80% confidence inter-
val was used; that is, we expect from the variance computed from the historical data 
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Table 13.2  Fitted values for 
data from regression 
equation, n = 10

Time
Actual 
value

Fitted 
value

1 1.0 1.41
2 2.4 2.01
3 3.2 2.87
4 4.7 4.09
5 6.1 5.81
6 7.8 8.23
7 12.3 11.58
8 14.1 16.17
9 25.1 22.34
10 27.3 30.41

Fig. 13.9  Dual Gompertz fit to reported data and extrapolation

that the interval will cover the future progress, when it is reported, 80% of the time, 
with 10% above the upper limit, 10% below. We could also use 50%, 90%, or 95% 
confidence intervals. Figure 13.9 shows the 80% confidence band for the forecast 
from period 11 through period 20. Also shown in this figure for comparison are the 
future data points for periods 11 through 20, when the job actually completed. There 
is a 10% chance that the actual results would fall below the lower confidence line 
generated at time 10, and we see that in this case the results did fall outside this limit 
starting in period 16.

Is this a good forecast? The answer to that depends on what the forecast is used 
for. Clearly, this job took somewhat longer than the best forecast, and fell in a range 
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with probability less than 10%. However, the actual results clearly fall inside the 
six-sigma band around the forecast, so we would probably say that this job was 
under statistical control, although the variance may be greater than we would like to 
see.

Was the Dual Gompertz a reasonable function to use for forecasting? After this 
job is over, we can fit the Dual Gompertz to the full set of data points. This ex post 
fit is shown in Fig. 13.10, below. Clearly this job is a slow starter and a fast finisher, 
although perhaps not as fast as the Dual Gompertz function would indicate. Still, the 
fit is close enough that it would be difficult to find another mathematical function 
that would fit better. Based on these results, we would probably feel justified in 
using the Dual Gompertz function to forecast future jobs of this same type – although 
you are welcome to try to find a better one.

At this point, one may well ask what is the probability distribution of the fore-
casts. The answer is the Normal, which in this case is justified by an argument from 
statistical independence. The linear regression equation can be written:

	
Y A Btj j j= + +ε

	

where

Yj is the observed (transformed) variable and
εj is a random error term. The classical Normal linear regression model assumes 

that:

E[εj] = 0,    ∀ j; the error terms εj all have zero mean;
E[εj

2] = σ2,    ∀ j; the error terms εj all have constant variance
E[εjεk] = 0,    ∀ j, ∀ k such that j ≠ k; the εj are all statistically independent

Fig. 13.10  Reverse Gompertz function fitted to entire job sequence
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εj is Normally distributed, N[0, σ2]

These assumptions imply that, if the classical Normal linear regression model 
applies, then the dependent variables Y are also Normally distributed, by the repro-
ductive property of the Normal, with expected value E[Yj] = A + Btj and constant 
variance σ2. Also, the Yj are assumed to be statistically independent, because the 
covariance between the Yj and Yk at different times is, by the above assumptions:

	

E Y E Y Y E Y E A Bt A Bt A Bt A
j j k k j j j k k
− − = + + − + + + − + ( ) [ ]( ){ } ( ) ε ε BBt

Y Y E for j k j

k

j k j k

( )[ ]{ }
( )  = = ∀ ∀ ≠Covariance , such thatε ε 0 , kk

	

It turns out, however, that by this set of assumptions the differences are not sta-
tistically independent. Whether or not these assumptions are met in any given case 
should be checked. Also, these are the assumed properties of the transformed vari-

ables Yj, where Y
S y

yj

j

j

=
−( )











ln , not the original data. As the values of Yj are 

assumed to be Normally distributed, then 
S y

y

j

j

−( )
 must be lognormally distributed, 

but the original variables y
S

e
j Yj

=
+



1

 are not lognormally distributed, as the log-

normal is defined on the range [0, ∞], but yt is non zero only over the finite range 
0 < yj < S.

For prediction, however, we determine the confidence limits for the forecasts of 
the transformed variable Y and then convert these to confidence limits for the origi-
nal variables y, rather than determining the confidence limits for y directly. The 
confidence limits are actually set by the t probability distribution, not the Normal, 
because in practice we don’t know the error variance but have to estimate it from the 
data. However, the t-distribution is very close to the Normal distribution when the 
number of data points is large (say 30 or so). This procedure, although approximate, 
is much easier because it permits the use of standard linear regression codes, and the 
error introduced by using the transformed confidence limits for Y as the confidence 
limits for y is generally negligible in comparison to the likely accuracy in which y 
can be measured, much less forecasted.

Applying this approach generates the entries in Table 13.3, below, which repeats 
the actual and fitted points for the first 10 reporting periods from Table 13.2, and 
forecasts the job progress forward, for time periods 11 through 20. The table shows 
the best predicted value Corresponding to a 50% likelihood that the job will take 
longer), the lower confidence limit (corresponding to a 10% likelihood that the job 
will take longer), and the upper confidence limit (corresponding to a 90% likelihood 
that the job will take longer). The entries in this table are the values plotted in 
Fig. 13.10.

As soon as the reported progress is received from the next reporting period, the 
entire calculation is repeated, now with 11 data points, to generate a new regression 
equation, new values for A and B, and a new set of forecasts for time 12 through 
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Table 13.3  Forecast with 80% confidence bounds, reverse Gompertz curve

Reporting Reported Fitted value Forecast Forecast Forecast

(Period)
(Percent 
complete)

Reverse 
Gompertz

Lower 10% 
bound

Best fit 
mean

Upper 10% 
bound

0 0.0
1 1.0 1.41
2 2.4 2.01
3 3.2 2.87
4 4.7 4.09
5 6.1 5.81
6 7.8 8.23
7 12.3 11.58
8 14.1 16.17
9 25.1 22.34
10 27.3 30.41
11 28.91 40.53 54.68
12 38.08 52.52 68.59
13 48.91 65.63 81.69
14 60.91 78.36 91.75
15 73.06 88.86 97.46
16 83.94 95.70 99.55
17 92.17 98.90 99.97
18 97.11 99.84 100.00
19 99.27 99.99 100.00
20 99.89 100.00 100.00

time 20 (or whatever seems appropriate). This rolling procedure continues as the job 
advances.

13.5.1  �Inverting the Variables

In the previous example of predicting project duration, time, that is, reporting 
period, was the independent variable, and earned value, or BCWP, was the depen-
dent variable. This is consistent with common usage, in which the abscissa is usu-
ally time and the ordinate is whatever variable is dependent on time. It is also 
consistent with normal regression using ordinary least squares, in which it is 
assumed that the independent variable is known perfectly and has no error, and all 
the errors are concentrated in the dependent variable. Certainly, the reporting period 
should be known for sure, although the observations or measurements on the BCWP 
are certainly subject to error. However, although the reporting period may have no 
error, it does have variance. If the reporting interval is 1 month, different months 
have different numbers of workdays. Even if the reporting interval is 1 week, weeks 
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may have different length due to holidays. Even so, it makes sense that time is the 
independent variable, because nothing can be done to influence it, and although one 
can say that the passage of time is the cause of work being accomplished, one would 
not say that work causes time to pass. (If it did, that would be another good reason 
to stop working)

As we have seen, placing all the errors on the BCWP means that the probability 
distributions and confidence bands are on BCWP. This allows one to determine the 
probability that some value for BCWP or more (or less) will be earned by some 
fixed date. However, what we may really be concerned about is the confidence band 
on the project duration, so that one can state the probability that the project will be 
completed on or before some given critical date. This can be done, but it may require 
breaking all the rules given above.

Using the same example as given just before, we seek to predict the completion 
of this project based on (in the example) ten observations on the BCWP. However, 
here we treat BCWP as the independent variable and reporting time as the depen-
dent variable. Using ordinary least squares, this is equivalent to the assumption that 
there are no errors in observing the earned value, and all the errors lie in the report-
ing date. The project is complete when BCWP(t) = BAC (the budget at completion), 
so that one only has to enter the abscissa at BCWP = BAC and read the completion 
time off the curve.

Figure 13.11 below shows the same observed data as before, which could have 
been plotted exactly as before, but to emphasize the difference the abscissa remains 
the independent variable, and now becomes the reported earned value, and the ordi-
nate remains the dependent variable, and now becomes the time.

Fig. 13.11  Dual Gompertz data
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We apply the linear transformation as used before, again assuming the Dual 
Gompertz function. That is, for the Dual Gompertz,

	
BCWP t y S a btt( ) = = − − ( ) { }1 exp exp

	

This leads, as before, to the transformed variable

	

Y
S

S yt
t

=
−














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



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ln ln

	

Here S = 100 as before. The previous example plotted Yt = A + Bt. Here, however, 
we plot t = A′ + B′Yt. This plot is shown in Fig. 13.12. The transformed data points 
seem to follow a straight line, an indication that the Dual Gompertz is giving a good 
fit.

Performing the regression on the transformed data set gives the following results:

•	 Adjusted R2 = 0.974
•	 Intercept = A′ = 12.65139; t-test = 30.5, p < 1.5 × 10−9

•	 Slope = B′ = 2.713743; t-test = 18.5, p < 7.4 × 10−8

•	 F = 344; p < 7 × 10−8

•	 Standard deviation of the estimate = 0.484 (this will be used in determining the 
confidence band).

The fitted line is plotted in Fig. 13.13 in the transformed (linearized) coordinates. 
Also shown is the extension of this line, extrapolated out to project completion. The 

Fig. 13.12  Linearized data
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Fig. 13.13  Linearized data with fitted line

budget at completion (BAC) is S = 100; effective completion of 99.999 becomes, in 
the transformed coordinates, Y = 2.44. It is easily seen in the linear plot that the 
expected time of completion is about 19 months.

The fitted line, now transformed back to the original coordinates, is plotted in 
Fig. 13.14. Also shown is the fitted Dual Gompertz function extrapolated to project 
completion at about 19 months.

To obtain the confidence band on the times for various amounts of work accom-
plished, we determine the standard error of the forecast from the standard error of 
the estimate. Using a 80% confidence band as before (the probability of a duration 
more than the upper confidence limit is 0.10; the probability of a duration less than 
the lower confidence limit is 0.10), the Fig. 13.15 shows the confidence band added 
to the linear (transformed) plot. It is clear that there is about a 10% chance of finish-
ing in less than 18 months, and about a 10% chance of taking longer than 20.5 months.

Figure 13.16 shows the confidence bounds transformed back into the original 
coordinates.

13.5.2  �Determination of Confidence Bands on Forecasts 
of S-Curves

When making project forecasts, it is highly desirable to have some indication of the 
confidence in these forecasts. If we can compute some estimate of the confidence 
band, we can estimate the likelihood of overrunning and given EDAC (Estimated 
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Fig. 13.15  Linearized data with model fit and confidence intervals

Fig. 13.14  Dual Gompertz data and fitted model
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Date at Completion). Suppose that the true relationship between the (transformed) 
dependent variable and time (or reporting period) is given by:

	 Y A Bt= + 	

By regression through n time steps (reporting periods), we determine estimates 
for the regression coefficients ˆ ˆ, .A B  We wish to forecast values for Y, k time steps 
into the future, by using the linear regression equation:

	
ˆ ˆ ˆ , , , ,Y E Y A Bt kn k n k n k+ + += [ ] = + = …1 2 3

	

The forecast error at future period n + k is:

	
ˆ ˆ ˆ ˆe Y Y A A B B tn k n k n k n k n k+ + + + += − = −( ) + −( ) + ε

	

Note that there are two sources of error in this forecast:

	1.	 The random error or noise term εn + k

	2.	 The errors due to the estimates of the regression coefficients, which are them-
selves random variables. Note in particular how any error in the slope coefficient 

B̂ B−( ) is magnified by the time ahead at which the forecast is desired, tn + k. 

Qualitatively, it is obvious that the confidence band, whatever it is numerically, 
must widen with increasing forecast time, tn + k.

Fig. 13.16  Dual Gompertz data with model fit and confidence intervals
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The error of the linearized forecast must be Normally distributed, because the 
ordinary regression method assumes that ˆ ˆ, ,A B n kε +  are all Normally distributed, 
and any linear combination of Normal variates is Normally distributed. Moreover, 
the error of the forecast has zero mean, which we see by taking expectations (note 
that tn+k is not a random variate):

	
E e E A A E B B t En k n k n k

ˆ ˆ ˆ
+ + +[ ] = −  + −  + [ ] =ε 0

	

Define the standard error of the forecast k steps ahead as σf(k); then the variance 
of the forecast error is:
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In this, a number of the cross-product terms in the squares of the forecast errors, 
ên k
2
+ , are zero because it is assumed in deriving the regression equation that the 

random error terms are not serially correlated, and hence are not correlated with the 
regression estimates. Note that, for regressions involving fitting of the various 
sigmoidal curves to data, this may or may not be a good assumption. How good or 
bad this assumption is may be tested by visual inspection, by plotting the residuals, 
or numerically, by using the Durbin-Watson test for serial correlation. Proceeding 
nevertheless, we have then, from the equation above:

	

σ σf n k n kk A t A B t B2 2 2= var + 2 cov , + var +( ) ( ) ( ) ( )+ +
ˆ ˆ ˆ ˆ

	

From the basic equations for ordinary least squares fit to the data, we have (see a 
textbook on regression analysis for the derivations of the following results):
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in which t  is the mean value of the time periods 1 through n covered by the 
regression:

	
t

n
t

i

n

i=
=
∑1

1 	

If the reporting periods are equally spaced (each week, for example, so that 
ti = i(Δt)), and there are data for every time period, then these equations can be sim-
plified. The equations above allow for varying intervals between the observations. 
Substituting these three equations into the previous one gives:
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which gives, after some algebraic simplification,
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Recalling that t  is fixed by the n observations available for the regression, note 
especially the term in t tn k+ −( )2 ; as one tries to forecast further into the future, the 
error goes up as the square of the difference between that future time and the mean 
time of the past observations. Unfortunately, of course, we do not know σ2; we can 
only estimate it from the regression, as s2:
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With sf, the standard error of the forecast, we can determine confidence intervals 
about the future forecasts of Ŷn k+  for all values of k of interest. These confidence 
intervals are, of course, with reference to the transformed variables used in the lin-
ear regression; we must now transform them back into the original variables, ŷn k+ . 
That is, we reverse transform the confidence intervals in the same way that we 
reverse transform the forecasts. In the case of the Pearl function, the linearization 
derived above was:
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The inverse transformation is then:
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in general, and in particular,
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13.6  �Assessment of the Methods Discussed

Extensive bench marking and use of this approach to forecast actual construction 
projects has shown that the forecasts given by this method can often be more accu-
rate than forecasts made by more sophisticated methods. However, they can 
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sometimes be seriously in error, when the regression is based on only a few points. 
This problem is most severe when the data have high variability around the regres-
sion line and the progress to date is well below the inflection point of the curve (as 
The Pearl equation is symmetric, the inflection point occurs at the midway point, or 

when y t
S( ) =
2

. It is very difficult to forecast accurately when this inflection point 

will occur, given only data below the inflection point. Given reported data above the 
inflection point, the method is more reliable. Of course, forecasts at early stages of 
work are much more useful than those made later. The user is advised to apply this 
method to historical data first, if possible to obtain a feel for how well the method 
fits the jobs of interest, before placing too much confidence in it. In any case, the 
forecasts made using this approach should be compared to other information.

Some of the indicators that may be symptomatic of problems:

	1.	 The extrapolated completion date is much later than the project scheduled com-
pletion. This may indicate difficulties in calculating progress in the early stages 
of the job, but may also indicate that the job is starting slowly and the time lost 
may not be recovered later unless there is a significant learning effect in 
operation.

	2.	 The confidence band is unusually large. This probably indicates erratic progress 
or inaccurate progress reporting, which should be investigated and corrected in 
order to get a valid picture of job progress. This is similar to the information 
presented in a control chart for the incremental schedule performance index spi.

	3.	 The projected completion date or the width of the confidence band changes sig-
nificantly from one reporting period to another. This isn’t unusual in the early 
stages of the job, for less than 10% completion, but if it occurs later than this it 
may indicate that some major change has occurred with the job.

Several points should be kept in mind about this procedure:

	1.	 The Sum of Squares that is minimized by the linear regression uses the devia-
tions from the linearized equation, not the deviations from the logistic equation. 
Hence, the fitted values A and B which are optimal for the linearized equation do 
not necessarily convert to optimal values a and b for the nonlinear logistic equa-
tion. In this sense, the fitted curve is not necessarily the best fit to the logistic 
function. Both the regression coefficients and the confidence bands will be 
affected.

	2.	 The method assumes that the entire job will follow a standard generic S-curve, 
and tries to find the parameters of this curve as a basis for extrapolation. It cannot 
account for later changes that affect the entire shape of the curve. It is necessary 
to keep in mind that the method inherently assumes that the underlying model of 
the project does not change. If the project changes, then the initial model may 
become invalid. Suppose, for example, that a forecast is made using one of the 
above methods, and this forecast indicates that the project will complete far in 
excess of the scheduled date. As a result of this prediction, the project manager 
puts the project on extended work weeks to recover the schedule. As a result of 
this change, the project finishes on the original scheduled date. Therefore, the 
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early forecast is now wrong – the project actually finished on time whereas the 
prediction was to finish late. However, the project finished on time because the 
underlying model changed (from regular time to overtime), and without the fore-
cast the change might not have been made. Therefore, the forecast served its 
purpose. The forecast was conditional on model remaining constant, but the 
function of the project manager is to change the model when necessary.

	3.	 The forecasts are extrapolated from the initial data. Early on, when there are few 
data points, inaccurate data will have a large effect on the fitted equation, leading 
to poor (in hindsight) forecasts, in which the confidence band does not cover the 
actual results. Difficulties can be diagnosed if (i) the confidence band is very 
broad, or (ii) the confidence band changes substantially when a new data point is 
added. Basically, the method is founded on the assumption that historical data 
incorporate information about the future, and if this assumption is violated the 
forecasts will unquestionably be bad. Unfortunately, bad data give bad forecasts. 
Sometimes even good data give bad forecasts.

	4.	 The function used above is about the simplest possible, with one independent 
variable (time). It is hardly necessary to use a linear regression package to solve 
this small a problem, in one independent variable – the solution equations can 
easily be written out explicitly. However, it is certainly feasible to construct more 
realistic fitting functions with several or many independent variables, giving 
some function y(t) = f(t, x1, x2,.… xn), where x1, x2,.… xn are additional indepen-
dent variables. To use standard linear regression, it must be possible to linearize 
this expression, as discussed earlier. Also, it is necessary to chose the indepen-
dent variables such that they can be measured, and also such that they can be 
independently predicted. For example, the weather might be an independent 
variable that could help explain job progress, but to be useable in forecasting it 
must be capable of being predicted ahead to job completion, perhaps using 
National Weather Service long-range forecasts.

	5.	 In computing confidence intervals, it is essential to use the standard error of the 
forecast, not the standard error of the estimate from the regression analysis. The 
standard error of the estimate reflects the scatter of the reported data points about 
the regression line, but the standard error of the forecast reflects both this scatter 
and the error in fitting the regression line from the data. As the forecasts repre-
sent future time, the variances of both these effects must be included in determin-
ing the confidence bounds.

The method described may appear simplistic, but it has been used for tracking 
many projects. It is, based on experience, often as accurate as much more expensive 
and time-consuming methods. Some of its advantages are:

	1.	 It is automatic and completely objective. The whole forecast can be computer-
generated. A spreadsheet will suffice. There are no subjective factors, guesses, 
hunches, judgment, or biases. The only thing the user has to do is to enter the 
reported progress every reporting period. The objectivity of the forecasts is often 
useful when having discussions with projects as to whether they are or are not on 
schedule.
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	2.	 It generates confidence intervals on the forecasts  – 50%, 90% or whatever is 
desired.

	3.	 It can easily be used by higher levels of management.

Quick and dirty forecasting is often useful, and construction engineers may wish 
to have multiple methods for evaluating project progress and forecasting comple-
tion, and should combine the results from several independent methods. (There is 
no point to using methods that are not independent; if several methods give highly 
correlated results, all but one can be dropped).

With all these methods to choose from, plus many more, how is one to select the 
best forecast? One useful exercise is to obtain feedback from real projects on the 
accuracy of cost estimates. When a project is complete, a post mortem analysis is 
needed to improve forecasting accuracy.

13.7  �Methods Based on Bayesian Inference

Bayesian inferencing, or the revision of beliefs about future activities based on the 
information gained about past activities, offers a number of opportunities for mak-
ing more reliable forecasts of future outcomes – and for making reliable forecasts 
sooner, when they are more valuable to project management (Gelman et al. 2013). 
Of course, as elsewhere in this book, we are concerned not with making point esti-
mates of future outcomes, but with determining confidence bands on our estimates – 
and for making these confidence bands as narrow as possible, as soon as possible.

With a number of families of sigmoid curves available, it is assumed that one can 
find some functional relation that can be fitted to the available BCWS(t) plan, either 
by linear regression, by minimizing the sum of the squares of the errors, or by eye. 
As stated earlier, the method assumes that the actual BCWP(t) progress will follow 
the same family as the fitted BCWS(t) curve, but with different parameters. The 
method given here tries to determine the best estimate for these parameters using the 
BCWP(t) progress reports as they arrive.

The focus of this method is not so much on high accuracy as on early warning. 
An accurate prediction of the actual task duration, b in the above functions, obtained 
late in the task, is worth very little. An approximate prediction of the task duration 
obtained very early in the task may be highly valuable to the project manager. This 
method seeks an early warning of deviations of the actual progress (BCWP) from 
the plan (BCWS). Although Bayes’ rule is slightly more complicated, and probably 
less familiar, than linear regression, test results indicate that it may be able to give 
earlier warning that other methods.

We start with two parameter problems: b and n. Actually, one parameter would 
be simpler, but the major conceptual difficulty is in going from one parameter to two 
or more, so this discussion focuses on a two-parameter problem.

Assume that we have fitted a function from one of the families above to the 
planned BCWS(t) data and have obtained the values b* and n* as the best fit param-
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eters. Now, as progress reports on the BCWP(t) are obtained, we wish to determine 
whether the actual progress data support the same values of b* and n*, in which case 
the project manager can believe that the task is on schedule, or whether the data 
support some other values of b and n, and the project manager should change his 
belief, especially if b > b**. We apply Bayes’ rule to advise the project manager on 
whether he should alter his belief.

The parameters b and n are continuous variables, and there are mathematical 
methods available to handle Bayesian inferencing problems using continuous vari-
ables. However, the presentation here will discretize the parameters. This greatly 
simplifies the presentation, and such discretization is a common practice in engi-
neering. Suppose, to be specific, that we discretize both b and n into nine values 
each. Moreover, we center the range of the discrete values of b on the value b*, 
which is our a priori best estimate for the task duration, obtained from the fit to the 
BCWS(t) curve; and similarly for n. Then, we have a nine by nine table of matrix 
for b and n:
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Each of these pairs is considered an event. That is, the event [b = bj, n = nk] is the 
event that the true value of b is bj and the true value of n is nk, and there are 9 × 9 = 81 
possible events. Values of b or n that fall outside the matrix are considered impos-
sible (have probability zero), so the range of the table should be extend far enough 
to avoid excluding real possibilities. Of course, one can use a table with more entries 
than 9 × 9. Whatever the size of the matrix, the sum of the prior probability distribu-
tions over all the events must equal one:

	 j k
j kP b b n n∑∑ = = = , 1 0.

	

The Bayesian approach requires a prior probability distribution over the set of all 
events. This prior distribution must be set by the decision maker, in this case the 
project manager. The prior distribution depends on the project manager’s degree of 
belief in the various outcomes. For example, if the project manager very strongly 
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believes that the actual task BCWP(t) is going to track the planned BCWS(t) very 
closely, then he could set P[b = b∗, n = n∗] = 0.90 and assign all of the other events 
probability 1/800. This kind of strong prior would make it very difficult for the 
project manager’s beliefs to be changed based on the actual BCWP(t) data, no mat-
ter what they were.
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Another method would be to have the prior probability the largest for {b∗, n∗}, 
but with decreasing probability for {b, n} further away from this value. An example 
might be the prior probability matrix just below, in which every entry is to be divided 
by 369.

	

. b b b b b b b b b

n

n

n

− − − −
∗

−

−

−

4 3 2 1 1 2 3 4

4

3

2

1 2 3 4 5 4 3 2 1

2 3 4 5 6 5 4 3 2

3 4 5 6 7 6 5 4 33

4 5 6 7 8 7 6 5 4

5 6 7 8 9 8 7 6 5

4 5 6 7 8 7 6 5 4

3 4 5 6 7 6 5 4 3

2 3 4 5 6 5 4 3 2

1

1

2

3

n

n

n

n

n

−
∗

nn4 1 2 3 4 5 4 3 2 1







































	

One could use a bivariate normal distribution to set the prior probabilities, or 
some other probability distribution.

Another prior could be the uniform prior, P[b = bj, n = nk] = 1/81,    ∀ j,    ∀ k. In 
this case the prior probability matrix would be the following table, with each entry 
divided by 81.
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This is sometimes referred to as the noninformative prior, because it provides no 
information to discriminate between any events. That is, the project manager shows 
no preference for any particular values of b and n, and wishes to have these values 
chosen entirely by the data. In the examples following, the noninformative prior will 
be used in order to allow the solutions to be determined entirely by the data, not by 
any prior opinions. However, it must be emphasized that, in the Bayesian approach, 
the project manager always has some prior information or knowledge, and there is 
no reason why the project manager should not allow his prior convictions to influ-
ence the results, through the prior probability matrix, if he so desires.

The discussion in Chap. 10 identified Bayes’ rule as the following:

•	 D = the data set, which initially is the full BCWS plan, and then is revised as each 
BCWP(t) progress report is received.

•	 Θ = {b, n} the set of parameters for the 
BCWS

BCWP
curve.

•	 P(D| Θ) = the conditional probability that the particular outcomes D would be 
observed, given the probability parameters Θ;

•	 P(D| Θ) = the conditional probability that Θ is the value taken on by the set of 
parameters given that the outcomes D were observed.

In the Bayesian approach, both the observables D  =  BCWP(t) and the model 
parameters Θ = {b, n} are considered random variates. We start then with a prior 
distribution P{Θ| BCWS} the initial distribution on the parameters Θ = {b, n}, con-
ditional on the fit to the BCWS(t) curve. Then the joint distribution of the observa-
tions D, which are the values reported for the BCWP(t), and the parameters Θ, is:

	
P D P D P P D P D∩{ } = { } { } = { } { }Θ Θ Θ Θ| |

	

where P{D} is the marginal distribution of the observables D. Then, this expression 
can be rewritten as:
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where P{Θ| D} is now the posterior distribution of the parameters Θ, given that the 
outcomes D were observed. Determining this posterior distribution is the objective 
of Bayesian analysis.

The last expression may be rewritten in terms of the two parameters of the sig-
moid function as:

	

P b b n n BCWP t P
BCWP t b b n n

P BCWP t
j k

j k= = ( ){ } = ( ) = ={ }
( ){ }

, |
| , 

	

Here, P{b = bj, n = nk| BCWP(t)} is the posterior distribution on the parameters 
{b, n} and P{b = bj, n = nk} is the prior distribution on the parameters, which after 
every BCWP(t) time step is reset equal to the previous posterior. That is, the poste-
rior distribution computed at time t becomes the prior distribution used in the com-
putation at time t + 1, and so on.

The term in the denominator of the above equation is just the probability of 
observing the data that were observed, over all possible values of the parameters:

	

P BCWP t P BCWP t b b n n
j k

j k( )  = ( ) = = ∑∑ | , 

	

The remaining term in the equation is P{BCWP(t)| b = bj, n = nk}. This is just the 
probability of observing the actual data, conditional on the parameters. This is 
sometimes called the likelihood function. Given that the parameters have values b = 
bj and n = nk, the likelihood that the actual data BCWP(t) would be observed is 
P{BCWP(t)| b = bj, n = nk}. Suppose that we assume some values of the parameters, 
such that b = bj and n = nk. This choice defines a sigmoid curve for BCWP versus 
time. The actual progress reported at time t, BCWP(t), may not lie exactly on this 
curve. However, this could still be the true curve, as we must allow for some error 
in measuring the reported BCWP(t). We assume that the measurement errors are 
distributed Normally, as N[0, σ2] around the sigmoid curve. That is, the mean error 
is zero, so the errors are not biased up or down, but have standard deviation σ. This 
is the same assumption made in regression analysis, in which it is also assumed that 
the error variance is constant (homoscedastic). In the Bayesian approach, we can 
also assume homoscedasticity, or we can assume that the variance is not constant. 
In the example here, it is assumed that the reporting error is small at the beginning 
of the task (there should be little error in reporting BCWP when very little work is 
being done) and increases proportionally to the amount of work accomplished in 
each time period (that is, the reporting error is largest when the most work is going 
on, when the rate of progress is greatest). The assumption that the measurement 
error is proportional to the rate of progress implies that the reporting error becomes 
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small as the task nears completion; this may or may not be a realistic assumption. In 
any case, the user can make his own assumption about the reporting errors and is not 
limited to homoscedasticity.

Then, at every time period t, the reported progress is BCWP(t). The progress if 
the task were actually following the sigmoid function with parameters b = bj and n 
= nk would be y(t| b = bj and n = nk). The deviation is:

	
d t b b n n y t b b n n BCWP tj k j k| and | and=( = ) = =( = ) − ( ).

	

Using the Normal distribution for the error, N[0, σ2], we can determine the likeli-
hood that a deviation this large would be observed due to random reporting error, 
when the true parameters are b = bj and n = nk. One simple way to determine this 
likelihood is to compute the Normal probability density function
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and then multiply this by some interval to convert from probability density to prob-
ability. The actual value used is not critical, as we normalize all the quantities after 
they have been computed. That is, the probability that the actual reported progress 
belonged to one of the sigmoid curves defined by the matrix is exactly one (values 
of the parameters not in the matrix are impossible), so we adjust all the computed 
values such that
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Thus, we have now identified all the terms in the Bayesian equation, and we can 
compute the posterior distribution over all the pairs of parameters at each reporting 
period t from:

	
P b b n n BCWP t P BCWP t b b n n P b b n nj k j k j k= = ( ){ } = ( ) = ={ } = ={ }, | | , , 

	

Having the posterior distribution at each time t, we must infer the values of b and 
n. One method is to use the most likely values. That is, we select the pair b = bj, n = 
nk that maximizes the posterior probability P{b = bj, n = nk| BCWP(t)}. However, it 
is possible that the most likely set changes from time to time, until the process set-
tles down on some steady-state value. Therefore, it has proved more successful to 
compute the mean values of b and n based on the posterior distribution, and then to 
use these mean values to generate a sigmoid curve that represents the best prediction 
of the future BCWP curve. Unlike the modes (the most likely values), the means are 
stable over multiple time periods.
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As mentioned earlier, we are interested in the confidence band for the projects of 
BCWP. If a sigmoid function like one of those discussed above, in which the param-
eter b represents the duration of the task, one can obtain an estimate of the confi-
dence bounds on b by either plotting a histogram of the distribution of b, or by 
computing the standard deviation of b from the posterior probabilities for each bj, 
and then using the Normal distribution to assign confidence bands at the desired 
confidence levels.

Example 13.2
As a simple example, assume that a project has a planned BCWS curve that is rea-
sonably approximated by a symmetric Pearl curve, as shown in the Fig. 13.17. The 
Budget at Completion = $950 (in thousands), and the upper asymptote of the Pearl 
curve is taken as S  =  1000. The planned duration is 29  weeks, and progress 
[BCWP(t)] is reported every week. The fitted parameters of the Pearl curve are 
a = 60 and b = 0.25.

y t
S

ae
BCWS t

bt( ) =
+

= ( )−1

In this example we will use a 9 × 9 matrix of possible pairs of values for a and b, 
with the noninformative prior as shown below (divide all cell values by 81):

Fig. 13.17  BCWS vs. Time
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For each pair of values {aj, bk} we can generate a Pearl curve {y(t)| aj, bk}. Then, 
as each weekly report of BCWP(t) is received, we compute the likelihood that this 
value would be obtained as a random error if the true curve that the BCWP is fol-
lowing were {y(t)| aj, bk}. With these values for all the possible pairs, we compute by 
Bayes’ Theorem the posterior probability for each of the combinations {aj, bk}. 
From these probabilities, we compute the average values for the parameters a and b 
and use these to forecast. Figure 13.17 shows a snapshot after week 8 of the exam-
ple. The actual reported BCWP(t) are shown with triangular symbols.

It would be obvious at week 8, just by plotting the reported BCWP(t) compared 
to the planned BCWS(t), that the project is falling behind schedule. The more inter-
esting question is, When is it going to finish? This is shown in Fig. 13.18 by the 

Fig. 13.18  Forecast at week 8
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forecast curve, which is a Pearl curve with the average parameters computed by the 
Bayes process through week 8, extrapolated to the future. The curve plotted in the 
figure represents the mean or expected value of the forecast BCWP(t). Figure 13.19 
shows the probability distributions for the estimated date at completion computed 
from the reported data for weeks 1 through 8.

The probability distributions are shown here as Normal distributions. It can be 
seen here how the probability distributions on the duration narrow as more informa-
tion is obtained, and shift to the right. At week 8, the probability distribution is 
centered around the mean value of 38 weeks. Moreover, it is clear from the week 8 
probability distribution that the original estimate of the duration, 29 weeks, has less 
than a 10% chance of happening (the area under the week 8 probability distribution 
to the left of 29 weeks is less than 0.10).

Figure 13.20 shows the actual reported BCWP(t) for the entire project, the trian-
gular symbols indicating the reported values. Also shown, as the curve labeled 
BCWP, is the Pearl curve that best fits the actual performance across the complete 
project. The differences between these two curves are the random reporting errors.

Figure 13.21 that plots the confidence band for the prediction of the project dura-
tion against the time at which the prediction was made. The upper or 90% confi-
dence limit shows the values for the duration that would be exceed with probability 
0.10, and would not be exceeded with probability 0.90. Because of the assumption 
of symmetry, the mean line is also the median, or 50% confidence limit; it is equally 
likely that the actual duration would be above or below this line. The lower confi-

Fig. 13.19  Confidence bounds

13.7  Methods Based on Bayesian Inference



348

dence limit is the value that would be exceeded with probability 0.90, and not 
exceeded with probability 0.10. Therefore, the actual values should lie between the 
upper and lower confidence bands about 80% of the time.

Of course, at any time, only the confidence band to the left of t (that is, before t) 
is known. By inspection of the confidence limits at week 8, it is apparent at this time 
that the planned duration of 29 weeks lies below the lower confidence limit, and so 
there is less than 10% probability that the project will finish in the planned time. At 
this same time, the expected value of the duration, the mean line, is about 37 weeks. 
That is, after week 8, meeting the original schedule is highly improbable, and proj-
ect management should be working with the assumption of a median duration of 37 
or 38 weeks instead of 29.

Comparing this figure with the previous one, it is possible to see how the fluctua-
tions in the reported values for BCWP(t) cause the confidence band to vary with 
time. However, the width of the confidence band narrows as more information is 
obtained on subsequent values for the actual BCWP(t). Of course, the confidence 
limits shown here are actually too narrow, because they relate to the comparison of 
the actual reported values to the fitted Pearl curve. There are some errors in fitting 
the Pearl function to the planned BCWS(t), namely the sum of the squares of the 
deviations between the fitted Pearl curve and the planned values, and neglecting this 
source of variance makes the confidence band look narrower than it should be. It is 

Fig. 13.20  BCWS and BCWP
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possible that this variance could be included, but in general, if the fit between the 
BCWS(t) and the idealized function (Pearl or one of the others discussed) is close, 
the error is considered negligible.

As it turns out, the actual completion date is at week 38, but the point here is not 
that this value was accurately predicted, but that, with a few exceptions, it always 
was inside the 80% confidence band. Although we would like the confidence band 
to be as narrow as possible, the main objective is that the ultimate solution should 
lie within the confidence band from the beginning of the process to its completion. 
In this case, the Bayesian revision of probabilities has substantially met this 
objective.

13.8  �Practice Problems

Problem 13.8.1  You are a Construction Engineer on a large coal-fired power plant 
jobsite, acting as supervisor for large pipe hanger installation. The schedule for 
completion of the large pipe hanger installation is 36 months after start of this phase. 
The Planned Value or Budgeted Cost of the Work Scheduled is shown in the second 
column of Table 13.4. Quantities have been normalized so that BAC = 100.

Fig. 13.21  Confidence bands on duration
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At the end of the 13th month of installation, the project-to-date values of the 
Earned Value per month and the cumulative EV or Budgeted Cost of the Work 
Performed are shown in the third and fourth columns of the table.

Table 13.4  Problem data

Month Cumulative PV (BCWS) Monthly earned value Cumulative EV (BCWP)

0 0 0 0
1 0.2 0 0
2 0.9 0 0
3 2 1.1 1.1
4 3.4 1.1 2.2
5 5.3 2 4.2
6 7.4 1.6 5.8
7 9.9 1 6.8
8 12.6 0.1 6.9
9 15.6 3.5 10.3
10 18.9 2.7 13.1
11 22.3 3.2 16.3
12 25.9 1.5 17.8
13 29.7 1.2 18.9
14 33.6
15 37.6
16 41.7
17 45.8
18 50
19 54.2
20 58.3
21 62.4
22 66.4
23 70.3
24 74.1
25 77.7
26 81.1
27 84.4
28 87.4
29 90.1
30 92.6
31 94.7
32 96.6
33 98
34 99.1
35 99.8
36 100
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At this time, the Site Superintendent calls you to his trailer to tell you that the 
company VP for power plant construction, who reads the monthly EV reports, 
called him to say that he is very much concerned because the large bore pipe hanger 
SPI is only 0.6. At this rate, the hanger completion will be 24 months late. (Using 
the relation Estimated Duration at Completion = Planned Duration/
SPI = 36/0.6 = 60). A schedule overrun in the large pipe hanger area will surely 
delay startup of the project and jeopardize the company’s incentive fee for on time 
start of system tests (and eliminate your bonus as well).

The Site Superintendent also knows that, with 23 months to go and no current 
problems with on-time deliveries of large bore pipe hangers from the fabricator, 
approximately 3–4 months can be gained by rescheduling large bore pipe installa-
tion efforts to concentrate first on those piping systems that will go into system test 
first, thereby overlapping hanger installation and system tests by about 3 months. 
This rescheduling will increase some labor costs, due to installation out of optimal 
sequence, but this additional cost would be far less than the incentive fee at risk.

The Site Superintendent, to respond to the corporate VP, directs you to prepare a 
report to him giving a reliable prediction of the time at which large bore pipe hanger 
installation will be complete on this site.

•	 What is your forecast date for large bore pipe hanger completion? What curve 
would you use to make the forecast? State your assumptions.

•	 How confident are you that you will finish on or before this committed date?

Problem 13.8.2  Johnny Mize, Assistant Project Manager at the Odessa refinery 
upgrade project, was sitting at home watching the St. Louis Cardinals on TV when 
he got a call from Leo Durocher, Vice President for Construction at the home office. 
“I have heard rumors about the situation down at the Chocolate Bayou job, and I 
want you to be there tomorrow morning and report back to me about what is going 
on.”

Johnny didn’t know much about the Chocolate Bayou job and didn’t want to 
walk into something blind, so he decided to call some friends of his in the company 
at various jobs to get some advance scoop on the situation. So Johnny placed a call 
to Paul Dean, Chief Electrical Supervisor at the Odessa job, who told him that “All 
I have heard about that site is that everything is OK except they are under-staffed 
and have been affected by a shortage of crafts.”

Frankie Frisch, Chief Construction Engineer at the company’s site in Abu Dhabi, 
told Johnny: “I have heard that, due to the owner’s financial condition, that job is 
heavily cost-driven. The owner controls the cash flow expenditures every week 
down to the penny, and nobody can get an authorization to spend any money above 
the preset spending limits. Everybody is spending a lot of time and effort managing 
to the cash flow limits, which results in stop-start inefficiencies.”

Pepper Martin, Welding Supervisor at the Odessa job, told Johnny that “Chocolate 
Bayou initially had a hard time hiring qualified pipe welders at that location, due to 
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the volume of construction going on around there that sucked up all the welders in 
the vicinity, and pipe welding is on the critical path. So they decided to bring in 
travelers. They imported a bunch of pipewelder travelers and had to promise them a 
lot of overtime to get them there. But once they got them, they have been going like 
gangbusters, beating their numbers.”

(Note: a traveler is a construction craftsman who does not work near his home 
but rather travels around the globe working at major industrial construction projects. 
Travelers are highly skilled and very productive, and demand lots of overtime to 
come to any job, from which they make lots of money).

Finally, Nub Kleinke, General Superintendent at the Guinea LNG job, told 
Johnny that “From what I hear, the job is highly schedule-driven. Due to changing 
economic conditions, the client decided he really wants the project done on time, so, 
shortly after they mobilized, the owner decided to set up some schedule milestones 
and to offer some large cash incentives for hitting these milestones, and so they are 
holding tight to the original schedule.”

From this, Johnny wonders if they are all talking about the same project. So, he 
goes onto the company’s Web site for the Chocolate Bayou project and finds the 
EVMS chart for this work, current up to the 30th week of the project. Johnny wants 
to reconcile the quantitative EVMS data with the anecdotal information and narra-
tives he got in his phone calls. Help Johnny out by linking these verbal scenarios to 
the graphs in color shown below. Give the best match-up between the anecdotal 
remarks and the EVM plots. Note: You must fully explain your logic and reasoning 
as to why each dialogue best fits the chosen EVM chart.

For each of the four charts shown below (Figs. 13.22, 13.23, 13.24, and 13.25):

•	 Compute SPI and CPI at the end of 30 weeks and write these values on each 
chart.

•	 Forcaset completion for both the BCWP and ACWP curves. State your assump-
tions and explain your reasoning.

•	 The comments made by Paul Dean best fit the situation shown in which Chart 
Number?

•	 The comments made by Frankie Frisch best fit the situation shown in Chart 
Number?

•	 The comments made by Pepper Martin best fit the situation shown in Chart 
Number?

•	 The comments made by Nub Kleinke best fit the situation shown in Chart 
Number?

(Explain why you reached the conclusions).

Problem 13.8.3  Consider Example 13.1 from this Chapter. Using ten data points, 
the linear regression method using the Reverse Gompertz equation gives the values 
A = −4.616 and B = 0.360. These values give the estimates of the parameters a = 
eA = 0.00989, b = 0.360 in the Dual Gompertz equation, with R2 = 0.977. Table 13.5 
shows the initial 10 data points used to estimate the parameters and 10 subsequent 
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Fig. 13.22  Earned value chart 1

Fig. 13.23  Earned value chart 2



Fig. 13.24  Earned value chart 3

Fig. 13.25  Earned value chart 4
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Table 13.5  Project data

Reporting period
Reported percent 
complete Fitted value reverse Gompertz

0 0.0
1 1.0 1.41
2 2.4 2.01
3 3.2 2.87
4 4.7 4.09
5 6.1 5.81
6 7.8 8.23
7 12.3 11.58
8 14.1 16.17
9 25.1 22.34
10 27.3 30.41
11 (36.2)
12 (40.9)
13 (49.5)
14 (56.9)
15 (73.2)
16 (86.2)
17 (92.0)
18 (96.1)
19 (98.2)
20 (99.2)

measurements, from Period 11 to 20) (shown in parenthesis). Use Bayesian method 
to show how the parameter estimates would change with each new observation. 
State your assumptions.
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Chapter 14
Forecasting with Learning Curve Models

Abstract  In this chapter we discuss the effect of learning on project efficiency and/
or productivity. We introduce the concept of learning curves and provide the model-
ing approaches to forecast project completion time and cost. We use examples from 
projects characterized with repetitive tasks and where the learning effect is highly 
visible such as tunneling.

Keywords  Learning model · Project learning · Forecasting

14.1  �Introduction

Everyone is familiar with the situation, in everyday life, in which one becomes more 
proficient at some activity. One says, “Practice makes perfect.” The same is true in 
industry: the larger the number of cumulative repetitions, the more efficient the 
process becomes. Projects may exhibit similar behavior, if they last long enough. 
The term learning curve refers to a situation in which the efficiency or productivity 
of an operation improves as the work progresses. This effect may be due to a variety 
of reasons, which are collectively called learning. These may include traditional 
learning (and its complement, teaching), but may also include such factors as 
increased capital investment in machinery, etc.

14.2  �Learning Curve Model

Learning can be expressed as a reduction in the unit rate or the marginal cost of each 
unit with the number of units completed. The Crawford learning curve model 
expresses the marginal cost of the n-th unit, mc(n) as a power function (Mosheiov 
and Sidney 2003):

	
mc n T nb( ) = 1 	
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in which T1 and b are parameters to be determined. In this model, the ratio of  
marginal costs for different units in the sequence, say unit n and unit φn, where φ 
is some dimensionless proportionality factor, depends only on their relative posi-
tion in the sequence and not on their absolute numbers:

	

mc n

mc n

T n

T n

b

b

bϕ ϕ
ϕ

( )
( )

=
( )

=1

1 	

In particular, the learning slope or learning rate is conventionally defined as the 
ratio of marginal costs when the number of units is doubled. That is, for φ = 2,
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( )
( )

=
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=
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b

b
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The plausible range for the learning rate is often taken to be:

	

1

2
1
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− < ≤

ρ

b 	

For example, the 90% learning rate corresponds to ρ = 0.90, which corresponds, 
in the equation just above, to b = −0.152. Because of the doubling characteristic, 
the 64th unit costs 90% of the cost of the 32nd unit, which costs 90% of the cost 
of the 16th unit, which costs 90% of the cost of the 8th unit, which costs 90% of 
the cost of the 4th unit, which costs 90% of the cost of the 2nd unit, which costs 
90% as much as the first unit. Or, summarizing the sequence, the 64th unit costs 
(0.9)6 = 53%, about one-half as much as the first unit. Figure 14.1 shows the mar-
ginal cost versus the unit number for learning rates 0.80, 0.85, 0.90, 0.95. Note 
that the larger the learning slope or learning rate, the smaller the reduction in 
marginal cost. That is, a learning slope of 1.00 or 100% means no reduction in 
marginal cost at all.

By taking logarithms of the basic Crawford power function,

	

mc n T n

mc n T b n

b( ) =
( )  = [ ]+ [ ]

1

1ln ln ln
	

Plotting ln[mc(n)]   vs. ln[n] for various observed values of n, if this learning 
curve model is valid, should give a straight line, with intercept ln[T1] and slope b. 
(But note that this b is negative, from the above discussion.)

Figure 14.2 shows the logarithm of the marginal cost versus the logarithm of the 
unit number, for learning rates 0.80, 0.85, 0.90, 0.95. Note the negative slopes in the 
log-log plots.
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14.3  �Learning Curve for Projects

Although knowing marginal costs is desirable for management purposes, measuring 
marginal costs in a project is not necessarily easy. Typically, we have to deal with a 
reporting period, such as a week or month, for which we can observe the number of 

Fig. 14.1  Learning curves

Fig. 14.2  Learning curves in log-log scales
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units accomplished (the incremental or period-by-period work performed) and the 
labor and other costs (the actual cost of the work performed during the reporting 
period). That is, the marginal cost is in practice the average cost of some number of 
units in some reporting period.

To avoid estimating marginal costs, the Wright learning curve model expresses 
the cumulative average cost, ac(n), of unit n as a power function of n (Anzanello 
and Fogliatto 2011):

	
ac n A n( ) = 1

β

	

By taking logarithms of this, one obtains:

	
ln ln lnac n A n( )  = [ ]+ [ ]1 β

	

Plotting ln[ac(n)]   vs. ln[n] should, if the model is appropriate, give a straight 
line with intercept ln[A1] and slope β.

A relation may be established between the Crawford model and the Wright 
model. Using the Wright power function, the total cost, tc(n), after n units is the 
product of the average cost and the number of units:

	

ac n A n

tc n n ac n A n

( ) =
( ) = ( )  =

+
1

1
1

β

β

	

The marginal cost, for any n, is by definition the derivative of the total cost with 
respect to n:

	
mc n

d

dn
tc n

d

dn
A n A n( ) = ( ) =   = +( )+
1

1
1 1β ββ

	

Compare this expression for the marginal cost to that for the Crawford model:

	
mc n T nb( ) = 1 	

The two expressions are equivalent if:

	

T A

b
1 11= +( )
=

β
β 	

The definitions given above represent the classical approach to learning curves. 
However, these definitions are not based on any particular theory, and actual data 
may or may not show this behavior. For example, in these definitions, the greatest 
amount of learning occurs when going from the first unit to the second. The slope of 
the learning curve, that is, the change in the marginal cost, decreases thereafter. This 
behavior may be questioned for a number of reasons.

14  Forecasting with Learning Curve Models



361

In order to determine the shape of the learning curve, one needs to address the 
question of why learning should occur at all on projects. In many cases, it probably 
does not, if the nature of the work changes before much learning can occur. 
Learning is presumed to occur only when there are enough repetitions of similar 
but not necessarily identical operations in a construction process. On the one hand, 
learning is desirable because it represents a reduction in the unit costs. On the other 
hand, learning may be undesirable because it indicates that the initial unit costs 
were high.

Whatever learning may be, it is not caused by the construction crafts learning 
their skills. It is not carpenters learning to drive nails or saw lumber. It is not iron-
workers learning how to tighten bolts. Skilled craftsmen already know these things. 
If any person in the process is learning anything, it is the construction supervisor, 
who is learning how to staff, plan, control, and manage the work, in a form of on-
the-job-training. If a construction process were well planned, if the plan were simu-
lated to find the optimal methods, if the workers were trained in advance, then there 
should be little or no learning on the job – because it would have started close to the 
peak of productivity, far down the learning curve. Learning may occur because the 
process was not adequately planned, simulated, and optimized before the work 
started. Learning occurs when these activities that should have been done up-front 
take place only after the actual work starts.

We may then consider that learning consists of a process of trial and error, in 
which the supervisor and the work crew in general experiment with different 
approaches, sequences, allocations of resources, etc., retaining the best and discard-
ing the worst. Consequently, learning may be considered to be a search process 
conducted in real time, on the job, by the crews actually doing the work. From an 
optimization viewpoint, it may be considered a form of hill-climbing or random 
search, in which one adjusts the direction of change according to the results obtained. 
Or, it may be considered a form of genetic algorithm, in which many work methods 
are proposed and tested, and new work methods are formed out of combinations of 
the previously tested ones, in an evolutionary process. Because construction work is 
never perfectly repetitious (as manufacturing may be), some adjustments to the pro-
cess are always required. These changes go on until the job is complete. Then on the 
next job, the tasks are different, the personnel change, planning is again inadequate, 
and learning starts all over again.

Although the general learning model above is not specific, if it is valid in general 
outline, then we might expect some departures from the classical power function 
models given earlier. These might include:

•	 Learning (improvement in unit rates or marginal costs) would not be fastest 
immediately after starting the job, as it would take some time for the trial and 
error process described above to become effective. Therefore, the learning curve 
would not be convex everywhere, as with the power function, but would be con-
cave to start and then become convex.

•	 Learning improvement would not continue forever, with the unit rate approach-
ing zero, as with the power function, but would be asymptotic to some horizontal 
line or minimum value.

14.3 � Learning Curve for Projects
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•	 Improved planning, simulation, optimization, and training would decrease the 
potential for learning (initial unit rates would be closer to the long term asymp-
tote), and would increase the rate of learning (trial and error changes would be 
more effective).

As an example of what this might look like, consider Fig. 14.3.
To obtain an equation for a learning curve like that in Fig. 14.3, let x(n) = xn = 

unit rate after n units are complete; x(∞) = x∞ = asymptotic lower bound on unit 
rate; x(0) = x0 = upper bound on unit rate; and b = constant. Now suppose that the 
slope of the learning curve dx(n)/dn is proportional to the amount of learning done 
so far, x0 − xn and the potential for improvement: the amount of potential learning 

yet to do, xn − x∞; therefore, 
dx n

dn
b x x x xn n

( )
= −( ) −( )∞ 0 . By a change of variable, 

this expression can be transformed into the following equation. Let yn = xn − x0 or 
xn = x0 + yn and S = x∞ − x0 then:
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The solution to this differential equation is given as:

	
y

S

ae bn
=

+ −1 	

in which a is a constant of integration.

Fig. 14.3  Learning vs. derivative of learning
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Converting back to the current notation, this becomes:

	
x x

x x

aen bn
= +

−
+
∞

−0
0

1 	

This is the function shown Fig. 14.3, in which x(1) = 100;   S = 30;   a = 20;  
b = 0.075. Also shown is the first derivative (not to the same scale). In this particu-
lar situation, the rate of improvement of the unit rate is a maximum at n = 40 units, 
and improvement has virtually ceased at n = 100 units.

14.4  �Forecasting with Learning Curves

Consider a simple case of a repetitive construction operation, drilling a tunnel. The 
number of meters of advance is recorded for every day. Table 14.1 shows the situa-
tion for a certain actual tunnel after 35 days or 5 weeks of construction. Clearly the 
daily advance is highly random, but taken from a limited set of only six different 
values: 1.2, 1.5, 2.4, 3.0, 4.5, and 7.5 m/day.

Figure 14.4 shows a plot of the daily rate of advance for the first 35 days. The 
average advance for these 35 days is 97.5/35 = 2.7857 m/day. The total length of the 
tunnel when completed will be 1035 m. The objective of the data analysis is to pre-
dict the completion of the tunnel given that the current methods and policies are 
continued.

Therefore, the best estimate of the completion time as a result of the first 35 days’ 
experience is 1035/2.7857 = 372 days. The question at this point is, is there a learn-
ing effect that could lead to an earlier completion, and what is the probability that 
the tunnel will be completed on any given date?

This example will be used to illustrate the learning curve power function model 
given at the beginning of this chapter. Here, the interest is in time to complete, as it 
is considered that the cost of the tunnel is directly proportional to the time it takes 
to drill it. Using the Crawford learning curve model, the marginal cost is the number 
of days per meter of advance, the reciprocal of the rate in meters per day.

Let m represent the number of units (meters) completed, and let d(m) represent 
the marginal cost in days per meter when m meters have been done. Then the 
Crawford model is d(m) = T1mb, in which T1 and b are to be determined from the first 
35 days’ data. Data showing d(m) vs. m for the 35 days’ is presented in Fig. 14.5.

Taking natural logarithms, as suggested above, for d(m) and m transforms the 
data as shown in Fig. 14.6.

A straight line fit to these 35 points gives ln[d(m)] =  − 0.0915 – 0.2509 ln (m) 
with R2 = 0.41. This relation would fit the equation as above
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This would indicate a learning slope of 84%.
However, as the marginal costs (days/meter) vary widely, and as the stated objec-

tive of the analysis is to estimate the completion date, not the marginal costs, the 
example from this point will take an alternate path. Let t(m) represent the total time 
to advance a total of m meters. Then, extending the Wright model given above to 
total cost (total time) we get t(m) = A1m1 + β. If we now take logarithms we get:

Table 14.1  Tunneling data
Day

Meters 
accomplished

Cumulative 
advance (m)

1 1.2 1.2
2 1.2 2.4
3 2.4 4.8
4 2.4 7.2
5 2.4 9.6
6 1.2 10.8
7 2.4 13.2
8 2.4 15.6
9 2.4 18
10 2.4 20.4
11 2.4 22.8
12 1.2 24
13 1.2 25.2
14 2.4 27.6
15 2.4 30
16 3 33
17 3 36
18 3 39
19 3 42
20 3 45
21 3 48
22 3 51
23 3 54
24 3 57
25 3 60
26 3 63
27 3 66
28 3 69
29 6 75
30 3 78
31 4.5 82.5
32 3 85.5
33 1.5 87
34 3 90
35 7.5 97.5
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ln t m ln A ln m( )  = [ ]+ −( ) [ ]1 1 β

	

The plot of ln[t(m)] vs. ln[m] for the known 35 days is shown in Fig. 14.7. The 
equation for the least squares fitted line shown in Fig. 14.7 also:

Fig. 14.4  Job progress (meters per day for first 35 days)

Fig. 14.5  Job progress data d(m) vs. m
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Fig. 14.6  Transformation of progress data

Fig. 14.7  Model fit
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The learning slope 0.88 is not far off from the estimate of 0.84 made with the 
marginal costs. The adjusted R2 = 0.997 is much higher than before, but this is 
attributed to the high correlations between successive values of the logarithms of 
total time (0.999), compared to the relatively low correlations between successive 
values of the logarithms of the marginal costs (0.371). From the linear regression 
calculations, the residual sum of squares is 0.065045, so the residual variance is 
0.065045/(35–2) = 0.001971; and the residual standard deviation is then 
0 001971 0 044396. .= .
This value is also known as the standard error of the estimate. However, the con-

cern here is with the standard error of the forecast, given that the desired forecast for 
the completion date requires considerable extrapolation. Earlier, it was determined 
that a simple estimate of the time to drill 1035 m at the average of the first 35 days 
would be 372 days, meaning that the linear model derived from the known data 
must be extrapolated more than tenfold (372/35 = 10.6). To establish confidence 
bounds on the forecast to complete that far out, it is necessary to determine the stan-
dard error of the forecast when m = 1035 m.

The main results are given below, with a change of notation to correspond to the 
nomenclature used here.
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Here, mj is the observed total progress through day j, 1 ≤ j ≤ 35; s2 is the variance 
of the residuals from the regression analysis; and m is the forecast number of meters 
completed, m35 < m ≤ 1035.

The forecast process is then as follows:

•	 Forecast the mean of the logarithm of the time at the meters of advance m using 
the linear equation ln[t(m)] =  − 0.13968 + 0.818147 ln [m]

•	 Forecast the confidence bounds for the linear equation using the relation 
mean − ksf (m) ≤ confidence  band ≤ mean + ksf (m). Here, the 80% confidence 
interval is used, with 10% probability that the tunnel completes in time less than 
the lower bound, and 90% probability that it completes in less time than the 
upper bound, so k = 1.282, on the assumption that the residuals are Normal.

•	 Convert the values for the mean and the two confidence bounds to the original 
variables by computing exp(x).

The forecast for the linear model is shown in Fig. 14.8.
The dotted line shows the actual observations for the first 35 days. Note that the 

forecast period appears short compared to the 35 day period of the observations 
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Fig. 14.8  Linear prediction of job progress

Fig. 14.9  Prediction with learning effect
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because the axes are in logarithms. Figure 14.9 shows transforming the confidence 
bands back to the original variables and forecasting at day 35:

This plot clearly shows how the uncertainty expands with forecasts further out. 
By estimating the learning effect, the expected completion date (the time at 1035 m) 
is now 255 days, with a 10% probability if finishing in less than 206 days, and a 
10% chance of taking more than 314  days. The curvature in the mean forecast 
reflects the learning effect. Note that in the linear (that is, logarithmic) plot, the 
confidence bounds are symmetric, but this is not the case in the graph above, in 
which the lower bound is (255–206) = 49 days below the median, and the upper 
bound is (314–255) = 59 days above the median. This indicates that the probability 
distribution of the time to complete the tunnel is somewhat shifted to the right (that 
is, to higher values). In this formulation, the probability distribution is on the time 
to reach any given distance of advance, not on the distance achieved in a given time.

As the tunnel advances, more data are obtained and the analysis above can be 
repeated again and again to generate revised forecasts for the completion date. As 
the tunnel advances, the time to completion should decrease and the confidence 
band should get narrower. If the confidence band widens, this would indicate an 
increase in variability. If the expected completion date gets further away, this would 
indicate some decline in the rate of advance. In this approach, one manages the job 
by the forecast of the time at completion, including both the both the expected 
completion time and the confidence band on the completion time.

14.5  �Practice Problems

Problem 14.5.1  You are a Construction Engineer on a jobsite, acting as the supervi-
sor in charge of two crews on a certain construction activity. This is your first job 
with real supervisory responsibility and you want to make a good impression on the 
site resident manager.

On Tuesday of the third week of work on this activity, you get a visit from the site 
cost accountant, who tells you that he has determined, based on the first 2 weeks of 
production, that you are trending far over budget. The cost estimate for this work 
package was 1 man-hour per unit, and the average cost per unit is already 65% 
higher than that, so this activity will end up over the cost budget and over the sched-
ule too, unless you immediately add more workers (see Table  14.2). The cost 
accountant tells you that he is going to bring up the substandard performance of 
your two crews at the site superintendent’s next review meeting tomorrow.

Per the estimate, the activity consists of installing a total of 7148 units, projected 
to last 20 weeks (5-day work weeks). Plot the marginal cost per unit (man-hours per 
unit installed in each day, by each crew) vs. the number of units installed, for the 
2 weeks of actual data followed by the learning model forecast. Is there a difference 
between the performance of your two crews? What is the predicted average cost per 
unit at the completion of the activity? How confident are you in your projections? 
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What are you going to tell the site superintendent if the cost accountant raises the 
issue of your apparent overrun in tomorrow’s project review meeting?

Problem 14.5.2  The U.S. Army is responsible for decontaminating a of site. The 
decontamination planning and execution was contracted to a major engineer-
constructor. This project has been in operation for 18 months but is apparently over 
budget and behind schedule. Some facts about the project are given below. The CEO 
of the engineer-constructor has tasked your team with the job of re-estimating the 
cost and duration and developing a recovery plan, if possible (see below).

•	 Scope: Decontaminate 1690 containers of highly toxic waste
•	 Original contract: 31 month operational period
•	 Original plan: Ramp up decontamination over a 6 month period until reaching a 

steady-state of 60 containers per month. That is, increase processing rate reach-
ing 60 per month, then constant at 60 per month until completion of all 1690 
containers at 31 months

•	 Original price: $214.5 million.

The current project is 18 months in the operational phase. Project expenditures to 
date are $132 million. The project plan called for budgeted costs of $128 million at 
this point. The project has actually processed 522 containers, at an average rate of 
522/18 = 29 containers per month. The actual number of containers processed in 
each month to date is variable and shown in Table 14.3.

Site management estimates that the project is 31% complete, based on the num-
ber of containers completed to date: 522/1690 = 0.31. According to the project 
accountant, costs on this project are largely fixed rather than variable; that is, the 
costs are not directly dependent on the number of containers processed; the total 
cost depends on how long it takes to completely process all the containers and shut 
down the facility. The fixed costs average $7.34 million per month ($132 mil-
lion/18 months = $7.34 million per month. (Considering only the 18 month opera-
tional phase as having costs; hence, over-estimating cost per month.) The project 

Table 14.2  Problem data

Day Crew 1 h paid Crew 1 units installed Crew 2 h paid Crew 2 units installed

1 30 10 52 15
2 27 11 39 23
3 42 21 57 36
4 31 17 28 18
5 18 11 34 26
6 44 31 55 40
7 35 22 21 15
8 28 19 25 18
9 35 24 11 9
10 29 19 34 24
Total 319 185 356 224

14  Forecasting with Learning Curve Models
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believes that project duration and operational costs would be minimized by process-
ing the remaining containers in the shortest time possible.

The contractor’s CEO at the home office is unhappy about the apparent overruns 
on this project in both duration and cost. The CEO sends your team to the site to 
provide a report to him on the forecast for this job, and your recommendations, to 
include, but not necessarily limited to:

•	 Is there any learning curve effects on this project?
•	 When do you believe this project will finish, if there are no changes to the project 

from the status quo? (Estimated Duration to Complete; Estimated Duration at 
Completion)

•	 What is your confidence level on the predicted duration?
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Table 14.3  Problem data

Month of project

Monthly 
containers 
processed

Cumulative 
containers

1 11 11
2 8 19
3 0 19
4 2 21
5 7 28
6 16 44
7 4 48
8 38 86
9 45 131
10 48 179
11 37 216
12 31 247
13 23 270
14 51 321
15 52 373
16 53 426
17 34 460
18 62 522
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Pearl formulation, 315
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