Risk, Systems and Decisions

lvan Damnjanovic
Kenneth Reinschmidt

Data Analytics
for Engineering
and Construction
Project Risk
Management

@ Springer



Risk, Systems and Decisions

Series Editors
Igor Linkov
U.S. Army ERDC, Vicksburg, MS, USA

Jeffrey Keisler
College of Management, University of Massachusetts
Boston, MA, USA

James H. Lambert
University of Virginia, Charlottesville, VA, USA

Jose Figueira
University of Lisbon, Lisbon, Portugal

More information about this series at http://www.springer.com/series/13439


http://www.springer.com/series/13439

Ivan Damnjanovic ¢ Kenneth Reinschmidt

Data Analytics for
Engineering and
Construction Project Risk
Management

@ Springer



Ivan Damnjanovic Kenneth Reinschmidt

Texas A&M University College Station, TX, USA
College Station, TX, USA

ISSN 2626-6717 ISSN 2626-6725  (electronic)
Risk, Systems and Decisions
ISBN 978-3-030-14250-6 ISBN 978-3-030-14251-3  (eBook)

https://doi.org/10.1007/978-3-030-14251-3
Library of Congress Control Number: 2019934720

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-030-14251-3

Preface

I returned, and saw under the sun, that the race is not to the swift, nor the battle to the
strong, neither yet bread to the wise, nor yet riches to men of understanding, nor yet favor
to men of skill; but time and chance happeneth to them all. (Ecclesiastes, 9:11)

This book is about time and chance as they affect projects. More specifically, the
main objective of this text is to provide foundations for the assessment of uncer-
tainty and risks on engineering projects of all types. It deals with the spectrum of
uncertainty, from the variability in construction operations to the risks in unique,
complex, first-of-a-kind projects. In looking at field operations or other project
activities, we use probabilities to try to describe the natural variability of work, and
we are concerned with answering the question: Is the reported performance on this
activity merely reflecting these inherent variations, or is it sending a message that
the activity is about to go seriously out of control? In looking at major risks on
complex projects, we use data, information, and knowledge about the underlying
behavior to express the confidence in our risk estimates. In general, the text places
emphasis on building data-driven models, and these models are of necessity math-
ematically inspired. As the British physicist William Thomson (Lord Kelvin) said
(1883), “when you cannot measure it, when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind.” And “meager and unsatisfac-
tory” is a good description of many project risk assessments.

It may be argued that project managers should place their confidence in experi-
ence, judgment, and gut feel, not mathematics. However, learning about risk by the
trial-and-error method can take a long time, and the lessons can prove to be very
expensive. The view here is that it is much easier for a project manager to have
confidence in a decision after he/she has examined a risk model from all possible
views and played out a number of scenarios, alternates, and options, than to rely on
his/her judgment alone. One of the reasons why project risk assessment and man-
agement has become such an active topic for research as well as education in the
past few years is that experience and judgment alone have been inadequate.
Therefore, the principle used here is that model building should be informed by, and
consistent with, judgment and experience, but any model beats no model nine times
out of ten.
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The text covers risk identification and assessment methods for projects that are
already defined in terms of objectives, specifications, resource plans, sequencing,
and work breakdown structure. In other words, the methods we cover deal with
assessment of risks, not making decisions in response to the risks. This is deliberate
as the text is looking to be general, not be specific to owners, subcontractors, and
contractors, their risk attitude, or the type of contracting strategy and project deliv-
ery method being used.

The content is considered suitable for graduate students in engineering, con-
struction, or project management, as well as practitioners aiming to develop,
improve, and/or simplify corporate project management processes. This book is
based on the class lecture notes developed from Fall 2001 to Spring 2018 and taught
as a part of the graduate course in Project Risk Management at Texas A&M
University. This text is perhaps more mathematical than many other texts, and this
is deliberate. The mathematics contains nothing beyond what an engineering gradu-
ate is expected to know: some algebra, a little calculus, a little statistics, and, espe-
cially, undergraduate-level understating of the probability theory.

The field of project risk assessment and management is actively evolving, and we
may anticipate that better methods will continue to be developed. This text is an
attempt to provide a bridge from the qualitative and anecdotal to the quantitative
and analytical way of thinking. The authors encourage students and practitioners to
make their own contributions to the advancement of project risk management.

Alea iacta est. (Gaius Julius Caesar, 49 BC)

College Station, TX, USA Ivan Damnjanovic
October 2018 Kenneth Reinschmidt
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Chapter 1
Introduction to Uncertainty and Risk

Check for
updates

Abstract In this chapter we discuss the concept of uncertainty and risks from the
two different viewpoints — the theoretical and the project management viewpoint.
We provide an overview of uncertainty classification that extends beyond the two
typical approaches and discuss the types of uncertainty project managers are often
challenged with — volitional, agonistic, and dialectic uncertainty. Further, we pro-
vide evidence of a divergence in approaches adopted by project managers and deci-
sion theorists as well as of the link that allows us to develop a holistic approach to
project risk management.

Keywords Uncertainty - Project manager - Managerial attitude - Probabilities and
decisions

1.1 Viewpoints on Uncertainty

The differences in what people mean when they say “uncertainty” depends on a
philosophical position they take. One school of thought says that the universe is
based on chance, and uncertainty is essentially characterized by relative frequencies
of observed phenomena. Others, starting from the time of Plato, say that the uni-
verse must be deterministic, and all uncertainty is caused by our feeble capabilities
to measure it or to understand it (“God does not play dice with the universe” —
Albert Einstein). However, this strictly deterministic view was laid to rest by quan-
tum mechanics: at the most fundamental level, the universe appears to be random.
In other words, even when one controls all causal factors, some outcomes of the
experiment will vary randomly. For example, see Heisenberg’s Uncertainty
Principle, which shook the foundations of classical physics at the beginning of the
twentieth century.

Corresponding to these two philosophical viewpoints we classify uncertainty
into: (a) aleatory uncertainty, from the Latin word alea, die; plural aleae, dice, and
therefore referring to gambling (an aleator is a gambler); this type of uncertainty
is characterized by variability in repeated experiments, such as flipping a coin or

© Springer Nature Switzerland AG 2020 3
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rolling dice; and (b) epistemic uncertainty, from the Greek word emiornun (skill,
understanding, experience, or knowledge) is due to lack of information or only
partial knowledge of the phenomena on the part of the observer. Epistemic uncer-
tainty is subjective, not objective; it does not exist independent of the observer,
and can differ between observers.

However, from the project viewpoint these two categories can be limiting in
expressing the uncertainty as we experience it on projects. What is being missed
here are the conditioning and feedback, confidence in assumptions, and the capacity
to define and evaluate events beyond already materialized and studied phenomena.
For example, in project setting the likelihood of a safety incident could be reduced
just by a project team being aware of it; technical risks could materialize due to
erroneous assumptions that were never explicitly stated or considered; similarly,
project cost overruns could occur due to events that contradict broadly accepted
knowledge. In a strict theoretical interpretation this ignorance can be considered
epistemic uncertainty, but from the practical perspective this uncertainty is typically
not part of a deliberate risk assessment process. The general state of knowledge
about the systems’ phenomena and project behavior rarely, if ever, show up in proj-
ect documentation. Therefore, for practical reasons it is useful to highlight its
importance explicitly. We will refer to this class of uncertainty as agnostic uncer-
tainty, from the Greek word dyvwotog (ignorant, not knowing). It is not uncertainty
about the knowledge, rather it is uncertainty about our ignorance; often, far more
dangerous of the two.

The classification of uncertainty in aleatory, epistemic and agnostic components
could be considered analogous to the popular classification of project uncertainties
into knowns and unknowns. The uncertainty behind known knowns could be con-
sidered of aleatory nature if it is based on validated theoretical foundation (e.g.
Newton’s laws). Unknown knowns, on the other hand, relate to a spectrum of alea-
tory or epistemic uncertainties that are derived from either large data sets or rooted
in deterministic assumptions with unknown parameters; finally, unknown unknowns,
unforeseen, unimaginable, surprise, black swans and white ravens’ events result
from our overconfidence in assumptions and understanding of the phenomena and
the system behavior in general.

1.1.1 Aleatory Uncertainty

Aleatory uncertainty is measured or characterized by relative frequencies: the num-
ber of times a particular event occurs out of N repeated experiments. In gambling,
for example, with dice, there is complete knowledge about the potential states to be
encountered (in a modern die, the integers 1-6, and with two dice, the integers
2-12). This type of uncertainty is objective, it is a characteristic of the real world,
and it can be measured, at least approximately. This type of uncertainty is the busi-
ness of statisticians. It is external to and independent of the observer; e.g., a
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radioactive cesium atom is presumed to decay with a certain probability whether or
not anyone observes it. Presumably any number of experimenters or observers of
identical experiments would observe the same relative frequencies in the long run.
The relative frequencies, either derived from observations or from deductive prin-
ciples, are then called probabilities. A probability is a relative frequency taken to the
limit. For example, let the relative frequency of some event j be given by the ratio
Jfi=n/N, in which n; is the number of observations of event j and N is the total num-
ber of observations. Then the probability of eventj is p; = lim f, = lim [n N J .
N—>o N—>o

But we can never do an infinite number of observations, so these relative frequen-
cies or probabilities are actually based on the outcomes of experiments that are
never run. Or, in observing a die, we may say the probability of each side coming up
is (or, rather, should ideally be) 1/6 without making any observations of the actual
relative frequencies; this set of probabilities (the probability distribution) is assumed
to be characteristic of some ideal die, even if may be a poor assumption for any die
you happen to be betting on.

We may subdivide this classification of aleatory uncertainty in the following
subtypes.

Type 1, in which we know the form of the probability distribution and the parame-
ters of the probability distribution. For example, we say the probability distribu-
tion for the flip of a fair coin is the binomial distribution, and the probability of
obtaining a head on one flip is 1/2. Similarly for the six-sided die: the probability
for each side is said to be equal, and lacking any better information, equality
implies the probability of each is 1/6. This is the type of probability commonly
covered in probability courses and with which most people are familiar.

Type 2, in which the form of the probability distribution is known (or believed to be
known based on some theory), but the parameters are unknown. This might be
the case with a coin that may have been tampered with, or a pair of dice that we
may have suspicions about. There is no question about the form of the probabil-
ity distribution, but determining the actual values of the parameters (in the case
of the dice, the actual relative frequencies of getting each of the 11 outcomes) is
a point at issue.

Type 3, in which the parameters (relative frequencies) are known (through observa-
tions) but the form of the probability distribution is unknown. This often occurs
when one has a lot of data, including relative frequencies of various events, but
has no theory to tie them together. Here the reasoning is inductive: given these
observations, what probability function best describes the data? We may either fit
some probability distribution to the data, or else use the observed relative fre-
quencies themselves as the empirical probability distribution.

Type 4, in which neither the form of the probability distribution nor any values for
the parameters are known. Hence, if the form is not known, even the identity of
the parameters is not known. Our job, then, may be to determine both the form
of the distribution and its parameters simultaneously.
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1.1.2 Epistemic Uncertainty

Epistemic uncertainty is the uncertainty that does not derive from variability in
repeated experiments. It arises because of our limitations; reality is thought to be
deterministic but we cannot see or know the true reality, only shadows of it. Pushed
to the limit, this position would say that the future could be predicted without error
if we only had enough information. For example, from this viewpoint, the classical
gambling problem that motivated the development of probability theory could
finally be solved: the outcome of shooting dice would not be random, because,
given knowledge of the initial positions and orientations of the dice, and all the
forces acting on them during the roll, one could predict with certainty how the dice
would come up. Thus, we use the roll of dice as a standard for randomness simply
because we cannot (the casino won’t let us) or do not choose to make all these
measurements and computations. If we could, of course, no one would ever again
shoot dice.

Epistemic uncertainty is not based on relative frequencies, as the “experiments”
of interest are not repeated, and an event may happen only once or not at all. As
such, it is the business of managers and engineers. Although some people object to
the use of subjective probabilities, the issue in practice typically is whether to use
subjective probabilities or no probabilities at all; that is, to stay with deterministic
analysis (which is equivalent to probabilistic analysis with all probabilities either
zero or one). One may adopt the viewpoint that we would use relative frequencies if
we had any data, but as typically we do not, and as managers we must nevertheless
make decisions, we may have use subjective probabilities as better than nothing.

1.1.3 Agnostic Uncertainty

Agnostic uncertainty is about our confidence and completeness of knowledge and
assumptions upon which we develop probabilities and judgments. In a strict sense it
cover both frequentist and epistemic viewpoints as they both are associated assump-
tions. We may further subdivide agnostic uncertainty in the following subtypes.
Volitional uncertainty is a type of uncertainty in the area of projects, in which
the subjective probability distributions are not objective or “out there,” but are
capable of being manipulated by the very people who develop them and use them.
(Volitional derives from the Latin uolo, I wish for something, want something, or
choose something with free will — cf. uoluntarie, of one’s own accord.). This uncer-
tainty does not derive from that fact that we may not know the probabilities on the
roulette wheel the casino is using, but from the possibility that the casino may be
consciously capable of affecting these probabilities in its favor, based on the distri-
bution of bets. This may sound like a nonscientific position, but people and institu-
tions often modify their behavior based on what they perceive to be (or are told to
be) probabilities of various outcomes, and these changes in behavior in turn change
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the probabilities. Therefore, the problem of predicting behavior under uncertainty
is not one of linear extrapolation; it involves nonlinear feedback loops, psychology,
and game theory.

Suppose you were asked to give the probability that you will spend this evening
doing homework, as opposed to going to the movies, watching TV, or playing poker.
You may give the odds for each, but these are not odds that someone else would care
to bet on, as the actual outcome depends entirely on your volition. Someone placing
a bet on what you will do this evening would have to consider your psychological
state, peer pressure (to play poker), and whether you stand to profit from the bet.

As another example, suppose that a contractor is informed by an objective,
unbiased risk analyst that the probability that the contractor will overrun his
schedule and thereby forfeit a substantial incentive payment is 50%. We may
expect that this contractor will take whatever steps he can to change this probabil-
ity. In fact, the amount that this probability changes due to contractor actions may
depend on the amount of the incentive payment relative to the costs to the contrac-
tor of getting earlier completion. We would expect the contractor to be able to
change this probability by any of a number of actions, until the probability of
overrunning is much less than 50%, but if he/she had not been informed of the
50% probability of overrunning, he might have taken no action, and the 50%
would have continued to be true. Conversely, if the contractor had been informed
that the probability of overrunning on this job was 1%, the contractor would prob-
ably place his attention and resources on other jobs, and the probability of over-
running might increase as a result.

Under such conditions, what does the term “probability” mean? It certainly has
nothing to do with relative frequency. This job will ultimately finish; the contractor
will get incentive payment or won’t; there will be no repetitions of this experiment
from which to gather statistics.

A true probabilist might argue that the apparent issue arises because the problem
is miss-specified. What was called a probability is really a conditional probability;
the quoted 50% probability is really a value that is conditional on everything remain-
ing the same, that is, the contractor taking no action, or being unaware of the prob-
ability statement. There are then multiple conditional probability distributions, for
the probability of overrunning conditional on the contractor taking no action, some
action, moderate action, a lot of action, etc. That is, volitional risk is not a property
of an event or a project, but rather is something that can be mitigated or managed
through actions of people. Thus, if X is some risk event, we may characterize the
uncertainty about whether the event X will occur in one of the following ways:

e There is an aleatory probability P[X] that is characteristic of X and that can be
estimated objectively from the relative frequency of past occurrences of X.

e There is an epistemic or subjective probability P[X] that reflects the observer’s
degree of belief that X will occur, whether or not X has ever occurred in the past.

e There are volitional risks P[XIno mitigation], P[XImitigation of type 1],
P[XImitigation of type n] etc., depending on what somebody chooses to do after
obtaining some information about P[X].
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Agonistic uncertainty (from the Greek ayov, a contest or struggle), derives from
the competitive nature of projects. A contractor’s profit on a project is at risk not
only due to uncertainties regarding quantities, prices, performance, etc., but also
due to the competitive nature of award of projects and the competition or coopera-
tion during the project with clients, subcontractors, suppliers, regulators, etc. This
form of risk is not typically covered by texts on risk analysis (which deal largely
with aleatory uncertainty), but is significant for projects. Contrary to some belief, a
contractor’s price on a job is not determined by some percentage markup over the
estimated project costs, it is determined by the number of competitors making bids
and how much they need the business. The theory of competitive and cooperative
games can contribute to understanding these risks by examining what the various
actors or players in a project will do if they act so as to maximize their own utility.
For example, a solution to the interactions of all the actors on a project is a stable
equilibrium if all players play their best strategies and no player has any incentive
to unilaterally deviate from the equilibrium position.

Dialectic uncertainty (from the Greek diadektikn, a discourse of investigation,
development through the stages of thesis, antithesis, and synthesis in accordance
with the laws of dialectics e.g. transiency and tipping points, contradictions, nega-
tions). Dialectical uncertainty summarizes all dogmatism and narrowness of thought
about process dynamics and transformation for which we seek warnings. For exam-
ple, previous data and even the current observations on a project may imply arrival
of rework items at a stable trend. However, how stable is this trend? Will the project
come to a tipping point when suddenly the number of rework items increase expo-
nentially and the completion rate reverses to negative? Being blindsided by apparent
stability in observed data and the effect of dynamical transitions with “longer ampli-
tudes” can be best summarized by a prologue from a film La Haine by an acclaimed
French director Mathieu Kassovitz: “...Heard about the guy who fell off a sky-
scraper? On his way down past each floor, he kept saying to reassure himself: So far
so good... so far so good... so far so good...”.

One could, perhaps, continue this process of defining agnostic uncertainty as it
relates to our ignorance: i.e. uncertainty as it relates to complex coupling of projects
and work packages, nonlinearities human responses to work load requirements, etc.
However, this is not the objective of the text, nor the intention of this section. What
we here try to illustrate is that uncertainty is more than just frequentist or epistemic
definition of the underlying behavior, it involves confidence and completeness of
underlying knowledge, scientific theories, assumptions, and dogmas that constitute
the basis upon which we quantify and express the uncertainty, regardless of the two
approaches. This takes us outside of the comfortable position of defining and quan-
tifying uncertainty from probabilistic viewpoint into a domain where some mea-
sures are required to express confidence and completeness of knowledge, underlying
scientific theories and assumptions. Recent advances in risk analysis focus on
expressing these in measurable quantities and detectable events (i.e. strength of
knowledge, assumption-based planning, early warnings signs), or indices and met-
rics that could provide an implicit indication of the level of ignorance upon which
the risk assessment was based (i.e. risk network measures, project leading indica-
tors) In fact, project managers have historically relied on indices to weigh the level



1.2 Representation of Uncertainty 9

of overall project risk. For example, rather than relying solely on the experts’ judge-
ment of scope increase probabilities, project managers would use scope definition
indices such as Project Definition Rating Index (PDRI) to provide a leading indica-
tor of future risks or to reflect the overall level of uncertainty.

This is not implying that probabilistic methods are outdated or feeble, but that
more complete definition of uncertainty should be considered when risks are
assessed and managed. In fact, this text is all about applying probabilistic methods
to the assessment of project risks, on the basis that probability theory has a long
history of development and an existing calculus allows us to deal with uncertainties.
Moreover, many people are at least familiar with fundamental probabilistic con-
cepts through courses in probability and statistics, although this familiarity may be
an impediment to making the transition from probabilities as relative frequencies to
probabilities as expressions of subjective belief. Rather than invent a new calculus,
one can adopt the calculus of probabilities to applications in project risk assessment.
For example, we will wish to ask questions such as, How can risks be quantified and
compared (one risk is greater than another)? How can risks be considered objective
and independent of the observer? How can risks be combined or added? How can
risk assessments by different observers be combined? How can risks be allocated
and compared to rewards? How much risk should one take on? How much contin-
gency (safety margin) should one keep in reserve? All these questions, and many
more, are addressed by classical probabilistic methods. The answers probability
gives may not always be right (and who could tell?) but are better than no answers
at all. That is, any computations regarding probabilities should be taken not as
descriptions of physical reality but in conjunction with the assessment of underlying
knowledge and assumptions as a guide or a support to management decisions and
actions.

1.2 Representation of Uncertainty

On the fundamental level, we represent uncertainty in terms of outcome probabili-
ties. In the frequentist interpretation this probability reflects the occurrence of the
event in the study/experiment. Clearly some problems, conceptual as well as com-
putational, arise when one departs from the comfortable territory of probabilities as
relative frequencies of physical events to probabilities as degrees of belief in some
future outcome, conditional on acts of some decision makers. Is it possible to use
probability theory, which after all was originally invented to describe how one
might win at gambling tables (that is, aleatory uncertainty)? In fact, there are other
approaches than the relative frequency approach, including the following:

Bayesian methods, which use probabilities but regard the parameters of probabil-
ity distributions as random variables in themselves (not acceptable to a classi-
cal relative-frequentist) that are re-estimated whenever new data appear
(Gelman et al. 2013). Bayesian methods are discussed later, in a number of
different contexts.
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Theory of Evidence and Dempster-Shafer Theory, which deal with degrees of belief
and how to change them based on new evidence (Dempster 1976; Pearl 2014).
Thus, when the hypothetical unbiased observer says that the probability of over-
running is 50%, what he means is that his degree of belief that the project will
overrun, based on observed conditions, past history, and other factors, is about
midway between no chance at all and dead certainty. This degree of belief may
well change if the contractor takes some action that changes the observer’s belief
in the outcome. We might then inquire, what actions could the contractor take
that most cost-effectively change the observer’s degree of belief that the project
will overrun? If there is more than one observer, with different degrees of belief,
how can they be combined into one? Or should they be?

Fuzzy Sets, which assign quantitative values (membership functions) to linguistic
terms, such as “risky.” Fuzzy sets are super sets of classical set theory or Boolean
logic, in which a proposition is either true or false (1 or 0). In fuzzy set theory
and fuzzy logic, propositions may take on any values in the interval from O to 1.
Therefore, fuzzy set theory is said to be more general than classical set theory,
although Boolean logic is general enough to power all digital (really, binary)
computers (Klir and Yuan 1995). Subjective or Bayesian probabilities do not
derive from classical set theory, but rather are a part of the mathematical field of
measure theory. Therefore, fuzzy sets and subjective probabilities are two com-
pletely different, incommensurate ways of dealing with uncertainty. A simplified
example of the difference is the following. When categorizing some object, in
fuzzy set theory the parameters of the object are known with perfect certainty,
but classification is difficult because the boundaries of the classes (sets) are
vague or ambiguous (i.e., fuzzy), due to the limitations (ambiguity, lack of preci-
sion) of language. In the probabilistic approach, the boundaries of the classes are
known with perfect precision, but classification is difficult because the values of
the parameters (measurements) are uncertain.

In addition to the above-mentioned, there are many other theories and methods
to represent uncertainty in decision process including possibility theory, interval
probabilities, entropy, ambiguity, and info-gap theory. In attempt to obtain more
realistic representation of uncertainty in the system behavior, researchers and scien-
tist will continue to look for new methods.

1.2.1 Process Variability

Project outcomes and data can also be analyzed probabilistically from a time-series
perspective. In fact, this text also examines the dichotomy of uncertainty suggested
by the methods of Statistical Quality Control (SQC), Statistical Process Control
(SPC), and, most recently, Six-Sigma. Here, adopting the viewpoint of Statistical
Process Control, we make a distinction between processes (that is, project time
series) that are in control and those that are out of control.
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Stating that a process is in statistical control does not mean that it doesn’t vary,
or that is completely deterministic. Rather, this term recognizes that there are uncer-
tainties or variability in the process, due to the action of common causes, but the
process stays within the limits of this variability. This variability or uncertainty is
inherent to the nature of the process (Thompson and Koronaki 2002). As long as the
variability in the process stays within bounds, the process is said to be under control.
In the language of statistical quality control or Six-Sigma, o is the natural or inher-
ent standard deviation of the variability of the process, and as long as the output of
the process is randomly variable but remains within the bounds defined by the mean
plus or minus 3o, it is considered to be in control.

However, the fact that a project or process is in statistical control does not mean
that it is acceptable. The natural variability may be larger than we can tolerate. The
outputs may be in control, but they may not meet our requirements. In this case, the
process as defined is not capable of producing acceptable work. For example, sup-
pose that we are concerned with the total cost (or duration) of a project. Each work
package in the project has some expected cost, and also some uncertainty or vari-
ability due to the nature of the work, local conditions, etc. However, it may happen
that, when one examines the variability or uncertainty in the total project cost, which
is in some sense the sum of the cost uncertainties in all the work packages, the likeli-
hood of exceeding the project budget is unacceptably large. The solution to this
problem is to change the process. Some or many of the work packages may have to
have their work processes changed in order to reduce the expected cost or the vari-
ability (uncertainty) in the costs to an acceptable level.

Conversely, a project or process may go out of control due to some extraordinary
external or internal cause. The solution to this problem, if it occurs, is to track down
the cause and eliminate it. A better solution is to identify such causes before they
happen and take steps to assure that they don’t happen, or that their impact is much
reduced. This is the objective of risk analysis and mitigation.

In this text, the first kind of uncertainty is that associated with the natural vari-
ability of processes, even those under control. Incremental risks include risks that
are not major in themselves but can accumulate to constitute a major risk. For
example, a cost overrun in one subcontract may not in itself constitute a risk to the
project budget, but if a number of subcontracts overrun simultaneously, due to
coincidence or to some common cause, then there may be a serious risk to the proj-
ect budget. Individually, such risks may not be major or difficult to identify; the risk
really lies in the combination of a number of them, and the lack of recognition that
these could occur simultaneously. These incremental risks are typically analyzed
using probability distributions, in the form of either probability density functions or
probability mass functions. Often we use probability distributions because they can
represent our lack of information or state of ignorance by relatively few parameters
(usually two or three), and who wants to have to specify a lot of parameters to
express one’s ignorance? In this case, the variability in each activity or process is
considered to be incremental or differential; it is the combination of all the activi-
ties that is of concern.
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In the second case, attention is focused on specific, discrete events that are
uncertain in that they may or may not occur. These catastrophic risks include risks
that could be major threats to the project performance, cost, or schedule. Such risks
might include dependence on critical technologies that might or might not prove to
work, scale-up of bench-level technologies to full-scale operations, discovery of
waste products or contamination not expected or not adequately characterized,
dependence on single suppliers or sources of critical equipment, etc. These risks
are typically discrete events, and must be individually managed. This is the area
usually considered to be risk mitigation or risk management, but in fact both these
cases require management. In the first case, the project manager must identify the
control limits and design and manage the project execution process such that it
stays within the required limits relative to time, cost, and quality. In the second
case, he/she identifies and manages discrete risks.

Further, there are situations when variations and changes in trend are due to tran-
sitions in internal behavior, rather than external risk; projects, in fact, often experi-
ence changes in trend over time and exhibit non-stationarities and tipping points.
This dynamic nature of uncertain systems’ behavior can be represented using sto-
chastic/probabilistic processes. However, as this is rather a very broad area of prob-
ability theory, for practical purposes, we limit the scope of this text to time-series,
process control, and few fundamental processes such as Poisson process.

1.2.2 Probabilities and Decisions

Uncertainty assessment and risk analysis are generally done for the purpose of mak-
ing risk-informed decisions. Hence, it is upon the decision-maker to interpret the
result of the analysis. Figure 1.1 illustrates this process. The two typical paths are
illustrated with a blue and orange colored lines; the former shows when system/
project data is available (blue line — frequentist approach), and the latter shows
when the data is not readily available and when the experts’ judgements are required
(orange line — epistemic approach). In both cases the probability estimates are based
on the analyst’s assumptions. However, there is a path, illustrated with a maroon
colored line, that doesn’t involve the same level of assumptions. It feeds processed
data about the system directly to the decision-maker. This type of data is representa-
tive of the system behavior, but not expressed in terms of outcome probabilities.
There are two reasons why one may want to consult other-than probability mea-
sures when making decisions. First, probabilities are sometimes hard to interpret
and/or can be misleading; for example, one may be tempted to replace flight data
with the cockpit indicator that reports the results of a risk analysis for a stall prob-
ability. However, from the pilot’s perspective (i.e. decision-maker), this informa-
tion would be counterproductive as flight data i.e. the position of an aircraft and
speed are much informative and easier to map into decisions than the estimates of
the event probabilities. How much one should be one worried if this probability is
1%? Would 50% probability warrant an immediate mitigation decision? Pilots
regularly make maneuvers that significantly increase this probability, yet they are
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Fig. 1.1 Uncertainty and risk assessment decision process

in full control. This doesn’t imply that providing such probabilities is wrong; in
fact all commercial aircrafts have a similar feature i.e. an alarm, but it stresses the
fact that proper decisions cannot be made in isolation of system-level data. Second,
by relying only on probability measures one allows for convolution of assump-
tions. For example, we regularly make decisions about distribution type, sample
independence, and stability of the underlying process that has generated the data.
Similarly, subject-matter experts assign probability based on their experience
about the systems behavior but based on many conscious and subconscious
assumptions and biases (Damnjanovic and Aven 2018). The bottom line is — How
valid are these assumptions?

To overcome this issue project managers supplement the probability measures
with indicators developed using system-level data that have no, or only few embed-
ded assumptions. Here the system feature is used as an implicit indicator of out-
come probabilities; this is similar, or perhaps the same as leading indicators. For
example, task completion times are highly sensitive to resource availability; if the
tasks share common resources, then such set up is more risky from the perspective
of completion time, as any event affect the common resource will be propagated to
all tasks. Hence, having a measure of resource-task dependences is informative
about the risk, but not defined in terms of probabilities. Similarly, as mentioned
before, project managers often use scope index to assess potential risks with scope
creep, and feedback loops in design to reflect design rework risk. Some may refer to
these as explanatory variables in a propensity function. But then again, this would
imply adding assumptions such as type of the function, which is precisely what we
try to avoid.
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1.3 Is Uncertainty Always Bad?

In general, most people prefer less uncertainty to more uncertainty. In fact, they may
take many actions to buffer or protect themselves from uncertainties and their con-
sequences. Also, risk is generally a pejorative term. Although there are people who
like to take risks (e.g., skydivers), the intent is still to avoid the unpleasant conse-
quences of the risk; if the risk actually happens (the parachute doesn’t open), it is
generally considered bad.

However, in many cases uncertainty may mean opportunity. In fact, one may
say there are no opportunities without uncertainties (if there were, someone would
have found them already). Even Chinese language symbol for risk reflects its dual
nature 2#; it encompasses a symbol reflecting danger and a symbol representing
opportunity. Hence, if one wants to make a lot of money on Wall Street, one has to
look at the stocks that are volatile (have large variability, called). However, this is
also the way to lose a lot of money on Wall Street.

The judicious use of alternates or options may add value to projects even when
(or especially when) these options have uncertainties (or risks). As an introduc-
tory example to what will follow, consider a manager on some project with the
following conditions: if, after engineering is complete, the construction cost esti-
mate less than $8,000K, then he is a hero; if it is more than $10,000K then he is
the goat. Suppose that he will know the cost with sufficient certainty to make a go
or no-go decision after the end of the detailed design phase. Suppose also that
there are two alternate technologies. Technology 1 is conventional and straight-
forward, with an a priori (before the design phase) expected value of $9000K and
a standard deviation of $1000K. Assuming these cost uncertainties are approxi-
mated by the well-known Normal probability distribution, then the project man-
ager calculates that the probability of exceeding the maximum allotted budget if
he chooses this design option is about 16%, which is not bad, but the probability
that he will get positive recognition for coming in less than the lower target is also
not better than 16%. See Figs. 1.2 and 1.3 for the probability density functions
and the cumulative distribution functions.

Even though the probability distribution is symmetric, the project manager’s
view of the outcomes is not necessarily symmetric. He/she may feel that being a
hero is good, but the utility of being a hero is a lot less than the disutility of being a
goat. That is, he may be risk averse.

The project manager also has available an alternate process, technology 2, with
a higher a priori expected value of $10,000K and a much higher standard deviation
of $4,000K. Technology 2 is not only expected to cost more than technology 1, it is
far riskier. Using the Normal assumption, the project manager calculates the
chances of overrunning the maximum budget with method 2 to be 50%. On the
other hand, the chances of being a hero with this technology are 31%. Assume that
the project manager has to make a decision on the technology before the design
starts; he/she does not have enough time in the schedule to perform one design and
then do the other if the first one does not come out satisfactorily. Probably under
these conditions the project manager chooses technology 1; the chances of winning
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big are small but so are the chances of losing big. Technology 2 has an attractive
likelihood of doing very well, but too much chance of doing really badly.

However, the project manager might consider designing the project using both
technologies concurrently, choosing the best one after the design phase has estab-
lished the construction cost. In this case, the probability that the maximum budget
of $10,000K would be exceeded is the likelihood that both technologies cost more
than that (the project manager always chooses the lower of the two). Assuming that
the technologies are independent (a higher than expected cost for one does not
imply a higher than expected cost for the other), then the probability of exceeding
the maximum budget is just the probability that both technologies result in higher
than acceptable cost estimates. More personally, the probability that the project
manager is a goat is the probability that technology 1 exceeds $10,000K and tech-
nology 2 exceeds $10,000K = (0.16)(0.50) = 0.08.

Conversely, the probability of beating the minimum target is the probability
that either technology is less than $8000K, or 1 — the probability that both are
greater than $8000K. This comes to [1.0 — (1.0 — 0.16)(1.0 — 0.31)] = 0.42. That
is, by designing using both technologies and then exercising the option to choose
the one with the lower cost, the project manager reduces the chance of looking
like a goat by one-half, from 16% to 8%, while at the same time increasing his
chances of looking like a big hero from 16% to 42%. In probability notation, let x;
represent the construction cost using technology 1, and let x, be the construction
cost using technology 2. Then,

P[PM = Goat] = P[(x, >10000) "(x, >10000)]=(0.16)(0.50) = 0.08
P[PM = Hero] = P[(x, <8000)uU(x, <8000) ]
=1-P[(x, >8000) " (x, >8000)]
=1-(1.00-0.16)(1.00-0.31) = 1—(0.84)(0.69) = 0.42

Of course, there is no free lunch; designing using both technologies will cost
more than designing just one, and additional analysis would be needed to deter-
mine if it is worth it; here the point is that variability or uncertainty can be a good
thing if it is used to create additional opportunities and decision options for the
project manager.

So, is variability good or bad? It could be either. Generally speaking, variability
is more valuable or more desirable if it is optional, or constitutes an alternative
that can be used or taken advantage of by the project manager, and less desirable
when it is inescapable. If technology 2 were the only option available, then the
high variance of this alternative would be undesirable, but really makes little dif-
ference, because the probability of overrunning the maximum allowable cost is
1/2, regardless of the uncertainty in the cost of technology 2. However, the pres-
ence of technology 2 makes a high variability in technology 1 desirable. If the
project manager decides to pursue both design options simultaneously, he can
never do worse than the results with technology 1, and he might do a lot better
with technology 2. Of course, real projects are not as simplistic as this example,
but in any case it is up to the project manager to identify options that can make
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variability an advantage and add value to this project. As in the old saw, if fate
hands you a lemon, make lemonade.

1.4 Managerial Attitudes to Risk and Uncertainty

Project managers are concerned with ways to manage projects in the face of uncer-
tainty, to analyze risks and to mitigate them. Projects continually face new risks,
which must be identified, analyzed, and understood in order to develop a frame-
work for selecting projects and successfully executing them. However, the term
risk has different meanings to different people. For example, to economists and
financial analysts risk and uncertainty are synonyms; the smaller the variations,
the lower the risks. In engineering and decision-theory, on the other hand, risk is
often defined as expectation over a set of unfavorable outcomes. Many books have
been written in an attempt to define the terms risk and uncertainty precisely. That
will not be attempted here. The difficulty with precise academic definitions of
these terms is that no one in project management feels obliged to use these defini-
tions. Perhaps it would be less ambiguous if they did. Perhaps, on the other hand,
academic decision theorists should learn to deal with ambiguity. But under the
circumstances, in order to promote improved communication between all partici-
pants in a project, it is necessary to use the terms as they are used; that is, vaguely.
It is clear from observation that academic decision theorists (those who know how
decisions ought to be made) and project managers (those who make decisions) use
the terms risk and uncertainty with very different meanings (March and Zur 1987).
In fact, to most managers “risk is not primarily a probability concept.” Therefore,
risk is not evaluated on the basis of uncertainty or probability distributions, as used
in decision theory.

Risk is Exposure. Managers often look at risk as their exposure to loss. That is, the
term risk is usually applied to negative events, although a large variance simply
means large variability in either direction around the mean. As a result, one might
hear statements such as “You have a high risk of a heart attack” but utterances such
as “You are at a high risk of winning the state lottery” are rare. Some quantification
of the corporate exposure may be made by such means as scenario analysis, but
identification of exposure is more commonly the response to “what if” type ques-
tions. Risk assessment may largely consist of meetings in which participants try to
think of “what if” questions that would lead to organizational financial or other
exposure. Lawyers are particularly good at this exercise. It is a useful exercise, but
it is often arbitrary and inconsistent. Risks are weighted by outcomes and not likeli-
hoods, so that the process can be highly conservative, given that relatively low prob-
ability events can be considered high risks if the consequences are great. Equally, it
can be very unconservative, if major risk factors are overlooked or forgotten.

It is clear that, if risk means exposure, then risks are not additive. One may say,
“Our investment in this project is $10,000,000, and if Event X happens, our expo-
sure is the loss of our entire investment of $10,000,000.” And similarly, “If Event
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Y happens, then our exposure is the loss of our entire investment of $10,000,000.”
But one cannot then say, “If both events X and Y happen, then our exposure in this
project is twice our investment.” When deciding to undertake a project or not,
management may perform a maximization calculation, in which the largest of all
exposures due to all credible events is taken as the measure of the risk of the
project.

In this approach, risk is typically denominated in dollars, the financial exposure
of the firm if something goes wrong with the project. The risk may be equivalent to
the cost of getting out of the project once one is in. Thus, a manager may say, “Our
risk in this project is $10,000,000,” meaning that the firm has invested that amount
or more (in cash or in some other way) in the project and will not be able to recover
that amount if the project fails. If the project has some salvage value, then the expo-
sure is the difference between the initial investment and the price for which it can be
sold if it fails.

This focus of managers on exposure, or the consequences of failure, does not
mean that they are oblivious of probabilities. They may not like to emphasize prob-
ability because that is related to gambling, and that implies that the managers are not
in control, but rather subject to chance. But, even if managers may not calculate
probabilities objectively and mathematically, they may have general subjective,
qualitative ideas of what constitutes greater or lesser risk. This qualitative assess-
ment or feel for probability or likelihood is then merged with the numerical assess-
ment of exposure, as in, “For this kind of project, we need to keep our risk (that is,
exposure) under $1,000,000.” This kind of project is, based on the manager’s experi-
ence, a member of a class of projects that have similar subjective probabilities of
going bad. In some way, this may relate to relative frequencies: “Of the last six of
this kind of project done, two have been outright failures.” But in many cases, the
probabilities are obtained from a sample of one: “We did something like this before,
and we won’t do one again.”

It is common for decision theorists to denigrate this gut feel for project risks as
not being quantitative or objective, but this does not prove that managerial experi-
ence is not valuable. Many knowledge-based (expert) systems have tried to capture
this expertise about how to assess projects. It is not at all dissimilar to a physician’s
experience in diagnosing diseases: some do it better than others; in general, more
experience means better results. Some progress has been made in automating diag-
nosis, but no one knows how physicians do it, and good diagnosticians continue to
be in high demand.

One may indeed explain gut feel in Bayesian terms: initially, inexperienced man-
agers have little knowledge about projects, and therefore have prior probability dis-
tributions on project outcomes that have very high variance. Each project constitutes
a new set of information, which modifies the manager’s prior distribution into a
posterior distribution. Over a number of years, this distribution evolves to one with
less variance. When a prior distribution has high variance, any data point has a great
influence on the posterior distribution, but when the prior has a low variance, a new
data point has very little effect on the posterior distribution. Hence, managers may
seem set in their opinions to outsiders, but to themselves they have simply learned
from many experiences.
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Risk is Multidimensional Concept. Another difference between the decision theo-
retic view and the managerial view is that theorists like to summarize project risks
into a single risk probability, whereas managers have very limited desire to reduce
the risk to aggregate probabilities. Instead, managers look on risks as multidimen-
sional, with a maximum exposure considered for each risk category. The combina-
tion of all risks in a single a priori number is useful in a decision whether or not to
proceed with the project. Obviously, this decision is important, but it is only one
part of total risk management. The academic focus on reduction of risks to a single
number has actually had a deleterious effect on the development of methods for risk
assessment and management. People refer to risk assessment as if it were nothing
more than the simplification of many risks and circumstances into a single number,
often by Monte Carlo simulation, and much of the available software reflects this
simplified viewpoint. In this area, project managers are much more sophisticated
than the decision theorists, in that they are able to consider and balance a number of
risk factors and circumstances independently. In fact, this is the essence of holistic
risk management as opposed to simplified risk assessment: holistic risk manage-
ment deals with the total risk environment of the project, not just at the initial deci-
sion, but also throughout the life of the project.

In fact, the holistic view on risk management requires not just the synthesis or
integration of risks into a single number, but the analysis, or differentiation, of risks
into manageable parts. Only when the risks are identified and differentiated can
management come up with policies on how to deal with them.

Moreover, and possibly the most serious objection, the focus on combining risks
into some single risk index or number diverts attention from the most serious issue
at the core of risk assessment: the inference problem. What are the probability dis-
tributions, where do they come from, and how do we estimate them, in the almost
total absence of relative frequency data?

Taking Risk Depends on Situations. Higher-level organisms as well as organiza-
tions survive by taking only reasoned risks and avoiding excessive risks. Large
organizations protect themselves against unwarranted risks by internal and external
reviews and signoffs. For example, a major commercial aircraft manufacturer is said
by one of its engineers to require a huge number of signoffs on all engineering
changes — a policy that is frustrating to those engineers who feel that they have great
new ideas, but no doubt is reassuring to all the passengers flying in its products,
who, if asked, would probably feel that corporate restraints on risk-taking in aircraft
design are a very good idea. On the other hand, time plays a big role in distributed
decision-making, and risks often need to be taken at the level where the problem
arises. For example, if a new technical challenge appears on the site, valuable time
would be lost if the decisions are not made promptly. Hence, there is a balance
between too much risk-taking and too-little risk taking at different levels of the
organizational structure.

In general, managers typically warrant risk taking when faced with likely failure.
By this principle, contractors will take more risks (for example, by submitting very
low bids to “buy” jobs) when business is bad and their survival is under threat. Also,
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by this principle, project managers would be more likely to take risks on a bad proj-
ect than on a project that is going well. As an example, consider two similar proj-
ects: for one, Earned Value Analysis indicates that the Cost at Completion will be
$1,000,000 over budget; for the other, $1,000,000 under budget. So in the first case,
the contractor would show a loss of $1,000,000, and in the second case a profit of
$1,000,000. Suppose that there were some new process that had some chance of
reducing costs by $1,000,000. Which project would take the risk of using this pro-
cess: the first one, which might reduce the loss from $1,000,000 to break-even, or
the second, which might increase the profit from $1,000,000 to $2,000,000? In line
with the principle stated here, most people would probably say the project showing
the loss would take the risk — even though the monetary gain would be the same for
either. In fact, this behavior may be entirely rational, and even optimal.

Risks are Perceived Controllable. Managers much like other people find patterns
and underlying rules in sequences of events that are in fact completely random. The
difficulty here is, what if the set of events is really indeterminate, and the fact that the
project manager imposes his/her logic on them does not make them determinate?

This principle is very important in assessing the actual behavior of managers
when assessing and managing risks. Senior managers in particular have arrived at
senior positions by making good decisions or having good luck (which may be hard
to distinguish). Naturally, they prefer to think it is good decision-making. Therefore,
they are led by the very circumstances of their positions in the organization to
believe that they control events, and not that events control them. Successful corpo-
rate executives may be like generals with a string of victories, who come to believe
that they are — think of Napoleon invading Russia. Unfortunately for him, subse-
quent events did not follow Bonaparte’s logic, and the result was a disaster for the
French and their allies.

While the empirical managerial approaches to risk show a sharp contrast with the
decision-theoretic viewpoints, the comparison is somewhat misleading. Just as we
may admire the nerve of a tightrope walker, without seeing the safety net stretched
below him, or of a steelworker on a tall building, while failing to notice the safety
belt tying him off, so we may think managers are taking risks when they have the
skills derived from experience to mitigate them, avoid them, or hedge them, in ways
not immediately apparent. This text is concerned with how to acquire some of these
skills without spending so many years to do it.

In summary, the empirical managerial approach to risk is:

e Break down the total risk into its components

* Analyze the risk for each component, largely in terms of its maximum exposure
for loss, in the total context of the project, the environment, and historical
performance

e If any risk is unacceptable, take steps to reduce it, manage it, and control it

* Revise the project definition until all risk dimensions are acceptable before
commitment

The more experienced and successful a manager is, the more he/she believes that
he/she can control risks because the manager has gotten where he/she is by succeed-
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Table 1.1 Decision-theoretic vs. managerial viewpoint on risk

Decision-theoretic view Managerial view

Sees risks as probabilities Sees risks as exposure

Synthesizes individual risks into one risk Breaks out risks into individual components for
factor mitigation

Quantifies risks numerically Characterizes risks verbally and qualitatively
Looks at probability distributions over Looks at relative few possible outcomes
(ideally) all possible outcomes

Sees risks as random events Sees risks as avoidable or controllable

Finds optimal solutions under uncertainty Incrementally moves to intuitively satisfactory

solutions (“satisfices”)

ing in previous circumstances; he/she does not attribute this success to luck.
Therefore, project managers are more willing to accept risks if they have more expe-
rience with successful previous projects. Conversely, project managers may be
unwilling to accept risks if they have not had experience successfully managing
projects under relevant conditions of public scrutiny, regulations, outside stake-
holder influence, tight budgets, fixed price contracts, adversarial relations with con-
tractors, etc. Successful project managers may not always be correct in their
assumptions that they can control risks, and making a mistake in this regard can
have serious consequences.

We can summarize the differences in the two approaches to risk in Table 1.1.

At this point, the reader may wonder, with all these managerial approaches to
risk assessment, why should one consider probability theory and decision analysis?
The reason, of course, is that the common or intuitive management approach does
not necessarily give good results. There are some managers who are very good at
risk assessment and management. Unfortunately, there are too few of them. The
method of education of managers in this field is essentially one of apprenticeship:
junior managers observe more senior ones and apply what they have learned to
projects of their own, until they either rise in the organization and replace their men-
tors, or they fail. Unfortunately, too many fail. In Table 1.1 the skills on the left can
be taught; the skills on the right can be learned, but cannot be taught. Therefore,
industry is interested in better methods for risk management that are more consis-
tent, more objective, and reproducible; that can be formally taught; and also that
give better results. This text is intended to try to help meet that need by bridging (or
at least straddling) the gap between the decision theoretic approach and the manage-
rial approach.

1.5 Holistic Approaches to Risk

Although the viewpoints on risk summarized above are different, they are not mutu-
ally exclusive. As noted above, managers take risks when they have sufficient expe-
rience to understand the nature of the risks involved, when to take risks and when
not, and how to control and manage risks. Conversely, project managers who may
not have enough experience with fixed-price contracts, project management, and
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budget and schedule control to have developed the confidence to take (i.e., to accept
responsibility for controlling) risks may be perceived, and may perceive themselves,
as risk averse.

One solution lies in integrating the analytical and experiential approaches to
risk described above. By identifying, objectifying, quantifying, and estimating
risks, by inferring appropriate probabilities, and by assessing these individual risks
through simulation, scenario analysis, decision analysis, and other techniques,
project managers should be able to overcome lack of experience by means of ana-
lytics. By synthesizing the managerial approach to risk with decision theoretic and
analysis methods, project managers should be able to take appropriate risks
because the analysis should quantify the risks and simulation should indicate how
they can be controlled.

This text is concerned with the use of the probabilistic approach to examine
managers’ assumptions and methods, to try to determine to what extent managers
may actually conform to decision theoretic methods and principles. That is, we will
use some of the theory to try to analyze what managers are really doing, to deter-
mine to what extent decision theory is descriptive and not merely prescriptive.
Considering the long history of projects, it would be remarkable of project manag-
ers, contractors, and others involved had not developed techniques for buffering
themselves from the effects of uncertainty. These risk mitigation or safety factors
may be so ingrained that they are not actually highly visible, but they may be there.
In this process, we will try to build some models of managerial approaches to risk
assessment and management and to compare these with our beliefs about the opera-
tions of the real world of projects.
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Chapter 2
Project Risk Management Fundamentals

Abstract In this chapter we present the fundamentals of project risk management.
We provide an overview of the overall process including risk identification, qualita-
tive and quantitative risk assessment, and risk mitigation/treatment. We discuss dif-
ferent approaches to modeling project risks and provide a context for the materials
we cover in the following chapters.

Keywords Project uncertainty and risks - Risk management framework -
Representation methods

2.1 Uncertainty and Risks in Projects

It is often not obvious why projects may have large amounts of uncertainty. In many
straightforward projects, both duration and cost are largely determined by the quan-
tity of work units to be done and the unit rates. In placing concrete, for example, the
number of yards of concrete is determined from the design drawings. The number
of yards that can be placed in a day by a crew determines the duration, and the cost
per yard for concrete and formwork, materials and labor, determines the cost. In this
type of situation, uncertainty may be introduced primarily by lack of foreknowledge
of external factors such as weather, which may affect productivity.

Excavation can be very similar to concrete placement, in that the gross volume
is known. But in addition to being weather dependent, often uncertainty is intro-
duced by lack of knowledge of the quantities of various materials that may not be
known until the work is actually performed, due to inadequate subsurface sam-
pling. The differences in time and cost to excavate rock, compared to loose mate-
rial, can introduce risks.

The risks described above, due to weather, subsurface conditions, etc., would
seem to be well understood and quantifiable. There are, however, many types of
projects, the duration and cost of which are not primarily determined by a fixed
quantity of work to be done multiplied by a unit rate. These include, for example,
engineering projects that must execute multiple design cycles, iterating until some
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design objectives are met. The number of cycles may depend on the difficulty of
meeting these objectives, which is not really known until it is done. In general, this
type of uncertainly applies to all kinds of projects that consist of a number of steps
with acceptance tests or quality control tests at the end of each step. In these proj-
ects, if the acceptance test is successfully passed, then the project enters a new step
or phase, but if the acceptance test is not passed, the previous step (or even a number
of previous steps) must be repeated until the acceptance criteria are met. Construction
projects may fall into this category if the quality assurance requirements are strin-
gent compared to the level of quality achieved, as in the case of pipe welding, for
which welds that do not pass radiographic examination must be cut out and redone
until they do. In such a case, the time and cost of producing an acceptable weld are
not determined by unit rates so much as by the reject rates; higher quality means
shorter durations and lower costs, whereas lower quality means the opposite.

Similar examples abound in a number of fields. Software development is an area
in which attempts to predict time and cost based on quantity of work, that is, esti-
mated number of lines of code, have proven to be unreliable, and various organiza-
tional structures have been tried, such as prototyping and spiral development model,
to reduce the probability of rework and recycling. In the construction examples
cited earlier, even concrete placement can be driven by rework considerations if the
acceptance criteria are stringent, either for high strength or dimensional accuracy.
Uncertainty is increased by high reject rates, and these are often characterized by
acceptance criteria that are at the margin or the boundary of the processes being
used. In such cases it may be useless or even counterproductive to focus on unit
rates and unit costs; to reduce uncertainty one must focus on methods to achieve
higher quality or adoption of alternate improved processes, in order to increase the
acceptance rates, or relax the acceptance criteria.

Many projects may fall into this category including most notably: (a) Scientific
and R&D projects. In cases in which new science is being brought along from the-
ory to bench-scale laboratory tests to pilot plants to full-scale operations, there may
be a number of places in which acceptance tests need to be applied. These points
may be addressed in the form of readiness-to-proceed reviews or Critical Decision
points. If performance, for example, is not adequate at the end of one step or phase,
then that step should be prolonged or repeated until it is acceptable. Pushing for-
ward into the next step without a readiness review or before the acceptance condi-
tions in the prior step have been achieved, in order to meet predetermined project
schedules or budgets, almost invariably generates poor results; and (b) Environmental
restoration projects. Some projects may adopt an incremental approach to cleanup,
in which restoration proceeds in steps based on permit requirements, characteriza-
tion of the pollutants, cleanup technologies, etc. For example, permits may require
that cleanup technology developed in one phase be demonstrated to be at a certain
level before proceeding with the next phase. Therefore, the time and cost for com-
plete cleanup depends on the probability that these acceptance tests will be success-
ful and the readiness reviews will be passed.

Some of the risks that might apply to projects are listed below. As no such list can
be comprehensive you may want to start with this list and add your own favorites.
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In addition to thinking about risks that affect project cost and duration, do not forget
to include risks associated with the mission, use, business case, or economic viabil-
ity of the project.

e Accidents

 Availability of third-party, nonrecourse financing

* Changes in owner’s need for facility

* Client/user scope changes

e Competitive factors (reduced priced, reduced sales) compared to economic
projections

* Construction cost increases

e Construction delays

* Contractor default

» Contractor inexperience or incompetence

* Costs of borrowing money

* Costs of termination

e Decommissioning and cleanup costs

e Economic and business conditions (for example, recession)

* Enforceability of contracts

* Engineering changes and design development

* Environmental factors

e External influences: delays, changes

 Failure of equipment to perform to specifications

* Failure of technology to perform as required

* Force majeure

* High bids

* Inability to accept product

 Inability to deliver raw materials

* Inaccuracy of operating cost estimates

 Inaccuracy of construction cost estimates

* Inadequate number of bidders, inadequate competition

* Inflation

 Interest rate increases

* Late delivery of equipment

e Late start due to upstream conditions

* Low availability, reliability, or throughput

* Low bidder unreasonably low

e Maintenance costs higher than expected

* Managerial experience

e Mismatch of technology and project conditions

* Operating costs higher than expected

e Operational accidents, equipment failures

e Operational performance: productivity, efficiency, availability, reliability

e Permitting and licensing delays or rejections

* Poor quality of construction; failure to meet specifications
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* Reduced patronage of the facility (compared to economic projections)
* Regulatory or legal challenges

* Service or economic life less than projected

* Scale-up of technology from laboratory or pilot plant
 Site conditions

* Spills or leaks of toxic materials

e Startup problems

e Strikes and work stoppages

» Unavailability of skilled labor

e Use of new or unproved technology

* Waste characterization

e Weather

It is rather unsatisfying to have one large incomplete list of risks, from both prac-
tical and theoretical viewpoint. So, one may be tempted to structure this list around
some common principles. For example, first we may think of classifying risks that
relate to different stakeholders’ objectives; therefore, we typically have:

Performance, scope, quality, or technological risks. These include the risks that the
project when completed fails to perform as intended or fails to meet the mission or
business requirements that generated the need for it. Performance risks can lead to
schedule and cost risks if scope creep is permitted to increase the time and cost of
the project.

Schedule risk. This is the risk that the project takes longer than anticipated or
scheduled. Schedule risk may lead to cost risks, as longer projects always cost more,
and to performance risk, if the project is completed too late to perform its intended
mission fully.

Cost risk. This is the risk that the project costs more than budgeted. Cost risk may
lead to performance risk if cost overruns lead to scope reductions to try to stay
within the baseline budget. Cost risk may also lead to schedule risk if the schedule
is extended due to lack of funds to accomplish the project with increased costs.

All of these risks may come in two varieties:

Incremental risks. These include risks that are not major in themselves but can
accumulate to constitute a major risk. For example, a cost overrun in one subcon-
tract may not in itself constitute a risk to the project budget, but if a number of
subcontracts overrun simultaneously, due to coincidence or to some common cause,
then there may be a serious risk to the project budget. Individually, such risks may
not be serious or difficult to identify; the risk really lies in the combination of a
number of them, and the lack of recognition that these could occur simultaneously.

Catastrophic risks. These include risks that could be major threats to the project
performance, cost, or schedule. Such risks have included dependence on critical
technologies that might or might not prove to work, scale-up of bench-level
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technologies to full-scale operations, discovery of waste products or contamination
not expected or not adequately characterized, dependence on single suppliers or
sources of critical equipment, etc.

We can continue further with the classification process and distinguish risks
based on systems notation (i.e. internal or external to the system); when the risk is
introduced and when it realizes in the project life-cycle (planning, design, execu-
tion); what type of operation it is linked to (welding, compaction, assembly, logis-
tics, drilling), is it technical, product related, or non-technical, process related, and
so forth. This and similar classification methods are useful from the perspective of
trying to provide structured input for future analysis; however, there is a danger in
over-classification and ignoring the fact that many of them are interdependent. For
example, technological risks could easily affect the schedule, and vice versa; or the
same risk could affect multiple activities e.g. weather, change of regulation, or
material shortages could affect the outcomes of a number of activities.

To summarize, uncertainty and risk in projects is driven not only by external fac-
tors such as weather and site condition affecting well-defined operations (i.e. con-
crete placing or excavation), but also by a combination of internally-defined
conditions and requirements, organizational structure, and distributed decision-
making which makes the outcomes highly uncertain and the list of risks that apply
to the project rather long. Faced with this challenge it is critical to develop a method
to “break-down” this list into categories, yet making sure that the interdependencies
among them are fully accounted for.

2.2 Risk Management Framework

Managing risks is one of the most important functions of the owner in making any
major project successful. In general, the owner initially owns all of the risks, as it is
the owner’s decision to execute the project. Of course, it is also true that not execut-
ing the project may entail risks, to the ability of the owner to perform its mission.

Risk management is not a function the owner can delegate to contractors.
Contractors and consultants can play major roles in identification and assessment of
risks, but there remains an essential role for the owner that cannot be delegated: the
identification, mitigation, acceptance, and management of the owner’s risks.

The definition of the major steps to be taken in the process of analyzing and
managing risks is somewhat inconsistent among different organizations.
International Organization for Standardization (ISO) defines four main processes
that constitute risk management process: assessment, treatment, monitoring, and
communication. Society for Risk Analysis (SRA), on the other hand, has a different
classification approach. The SRA defines the overarching term as risk analysis
which then covers assessment, characterization, communication, management, and
policy. Finally, Project Management Institute (PMI) has its own definition of steps
required to make risk-informed decision-making: identification of risks, qualitative
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risk analysis, followed by a quantitative risk analysis, then planning for risk
responses, and finally controlling risks. This is in addition to establishing the con-
text for doing risk management activities to start with (PMI 2008).

As previously discussed, there is really no point in debating definition of the term
“risk” and which of the project risk management definition is more elaborate and
encompassing as project managers are not compelled to adopt any. Hence, our
approach does not emphasize either definition; rather, it is focused on typical activi-
ties associated with understating the impact of risk and uncertainty in project
decision-making; although, it is closest to the PMI classification. To this aim, one
needs to do the following: (a) identify risks, (b) assess their impact using qualitative
and quantitative methods, and (c) develop transfer and mitigation strategies; in other
words — treat the risks. These three steps are performed at various levels during
project life-cycle phases including planning, design and execution. Next, we discuss
these three steps in more details.

2.2.1 Risk Identification

The owner may not be in a position to identify all the risks of a project unassisted,
due to lack of familiarity with similar projects, but it is the responsibility of the
owner’s representative to make sure that all the significant risks are identified. The
actual identification of risk may be carried out by the owner’s representatives, by
contractors, and by internal and external consultants or advisors. The risk identi-
fication function should not be left to chance, but should be explicitly covered in
the Statement of Work (SOW) for the project, the project Work Breakdown
Structure (WBS), the project budget, the project schedule, and the Project
Execution Plan.

Risk identification is one of the most important functions of the integrated
project team (IPT), and is one major reason why IPTs should be formed very
early in the project and should meet face-to-face as soon as possible. Members of
the integrated project teams should be selected on the basis of their ability to
bring breadth of experience and viewpoints to the risk identification process.
Ample examples exist of ill-advised projects that have gone forward because only
the viewpoints of those with vested interests in the project were ever heard.
Participation of all the members of the IPT is necessary to make sure that all sig-
nificant project risks are identified. The owner’s representative should be present
at all such meetings.

There are a number of methods in use for risk identification. Typically, they
involve brainstorming sessions by the IPT or a significant subset of it. In general,
personal contact and group dynamics are involved in successful risk identification.
Assigning the risk identification process to a contractor or individual member of the
project staff is rarely successful, and may be considered to be a way to achieve the
appearance of risk identification without actually doing it. However, objective,
impartial external consultants and advisors may provide useful inputs on risk
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identification. In fact, risk identification should be specified as one of the major
functions and contributions of the IPT. Projects should be required to include all
risks identified in the project risk assessments. In the risk identification process, it is
essential first to elicit all possible risks, without necessarily analyzing them. As in
any brainstorming process, no idea should be rejected and every participant should
be encouraged to expand on the ideas of others.

Although risk identification is a process that should be performed early in the
project life cycle (starting even before the project is committed), and which should
be formalized by project management, risk identification should not stop after this
phase. Risk identification is not perfect, and therefore should be an ongoing process
throughout the project life cycle, especially as new people or contractors are added
to the project and may bring different experiences and viewpoints to the risk identi-
fication. For this reason, the project risk management plan should provide at least
for periodic updates.

2.2.2 Risk Assessment (Qualitative)

Following the initial risk identification phase, the project should have a working list
of risks that have been identified as potentially affecting the project. From this list,
the project should screen out those that require follow up and those that seem minor
and do not require further attention. This process requires some qualitative assess-
ment of the magnitude and seriousness of each identified risk. There are various
methods to facilitate this. One common method is based on the well-known Failure
Modes and Effects Analysis (FMEA), which was developed to assess failures in
equipment and systems, but which has also been applied in one form or another to
project risks. This type of analysis goes one step beyond risk identification to
include a qualitative assessment, typically based on a subjective assessment of the
magnitude of the impact of the risk event on the project (often on a scale from one
to ten) multiplied by the likelihood that the risk event will occur (often on a scale
from one to ten). We can also including a third parameter — the degree of warning
that the project will have regarding the actual occurrence of the risk event (also on
a scale from one to ten). This third parameter may give some support for the project
establishing early warning indicators for specific serious risks, which might not
otherwise have been done.

This form of risk assessment is qualitative and relative, not quantitative and
absolute. It is primarily for screening out the identified risks that require follow-up,
because of high impact or high likelihood, or both, from the risks that do not appear
to require follow-up, because of both low impact and low likelihood (see Fig. 2.1).
However, due to changes in project conditions or perceptions, risks that appear to
have low impact or low likelihood at one time may appear differently at another.
Therefore, the project has to re-evaluate risks periodically to assure that some risk
previously considered negligible has not increased in either impact or likelihood to
the level requiring management attention.
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Fig. 2.1 Qualitative screening of risks

2.2.3 Risk Assessment (Quantitative): Low Impact, High
Probability

Low impact, high probability risks are those largely due to uncertainties — about the
actual costs of materials and labor, the actual durations of activities, deliveries of
equipment, productivity of the work force, changes due to design development or
owner’s preferences, etc. These uncertainties are normally considered to lie within
the natural variability of the project planning, design, construction, and startup pro-
cess. Each of these uncertainties, taken alone, would have little impact on the proj-
ect. However, taken together, there is the possibility that many of the estimates of
these factors would prove to be too optimistic, leading to cumulative effects such as
loss of performance, schedule overruns, and cost overruns.

There are basically two methods for addressing this type of uncertainty: (a)
Apply project contingencies to cover the uncertainties; and (b) Change the process
to one in which there is less uncertainty (variability).

The second approach is no doubt preferable, but is not always used. The use of
lump-sum, fixed-price contracts instead of cost-plus contracts is one obvious way to
reduce the cost uncertainty for the owner, although it also certainly increases the
cost uncertainty for the contractor. But lump-sum, fixed-price contracts may increase
the tendency for the development of adversarial relations between the owner and the
contractor, whose interests are not completely aligned. Teaming, partnering, and
incentive-based contracts in general may be regarded as efforts to align the interests
and objectives of both the owner and the contractors and thereby to reduce the
uncertainties and risks that may be associated with misalignment of interests. Often,
however, the preference among contractors is to cover increased uncertainty by
application of higher contingencies, which are limited by what competitors do in the
bidding process. That is, contingencies are in effect set by competition and market
forces rather than risk analysis.

Due to the incremental nature of this type of uncertainties, they may often be
covered by contingency. Contingency is an amount included in the schedule or
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budget that is not identified with specific factors, but is included to cover a
reasonable amount of process uncertainty. To be effective, contingency must be
held at a high level in the project. The frequent practice of assigning contingencies
to work packages of contracts only assures that the contingencies will be expended;
there will be little opportunity to transfer contingency allowances from one work
package or contract to another unless these funds are controlled at the project
level. For this reason, contractors may be highly disposed to the assignment of
contingencies to contracts.

Contingencies should be controlled and managed at the same level at which
changes are controlled. Any change approved should be offset against the remaining
contingency. The quantitative determination of the proper amounts of schedule and
cost contingencies can be made through the application of simple probability the-
ory, in which probabilities are used to represent uncertainties.

2.2.4 Risk Assessment (Quantitative): High Impact, Low
Probability

By definition, high-impact, low-probability events are rare occurrences, and there-
fore it is very difficult to assign probabilities to them. Data do not exist, and subjec-
tive estimates of probabilities may be unreliable due to the lack of experience of
personnel with such rare events. However, the objective is not the assignment of
accurate probabilities to rare events, but the determination of what management
actions should be taken to mitigate and manage them. If a certain specific risk is
identified as plausible, and if management determines that this risk should be explic-
itly managed if it had a likelihood of more than 1 in 100 of occurring, then the only
issue is whether it is more than 1 in 100 or less than 1 in 100; a determination that
the probability is 1 in 50 is irrelevant.

High-impact, low-probability events in general cannot be covered by contingen-
cies. The computation of the expected loss for an event as the product of the loss
given the event occurs times the probability of the event is largely meaningless. For
example, suppose a certain project is expected to cost $1,000,000 if a certain event
does not occur, and $50,000,000 if it does. One will certainly not assign a contin-
gency of $50,000,000 to a $1,000,000 project. If the probability of this event is
estimated as 0.02, the expected loss due to the event is $1,000,000. One will not
assign this number as a contingency either. If one did, the estimated cost with con-
tingency would rise 100% to $2,000,000. If the event occurs, the contingency of
$1,000,000 is completely inadequate to cover it. If the event never occurs, experi-
ence shows that the extra $1,000,000 is likely to be spent anyway.

The only way to deal with high-impact, low-probability events is to mitigate
them, by reducing the impact or reducing the likelihood, or both. However. risk
mitigation and management certainly is not cost-free. In the simple illustration
above, it might be worth it to the owner to expend as much as $1,000,000 more to
mitigate the $50,000,000 risk (and perhaps more than $1,000,000, if he owner is
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very risk-averse). (If the risk is the owner’s; no contractor is going to expend
$1,000,000 for risk mitigation on a $1,000,000 project.) To mitigate the high-
impact, low-likelihood risks, it is necessary to identify specific risk mitigation activ-
ities. These activities should be estimated and scheduled, and should be included in
the project budget and the project network schedule. This means that risk mitigation
activities will be tracked and managed just as other critical project activities are.

2.2.5 Risk Mitigation and Treatment Approaches

Insurance Many of the risks associated with projects, especially with construction
projects, are insurable. The insurer operates on the same statistical principles as
discussed in this course. Insurance spreads out the risk. The insurer sells a large
number of insurance policies to various customers. If all these risks are indepen-
dent, by the law of large numbers the relative combined risk to the insurer declines,
compared to the individual risks. If the risks are not actually independent, the insurer
has a problem.

Insurance may then be used for those aspects of a project that are common to
many projects but independent of other projects, and hence for which the insurer has
a large number of customers. Some organizations that do projects have organized
their own insurance companies, partly on the belief that they know the risks better
than general insurance companies, and can therefore carry the risk at lower
premiums.

Risk Transfer Risk transfer is like insurance in that the person or organization hold-
ing the risk transfers it to someone else, for a fee of some kind, although not in this
case to an insurance company. The risk transfer is like any other transfer in a mar-
ketplace, but rather than transferring goods in exchange for other goods or money,
the risk market transfers bads, accompanied by money or other considerations.

For example, the owner may seek to transfer some risk to a contractor, and a
general contractor may seek to transfer some risk to subcontractors. In general, the
owner starts with the risk, as it is the owner’s project before any contracts have been
let. Of course, the owner has the prerogative to eliminate project risk by not under-
taking the project at all, although this leaves the owner with the risks attendant on
not doing the project.

Risk transfer can be entirely appropriate when both sides fully understand the
risk and the rewards. The side that assumes the risk may do it on the basis that it has
knowledge, skills, or other attributes that will reduce the risk, compared to the risk
if the owner assumes the risk. If this is true, then it is equitable and economically
efficient to transfer the risks, as each party believes to be better off after the exchange
than before. This means that net project value has increased by the risk transfer.

Symbolically, we can say that, before any risk transfer, the owner has risk R and
amount of money M, and his value placed on this is V, (R, M). The contractor origi-
nally has no risk and no rewards associated with this project, so his value is
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V.(0,0) = 0. The owner transfers to the contractor some of his risk, say Ry, along
with money My, and retains residual risk R,. The contractor receives money M, and
assumes risk R.. The total value of the project, after the transfer, increases: V,(R,, M
— M)+ VAR, ,M7) >V, (R,M)+ V,0,0). Note that it is not claimed that R, + R. = R,
as the risks may not be additive.

As rewards are quantitative (that is, dollars), proper understanding of the risk-
reward tradeoff on both sides depends on a quantitative assessment of the risk. Also,
in a perfect market with free flow of information, each side would know not only his
quantitative assessment of the risk, but also the other side’s assessment.

Unfortunately, all too often the risks are not quantitatively assessed and one or
both sides may seek to gain an advantage over the other side by concealing his own
risk assessment from the other. Such attempts lead to competition and secrecy (or
even misrepresentation). As a result of one side trying to gain advantage over the
other, the value of the project is not maximized. That is, the total value of the project
does not attain the value that could have been reached by full disclosure.

Sometimes owners try to coerce contractors, through market power, to accept
risks they would not otherwise assume. If there is a buyer’s market in construction,
for example, owners can shop around for some contractor willing to accept the
owner’s risk at less reward than anyone else. Sometimes these attempts are not
legally enforceable — such as owners requiring contractors to accept the risk of the
owner’s own negligence. Even if legal, the outcome may be bad for all concerned,
even the owner. For example, the contractor may believe that the combination of
risk and reward provide by the owner is unacceptable — the risk is too high or the
reward is too low. By taking this contract, the contractor may see that he would
face a risk of going bankrupt. However, the contractor may see another risk — the
risk of going bankrupt if he does not take the contract. That is, perhaps V.(R., M7) <0
but V.(R.,My) > V.(0,0). The contractor accepts the risk on the basis that going
bankrupt in the long term is better than going bankrupt in the short term, and,
besides, the risk may never happen. This method may work as long as the risk in
question never materializes, but if the critical risk does occur, the contractor goes
bankrupt and the project is jeopardized. One would hardly say that this is a win for
the owner.

Risk Buffering Risk buffering or risk hedging is the establishment of some
reserve or buffer that can absorb the effects of many risks without jeopardizing
the project. A contingency is a buffer. A large contingency reduces the risk of run-
ning out of money before the project is complete. If two people go to Las Vegas,
one with $10,000 in his pocket and the other with $1000, it is clear that, although
the odds may be identical for both, the one with the larger stake has much better
chance of survival.

Buffering applies to time as well as budget. It can also apply to the provision of
reserves of manpower, machines, or other resources used by the project. Contingency
is useful when the risks are incremental and additive, and no single risk is dominant.
Note that, as discussed elsewhere, contingency is not necessarily a good way to
manage risks of very high impact coupled with low probability.
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Although contingency can be (a part of) a successful risk strategy, in the end,
adding contingency simply means increasing the project budget (or schedule).
Therefore, increasing contingency should not be the first resort; unless all the risks
are small, efforts to avoid, transfer, or otherwise mitigate risks should be investi-
gated before recourse is had to increased contingency.

Risk Avoidance Risk avoidance is the elimination or avoidance of some risk, or
class of risks, by changing the parameters of the project. It is related to the question,
“How can this project be redesigned so that the risk in question disappears (or is
reduced to an acceptable value?” The solution may be engineering, technical, finan-
cial, political, or whatever else addresses the cause of the risk. Often, redesign to
avoid risks results in a much-improved project. One must take care, however, that
avoiding one known risk or set of risks does not lead to taking on unknown risks of
even greater consequence.

Risk avoidance is an area in which quantitative, even if approximate, risk assess-
ments are needed. For example, the project designers may have chosen some solu-
tion, say A, over the alternative, say B, because the cost of A is estimated or quoted
to be less than the cost of B — on a deterministic, single point basis. However, quan-
titative risk analysis might show that the least-cost approach A is much riskier than
the alternative, B. The function of quantitative risk assessment is to determine if the
predicted reduction in risk by changing from alternative A to alternative B is worth
the cost differential.

Risk Control Risk control refers to assuming a risk but taking steps to reduce, miti-
gate, or otherwise manage its impact or likelihood. Risk control can take the form
of installing data gathering or early warning systems that provide information to
assess more accurately the impact, likelihood, or timing of a risk. If warning of a
risk can be obtained early enough to take action against it, then information gather-
ing may be preferable to more tangible (and expensive) actions.

Risk control, like risk avoidance, may not be free, or even inexpensive. If the
project is about developing a new product, and competition presents a risk, then
one might buy out the competitors, but this could be expensive. A less-expensive
alternative might be to team up with one’s major competitor to develop and market
a joint product. Another solution might be to accelerate the development project,
even at some considerable cost, to reduce market risk by beating the competition
to market.

Options and Alternatives Options and alternatives refer to changes in the project
to create optional courses of action. For example, if technical risks related to
some new technology are of concern, one could set up parallel development
teams to pursue different technological options concurrently. This might be
expensive, but necessary to increase the likelihood that one would succeed. In the
Manhattan Engineering District project, nuclear physicists were unsure whether
an enriched uranium device or a plutonium device would work, so they developed
both. It turned out that both worked, but the additional cost was considered to be
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justifiable. Of course, the ultimate risk, that this project was intended to forestall,
that the enemy would develop the weapon first, turned out not to exist at all.

There are many places in which options can be inserted to deal with virtually any
project technical, market, financing, or other risks. The use of these options may,
however, require some imagination and changes from the usual methods and prac-
tices. Many options involve the creation or purchase of information, because risk is
uncertainty and information reduces uncertainty. It must be stressed, however, that
creating options to generate new information is not the same as simply postponing
decisions to wait for some new data to materialize.

Organizational Structures Sometimes organizational restructuring can reduce
risks. Whether the best organization is tight, with central control and high account-
ability, or loose and decentralized, with decisions made primarily at the local level,
depends on the project and the nature of the risks. That is, the proper organizational
structure is contingent on the situation; there is no universally best form of project
organizational structure.

Risk Assumption Risk assumption is the last resort. It means that, in the end, if risks
remain that cannot be avoided, transferred, insured, mitigated, eliminated, or con-
trolled, then they must simply be accepted in order that the project may proceed.
Presumably, this implies that the risks associated with going ahead are nevertheless
less than (or more acceptable than) the risks of not going forward.

In summary, in this text we use the term project risk management as the overall
framework consisting of three distinct activities: (a) identification, (b) assessment,
and (c) transfer and mitigation. While this somewhat departs from ISO and SRA
approaches, it is done for the purpose of fitting risk analysis into project manage-
ment process, rather than vice versa. In fact, many project managers look at identi-
fication process as a unique task not part of the larger assessment process.
Nevertheless, these differences are superficial as they only to terminology rather
than substance of the process.

2.3 Representation of Project Risks

As previously mentioned we classify the quantitative risk assessment into two dif-
ferent categories: Low Impact — High Probability and High Impact — Low
Probability risk assessments. The representation of Low Impact — High Probability
risks follows the general process for representing uncertainty associated with ran-
dom outcomes such as probability density distributions, stochastic processes, and
others. Here the outcome can be defined as any element of design or construction
process where multiple incremental and often hard-to-distinguish risks result in
output variability. For example, this output is typically defined as duration and cost
of elements in project’s WBS such as activities, tasks, and work packages, but is
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could also be defined as the arrival rate of rework items and design changes. Any
elementary textbook in statistics and probability theory would provide a good ref-
erence point to survey commonly used models. This text is has no ambition of
being such reference.

In practice the representation of High Impact — Low Probability risks is often
limited to the outputs from qualitative risk identification and assessment methods
such as FMEA. As previously mentioned, this is typically a form of risk score that
is based on categorical data and ordinal numbers for likelihood and consequence;
for example Very High likelihood = 5 and Moderately-severe consequences = 4. The
risk score is then calculated by a product or similar arithmetic operation between the
numbers assigned to the likelihood and the consequence (e.g. Risk Score of 20 =
5x4). While this score measure is simple for communication purposes and useful
for determining if the risk warrants a mitigation strategy, it persistent use in projects
as a quantitative measure is unfortunate. This is because it is mathematically incor-
rect, and dangerously misleading to decision-makers.

In order to provide a High Impact — Low Probability representation of that can
be used a basis for quantitative assessment and analysis we feel the need to provide
the link between general principles of engineering design risk analysis and project
risk management.

A typical approach in engineering design is to decompose risk into a triple
defined by the hazard, vulnerability, and consequence (HVC) components
(McLaughlin 2001; Mander et al. 2012). For example, given a known location of
future building and the exposure of such location to seismic risks (i.e. hazard) a
structural engineer design a building with features that can provide structural
responses (i.e. vulnerability) such that it minimizes the overall expected damage
over the facility’s life-cycle (i.e. consequences). Here, there is first a hazard compo-
nent defined by a model that maps frequency or probability to some intensity mea-
sure. Then, there is a structure response model that maps how the structure would
respond to different level of hazard intensity, and it is followed by a function that
maps structural responses to damage.

These HVC components can be viewed as more general and decomposed repre-
sentation of the individual risk. This representation is flexible and can be further
reduced to more aggregate forms based on the available data and applicability. For
example, in projects (in contrast to engineering design) it is not always possible to
obtain data on hazards and vulnerability separately; or furthermore, it is often not
feasible as hazard and vulnerability components are not independent.

Hence in this kind of situation one can combine hazard and vulnerability compo-
nents into a single measure i.e. probability and create a risk representation that is
now commonly used in project management: Risk = Probability x Consequence.

Figure 2.2 illustrates the four-step process that defines the risk by modeling haz-
ard, vulnerability, and consequence functions separately. These functions are typi-
cally exponential; hence we can use log-log transformation to show their relationship
in a close-to-linear form. This is only for the purpose of illustration and the process
can be applied to any function type.
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Fig. 2.2 HVC representation of risk

In the upper right corner one defines the hazard in terms of the frequencies and
intensity. In many instances in projects this is, arguably, the key source of uncer-
tainty; for example, the occurrence of a significant weather event that will shut
down the construction site. However, it is natural to think that weather events differ
in their intensity; hence the graph in upper right quadrant represents frequency vs.
intensity of the hazard. Structures, teams, projects, and organizations respond dif-
ferently to the same hazard intensity. In other words they show different vulnerabil-
ity to the condition. The graph in upper left quadrant shows a functional relationship
between project response and the hazard intensity. The vulnerability can also be
referred to as exposure to hazard and it is often a decision variable; in order words,
we make project or design decisions that will expose our project or structure/prod-
uct to the hazard at different levels. One would be tempted to say that we should
address this by avoiding vulnerability in the system, but this is often not feasible, or
if it is, then it is often too costly.
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The next step in this HVC risk modeling approach is to account for the
consequences given how the project or the process responds to it. This is shown
in a bottom left quadrant. Finally, based on the available information in the first
three quadrants, one can derive the probability distribution of consequences
given the frequency/probability. This is shown in a bottom right quadrant. Hence,
the integral over the function defined in a bottom right quadrant is also an
expected value of the risk.

As shown in Fig. 2.2, the four-step HVC modeling approach to risks requires
separate functional representation of hazards, responses, and consequences. As such
it can be extended to account for different types of responses and outcomes or dif-
ferent types of variables i.e. continuous or discrete. By doing this one can assess
correlation and dependency between the activities and objectives. However, note
that the only source of uncertainty in Fig. 2.2 is the hazard intensity — frequency
function; response and consequence functions are deterministic. This is also not a
limitation as the representation can include model uncertainty in vulnerability and
consequence components as well.

Risk defined in FMEA or in a similar risk identification methods can also be
represented using Condition-If-Then constructs (Garvey 2008). The condition
event represents the early warning sign or the root cause; the risk events are proba-
bilistic events that may occur because the condition is present, while the
consequence(s) events represent the impact of the risk event on the objectives.
Figure 2.3 illustrates this construct. Suppose the condition is that high traffic vol-
ume is present in and around the project site. A risk event might be that the access
to the site is inadequate, and the consequences of the risk event include delays,
which could cause an increase in the required resources, namely construction man-
agement and labor.

The Condition-If-Then representation provides a logical framework for defin-
ing and monitoring risk and is consistent with HVC representation of risk;
Condition Event represents Hazard, Risk Event represents Vulnerability, and
Consequence remains Consequence. From Fig. 2.3 we can also see that Condition-
If-Then representation provides a causality-based relationship that can easily be
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Risk Event 1

Delays cause increase to
Consequence 1 construction management

High Traffic Volume
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\ ) takeoff quantity
e
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Consequence 2 i
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Event 1 —_—
's R
Root Cause Risk Event 2 ]——> Consequence 3
. J
IF this risk THEN this is the
event occurs consequence

Fig. 2.3 The condition-if-then risk representation
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integrated with Fault Tree Analysis (FTA), Event Trees (ET), and probability
models including Bayesian networks.

To illustrate how Low-Impact High-Probability and High-Impact Low-
Probability risk representation fits into project networks consider Fig. 2.4. At the
lowest level of detail when incremental risk can be capture as the overall variability,
see the top network (Fig. 2.4a), the risks is captured as probability distributions of
activity durations and associated costs. To account of High-Impact Low-Probability
risk consider figure at the next level (Fig. 2.4b); if the available data allows for
identifying independent risk factors, the risk events can be modeled using probabilities
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(RE node) and the consequence on the particular activity (activities). This RE rep-
resentation can be further expanded to use the typical Condition-If-Then network
for each risk. Finally, if a resource-loaded schedule is available one can link
Condition-If-Then network to resources as shown in Fig. 2.4c. The key difference
between this and the previous network representation is the intermediate layer
between the risk event and project activities. This layer defines project response
given different kind of project structures, typically defined in terms of resource
bundle required to complete the activity (Govan and Damnjanovic 2016).

One can observe that the two bottom network formulations have risks with com-
mon conditions. In other words, the risks connected with the common cause will be
inherently correlated. Further, one also observe common dependency not only on
based on the condition, but also on a common resources bundle. This implies that
risks can be correlated without having a common cause event, but having common
resources i.e. vulnerability.

2.4 Scope of This Text

From what we said until this point even novices can see that project risk manage-
ment covers not only technical concepts coming from statistics, probability and
decision theory, but also principles that define how individuals, companies and
organizations in general perceive, process, and respond to uncertainty. Attempting
to cover all aspects of project risk management in details in a single textbook hence
require providing relevant background that we feel may distract the reader from the
original objective — introduce holistic and data analytics based approach to project
risk management. Perhaps the reader looking to find the ultimate guidebook on the
theory and practice of project risk management may find this limitation in scope
unsatisfactory, but in our experience such reference would be difficult to assemble
anyways. There is just too much “variance” in how projects are planned and exe-
cuted across different industry segments. Therefore we here focus on the elements
of project risk management theory and practice that are in common and relatively
consistent across industry segments — quantitative assessment of low impact high
probability risks, and variance in project activities in general. In our viewpoint, the
majority of texts on project risk management already provide content on high
impact low probability risks, while rigorous treatment of incremental low impact
high-probability risk to a large degree is missing.

2.5 Organizations of the Content

The remaining of this text is organized as follows. In the next part (Part II: Risk
Assessment in Project Planning — Chaps. 3, 4, 5, 6, 7, 8, and 9) we provide a com-
prehensive review of the formulations for cost and duration functions, evaluation



References 41

of functions of random variables using second moment approach including
estimating mean and variances from data and/or expert judgements, modeling the
effect of independence and correlations, and estimating management reserves and
contingencies. In Part III: Risk Monitoring and Reassessment in Project Execution
(Chaps. 10, 11, 12, 13, and 14) we focus on applying Bayesian revision to manag-
ing contingencies, forecasting project completion using S-curves, implementing
statistical process control methods for earned-value analysis, and using learning
curves for forecasting.
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Chapter 3

Second Moment Approach

for the Probability Distribution of Project
Performance Functions

Abstract In this chapter we present the second moment methods for evaluating
project performance functions where random variables can be continuous and/or
discrete. We provide a comprehensive review of the method in context of its accu-
racy when compared to the results from the Monte Carlo simulation. Furthermore,
we analyze the effect of correlations among the random variables and the lineariza-
tion of the project performance functions.

Keywords Method of moments - Project performance functions - Correlations

3.1 Introduction

Quantitative assessments of project risks require use of linear or nonlinear project
performance models. For example, the total project cost as one of the most impor-
tant project indicators is simply the linear sum of work package costs; similarly,
project duration is the sum of activity durations on the critical path. On other hand,
there are several instances when quantitative risk assessment requires nonlinear
models; for example, parametric cost models or productivity-based models are
often nonlinear. But, as will be seen below, some approximate methods may be used
to linearize even these functions, without the need for numerical methods such as
Monte Carlo simulation. There are many instances in which Monte Carlo simula-
tion is the best, or even only, method, especially when the model is discontinuous,
involves decisions, or cannot be readily expressed in closed mathematical form. In
this chapter, however, it will be seen that simple second moment methods give
essentially the same answers as Monte Carlo simulation.

The second moment approach does not deal with full probability distributions
but uses only the means and variances (the first two moments) to characterize
uncertainty. Of course, the first two moments are actually measures of central ten-
dency and say little about the probabilities in the tails of the distributions. The
second moment approach given here is based on some simplifying approximations
about the forms of the probability distributions, and these assumptions define the
tails of the distributions. However, in most cases of project risk assessment the
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probability distributions used to quantify uncertainty are largely subjective and
based on judgment and experience rather than hard data. If there are historical data,
they are typically sparse, and probably give little or no information about the tails
of the distributions anyway. Therefore, it may be unnecessary to perform long sim-
ulations or detailed calculations when the inputs are at best known only to perhaps
two significant digits.

The second moment approach may be used when one is interested in total project
variability or uncertainty. Using this approach, one may wish to find the risk func-
tion or probability distribution of, for example, the total cost of a project. This prob-
ability distribution may then be used to determine if the process is capable, in the
statistical process control sense, of meeting the requirements. For example, suppose
that the user’s specification or requirement is that a certain project be executed for a
total budget of $10,000,000, including contingencies, and that the likelihood of
overrunning this budget should be less than 10%. Suppose that the second moment
analysis gives a total cost probability distribution such that the likelihood of exceed-
ing $10,000,000 is 5%. Then the project as structured is capable of meeting the
specification. On the other hand, if the analysis shows that the probability of exceed-
ing $10,000,000 is 20%, then the project is not capable of meeting the sponsor’s
requirement. Either the process that generates this project must be reengineered or
managed such that the probability of exceeding the budget is reduced to the accept-
able number, or the sponsor must agree to add more budget or contingency, or the
project will be cancelled.

There is another reason for performing this analysis, in addition to determining
whether or not the project is too risky as it stands. It was stressed earlier that one
major function of the project manager is to manage the project risks, and the risks
are typically associated with individual project elements (work packages, activi-
ties, contracts, etc.). However, given that a complex project may have many work
packages, and that the project manager has limited time and resources, how does
he/she know which work packages should get his/her attention? As will be shown,
the variability or uncertainty in the total cost of a project can be estimated, and if
this variability is too high, then those work packages that make the greatest contri-
bution to this uncertainty can be identified, and these should receive the most atten-
tion from the project manager. That is, the project manager can use these results for
time management.

One variable of interest in all projects is cost. But there may be other variables
related to project performance. For example, in aircraft design, performance con-
siderations may place an upper limit on the weight of the aircraft. The weight of
the aircraft is the sum of the weights of all the systems and components comprising
the aircraft. Before the aircraft is designed, engineers make estimates of the
weights of each system and component, but these estimates may have significant
uncertainties, depending on how much this aircraft differs from previous models.
If the analysis of the a priori probability distribution on the weight of the total
aircraft indicates that there is too much chance of exceeding the weight limit, then
some actions need to be taken to reduce the weights of some components, or to
reduce the uncertainty associated the weights. Therefore, the project manager for
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the aircraft design process should be interested in which components are making
the greatest contributions to the total weight uncertainty.

Software development projects may have performance criteria such as execution
time. Electronic products, consumer products, medical equipment, and many other
types of development projects have performance criteria as well. Depending on the
state of the technology used, the final product performance, and the engineering
cost to meet this performance, may be highly uncertain before the project begins.

This chapter presents a simple method for answering these questions, without the
need for Monte Carlo simulation. It is applicable to project risks that meet the defi-
nitions given here, of differential risks or uncertainties. That is, it applies to pro-
cesses that are in statistical control, in which the variability is due to common
causes, but that may or may not be capable of meeting the specifications. This
method is not necessarily applicable to processes that are out of control, that is, for
which there is some unique external cause with very low probability of occurrence
but very high impact on the project if it does occur.

3.2 Formulation of the Second Moment Method

Suppose there are p work packages or other cost elements and suppose that experts
are available to estimate some parameters of the subjective probability distributions
for each work package or activity. The usual practice in engineering analysis as well
as project cost estimation is the bottoms-up method: the parameters of the lowest
level elements (activities, work packages, or line items) are estimated, and then
these are combined based on known principles to find the parameters of the total
system. The logic behind this exercise is that different specialists or cost estimators
may be able to estimate some specific processes, work packages or subcontracts, but
none of them is qualified by knowledge or experience to estimate the statistical
properties of the total project all at once. It may be the case that whoever makes the
cost estimate (or bid) for a work package is most qualified to estimate the probabil-
ity distribution on that cost. For example, suppliers or subcontractors may make
initial cost estimates for equipment or subcontracts before sufficient design infor-
mation is available to make firm offers. As more engineering information becomes
available, the uncertainty in these estimates can get smaller. Therefore, it seems
reasonable to perform the estimate for each work package separately and then com-
bine the results in some way using probability concepts.

Methods for making subjective judgments about probability distributions are dis-
cussed elsewhere. Here, it is assumed that for each work package j there is a cost X;,
assumed to be uncertain but characterized by some probability distribution, and that
some experts have estimated some parameters, from which the mean value y; = E[X]]

and the standard deviation o, =, [E [(X M )2} can be derived for all work pack-

ages. The goal is to determine the probability distribution for the sum of these terms
over all line items.
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The common assumption that all the work package costs are statistically
independent may be a poor assumption and may result in very unconservative esti-
mates of the total risk. Therefore, some experts familiar with the interaction
between work packages j and k can estimate the correlation coefficients p; ,, where
P« 1s a number between —1 and +1. The meaning of p; , can be interpreted as fol—
lows: suppose that there are two work packages J and k, with variances o; andoy,
and correlation coefficient p; .. The quantity p « 1s the fraction of the variance of
X; that is explained or removed by knowledge of X;. That is, suppose the project
manager initially does not know the true values of X; or X,, but attributes to them
the variances Gf and o , respectively. Suppose then that work package k finishes,
and the project manager now knows the true value of X;. The project manager’s

uncertainty in work package j is now G - pl L0 =0 (1 pj . ) It pik =0, then
knowledge of the true value of X; pr0v1des no 1nf0rmat10n about the value of X;

because the estimate of the variance does not change. If pik =1, then the project
manager’s estimate of the variance of work package j is zero; knowledge of the true
value of X, provides complete information about the value of X;. Clearly, most
cases are somewhere between these limits. The critical question is this: If knowl-
edge of the true value of the cost of work package k would cause you to revise your
estimate about work package j, then you believe that activities j and k are corre-
lated. Conversely, if knowledge of the true value of the cost of work package k
would not cause you to revise your estimate about work package j, then you believe
that activities j and k are independent (for more about estimating correlation coef-
ficients using expert judgments see Chap. 6).

Using the correlation coefficients, the covariances are computed as p; 0,0, For
the general case:

Mean total cost = u, = E{ zp:X/} ZE[ ] =
=1

1:1

Here, the symbols E [X ] Hs X, ; all have the same meaning, the average value,
the mean value, or the expected value of the unknown variable X;

p P
Variance of the total cost =07 = > »'p, 6.0,
=1 k=1

That is, the variance of the sum is the sum of all the variances and covariances. This
may be proved, but the proof is given elsewhere and is omitted here. Noting that
symmetry requires that p; , = p; ;, then the previous equation may be rewritten as:

p-1
Variance of the total project cost = o; = ZG +2>° Z P00,

Jj=1 j=lk=j+1

In this last equation note that the variance of the sum of the costs is the sum of
the variances of all the individual work package costs plus the sum of all the
off-diagonal covariances. From this it is easily seen that, if the correlations are
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generally positive, that is, p; , > 0, then assuming independence when the variables
are not independent is equivalent to neglecting all of the off-diagonal covariance
terms, which would result in a low value for o, and would underestimate, perhaps
grossly underestimate, the true value of the total variance.

In this derivation it is not assumed that all the probability distributions for all
the work packages are Normally distributed, or follow any other particular distri-
bution. In fact, the work package costs may well not be Normally distributed, as
they certainly cannot be negative. There are a number of reasons for believing that
the work package costs are nonnegative, asymmetric, and skewed to the right. To
put it another way, the probability distributions for the individual work package
costs may have third, fourth, fifth, and even higher moments, but the method given
here uses only the first and second moments (the mean and the variance respec-
tively). We are not assuming that the moments higher than the second are zero; we
are just not using them. This is, of course, an approximate method, and the justifi-
cation for these approximations will be discussed below.

It is readily apparent that all of the calculations given above can be easily imple-
mented. To express these equations in compact matrix form, define the covariance
matrix as the p-by-p matrix V, in which the elements are:

Vi =0, =p;0;0, foralljandk, 1< j<pl<k<p

with the definitions

Then the covariance matrix is, taking advantage of symmetry:

2
Vi Vi 1p O, Op~ Oy o, p,0,0, " p,0,0,
_ _ 2
V= Vi Vn Vap | =] Ou n’ 2w | =] Pr%19, O, p,,0,0,
2
vpl VPZ o vpp Gpl 2" 122 plﬁGIGV pZPO-ZGI’ o GI’

In general, the covariance matrix may be fully populated. Also, it should be
assumed that all that the work package cost correlation coefficients are nonzero,
unless it is explicitly shown otherwise.

Consequently, Monte Carlo simulation is unnecessary to find the mean and vari-
ance of the total cost or duration of a project; one simply has to sum all the work
package means to find the mean of the total, and to sum all the variances and covari-
ances to find the variance of the total. This method has the following two mnemon-
ics: (a) the mean of the sum is the sum of the means; and (b) the variance of the sum
is the sum of the covariances.

This method gives only the first two moments (the mean and the variance) of
the total cost and does not give a specific probability distribution on the total, nor
does it account for skewness, kurtosis, and other higher moments. Therefore, it
may be argued, Monte Carlo simulation is necessary to determine the form of the
probability distribution and the values in the tails.
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First, Monte Carlo Simulation gives useful results in the tails only when a large
number of repetitions is performed. Second, the Central Limit Theorem indicates
that the probability distribution of a sum of independent random variates, drawn
from any probability distribution, approaches the Normal. Of course, the Central
Limit Theorem is not strictly applicable to the general case considered here, as
independence is not assumed. However, “any linear combination of normally dis-
tributed variables, not necessarily independent, is normally distributed” (Denrell
2004) by the replication property of the Normal distribution. The issue concerns
linear combinations of variables in general, not necessarily independent and not
necessarily Normal. An extensive set of Monte Carlo experiments have been per-
formed with linear combinations (that is, sums) of individual work package costs
drawn from symmetric or highly skewed asymmetric distributions, with negative,
zero, or positive correlation coefficients. From these experiments, it can be con-
cluded empirically that the probability distribution of the sum is nearly Normal,
with mean g, and variance o, as computed from the expressions given above,
regardless of the skewness or correlation of the individual terms in the summation.
In other words, empirically, the Central Limit Theorem seems to give good approxi-
mations even when the variates are not independent. And good approximations are
all that we need here, because the probability distributions of the individual work
package costs are subjective to start with.

Therefore, the conclusion is that a Normal distribution, with mean and variance
computed as above, is a reasonable approximation, which allows us to determine
the entire probability distribution, such as the quantiles in the upper tail, using the
tables of the standardized unit Normal distribution. Some confirmations of this prin-
ciple are given next.

These conclusions apply to variates that are the sum (or the weighted sum) of
dependent or independent random variates. Therefore, this method can be used to
approximate the uncertainty in the duration of a path through a project network, as
the path length is the sum of the durations of the individual activities along the path.
Of course, for project durations using the critical path (the longest path from start to
finish), this method requires that the critical path does not change for random varia-
tions in all of the network activities. If, for some values of the random variables,
different paths can become the critical path, the total duration will not be the sum of
a fixed set of activity durations. Application of the maximization operator to the set
of all possible paths is not a linear operation, and other methods, for example Monte
Carlo simulation, become necessary.

Of course, populating the complete covariance matrix may be necessary, but not
easy. Estimating the mean values requires one estimate per work package, for a total
of p means. Estimating the variances, or the main diagonal terms, requires one esti-
mate per work package, or p variance estimates. However. estimating the

p(p-1)
2

the number of variances increases as p but the number of covariances to estimate
increases as p?, the estimation process is not trivial if p is large. Nevertheless, expe-
rience has shown that it is quite feasible for engineers and constructors in industry
to estimate these correlation coefficients on the basis of experience.

dependencies, or off-diagonal terms, requires estimating correlations. As
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Example 3.1

An actual power plant under construction some years ago is used as an example
application. The project was large, but the example is small; all the calculations here
can be done by spreadsheet or even by calculator. The project costs were summa-
rized into 18 cost accounts. For each of these accounts, the cost engineers on the
project estimated three points on the probability distribution for the cost. These
three points corresponded to the 10th, 50th, and 90th percentiles, x5, Xsp, Xoo.
However, other percentiles could be used by suitably modifying the expressions
below. The cost accounts and the estimated values are given in the table below. Note
the following:

e Account 1 represents the costs expended up to the date of the estimate.

e Account 44, the largest single account, is interest on funds used during construc-
tion and therefore depends on the other costs.

e Accounts 51, 53, 55, 57, and 59 represent additional costs if the schedule slips.

e The accounts vary considerably in size.

The second moment method described earlier requires moments, and these
moments are computed from the engineers’ estimates for three points for each
account, using equations developed by Keefer and Bodily (1983).

The values for the computed means () and standard deviations (o) are given in
the last two columns of Table 3.1.

Summing the mean values in this table gives an expected value for the total proj-
ect cost of $3043 million. Assuming the cost accounts are all independent, the
square root of the sum of the variances of all accounts gives a standard deviation for
the total project cost of $97 million.

However, the cost engineers on the project also estimated the correlation coeffi-
cients, which are given in the matrix below.

Account 1 10 12 14 16 18 22 24 26 28 32 44 45 51 53 55 57 59y
- ¢ i o o o 1 & o 0 a] t 1 ] O O 1 5] o
10 1 1 8.6 o | 0.6 0.6 0.6 0.6 U
12 1 8.6 1 1 1 1 1 1 1 1
14 o o o 1 o s o 4]

16 o o o o 1 0.8 0.8 0.6

18 1 9.6 w1 1 9.8 1 1 0.6 1
22 1 8.6 1o wu 0.8 uw 1 0.6 1
24 1 9.6 0o o 0.6 0.6 8.6 1 0.6 u
26 o e.6 o u ] o u 0.6 1 o
28 1 o 1 1 1 1 ] 1 1 c !
32 1 1 t ] 1 1 ] 1 1 1 1 0.8 :
44 o 9.8 o ) 9.8 .8 0.8 0.8 0.8 0.8 0.8 1 o 0
45 ] 1 o o 1 o o 1 1 & o o 1 ]
51 o o 1 1 1 ] 1 ] 1 ]

53 1 o & 1 0.8 0.8 u 1 1

55 o o g O o & o 1 1 u 0 o 0.4 0.4 1 0.4 0.4

57 o g o o 1 ] o 1 1 u 1 0 1 0.4 0.4 0.4 1 0.4

59 o o t 1 1 1 ) 1 1 o 8.3 o 1 9.4 0.4 0.4 0.4 1

1 8.8 o 1 1
1 1 1 1
1 | (8} i1 1
g 0.8 o o 0.8 ]
1 9.8 u 1 9.8 1
1 9.8 u ] 1
1 9.8 o o
1 0.8 o o 1 o 1
1 8.8 u 1 1 1 1
1 1 9.3

) )

O 1 O ] o
1 0.4 0.4 0.4 0.4
1 9.4 1 0.4 0.4 0.4
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Table 3.1 Three-point cost estimates (in $1,000,000); means and standard deviations

Account | 10th 50th 90th Std Dev

no percentile x;, | percentile x5 | percentile xqo | Work package name | Mean (u) | (o)

1 1035 1036 1037 Expenses prior to 1 | 1036 0.78
July

10 135 185 220 Manual labor 180 333

12 50 76 100 Construction 75 19.5
services

14 1 2 10 Equipment 34 4.36

16 10 14 30 Bulk materials 17.7 8.29

18 20 36 60 Distributable 38.1 15.8
materials

22 20 91 100 Construction 717  |344
services (labor)

24 100 134 175 Engineering 136 29.3

26 100 123 150 Project direction 124 19.5

28 50 67 100 Quality control 71.9 19.9

32 125 144 150 Owner’s project 140 10.2
management

44 1050 1083 1135 Interest during 1089 334
construction

45 —15 -5 10 Escalation -34 9.82

51 -20 20 120 AFUDC with 38.7 |564
slippage

53 -1 1 10 Distributable 32 4.6
materials slippage

55 =3 3 20 Engineering with 6.4 9.34
slippage

57 =3 3 20 Project direction 6.4 9.34
with slippage

59 —4 4 25 Owner’s costs with 8 11.7

slippage

Using these correlations and the standard deviations for the account costs, the
covariance matrix can be easily computed using the equations given earlier.
Summing all the terms in the covariance matrix gives the variance of the total
cost; the square root of this is the standard deviation of the total cost, $170 mil-
lion. Note that this is considerably higher than the $97 million computed under
the assumption of independence. The difference, $73 million, is not trivial.
(Moreover, there is some reason to believe that the correlations should be gener-
ally higher that those given.)

Looking at the comparison another way, the mean and standard deviation can be
used to compute the 90th percentile for the total project cost; this is the value that
has a 10% likelihood of being exceeded. For the two cases, independent and corre-
lated, the 90th percentile costs are estimated to be:
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* Independent: $3168 million
e Correlated: $3261 million

That is, the project manager’s estimate for the owner of the cost such that there
would be a 90% likelihood that the estimate would not be exceeded, would be $93
million low if the figure based on the independence assumption were used.

Figures 3.1 and 3.2 show the probability density function for the costs, obtained
from this computation.
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Fig. 3.1 Probability density function for cost to complete
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Fig. 3.2 Cumulative density function for cost to complete
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3.3 Second Moment Approximations for Nonlinear
Functions

Second moment approximations can be obtained for many nonlinear functions or
combinations of variables, not necessarily independent. Suppose that

G(x1, x5, ... ,x,) is some known function of x,, x,, ... , x,, and we wish to find
the mean and variance of this function given that the means and variances of
the random variates, x;, Xx,, ... , x, have been estimated. Let

X, =E[x].% =E[x,]....%, =E[x,].G = E[ G(x,.x,.....x, ) | . Howard (1971)
gives a second moment approximation for a nonlinear function of m variables,
G(x, x5, ... ,Xp):

All the partial derivatives 0G/dx,, 0dG/ox,, ..., 0G/ox, are evaluated at the
mean values x, =X,x, =X,,...,x, =X, . If analytic derivatives of the function
G(x;,x,, ... ,x,) are not available, but the output G(x,x,, ... ,x,) can be computed,
the partial derivatives 0G/ox,, 0G/0x,, ..., 0G/ox, may be approximated by tak-
ing finite differences over multiple values of the output. Note that Howard’s formu-
lation has a term in the approximation such that the expected value of the function
is dependent on the values of the second derivatives of the function.

Suppose, as an example, we are considering a project where its future cost can be
approximated using a nonlinear cost function that considers a similar project and
adjusts the estimate based on differences in the scope.

Let a represent a factor adjustment, x; the cost of previous project, x, the unit
capacity of a similar project, x; the unit capacity of the currently considered project,
and x, the fixed cost of the item that was only needed in the previous project then we
have a difference in project cost defined as: a[x;(x; — x3) — x4]

Also we can write the general expression for G(x,x,, ... ,x,,) as:

G(xl,xz,x3,x4):a|:x, (xZ —x3)—x4:|

We can now write the partial derivatives of G(x;, x5, X3,X,):

B (%) | L=
ox, 2 o '
0G 0G

a—:axl — =
X, Ox,
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These derivatives are to be evaluated at the mean values of the variables.
Similarly, the second derivatives are:

2 2 2
Ox, Oox, Ox,
0°G 0’G 0’G
=dad =—a =
0Ox,0x, Ox,0x, Ox,0x,
0’G 0 0’G oG
0x,0x, 0Ox,0x, 0x,0x,

We may now write the approximation for the expected value of the annual reve-
nue as:

‘226G

el 4
G=E[G(xxm )] za[ 5 (5 -%)-%, ]+ S350

i=1 j=1 i

cov[xl ,xj]

Where the covariance may be written as cov[x;, x;] = p; ; o; 0;.
And the double summation can be written as the sum of all the terms in a 4 by 4
matrix:

144

EZZ

=1 j=1

cov[x,.,xj] = %Sum

Here, Sum is the summation of the terms in the following matrix

1 2 3 4
1 0 Pi,0,0, —p;0,0; 0
2 p,00, 0 0 0
3 -p;0,0; 0 0 0
4 0 0 0 0

We can now substitute the values for the partial derivatives into the general
expression for the variance:

Here Sum is the summation of all the terms in the following matrix:
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1 2 3 4
—_ — )2 2 e —_ —_ = —_ —_ —_
1 (x2 - x! ) o-l xl (xl - x.’! )pl,lo-lo-z _xl (XZ - x! ) pI,KGIO-K _(XZ - x! )pI,AO-IO-A
—_— = —_ —_2 2 —_2 —_
2 xl (xZ - x3 ) pl,EGIO-E xl 62 _xl p2,36263 _xl p2,46264
—_ = —_ —_2 _2 2 —_
3 _xl (XZ - x! ) pI,KGIO-K _xl p2,30-20-3 xl 0-3 xl p3,4630-4
-_— —_— —_ —_— 2
_4 _(xl - x3 ) pl.46164 _xl p2,4620-4 xl p3‘46364 64 -

Note that: The equations given earlier are approximations, and are not exact
under all circumstances. The validity of the approximations can be gauged by com-
paring the approximation results with results from Monte Carlo simulation.

Example 3.2
Assume that the means and standard deviation of the four variables are as given in
Table 3.2.

To simplify the presentation, take a = 1.

Case 3.1 As a first comparison, we assume that all the variables are independent.
That is, we take the correlation matrix to be:

AW D =
S O O = =
S O = O N
S = O O W
- o O O &

We now compute the answers in two ways:

+ Compute the approximate mean G and variance var{G] from the equations
above.

e Simulate the process by Monte Carlo, compute the histograms of the results, and
compute the mean and variance from the computed values for [x;(x, — x3) — x,].

The Table 3.3 shows the results for this case. The Monte Carlo simulation used
32,000 random trials.

Table 3.2 Example 3.2 data

Variable Mean (u) Standard deviation (o) Coefficient of variation (COV)
X 100 20 0.20
X3 50 10 0.20
X3 40 10 0.25
X4 500 10 0.02
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Table 3.3 Case 3.1 results

Method Mean Standard deviation Skewness
Approximation 500.00 1428.32 NA
Monte Carlo simulation 502.58 1463.49 0.16

0.09 1

0.08 | == Second moment Method using |

Normal Distribution

s Monte Carlo Simulation, 32000
trials

Probability Density

-6000 -4000 -2000 0 2000 4000 6000 8000
Cost Difference ($ millions)

Fig. 3.3 Comparison of Monte Carlo with second moment method

Note the large value for the standard deviation, nearly three times the mean,
computed by both methods. The largest coefficient of variation of any of the input
variables was 25%, but the coefficient of variation of the resulting function is 293%.
This results in a large probability that the cost difference is negative.

Figure 3.3 plots the probability density functions computed from the results.
The Monte Carlo curve is the histogram computed by the simulation, the curve for
the approximate method is a Normal distribution using the computed mean and
variance. The approximate method determines two moments of the resulting
distribution, but does not determine the entire distribution. Therefore, a Normal
distribution is used.

From these comparative results, we can observe that:

» The difference in the means is negligible.

» The difference in the standard deviations is negligible.

e The Monte Carlo simulation histogram is very close to Normal. The computed
skewness coefficient shows minor skew to the right, but this is negligible.

e There is a large probability of negative cost difference.

Therefore, we can conclude that for this comparison, with no correlations among
the input variables, the approximate method gives results indistinguishable from
Monte Carlo simulation with 32,000 trials.
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Case 3.2 Here, we consider a situation in which the correlation matrix is taken to
be:

1 2 3 4
1 1 0 0
2 0 08 0
3008 1 0
40 0 0 1

We now compute the answers in the same two ways to obtain the results (the
Monte Carlo simulation used 32,000 random trials) (Table 3.4):

Note that the standard deviation computed by both methods has decreased con-
siderably compared to the case with all independent variables. The coefficient of
variation of the resulting cost difference has fallen to 133%, much less than in Case
3.1, but still very large compared to the inputs.

Figure 3.4 plots the probability density functions computed from the results. The
Monte Carlo curve is the histogram computed by the simulation, the curve for the
approximate method is a Normal distribution using the computed mean and vari-
ance. Note that the scale on the abscissa is not the same as in the figure accompany-
ing Case 3.1.

From these comparative results, we can observe that:

» The difference in the means is negligible.

e The difference in the standard deviations is negligible.

e The Monte Carlo simulation histogram is very close to Normal. The computed
skewness coefficient shows a slightly larger skew to the right, but this is negli-
gible, and not readily visible on the plot.

e There is a large probability of negative cost difference, but smaller than in
Case 3.1.

Therefore, we can conclude that for this comparison, with positive correlation
between x, and x; the approximate method gives results indistinguishable from
Monte Carlo simulation with 32,000 trials.

Case 3.3 Here, we consider a situation in which the correlation matrix is taken to
be (blank cells signify 0.0):

1 2 3 4
1 -0.8 0 0
2 08 1 00
30 0 1 0
4 0 0 01
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Table 3.4 Case 3.2 results

Method Mean Standard deviation Skewness

Approximation 500.00 663.40 NA

Monte Carlo simulation 505.94 679.59 0.33
0.094 -

| ——Second moment Method using
Normal Distribution

== Monte Caro Simulation, 32000
trials

Probability Density

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
Cost Difference ($ millions)

Fig. 3.4 Comparison of Monte Carlo with second moment method

We now compute the answers in the same two ways to obtain the results (the
Monte Carlo simulation used 32,000 random trials) (see Table 3.5):

Note that in this case the means computed by each method have decreased from
500 to about 340, due to the correlation specified. We can see from this that ignoring
correlation and assuming all variables to be independent result in errors not only in
the variances but also in the mean values. The standard deviation computed by both
methods, however, is large, almost as large as in the independent case (Case 3.1).
The coefficient of variation of the resulting revenue is now 386%, more even than in
Case 3.1, due to the high standard deviation and lower expected value. The skew-
ness computed from the Monte Carlo simulation is now negative, indicating a skew
to the left, toward lower cost difference, which can be seen in the figure below.

Figures 3.5 and 3.6 plot the probability density functions and the cumulative
probability distribution functions computed from the results. The Monte Carlo
curve is the histogram computed by the simulation, the curve for the approximate
method is a Normal distribution using the computed mean and variance. Note that
the scale on the abscissa is not the same as in the figures given before.

From these comparative results, we can observe that:

» The difference in the means is negligible.

e The difference in the standard deviations is negligible.

e The Monte Carlo simulation histogram deviates from the Normal. The computed
skewness coefficient shows a visible skew to the left. Note that the second
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Table 3.5 Case 3.3 results

Method Mean Standard deviation Skewness
Approximation 340.00 1311.53 NA
Monte Carlo simulation 338.00 1345.87 -0.59

Second moment Method with normal
distribution

Monte Cardo Simulation, 32000 trials

Probability Density
~—~——_|

-6000 -4000 -2000 [} 2000 4000

Cost to complete (Smillions)

6000 8000

Fig. 3.5 Comparison of Monte Carlo with second moment method — histogram

moment approximation cannot match results that are skewed, as skewness is a
third moment property, under the assumption that the result is Normal. Some
other assumption would have to be made regarding the third moment.

* However, the differences between the two solutions on the cumulative probabil-
ity distribution plot are small. The probability of negative revenues, for example,
is larger for the second moment method using the Normal curve than for the
Monte Carlo simulation, 0.398 versus 0.328, a difference of about 0.070 at the

maximum.

Therefore, we can conclude that, for this comparison, with negative correlation
the approximate method gives results that are conservative compared to Monte
Carlo simulation with 32,000 trials. However, this conclusion is not necessarily
valid for other conditions involving nonlinear combinations of variables. More
research needs to be done on suitable second moment approximations for typical

cases used in practice.
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Fig. 3.6 Comparison of Monte Carlo with second moment method — cumulative

3.4 Discrete Random Variables in Linear and Nonlinear
Models

In some project performance functions discrete random variables must be combined
with continuous. Therefore, we discuss here how to get the first two moments of
these types of variables.

Consider, for example, some cost element of a project that may be incurred — or
may not. We might be seeking a building permit, for example, and there may be
some factor that may or may not be required by the permitting agency. The regulator
might require a flood control system that we do not feel is necessary, but the regula-
tor could nevertheless impose it. Call this factor y. Let p represent the probability
that this factor will be required (that the regulator insists on it in order to issue a
building permit). Then we have the situation that either:

(i) The value of y is zero, with probability 1 — p.
(i1) The value of y is Y with probability p. Here we assume that Y is known with no
error.

Then the mean value of y is:
My :E[y]:pY+(1—p)0:pY

The expected value of y? is:

E[y*]=pY* +(1-p)0=pY



62 3 Second Moment Approach for the Probability Distribution of Project Performance...

Then the variance of y is given by:
o =Var[y]=E[y* |- (E[y]) = p¥*~(p¥) = p(1-p)?
And the standard deviation of y is:
o,=Yp(1-p)

As an extension of the above, suppose that the value of y if the factor is required
is not a fixed number but is drawn with probability p from a probability density
function f{x), which has mean and standard deviation y,, .. Then the above expres-
sions become:

H, = pi,
o =po’+p(l-p)u,

2
(These reduce to the previous expressions if x4, = Y and o, = 0).

These two moments, 4,, 6,> may be added along with the moments for continu-
ous variables, as discussed earlier in this chapter. Note however that, if there is a
large proportion of these discrete variables, the actual probability distribution of
the sum may deviate from the Normal distribution. The problem is not in sum-
ming the moments; it lies in identifying what the distribution of the resulting sum
should be.

3.5 Practice Problems

Problem 3.5.1 You are in charge of a small project comprised of six sequential
activities. VP for Engineering asked you to prepare a presentation updating the
project review board on the uncertainty about the project cost outcomes. Project
engineers have prepared for you project schedule and cost estimates shown in
Table 3.6. Determine the mean and standard deviation of the cost distribution and

Table 3.6 Problems data

Schedule Labor/equip cost per period | Total material cost
Activity Mean Variance Mean Variance Mean Variance
A 17 9 10 2 500 40
B 9 5.44 5 1 50 0
C 6 1.78 0 40 0
D 5 1.78 5 0 150 20
E 4 0.44 5 2 50 0
F 9 5.44 10 3 300 20
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calculate one-sided upper 95% confidence interval for the total project cost.
Assume that the random variables are independent.

Problem 3.5.2 Consider a project situation defined in Problem 3.5.1; how would
your answer change if you consider that the activities are correlated? (see the cor-
relation matrix below).

A B C D E
A1 0 0 0 0 0
B O 1 08 08 08 08
C 008 1 0 0 0
DO0OO08 0 1 0 0
E 008 0 0 1 0
'F 008 0 0 0 1|

Problem 3.5.3 Now consider four discrete risk factors that if materialize can result
in an increase in activity duration (see Problem 3.5.1). These risk factors are listed
in Table 3.7.

Table 3.7 Problem data

Risk factor Affects activity Probability Consequence

1 A,D 0.05 CA)=4;,C(D)=1
I B 0.10 CB)=2

I C 0.01 C(O)=6

1AY E 0.05 CE)=1

(A) Find one-sided upper 95% confidence interval on project completion time that
includes both discrete risk factors and general variances in duration of the
activities defined in Problem 3.5.1. What are the key assumptions?

(B) How would your answer change if you consider that the risk factors above are
correlated? (see the correlation matrix below)

(C) How would your answer change if you consider that the consequences of the
risk factors are uncertain with coefficient of variation = 0.5

(D) Can you define the distribution of the extra time added due to risk factor for
project completion time?

I o o 1
r 1.0 0 O
mo 1 04 04
m o 04 1 04
Iv. 0 04 04 1
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Table 3.8 Problem data Standard
Variable | Mean (u) | deviation (o)
X1 150 20
X2 60 10
X3 20 10
X4 50 5
X5 0.1 0.05

Problem 3.5.4 Formulate a cost function for an activity A given the following
information: X, = Daily cost of the crew and tools/equipment required to complete
a task A; X, = Unit production rate of the crew per day of the scope of work
defined by task A; X; = The total cope of work defined by task A; X, = Total cost
of materials required to complete the scope of work defined by task A; and
X = Profit and overhead percentage. Assuming these are random variables with
parameters shown in Table 3.8, determine a two-sided 95% confidence interval for
the cost of activity A.

Problem 3.5.5 Determine the mean and the variance of the future project cost X

C m
[, o.] using the following parametric scaling cost model X = Y( - j where, X
0

is the cost of project X; C, is the unit capacity of project X = 80; C, is the unit capac-

ity of a similar project ¥ = 100; Y is the cost of project ¥ = $10,000,000; and m is
the scaling parameter considered to be a random variable [y, = 0.6; 5,, = 0.1].
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Chapter 4

Monte Carlo Simulation Approach

for the Probability Distribution of Project
Performance Functions

Abstract In this chapter we discuss the implementation of Monte Carlo simulation
evaluating of project performance functions such as the total project cost and the
total project duration. We focus on the key considerations that are often ignored
when Monte Carlo simulation is implemented in project risk analysis — the effect of
correlation and the sample size selection. Further, we provide the methods to deter-
mine if the correlation matrix is positive-semi definite, if not, how to fix it. Finally
we show the method to evaluate the effect of sample size on the confidence intervals
of decision variables.

Keywords Monte Carlo simulation - Correlated random variates - Sample size -
Confidence intervals

4.1 Introduction

The availability of inexpensive and fast computing systems has brought Monte
Carlo simulation within reach of practically everyone. This is a great advance in the
ability of project teams to develop models and to perform analyses, as Monte Carlo
simulation is a very flexible and versatile tool for project engineers and managers.
Unfortunately, in a hurry to get answers, many engineers make mistakes. Two most
common types are: (a) ignoring the effect of correlation among simulated random
variables and (b) underestimating the number of trials needed to achieve reasonable
confidence limits on the results of a Monte Carlo simulation.

In many ways, a Monte Carlo simulation is like a physical experiment. The simu-
lator makes a number of random draws from specified probability distributions over
the population. However, unlike physical experiments, the population probability
distributions are known in advance, as the analyst specifies them therefore the
results become very sensitive to the underlying assumptions. Therefore selecting
the type of probability distributions and determining the correlation among the vari-
ables must be done in a rigorous manner. Unfortunately many engineers and risk
analysts skip this step all together and proceed with the simulation experiment
assuming the variables are normal and uncorrelated.
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Like physical measurements, Monte Carlo simulations are also subject to errors
due to small samples. That is, the observed relative frequencies in a Monte Carlo
simulation may differ considerably from the population probability distribution due
to small sample size. To overcome small sample size errors, the analysis must per-
form enough Monte Carlo runs to achieve acceptable confidence bounds on the
derived parameters. Therefore, determination of the number of runs depends on the
confidence bounds, which must be explicitly stated. Many analysts do not under-
stand confidence bounds, and do not bother to state them, which means that the
results of Monte Carlo simulations are virtually meaningless, just as the results of
physical experiments would be if there were no attempt to quantify the measure-
ment errors and confidence limits. Managers who use (or pay for) Monte Carlo
simulations should insist that explicit confidence limits be provided for all derived
decision variables.

4.2 Generating Independent Random Variates
from a Normal Distribution

There are a number of methods for generating normal random variates. Here we
present a method based on independent Uniform variates, just to provide context.
Any textbook on simulation and/or probability and statistics should provide a more
detailed description of the methods for generating independent random variates.

Let z be a standard unit Normal variate [N(0, 1)], which means that it has zero
mean and variance 1. Let K be a number of repetitions of the random number gen-
erator, yielding successive independent Uniform variates ry, 5, ... , I, ... , I'r. On the
interval [0, 1]. Then we can approximate the unit Normal variate z by:

K

er - K/2

Jj=1

VK /12

An obvious choice of K to simplify this expression is K = 12, in which case:

That is, we generate an approximately Normal variate by taking the sum of 12
instances of the variate and subtracting 6. It can be seen that K = 12 truncates the
Normal distribution to within the interval [—6, +6], which is to say, six standard
deviations above or below the mean.

Another common approach to generating independent Normally distributed ran-
dom variates is to use z variates and then generate Normal random variates from the
inverse of cumulative Normal distribution function.
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4.3 Consistency in Covariance Matrices

If the variances and covariances are subjective estimates, perhaps elicited from
different experts, is it guaranteed that the covariance matrix is consistent and valid?
Unfortunately, no. Consider a simple 3-by-3 example:

2 2
O, P120,0;  P130,0; O 0.90,0, 03800,
_ 2 _ 2
V=|p,00, o, p,;,0,0, |=| 0900, o, -0.60,0,
2 2
P130,03  Pr30,0; O3 0.80,0;, -0.60,0, O3

In which the correlation estimates are p, = 0.9, p;; = 0.8, and p,; = —0.6.

Each individually may be valid, but the set is inconsistent. This set of correla-
tions states that the cost of work package 1 is highly positively correlated with the
cost of work package 2 and is highly correlated with the cost of work package 3.
This implies that, if the cost of work package 1 is higher than average, the costs of
work packages 2 and 3 are likely to be higher than average as well; the costs of work
packages 2 and 3 tend to move in the same direction as the cost of work package 1.
But this matrix also says that the costs of work packages 2 and 3 are rather highly
negatively correlated; that is, the cost of work package 3 would tend to be higher
than average when the cost of work package 2 is lower than average, and vice versa,
so the costs of work packages 2 and 3 move in the opposite direction. These state-
ments are inconsistent. Therefore, the correlation coefficients must be
mis-specified.

The variances are always consistent; so any positive number suffices; but the off-
diagonal covariances may be inconsistent and this inconsistency shows up in com-
puting the determinant of the covariance matrix. This determinant must be positive.
We will not discuss determinants here in any depth; they are covered in any elemen-
tary textbook on linear algebra. We can, however, write out explicitly the determi-
nant for a general 3-by-3 matrix V. Let

2
Yii Vi Vi O, P1,0,0, P130,0;
_ _ 2
V=lvy, vy vy |=|p,0,0, 0, P230,073
2
Vi Vo Vi P130,05  Pp0,0; O3

The determinant of V is:
|V| = VIV Vi Vi VasVi ~ViaVar Vas TV Va3 Va T Vi3Va Vs — Vi3V Vs

If V is a covariance matrix, then substitution of the covariances as in the above
matrix gives:

V=070, 07 [ 1=(py" + 9 + P’ ) +2P12P1Ps |
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This value can be positive only if

1- (P122 + PRt Py ) +2P;, P30 >0
In the specific example above, this becomes
1.0- (0.81 +0.64 + 0.36) +2 (0.9)(0.8)(—0.6) =1.0-1.81-0.432=-1.242<0

which clearly violates the condition. Hence, the determinant is negative and the
specified correlation coefficients are not consistent.

4.4 Generating Correlated Random Variates

Suppose we have some function or process y = y(g) in which x is a vector of
input variables and y is the output variable of interest. Note that y(g) may be a
closed form algebraic function or a whole computer program. If all the inputs x are
assumed to be deterministic (that is, we have absolutely x no uncertainty about any
of them), then we simply use the equation (or the computer program) to compute
y=y(x).

Suppose, however, that we have considerable uncertainty about the values of the
inputs. These values are not deterministic, but are drawn from some histogram (if
we have lots of data) or some assumed probability distribution. Therefore, what we
are seeking is the uncertainty, or probability distribution, on the output y given the
uncertainties about all the values for x.

If y(x) happens to have the special linear form:

then we know from the previous work that we can use the sum of the means of the
x and the sum of all the terms in the covariance matrix for x to compute the means
and variance of y. In addition, we know that, for this special case of linear addition,
y will be distributed approximately as the Normal. Therefore, we can determine the
risk for any desired value of y.

However, if y ( X ) does not have this special form, we cannot use these simplifi-
cations. We use Monte Carlo simulation when we desire to find the uncertainty
(probability distribution) of y for any type of y(g) . We do this by, in effect, per-
forming numerical experiments: we generate a random set of values for the input
variables x using the assumed probability distributions and the correlation coeffi-
cients, and then compute the value of y for this particular random set of x . Then we
repeat the process with a new set of random inputs. Each instantiation of y is input
to a histogram, in which we count the number of times we get a value of y within a
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given interval. When we have done a great number of these numerical experiments,
we have the histogram for the outputs y, from which we can compute the risks for
any particular value.

To use Monte Carlo simulation to generate random variates that are not statisti-
cally independent, we need to satisfy a covariance matrix V. Suppose that one
wishes variates that are Normally distributed. Any programming language will pro-
vide random numbers drawn from a Uniform distribution on the interval [0, 1].
From these Uniform random variates one can generate unit Normal variates by one
of several methods, and from these generate variates that are Normally distributed
with any desired mean and variance and are statistically independent. To generate
correlated random variates, an additional step is required. If there are m correlated
variates, they must be generated all at once, in order to accommodate all the
cross-correlations.

Let:

z be a vector of m standard unit Normal variates (generated independently by any
algorithm)

x be a vector of the desired m dependent Normal variates

1 be a m-vector of the mean values of x

C be a m*m lower triangular matrix, such thatx=Cz + p

Then it can be shown that the vector x — p has the m-by-m variance-covariance
matrix V, where:

V=cCC"

The objective is to factor the covariance matrix V into the lower triangular matrix
C; the values of C are generated by the following algorithm, Cholesky
decomposition:

1
Oij = 2 CurCn
k=1

¢, =~ 7 forl<j<i<m

€

Because C is a lower triangular matrix, ¢;; = 0 for all values of j > i. Having com-
puted the elements of the matrix C, from the above, then one obtains the m Normal
random variates x,~N[{,,, 6.,], | < n < m, from the matrix multiplication:

x=Cz+p
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Caveat: note the square root function in the calculation for c;,. If at any step the
term inside the square root is negative, the process fails. That is, it is impossible to
find a set of dependent random variates satisfying the given covariance matrix.
Hence, Monte Carlo simulation will fail if the covariance matrix is not consistent.

It turns out that, for the covariance matrix to be consistent, and the algorithm
given above to succeed, the matrix V must be positive semidefinite. If the covariance
matrix is indefinite, the algorithm fails.

A method to determine if a square matrix is positive semidefinite is to compute
its eigenvalues, or characteristic values. Then, If all the eigenvalues are strictly
positive (nonzero), the matrix is positive definite. If all of the eigenvalues are non-
negative, then the matrix is positive semidefinite; otherwise the matrix is indefinite.

Suppose than that a covariance matrix is generated based on subjective estimates
of various experts and computation of the eigenvalues of this matrix shows that the
matrix is indefinite; hence inconsistent. What is to be done?

The first step is to examine the matrix for any obvious inconsistencies, such as
shown in the 3-by-3 example above. If there are apparent inconsistencies, these
should be fixed, and the eigenvalue computation repeated for the revised covari-
ance matrix.

In many cases, however, the inconsistencies may not be apparent, especially if
the covariance matrix is large. A heuristic that often helps in this case is based on
computing the eigenvalues.

If there are any negative eigenvalues, set all the negative eigenvalues equal to
zero (or some small positive number). Then, using the computed eigenvector
matrix, back-compute a revised covariance matrix V’. This matrix will probably be
positive definite; to make sure, recompute the eigenvalues for the revised covari-
ance matrix. If all are positive or zero, the revised covariance matrix is consistent
and can be used; if some of the eigenvalues for the revised matrix V' are negative,
set them to zero, back-compute a new revised matrix V”, and continue if necessary
until a positive definite or positive semidefinite matrix is obtained. Of course, there
are other methods to fixing inconsistent correlation matrix based on minimizing
differences between original matrix values and the corrected semi-definite version
(Higham 2002).

4.5 Generating Correlated Lognormal Variables

Log-normal probability distribution is of particular interest to project data analysts.
This is because it is always positive and skewed to the right.

Let Y; and Y, be two out of a set of Normally—distributed random variates, nor-
malized to zero means, with variances o-f,d,f and correlation coefficient py ;. Now,
let X; = ¢"”,X, =e" . Then X, and X, are lognormally distributed (Law and Kelton
1991). The correlation between X; and X, is given by:
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Pyj kO Ok _1

e

Pxjx = ; -
Je e -1
Or, inverting this last expression, we have
P \/[eUJ2 - 1} \/[e“*Z = 1} =M% ]
I — 1t py \/[e"fz - 1] \/[e"f - 1}
Py 0,0, =1In {1 +Pyix \/[e"? —1} \/[er _lﬂ

O L e

k

Note that there may be some values of py; , that are excluded (that is, cannot be
valid) by the requirement that the argument of the natural logarithm must be posi-

tive. That is,
[1+ Prix \/[e"f —1} \/[eﬁf —1ﬂ >0
Py \/[e”f -1] \/[e"f ~1]>-1

el

Therefore, to generate random variates X; and X, that are lognormally distributed,
with correlation py;:

 First, determine the desired parameters (mean, shift factor, variance, and correla-
tion py;,) for the original lognormal variables X; and X;.

* From these, find the parameters of the associated Normally distributed vari-
ables, Y; and Y,, and the correlation between them, py;y, from the above
expression.

* From these, generate the full correlation matrix with correlations py;, for all j
and k. Equivalently, generate the full covariance matrix py, 0,0, for all j and k.
Then, generate the set of Normally distributed variables Y, for all k.

* Then convert to the desired lognormal variates by X, = e, X  =e
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4.6 On the Number of Trials in Monte Carlo Simulation

Many engineers who use Monte Carlo simulation specify the number of runs in the
order of several hundreds. However, the actual number required for reasonable con-
fidence limits may be more in the order of tens of thousands.

As an example, suppose that a sponsor of a prospective project is interested in
estimating the risk before deciding whether or not to proceed with it. One view of
risk assessment with Monte Carlo is to compute in each simulated run an attribute
of the simulated project that depends on whether the project meets or does not
meet some criterion. For example, the attribute might be whether the project costs
overrun the budget, or risk-adjusted cost estimate, or that the project will be late,
compared to the risk-adjusted schedule. It might be based on whether the present
worth of the project, considering all future costs and benefits discounted to the
present, exceeds some specified value. It might whether the rate of return on the
project investment (that is, the discount rate for which the net discounted present
worth is zero) exceeds some value. It might be some weighted combination of
many factors.

One might ask, how can one determine the risk-adjusted budget or schedule? By
repeated Monte Carlo simulations. That is, one runs the Monte Carlo simulator for
various values for the risk adjustment (or contingency) until one determines the
budget (or risk-adjusted cost estimate) such that both the budget and the probability
of overrunning it are acceptable to the project sponsor. Or, until one determines that
there is no budget acceptable to the sponsor that meets the sponsor’s risk
requirements.

Suppose that the Monte Carlo simulation computes the criterion or attribute for
each of a number of projects using random numbers as inputs. Then the output attri-
bute is a random variable. To be specific, suppose that the Monte Carlo simulator
computes the rates of return (ROI) for some number, n, of simulated projects. The
sponsor would naturally prefer projects that maximize his ROI (if the criterion is
cost or duration, he would prefer to minimize the critical attribute). For the discus-
sion here, we will assume that the critical attribute is to be maximized, and that there
is some critical value of this attribute, set by the sponsor, such that a project with a
ROI greater than this value is considered a success, and one with a ROI less than this
valued is considered a failure. Thus, each random simulation has two possible attri-
bute outcomes:

e Success, that is, the simulated ROl is greater than or equal to the sponsor’s mini-
mum rate of return (often called the hurdle rate); or
¢ Failure, the simulated ROI is less than the minimum rate of return.

For brevity, call a project in the first class a good project and a simulated out-
come in the second class a bad project. If the probability of failure (that is, the prob-
ability of a rate of return less than the specified hurdle rate) is greater than some
value, the sponsor will not proceed with the project. Suppose the number of simula-
tion trials is n, a number to be determined. The probability of financial failure, that
is, the probability that the ROI will be less than the minimum, is then estimated
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from the Monte Carlo results as the ratio of the number of bad projects to the total
number of good and bad simulated projects. Let py;, be this ratio and let p.,;, be the
sponsor’s critical probability. Then,

If psim < pPerir then the risk is acceptable to the sponsor and the project goes forward,
but
If psim > Perir then the risk is too great, and the project is terminated.

This decision process may be regarded as an instance of hypothesis testing.
Because sponsors typically feel that the burden of proof is on the project to justify
proceeding, we may say that the null hypothesis is:

H,: the project is not acceptable by the critical decision attributes and should not be
done.

The alternate hypothesis is:
H,: the project meets the financial or other criteria and should proceed.

Then to proceed with the project, the sponsor must reject the null hypothesis,
which is equivalent to accepting the alternate hypothesis. The sponsor is assumed to
make a decision between H, and H, based on the Monte Carlo ratio p,;,, the fre-
quency of failing projects out of the number of random trials n. However, py,, is
itself a random variable and therefore it has a probability distribution of its own. We
will consider how to determine the number of Monte Carlo trials needed to achieve
some specified confidence bounds with respect to the hypothesis test, considering
the probability distribution of pg,.

Note that this error analysis does not consider modeling error. That is, the dis-
cussion here deals only with the random errors in the Monte Carlo simulation due
to small sample size. This analysis does not address the issue of the degree to which
the simulation model actually represents the performance of the real project. This
does not mean that modeling error is not important; it only means that modeling
error cannot be addressed by statistical means. Modeling error is not a random
error, it is a bias, and no amount of random testing can reduce it. In fact, modeling
error may be much more serious than statistical error, and modeling error may
actually vitiate the Monte Carlo simulation, but this is a separate problem, consid-
ered elsewhere.

The binary definition of the outcomes (simulated projects are good or bad, by the
specified criteria) means that the results can be described by the Binomial distribu-
tion. Suppose that x is the number of bad projects in n simulation trials. Then, by the
Binomial distribution,

n X _n—x
P{X =1} =f(X)=(;]p q
in which p is the true population probability of a failure on any trial, ¢ = 1 — p, and

(—j means the number of combinations of n things taken x at a time. Obviously,
X
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the population considered here is the population of all Monte Carlo simulation runs,
not the population of real-world projects. Of course, the value of p is unknown,
being the value that is being estimated by the simulation. For any x, let p=x/n be
an estimate of p (is the value that the simulation would produce if it did an infinite
number of trials). In the Binomial distribution,

E[x]:p:np

. . R x| E[x]
so the expected value of the estimate of p is E[p]=E|= |= .
Also, for the Binomial distribution, n n

Var[x] =0’ =npq

By the definition of variance, then,

o X 1 Pq
Gf, = Var[p] = Var{;} = n—ZVar[x] = -

. X .
Hence, the standard deviation of — is
n

Std. Dev. [ﬁj = Std. Dev.[p] =+/pg/n
n

Then the mean plus k standard deviations is p+k+/pg/n

The Binomial distribution can be approximated by the Normal distribution with
good agreement if np > 5 and n(1 — p) > 5. Then, the values for mean and variance
of the estimate p can be used in a Normal distribution if n is chosen large enough
to meet these conditions. Suppose that this is true (we will check these conditions
later). To define confidence intervals, we will consider several alternate approaches.

In the first example, we will define a simple symmetric confidence interval
around the value of the population proportion of bad projects, p. Then,

D —Ap < population p<p+Ap

Using the equation above, we can write:

pk L <p<prk e
n n

——
pp=k | P0=P)

Then,

n
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If the Monte Carlo simulation has been performed, n and p are known, and so
the confidence band Ap can be computed for any significance level defined by k.
This confidence band is taken to be symmetric, so we use a two-tailed test based on
the Normal approximation, discussed above. For example, if we want a 95% confi-
dence band, this corresponds to probabilities of 0.025 in each tail in a two-tailed
test, and k = 1.96 from tables of the Normal distribution.

To compute a required value of n before performing the Monte Carlo simulation,
we take the square of both sides of the above equation, to give:

(3]

To compute this equation before the simulation, we must guess a value for p. We
might assume that the value of p of interest will be of the order of p,,;, the critical
decision value. As an example, suppose that the sponsor wants a probability of 1%
or less that the project will be bad (fail to meet the financial and other criteria).
Then set p = 0.01. Suppose that the sponsor will accept a confidence band that is
10% of this value, above and below. Then, set Ap = 0.001. That is, the confidence
interval will be

0.009< p<0.011

If the sponsor wants 95% confidence that this confidence interval includes the
true population value p, then set k = 1.96. Using these numerical values in the equa-
tion for n, above, gives:

1.96 Y o
n=[——1(0.01)(0.99) = 38,032 iterations
0.001

Earlier, it was noted that the Normal approximation to the Binomial distribu-
tion is approximately accurate if np > 5 and n(1 — p) > 5. From this solution we
see that np =380 > 5 and n(1 — p) =37, 652 > 5. Therefore, the Normal approxi-
mation is valid.

Although the numerical values used above are invented, they are not necessarily
unrealistic. If we widen the confidence band by a factor of five, by setting
Ap =0.0025, so the confidence interval is

0.0075< p<0.0125

then the equation for the required n gives:

1.96 Y o
n= (0.01)(0.99) = 6085 = iterations
0.0025
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which shows that it takes a substantial number of Monte Carlo trials to obtain
narrow confidence bands on the computed attributes.

A second example takes a more detailed approach. Here, the sponsor sets two
statistical criteria:

1. The probability of rejecting a project that would really be a good project, with a
true population failure rate less than p, < p...., should not be greater than . This
is the probability that the project will be terminated (that is, the sponsor does not
reject the null hypothesis) for being too risky, based on the limited number of
Monte Carlo simulations, when it is not too risky, by the sponsor’s criteria.

2. Conversely, the probability of accepting a project that will really turn out to be a
bad project, with a true population failure rate p; < p,,:, should not be greater
than g This is the risk that the project will be given the go-ahead (that is, the
sponsor rejects the null hypothesis), based on the limited Monte Carlo simula-
tions, when it is actually too risky, by the sponsor’s criteria.

Note that a and f do not have to be identical. Also, many sponsors would say that
it is better to miss an opportunity than to take on a bad situation, and therefore
would require that the probability of mistakenly going ahead with a project that is
too risky should be much less than the probability of mistakenly rejecting a project
that is not risky, or f < a.

Let k, be a coefficient taken from the tables for the Normal distribution corre-
sponding to the error a and let k4 be a coefficient taken from the tables correspond-
ing to the error . Then we have the confidence band around the (unknown) value of
the true risk factor p given by:

Py —ky\Puq, ! n < true population p < pg+ks\|pyq,/n

Hence, the width of the confidence band is given by:

1
k\[Pad, I+ kg [pyay I :[Tj(ka Poda +Ks\Ppd5 ) =Pp = Pa
n
By rearranging this equation we get:

\/;zka paqa+k/}\,pﬂqp

Pg =Py
2
k NP4, +ks\[Psdy
Pg =Py

As a numerical example, suppose the sponsor is somewhat risk averse and will
accept only a 5% chance of going forward, based on the Monte Carlo simulations,
with a project for which the failure rate would really be more than 1%. Then, say,
py =0.011 and g = 0.05 Suppose that, in addition, the sponsor wants only a 10%
chance of rejecting a good project as being too risky, based on the Monte Carlo
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simulations, for which the failure rate would really be less than 0.01. Then, say,
P = 0.009 and a = 0.10. For these calculations, we use one-sided values in the
Normal distribution tables. Therefore, k; = 1.645 and k, = 1.282. Substituting in the
above equation for n:

1.282,0.009(0.991) + 1.645,/0.011(0.989) |

0.002

n=

which evaluates to n = 21,411 Monte Carlo iterations required. Suppose that the
sponsor is now willing to accept a 20% chance of mistakenly rejecting a good proj-
ect. Then p, = 0.009, @ = 0.20 and k, = 0.842. Then, substituting these values with
the previous:

0.842,/0.009(0.991) +1.645,/0.011(0.989)

0.002

n=

which evaluates to n = 15,762 Monte Carlo iterations. Thus, if the sponsor is willing
to accept a larger risk of missing good projects, the number of random trials may be
reduced. Other results for n will be obtained for different assumptions about accept-
able risks. Nevertheless, the number of iterations is likely to remain above 10,000.
There are other approaches to determining the stopping criteria for sampling
including a double sampling plan. In this approach, for Monte Carlo simulation,

1. A random sample of size n, is simulated.

2. If the sample contains c¢; or fewer failures (bad projects), then the project is
accepted (the null hypothesis is rejected).

3. If the sample contains more than c, failures, then the project is rejected (the null
hypothesis is not rejected).

4. If there are x, failures, where ¢; < x; < ¢, then a second run of n, simulation trials
is made.

5. If the number of failures in both runs, x; + x, < ¢;, then the project is accepted
(the null hypothesis is rejected); if not, the project is rejected.

This method often allows the project to be accepted or rejected at a smaller num-
ber of trials than a single-step sampling plan. One could extend this approach to a
multiple-step sampling plan, in which the number of failures would be tested after
every iteration, with three outcomes: reject the project, accept the project, or con-
tinue simulating. The details of how to do this are left to the reader.

4.7 Practice Problems

Problem4.7.1 Consider correlation matrix from Practice Problem 3.5.2 from Chap.
3 (i.e. a small project comprised of six sequential activities). Is the correlation
matrix consistent? If not, why not?
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Problem 4.7.2 Consider a small project comprised of four activities A, B, C, and
D. The correlation matrix, developed by a project manager, of the activity duration
for such project is shown below:

A B C D
A 1 09 07 0.1
B 09 1 03 03
C 07 03 1 03
D 01 03 03 1

Is this correlation matrix positive semi-definite? [explain your answer] If it is
not, how would you make it positive semi-definite without significantly affecting
the results? What would be the new correlation matrix?

Problem 4.7.3 A project engineer employed by an asphalt paving contractor col-
lected data one summer’s day on the arrival and processing of asphalt trucks at a
paving job (see Table 4.1). For each of the following observed or derived quantities,
determine the frequency diagrams (histograms) of the actual data:

e The inter-arrival time between trucks arriving at the site.

e The processing time for the paving machine (time actually paving).
e The time spent by trucks waiting to go on line.

e The number of trucks waiting in the queue at any time.

e Turnaround time for individual trucks.

For each of the above quantities, recommend a type of probability distribution
that seems to give a good fit to the histogram, if there is one. For example, does it
appear that the inter-arrival time for trucks has the same frequency distribution for
the entire job? Does it appear that the frequency distribution for the paving machine
processing time is the same over the period of the job? Determine the parameters of
each of these distributions from the dataset. Compare the functional form of the
probability mass function or probability density function to the histogram. (That is,
if you believe the underlying probability function for truck inter-arrival times is
exponential [trucks arrive by a Poisson process], determine the best value for the
single parameter of the exponential and plot the function along with the histogram.
Similarly, for the other quantities.)

Develop a Monte Carlo simulation and simulate the job above assuming that the
critical probability is defined when the total job time exceeds 700 minutes; in other
words the operation will need to be redesigned (i.e. project fails) if the total job time
exceeds 700 minutes. Assume that the job size is always 58 truckloads. From the
Monte Carlo results, show frequency diagrams for:

e Truck delays
» Paving machine delays (time waiting for loaded trucks and not paving)
* Total job time
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Table 4.1 Problem data
| 1I I v v VI VII VIII X X XI
1 0 6:25 6:27 0:02 6:32 0:05 CT1 0:03
2 1 6:28 6:35 0:07 0:03 6:38 0:03 W365 0:00
3 2 6:28 6:38 0:10 0:00 6:40 0:02 DL1 0:00
4 2 6:33 6:40 0:07 0:05 6:41 0:01 RT1 0:02
6 2 6:40 6:43 0:03 0:07 6:49 0:04 JH12 0:03
5 1 6:44 6:50 0:06 0:04 6:52 0:02 SCH1 0:24
7 0 7:14 7:16 0:02 0:30 7:20 0:04 JS2K 0:00
8 1 7:14 7:20 0:06 0:00 7:22 0:02 BHI1 0:02
9 2 7:17 7:24 0:07 0:03 7:26 0:02 CT1 0:45 0:01
10 1 7:25 7:27 0:02 0:08 7:29 0:02 W365 0:47 0:01
11 1 7:24 7:30 0:06 0:01 7:32 0:02 DLI 0:44 0:05
12 0 7:35 7:37 0:02 0:10 7:44 0:03 AE6 0:05
13 1 7:35 7:50 0:15 0:11 7:53 0:03 DJ2 0:06
14 1 7:35 7:45 0:10 0:00 7:47 0:02 RT1 0:54 0:01
15 1 7:37 7:48 0:11 0:02 7:50 0:02 JH12 0:48 0:00
16 2 7:45 7:59 0:14 0:08 8:19 0:20 SCH1 0:53 0:00
17 1 7:58 7:59 0:01 0:13 8:00 0:01 RG23 0:16
18 0 8:15 8:16 0:01 0:17 8:19 0:03 CT1 0:49 0:07
19 0 8:25 8:26 0:01 0:10 8:50 0:24 JS2K 1:05 0:05
20 2 8:25 8:27 0:02 0:00 8:29 0:02 BH1 1:03 0:04
21 0 8:30 8:33 0:03 0:05 8:40 0:07 W365 1:01 0:02
22 1 8:31 8:40 0:09 0:01 8:41 0:01 DL1 0:59 0:01
23 2 8:35 8:42 0:07 0:04 8:45 0:03 RT1 0:48 0:01
24 3 8:40 8:46 0:06 0:05 8:48 0:02 AE6 0:56 0:00
25 2 8:45 8:55 0:10 0:05 8:58 0:03 DJ2 0:52 0:02
26 2 8:47 9:00 0:13 0:02 9:02 0:02 JHI12 0:57 0:01
27 1 9:00 9:03 0:03 0:13 9:05 0:02 TD4801 0:01
28 2 9:02 9:06 0:04 0:02 9:12 0:06 TD4802 0:02
29 2 9:03 9:13 0:10 0:01 9:16 0:03 TD4806 0:04
30 3 9:03 9:20 0:17 0:00 9:21 0:01 TD4800 0:01

Repeat the Monte Carlo simulation for a situation in which you change one or
more of the parameters. For example, what if you increase the frequency of truck
arrivals? Decrease the frequency of truck arrivals? If the paver processing time is

exponential, the standard deviation is the same as the mean time. Can you think of

a way to reduce the standard deviation without changing the mean time? What

would be the effect of this on the production efficiency?

Table 4.2 shows definition of the terms used in Table 4.1.
Warning: Check the data. The information was recorded under field conditions.
The construction engineer who collected the data is no longer employed by this
firm. You are responsible for detecting and resolving any omissions, discrepancies,
or other issues about the data.
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Table 4.2 Description of terms

Table term | Description

1 Load number

1T Number of trucks in queue when a loaded truck arrives

I Truck arrival time — clock time when a truck arrives on site

v Time on line — clock time when truck reaches paving machine

\% Truck waiting time = elapsed time from arrival to paver

VI Inter-arrival time = elapsed time between truck arrivals

VI Truck time out — clock time when a truck leaves site

VIII Process time = elapsed time when truck is at paving machine

IX Truck number

X Truck turnaround = elapsed time from empty truck leaving to full truck arriving

back

XI Elapsed time, paving crew waiting for full truck
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Chapter 5
Correlation in Projects

Abstract In this chapter we extend our discussion on the assumption of statistical
independence among the work packages and provide the theoretical justification
why such assumption can lead to poor results. We also provide an overview of
autoregressive models and the examples of how such models can be applied to fore-
casting of project outcomes and ultimately risk assessment and management.

Keywords Statistical independence - Correlation - Autoregressive models

5.1 Introduction

In all of the discussion of risks so far, the issue of statistical dependence and inde-
pendence of the variates has been raised. Dependence (correlation) does make a
difference, and we shall see here, and later, that neglect of correlation can lead to
poor results. So, in order to handle variables that are not statistically independent or
perfectly dependent, we need to define independence and dependence more pre-
cisely. Suppose there are two events, X and Y, and that P{X} is the marginal prob-
ability of event X happening, P{X} is the marginal probability of event Y happening,
and P{X N Y} is the joint probability of both events X and Y happening together. The
general expression for the joint probability is

P{XNY}=P{XIY}P{Y}=P{YIX}P{X}

Where, P{X1Y} is the conditional probability of event X, given that event Y
occurs. In fact, we may consider that most probabilities of interest are conditional,
even though they may not be written that way. For example, we may say that X is
the event that a project overruns its schedule, and P{X} is the probability that the
project overruns its schedule, but what we may really mean is P{X1Y}, the probabil-
ity that the project overruns, conditional on (given that) event Y, the project manager
takes no action to stop it from overrunning. All predictions of project costs and
durations are really of this conditional nature.
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The necessary and enough condition for X and Y to be statistically independent
is that the joint probability of the two events be the product of the two marginal
probabilities:

P{XnY}=P{X}P{Y}

This is the same as requiring that the conditional probabilities be equal to the
marginal probabilities, that is,

P{X|r}=P{X} and P{Y|X}=P{Y}

In the independent case, the probability that event X occurs, given that event Y
also occurs, is just the probability that X occurs regardless of what happens with Y.
That is, event X is independent of event Y if P{X1Y} = P{X}.

This is the condition for complete statistical independence, but of more concern
are the degrees of dependence, as defined by the correlation coefficient p, where
—1 <p < + 1. Consider the case of the joint Normal distribution of two continuous
variates x and y, defined over Vx, — o0 <x< +o0andVy, — oo <y< + 0.
The joint probability density function for the bivariate Normal is:

exp[—;QJ
flxy)=——=2_
(x) 270,0,/1-p*

ol ea)

, in which

2 2
o 0,0, o,

Where p, is mean value of x, x4, is mean value of y, O'f is variance of x, G; is
variance of y, and p is correlation between x and y.

If p = 0, then it can be easily seen the equation above separates into two parts,
such that f(x,y) = fix)f(y), where f(x) is the marginal univariate Normal probability
density function for x, and therefore x and y are statistically independent. This not
a sufficient condition in general, however; it is possible that two variates with zero
correlation are not independent. If p = 0 and o, = ¢,, the contours of equal probabil-
ity plot in the x — y plane as circles. If p > 0, the contours of equal probability are
ellipses, inclined upward to the right, and if p < 0, the ellipses of equal probability
are inclined upward to the left. If p — +1, the ellipses contract toward a straight line
with positive slope; as p — —1, the ellipses flatten out to a straight line with nega-
tive slope.

Note that one of the features of the Normal distribution that is not present in
other probability distributions is that the correlation coefficient (sometimes called
the Pearson correlation coefficient) appears explicitly as a parameter in the
mathematical expression for the joint probability density function. This fact
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determines how the correlations are to be determined; correlation can be
computed only one way (see below) when one is using the Normal distribution.
However, there are other possible definitions for correlations. One may define
higher order correlations (third, fourth, fifth, etc.), or one may use different defini-
tions entirely (e.g., Spearman’s rank order correlation coefficient). Random vari-
ables may be correlated even if their marginal probability distributions are not
Normal. This is because correlation (or covariance) is a property of the data, and
if data are available, one can determine estimates for any definition of correlation.
If data are not available, which is true much of the time; one can still estimate
subjective values for correlations, for any form of probability distribution.

Recall from elementary probability (Walpole et al. 1993) that the Expectation
Operator, written usually as E[-], computes the mean value of any function inside
the brackets. In the discrete case, with data z;

1 n
E[z]= ;Z:,Zj
J=

In the continuous case, if f(z) is the known probability density function on z, then

Z=+0

Also, for any function of z, say g(2),

E[s()]= [ 2(2)f (2)ez

7=—©

Some obvious but useful results of the definition are as follows:

e Ela] = a, where a is a constant

* Elax]|=aEx=ap, =ax where p =X = E[x] and x is a random variate

e Elax + by] = aE[x] + DE[y] = au, + bu,, where b is a constant and y is a random
variate

The expectation E[z] is also known as the first moment of z. The second moment
of z is E[z%]. The second central moments of x and y are the variances of x and y, of
and O'y2 , defined by the expectations taken around the means:

ot =E[(v-1) Jando? =E[ (v-11)']

That is, the variance of x is defined to be the average of the squares of the devia-
tions of x taken about the mean of x. Expanding the expression for the variance, by
simple algebra,
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ol =E|(x-u) |=E[x -2px+ 12 | = B[ ]~ E[2ux]+ E[ 1]
o} =E[xX |-2uE[x]+u’ =E[x* |-p’
o =E[x*]-(E[x])
This last result is a useful expression.

More generally, the k-th central moment of any probability distribution is defined
by the equation:

v, :E[(x—,ux)k:|,Vk21

Note that the first moment of the probability distribution f(x) is u, but the first
central moment of f(x) is 0, because:

E[x-u |=E[x]-E[p]=n-n =0

The variances of x and y, o and o, were defined above by the expectations

of the squares of the deviations from the mean:

crf =E[(x—,ux)2Jandc7y2 =E[(y—uy)2]

and the covariance of x and y, o,,, is then defined by the expectation of the cross-
product of the deviations from the means in x and y:

oy = E[(x=)(y-1)]

The linear correlation coefficient between x and y is defined as

Oy
If there is a set of statistically independent variates x, x®, ..., x¥, ..., x™, with
means pV, u@, ..., u?, ..., u®; variances *V, 6*?, ..., 6*9, ... , 6°™; and k-th
central moments v\, v, @, ..., yY, ..., 1™, k > 2; then the moments of the prob-
ability distribution of the sum of all the x, x®, ..., x?, ..., x™ variates are!:

'Conventionally, the symbol for the third central moment is ys, but y is already used here for the
mean.
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The third central moment is associated with skewness, which is a departure from
symmetry; the fourth central moment with kurtosis, or the flatness or pointedness of
the distribution. Note that the odd central moments, vy, v, Us, U, etc., are identi-
cally zero for the Normal distribution, and for any other distribution that is sym-
metric about its mean. For the specific case of the Normal distribution, the central
moments are given by:

v, =0
v,=0"
v, =0
v, =3c"
Vs =

Vo, =0

2k-1

vy, =1(3)(5)(7)...(2k ~1)o*

The Normal distribution, conventionally abbreviated as N[u,c”], has many
moments but only two parameters, ¢ and o, as shown in the general equation. The
unit standard Normal distribution, N[0, 1], has zero mean and variance equal to one.

The second moment approach is a method for approximating probability distribu-
tions using, as the name implies, only the first two moments, the mean and variance.

Consider the linear combination of random variates x; given by:

y=a,+ax +ax,+...+ax,

in which the value of g; are constants. Then,
U, =a,+ E{Zajxj} =a, + ZajE[xJ =a, + Zajyj
J=l j=l J=l
" 2
2
o :E[()’—ﬂy) } =E {Z;aj (xj —uj)}
=

Expanding the last equation by multiplying out all the terms in the square of the
summation gives:
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n n
2 _
o, =22 4,40;

j=1k=1

Here o, is the covariance between x, and x;, and, by convention, oy = 6,>.
If all the x; are statistically independent, then the cross-product terms in the cova-
riance vanish for Vj # k, and the variance of y reduces to

n n
2 2 2 2
o, = Z“j 0= Za.i g;
= =

But only if all the variates are statistically independent.

In matrix notation, the variance-covariance matrix (often written as simply
covariance matrix), V, consists of all the variance and covariance terms, with o the
entry in row j, column k:

V=[c7jk]

The terms on the main diagonal are the variances oy, = ¢;> and the off-diagonal
terms are the covariances. If all the covariances (all the correlation coefficients)
are zero, then the matrix is diagonal and all the variables are independent.

Thus, there is substantial mathematical simplification if the variates are statisti-
cally independent, but there is also potential for substantial error if they are assumed
to be independent when they are not. To get a simple bound on the possible error,
rewrite the equation for the variance of y as

n n
2 _
o, = ZZ%%%
j=1k=1

and assume that all the a;, pj and o are the same; i.e.,

a,=a, =a, for Vj,1<j<n; forVk,1<k<n

o,=0" fork=j

0, =p;0,0,=po’ fork=j

Then the variance of y reduces to:

n n n
2 2 2
o, = Za/‘ o;+ Zzaﬂkpjk%%
=

j=1k=1
k#j
n non
2 _ 2 2 2 2
0l =340+ Y Yupo
j=1 j=1k=1
k#j

Gf =na’c’ +rt(rL—1)p61262
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When p = 0 this reduces further to o, =na’c’ butas p —+1, o, > n’a’c’.
This indicates that, for p > 0, an assumption that the variates are statistically inde-
pendent can greatly underestimate the variance, by as much as a factor of n. The
standard deviation is an indicator of uncertainty or risk, so assuming statistical inde-
pendence, p = 0, may underestimate the risk, and therefore lead to unconservative
results if p > 0 (A corresponding bound cannot be stated for p < 0, as it is not pos-
sible for all the variates to be negatively correlated simultaneously).

5.2 Project Time Series and Autocorrelation

Another indication of the effects of statistical dependence can be obtained by con-
sidering a project as a time series, and applying some simple results from time series
analysis (Hamilton 1994). Consider the simplest case, the first order stationary
autoregressive process AR(1) (note that this is a Markov process):

z,=pz +u(l-p)+u,

in which,

e 7z is arandom variate representing the value of the time series at time t; and

* 1, is a random disturbance, usually assumed to be Normal, with zero mean and
variance 63 , which is uncorrelated with any previous disturbance, u, _;, or with
any value of the series z,.

The equation just above may also be written, by subtracting y from both sides,
as:

{Z, —,u} = p{ZH —,u}-l-u,

This discrete time series is first-order because it considers only the first-order
difference z, — z,_; it does not consider the second-order term z, — z, _ »; the third-
order term z, — z, _3; etc. One needs higher-order processes to cover these
situations.

As this process is assumed to be stationary, the mean of the process is constant,
or

E[z]=E[z.]=E[z_] for Vk<1
Then, taking expectations of all the terms in the AR(1) equation given above,
E[z,]=pE[z_, |+ u(1-p)+E[u,]= pE[z, ]+ u(1-p)+0

(1=p)E[z]=n(1=p) or E[z]=u
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Here p us the (constant) mean of the process, which can be determined by
computing the average of the process. Similarly, it is possible to find a simple
expression for the variance of the process: First write the defining equation for the
variance of z,:

ElGa)

Then substitute the AR(1) equation for z,, expand the terms in the squares, take
advantage of the terms assumed to be zero, and clean up the algebra:

[( — J [(/OZ,l pu+u,)2}

[( Z,— 2} [ (2. l—u)2+2p(z,,l—,u)ul+uf}

[( —u 2} [ J+2pE[(z,_,—u)ut]+E[uf]
) |

)
pz)E[ =o.as pE[ (7, —u)u, | =0

of:E[(z,—u) ]: c

I-p

y
)

S

2

The result is a relationship between the variance of z; (the signal), the variance of
u, (the noise), and p, the correlation between z, and z,_,.
Similarly, for the autocovariance,

)]= E[ {pz,, —pu+u}(z, —y)zJ
] E[ [ J+E[ul (2., —u)]
E[(z,—u)( #)] PE| (2.1 -n) [+0= po?

The first order autocorrelation coefficient between z, and z,_; is p, the second
order autocorrelation coefficient between z, and z,_, is p?, and the kth order auto-
correlation coefficient between z, and z,_; is p*. Hence the variates in the first order
stationary time series are correlated with each other in an exponentially decreas-
ing pattern.

Thus, one may be able to model a stationary process as a first-order autoregres-
sive process that predicts the one-step-ahead value of the variable z, from the
observed value z,_, using the equation:

E[(z,—1)(z, —n

(
(z=1)(z — 1)

z,=pz +u(l-p)+u,

where,

Z,-1 is the observation at the previous time
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4 is the observed mean value (computed from the historical data)

p is the observed value for the autocorrelation between z, and z,_; (computed from
the previous data).

o-f is the observed value of the variance of z, (computed from the previous data).

4, 1s a Gaussian random number drawn from a Normal distribution with mean 0 and
variance o =0’ (1 - pz)

Note that in the equation z,=p z,_1 + u(1 — p) + u,, u, is aresidual term and hence
is a random variable does not have any deterministic value. In Monte Carlo simula-
tion, one often plots the histogram of these residuals to determine the goodness of
fit of the model to the data.

By substituting

% =P, +,Lt(1—p)+l/t[71

the first order autoregressive AR(1) series can be written as the equivalent infinite
moving average [MA(oo)] series z,=p + u, + puty_ + pHuy_2+ ... +pu_ 4 ...

Note that this last equation is in the same form as the finite linear combination of
variates examined earlier,

y=a,+ax, +a,x,+...+a,x,

and all the disturbances or noise terms are statistically independent. Then, by the
Central Limit Theorem, z,, the sum of many independent random variates, should,
in the limit, be Normally distributed. Actually, recourse to the Central Limit
Theorem is not necessary if all the disturbances are approximately Normally dis-
tributed; the weighted sum z, will then be Normal by the reproductive property of
the Normal distribution.

Now to put this in a project context, assume that y, represents the time at which
the job reaches milestone ¢, and z, represents the time a job takes in the ¢ — th state;
that is, the time elapsed from milestone 7 — 1 to milestone 7. Then z, is the change in
y,, the incremental time between milestone ¢ — 1 and milestone #:

=YY :Ayt
Z =YY =4y

The total time to reach milestone  is y,, where

t t
Y= DA+ = D4 N
j=1 j=1
Yi =Y +(y1 _y0)+(y2 _y1)+(y3 _y1)+"'+(yt _yt—l)
where y, is the start time.

The problem is to find the mean and variance of y,, the predicted time to reach
any milestone ¢, including the completion time, ¢ = n, given that the time spent in



90 5 Correlation in Projects

any state is represented by the autocorrelated AR(1) process. To do this, we use the
moving average representation because the variates in it, the u,_, terms, are uncor-
related. However, the series is not infinitely long, as the actual job has a definite
starting point and an ending point. The finite MA(#) series is not equivalent to the
original AR(1) series. Hence, using the finite MA(¢) series instead of the [MA(0)]
series introduces some error, especially for small ¢ and large p, but this error dimin-
ishes for large ¢ (say, 7 > 20).

To predict the future state of the project, set y, = 0 for convenience, and substitute
Z, into the equation for y,. To show the pattern, we do this explicitly for 7 = 5, and
then generically for any #:

5
Vs :sz =S4t tL T, g
=

Vs :5/,t+u5+(1+p)u4+(1+p+p2)143+(1+p+p2+p3)u2
+(1+p+p2+p3+p“)u1

A S SRR S S

1
y, = sz =ut+¥Yu +%¥u,  +¥u

Jj=1

where:
Y, =1
Y =1+p
Y, =1+p+p’

Y, =l+p+p°+p’

Now, the expression above for y, is also a linear combination of statistically inde-
pendent variates, u, ;, each with zero mean. We can then see that the mean of y; is:

E[yt]:,ut

The variance of y;, is, using the previous results,
t—1
var(y,) = E (v, - ut)' |= Y ¥io?
k=0
-1 k 2
(o) - 2 3 |

k=0 j=0
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This expression can be simplified by using the well-known identity for the sum
of an infinite series:

j=0 Jj=0 Jj=n+1
n o 0 © © 1 n+l
. . . . . —X
1
j=0 =0 j=n+l =0 =0 I-x

Using this result, with x = p, gives:

k+1

k ) l_p
Y =>p' =
f Z; T,

Hence,

=1 KT 1l pt 2
var(y, ) = G;{zpf} 2652{ }

k=0 j=0

Squaring the term inside the summation and then applying the same identity for
a partial series gives

var(y,)— u . (1—2pk+1 +p2k+2)
(l—p) k=0
62 -1 -1 k
5]
(l—p) k=0 k=0
2 2 1— t 2 1— 2t
var(y,) = O |,_ p( p)+p( p)
(1-p) I-p 1-p°

To recap, what was done here was:

1. The milestones, or states of a job or work package are defined such that the
expected or average time to successfully complete each state is a constant, p.
Then the time to accomplish a given state ¢ of the job, z, =y, — y,_; = Ay, is

expressed as a stationary autoregressive time series with constant mean y, first
2
. . 2 o,

order autocorrelation p, and variance o, =

1-p

2
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2. This one stage autoregressive series is converted to an infinite moving average
series in the uncorrelated noise disturbances u,_;.

3. The infinite moving average series is approximated by a finite moving average
series of length 7.

4. The series in the incren}ents zZ;1is sumtmed to give the time at which the #-th mile-

stone is reached y, = Zij +Y, = sz +y, expressed in terms of the random
disturbances u,_; J=l J=1

5. Taking expectations gives the mean and variance of the completion time y,. From
these parameters we can forecast the completion time at any level of confidence,
using the assumption that the resulting probability distribution on the time at any
milestone is Normal.

Note that the assumptions here are consistent with the Markov process, with the
transition probability 4 constant for all states. One could also interpret z; as the
progress achieved in reporting period #, and y, as the total cumulative progress
reported up to time #. That is, in one approach we establish certain levels of progress
(milestones or states) and report the time it takes to reach each of these milestones;
in the other approach we set certain fixed reporting intervals and report the progress
at the end of each interval. However, the assumption that the expected value of the
progress in each interval, E[z;] = p = a constant would not be consistent with the
assumptions used in deriving the logistic curve, in which it was assumed that
Ay, =by(S — y,). Which of these assumptions, or others, may be more realistic is up
to the user to determine; the only recommendation that can be given here is that the
assumptions, whatever they are, be made explicit and open, and checked against
reality whenever possible.

Using the equation above, we can estimate the variance of the completion time
for Varly,] if we assume some disturbance variance 63 and correlation p between
successive states. As an illustration, suppose that we instead neglected p and
the complication of this equation and computed Var[y,] simply as the sum of the
variances of each state, Var[y,]|=tc’. Call the variance computed in this way
Vir[ yt] , which as we have seen before will underestimate the variance if p > 0, and
call the variance computed from the equation in p derived above Var*[y,]. Then,
at t+ = 30, which is sufficient to virtually eliminate the error due to truncating

ar’ [ yt]
Varly,]
as p — +1. On the other hand, M[ yt] greatly overestimates the variance if p — —1.
Positive p indicates that, if z,_, is greater than the mean, u, then z, will tend to be
greater than the mean, because (z, — u) = p(z,_ — p) + u,. Conversely, if z,_; is less
than the mean, then z, will tend to be less than the mean, or successive deviations
from the mean will tend to be of the same sign. Negative p indicates the opposite:
successive deviations from the mean tend to be of the opposite sign. There seems
to be no theoretical reason why negative correlations should not be as prevalent as
positive correlations, but in reality, just as with matter and antimatter, positive cor-
relations seem to be very much more common than negative correlations. This is

the infinite moving average series, the ratio is well over a factor of three
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perhaps because the observed variables z,, z,_, etc., are in fact conditioned on
common underlying or hidden variables that are not or cannot be observed.
Recalling an earlier discussion, we have here Type 2 uncertainty, which is attribut-
able to our ignorance of the values of the real underlying variables. Whatever the
reason, in our experience, positive correlations are almost universal and negative
correlations are rare.

Example 5.1

As an illustration of a very simple project process model, let: u = 1; n = 100;
0,=0.4; 0,=0.4; and p = 0. That is, the example is a simple linear process with 100
steps, each with expected time 1 week. Then using the equations developed above,
the Autoregressive (1) process predicts the future job progress as in the following
figure. The central line is the expected time to reach each milestone, and the other
lines represent probability contours representing confidence bands on the predic-
tions: Mean =+ 1 standard deviation; Mean + 2 standard deviations; and Mean + 3
standard deviations.

There is about one chance in a thousand of a random data point lying outside the
30 line, so we might estimate a probability of about 0.001 that the project would
take longer to finish than 112 weeks. Therefore, as shown in Fig. 5.1, we would be
very confident in committing to a job completion in 112 weeks.

However, if there is correlation, the uncertainty becomes greater. Figure 5.2
shows the same process but now with correlation coefficient p = 0.50. Note that the
confidence bands have gotten wider, due entirely to the increased correlation.

Figure 5.3 shows the predictions for project completion if the time series is
highly correlated.

Note that the prediction bands are now very wide, indicating the greatly height-
ened degree of uncertainty with high values of the correlation coefficient. There is
now a significant probability that the project will take longer than 112 weeks to
complete.

100

60 = —

Progress y{t)

Time

Fig. 5.1 Time series forecast p =0
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Fig. 5.2 Time series forecast p = 0.50
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Fig. 5.3 Time series forecast p = 0.95

Qualitatively, the effect may be explained as follows: suppose the actual time
to the first milestone is much longer than the mean. If the values in the time series
are independent, the incremental time between the first and second milestones
could be higher or lower than average; if lower, this would offset the high value in
the first step. However, if the autocorrelation coefficient is large (and positive), the
time between the first and second milestones is much more likely to be higher than
average than lower than average. This process continues, and the project is likely
to fall further and further behind. Runs of durations longer than the expected value
become common. The same logic applies if the time to the first milestone is shorter
than average; high autocorrelation is likely to lead to a project that finishes earlier
than scheduled. Either way, the variance (uncertainty) increases.
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5.3 Statistical Dependence and Independence in Project
Costs

The discussion above of statistical dependence has mainly considered examples of
job progress. In looking a project costs, consider the straightforward case in which
the total job cost is the sum of a number of work package costs (or estimates). Then,
if T'is the total cost of n work packages, each of which has cost x; using the linear
expression above with all coefficients equal to 1 gives the total cost as:

n
T=x+x,+...+x, :ij
j=1

Then T has the expected value y; and variance o,
E[T]=p, = Z]:E[xj] = Z‘Hj
Jj= Jj=
ot ={(r-m) ]| £ ) |

Jj=1

giving the variance of the total cost as:

Where o; , is the covariance between x; and x;. If all the x; are statistically inde-
pendent, then the cross product terms in the covariance vanish for j # k, and the

variance of T reduces to o; =»'c, =0, if all variates are statistically

independent. ! !

Thus, there is substantial simplification if the variates are truly statistically inde-
pendent, but there is also the potential for substantial error if they are assumed to be
independent when they are not. To get a simple bound on the possible error, rewrite
the equation for the variance of 7T as

n n n
2 2
O =20, + 2.2 P10
=1 =1 k=1
k#j

n n n
O =205 +22 2 P;s00
=1

j=1k>j

The previous discussion has pointed out that the assumption that the p;, are zero
when they are not zero can lead to a significant underestimation of the variance and
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hence of the risk. However, why should it not be the case that all the p;, are zero or
close to it? After all, just earlier in discussing the Moving Average MA(co) time
series, we postulated the existence of an infinite number of disturbances, the white
noise variates u;, all of which were supposed to be uncorrelated. If there can be an
infinite number of uncorrelated u;, why shouldn’t there be a finite number, n, of cost
variables x;? In fact, there is no prohibition to all the x; being statistically indepen-
dent, but the difference between the u; and the x; is that the former are mathematical
constructs generated specifically to be statistically independent, whereas the latter
are variables that arise in the real world. As an analogy from linear algebra: it is
certainly possible for n vectors to be orthogonal in n-space, but n vectors picked at
random would almost certainly not be orthogonal.

Therefore, one reason to question whether x; are statistically independent is their
number: in a complex project, there may be hundreds of work packages or cost ele-
ments. Is it reasonable to believer that none of these is correlated with another, or
with some unspecified underlying variates? Let us consider some of the implica-
tions of this assumption.

To simplify the discussion for a moment, let all the x; have the same mean and the
same variance; that is,

H;=H, =E[‘xj:|

o;; :Gf :Gf zE[(xj—E[xJ)z], Vj,1<j<n

Then E[T] = pur = nE[x;] = nu, and, if the x; values are assumed all statistically
independent, then

Jj=1
O, :O'x\/;

As an aside, note that the mean and standard deviation have dimensions (dollars,
tons, man-hours, whatever). A non-dimensional measure of dispersion is the coef-
ficient of variation, COV, which is defined by COV = standard deviation/mean. Then

cov(x)="x
K,

cov(r)="r = Al =(LJCOV(’%)

:LlT n:Lt)c \/;

That is, the relative dispersion or coefficient of variation of the sum of statisti-
cally independent variables is not only smaller than the COV of one of its elements,
but it becomes vanishingly small as n becomes large, unless we were to assume that
all the COV(x;) simultaneously become very large (as Jn ) as n becomes large. So,



5.3 Statistical Dependence and Independence in Project Costs 97

if one were to subdivide a project into more and more cost elements by increasing
n, either the relative dispersion of the total would approach zero, or the relative
dispersion of each cost element would have to approach infinity as n — co. As it is
very difficult to accept that either of these could be true, then it becomes very
difficult to accept the assumption of statistical independence.

Now consider the situation when determining the budget, or total estimated cost,
for a project. Let & be the estimate prepared for work package or cost element j.
Now suppose that &; is not necessarily the expected value of the cost x;, but is some-
thing more, to provide a safety factor, just to be on the safe side. Let us assume that
the estimator or some manager adds some percentage of the estimate as a safety
factor or contingency. That is, if # is the fraction of the expected value added to the
expected value to produce the estimate, then

gj :E[XJ‘*‘??E[X,]: M +nu, = H, (1+Tl)

The Coefficient of Variation was defined above by:

cov="x
K,

Then the equation above may be rewritten as:

no n
=u + =u +——=pu +|——|o, =y _+o6c
S =m +np, = p, coy M (covj . =H, +00,
§=_"1_
cov

In this expression, it may be seen that the safety factor or buffer can written as a
fraction 6 of the standard deviation. Then we can write the estimate as

E =u, +00,

With this expression, we can get some idea of what this contingency factor
might be. Suppose that the cost estimate is adjusted upward from the expected
value by 10%, so n = 0.1. Suppose the work package in question has a substantial
amount of variability, so the standard deviation is, say, 40% of the mean value, so
COV =0.4. Then

s=[ 1201 _ss
cov) 04

Using the Normal distribution, this corresponds to a probability of about 40%
that this cost would overrun the estimate.
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If the cost estimate is adjusted upward by 20%, so n = 0.2, and the work package
in question has the same amount of variability, COV = 0.4, then

__n _ 02 =05
cov 04
Using the Normal distribution, this corresponds to a probability of about 31%
that this cost would overrun.
If the adjustment factor on the cost estimate is 10% (n = 0.1) and the work pack-
age in question has relatively little variability, say 10%, so COV = 0.1, then

s=_1 _%1_y,
cov 0.1

Using the Normal distribution, this corresponds to a probability of about 16%
that this cost would overrun.

Notice that, from a risk viewpoint, the practice of adding some percentage of
the expected value to get the estimate, without regard for variance, provides the
largest safety factor where it is least needed — for work packages with the least
variability.

Does this happen? Do cost estimates include a cushion? Some estimators assert
that their estimates represent the expected values, but conversely many project
managers admit openly that contingency has been pushed down into the individual
estimates, that conservatism has been built into each work package estimates. That
is, in our statistical terms, 6 > 0. Although it is difficult to establish what value may
be used for 0, because for one thing there are no estimates of o, it is highly likely
that people at several levels respond to perceived variability or risk by trying to
increase their margin for error. This behavior is to be expected, and it is certain that
project managers and corporate managers expect it, as they often cut estimates to
reduce the perceived safety factors in order to make projects happen when the total
estimate is larger than the available budget.

Using the expression just above, we can see that the estimate &; corresponds to
some confidence factor, the probability that the estimate will not be exceeded.
(Note that &;is not a random variable, it is a number; x; is the corresponding random
variable). For example, if we assume that x; is Normally distributed, and apply
some modest safety factor, 6 = 0.25, say, then &; = u, + 0.250, corresponds to a
confidence factor of 60% or a probability of 0.60 that &; will not be exceeded and a
probability of 0.40 that £; will be exceeded. This, or even more, might seem to be a
reasonable adjustment. Now consider the distribution of the total estimate, say 7,
under the assumption of statistical independence of all variables:

T :Z§j :Z(uj +50'j): Z(“x +80 ) =npu, +ndo,
J=1

n
j=1 j=1

Using the previous results,
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T=np +0nc, =L, +0'T5\/; because o, = O'x\/;

Letn=0 Jn then = pr + nor corresponds to some probability that the project
estimate 7 will be exceeded. Table 5.1 illustrates this probability for various values
of n, using 6 = 0.25, and the Normal distribution:

According to this table, the probability of a cost overrun decreases greatly with
increasing n, so that large projects with many work packages are much less likely to
have cost overruns than small projects, according to this approach. In fact, the prob-
ability of a cost overrun for large n is so low that, using these assumptions, one
would have to say that no large project has ever overrun in the history of projects
since the pyramids.

Obviously, this result is untenable. Large projects are known to overrun, at least
as often as small projects. We must therefore reject one or more of the assump-
tions; either

e Cost estimates do not ever have adjustments for conservatism, so 6 = 0 and
T =Ny
* The variates cannot be statistically independent.

The subjective arguments as to why one expects 6 > 0, even 6 > 0, were given
earlier. We now repeat the above simplified analysis by relaxing the assumption of
statistical independence. We have, from the results above,

n n n

O =20+ 2D PiiC0%
=1 J1k=1
k#j

To simplify the expressions, assume that all the cost variables x; are correlated,
with the same correlation coefficient p; , = p. Then the equation for the variance of
the total cost reduces to:

n n n
2 2 _ 2 2
o, = ZG}. +22p6j0k =no, + n(n—l)pax
j=1 j=1k=1
k=j

o, =0, {n[1+(n—1)p:|}

Table 5.1 Probability of not exceeding the estimates given n work packages

Confidence factor = P{7 = ur + nor} will not be
n n exceeded
0.25 0.60
10 0.80 0.79
100 2.53 0.9943
1,000 8.01 0.99999999999...
10,000 25.3 0.9999999999999999999....




100 5 Correlation in Projects

Modifying an earlier expression, we have, for the total project cost estimate:

no,o

{n[l +(n—1)p]}

né

{n[1+(n—1)p]}

Suppose we would like the confidence level in the total estimate 7 to be the same
as the confidence level in the estimates for each work package. Then we set 5 = &
and solve for p; the solution is p = 1, for any value of n. That is, if the total project
estimate has the same probability of being exceeded as each of the individual cost
elements, then the work package costs must be perfectly correlated. This is consis-
tent; if all the variables are completely dependent, then there is really only one vari-
able. All the rest can be determined exactly from any one.

With these assumptions, there is no way that the confidence level in the total
estimate 7 can be less than the confidence level in the individual elements sepa-
rately, as this would require # < § which in turn would require p > 1, which is impos-
sible by the definition of p .

This result cannot be accepted either, as it is not possible that all the cost ele-
ments are perfectly correlated. Actually, an assumption that would better explain the
observed facts, that

T=nU, +0nC = U, +

T = U, +no,,wheren =

e The probability of a cost overrun on a project is greater than the probability of an
overrun on any of its individual work packages; and

e The probability of a cost overrun on a project increases with the size and com-
plexity of the project, that is, as n increases

would be to assume that each individual work package estimate is slightly less than
the expected value; that is

g =E[x_i]—5c7j =p,—60,=u,—60.;6>0

Under what circumstances might this occur? It might be true if some cost ele-
ments are omitted from the estimate or if some manager reduces the cost estimates
in order to win a contract, for example. Another possibility might be that the esti-
mate &; corresponds to the median of an asymmetric probability distribution, in
which, mode < median < mean. Suppose that each work package cost x; is distrib-
uted as an Erlang distribution with k = 2, 4 = 4. Then the mode is 0.5000, the
median is 0.6685, and the mean is 0.7500 (all in millions of dollars). Although
there is no simple expression for the median, it can easily be calculated numeri-
cally. It can be seen that the median is below the mean. Suppose then that the
estimate is the median, the value that would be exceeded half the time, as might
seem to be reasonable. That is,
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A

&, =median =¢

and, assuming for simplicity of presentation that all the work packages are
identically distributed, then the total estimate is

=3¢, =né

The Erlang distribution has the property of being locking or self-reproducing;
That is, if n statistically independent variates are Erlang, each with parameters (4,

k;), the sum is Erlang with parameters (l,ijJ . If the n variates are identically
n j=1

distributed, Z;kj = nk . We can then easily compute the probability, using the Erlang
=

distribution with parameters (A,nk), that the total cost estimate z will not be

exceeded, for various values of n (Table 5.2).

Here we see the opposite behavior from that in the previous table; because the
individual work package cost estimates are the medians, which are less than the
means, the probability of a cost overrun (1 — Confidence Factor) for the whole
contract is greater than that for any single work package, and increases with the
number of work packages. Using the sample numbers here, a modest sized project
with 125 work packages has only about a 1% chance of meeting the total cost
estimate, if these are based on the medians. If the estimates are the modes, which
are even less than the medians, the decrease in the confidence factor with n will be
even more pronounced. Of course, if the probability distribution is symmetric,
then the mode = median = mean, and no bias is introduced either up or down.

The self-reproducing property of the Gamma or Erlang would be useful in
quickly estimating the probability distribution of the sum of variables, as this distri-
bution represents the skewness that is likely in the probability distributions of cost
estimates, if it were not for the fact that these variates must be statistically indepen-
dent. As we have seen, statistical dependence may have a significant effect on the
distribution of the total, unless there is a clear justification for believing that all the
variates are uncorrelated.

Table 5.2 Probability of cost overrun given n work packages

Confidence factor (CF) = P{T = né }

n will not be exceeded P{cost overrun} = 1 — CF
0.5000 0.5000

5 0.3631 0.6369

25 0.1740 0.8260

125 0.0151 0.9849
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The situation we have illustrated, in which the confidence level in meeting the
total project estimate is very sensitive to the number of work packages, is unsatis-
factory, and the reason for this problem is the use of point estimates for the costs.
Point estimates, being single numbers, cannot convey information about both the
mean and variance (let alone any other parameters) of the individual work pack-
age costs. If one is determined to use point estimates, then the best estimates are
the means,

& =E[x |=p; Vj1<j<n

The means don’t convey any information about the variances, obviously, but they
are at least unbiased. Estimates that are either above or below the mean, as in

g :E[x]}+50'j =p;,+60,;6#0

contaminate information about the means with information about the variances.
This is a case in which individual work package or subcontract estimators may think
they are doing the right thing by adding a little to the estimate so that their work
package is less likely to overrun, or their subcontract less likely to lose money. But
when every work package does the same, for the same reasons, the result can be
seriously in error. The position here is that contingency is appropriate, but the
amount of contingency should be based on the determination of the total project
uncertainty, not buried and hidden in individual cost estimates. Therefore, some
good advice is: If you have to give a point estimate, then use the expected value.
Much better advice is: Don’t use point estimates. Notice that, to determine that a
point cost estimate is the mean, we would have to know something about the prob-
ability distribution on the cost. And if we knew something about the probability
distribution, we would know something about the variance.

This chapter has spent a lot of time trying to illustrate the consequences of statis-
tical dependence or independence. All the examples have been made to demonstrate
the point that the assumption of statistical independence can be highly erroneous
and may be seriously unconservative. From the simple models above, it seems that
it would be good practice not to assume that the cost elements are independent
unless there is definite reason to believe that this is the case. Therefore, a much bet-
ter approach to estimating total project costs (material quantities, resource require-
ments, and other factors) is to provide information on the probability distributions
of all the x;, plus the correlation coefficients p;.

Given this information, one can perform Monte Carlo simulation to estimate the
probability distribution of the total project cost. Monte Carlo simulation is widely
used, and even spreadsheet programs now provide this capability. However, one
must always be sure to execute enough random trials in order to get reasonably tight
confidence bounds on the results. The number of iterations required can be quite
high (often greater than 10,000), and often to save time users do not do enough, and
do not specify correlations between variables.
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5.4 Practice Problems

Problem 5.4.1 An offshore platform project was built to provide natural gas, 55
million SCF per day, to a Power Plant. The project was hampered by weather delays
and mechanical failures. The pile driving activity (including the weld-splice activi-
ties considered here) finished 52 days behind schedule. Each day over the drill hole
cost the contractor over $100,000. Moreover, these delays pushed the project dura-
tion into seasonally bad weather, which magnified the effect.

The man-hours recorded on the platform for various pipe welding activities are
given in Table 5.3. Welding activities are:

e Prepare and preheat
e Preheat

e Weld splice

¢ Cool and clean.

e Ultrasonic test

Consider each welding-related operation given above as a time series. Compute
the first few lagged autocorrelation coefficients for each process. The autocorrelation
coefficients describe how much of the cost of one activity can be explained (pre-
dicted) by the cost of the preceding activity (lag 1), etc. Could each separate process
be adequately modeled as a first-order autoregressive process? Explain why or why
not. What conditions have to be met for a process to be first-order autoregressive? If
a process is not first-order autoregressive, can you devise another appropriate model
to fit the data? Are there any time trends in the data? Is it better to generate one
model to predict total time for each splice or to fit five separate models and then add
them up?

Examine the cross-correlations. For example, is Weld Splice time correlated with
the Prep time or Preheat time for each splice? Is Cool and Clean correlated with
Preheat time? Are the separate processes independent of each other or dependent?
Is this what you would have expected? Explain your results.

Problem 5.4.2 Suppose a project manager is involved in a commercial speculative
building development. For economic viability, the cost estimate for the structure,
after engineering and design are complete, cannot exceed $Budget. The project
manager can retain a structural engineer to design the building in steel or in con-
crete, or both, and to make the necessary engineer’s cost estimates, $Steel and
$Concrete, when the designs are complete. If one or both of the designs is less than
the budget, the project manager will choose the smaller and the project will proceed;
otherwise it will be terminated. Therefore, using the identity between joint probabil-
ity distributions and conditional probability distributions, the probability of termi-
nation of the project before the engineering work has started, is:

P [Termination] =P [($Steel > $Budget) e ($Concrete > $Budget)]
= P|:($Concrete > $Budget)|($Steel > $Budgez):|P [($Steel > $Budget)]
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Table 5.3 Problem data

5 Correlation in Projects

Prepare and Cool and Total

preheat Preheat Weld splice | clean Ultrasonic test | welding
Welding | (hours) (hours) (hours) (hours) (hours) (hours)
1 18.2 2.5 7.2 6.3 1 352
2 18.2 2.5 7 6.5 1 352
3 11.5 1.8 7.1 33 2.5 26.2
4 13.2 1.8 7.3 5.6 3 30.9
5 35 2.8 11.7 7.1 1.5 26.6
6 5 2.9 10.4 7.3 1.5 27.1
7 9.5 6.8 11.3 53 1.2 34.1
8 10 43 9.8 5.8 1.3 31.2
9 1.5 3.8 8.8 13 0.8 27.9
10 2.5 2.3 8.4 8.7 1.1 23
11 35 3 8.1 7.2 1.2 23
12 5.7 2.8 7.8 6.5 1.2 24
13 3.8 24 8.7 33 0.8 19
14 2 3.8 7.7 33 1.5 18.3
15 22 22 9 3.8 0.7 17.9
16 1.7 2.3 8 4.5 1 17.5
17 1.4 2.8 6.5 39 1.1 15.7
18 2 2.5 8.3 4.3 1.2 18.3
19 1.5 23 6 4.8 0.9 15.5
20 1.5 1.5 6.5 53 0.7 15.5
21 23 4 7 4 1.1 18.4
22 1.3 2.8 7.5 43 1.3 17.2
23 2 2.5 6.7 5.2 0.7 17.1
24 1.5 2.5 7.6 53 0.6 17.5
25 22 2.5 6.5 4.9 0.8 16.9
26 22 2.3 6.8 5.5 0.7 17.5
27 1.5 4 8.2 3.5 0.8 18
28 1.3 3.8 7 4.5 1.1 17.7
29 32 3.6 11 4.1 0.5 224
30 5 3 12.8 5.8 0.8 274
31 1.7 33 10.5 5 0.7 21.2
32 1.5 3 11.3 4.2 0.8 20.8
33 2.1 2.9 7.6 5 1 18.6
34 2.6 22 11.5 6.6 0.7 23.6
35 1.8 22 10.8 5 1 20.8
36 2 2.1 11.6 5 1 21.7
37 2 4.3 6 4.3 1.2 17.8
38 2.5 3 6.7 5.9 2.8 20.9
39 1.7 34 9.4 4.2 0.4 19.1
40 2.6 3.8 8.6 4.2 0.8 20

(continued)
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Table 5.3 (continued)
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Prepare and Cool and Total

preheat Preheat Weld splice | clean Ultrasonic test | welding
Welding | (hours) (hours) (hours) (hours) (hours) (hours)
41 3.6 24 8.8 4.7 0.8 20.3
42 3.7 5.1 11.1 4.9 0.6 254
43 22 3.5 6.5 4.8 1 18
44 2 3.6 7.1 4.8 1.2 18.7
45 7 4 11.8 5.5 1 29.3
46 12.1 3 11.2 55 0.8 32.6
47 10.8 4.2 14.1 5.5 0.5 35.1
48 11.7 1.9 12.8 5.5 1.2 33.1
49 4.5 4 14.8 5.5 0.8 29.6
50 3 3.1 14.9 5 0.6 26.6
51 3.8 2.4 14 6 0.6 26.8
52 7.5 3.7 15.1 5 1.8 33.1
53 3 35 153 55 1 28.3
54 2.8 33 15.8 6.5 1 29.4
55 2.8 2.3 14.8 6.5 0.6 27
56 2.5 2.6 14.3 6.2 1 26.6
57 2.6 2.8 9.5 4 1 19.9
58 4 2.8 12.7 6.5 1 27
59 4.5 3 15.5 6.7 1.2 30.9
60 5.7 2.8 12.8 5.8 1.5 28.6
61 1.9 3.5 16.1 5.8 1 28.3
62 14 19 18 18 0.8 57.2
63 4.8 10 19 10 0.8 44.6
64 3.8 4.5 14.2 7.3 0.8 30.6
65 32 3.8 19.2 4.9 0.7 31.8
66 1.7 35 18.5 53 1 30
67 2 35 17.8 4.2 1.3 28.8
68 2 3.5 14.8 4.5 1.3 26.1
69 1.8 4.5 13.8 5.1 0.7 259
70 1.8 24 15.1 34 0.8 23.5
71 1.3 2 14.2 3.5 0.7 21.7
72 3 5.7 14.1 4 0.9 27.7
73 3 2.5 19 39 1 29.4
74 1.9 35 17.5 35 0.8 27.2
75 1.7 33 19.2 4 0.8 29
76 3.8 35 19.9 4.1 1 323
77 2.5 23 14.5 4 0.8 24.1
78 1.6 3.8 15.8 33 0.8 253
79 32 3.6 14.6 39 0.9 26.2
80 3.8 34 15.7 4 1 27.9

(continued)
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Table 5.3 (continued)

Prepare and Cool and Total
preheat Preheat | Weld splice | clean Ultrasonic test | welding

Welding | (hours) (hours) (hours) (hours) (hours) (hours)
81 2.1 4.6 14.5 35 0.8 25.5
82 2 4.6 13.7 3 0.8 24.1
83 3 3.7 14.2 3.1 0.9 24.9
84 2.1 34 15 32 0.7 244
85 2.3 24 19.3 35 1 28.5
86 1.4 2.8 13.9 4.8 0.8 23.7
87 32 34 19.2 33 0.8 29.9
88 3.5 2.5 13.5 5.1 0.9 25.5
89 2 2.5 14 2.8 0.8 22.1
90 1.3 32 14.7 32 1 234
91 1.3 22 14.7 3.8 0.8 22.8
92 3 1.8 15.2 3.6 1.6 25.2

whether to contract for one of them or both of them?
If the two cost estimates are independent, then:

The question is, Are the two cost estimates, $Steel and $Concrete, independent
or correlated, and how does correlation affect the project manager’s decision

P[($C0ncrete > $Budget)|($Steel > $Budget)] = P[($C0ncrete > $Budget)]
~. P[Termination| = ($Concrete > $ Budget )($Steel > $Budget )

If the two cost estimates are positively correlated, then:

P[($C0ncrete > $Budget)|($Steel > $Budget)} > P[($Concrete > $Budget)]
~. P[Termination] > ($Concrete > $Budget ) ($Steel > $Budget )
~. P[Termination|Positive Dependence] > P TerminationlIndependence |

In the limit, as the correlation between the two estimates approaches 1.0.

P[($C0ncrete > $Budget)|($Steel > $Budget)} —1.0
.. P[TerminationlPositive Dependence]| — ($Steel > $Budget )

Conversely, if the two cost estimates are positively correlated, then:

P[($C0ncrete > $Budget)|($Steel > $Budget)} < P[($C0ncrete > $Budget)]
.. P[Termination] < ($Concrete > $ Budget ) ($Steel > $Budget )

P[Termination| Negative Dependence] <P [Termination| Independence]
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In the limit, as the correlation between the two estimates approaches —1.0

P[($Concrete > $Budget)|($5teel > $Budget)] -0
~. P[Termination|Negative Dependence] — 0

Questions:

e What factors would cause the two cost estimates to be positively correlated?

e What factors would cause the two cost estimates to be negatively correlated?

* Do you think, on balance, that the two cost estimates would be positively corre-
lated, negatively correlated, or uncorrelated?

* Given your answer to the question above, should the project manager contract for
a steel design, a concrete design, or both?

NB: For the purposes of this exercise:

e A steel building is one in which the primary structural elements are made of
structural steel, with concrete used for floor slabs, pile caps, piles, footings, shear
walls, and other purposes.

* A concrete building is one in which the primary structural elements are made of
reinforced concrete, with reinforcing steel used in the concrete, and steel used for
piles, bar joists, and other purposes.
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Chapter 6

Estimating Means, Variances,

and Correlations Based on Experts’
Judgment

Abstract In this chapter we introduce the methods to estimate statistical moments
and correlation coefficient based on expert judgements. We provide an overview of
probability density functions that are suitable for integration with subjective data,
and the elicitation procedures for estimating correlation coefficients.

Keywords Expert judgements - Statistical moments - Correlation - Probability
distribution

6.1 Introduction

In the second moment approach or in stochastic simulation (i.e. Monte Carlo simu-
lation), it is assumed that random variables (activity costs, durations, etc.) range
across a continuum and the uncertainties about the true values of these variables
can therefore be expressed by continuous probability distributions. The total risk,
or uncertainty, in the project cost, for example, is the sum of all the uncertainties in
the individual cost elements, assuming these elements are independent. Conversely,
the total uncertainty in the project duration is the sum of all the activity uncertain-
ties along the critical path, assuming these activities are independent. Of course,
they are not independent, and so the correlation matrix is used to express how they
are linked together.

As previously mentioned, bottoms-up risk assessment is based on the principle
that the uncertainties in each individual element can be estimated more easily and
more accurately than trying to estimate the uncertainty in the total project all at once
(top-down risk assessment). That is, we break down the risk problem into individual
elements (which are not necessarily independent) in order to estimate the uncertain-
ties of each, and then we aggregate these risks by the second moment approximation
or by stochastic simulation. Even in the case of simple summations, such as the sum
of work package costs upward through the Work Breakdown Structure, or the sum
of activity durations along a path through a network, we need the joint probability
of all the random variables. Joint probability distributions are hard to come by so we
are forced to deal with marginal distributions combined with correlation matrices.
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And, even more, in the second moment approach we have only the mean and
variance of each element. To apply stochastic simulation, we need the entire joint
cumulative probability distribution, which again is approximated by the marginal
probability distributions plus the correlations between all pairs of elements. These
quantities can be estimated in various ways, as discussed below. Because project
risk assessment is about the future, there are most often insufficient historical data
from which to derive these probability distributions, and so the risk analyst is forced
to use subjective estimates. This chapter is concerned with various methods for
making subjective estimates of means, variances, and correlation coefficients.

6.2 Empirical Data

The obvious point, to use whatever historical data are available to estimate the
expected value and uncertainty in future costs or durations, should not be over-
looked. For example, if work package j has been performed under the same condi-
tions in N previous projects, with reported values x; , for 1 <k < N, such that all the
sample data can be considered to have been drawn from the same population, then
the first and second moments (mean and variance) of these data are given by:

Of course, one problem with this method in practice is that the work packages or
activities in the N previous jobs were most likely not performed under the same
conditions. This assumption could be true in manufacturing, in which the environ-
mental conditions are controlled to assure that the work stays within the specifica-
tion limits. But projects differ, and because the external conditions cannot be
controlled, the way to control the data is to use statistical methods, for example
multivariate regression analysis, to correct for variable project conditions. However,
to do this requires that all the conditions surrounding each historical project be
recorded. This is, unfortunately, rarely done.

Therefore, even if one has some historical data about work package costs or
activity durations, one may wish to adjust the computed sample means and vari-
ances to reflect the best judgment about the project at hand. For example, if there are
N sample data for work package costs, all assumed to be from the same population,
and x,,,, is the largest of these, then the probability that in the next occurrence (that
is, the project being assessed) of this work package the cost will be greater than x,,,,

is

Nil So, for example, if N = 19, then x,,, is approximately the 95th percentile
+

value, and the smallest value of the N data, x,,;,, is approximately the 5th percentile.
One might use this empirical information in setting the 5th and 95th percentiles in
the following methods.
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If there are historical data, the mean and variance of each element can be computed
from them. If not, one might suppose that the solution is simply to ask experts to
give their best judgments about the mean and variance (or mean and standard devia-
tion), or the entire cumulative probability distribution, of each work package.
Experience, and some experiments, have shown that this straightforward approach
doesn’t always work well, for the following reasons:

1. There is an effect known as anchoring, by which a person familiar with the
(deterministic) estimated cost for a work package will cite this estimated value,
or something very close to it, as the mean of the probability distribution. The
deterministic estimate is not necessarily the mean, or even close to it. In many
cases, the deterministic estimate is closer to the most optimistic value than to
the mean. If one has substantial historical data on actual costs or durations, the
frequency at which the deterministic estimates are exceeded provides an indi-
cation of the relation of the estimate to the mean — the mean and the estimate
only coincide if approximately 50% of the actual costs are below the
estimates.

2. Estimators tend to give consistently low values for uncertainty (or standard
deviation) and therefore underestimate risk. This behavior is consistent with the
position that the costs are deterministic (and hence have no uncertainty), but
inconsistent with the objective of quantifying uncertainty in order to estimate
project risks.

To overcome this bias due to anchoring, several methods for eliciting judgments
about probability distributions have been developed. A few are discussed here.
Many of these have the common approach, in which:

1. Two or three points on the cumulative probability distribution are estimated,
typically with one point in the lower tail, another in the upper tail, and a third
near the middle (median or mode), to avoid reliance on subjective estimates of
the mean, which may be contaminated by anchoring.

2. These points are used to fit the two or three parameters (mean and variance, typi-
cally) of the probability distribution believed to be most suitable.

6.3.1 The Beta Distribution

The Beta distribution is widely known as the foundation for the PERT method. The
developers of PERT (Malcolm et al. 1959; Clark 1962) chose the Beta distribution
because it is unimodal, and because it can represent a whole family of distribu-
tions: symmetric, skewed to the left, or skewed to the right, by varying the two
parameters, @ and S. The equation for the Beta distribution in the standardized
variable x (0 < x < 1) is:
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f(x):Mx‘H (1-x)"" ¥x,0< x <L, >0

T(a)T(8)
f (x) =0 elsewhere
Here, I'(@) represents the Gamma function. In the special case that N is an inte-

ger, then I'(N) = (N — 1)! The mean and variance of the Beta distribution in the
standardized variate x are given by:

o«

'ux_oc+ﬁ

o= ap
(a+/3+1)(a+,8)2

A function defined on the unit interval is not particularly useful, so the more
general function for the variable y defined on the interval [a,b], or y=a + (b — a)x,
is:

[(a+p) ! D EI
f(¥)= F(a)F(ﬁ)[(b_a)a+ﬂl ](y‘“) (b-y) La<y<ba,p>0

f ( y) =0 elsewhere

From the expressions above for the mean and variance of x, the mean and vari-
ance of y are easily obtained from the transformation relations:

;%=a+@—aﬁ5=a+@—a{azﬁ}

c?=(b-a) o’ =(b-a) ap
R O [ se e

The most likely value of y is the mode of the distribution. As the Beta distribution
is unimodal, the mode is the value of y at which f(y) is a maximum. Therefore, the
mode, m, is the value of y at which the first derivative of f(y) is zero:

df (y)

—~~=0aty=m
dy Y

After some manipulation, this evaluates to:

_a(p-1)+b(a-1)
a+f-2

m
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In PERT, the user estimates, for the duration of each activity, the three values for:

a, the most optimistic (shortest) value;
b, the most pessimistic (longest) value;
m, the most likely value (mode)

Using the Beta distribution, one can get just about any shape one wants (sym-
metric, skewed to the left, skewed to the right) by varying the two parameters. If
one believes that the distribution is skewed to the right, then one should estimate
(b — m) > (m — a). On the other hand, the limits a and b are hard boundaries: the
duration will never be less than a nor greater than b. Certainly a = 0 is a fixed lower
limit for real variables such as cost and duration, and there may be values of a >0
that delimit the absolute lowest value. However, one may be dissatisfied with the
fixed upper bound b, and it is not appropriate to set b = co in the Beta distribution.
The difficulty with the hard upper bound b is not so much that one expects that
costs could go to infinity or that project durations could last for eternity; the prob-
lem is that one doesn’t know where the upper bound should be. In the general
expression given earlier, if x,,,, is the largest value actually observed in N instances,

. 1 . .
there is always some probability Vil that the next observation will be greater
+

than x,,,, no matter how large x,,, is, conflicting with the presumption that there is
some known upper bound.

The Beta distribution can also be used for the probability distribution on cost for
each work package: simply let a = the lower bound on cost; b = the upper bound on
cost; and m = the most likely cost. The pros and cons of the use of the Beta in PERT
of course apply here as well.

In PERT, the mean and variance of each activity duration are then derived from
these three-point estimates, as follows:

a+4m+b
Hpgrr = T
2
. (b—a)
PERT 36

Equating the PERT expression for the mean to the mean of the Beta distribution
gives:

Hpgrr :%:ﬂy :a+(b—a),uX :a+(b_a)|: = :|

After some straightforward algebraic manipulation, this reduces to:

S5a—4m—->b
“{m}ﬁ-‘w

6= Sa—-4m-b
a+4m—5b
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Equating the PERT expression for variance to the equation for the variance of the
Beta distribution gives:

(a+B+1)(a+ [3)2
Substituting @ = ¢ into this expression gives:
36¢8% = B (1+9) + B> (1+9)

This expression reduces to:

g | @Ml
(1+(p)3
Then,
o gp—g| @041
(1+(p)3

However, the actual parameters of the Beta probability distribution are needed
only if one is doing Monte Carlo simulation. If one is simply interested in obtaining
the mean and variance, for an activity duration or for a work package cost, to be
used in the second moment approach, using subjective three-point estimates (a, m,
b), the process is:

1. Estimate the three values a, m, b, based on knowledgeable sources or the best

expert advice.
2. Compute the mean and variance of each work package or activity for use in the
second moment calculations from the following equations:

_a+4m+b

6.3.2 The Triangular Distribution

The Triangular distribution is similar in concept to the Beta distribution, although,
of course, a different shape. Like the Beta distribution, it can be symmetric, skewed
to the right, or skewed to the left. If, as before, a is the estimated lower limit, b is the
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estimated upper limit, and m is the estimated mode, the peak of the triangular
density function, then the mean and variance are given exactly by:

mean=7c=%(a+m+b)

Var[x] :%[az +b* +m? —(am+ab+bm)]

The Beta distribution and the Triangular distribution give quite different results
for the same estimates. If the distribution is skewed to the right, the mean of the Beta
distribution will be less than the mean of the Triangular distribution. The Triangular
distribution will always have much more variance than the Beta distribution. For
illustration, assume that the estimates are: a = 100, m = 125, and b = 200 for both
cases. Then the means and standard deviations by the two distributions are:

Beta: (s = 133.333; 05 = 16.667) and Triangular: (uz, = 141.667; 65, = 90.139)

In short, the Triangular distribution conveys a much higher level of uncertainty
than the Beta distribution with the same bounds. Figure 6.1 plots the probability
density functions for the Beta and the Triangular for this set of values.

Figure 6.2 plots the cumulative probability functions for the Beta and Triangular
distributions for the same set of values.

The PMBOK® Guide provides an example of the use of triangular distributions
(PMI 2008, p. 297). Table 6.1 gives the data for a project of three work packages. In
the notation used herein, a is the lower limit, b is the upper limit, and m is the mode
(most likely value) of the triangular probability density function.

0.025

0.02

Beta
——— Triangular
0.015 \
0.01 \

0.005

Probability Density

0 50 100 150 200 250

Fig. 6.1 Beta and triangular density distribution
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Fig. 6.2 Beta and triangular cumulative distribution

Table 6.1 Range of project cost estimates

WBS element Low (a) Most likely () High (b)
Design $4 M $6 M $10 M
Build $16 M $20 M $35M
Test $11M $15M $23 M
Total project $41 M

Adapted from Project Management Institute (2008, p. 297)

Plots showing the three probability density functions are shown in Fig. 6.3. (Note
that: This figure is not given in the PMBOK® Guide).

Also, note from the table above that the PMBOK® Guide gives the “Most
Likely” total project cost estimate as $41M, the sum of the “most likely” values of
all the work package probability density functions. This procedure is not founded
in or justified by probability theory. As noted earlier, the n-th moment of a sum of
random variates is the sum of the n-th moments of all the terms. That is, the first
moment (the mean) of the sum is the sum of the means, and the second moment
(the variance) of the sum is the sum of the second moments (variances and covari-
ances). There is no rule about summing the most likely values (except in the spe-
cial case that the density functions are symmetric and the modes are the same as
the means). It is not generally true that the most likely value for the total project
cost is the sum of the most likely values of all the work packages.

The probability distribution for the total project cost in this example is found, in
the PMBOK® Guide, by Monte Carlo simulation. There is nothing wrong with
using Monte Carlo simulation, but for this type of problem it is unnecessary. A solu-
tion by the second moment approach is indistinguishable from the Monte Carlo
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Fig. 6.3 Three triangle density functions

simulation, can be easily done by spreadsheet, and is faster. The PMBOK® Guide
does not indicate how many Monte Carlo iterations were used to obtain the answer
given. It also does not mention independence or dependence, so it is assumed that
the PMBOK® Guide deals only with the independent case, without mentioning the
assumptions used.

Table 6.2 shows the means and variances for the three work packages as deter-
mined by the equations given earlier and repeated here:

u=;‘c=%(a+m+b)
1
o’ :E[az +b* +m? —(am+ab+bm)}

By the second moment approach, the variance of the total project cost is the sum
of the variances and covariances in the variance-covariance matrix. Assuming inde-
pendence of all work packages, the covariance matrix is:

Design Build Test

Design 1.55556 0 0
Build 0 16.72222 0
Test 0 0 6.22222

The matrix is symmetric as the correlations between different work packages are
zero. The sum of the elements in the covariance matrix is 24.5, and the standard
deviation is $4.95 M. The cumulative distribution function for the total project cost
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Table 6.2 Moments of the three work packages

WBS element | Mean (p) | Variance (¢?) | Standard deviation (o) | Coefficient of Variation (COV)

Design 6.666667 | 1.555556 | 1.247219 0.187083
Build 23.66667 | 16.72222 4.089281 0.172787
Test 16.33333 | 6.222222 | 2.494438 0.152721

Total project | 46.66667

Note that the mean of the total project cost is the sum of the means of the work packages, in this
case $46.67 M, as given by the PMBOK® Guide, Figs. 11, 12, 13, 14, 15, and 16, page 300

09 4 = Monte Carlo
Second Moment

0.3 1

Cumulative Probability
(=] [=] o o o
w Y n o ~

o
o

0.1 1

25 30 55 60 65

Cost (S Millions)

Fig. 6.4 Cumulative distributions, Monte Carlo and second moment

is shown graphically in Fig. 6.4. The Monte Carlo solution (the solid line) is that
given in Figs. 11, 12, and 13 Cost Risk Simulation Results, on page 300 of the
PMBOK® Guide. The second moment solution (the dashed line) is shown as a
Normal distribution with mean $46.67 M and standard deviation $4.95 M, as com-
puted above using the second moment method. The two solutions are identical. The
probability of completing the project in $41 M or less (the so-called “Most Likely”
value) is about 0.12. The “conservative organization” that wants a 75% chance of
success (not overrunning the budget) should then have a budget of $50 M, that is,
including a contingency of $9M above the “Most Likely” value.

However, the second moment approach allows for a straightforward analysis of
the effects of dependencies. For example, suppose that one assumes a correlation of
0.9 between the work packages Design and Build. (For example, if the project turns
out to be more complex that originally estimated, then it is likely that both the
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Design costs and the Build costs will overrun). The other possible correlations are
taken as zero. The covariance matrix for this case is:

Design Build Test
Design  1.55556  4.590207 0
Build 4.590207 16.72222 0
Test 0 0 6.22222

With this matrix, and everything else the same, the plot of the cumulative prob-
ability distribution on total cost is shown in Fig. 6.5. The plot for the Monte Carlo
solution is the same as in the figure above, because the PMBOK® Guide provides
no guidance on the condition of correlation between work packages (it does not
even mention correlation). In this case, the effect of one correlation is not great, but
it does indicate that the contingency allowance should be increased by perhaps $1
M, compared to the independent case.

Meonte Carlo
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Fig. 6.5 Cumulative distribution, Monte Carlo and correlated second moment
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6.3.3 Other Three Point Approximations

Many other approaches have been proposed for estimating the mean and variance of
a probabilistic variate by eliciting three points on a subjective probability distribu-
tion. Many of these approaches are summarized and compared in Keefer and Bodily
(1983), who ran a large set of computations to determine which approximations
were the best. To do this, they assumed a set of Beta distributions with different
parameters as the underlying probability functions. Then they compared the esti-
mates made for the mean and variance, using various proposed approximation equa-
tions, with known true values for mean and variance.

In estimating the mean, the best approximation formulas were found to be the
following.

Pearson-Tukey (Pearson and Tukey 1965):
p=0.63x;, +0.185(ox; + x5 )

In this notation, x; represents the estimated value of the random variable at the
k-th percentile of the probability distribution. Therefore, x5, is the value of the
random variable at the 50th percentile, hence the median; x; is the estimated
value of x at the 5th percentile; and x5 is the value of x at 95th percentile. Keefer
and Bodily (1983) found that the maximum percentage error using this formula
in their experiments as less than 0.1%, and the average percentage error was
about 0.02%.

Other expressions giving good approximations to the mean were the following.

Perry-Greig (Perry and Greig 1975):
pn= L(x5 +0.95m + x,, )
2.95

Here, as in PERT, m is the mode, or most likely value. However, using the median
rather than the mode gives better results, as shown by Perry and Greig (1975), who
proposed “the extraordinarily accurate” equation:

W= X5, +0.185()c95 + X5 —2x50)

Modified Davidson-Cooper (Davidson and Cooper 1976):

w=0.16m+0.42(x,, +x,)

Swanson-Megill (Swanson, in Megill 1977):

i =0.40x5, +0.30(x,, + Xy )
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Conversely, according to Keefer and Bodily (1983), “especially poor
performances are provided by the original PERT approximation ... and the ...
triangular model.” “The Pearson-Tukey approximation for the mean outperforms
the PERT and the ... triangular approximation by more than three orders of mag-
nitude on average absolute error” (Emphasis added). Despite this “poor perfor-
mance,” the PERT approximation is still used, and the triangular distribution is
very popular in Monte Carlo simulations using canned software packages.

In estimating the variance, Keefer and Bodily (1983) found the following
approximation “to be the best’:

Truncated Pearson-Tukey (1965):

Extended Pearson-Tukey (1965):

2
0'02 _ Xos — Xs
3.25
Perry and Greig (1975) favored the following expression for the standard devia-
tion, which is identical to the Extended Pearson-Tukey equation:

Xos — X5

3.25

o =

Again, for estimating the variance, “particularly poor approximations are the ...
triangular model (unfortunately perhaps the most commonly used model), [and] the
original PERT” (Keefer and Bodily 1983).

Other approximations were documented by Keefer and Bodily (1983) but are
not reproduced here; for further information see their paper. The conclusion from
this is that there are much better approximations for the means and variances than
the original PERT formula or the results derived from the triangular distribution,
and these better approximations should be preferred, inasmuch as “the differ-
ences in performance between the best and the worst are very large” (Keefer and
Bodily 1983). If, for some reason, it is absolutely imperative to use a triangular
distribution in a Monte Carlo simulation, Keefer and Bodily (1983) give three
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other forms of triangular distribution that give more accurate results for means
and variances than the one in the earlier figure.

Triangular distributions are often used in Monte Carlo simulations to represent
skewed distributions, which the Normal distribution cannot. If a probability distri-
bution is thought to be skewed, Keefer and Bodily (1983) recommend the used of
the lognormal distribution with parameters estimated by the Pearson-Tukey approx-
imations given here.

6.3.4 The Normal Distribution

The Normal distribution can be used in a somewhat similar way, if one believes that
the probability distribution should tail away and not come to abrupt stop, as with the
Beta and the Triangular distributions. Of course, two limitations of the Normal dis-
tribution are:

1. It tails away on the low side as well as on the high side, and this may not seem
realistic.
2. Itis symmetric, and cannot represent skewness.

The primary justification for using the Normal is that it is so familiar. To use it,
first define some probability level or percentile at which the points on the distribu-
tion will be estimated. Because only two values are to be computed, the mean and
the variance, only two points are needed. To avoid anchoring, these points should be
far from the mean.

Establish convenient, symmetric percentiles at the lower and upper ends of the
range. Call the lower value F,,(x) and the upper value Fj,,(x) = 1.0 — F,,(x). The
expert then estimates the values for the duration at these percentiles. That is, the
expert estimates an optimistic value, x,.,, such that the probability is F,,(x) that the
actual duration will be less than this. Conversely, the expert estimates the pessimis-
tic value of the activity, Xy, such that the probability is F,,(x) that it will not be
exceeded. Some typical values are:

1. Fip(x) = 0.10; F(x) = 0.90. With these figures, it is assumed that the expert
judgment on the most pessimistic value, X, has a likelihood of 10% of being
conservative (that is, too low).

2. Fip(x) = 0.05; Fg(x) = 0.95. With these figures, it is assumed that the expert
judgment on the most pessimistic value, x4, has a likelihood of 5% of being
conservative (too low). Note that this definition gives a smaller variance that that
in case 1 above, for the same values of x;,, and x;;,.

3. Some people believe that experts can more easily deal with odds rather than
probabilities, and therefore set the percentiles accordingly. For example, if the
odds are believed to be 10 to 1 that the duration (or cost) x;,,, will be exceeded,
then the probability of a duration less than x;,, is 1/11 and the probability of a
duration greater than x,,, is 10/11. Then F,(x) = 0.09091; F,(x) = 0.90909.
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The expert then adjusts his estimates of x;,, and X, to achieve the desired
condition of odds of 10 to 1.

As the Normal distribution is symmetric, and assuming that symmetric values of
Fiow(X); Fign(x) are specified, the mean is determined from:

p=x= ‘xlow + E(‘xhigh - xlow) = E(xlaw + ‘xhigh)

The standard deviation is obtained from the published tables for the Normal
distribution.

1. In case 1, the distance from the mean to the 10th percentile is 1.282¢, so the
X

Xhigh ~ Xiow
2.564
2. In case 2, the distance from the mean to the 5th percentile is 1.6450, so the stan-
‘xhigh - xlow
3.29
3. In case 3, the distance from the mean to the cumulative at 0.09090 is 1.3347¢, so
xhigh - xlow

2.6694

standard deviation is ¢ =
dard deviation is o =

the standard deviation is o =

6.3.5 The Gumbel Type II Extreme Value Distribution

This distribution is a limiting extreme value distribution. If there are a number of
parallel paths to an activity; if all the paths are independent; if the number of
independent paths is large; if the duration of each is exponentially distributed; and
if the durations are unlimited to the right but not less than some specified mini-
mum y; in the limit the largest order statistic approaches the probability distribu-
tion is known as the Gumbel Type II Extreme Value Distribution, which is defined
by the cumulative probability distribution F,(x) and the probability density func-
tion f(x) below:

-B
F, (x):exp{—[x_y} } forall y <x <o

a

f(x)= dF;—,(CX) = exp{—[xair }[gj{xai}(ﬁﬂ)

_ —(B+1)
:[éj{u} F, (x) forally <x <o

[0 o

Here, y is a location or shift parameter that shifts the distribution to the right.
(That is, the probability is zero for x < y). The distribution has the properties:
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B 1B
mode(x)=y +a [m}

This function is bounded from below by y. It is not bounded from above and the
values of x can be indefinitely large. Of course, if one uses this distribution for real
projects, the parallel paths for an activity cannot be all independent, so the condi-
tions of the derivation cannot be met. However, this origin suggests that this distri-
bution might be a reasonable approximation for actual activity durations, even with
dependence. Generally speaking, it is highly skewed to the right.

We can fit this function to our best judgment by the following process:

median (x)=y +a {

1. Estimate the shift factor y. This is the absolute lower limit for the variate x; x can
never take on values less than y.

2. Establish a convenient percentile at the lower end of the range, for example,
0.10. Call this value F,,(x), with value 0.10 or 0.05, say. The expert then esti-
mates the value for the duration at this percentile; that is, has probability F,,(x)
that this value will not be exceeded. Call this value x,,,.

3. Establish a suitable percentile at the upper end of the range, for example, 0.90.
Call this value Fj(x), with value 0.90 or 0.95, say. Then estimate the value of
the activity duration at this percentile; that is, the duration that has probability
Fien(x) that it will not be exceeded. Call this value Xy

Then the two parameters of the Type II distribution are computed as follows:

ﬁzmllnm

In (Fhigh ):l In {xhigh v J

KXigh —7V

i)

These three parameters, a, f, y, define the Type II distribution. However, the
values needed for the second moment process are the mean and variance. There
are closed-form equations for the mode and median, but unfortunately there are no
closed-form solutions for the mean and variance. This would seem to be an imped-
iment to the use of this distribution in practice, but this is not necessarily so. The
numerical integrations needed to find the values of the mean and variance are eas-
ily set up and performed by a spreadsheet program. This process is as follows:

o=
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L. Input 1€ Flow’ Xiows Fhigh’ Xhigh

2. From these, compute a, f from the equations above.

3. Using a, f, y, compute the probability density function f,(x;) from the equation
given above, for a number of values at regular intervals, 6. There should be
enough intervals to cover the range from x = y to x > X, until the computed
values of f,(x;) become negligible.

4. Compute the mean by:

uz;‘czixkfx(xk)S

5. Compute the variance by:

n

o’ =) (x, —)_c)zfx(xk)S

k=1

The integrations above essentially use the trapezoidal rule; more accurate results
might be obtained with Simpson’s rule or some other integration rule. The com-
puted mean and variance are then used in the second moment process. The numeri-
cal integration is not quite as elegant as a closed form equation, but in practice the
computation takes no more time on a spreadsheet. And, the spreadsheet can plot a
picture of what the probability density looks like; if it seems too skewed, or not
skewed enough, one can easily adjust the input parameter values until it looks right.

Figure 6.6 shows an example of a Gumbel Type II distribution with shift zero,
10th percentile 1100, and 90th percentile 2300.

6.3.6 Fitting the Gumbel Type 1l Distribution to a Histogram

If one has some data, sufficient to define a histogram, it is possible to fit a Gumbel
Type 1I distribution to three points on the cumulative probability function, rather
than two points and the shift factor, as above. To do this, consider three percentiles
of the cumulative distribution: a low value, the median value, and a high value. Let
these be denoted (Fpus Xiow)s (Fs0,X50)s (Fhighs Xnien). Here xsq is the median, and so
Fsy = 0.50. The low and high values will be left unspecified for the moment. The
cumulative distribution function for the Gumbel Type II was given above as:

-5
Fx(x)zexp{—{ﬂ} } forall y <x <o

a

The shift factor can be eliminated by considering three points on the
cumulative:
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Fig. 6.6 Gumbel type II probability density function

-B
l::lcuw = eXp _|:X10W 7/:|
a

-B
F,, =0.50 = exp {—X” q

-B
X, —
Fin = €Xp _|:M:|

Now take the natural logarithms of all three expressions:
Xy, =7 o’
In[F_ |=—| >~
[ low] |: o j|

1n[0.50] = —[MT

a

-B
=[]

a
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Using these relations, form two ratios, as follows:

in[F,, | _{xso—y T

n[0.50] | x,, —7

In [0.50] B {xhigh -y T

In [Fhigh ] Xsg =7

Taking logarithms of both sides of both expressions gives:
In|F —
In —[ vl l=B1In E0 7V
1n[0.50] Xiow =7
In|0.50 Xy —
In M = ﬁln |:}HL7/:|
In[ Fy, | Xy —7

Solving both expressions for g gives:

Obviously, the values for # from both expressions must be identical, so the two
expressions on the right can be equated:

In[E,,] N 1n[0.50]
i Macs|

In {XSO_V} 1n|:xhigh _7}
Xlow - y XSO - y

Or, rearranging,
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Xpion — In - In|0.50

ln{ figh J/}ln [ zln{xso 4 }ln [0-50]

Xso =Y ln[O.SO] Xiow — ¥ In [Fhigh}
This equation must be solved for the shift factor, y. The general solution of this
equation would be difficult. However, the percentiles F,,, and Fy;., have been left

unspecified, so we may chose specific values of these parameters to make the solu-
tion easier. An obvious simplification would be to set Fy,,, and Fy;, so that:

lnLl: [[0 15:)]]}

. {m[o 50]]
[Fu ]

Thus,
ln[ low ]
ln[O.SO]
ln[O.SO]
—s =
ln |:Fhigh:|
Rearranging,
ln[ 10W] = eln[O 50]
In[0.50] =eln|F,,, |
Hence,

F,, =0.50° =0.15196
=0.50" = 0.77492

hlgh

That is, we choose the lower percentile, Fy,,, = F;s, to correspond to approxi-
mately the 15th percentile of the cumulative histogram, and the upper percentile,
Fhien = Fy7, to correspond to approximately the 77th percentile of the cumulative.
With these specific values, the equation above,

ln{xhigh —y}ln n[F,,] | _ h{ Xg 7 }m In[0.50]
Xs =¥ ln[O.SO] Xy =7 In |:Fhigh:|

becomes
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ln|:x77 _7:| _ 1n|:X50 _7’:|
Xs0 ~Y Xis 7Y

Xn =V _Xs0 7V
Xso =V Xis—7

(X =7)(x1s =7) = (x5 =7) (%50 = 7)

This becomes

The solution to this is:

2
_ XX =Xy

X5t X7 — 2X50

This value for the shift factor may then be used in the Gumbel Type II distribu-
tion, instead of estimating it directly. Note: this method of fitting three points is not
the best fit or the least squares fit of the Gumbel Type II to observed data. An equa-
tion fitted by least squares will be that distribution with the minimum sum of squares
of the deviations between the data and the function; the three-point fit matches the
function to the data at exactly three points, and not necessarily elsewhere.

6.3.7 The “Binormal’’ Distribution

The “binormal” distribution was documented by King et al., in the aptly named
paper “An Alternative to Monte Carlo Sampling in Stochastic Models” (1975).
Their “... approach was to seek a single function that could be treated both as the
underlying cdf of each x; and as an approximation for the cdf of the sum, y. A prom-
ising candidate should be a mathematically tractable three-parameter function capa-
ble of approximating a wide variety of distribution shapes. In addition, if such a
function were assumed to be the true cdf of each x;, it then should provide a close
approximation to the cdf of y for values on 7 in the practical range....”

“After screening a number of candidates, [the authors] selected a function which
may be called “binormal” with the cumulative density function (cdf):

F(x; m,dl,crz):d)[ﬂjforx<m

F(x; m, Gl,crz):d{x meoer m

0,

where ®(x) is the cdf of a standardized unit normal distribution. The density func-
tion consists of the left half of one normal curve and the right half of another, both
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having the same mean, m. The parameters o; and o, are, in effect, the standard
deviations of the two original Gaussian curves, and the parameter m becomes the
median of the composite distribution. The special case of a normal distribution is
obtained when o, = o,.

The authors recommend the estimation of three values corresponding to the 10th,
50th, and 90th percentiles, x,o, X5, Xo0. However, other percentiles could be used by
suitably modifying the expressions below. With these estimates, the three parame-
ters of the binormal are computed from:

P T
1282

X

_ o0 T %50

1.282

m = X,

Of course, the factor 1.282 is obtained from tables of the Normal distribution,
and should be changed if other percentiles are used. For example, if one prefers the
5th, 50th, and 95th percentiles, corresponding to the judgmental estimates xos,
Xso, and xos, the factor would be 1.645.

With these three parameters estimated, the first three moments of the binormal
can be computed. Only the first two moments are given here, because the second
moment approach uses only the mean and the variance. They are:

—x=m+ 2
Hy \/E
1, = var(x) = o, +o; _(62_61)2
2

2 2r

King et al. used three estimates in order to fit a three-moment approach, but they
assumed for ease of use that all the individual variables were independent. Therefore,
their method as given cannot be applied when the variables are correlated, as is
assumed in these notes. Here, we use a second moment method plus correlations.

Comparing the Gumbel Type II distribution and the King et al. binormal distribu-
tion, assume that the estimates are, with values at the 10th and 90th percentiles:
shift = 500, x,y = 1200, x99 = 2000. Then the resulting means and variances are:

Type 1I distribution:

mode = 1315, median = 1442, p = 1519, 6 = 350
Binormal distribution:

mode = 1315, median = 1315, p = 1492, 6 = 340

Figure 6.7 plots the cumulative probability distributions for the Gumbel Type II
and the binormal for the parameters given just above. As would be expected, the



6.3 Subjective Methods Depending on Expert Judgment 131

— — — Binomial

Gumbel Type I

Probability Density

0.4 4

02 4

T g T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Cost/Duration

Fig. 6.7 Gumbel type II vs. binormal

binormal is not particularly suitable around the junction point (1315), but the binor-
mal and the Gumbel give very similar results in both tails.

The Gumbel Type II distribution seems to be satisfactory, and perhaps more the-
oretically justified than the binormal, the origin of which, in combining two Normal
distributions may seem somewhat arbitrary. Based on limited comparisons, how-
ever, the binormal distribution seems to give comparable results, and is easier to use,
given than no numerical integration is required. Therefore, if one can accept the
rather heuristic origin of the binormal, it seems sufficiently accurate to determine
the mean and variance from three point estimates.

6.3.8 Reality Checks

Some students and practitioners object that they may be able to estimate
single point values for some random variables, but they have no basis for
estimating variances. Obviously, experience is valuable in making these esti-
mates. Nevertheless, variances can be estimated by practically anyone. Instead
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of dealing with the variance directly, consider dealing with the Coefficient

- Jvarfx] o .
of variation, COV[x] =———==—2_ If E[x] # 0, and we can estimate COV|[x],
E [x] u,
then we can get the standard deviation from o, = COV[x]u,. So how can one get
COVI[x]? One thing people can do to develop their intuition for uncertainty is to
determine the coefficients of variation on ordinary activities for which they have
abundant data.

For example, consider the time it takes you to travel from your home to your first
class, or your last class to home, or to run 2 miles every morning, or some other
activity you do nearly every day. Record these times every day for a month or more,
then compute the means, standard deviation, and coefficients of variation for each
activity. Now use these values for the coefficients of variation to calibrate estimates
of project times. This does not mean that everything has the same coefficient of
variation. However, there have been many cases of project proponents estimating
the variability for first of a kind, new technology, complex projects to have much
smaller coefficients of variation than the variability in driving to work every morn-
ing. This doesn’t imply that your daily experiments tell you what the variability in
the duration of a new project might be, but they can tell you when the estimated
coefficients of variation are absurdly small.

6.3.9 Expert Judgment for Correlations

Less work has been done on the best methods for eliciting expert judgment on cor-
relation coefficients than has been done with means and variances. This is no doubt
because most researchers assume all correlations to be zero. It appears that the best
way found so far to elicit correlation coefficients from experts is simply to ask them
to give their best estimates of the correlation coefficients. Some background discus-
sion of the meaning of correlations is desirable. It may also be helpful to show scat-
ter diagrams representing different values of the correlations between two
variables.

The following method has been found to be workable in risk analyses for indus-
trial and commercial engineering and construction projects:

1. Setup a small number of admissible correlations, associated with verbal descrip-
tors that are comprehensible to the experts, such as, for example:

High=0.9
Moderate = 0.6
Low=0.3
Zero =0.0

2. Ask each expert evaluator to identify all the pairs of variables (such as work
packages or activities) that are related by each of the verbal descriptors.
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3. Crosscut the above by asking each evaluator to identify potential common mode
risks that would affect multiple work packages and lead to correlations between
them.

4. Check for consistency by asking each evaluator to estimate the correlations for
specific pairs of work packages.

5. Compare results across all evaluators and follow up on any apparent inconsisten-
cies between experts.

6. Form the complete covariance matrix and determine if it is admissible; that is, it
is positive definite and invertible. If it is not positive definite, adjust the correla-
tion values until the matrix is positive definite.

7. Perform a sensitivity analysis of the risk analysis results to determine if the com-
puted risks are sensitive to any particular correlation coefficients.

6.3.10 Other Methods for Estimating Correlation Coefficients

Assume that for every pair of work packages or cost accounts, j and k, there is a
correlation coefficient py such that

-1<p, <+1 forall jand k

P = Py (SymmetrY)
py =1if k=

The correlation coefficient describes the stochastic interaction between cost
account j and cost account k. The correlation coefficient does not define causal rela-
tionships, such as X; = f(X,), where fis some deterministic function. Without correla-
tion, all the uncertain components would be independent entities; correlation links
all these components together into a system.

 If, when the cost of WP, is above its mean, the cost of WP; also tends to be above
its mean, then the two work packages are positively correlated, pj > 0

 If, when the cost of WP, is above its mean, the cost of WP; tends to be below its
mean, then the two work packages are negatively correlated, p; , <0

The meaning of p; can be interpreted as follows: suppose that there are two work
packages, j and k, with variances G_? , cr,f and correlation py. Then the square of the
correlation pfk is the fraction of the uncertainty (i.e., the variance) in the cost of
Work Package j that is explained or removed by knowledge of the true cost of Work
Package k.

That is, suppose the project manager initially does not know the true values of
the Work Package costs X; and X, but attributes to them the uncertainties o and

O',f , respectively. Then suppose that work package k& finishes, and the project man-
ager now knows the true value of X;. If the two work packages are correlated, this
knowledge of the true value for Work Package k then tells the project manager
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something about the cost of the incomplete Work Package j. As the square of the
correlation pfk is the fraction of the uncertainty in the cost of Work Package j that
is explained or removed by knowledge of the true cost of Work Package k, then this
knowledge reduces the variance of Work Package j by the amount pfkof . Then the
remaining variance in Work Package j, the uncertainty remaining in this work pack-
age cost, is equal to the original uncertainty (before Work Package k was known)
minus the reduction in variance due to the knowledge of Work Pagkage k. Call the
prior variance (before k) o-f and the posterior variance (after k) o, where

~2 2 2 2 2f(q 2 2
0, =0; P09, =0; (1 pjkaj)

The result states that, no matter what the actual value of X; is, the project man-
ager’s uncertainty in the cost is always reduced by knowledge of X;. The knowledge
of X, reduces the uncertainty in X; due to the linkage p; between these two
activities.

If the correlation is O, then knowledge of the actual cost of the Work Package

WP, provides the project manager with no information about the cost of incomplete

Work Package WP;, as 6 —p 0. = (1 - p_fk)a_f =o;.

If the correlation is +1 or —1, then knowledge of the actual cost of WP, provides
the project manager with complete information about the cost of uncompleted Work
Package WP;:

~2 2 2 2 (1 2\ 2 _
O0; =0; = Pu0; _(1 pjk)af =0

If the knowledge of the actual cost of WP, would induce the project manager to
consider revising the estimate of the cost of incomplete WP; (either up or down),
then the project manager believes that the two WP costs are correlated.

The amount of the project manager’s revision depends on the value of the cor-
relation coefficient. This does not imply that an overrun in WP, necessarily causes
an overrun in WP; (there may be a common cause).

The most common method for eliciting subjective estimates of correlation coef-
ficients from people with experience is simply to ask them to estimate the values.
Experience has shown this method to be workable. However, some people may not
relate to estimating correlation coefficients directly, but may be more able to esti-
mate changes (ratios) in parameters such as variance due to additional knowledge
about the values for some work packages. Let’s define:

o-f = the variance or uncertainty in Work Package j when the costs of both Work

~2Package Jj and Work Package k are unknown.

O; =the variance or uncertainty in Work Package j if the true cost of Work Package
k were known (Work Package j remains unknown)

Then the ratio of the variance (uncertainty) of WP; after WP, is known to the
value before WP, is known is:
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~2 2 2 2 _ A2 2
O; O P9, (1 p/k)af

2 2 2 ( Jk
j o, o,
~2
2 1.9
Pp=l——7

Figure 6.8 shows a plot of this relationship between variance ratio and
correlation coefficient.

For example, if someone familiar with the project estimates that knowledge of
Work Package k would reduce the estimated Coefficient of Variation of Work
Package j to 60% of its value before this knowledge became available, then the
estimator implicitly values the correlation between these two work packages at
0.90, as shown in Fig. 6.9.

6.3.11 Correlations Derived from Work Breakdown Structures

Assessment of correlations is not optional; it is necessary. If one defines a new
model for a project, it is possible or at least conceivable that one can choose vari-
ables that are independent. However, when using common models, such as the
Work Breakdown Structure (WBS) for project costs and the Critical Path Method
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Fig. 6.9 Estimating correlation coefficient from the ratio of variances

(CPM) for project schedules, the usual variables (Work Package costs and Activity
durations) are definitely not independent. Assuming that all variables are indepen-
dent can be, as shown in various places in these notes, very unconservative, and so
correlations must be assessed.

When dealing with means and variances, one has to estimate N values in each
case, where N is the number of variables, but the obvious difficulty with correlations
is that one must estimate all the correlation coefficients in the correlation matrix.

. . . N(N-1)
Taking advantage of symmetry, this means estimating

still a large number.

However, there may be a source of information about correlations readily at
hand, in the form of the Work Breakdown Structure. The WBS is the standard
method for dissecting projects into manageable parts for planning, estimating,
scheduling, and reporting, and is required on virtually all projects that follow com-
mon project management principles. Although Work Breakdown Structures vary
considerably from project to project, they all have the common factor that Work
Packages are grouped by association. That is, the WBS is a subjective or qualitative
expression of correlation between Work Packages.

For example, consider the common form of WBS, a tree structure rooted at the
top level and branching at each level down to the Work Packages. Table 6.3 indi-
cates one form of WBS:

Each branch at each level is given an identification number in the WBS diction-
ary, and the Work packages, in this arrangement, have five digit numbers. As an
illustration, suppose that some project is the first project for the first program or
client. Then the Project has the number 1.1. Suppose, for convenience in discussion,
there are three branches from every node, so the project will have three tasks: 1.1.1,

values, but this is
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Table 6.3 WBS level Level | Description
description Level 1

Program or client

Level 2 | Project

Level 3 | Task

Level 4 | Subtask

Level 5 | Work package

Table 6.4 WBS levels

Level 1 Level 2 Level 3 Level 4 Level 5
Program Project Task Subtask WP

1.1.1.1.1
1.1.1.1 1.1.1.1.2
1.1.1.1.3
1.1.1.2.1
1.1.1 1.1.1.2 1.1.1.2.2
1.1.1.2.3
1.1.1.3.1
1.1.1.3 1.1.1.3.2
1.1.1.3.3
1.1.2.1.1
1.1.2.1 1.1.2.1.2
1.1.2.1.3
1.1.2.2.1
1 1.1 1.1.2 1.1.2.2 1.1.22.2
1.1.2.2.3
1.1.2.3.1
1.1.23 1.1.2.3.2
1.1.2.3.3
1.1.3.1.1
1.1.3.1 1.1.3.1.2
1.1.3.1.3
1.1.3.2.1
1.1.3 1.1.3.2 1.1.32.2
1.1.3.2.3
1.1.3.3.1
1.1.3.3 1.1.33.2
1.1.3.3.3

1.1.2, and 1.1.3. Assuming three subtasks per task, there are nine subtasks, labeled
1.1.1.1, 1.1.1.2, 1.1.1.3, etc. And assuming three Work Packages per subtask, there
are 27 WPs. Table 6.4 shows the hierarchical tree, turned sideways to fit the paper.
Looking at the tree, one may say that work packages are associated if they have
the same parent, that is, subtask. Therefore, work packages 1.1.1.1.1, 1.1.1.1.2, and
1.1.1.1.3 are associated because all have the same parent, subtask 1.1.1.1. This
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association was built into the Work Breakdown Structure when the WBS was made,
and, because association is correlation, now we can take advantage of this effort to
generate the correlation matrix.

Thus, we may say that work packages 1.1.1.1.1, 1.1.1.1.2, and 1.1.1.1.3 are cor-
related with a common correlation coefficient, say p,, because they are associated
through their common parent at level 4. Similarly, work packages 1.1.1.2.1,
1.1.1.2.2, and 1.1.1.2.3 are associated with their common parent, subtask 1.1.1.2.
Then we may say that these WPs have a common correlation coefficient, p4, because
they are associated through their common parent at level 4. This logic continues for
all WPs with common parents.

However, the set of WPs 1.1.1.1.1, 1.1.1.1.2, and 1.1.1.1.3 shares a common
grandparent (task) with the set of WPs 1.1.1.2.1, 1.1.1.2.2, and 1.1.1.2.3. Therefore,
we may say that these two sets are associated with correlation coefficient p;, because
they are related by a common grandparent at level 3. We would normally expect that
p3 < p,. This logic continues for all WPs with common grandparents (tasks).

However, the set of WPs 1.1.1.1.1, 1.1.1.1.2, and 1.1.1.1.3 does not share a com-
mon grandparent (task) with the set of WPs 1.1.3.3.1, 1.1.3.3.2, and 1.1.3.3.3. These
two sets do share a common great-grandparent (the project), and so are associated
with correlation coefficient p,, because they are related by a common great-
grandparent at level 2. We would normally expect that p, < p;. This logic continues
for all WPs in the project. There may also be correlations between projects in pro-
grams, but multiple projects are not considered here.

Thus, by use of the project Work Breakdown Structure, the correlation issue has
been reduced to the estimation of only three correlation coefficients: p,, ps, and py,
for any size of project. Of course, this reduction may not suit all projects, but it may
be used as a starting point, and values provided for specific correlations for any two
WPs j and k, py, by overriding the default values.

Figure 6.10 shows a portion of a 27x27 spreadsheet correlation matrix (trun-
cated to fit the page) with three branches at every node, as discussed above, and
p4=0.9; p3=0.7;and p, =0.5.

6.4 Aggregating Expert Judgments

Expert judgments about the moments of probability distributions of random vari-
ables in project management are typically obtained in a group setting utilizing tech-
niques such as Delphi or Kaplan method. Here the objective is to for the group of
experts to converge to a single representation of the probability distribution. The key
advantage of such a group-based exercise that comes typically in the form of 2-day
workshop is to expose knowledge of many experts and get a broader backgrounds
and more complete picture of the factors that may contribute to the project risks.
However, often such exercises end up with a one-sided and skewed perspective due
to a number of reasons such as organizational bias; for example, it is not too uncom-
mon to have sideline conversations with participants that doubt the group logic and



6.4 Aggregating Expert Judgments 139

wr LLLLI LLL12 LLLL3 LL121 LL122 L1123 LLL31 L1132 LLI33 L1211 L1212 L1213
1 09 09 07 07 07 07 07 07 05 05 0.5
09 1 09 0.7 07 07 07 07 07 05 05 0.5
09 09 1 0.7 0.7 0.7 0.7 07 07 05 05 0.5
07 0.7 07 1 09 09 0.7 0.7 0.7 0.5 0.5 05
07 0.7 0.7 09 1 09 0.7 0.7 07 05 0.5 05
07 07 0.7 09 09 1 07 07 0.7 05 05 0.5
07 07 07 0.7 07 0.7 1 09 09 05 05 0.5
07 07 07 07 07 07 09 1 09 05 05 05
07 07 07 07 07 07 09 09 1 035 05 05
035 05 05 05 035 05 05 05 05 1 09 09
035 05 05 05 05 05 05 05 05 09 1 09
05 05 05 05 05 05 05 05 05 09 09 1
05 05 05 05 05 05 05 05 05 07 07 0.7
05 05 05 05 05 05 05 05 05 0.7 07 0.7
05 05 0.5 05 05 05 05 05 05 07 07 0.7
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.7 0.7 07
05 0.5 05 0.5 05 0.5 0.5 0.5 0.5 07 07 0.7
05 05 05 0.5 05 0.5 0.5 0.5 0.5 07 07 0.7
05 05 05 05 05 0.5 05 05 0.5 05 05 05
05 05 0.5 05 035 05 0.5 05 05 05 05 05
05 05 05 05 05 05 0.5 05 05 035 05 05
035 05 05 05 05 05 05 05 05 035 05 05
035 05 05 05 05 05 05 05 05 035 05 035
05 05 05 05 05 05 05 05 05 035 05 05
05 05 05 05 05 05 05 05 05 05 05 0.5
05 05 05 05 05 05 05 05 05 05 05 0.5
05 05 05 05 05 05 05 05 05 05 05 0.5

Fig. 6.10 Truncated correlation matrix

judgements but would like remain anonymous. Hence, in some instances is to our
advantage to elicit experts’ judgment on an individual basis which bring the ques-
tion — How do we aggregate expert judgments of probability distributions?

Mathematical aggregation combines individual probability distributions into one
single distribution. Opinion pooling is the most common method of aggregation. In
linear opinion pool we consider a weighted average of the individual distributions
with weights w; summing to 1.

£(0)=2w.1,(0)

Simple average (equal-weighted) is w; = 1/n (for n experts). Generally, weights
are chosen depending on the expertise of the experts.

In logarithmic option pool we take weighted geometric mean of the n individual
distributions.

7(0)=HT 7 (6)"

where k is a normalizing constant that ensures that f{6) integrates to 1.
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So when to use Linear Pool and When to use a Logarithmic Pool? Suppose there
are two experts, then the logarithmic pool implies stronger information than that
given by either expert separately, whereas the linear pool represents less knowledge
than either expert alone.

There also other more complex methods of aggregating expert opinion including
Cooke’s method that takes advantage of information about experts’ performance in
a separate elicitation, as well as the methods that process aggregation based on
monetary stake such as prediction markets. To choose the right approach in mathe-
matical aggregation, one should consider the type of information available (full or
partial probability distributions); the individuals performing the aggregation of
probabilities; the degree of modeling to be undertaken (e.g. risk assessment team);
the form of the combination rule (e.g. weighted average); the specification of param-
eters for the combination rule (e.g. weights); and the consideration of simple vs.
complex rules (e.g. simple averages vs. complex models) .

6.5 Practice Problems

Problem 6.5.1 A construction company keeps records of cost and duration of
certain standard work packages on previous projects, for example, the total cost
and duration per cubic feet (cf) of reinforced concrete installed for standard foun-
dation work. During planning and estimation phase of the project, the project
manager needed to know what cost and schedule risks are associated with instal-
lation of 50,000 ft* of reinforced foundation on the project. The previous projects
were deemed similar enough to provide a basis for the analysis. The data is shown
in the Table 6.5.

* Assuming that distributions are normally distributed find the mean and variance
of the distribution?

¢ What is the correlation coefficient between the two random variables (schedule
and cost)? Explain your results and provide logic.

Table 6.5 Problem data Project | Cost per cf ($) | Schedule per cf (days)
65
66
59
38

110
89

200
40

160

“|Zlammg alw >
v wu|o o] w s
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Table 6.6 Problem data
Work package 5-th percentile 50-th percentile 95-th percentile
1 950 1000 1050
2 900 1000 1100
3 600 1000 1400
Table 6.7 Problem data
New Orleans, LA — Stockton CA Stockton CA — project site
5-th 50-th 95-th 5-th 50-th 95-th
Expert | percentile percentile percentile percentile | percentile percentile
Susan | 15 22 35 1 2 3
Rodney | 10 12 25 1 2 5
Maria |12 15 30 1 2 5

Problem 6.5.2 Archie is the project manager for a short-term retail sales facility
development and Bernie is the construction manager. Archie gives Bernie the task
of estimating the risk function of the construction cost. Bernie breaks down the
construction phase into three work packages, all of which are performed in 1 year.
Bernie makes three-point estimates of the optimistic cost (the 5th percentile, or
Xo5), the median (the 50th percentile, or xsy), and the pessimistic cost (the 95th
percentile, or xos). These three point estimates are shown in Table 6.6. All figures
are in thousands of dollars. All costs are incurred in the same year. Use the
Pearson-Tukey approximations to compute the mean and variance of each work
package cost.

Bernie estimates the correlations between work packages at 0.95. Determine the
probability function. What is the probability that the project will cost more than
$3500?

Problem 6.5.3 Michael is in-charge of assessing risks associated the company
logistics operations. More specifically, he was given a task to determine the risk that
sensitive equipment will not be arriving on-time to be installed. As no empirical
data for this is available for this job he has interviewed 3 “experts” to determine a
probability density function including the estimates of mean time and the variance
that would take the equipment to travel from New Orleans, LA to Stockton, CA and
then from Stockton, CA to the project site. The experts’ responses (days of travel)
are shown in Table 6.7.

If the travel times are modeled using Beta distribution determine the total travel
time by aggregating estimates using linear opinion pooling method (hint: use equal
weights).
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Chapter 7
Sensitivity and Common Cause Effects

Check for
updates

Abstract In this chapter we discuss the sensitivity of the project performance
outcomes such as the total project cost to the uncertainty in work packages. We
provide two approaches to this critical step for developing risk mitigation strate-
gies, one based on calculating derivatives of the total variance with the respect to
work package of interest, and the other one based on the correlation between the
total cost and the work package. Further, this chapter introduces another important
analysis for designing proper mitigation strategies — determining the effects of
common cause events on the correlation and ultimately on the total cost.

Keywords Sensitivity - Common cause events - Correlation

7.1 Introduction

The total cost of a project is, according to the engineering or “bottom-up” model,
the sum of the costs of all of its individual work packages. In a deterministic
approach, it is obvious which work package makes the greatest contribution to the
total cost: it is the largest work package. However, we are concerned here with the
uncertainty in the total cost, which is, in some way, the combination of the uncer-
tainties in all the individual work packages. Given that a project has many work
packages, and that the project manager has limited time, it is of some importance
to be able to assess priorities, in order to be able to determine which work pack-
ages are making the most contribution to the total uncertainty. In this chapter we
discuss methods that can help determine which work packages should receive the
most attention from the project manager. We focus on the sensitivity of the total
cost to each work package as well as the impact of common cause factors on
correlation.
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144 7 Sensitivity and Common Cause Effects
7.2 Total Cost Sensitivity to Work Packages

Let T be the total cost of a project and let X, be the cost of the k-th work package.
All work package costs are assumed to be random variates, and so 7' is also a ran-
dom variate. There are N work packages. Then the total cost is the sum,

N
T :ij
j=1

E[x]=w=x

ci =0, zE[(xj —uj)z]

The expected value of the total cost is given by

E[T]=u, = E{jﬁ:‘xj} = szlE[xj] = ,ﬁ:‘“"

That is, the mean value of the sum is the sum of the means for all the work
packages.

In order to consider the risk associated with the total project cost, T, it is
desirable to compute the uncertainty in the value of 7. Consider the variance of
T as a measure of this uncertainty or ignorance about the total cost of the project.
Then,

N N N N
cov[x,. ,x_,.] =220, =2.2P.00,

1 i=1 j=1 i=1 j=1

o} =var[T] =ﬁ:

N
i=1 j=
In this expression, cov[x;,x;], o; ; and p; ;0,0; are just different symbols standing
for the same thing, namely the covariance of the variables x; and x;.
All these variances and covariances can be written compactly in the symmetric
N x N Covariance matrix, V, as,

2

Vi Vo v O, Opr Oy o, PpO0, P00y
_ _ _ 2
V= Vi Vn Vo | =| On 2 v | = P09, o, PonO,0y
2
Vi Va2o Vi Oyi Ona'" Owy PivO Oy Pyy0,0y Oy

In words, the variance of the sum of a number of random variates is the sum of
all the terms in the covariance matrix; that is, the sum of the N? variances and
covariances of the individual work package costs. This is true regardless of whether
the individual costs are correlated or uncorrelated.
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The summation can be compactly written in matrix notation. Define the N
column vector consisting of all 1s:

,_‘
Il
—_ = = =

N

Then the summation above may be written as:
var[T]=1"V1

In order to concentrate our efforts on risk mitigation and management on the
right areas, we will be interested in knowing which of the work package costs has
the greatest impact on the total project cost. If the project had no uncertainty, and all
values were deterministic, this question would be trivial: obviously a dollar increase
in the cost of any work package would increase the total cost by 1 dollar. More for-
mally, in the case of the mean values, we can write the sensitivity of the expected
project cost to any of the work package costs as the rate of change of the expected
value of the total cost with respect to the expected value of any work package cost,
or, using the above expression for E[T],

6E‘[T] — a:uT :1
OE[x,] ou,

This is trivial, but now we move on to the situation when there is uncertainty,
which is not so trivial. We now look at the sensitivity of the variance in the total cost
with respect to the uncertainty in any work package cost. This may be written as the
rate of change in the variance of T with respect to the standard deviation of any work
package cost. (We use the variance of T and the standard deviation of x; to avoid
square roots and to make the differentiation easy). Then, using the equation above
for var[T],

Gvar[T] N
—_— =2 O,

ack jZ:l:ijko-j
(pk,k = 1)

Therefore, if we wish to know which work packages have the greatest impact on
the uncertainty in the total project cost, we can compute the above expression for all
values of k and then rank them from largest to smallest (that is, as a Pareto chart)

N
(Wilkinson 2006) . The value of k that maximizes the quantity Zp ;40 has the

Jj=1
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greatest influence on the uncertainty in the total cost (the multiplier 2 doesn’t affect

the ranking and may be omitted). That is, if we want to know where to look in

order to reduce the uncertainty (or risk) in the total project cost, a good place to

start would be work package k, where k is the work package that maximizes the
N

quantity »'p; 0.
j=1
Some of the correlation coefficients may be negative. However, the variance of
T must be positive, in order that the total cost may have a non-negative variance

and a real standard deviation. Therefore,

o, ZVM[T]Iiip”GG >0

i=1 j=1

This condition places a constraint on the values of the correlation coefficients, as
it is impossible to have so many negative correlation coefficients that oi <0.We
may also feel that the sensitivity of the uncertainty in the total cost should also be
ovar|T]

O
work package such that we could reduce the uncertainty in the total project cost by
increasing the uncertainty in this work package cost. This would seem very unlikely,
if not a contradiction, so we should have that

positive; that is, that > (. If this were not true, then there would be some

ovar[T]

o = ZZpJ 0, >0

k J=1

This can be rewritten as

ovar[T]
(EJ . ijka —0',(+ij,(6 >0

k
/#k

Therefore, for consistency, the correlation coefficients should be specified such
that

N
—2 P140; <0,
=1

Jj#=k

In the special case in which it is established that all N of the work package costs
are statistically independent, then p; , = 0, V j # k. Then the above expression for
d var [T]/do;, reduces to

6var[T] ZZP o
J.k

Oy
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Therefore, in the special case of statistically independent work package costs, to
identify the work package with the greatest impact on the uncertainty in the total
project cost, look at the work package with the highest variance.

Suppose we do this for a project of, say, 20 work packages, sort them according
to the largest values of the sensitivities, and plot the Pareto diagram as shown in
Fig. 7.1. (The absolute values of the sensitivities have no importance; the only con-
cern is the relative values).

7.3 Correlations Between Work Packages and Total Cost

The same question can be addressed by means of the correlation between the total

project cost and each work package cost. To find the correlation coefficient between
N

the total cost T = ij and any work package cost x;, first compute the covariance

j=1
between 7 and x;, which is given by

cov[Tx, ]| = E[(T =t ) (% — 1 )]

cov[T.x, | = E|:i(xj —H )(xk M )}
cov[Tx, | = HE[(X_,- — M, )(xk Ky )]

By definition, the correlation coefficient between the work package costs x; and
Xi is

cov[xj ,xk}

correlation [xj ,xk] =P =
0,0,

cov[xj,ka = E[(xj -u, )(xk — 1, )J =p,;,0,0,

N N
seov[Tx, = ZCOV[xj ,xk] =>p;.0,0;
=1

j=1
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Fig. 7.1 Pareto sensitivity chart

Similarly,
T?
pry = cov[T.x, ]
070
N N N N
oy =var[T]=>>" cov[xi ,xj} =>>p,00,
i=1 j=1 i=1 j=1

Then, the correlation between the total cost 7 and the cost of any work package,
Xk is

N N N
2P0 2P0, 2P0,
j=1 Jj=1 Jj=1

Pra = o, \var[T] ) Jvarl7] : \/iipi,ﬂ%

i=1 j=1

The work package with the largest correlation with the total cost is work package
k, where k is the value that maximizes the numerator in the above expression. That
is, to determine the work package with the greatest correlation with the total project

N
cost, find the value of k for which Zp ;40 =Mmax.
j=1
This is the same expression obtained above by the use of derivatives.
If it is known for a fact that all the work package costs are statistically
independent, then
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P, =0 for Vj=k

Pei =1

Then, in the case of complete statistical independence,

N
cov[Tx, ] = ZCov[xj,xk] = E[(xk -1, )2} =0,
=

2
Oy Oy

S Prx = o, lvar[T] io_z
j

Jj=1

In this case, the work package with the highest correlation with the total cost is
the work package with the largest standard deviation (i.e., with the largest variance).
Again, this is the same result as obtained before.

7.4 Finding the Correlation Due to Common Cause

Many people automatically assume that random variates such as work package
costs or activity durations must be independent if there is no obvious direct causal
relationship between them. However, this is an error. Although a causal relation-
ship definitely means a dependency (although not necessarily a nonzero linear
correlation coefficient), the converse is not true: correlation does not require or
imply cause and effect. Variates can be and often are correlated because they all
depend on some other variate, sometimes called the common cause (Wright 1921).
This section is concerned with finding the correlation between work package vari-
ates that are affected by some common cause.

7.4.1 No Common Cause

First, for comparison, consider the case in which there is no common cause; the
common factor will be added in the next section. Let x; and x; be two work package
costs, for work package j and k, respectively. (Actually, they could just as well be
activity durations, but they will be called costs here for simplicity). Now write x; as
the summation of a constant term plus a variable term:

X. =m.+u.
J J J
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in which m; is a constant (that is, having no uncertainty) representing the point esti-
mate for work package j; and u; is a random variate representing the uncertainty in
the cost for work package j.

Some simplifying assumptions are made in order to make the model tractable.
The uncertainty term u; is assumed to be additive (rather than, say, multiplicative),
and further, it is assumed to have zero mean. In other words, if the uncertainty term
had any nonzero mean value, that value would be incorporated into the constant m,
so that u; would be unbiased (have zero mean).

The uncertainty term, being a random variate, also has an associated variance,
var[u j] = Gfl_ . In this derivation it is not assumed that the probability distribution

of the uncertainty u, is necessarily Normal. Then define the following terms for the
mean, the variance, and the covariance of the uncertainty u;:

E[(uj — i, )(uk —1, )] = E[ujuk] =0, =P, 0,0, Yk#]
Here, p,, is the linear correlation coefficient between the uncertainty in work
J . .
package j and the uncertainty in the cost of work package k.
Using the above definitions and identities, the mean value of the work package
cost x; is determined by taking expectations of the terms in the expression given
earlier:

X, =m; +u,
X :E[xj] :E[mj +uj]:E[mj:|+E[ujJ =m;+0=m;

This result shows that the point estimate m; of the cost of work package j cannot
be any arbitrary number, it must be the mean or expected value of the cost x;, so that

m; =E[x_,}:3_c..

J
The variance of the cost of work package j is determined as follows:

szj =E[(xj _)_Cj)z:|:E|:(mj T, _m.f)z}
:E[uf]ZG%

uj

That is, all the variance or uncertainty in the work package cost x; is contributed
by the estimation error term u;.
The covariance between any two work packages, j and k, is given by:
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E[(xj —)_cj)(xk —)_ck)] = E|:(mj +u, —mj)(mk +u, —mk)]

= E[ujuk] = pujuko-u,»o-uk
This leads to the result:
pxjxk = pu,uk

That is, all the correlation between the costs for any two work packages j and k
is contributed by the correlation between the estimation error terms, u; and .

7.4.2 With an Underlying Common Cause

Suppose that, in the model given just above, the estimation errors in two work pack-
age costs are uncorrelated, so that p,, =0 for Vj # k. It will be shown here that

work package costs x; and x; can nevertheless be correlated, if they both depend on
some common factor.
Now, for all j, write x; as an extended form of the model in the previous section:

X =ml.+uj+bjz

Here, x;, u;, and m; are the same as before, and u, is normalized so that:

E[u;]=0

and z is a random variate representing some external cause or risk factor; and b; is a
coefficient, constant for each work package ;.

That is, the work package cost is represented as a constant (the point cost esti-
mate m;), an uncertainty term (the random variate u;), an external random process
(z), and a multiplier, b,.

For example, the external process z might represent the weather. The cause must
be quantified, so let z be the number of work days lost to rain during the period of
activity of work package j. Then the coefficient b; represents the additional cost for
work package j for each work day lost to rain, in dollars per day.

As before, some assumptions are made in order to make the model tractable. As
stated above, the uncertainty term u; is assumed to be additive and to have zero
mean. (In other words, any mean value of the uncertainty is incorporated into the
constant m;, so that u; is unbiased). The uncertainty term also has an associated vari-
ance, var| u j] = Guzl_ . In this derivation it is not assumed that the probability distri-
bution of the uncertainty u;is necessarily Normal. The random variates u; representing
the estimation error in different work packages may be independent or correlated
with other estimation error terms.
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However, the uncertainty estimation error terms are assumed to be independent
of (uncorrelated with) the external causal factor, z. Then:

(
(s _ﬁf)(Z_Z)J =E[u,(:-7)]=0: vj

That is, if z represents the number of rain days and u; represents the uncertainty
in the cost estimate made without regard to weather considerations (for example, if
the cost estimate is based on the implicit assumption that the weather will be per-
fect), then u; and z are independent.

Now, the mean value of the cost for work package j can be found using the
expression x; = my; + u; + bz

E[xj]:E[mj+uj+bjz]=E[mJ+E[uJ+E[bjz]
X;=m;+0+bZ=m;+bz, Vj

Suppose now that, for some work package j, there is no effect of the external
cause, z. Then the equation above becomes:

)_cj:mj ifbj =Qorifz =0

This shows again that m; must be the mean or expected value of the work pack-
age cost when the estimation error is unbiased (E[u;] = 0) and there is no effect of
any external cause z.

Having found the expected value of the work package cost, the variance of that
cost is obtained from the defining equation using the relations derived above. That
is,

var[xj:le[(xj —)_cj)z} :E[(mj +u; +bz—m, —bjE)ZJ
— |, +,{z-7})’|

Expanding the squared term and taking expectations gives:

Var[ijZE[u? +2bu, (Z_f)+bj2 (Z—Z)z]
= E[u?]+2b,E[u, Z_f:|+b_2|:(z_z)2:|

u+0+b0' —0' +b o’
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Note that the term E[uj (z—Z)J is zero in the last expression by use of the
assumption that the variability in the external common cause is independent of the
estimation errors in the individual work packages. Using this result gives an expres-
sion for the variance (and standard deviation) of the cost for work package j:

2 2 2 2 .
o, =0, tbo. forVj

_ 2 2 2
o, = ,[Guj +b/ 0!

That is, the variance in the work package cost is the estimation uncertainty
increased by the product of the variance of the common cause and the square of the
influence coefficient.

Having derived the expression for the variance of each work package cost, the
next step is to determine the covariance between any pair of work packages.
Proceeding as before from the defining equation and the results already obtained,
some straightforward algebraic manipulation gives:

cov[x_].,xk} = E[(xj -X, )(xk -X, )J = E[(u, +b, {z—Z})(uk +b, {z—E})J
= B[, +bu, (:-7)+ b, (2-7) + b b, (2-7)' |
= Efu, J+b,E[u, (:-7) ]+ b,E[u,(:=7) |+ b E[ (- 7) |
= Efup, +0+0+b b E[ (-] |
cov[ x5, | =cov[um, |+bbE| (z-Z) |=cov[uu, |+bbo
Two terms in the expansion are zero by the assumption that the uncertainties in
the cost estimates for different work packages are independent of the external cause.

Using the linear correlation coefficient, the correlation between the costs of any two
distinct work packages is:

_ 2 _ 2 _
cov[xj,xk] —cov[ujuk]+bjbk0'z = Py 0,0, +bjbkdz =p 0. O

XX XXy

2
_ Puu 0,0, +b,bo;
pxl-xA -

where, o = ,IGZ +brc?
X; u; J z

Note that, if one sets j = k to find the main diagonal elements, then:

0,0,

2 2 2 2

p _ pukukcukduk +bkbko-z _ 10—uA +bk61 _

X - 2 2 2
0,0, o, tb'o;

as they should be.
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The derivation shows that, if x; and x; are influenced by a common factor z, this
hidden variable creates a correlation between x; and x;, even if the estimation errors
are uncorrelated (E[uu] = 0). For example, assume that E[u;u,] = 0; the expression
for the correlation then becomes (for j = k distinct) :

b.bo’
p, . =" Vj#k, where 6, = [c +b >
oo ’ o

i Yk

If the common cause has a large variance, so that

bo.>ao, and bo >0o,

then p, . — 1 if b; and b, have the same signs, and p, . — -1 if b; and b; have
opposite signs.

This gives the perhaps unexpected result that, the larger the variability in the
underlying common cause, the greater the correlation between the work package
costs. As the variance O'Z2 of the common cause increases, the probable values for z
get larger, increasing the impact terms b;z, and these dominate the expression for x;
ie. x; = m; + u; + bz, and as a result x; — bz and x, — bz, which are perfectly
correlated.

In summary, if the work package costs (or activity durations) x; and x; are to be
considered statistically independent, then there must be no underlying common fac-
tor, either overt or latent, which affects both work packages. Or, if there is some
common factor, it must have very small variance for the work package costs to be
approximately uncorrelated. Whether or not this is true must be established by risk
analysis for each project’s conditions. An assumption that work packages are inde-
pendent when in fact they are not, due to some common cause, may lead to a sub-
stantial underestimation of the project risk.

It is worth noting here that specification of all the work package correlations
individually requires the estimation of —N ]\27 ! correlation coefficients (allowing
for symmetry of the correlation matrix). If all the work packages are dependent to
some degree on a single underlying factor, z, then the entire covariance matrix is
determined by the N values for b; plus one variance ¢, for the underlying cause.

Thus the number of parameters to be estimated falls from —s to N + 1,

which is about the same as the number of means and the number of variances to be
estimated.

Table 7.1 Example | work package cost estimates

Fifth percentile Fiftieth Ninety-fifth Mean Standard deviation
$55,125 $60,000 $64.,875 $60,000 $3000
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Example 7.1
Assume that a simple project has N = 10 work packages, and each work package j
has an unknown cost, x;. The estimated 5th, 50th, and 95th percentiles are as follows
(for simplicity here, it is assumed that all N work packages are identically distrib-
uted) (see Table 7.1).

The mean value given in the table is computed from the Pearson-Tukey formula
(Pearson and Tukey 1965)

i =0.63x5, +0.185(x; +x,5)

and the standard deviation is computed by the extended Pearson-Tukey formula.

2
o2 = |:x95 —Xs :|
3.25
This particular three-point estimate gives a symmetrical distribution, but in a
more general case the distribution might be skewed to the right to reflect the prob-
ability of costs in the upper tail.
Assuming that all the N work packages are independent and identically distrib-

uted; the expected value of the total cost is easily computed. The total cost is the
random variate T, where

N

T = X;
j=1

Therefore the expected total job cost is:

N

E[T]=T =X, =10(60,000) = $600,000
j=1

Suppose that a contractor wishes to determine the cost for this job in preparation
for making a bid. The contractor’s problem is to determine the value that he/she
should use as the cost (including contingency but not including overhead and profit)
such that the probability of exceeding this cost is less than or equal to some number,
say 0.10. Clearly the value that fits this requirement is not the median (which in the
symmetric case is the same as the mean), because the probability that the cost would
exceed the median is 0.50. The value needed must be the median (or mean) plus
some contingency.

First, the contractor can estimate the variance of the total cost using the second
moment equation:

o; =var[T] :ﬁ:ﬁ:c [ J

j=1 k=1

N
prxk x;

k=1

Mz
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As the work packages are considered independent, this reduces to:

Zc = N(3000)" = 90,000,000

=4/90,000,000 = $9487

Using the Central Limit Theorem, the probability distribution of the total cost
should be approximately Normal, with mean $600,000 and standard deviation
$9487. (Note that this is the only time in this discussion that the assumption of
Normality is made). The 90th percentile of the Normal distribution is 1.282 stan-
dard deviations above the mean, or:

90th % = 600,000 +1.282(9487) = $612,162

Thus, if the contractor wants to be 90% confident that his cost estimate will not
be exceeded, he should add a contingency of $612, 162 — $600, 000 = $12, 162 to

. . . 12,162
the estimated mean value. This amounts to a contingency of ———=2% of the

600,000
estimated mean, which is a very small amount. The coefficient of variation of each

o . 3,000 . .
individual work package is ———— = 5%, whereas the coefficient of variation of

0487 600,000

the total job is ———— =1.6% . Therefore, as measured by the coefficient of varia-
600,000

tion, the total job is less variable than any of the individual work packages. This is
a consequence of the work packages being independent (or assumed independent).
However, an experienced project manager may find it difficult to accept the
proposition that increasing the number of work packages (N) makes the total project
less uncertain. And so, in this exercise, the contractor may find it difficult to accept
that a contingency of only 2% of the mean cost is adequate to provide a 90% confi-
dence that the bid will be high enough to cover costs.

Example 7.2

Now suppose that, for the project in the previous case, it is recognized that all N
work packages may be affected by the weather. Let z represent the total number of
days of production lost to inclement weather on this job. Of course, z is, a priori,
unknown. The contractor estimates that on the average he expects 12 days to be lost
on the job, with a standard error of 1 day. (The estimates may be obtained by the
three-point method as used above; here for brevity it is simply assumed that this has
been done and the mean and standard deviation have been obtained). Using the
notation developed above,

b, =$1000 perday lost due to weather

E[z]=12 days
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o, =1 day

m, = $48,000

Here the value of the point estimate for each work package, m;, has been adjusted
for comparison with the previous exercise, by factoring out the expected cost of the
12 days lost to bad weather. By this adjustment, the total cost in this exercise will be
the same as in Exercise 1.

Again, all work packages are assumed to be identically distributed, for simplic-
ity. Then the expected value of each work package cost is:

X, =m; +b,Z = $48,000+$1000(12) = $60,000

The expected total job cost is then, as in Exercise 1:

4

E[T]=T =Yx, =10(60,000) = $600,000

J

~.
L‘

The standard deviation of each work package cost is:

o, =0 +blc] = J(3000) +(1000)’* (1)* = /10,000,000 = $3162

The covariance between any two work packages j and k, j # k is:

cov| x;.x, | =cov[uu, |+bbo? =0+bbo? =1,000,000
The variances on the main diagonal of the covariance matrix are:

o7 =3162" =10,000,000

The sum of the terms in the covariance matrix may easily be determined in any
case by a spreadsheet program. In this particular case, it is also easily done by
pocket calculator. There are N = 10 main diagonal elements with variance 10,000,000
and 90 off-diagonal elements with covariance 1,000,000, which add up to a variance
of the total cost of:

o2 =90(1,000,000) +10(10,000,000) = 190,000,000
o, =$13,784

Addressing the same question as in the earlier exercise: if the contractor wishes
to be 90% confident that the number will not be exceeded, the contractor should use
as his estimate of the total cost,
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90th % = $600,000+1.282($13,784) = $617,671

In this case, the contingency of 1.282x 13,784 = $17,671 is added to the expected
value to reach the 90% confidence value. This reflects a contingency of 2.9% of the
expected cost, more than in the independent case, but still a very small
contingency.

The correlation coefficients between work package j and work package k were,
in the independent case, zero for all j # k. In this case, the common cause, weather,
implies correlation coefficients for all j # k given by:

px.x = pu/uk O-M/Guk +bjbkdzz = blbkaf = (IOOO)z = 0-10
2l 0,0, o0, (3162)

This slight amount of correlation has increased the coefficient of variation for
each work package to 3162/600,000 = 5.3%, compared to 5% for the independent
case. The coefficient of variation of the total job cost has increased to 13,784/600,000
=2.3% compared to 1.6% for the independent case. By all these metrics, the uncer-
tainty in the weather has had very little effect on the dependence of the work pack-
ages and the uncertainty in the total job cost.

Example 7.3

Suppose, for the project in the previous case, that the contractor now recognizes that
his meteorological forecasts are not very accurate. The contractor makes a three-
point estimate of the probability distribution on the number of days lost to weather,
as in the Table 7.2.

(Here, as in previous exercises, the values have been chosen to make the arithme-
tic easier. This probability distribution is highly skewed to the right, as one might
expect).

If everything else remains the same as in the previous case, on the average the
contractor expects 12 days to be lost on the job, except now the contractor believes
that his standard error is 10 days.

Again, all work packages are assumed to be identically distributed, for simplic-
ity. Then the expected value of each work package cost is the same as before (add-
ing in the mean weather effect):

X, =m, +b,Z = 48,000 +1000(12) = $60,000

Table 7.2 Example 3 work package cost estimates

Fifth percentile Fiftieth Ninety-fifth Mean Standard deviation
2.5 8 35 12 10




7.4  Finding the Correlation Due to Common Cause 159

The standard deviation of each work package cost is now:

o, =\o. +b’cl = J(3000)’ +(1000)’ (10)’ = /109,000,000 = $10,440

The covariance between any two work packages j and k, j # k is:

cov| x,.x, | =cov[uu, |+bb,0> =0+bb,o’ =1000(1000)10° =100,000,000 = 10°
The variances on the main diagonal of the covariance matrix are:
2 2 6
o} =10,440 =109,000,000 = 109(10°)

There are N = 10 main diagonal elements with variance 109(10)¢ and 90 off-
diagonal elements with covariance 108, which add up to a variance for the total job
cost of:

o7 =90(10%)+10(109)(10°) =9000(10° ) +1090(107) =10,090(10° )
o, =$100,449

Addressing the same question as in the earlier exercises, the contractor, if he
wishes to be 90% confident that the estimated cost will not be exceeded, should use
as his estimate of the total cost:

90th % = $600,000 +1.282($100,449) = $728,776

In this case, the contingency of 1.282(100,449) = $128,776 is added to the
expected value to reach the 90% confidence value. The contingency is now 21% of
the estimated average cost.

In this example, the common cause, weather, implies correlation coefficients:

Pry = Pujn O, T +hbo; _ bjbkcrf _ (1000)2 (1?)2 =0.92
" O-x.r ka O-X/ ka (10’440)

The correlation coefficients have increased due to the greater uncertainty in
the weather forecasts, and in consequence the 90% confidence cost value has
increased from $612,162 to $728,776. In another way of looking at this result, if
the contractor had assumed independence, and estimated the total cost including
contingency at $612,162, when the work packages are actually highly correlated,
the probability of the cost overrunning this amount would be not 10% but 45%.
The contractor, by assuming independence, would have seriously underestimated
the risk of the project.
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Example 7.4

Figure 7.2 shows how the correlation coefficients p, . .forj#k, vary with the
standard error of the weather forecast, o, with all other parameters the same as in
the previous exercise. The correlation is, of course, asymptotic to 1.0. Figure 7.2 is
a plot of the required contingency, as a percentage of the expected value of the total
project cost, needed for the contractor to have 90% confidence that the estimate will
not be overrun. (This is also known as the Value-at-Risk).

Figure 7.3 shows how the required contingency increases approximately linearly
with the standard deviation of the error in the weather forecast. The figure below
combines the two figures just above to show how the required contingency (as a
percentage of the expected job cost) varies with the correlation coefficient. As can
be easily seen, the required contingency increases rapidly if the correlation coeffi-
cient exceeds 0.80.

Example 7.5

In the previous exercises, for simplicity, all work packages were assumed to be
equally affected by the weather. This may be the case, for certain types of projects
in which all the work is outdoors, but in many projects the individual work packages
are differentially affected by some common cause.

Consider a simplified version of Exercise 3, in which N = 6 for simplicity.
Assume that everything is the same as in Exercise 3, except that only work packages
1,2, and 3 are affected by the weather, and work packages 4, 5, and 6 are completely
unaffected by the weather. Then

b, =$1000 per day for j=1,2,3

35

30 1

75 4 Contingency

20 4

Contingency, Percentage of Estimated Cost

0 T T T T T T T
0 2 4 6 8 10 12 14 16

Standard Error of the Weather Forecast

Fig. 7.2 Contingency vs. weather forecasting error
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Fig. 7.3 Contingency vs. correlation
b,=0 for j=4,56

Then the expected value of each work package cost depends on the influence of
the weather factor:

X, =m, +b7 = 48,000+1000(12) = $60,000 for j=1,2,3

X, =m, +b7 =48,000+0=9$48,000 for j=4,5,6

The standard deviation of each work package cost is now:

o, =0l +bc] = J(3000)’ +(1000)* (10)" = /109,000,000

=$10,440 for j=1,2,3

o =.c> +b’c? =4/(3000 ’+0(10) =3$3,000 for j=4,5,6
x; u; Jj Tz J



162 7 Sensitivity and Common Cause Effects

The covariance between any two work packages j and k, j # k is:

cov| x.x, |=cov[uu, |+bbo’ =0+bbo’ =1000(1000)10° =10° if j<3andk <3
cov| x.x, |=cov[uu, |+bbo’ =0 if j>4ork>4

The variances on the main diagonal of the covariance matrix are:

(o2

2 =10,440” =109,000,000 forj=1,2,3
o2 =3000" =9,000,000 forj=4,5,6

The total 6 by 6 covariance matrix is, then:

[ Landscaping Pave Lot ExtPaint ~ Wiring  Conduit Int.Paint |
Landscaping 109000000 100000000 100000000 0 0 0
Pave Lot 100000000 109000000 100000000 0O 0 0
Ext.Paint 100000000 100000000 109000000 0 0 0
Wiring 0 0 0 9000000 0O 0
Conduit 0 0 0 0 9000000 0O

| Int.Paint 0 0 0 0 0 9000000 |

The sum of all the terms in the covariance matrix is the variance of the total
cost, or:

o2 = 954000000
o, = $30,887

The correlation matrix is then:

[ Landscaping PaveLot Ext.Paint Wiring Conduit Int.Paint |
Landscaping 1.00 0.92 0.92 0 0 0
Pave Lot 0.92 1.00 0.92 0 0 0
Ext.Paint 0.92 0.92 1.00 0 0 0
Wiring 0 0 0 1.00 0 0
Conduit 0 0 0 0 1.00 0

| Int.Paint 0 0 0 0 0 1.00 i
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The correlation matrix shows, for example, that the costs of Exterior Painting
and Interior Painting are independent, although both are about painting.
(Independent, at least, with regard to the weather; there might be other common
causes, such as a shortage of painters, that would affect both Interior and Exterior
Painting). On the other hand, Parking Lot Paving and Exterior Painting are highly
correlated, although paving and painting have nothing to do with each other, other
than the fact that both are weather-sensitive. If a bidder on this job were to assume
that all the work packages are independent, he would seriously underestimate his
risk of cost overrun on this project.

7.5 Practice Problems

Problem 7.5.1 Consider Practice Problem 3.5.1 from Chap. 3 (i.e. a small project
comprised of six sequential activities). Calculate the covariance between the cost of
each the six activities and the total project cost.

Problem 7.5.2 Weather is only one of many possible common causes that might
affect the costs and durations of multiple activities on a project. A few other possible
causes are listed below. Based on your experience, list another five or six possible
common causes.

Weather

Power failure

Escalation in prices of steel or other basic commodities
Changes in government regulations or regulators
Shortages of construction craftsmen in the area

Dk e =

Problem 7.5.3 Suppose that w is another underlying common factor similar to z,
with the following conditions:

E[w]=w

E[(w-w) =0

E[(W—W/)(uk -1, )] =0 forvk
E[(w=w)(z-3)]=p..0,0.

That is, the underlying variable w is uncorrelated with the work package vari-
ables but may or may not be correlated with the other common factor z. Then, let:

X;=m;+u, +bjz+cjw

X, =m, +u, +bz+cw
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By a derivation similar to that above, show the following, for all values of j and
k:

X, =m +bz+cw
) 2 2 2 _ 2
o, =0, +b o, +c¢ 0, +2bc,p,. 0,0,
2 2
B Puy OO, +bjka'Z +c¢;c0, +(bjck +bkcj)pWZ0'w0'Z
pxj,xk -

c,0,

Thus, with two common factors, the entire N x N correlation matrix for the work
package costs can be generated from 2N + 3 terms: N terms for the b, coefficients,
N terms for the ¢, coefficients, two variances for the underlying factors, and one
(possible) correlation between the two common factors.
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Chapter 8
Approximate Risk Function for Project
Durations

Abstract In this chapter we discuss the application of the second moment
method in scheduling networks. The issue we focus here is on finding the proba-
bility distribution for the project completion time when there are multiple net-
work paths in the project and therefore the critical path is itself uncertain. We
present an approximate method to this problem and discuss its validity in a larger
managerial context.

Keywords Scheduling networks - Longest path - Approximate methods -
Probability distribution

8.1 Introduction

The estimation of the probability distribution, and hence the risk of overrunning
the budget, for project costs is relatively straightforward, given the usual cost
model, in which the total project cost is the sum of the work package costs. In this
case, as we have seen, the probability density function for the total project cost is
approximately Normal, regardless of the probability distribution of the work pack-
age costs, whether or not the work package costs are correlated. Moreover, by the
properties of the moments of sums of random variables, the mean of the distribu-
tion on total project costs is the sum of the work package means, and the variance
of the total project cost distribution is the sum of the terms in the work package
covariance matrix.

Networks, however, introduce another issue. The expected length of each path
through the network is the sum of the expected durations of all the activities on that
path, but the critical path (that is, the longest path) may change depending on the
random values of the individual activity durations. The issue is to find the (approxi-
mate) probability distribution for the project completion time when there are mul-
tiple paths through the project network, and which path may be critical (that is,
controls the project duration) is itself uncertain. This chapter explores this topic
further, using an approximate approach.
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166 8 Approximate Risk Function for Project Durations
8.2 Project Paths Model

Suppose that the project network consists of a total of N activities. Let x; be a
random variate representing the length of activity j, and let the mean and standard
deviation of this variate be given by (MacCrimmon and Ryavec 1964):

E[x]=¥,

E[(xj —)_cj)z} E(sz

Suppose that the correlation between the duration of activity j and the duration of
activity k is p;, and so the N x N covariance matrix V for all project activities is:

2

O, P06, PiOiCr  ° PinO Oy
_ 2
V=| p,o0, 0, P20,0 PayO,0y
2
PinO1Oy  PnyO,0y vt PmO Oy Oy

Now assume that, based on the mean durations )_cj , the network algorithm com-
putes the critical (longest) path, the next-to-longest, the third longest, etc., up to
some reasonable number M of longest paths. Thus there are no remaining paths
through the network longer than the shortest path in this set, based on the mean
activity durations. Number the M longest paths such that path 1 is the longest, path
2 the second longest, path 3 the third longest, etc. Then, let A, be the set of all the
activities in path 1, let A, be the set of all activities in path 2, A, the set of activities
in path k, etc. Let N, be the number of activities in path k, etc. Of course, these sets
are not mutually exclusive, because there may be many activities that appear in
more than one path.

Then, define 7 as a random variable representing the length of path 1. This is the
sum of the (random) lengths of all N, activities in path 1, or,

T zzxi

icA;

It is important that the network algorithm uses the mean activity durations, so
that the mean length of path 1 as calculated by the algorithm is given by:

Tl =in

ieA;

Similarly, for paths 2, 3, ..., k, ..., and M.
The variance of the length of path 1 is obtained by the usual approach for finding
the variance of a sum of random variables, as in the case of work package costs.
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In this case a square N, x N, path covariance matrix V, is set up to contain only the
N, activities on path 1. That is, we extract the variances and covariances for the N,
activities on path 1 from the total network covariance matrix V defined above. Or, it
may be easier when using spreadsheets to obtain V,; by deleting from the network
covariance matrix V all the rows and columns corresponding to the activities that
are not in path 1.

The variance of the length of path 1, var[T}], is obtained by summing all the N>
terms in the V, covariance matrix. Of course, it is not actually necessary to construct
a new matrix Vy; one can compute the variance var[7}] from the network variance
matrix V simply by extracting the N,* terms corresponding to the activities in path
1. Similar calculations for paths 2 though M produce the variances for all the sepa-
rate paths through the network: var[75], var [T3], ..., var [T], ..., var [Ty].

Of interest now is the correlation between any two paths in the set of M paths.
Consider just paths 1 and 2, the longest and the second longest paths. The covari-
ance of the lengths of path 1 and path 2 is given by:

JeA JeA; keA, keA,

cov[T;.1,] :EHZ(xj -X, )HZ (x, - %, )H

JEA keA,

cov[1,.1,]= E[(1,-T})(T, —Tz)]=EKZ’“f ‘Z’_“f}{zxk ) ZEH

The product of the terms in the summation signs will result in N; x N, terms,
(xj -X )(xk —X,) for Vj € A;, V k € A,, corresponding to each of the N, activities
in path 1 multiplied by each of the N, activities in path 2. There are two causes of
correlation between path 1 and path 2:

If the same activity appears in both paths, then:

Jj =k, sothat E[(xj —)_cj)(xk —)_ck)J :E[(xj —)_cj)z} zof

If there are two different activities on the two paths, then the lengths of these
activities are correlated if there is a nonzero term in the correlation matrix [py]:

Jj#k, so thatE[(xj —)_cj)(xk —)_ck)] = P00,

Now, by definition,

cov[Tl,Tz] =P, 1lvalr[TI ],lvar[Tz]

cov[T,.T;]

P, = \/var[Tl]\/var[Tz]
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Correlations between path lengths will typically tend to be positive, because
common activities on two paths will obviously contribute to positive correlation,
unless the covariance between two particular activities is very large and negative.
Negative correlation between activity durations means that there would be a ten-
dency for a larger than expected duration for activity j on one path to be associated
with a shorter than expected duration for activity k # j on another path. This might
happen, for instance, if the two activities occur at about the same time and have
common resource requirements, and these resources are limited. Then, assigning
more resources to activity k than expected would make that activity’s duration
shorter than expected, and would result in fewer resources than expected for activity
J, which would make that activity take longer than expected, and the two activities
could be negatively correlated.

As path 1 is, by the construction above, the critical path (based on the mean
activity durations), the length of path 1 will at least heavily influence the total proj-
ect completion time. Consequently, the correlations between 7} and the remaining
M — 1 paths are of most interest. Suppose the correlation between path 1 and path j
is large; that is, Pr,r, is high. High correlation means that there is a tendency for a
greater than expected length on path j to be associated with a greater than expected
length on path 1. But path 1 is the longest path by definition, and so E[T;] < E[T].
Thus, if E[T;] is significantly less than E[7}], with high positive correlation between
path j and path 1, it is unlikely that path j would ever be the critical path. For exam-
ple, if path j were to take much longer than expected, then path 1 probably also takes
much longer than expected, and therefore may still be the critical path. Hence, in
these circumstances, path j can be ignored, as it is unlikely to contribute much
uncertainty to the total project duration. The question remains, how large does the
correlation have to be, to be considered to be large, and to justify dropping path j
from further consideration? As an approximation, we might say that any correlation
greater than some cutoff value could be considered highly correlated and therefore
the correlated path could be neglected.

On the other hand, the correlation between path 1 and some path k could be
small. This means that the durations on path 1 and on path k are independent, and
path k could become the critical path in some circumstances, depending on the
actual values of the random activity durations. Whether path k£ becomes the critical
path also depends on the values for E[T}], E[T}], var [T}], and var[T}]:

If E[T;] < E[T,] and/or var[T;] < var [T], then it is unlikely that path k will ever
be critical. If this is true for all paths 2, 3, ..., M, then path 1 is a dominant path and
will almost always be the critical path. Then the probability density function for the
completion time of the project will be nearly the same as the probability density
function for the length of path 1. As the length of path 1 is simply the sum of the
durations of the activities on this path, the probability density function will be
approximately Normal, using the same reasoning as we used when considering
work package costs.

If E[T.]] = E[T,] and var[T,] > var [T}], then there may be a reasonably high
probability that path k is the critical path, even though, on the basis of the mean
activity durations, path 1 is critical. If this is the case, then the probability density
function for the project finish time can become highly skewed to the right.
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The question remains, how small does the correlation have to be, to be
considered to be approximately zero, and to justify treating the length of path k as
independent of the length of path 1? As an approximation, we might say that any
correlation less than some cutoff, say 0.3 or so, could be considered uncorrelated
and therefore that the two paths in question are independent.

It is easy to see that if path 1 and path k are negatively correlated, then path & is
also of concern, because then path k would tend to become longer when path 1 is
shorter, increasing the likelihood that the critical path would shift to run through
path k.

Suppose now we are interesting in assessing the risk that a project will overrun.
Here we will look only at path 1 and path &, where these two paths are judged to be
independent on the basis of the computation of p; ;. Consider some finish time of
interest, say #, computed from the project start at time 0. Then the probability of no
overrun is the probability that neither path exceeds time #, which is just the probabil-
ity that both paths are less than z. That is, we wish the probability:

Pr[T, <tNT, <t1]

Then, the risk of an overrun (on either path 1 or path k) is just the probability that
one or the other overruns, which is just 1.0 — the probability that neither overruns:

Pr[overrun| =Pr[T, > 1 UT, >t]=1-Pr[T, <t T, <1]

From elementary probability theory, the joint probability is given by the product
of the conditional probability times the marginal probability:

Pr[T, <t NT, <t]|=Pr[T, <dT, <t]Pr[T, <t]=Pr[T, <AT, <1]Pr[T, <1]

In this expression, Pr[T) < T, < f] is the conditional probability that the length
of path 1 is less than ¢ given that the length of path k is less than 7. Similarly,
Pr[T, < 11T, < ] is the conditional probability that the length of path & is less than ¢
given that the length of path 1 is less than 7. Unfortunately, conditional probability
distributions are difficult to determine. Therefore, we take recourse in the low cor-
relation between path 1 and path k and make the assumption that low correlation
implies that these two paths are approximately independent. With this assumption
of independence, the above equation simplifies to:

Pr[T, <t NT, <t]=Pr[T, <t]|Pr[T, <]
and the risk of an overrun is, approximately:
Pr[overrun] = I—Pr[T1 <tnT, < t] = 1—Pr[T] < t]Pr[Tk < t]

Now, Pr[T} < 1] is just the cumulative probability distribution for 7, evaluated at
the duration ¢, and similarly for Pr[7, < t]. These values can easily be obtained if we
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assume some form of the cumulative probability distribution. As noted earlier, the
path length 7 is simply the sum of the N, random activity durations along path 1.
We saw before that the total path length is also approximately Normal, whether the
individual activities are independent or correlated. We have already computed the
mean and the variance of path length 7 above. The same arguments apply to 7.

Let ®(r) represent the value of the cumulative probability distribution for the
unit Normal (the Normal with mean 0 and standard deviation 1) evaluated at point
7. Then we have, from the equation above,

=1-Pr[T, <t]Pr[T, <t]=1-D(7,)®(r,)
-T, T, |
Pr=1-@ K ] [t J
Var \/var[Tk

in which the transformations

[-7] ), _[[-T]

’T Y
var[1,] | | fvar[T]

=

are made to convert to unit Normal variates.

It is then straightforward to compute these functions for many values of t and
then to plot the cumulative distribution function of the probability of an overrun
versus t. To make the tails more visible to the eye, it is often helpful to plot the prob-
ability density function, which is of course just the derivative of the cumulative
distribution function. If this is done in the general case, it will be seen that there are
certain combinations of T Var[T ] T and var[7}] that produce probability density
functions that are nearly symmetrlcal and Normal, and there are other combinations
of 7_"1,var [T1 ],7_",( and var[T}] that produce probability density functions that are very

highly skewed to the right. The latter condition occurs especially when [var [Tk is
large compared to 7, -7, .
This point can be seen more clearly by making the transformations

_ -7

Tl
Var[Tl]

1 =T, +7,/var[T]
[-7] [T+afalr]-T,

= \/VM[TI] Jvar[Tk

(T T) ,lvar[Tl]
\/wr T] B \/var[Tk]
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Then, the cumulative probability of not overrunning is given by:

(L-T) ,  [var[7]]

(ORE AT
e Jvar[r,] \var[7]
for all values — 00 <7< 0.

This derivation can be extended to a greater number of paths, as long as they all
can be considered to be independent of each other. That is, there might be three
paths in the above expressions if all the possible correlations between path 1, path j,
and path k were small. However, if path j and path k were not correlated with path
1, but were highly correlated with each other, there would be only two independent
paths; either j or k would be dropped.

This chapter shows one way to get an approximate relation for the risk of a proj-
ect schedule overrun without recourse to Monte Carlo simulation (McCabe 2003).
The significant approximations are as follows:

All paths through the network that are highly correlated with the critical path
length are neglected, on the basis that, if they were perfectly correlated, they would
never become critical. However, some cutoff value of the correlation coefficient
must be chosen, such that any computed correlation above this value will be consid-
ered to be equivalent to perfect dependence. This approximation may introduce
error, as the neglected paths might have become critical under some rare combina-
tion of random variates.

All paths that have low correlations with the critical path are assumed to be inde-
pendent of the critical path. However, some cutoff value of the correlation coeffi-
cient must be chosen, such that any computed correlation below this value will be
considered to be equivalent to perfect independence. This approximation may intro-
duce error, as the computation assumes that the joint probability is the product of
the marginal probability distributions, which is true only if all the variables are
independent.

If one defines a critical correlation p;,; such that any computed path correlation
p < pina 1s considered to be equivalent to p = 0, and a critical correlation p,, such
that any computed path correlation p > p,, is considered to be equivalent to p =1,
then there may be some computed values p;,; < p < pq., that fall into neither cate-
gory. In the simple model given here, such situations cannot be handled. In cases in
which this situation occurs, the value of p;,, should be adjusted upward and the criti-
cal value p,, should be adjusted downward until the set of correlations lying
between them is empty. For example, set p;, = pa., = 0.5.

Example 8.1

Consider a very simple project network shown in Table 8.1. The initial node is
START and the completion is FINISH. The table below gives, for the activities 1
through 8, the precedences, the Most Likely duration (the mode), the Lower Bound
duration (5-th percentile), and the Upper Bound duration (the 95-percentile).
Durations are all in weeks.
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Table 8.1 Project network for Example 8.1

Activity Lower Median | Upper bound | Mean | Standard

(62) Predecessors | Successors | bound (xs) | (xs0) (X95) (n) deviation (o)
1 START 2,5 8 9 18 10 3

2 1 3 8 9 18 10 3

3 2 4 8 9 18 10 3

4 3,5 FINISH 8 9 18 10 3

5 1 4 8 15 24 15 5

6 START 7 6 8 22 10 5

7 6 8 3 15 29 15 8

8 7 FINISH 6 8 22 10 5

The values for the means were estimated from the given estimates for the Lower
Bound, Most Likely, and Upper Bound using the Pearson-Tukey formula:

p=0.63x,, +0.185(x; + x95)

In this notation, x; represents the estimated value of the random variable at the
k-th percentile of the probability distribution. Therefore, x5, is the value of the ran-
dom variable at the 50th percentile, hence the Median; x5 is the estimated value of x
at the 5th percentile, or Lower Bound; and xos is the value of x at the 95th percentile,
or Upper Bound. Keefer and Bodily (1983) found that the maximum percentage
error using this formula in their experiments as less than 0.1%, and the average
percentage error was about 0.02%.

The standard deviations in the table were estimated by the Extended Pearson-
Tukey formula (1965):

The correlation coefficients between the durations of the various activities are
given by the following 8 x 8 correlation matrix:

1 2 3 4 5 6 7 8 ]
1.00 020 020 020 0.20 0.00 0.00 0.00
020 1.00 020 020 0.20 0.00 0.00 0.00
020 020 1.00 020 020 0.00 0.00 0.00
020 020 020 1.00 020 0.00 0.00 0.00
020 020 020 020 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00 0.90 0.90
0.00 0.00 0.00 0.00 0.00 0.90 1.00 0.90
0.00 0.00 0.00 0.00 0.00 0.90 0.90 1.00 |

0 N N Lt AW N
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The covariances for the durations of the various activities are computed from the
correlation matrix and the standard deviations shown in the first table above. They
are easily obtained from the correlation matrix by multiplying each correlation
coefficient by the standard deviations of the activity in its row and the activity in its
column: Doing so gives the following 8 x 8 variance-covariance matrix:

1 2 3 4 5 6
90 18 18 1.8 30 O
1.8 90 18 1.8 30 O
1.8 1.8 9.0 1.8 30 O
0
0

S O O O 2
S O O O ©

1.8 1.8 1.8 9.0 3.0
3.0 3.0 3.0 250 0 0

o o0 o0 0 O 25.0 36.0 22.5
o o0 o0 0 O 36.0 64.0 36.0
0

0O 0 0 O 22.5 36.0 25.0]

0 N N Lt A W N -
98]
o

Critical path calculations are often, as in PERT, based on the most likely dura-
tions. The most likely durations are the modes, but here the medians are estimated,
not modes. However, when the probability distributions are skewed to the right, as
these are, the median values are greater than the modes. Thus, using the medians as
single point estimates of the modes is conservative. Based on the median values for
the activity durations from the table above, the three longest paths through the net-
work (the only paths through this simple network) are:

Path 1: START — 1-2-3—4 — FINISH; duration = 36 weeks
Path 2: START - 1-5-4 — FINISH; duration = 33 weeks
Path 3: START - 6-7-8 — FINISH; duration = 31 weeks

However, based on the mean values for the activity durations, the three longest
paths through the network (the only paths through this simple network) are:

Path I: START - 1-2-3-4 - FINISH;  duration = 7, =40 weeks
Path 2: START - 1-5-4 — FINISH; duration = 7_"2 =35 weeks
Path 3: START — 6-7-8 — FINISH; duration = 7, = 35 weeks

The mean path lengths are longer than the sum of the median activity durations
because the probability distributions for these activities are all skewed to the right;
the means are greater than the medians. Note that the median path length is not
equal in general to the sum of the medians of the activities along that path. In fact,
it was argued above that the path length is approximately Normal, so the median
path duration is equal to the mean path duration, hence the median path duration is
greater than the sum of the activity medians.
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For these three paths, the variance of each path is computed from the sum of the
covariances of all the activities on that path. For illustration, the variance-covariance
matrices are shown for each of these paths.

For Path 1, the variance-covariance matrix is obtained from the above matrix by
deleting all the rows and columns for activities not in this path:

1 2 3 4

90 18 18 1.8
1.8 90 1.8 1.8
1.8 1.8 9.0 1.8
1.8 1.8 1.8 9.0

B~ W o =

Summing all the elements of this matrix gives the variance of the duration of
Path 1 var[T,] as 57.6, so the standard deviation is 7.59 weeks.

For Path 2, the variance-covariance matrix is obtained from the total covariance
matrix by deleting all the rows and columns for activities not in this path:

1 2 3 4

90 18 18 1.8
1.8 9.0 1.8 1.8
1.8 1.8 9.0 1.8
1.8 1.8 1.8 9.0

B~ W oo =

Summing all the elements of this matrix gives the variance of the duration of
Path 2 var[T5] as 58.6, so the standard deviation is 7.66 weeks.

For Path 3, the variance-covariance matrix is obtained from the total covariance
matrix by deleting all the rows and columns for activities not in this path:

6 7 8
6 250 36.0 225
7 360 640 36.0
8 225 360 25.0

Summing all the elements of this matrix gives the variance of the duration of
Path 3 var[75] as 303, so the standard deviation is 17.41 weeks.

It is now possible to compute the correlation coefficients between paths 1 and 2.
Using the equation derived above,

o= [0 -5)| [ 20

JEA keA,



8.2 Project Paths Model 175

Here, Path 1 has four terms and Path 3 has three. The 12 product terms are then:

[ Activity 1

4
1 E[(xl_xl)2:| E[('xl__l)
)

2 E[(x,-%)(x, -X,)

Taking the expectation of each term gives the matrix:

[ Activity 1 4 5
1 o/ P140104  P159,0;
2 P12019,  Py40,0, P,50,05
3 P130,03  P54030, P55050;
L 4 P140,9, 642 P459405 |

Note that, even if all the correlation coefficients between activities were zero, the
covariance of paths 1 and 2 would still contain the terms o> + 6,*> because activities
1 and 4 appear in both paths. Replacing the terms in the above matrix by numbers:

Activity 1 4 5

1 3.0(3.0)=9.0 0.2(3.0)(3.0)=1.80 0.2(3.0)(5.0)=3.00

2 0.2(3.0)(3.0)=1.80 0.2(3.0)(3.0)=1.80 0.2(3.0)(5.0)=3.00

3 0.2(3.0)(3.0)=1.80 0.2(3.0)(3.0)=1.80 0.2(3.0)(5.0)=3.00
4 0.2(3.0)(3.0)=1.80 3.0(3.0)=9.0 0.2(3.0)(5.0)=3.00 |

Adding up all these terms gives cov[T}, T,] = 40.8. From this covariance, the cor-
relation coefficient between the two paths is:

cov[T,.T, | = p ;. \[var[T ]| var[T, ]

B cov[ ] 408
nt = Nar[1, ] Jvar[1,] 7-59(7.66)

Similar reasoning shows that Pr.r, =Prr = 0.

=0.70

Suppose that the project manager wishes to set a schedule date for project com-
pletion such that the risk of overrunning this date is approximately 5%. What value
should he commit to for the scheduled completion date? If he/she considers that the
correlation 0.70 is large, then Path 2 is dependent on Path 1 and so Path 2 can be
ignored (because its mean duration is less than that of Path 1, and has about the
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same standard deviation as Path 1. Path 3 is independent of path 1, so both paths 1
and 3 must be considered. Using the equation derived earlier,

Pr=1-Pr[T, <t]Pr[T, <]

The probability of overrunning any specified schedule date is shown in the fol-
lowing Fig. 8.1.

Here the project manager can read off the schedule date that has a probability
of 5% (or any other value) of being overrun; this value is 64 weeks. Also shown
in the figure are the plots for the probability of overrun for Path 1 and Path 3
taken separately. Path 3 has a lower expected value (35 weeks) than Path 1
(40 weeks), but the higher variance of Path 3 means that it has a higher probabil-
ity of controlling the total project length at longer durations. That is, if the project
manager considers only Path 1, schedule duration with a 5% chance of being
overrun is 52 weeks, which is 12 weeks too early. The possibility that Path 3
might become the critical path requires the 64 week schedule; neglecting Path 3
because of its lower mean value is unconservative and can lead to serious sched-
ule overruns.

What, however, if the project manager considers the 0.70 correlation between
Path 1 and Path 2 to be small rather than large? With this view, all three paths would
be independent. The equation above then becomes:

Pr=1-Pr[T, <t]|Pr[T, <t]|Pr[T, <i]

e Paths 1 and 3
=== =Path 1

A

08 4 ~ %
== == Path 3

0.7 4 \ AR

06 4 \

0.4 4

Probability of overrun
o
v
-

03 4

0.2 4

0.1 4

Date (weeks)

Fig. 8.1 Path 1 and Path 3 probability of overrunning
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Fig. 8.2 Comparison with Path 2 (Dependent and Independent)

Figure 8.2 below compares the results when Path 2 is considered to be dependent
on Path 1 (as in the previous figure) and the results when Path 2 is considered to be
independent of the other paths.

The two solutions in the figure constitute bounds on the true solution. As the
correlation coefficient between Path 1 and Path 2 lies in the interval 0 < 0.70 < 1,
so must the probability distribution lie between the results for zero correlation and
perfect correlation. In the area of interest, that is, the upper tail, above about
55 weeks, there is no detectible difference between the two curves. Therefore, the
result is not sensitive to the determination of whether a correlation of 0.70 is high
(that is, can be taken as 1.0) or low (that is, can be taken as 0).

Figure 8.3 compares the results shown in the previous figure with the probabil-
ity distribution for the longest path determined by a Monte Carlo simulation using
correlated Normal random variables with the means, variances, and correlation
matrix given earlier. The Monte Carlo simulation was run for 32,000 critical paths.
As can be seen, the Monte Carlo results are close to those obtained by the method
described in this chapter. The curves in the figure deviate somewhat, but are close
in the tails, and the answer to the project manager’s question, What is the schedule
date with a 95% probability of being met, is again 64 weeks.

8.3 Practice Problems

Problem 8.3.1 The following table summarizes the precedence relationship among
the activities on a project (see Table 8.2). Also, it provides 3-point estimates for the
duration of each activity. Determine how many paths are in this network and which
one is the critical i.e. the longest.
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Fig. 8.3 Comparison with Monte Carlo simulation

Table 8.2 Problem data

Estimated duration
Activity Predecessor Optimistic Most likely Pessimistic
A - 12 15 30
B A 4 8 18
C B,D 2 6 10
D A 3 4 11
E B,D 2 4 6
F C,E 4 8 18

Find one-sided upper 95% confidence interval on project completion time. How
would your answer change if the activities are correlated (see the correlation matrix
below)?

[Activity A B C D E F

A 1.0

B 1.0 0.8 0.8 0.8 0.8
C 0.8 1.0

D 0.8 1.0

E 0.8 1.0

F

0.8 1.0
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Table 8.3 Problem data

Mean path length, | Probability of being | Mean path length, | Probability of being

Path correlation = 0.00 | the critical path correlation = 0.90 the critical path
1-3—- 5592 0.36 47.52 0.33

6-8-9

1-4- 5735 0.34 57.70 0.44

5-7-9

1-2- |57.33 0.30 61.11 0.23

5-7-9

Table 8.4 Problem data

Normal Crashed
Activity Predecessor Duration Cost Mean duration Mean cost
A — 6 10 2 38
B - 4 12 4 12
C - 4 18 2 36
D A 6 20 2 40
E B,D 3 30 2 33
F C 10 10 6 50
G FE 6 20 2 100

Problem 8.3.2 A Monte Carlo simulation of a simple project network was exe-
cuted for various degrees of correlation between the network activities. The results
for three primary paths and two values of the correlation coefficients, 0.00 and
0.90, are tabulated below (see Table 8.3).

Assuming that this single example is representative of the general case, describe
what appears to be happening with regard to the simulated critical paths as the
activity-to-activity correlation is increased.

Problem 8.3.3 Susan was provided the following information about the project she
is managing (see Table 8.4); it includes duration and cost of project activities for a
normal schedule that utilizes the existing technologies and is predictable and accel-
erated schedule using innovative methods. Also, she was told that the activities can
be accelerated/crashed in increments of 1 day with the cost that is proportional. For
example, activity A can be crashed at most 4 days which will result in $28,000 of
additional cost ($38K — $10K), and so forth.

Assuming that the cost of all crashed activities are random variables with
COV = 0.3 what is the mean and standard deviation of the cost of the project if it’s
to be completed 2 day earlier?
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Chapter 9 )
Contingency and Management Reserves ST

Abstract In this chapter we introduce the concept of contingency and management
reserves. We provide the formal definition and a discussion on its use and misuse.
We further provide the mathematical formulation of the contingency and the contin-
gency factor, the consideration of contingency in program management, and the
effect of correlation.

Keywords Contingency - Program management - Correlation - Probability
distribution

9.1 Introduction

In discussions of risk, the term contingency is often used. Contingency levels should
be set for each project based on acceptable risk, degree of uncertainty, and confi-
dence levels for meeting baseline requirements. The process of evaluating potential
project contingency funding requires the application of risk assessment and proba-
bilistic estimating techniques. Contingency may be added by the person or organi-
zation making the original estimate, or by some person or organization higher in the
organizational structure, by owners, clients, or sponsors. Contingency may be added
at all management levels connected with a project. The estimate to which the con-
tingency is added may itself contain contingency applied by lower levels in the
project organization. Some people use the terms allowance or management reserve,
in order to avoid the use of the term contingency, but it is not necessarily the case
that all these are synonymous.
The dictionary definition of contingency is (Merriam-Webster 1983):

Contingency ... a (1): the condition that something may or may not occur: the condition of
being subject to chance (2): the happening of anything by chance: fortuitousness ... 2 a:
something that is contingent: an event or condition occurring by chance and without intent,
viewed as possible or eventually probable, or depending on uncertain occurrences or coin-
cidences ... b: a possible future event or condition or an unforeseen occurrence that may
necessitate special measures <a reserve fund for contingencies> c: something liable to
happen as a chance feature or accompaniment of something else.
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Note the frequent appearance of the word “chance,” as well as its synonyms
“possible,” “probable,” fortuitous,” and “without intent.” From the dictionary defi-
nition it might be supposed that a contingency would be for the purpose of cover-
ing “the happening of anything by chance ... uncertain occurrences or coincidences
... [or] an unforeseen occurrence” and therefore, the expenditure of the contin-
gency would be a result of chance, and should happen only if the “unforeseen
occurrence” actually occurred. In that case, the actual expenditure of the contin-
gency would be itself “an event occurring ... by chance,” and one would not expect
the contingency to be exhausted in the normal course of activities. However, the
term contingency is not understood in this way by many people; the term is often
taken to refer to funds that will be completely expended in the course of the proj-
ect, no matter what happens.

It is useful to distinguish between systematic error and random error in the esti-
mation of costs, durations, and other factors (Taylor 1997). Systematic error refers
to a bias or offset in our measurements or estimates. Systematic error is illustrated
in Fig. 9.1a.

If we are hitting consistently below the aiming point, we need to adjust our
sights. If we are surveying and measuring a baseline with a chain, and we fail to
adjust for thermal expansion of the chain, then there may be a systematic error in all
the readings, depending on the ambient temperature. The objective of engineering
measurements is to identify and eliminate all sources of systematic errors. When all
systematic errors have been corrected, then any errors remaining are random errors,
as in Fig. 9.1b: One could also say that random errors are errors the causes of which
have not (yet) been identified and therefore cannot (yet) be eliminated. The question
is whether these residual errors are small enough that they do not lead to bad deci-
sions and do not prevent the successful accomplishment of the project objectives.

Random errors may also result in compensation. If we feel that shooting low is
much less desirable than shooting high, as in the case of the asymmetric target (see
Fig. 9.1c), then we may want to adjust our aim in order to do better, even when the
errors are random. This asymmetric situation occurs when we have different prefer-
ences for being high or low.

offset

(a) (b) (0)

Fig. 9.1 Types of errors. (a) Systematic error, (b) random error, and (¢) random error with
asymmetric target
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It may be that the errors, although random, are excessive, and should be reduced.
This may require a change in the process. If a firm is subject to excessive random
errors in cost estimates, it may need a new cost estimation process. This general
subject is discussed at greater length in Chap. 12.

An example may help in illustrating the point. Suppose that someone tabulates
the number of valves used on a substantial set of previous similar projects, and finds
that, in every case, the number of valves actually installed was always 1.17 times the
number of valves taken off of the engineering drawings by the quantity development
function. Then a rule might be to plan on purchasing 17% more valves than the
number of valves counted by quantity takeoff from the engineering drawings. This
17% allowance for undercounting is not a contingency in the sense of the dictionary
definition, because there is nothing about it referring to events due to chance. In this
example, it would be an empirical fact that valves are consistently undercounted,
and the 17% factor is to offset this inherent bias or systematic error. Therefore, the
additional 17% for the valves not counted would always be spent. Note that the rule
does not say to add 17% to the number of valves in the preliminary cost estimate,
because this cost estimate might already have some adjustment factor in it.

Suppose now that the above example is slightly different, that is, from the histori-
cal data, the investigator determines that the factor relating actual valves used to
valves counted on drawings is a random number, with average or mean 1.17, and
standard deviation 0.10. Then the systematic error or bias is 17% of the valve take-
off, but there is a random component as well, which depends on chance events, and
hence is contingent. To account for both the systematic error and the random error,
we have to add 17% allowance to the number of valves actually counted, and then
add another contingency to account for chance (for example, design changes or
damage to valves in storage). When talking about chance, or contingency by the
above definition, we must make probabilistic statements. If we want to be sure that
we order enough valves 95% of the time, then we need to add 33% to the number
counted (17% for the mean or systematic bias and 1.645 times the standard devia-
tion for the chance variation). Note that we would expect to have 16% of the counted
valves left over, as these were ordered for protection against running out, and were
expected to be unused. The term expected is used here in the probabilistic sense:
expected means on the average. Therefore, the expected number of valves needed is
1170, but this is not at all inconsistent with actually using 1250, for example.
Table 9.1 summarizes the procurement and use of valves on this project.

Table 9.1 Project valve use

Valves Number
Valves actually counted on drawings 1000
Valves added to correct for undercount (systematic error) 170

Valves added to reduce the probability of running out of valves due to chance to 5% or | 164
less

Total number of valves to be ordered 1334

Expected number of valves to be installed 1170

Expected number of valves to be left over 164




184 9 Contingency and Management Reserves

In these notes, the proper allocation of contingency, whether denominated in
dollars or in valves, depends on the risks to the project of running out of resources;
contingency is a buffer against this eventuality. Suppose that Project A is a refinery
in Houston. Then the penalty for running out of valves is relatively low, as the lead
time in the valve supply chain is relatively short (unless these valves are some spe-
cial type not in stock). However, suppose that Project B is an LNG facility on a
deepwater platform far off the coast of equatorial Africa. Running out of valves
might cause a work stoppage, and so replacement valves might have to be sent from
Houston by chartered aircraft. Then the project manager for Project B should have
a lower probability of running out of valves, and hence a larger contingency.

It is generally easier to deal with contingency in monetary terms, as money is
fungible (can be used for various purposes), whereas we may not know what to do
with 164 left-over valves (spare parts, perhaps?). The ambiguity arises because the
term contingency is often used for both the amount needed to cover the systematic
error and the amount needed to buffer against the risk attributable to chance. This
usage can cause confusion, as some people, referring to contingency as systematic
error or bias, expect that they will use it all up, whereas others, referring to random
error or chance, expect that the contingency funds will be left over, and all funds not
necessary to cover random or chance events ought to be returned to the project
sponsor. Not surprisingly, those who claim the right to expend all contingency funds
tend to be project managers, and those who expect to see at least some of the con-
tingency allowance returned tend to be owners.

In practice, relatively few projects return leftover contingency funds to the spon-
sor unless the project sponsor’s program manager holds the contingency from the
start. In general, project managers may regard cost contingency funds as theirs to
use; if the risks fail to materialize, the funds will be expended on something else,
such as out-of-scope project improvements. Therefore, not only is there no consen-
sus on how large a contingency should be, there is no agreement on the basic point
of whether the contingency is an unassigned cost that is intended to be spent or
insurance that is intended not to be spent.

Beyond these bare minima, there is little consensus about the specific meaning
of the term contingency. The term management reserve is often also used, some-
times as a virtual synonym of contingency, sometimes in distinction to it. The EIA
Standard (EIA 1998) does not define the term contingency, but does define budget
and management reserve, as follows:

BUDGET AT COMPLETION - The total authorized budget for accomplishing the pro-
gram scope of work. It is equal to the sum of all allocated budgets plus any undistributed
budget. (Management Reserve is not included.) (Emphasis added.)

MANAGEMENT RESERVE — An amount of the total budget withheld for management
control purposes rather than being designated for the accomplishment of a specific task
or set of tasks.

However, virtually the same language is used by others to mean contingency.

The Guide to the Project Management Body of Knowledge (PMBOK® Guide) —
Fourth Edition, (PMI 2008), defines both contingency reserves and management
reserves:
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Budget reserve analysis can establish both the contingency reserves and the management
reserves for the project. Contingency reserves are allowances for unplanned but poten-
tially required changes that can result from realized risks identified in the risk register.
Management reserves are budgets reserved to unplanned changes to project scope and
cost.... Reserves are not part of the project cost baseline, but may be included in the total
budget for the project.

The Guide to the Project Management Body of Knowledge (PMBOK® Guide) —
Fourth Edition, (PMI 2008), starts out well by stating the contingency exists “to
account for cost uncertainty” (page 173) but then goes off-track by suggesting that
contingency may be a percentage of the estimated cost or a fixed number:

Cost estimates may include contingency reserves (sometimes called contingency allow-
ances) to account for cost uncertainty. The contingency reserve may be a percentage of the
estimated cost, a fixed number, or may be developed by using quantitative analysis
methods.

As more precise information about the project becomes available, the contingency
reserve may be used, reduced or eliminated. Contingency should be clearly identified in
schedule documentation. Contingency reserves are part of the funding requirements.

Later, The Guide to the Project Management Body of Knowledge (PMBOK®
Guide) (PMI 2008), states (page 301):

Estimates are made of potential project schedule and cost outcomes listing the possible
completion dates and costs with their associated confidence levels. This output, often
expressed as a cumulative distribution, can be used with stakeholder risk tolerances to
permit quantification of the cost and time contingency reserves. Such contingency reserves
are needed to bring the risk of overrunning stated project objectives to a level acceptable
to the organization.

For cumulative distribution, see the example in this chapter, below.

To provide more consistency, in this book the terms contingency and manage-
ment reserve will be defined precisely. However, the reader is cautioned, as dis-
cussed above, that these definitions are not universally accepted.

We assume here a probabilistic view of costs and risks. That is, we assume that
there is some underlying probability density function on the activity (or project)
costs (or duration). This probability distribution may not be known, and is certainly
not derived from data on relative frequencies, but is assumed to exist as a subjective
probability distribution, although it may exist only in the minds of the project par-
ticipants. Being subjective rather than objective, different people may have (radi-
cally) different ideas about what it is. Given this probabilistic viewpoint, contingency
is, then, an amount of money (or time, in the case of project schedules) added to the
mean (or expected value) of this probability distribution in order to bring the total
of the expected value plus the contingency up to a certain acceptable risk of overrun
(that is, the remaining probability that the actual cost or duration would be above the
mean plus contingency). Contingency may be added (or even subtracted) at all
levels connected with a project. The estimate to which the contingency is added may
itself contain contingency, applied by lower levels in the project organization.

Note that by the definition used here, contingency is added to the mean. Note
especially that the expected value is not necessarily the deterministic or single point
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value that may be given as the estimate. Although some people assume that the
single point estimate may be taken as the mean of a probability distribution, there is
no reason to believe that there is any direct connection between the point estimate
and the expected value. The point estimate might be the mode of the distribution, or
the median, or have no relationship whatsoever with a probability distribution. The
estimate may already include some allowance for contingency.

9.2 Setting Contingencies

The only project risk that is affected by the level of project contingency is the risk
that the project will run out of money or time before it is completed. In projects that
have absolutely fixed spending limits; for example, a public agency that has to issue
bonds to cover a project, the spending limit should contain enough contingency so
that the likelihood of running out of funds is acceptably small, as it may not be pos-
sible to gain additional funding. In private sector projects, a project manager who
runs over his budget may have to appeal to the CEO, to the board of directors, or to
outside bankers for additional funds to complete the project. This necessity creates
a decision point at which the owner or the funding or lending source may decide to
terminate the project by refusing further funds. Therefore, the initial funding alloca-
tion may include contingency such that a request for additional funds would precipi-
tate a management review of the feasibility of the project. But adding contingency
raises the project budget, and hence in effect raises the project cost. Similarly, add-
ing schedule contingency increases the schedule duration, which implies that the
project must start earlier.

Setting the contingency is then a matter for some negotiation between the project
manager, who naturally wants the contingency allowance set high, and the funding
source, who may want the contingency set low to maintain greater control over the
project. The smaller the contingency, the more often the higher level of management
would be asked for additional funds. Although the proper set point along this axis is
subject to dispute, there is some point at which the upper management level would
be considered to be micromanaging. Basically, the higher level of management typi-
cally takes the view that there are uncertainties associated with estimating and with
executing jobs; and that they have hired the lower level managers to manage these
activities, and they should be allowed to go and do it, without constantly coming
back for additional funding approval. This point will, of course, vary with the
organization.

The defining equation for contingency as used here is:

B=p+ac

B = Budget for a project or a work package

u = Expected value of the project or WP cost

o = Standard deviation of the project or WP cost
a = Contingency factor

ac = Contingency allowance



9.2 Setting Contingencies 187

The contingency should be added to the expected value because the mean value
is the only single number that gives an unbiased value uncontaminated by the vari-
ance (uncertainty). Any other number used as an estimate conflates the mean and
some fraction of the standard deviation into a single figure. If all the cost estimates
for all the work packages in a project were known to be the mean values of their
individual distributions, the mean value of the total project would be the sum of
these values. However, if the individual work package estimates are not the mean
values of their distributions, then the sum of these estimates is not the mean value of
the total cost (or duration). The total is the mean value plus some multiple of the
standard deviation, but there is no information contained in it with which to estimate
the standard deviation. Therefore, summing the estimates for all work packages
without the discipline of using the mean value gives an estimate of the total cost that
is not related to any identified level of uncertainty.

Typically, work package estimates, even at the lowest level, contain some contin-
gency factor. There is built-in bias from the estimator, who may expect to be criti-
cized more severely for an underestimate than for an overestimate. Also, there is a
need to cover errors in estimating, which are usually errors of omission. That is, in
taking off quantities from drawings, a quantity estimator may miss some, but is less
likely to over count. Moreover, even if a computer does the quantity development,
some instances may be missing from the drawings, and others may be added later,
contributing to a bias toward undercounting, and adding contingency is a bias
intended to offset this bias.

In the field, construction personnel will certainly take the position that the
adverse impact of having material left over due to overestimation is far less than the
adverse impact of running out before the job is finished. For these and other reasons,
estimators may tend to add some contingency or safety factor. For similar reasons,
the next level upward typically also adds contingency. Each person or organization
that adds contingency does so to protect itself from the consequences of uncertainty,
and these consequences are generally considered to be more dire if the number is
underestimated rather than overestimated.

Therefore, by the hypothesis that each management level wishes to set the risk
adjusted cost estimate at some preferred quantile of the underlying probability dis-
tribution, that management level must have some view of how much contingency
has been already incorporated in the estimates they receive. If a manager wishes to
set the risk adjusted cost estimate at approximately the 80th percentile, and the
manager believes that the estimate is at the 50th percentile, then the difference in
dollars (or time) between the 50th and the 80th percentiles must be added. If the
manager believes the estimate has already been adjusted, up to the 70th percentile,
for example, then less should be added. This process does not require that the
manager know or state explicitly what the lower level contingency or risk is; only
that the manager is familiar with the organization and how it works.

Conversely, if a manager believes that the estimates have already been adjusted
up to, say, the 90th percentile, then the manager may cut the estimate. This may also
occur if the manager’s knowledge of the business is such that he has a different view
of the underlying uncertainties than others have. Then, the manager may wish a risk
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adjusted cost estimate at the 80th percentile, and his subordinates or subcontractors
may have already adjusted their estimates at the 80th percentiles, but their subjec-
tive probability distributions do not agree as to where the 80th percentile is. Or, a
high-level contractor manager may feel that, regardless of the contingency or safety
factor deemed desirable, competitive conditions won’t permit it. That is, there is a
risk in setting contingencies too low, but also a risk in setting them too high, if one
has to bid for a contract fixed price or get financial authorization from the sponsor’s
management. In general, as estimates flow upward through different levels of orga-
nizations, we may expect that higher levels have better knowledge of strategic busi-
ness or political conditions, and so may make different decisions about contingencies.
This may be untrue in specific cases, however. At the owner’s level, we may assume
that knowledgeable owners can make better decisions about contingencies than
inexperienced owners or owners that do not take the effort to be knowledgeable
about project costs and durations.

9.3 Project Policy and Procedures

Project policy and procedures documents should include precise and consistent
definitions for terminology. The term contingency is in particular need of a consis-
tent definition, as it means different things to different people. Equally important are
discussions and examples of approaches to setting budget contingency and setting
schedule contingency. Contingency is not like value engineering, change control, or
other cost control methods. Contingency is an allowance for error or a safety margin
on budget overruns that is not based on reducing costs or risks, but on increasing the
budget. By itself, contingency is not a cost control method, as its purpose is simply
to have enough funds to pay for uncontrolled costs.

The definition of contingency as a percentage of the estimated cost to complete,
instead of a percentage of the original estimate, is an improvement, but is a change
from past practices in many cases. Project contingencies should be reported and
reviewed in a consistent way, and this should be emphasized in policy documents in
order to achieve consistency across all projects. Also, providing recommended or
standard values or ranges for overall contingency allowances is a questionable prac-
tice, as it encourages project managers to use these values instead of performing
project-specific risk assessments. A contingency percentage that might be adequate
for some conventional infrastructure projects will be totally inappropriate for big
science projects, waste remediation projects, and other one-of-a-kind or first-of-a-
kind plants, for which the technology may be new and unproven or the volume and
characterization of the wastes uncertain, and which may need to retain much larger
contingencies even at the final design stage.

There are at least two distinct issues in setting contingency. One purpose of con-
tingency is an allowance for unknowns in making estimates. Because these errors
are predominantly errors of omission, some allowance must be added to cover them.
But systematic undercounting reflects a bias. This is an uncertainty in the sense that
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the actual systematic error is unknown. This type of contingency is bottoms-up, and
is estimated at the work package or activity level. Adding all these work package
contingencies would be valid if they all represented systematic errors, but is not,
however, justified by statistical analysis insofar as these contingencies represent
random errors. Adding random errors can easily result in a very large number, which
then becomes the project budget. However, there is another kind of contingency
needed for risk mitigation. This is not due to omissions in making estimates or any-
thing else at the activity level. It is needed to allow for unknowns at the overall
project level. A construction project that is really a research and development proj-
ect may use new technology, which requires more project-level contingency. A
waste remediation project needs contingency to cover the possibility that the in-situ
waste may differ from the original characterization, but this is not an activity-level
contingency. This kind of distinction is not merely verbal; there is an important dif-
ference in how such risks are estimated and project policies and procedures ought to
make this distinction clear.

Moreover, there is a difference in how these different contingency factors are
managed. If the project’s base budget includes those costs that are known and count-
able, with a separate allowance for the unknowns in estimating these costs, then one
expects that over the life of the project all or most of this allowance will be trans-
ferred to budget, as these actual quantities and costs are identified. But project con-
tingency or management reserve may cover risk factors that would have very high
impact if they occurred but are also highly unlikely to occur. If the contingency
allowance for a possible flood is not used because no flood occurs, then this contin-
gency allowance should not be transferred to the base budget to cover overruns in
other areas.

Who owns this contingency and what should happen to it if it is not necessary
to expend it is a very important issue that should be addressed in the policies and
procedures documents. It can be argued that management reserves for high conse-
quence, low probability events should be held at the program level, not at the proj-
ect level. Policies and procedures should address the different kinds of contingency,
the need for contingency allowances, who controls them, and what should happen
to them.

If a contract is for a fixed price, the contractor owns the contingency inside the
bid price, and the contractor gets it if there is any left at the end. But this is not the
case with cost-plus contracts. Even with a fixed-price contract, the owner needs to
hold some contingency to cover potential change orders. Contingency policies need
to distinguish between fixed-price, cost-plus, cost plus incentive fee, and other com-
mon types of contracts in the discussion of risk and contingency, and should state
whether contingency is controlled at the project manager level or at the owner’s
program level.

Why does anyone add contingency? Herein, it is assumed that the organization
adding the contingency wishes to insulate itself from some of the consequences of
overruns. Suppose for the sake of specificity, that a management level sets the
contingency at that amount that will set the budget (for some activity, work package,
subcontract, or total project, depending on the level of management) at, say, the
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80-th percentile. That is, the probability of overrunning the risk-adjusted budget is
20%. The probability of underrunning the risk-adjusted budget would seem to be
80%, but it is more like zero. That is, it is likely that the entire contingency will be
spent on the activity or project. If the actual cost of the activity turns out to be more
than the risk-adjusted budget, for whatever cause, then the level of the organization
responsible for this activity will have to request additional funding (or time) from
the next higher level (or the owner), or terminate the project for lack of funds.
Conversely, if the actual cost of the activity turns out to be less than the risk-adjusted
budget, for whatever cause, then the level of the organization responsible for this
activity is unlikely to return the excess funds to the next higher level (or the owner).
Therefore, the risk-adjusted cost estimate provides a floor on the cost (or time) but
does not provide a ceiling.

Why then do people use contingency? If the activity budget was set at, say, the
50-th percentile of the (assumed) probability distribution on the total cost, then the
management level responsible for that activity would have to go back to the next
higher level for more funds (or time) about 50% of the time. This might seem exces-
sive. Certainly the organization doing the work would feel that asking for more
funding with this frequency would be excessive, and therefore would want to add
contingency so that this necessity would arise less often. The next higher level of
management, which presumably controls the funds for the lower levels, might not
wish to be bothered so much either, and therefore also has some reason for permit-
ting contingency.

Of course, there is no need to set the budget with contingency at the 50th percen-
tile. One could use the 40th, 30th, 20th, or 10th percentile. The smaller the percen-
tile, the more often the higher level of management would be asked for additional
funds. Although the proper set point along this axis is subject to dispute, there is
some point at which the upper management level would be considered to be micro-
managing. Basically, the higher level of management typically takes the view that
there are uncertainties associated with estimating and with executing jobs; and that
it has hired the lower levels to manage some activities, and they should be allowed
to go and do it, without constantly coming back for additional funding approval.
This point will, of course, vary with the organization.

Why is the contingency here said to be added to the expected value? Because
the mean value, as a single number, gives a precise and unbiased estimate of the
expected value uncontaminated by the variance. Any other number used as an
estimate conflates the mean and some fraction of the standard deviation into a
single figure. If all the cost estimates for all the work packages in a project were
known to be the mean values of their individual distributions, the mean value of
the total project would be the sum of these values. However, if the individual
work package estimates are not the mean values of their distributions, then the
sum of these estimates is not the mean value of the total cost (or duration). The
total is the mean value plus some multiple of the standard deviation, but there is
no information on which to estimate the standard deviation. Therefore, summing
the estimates for all work packages gives an erroneous, and usually high, estimate
of the total cost.
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In short, the view used here is that the term contingency applies to a single proj-
ect, or to sub projects; the risk adjusted cost estimate (including contingency) may
be exceeded but will never be underrun. Many people differ on whether the contin-
gency, so -called, is supposed to be spent or not supposed to be spent. Here, the view
is that it will be spent.

By distinction, management reserve is an amount of money (or time) controlled
by a higher level of management that may be used at the discretion of that level, and
may be moved between project and activities according to need. The fundamental
attribute of management reserve is that it relies on having a number of projects that
are statistically independent (or approximately so), so that the management reserve
for the total program (of multiple projects) is not the sum of the management
reserves for each project (or sub project).

Examples can help to illustrate this. Suppose that a construction project deter-
mines that one significant risk is that of a 100-year flood occurring during the con-
struction period. Suppose we say the probability of this is 0.01, and the estimated
cost of the damage if it occurs is $50 million. Then the expected loss is 0.01 times
50,000,000 = $500,000. If this amount is added to the project budget as a contin-
gency, then there are two possible outcomes:

The flood risk actually materializes, with probability 0.01, and the damage is $50
million, which is far above the $500,000 contingency allowance. The project will
have to ask for $49,500,000 in additional funding to cover the loss.

The flood risk does not materialize, with probability 0.99, and the $500,000 con-
tingency will be spent on something connected with the project.

That is, the net result of this approach is only to increase the project cost by
$500,000.

However, suppose that instead of this contingency, the owner were to set aside
a management reserve to cover the potential losses. One may expect that there are
other projects with similar risks, and if they are statistically independent of this
project (they are not all located on the same river, for example), then a loss on one
will not be associated with losses on others; the owner will allocate the manage-
ment reserves to the project requiring them. To do this, the owner needs deep
pockets.

A private owner with inadequate funds to cover such management reserves might
buy flood insurance. Based on the expected value, the premium for this insurance
should be, from the owner’s viewpoint, less than $500,000. This premium, whatever
itis, becomes a part of the budget for the project, and is neither management reserve
nor contingency, but simply an additional cost.

Or, the owner might take $500,000 and build a cofferdam around the project site
to protect it from the 100-year flood. This is a scope increase, and is part of the
budget, and is neither a contingency nor a management reserve, by the definitions
used here — whether or not the flood occurs, the cofferdam is there, so the cost of the
cofferdam is a project cost incurred to mitigate (avoid) the risk of a $50,000,000
loss due to flooding.
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9.4 Contingencies and Management Reserves in Program
Management

Often project contingencies are set too low, due to an absence of risk analysis, but
just as important as the size of the contingency is, who should control it.

It is often stated that project budgets and contingencies should be based on risk
assessments, that is, on probabilities. However, probabilistic statements are impos-
sible to verify on the basis of a single observation. But if a program or contractor
performs a large number of projects, statistical statements could in principle be veri-
fied over the population of all projects. As an illustration, if all project budgets are
assigned contingencies such that the probability of overrunning is, say, 15%, then
over a large number of projects one would expect that 15% would finish over budget
but 85% would finish under budget. Does this actually happen? Quantitative com-
parisons are unfortunately limited, due to the absence of post mortem analysis of
completed projects for lessons learned. However, even qualitatively, there may be
serious questions about whether the assumptions made in assigning risk-based bud-
gets are in fact validated by experience. The objective of this section is to examine
some of these assumptions and the conclusions that follow from them, to evaluate
whether they are even qualitatively justified. This section also tries to examine the
issue of contingency at a higher level than the single project, from the viewpoint,
say, of a program or contractor with a large number of projects. The following mate-
rial is highly simplistic, but represents some elementary principles that might be
kept in mind when seeking new approaches to risk and contingency management.

One inherent difficulty in the application of probability to projects is the fact that
the probability distributions used in cost estimating (or scheduling) are not based on
objective physical measurements or relative frequencies, which can in principle be
measured and reproduced by independent observers. The probability distributions
used for risk assessment generally are not based on adequate data, because adequate
data often are not collected, but rather are based on judgments, experience, and
other subjective factors, and cannot be objectively reproduced by different observ-
ers. That is, these probabilities are subject to bias and to manipulation. It is a natural
human trait to try to protect oneself against the effects of uncertainties, and there-
fore individuals at all stages in the process of risk assessment and cost estimation
may increase or decrease, consciously or unconsciously, safety margins of their own
which are hard to identify.

To begin very simply, suppose there is one project, for which there is assumed to
be a known, objective, probability distribution on the project cost. Let this probabil-
ity distribution have the expected value (mean) y and variance ¢°. Let the budget be
given as the expected value plus some safety margin above the expected value. That
is, let a > 0 be a factor such that the budget (B) for this project is specified as a
standard deviations above the mean; that is, B = y + ac. That is, a is set such that
there is some acceptable probability that the actual cost will exceed the budget, and
this probability is just the area under the probability density function above
B=u+ao.
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To be more specific, assume that the project cost probability density is
approximated by the Normal distribution (which is generally a good working
assumption, if there are insufficient data to justify another specific distribution,
such as the log Normal or the Erlang). If we set a = 1, for example, then the bud-
get B is one standard deviation (o) above the mean (x). Then, by the Normal
assumption, there is roughly a 16% chance that the actual cost will exceed the
budget. If a = 2 the probability that B would be exceeded is about 2%, and if a =0
the probability that B = 4 would be exceeded is 50% (assuming the mean and the
median are the same). As a numerical example, let # = $400 and let ¢ = $1000 (in
thousands of dollars); this is a moderately risky project with coefficient of varia-
tion o/ = 0.25. If we are satisfied with a budget with 84% probability of being
adequate (that is, not being overrun), then set a = 1 and B = u + ac = $4000 +
$1000 = $5000.

Now assume there is a second project with exactly the same statistical proper-
ties (to make the comparison easier). Consider a higher level of management, for
example a program or a contractor performing fixed-price work, with cogni-
zance over both projects. Simply adding together the budgets for the two indi-
vidual projects would indicate that the higher management level needs a budget
By =2B = $10,000.

However, the expected value of the total expenditure at the higher level is the
sum of the expected values for the two projects, or yr = u + p = 2u = $8000.
Also, if the two projects are statistically independent, the total variance at the higher
level is just the sum of the variances, or o, =0’+0’ =2c". Thus,

o, = [20‘2] =02 =$1414 . But, if we were to apply the same confidence factor

to the total costs at the higher management level, namely a 84% probability of being
sufficient, a; = 1 (as used for each project) and so By = pr + azor= $8000 + 1($1414)
= $9414 , which is not the answer By = 2B = $10,000 obtained above.

Therefore, adding together the individual budgets for independent projects (or
Work Packages within a project) overestimates the required reserve margin, if it is
desired to have the same probability of overrun at the higher management level as
for the individual projects. Actually, the sum of the budgets for the two projects, 2B
= $10,000, corresponds to a value for a, = V2 =1.414 which in turn corresponds
to a probability of 92% of underrunning, and 8% of overrunning (using the Normal
distribution). The reason for this difference, obviously, is that at the higher manage-
ment level there is an opportunity for an overrun in one project to be offset by an
underrun in the other. This possibility does not occur at the single project level, so
the higher management level needs less margin to provide the same level of confi-
dence, as long as the projects are statistically independent.

Generalizing the above, now let there be N projects with exactly the same prop-
erties (to avoid having to make up new numbers and more complicated notation),
such that all N projects report to the same higher level of management. The scope of
this higher management level, say the company, is just the sum of all the projects
under its cognizance. Adding the N individual project budgets given above would
indicate that the higher level needs a budget of NB = $5000N.
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Again, the expected value of the total expenditure at the higher level is the sum
of the expected values for the N projects, or uy = Nu = $4000N. Also, if all N
projects are statistically independent, the total variance at the higher level is the

sum of the variances, or o, =No’. Thus, o, =VNo’ = a+/N = $1000VN .

Then, if we apply the same confidence factor to the higher management level,
namely a 84% probability of its budget being sufficient, ar = 1 and

B, = i1, +a,0, = $4000N +$1000/N

which is much less than the conservative total budget NB = $5000N.

Suppose that N = 100, say, which might be the order of magnitude of projects in
a large industrial owner or a contractor. Then JN =10. Then the budget at the
higher management level corresponding to 84% probability of being sufficient,
would be

B, = u, +a,5, =$4000N +$1000v/N = $400,000 +$10,000 = $410,000.

Thus, the sum of the individual budgets for the N projects, NB = $500,000, would
greatly overestimate the required reserve margin if the projects are all independent,
and would imply a value for a, = JN =10, so if the budget at the program or com-
pany level were set at NB it would be ten standard deviations above the expected
value. This would correspond to an infinitesimal probability of overrunning and a
virtual certainty of underrunning (standard tables for the Normal distribution do not
even give values at the 100 level).

If the company were satisfied with a safety margin of 84% (that is, the probabil-
ity of exceeding its entire program budget for 100 jobs is 16%), then the budget at
this level,

B, =y, +a,0, = $4000N +$1000/N = $410,000

if divided equally over the N = 100 projects would give a budget for each of
B, $410,000

N
have the same individual risk). This would correspond to a margin for each indi-

vidual project of,

=$4100 (recall that, for simplicity of illustration, all N projects

ac = aT;T = (aTc:v\/ﬁ) =0.1c

which (by the Normal assumption) corresponds to a probability of 54%. That is, for
the company to have a 16% risk of exceeding its total budget, each individual proj-
ect would have a probability of 46% of exceeding its individual budget, if the proj-
ects were all independent. A probability of 16% of a company exceeding its budget
may be too high (or it could explain why the failure rate for contractors is relatively
high), but any reasonable figure greater than zero will still show that the sum of the
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individual project budgets is far too high, for N a large number and the projects all
independent. Again, this is because, for large N, the assumption of randomness
requires that surpluses on some projects will tend to offset overruns on others.

The discussion above is, obviously, just an illustration of the principle on which
insurance is based: the larger the base over which risks are distributed, the smaller
the margin needs to be. A possible project budgeting approach, based on this exam-
ple, might be for the owner’s program or the contractor (or other higher authority)
to assign a budget to each project equal to its expected value and to hold all the
reserve margin at the higher management level. Then projects that overrun (and
about half would be expected to overrun in this scenario) would request additional
funding from the contingency pool (management reserve) held at the higher man-
agement level. Projects that underrun (and about half would be expected to under-
run) would be expected to return the excess to the higher management level to cover
the overruns on the others. This method would substantially reduce the total amount
of margin needed, compared to treating each project separately.

As continually reiterated above, the results here are crucially reliant on the
assumption that all projects (or work packages) are statistically independent. If
there is some dependency or correlation between the costs for different projects,
then the beneficial effect of grouping risks is reduced. (As it is in insurance: an
insurance company may make money selling fire insurance as long as fires are ran-
dom and independent, but a major disaster such as an earthquake centered in one
location could far exceed its reserves.) If project costs are positively correlated, then
the variance at the higher management level is increased. If all correlation coeffi-
cients are +1.0, then the required budget at the higher level reverts to the sum of the
individual project budgets. (Negative correlations would have the opposite effect,
but it is easy to see that more projects would be positively correlated than negatively
correlated, unless the contractor takes specific steps to obtain jobs that are diversi-
fied, that is, negatively correlated.) For most companies, whether project costs are
statistically independent or dependent, or the value of the correlation coefficients
between them, is presently unknown, although in principle at least this is subject to
empirical determination. An extensive discussion of correlation and dependence is
beyond the intent of this chapter; the main point to be stressed here about indepen-
dence is that it cannot be simply assumed to be true, and assuming that it is true
could be very unconservative if it is not true.

Examining the performance of large companies, however, leads to an apparent
contradiction: risk analyses almost invariably assume that projects (or work pack-
ages) are independent, but if the program (or contractor) is the sum of its projects,
then adding all the separate project budgets together is, in effect, acting as if the
projects are statistically dependent. If projects are treated as completely indepen-
dent and each budgeted for a 16% probability of overrunning, projects would under-
run 84% of the time, and statistically 84% of all projects should return budget
surpluses as profits to the (fixed-price) contractor or as savings to the owner. This
doesn’t happen.

An alternate hypothesis, based on some data from many different types of proj-
ects, is that the project costs are in fact consistently underestimated, such that the
reserve margins are negative and actual project budgets are less than the expected
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values. Then each project budget might be a standard deviations below the mean,
or B =pu — ac (for a > 0). Using, as before, x = $4000 and ¢ = $1000 but a = 0.25,
then a project budget one-quarter of a standard deviation below the expected value
would be

B = p—ac = $4000-0.25($1000) = $3750

which would have a probability of about 60% of overrunning and a probability of
40% of underrunning. The sum of the individual budgets for N projects would be
NB = $3750N.

But the expected value of the total expenditure at the higher corporate level
would be i, =Nu,o; =No’,and o, = VN . Taking N = 100, if the higher-level
budget is the sum of the individual project budgets,

B, = NB =$375,000 = s, - a,5, = $4000N —a, (1000v/N ) = $400,000 - $10,000a,

This implies a; = 2.5, so the higher-level budget is 2.5 standard deviations
below its expected value. This corresponds to a probability greater than 99% that
the higher-level organization would exceed its total budget and less than 1% that it
could meet its budget. Under these assumptions, if each project is budgeted below
its expected cost, then the sum of the individual budgets for the N projects, By =
NB = $375,000, greatly underestimates the required reserve margin, and the higher
management level (almost) always overruns. Id enough projects overrun, this can
lead to bankruptcy if the contractor or owner is a corporation. This simple example
illustrates one reason why the failure rate for construction contractors is higher
than that in other businesses: if, by chance, a number of projects overrun, the con-
tractor fails.

Under what circumstances might project budgets be biased on the low side (less
than the expected values)? Some possibilities might be:

e Projects are pushed by proponents, who recognize that their probability of get-
ting funded decreases with increasing project cost estimates. They also recognize
that, even if a project is underfunded, some funding is better than none, and they
expect to go back to the owner or funding agency to rebaseline the budget once
the project is under way and past the point of no return. So, there may be major
incentives for project proponents to lowball the cost estimates, and disincentives
for accurate estimating. (Gresham’s Law says that bad money drives out good, so
we may say that bad estimates drive out good ones. From an evolutionary
perspective, unbiased estimators don’t get their projects funded and hence they
die out.) The above analysis shows that even a small lowball bias at the project
level would lead to virtual certainty that budgets would be overrun at a higher
management level.

* Another possibility is that project estimates are unbiased at the project level, but
are arbitrarily reduced at a higher corporate level, on the basis that estimates are
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too large to be competitive or contain too much contingency (aka fat). Or, trying
to do more projects than the funds available would support, program managers
may simply divide their fixed resources among their projects regardless of proj-
ect estimates. This may be characteristic of some public agencies, in which proj-
ects are politically mandated but program funds are inadequate. This behavior is
also a self-reinforcing, positive feedback loop.

Another, not mutually exclusive, hypothesis is an asymmetry in how funds are
handled. In the above analysis, it was assumed that cost overruns in some projects
are (statistically) offset by underruns in others; hence reserve margins can be (pro-
portionately) lower when taken over many projects. To take a different view, sup-
pose that every project that overruns its budget appeals for relief for a higher
program level, and gets it, but that projects that underrun hold on to all or part of the
budget surplus instead of passing it back. This may be more characteristic of cost-
plus contracts.

The discussion above has used the term “projects” as the lowest level entities,
summing up to “programs” at the corporate level. An identical analysis could be
made with “Work Packages” replacing “projects” as the basic elements. The statisti-
cal results for large numbers would be reinforced, because a typical major project
could have 100-1000 Work Packages, so N = 1000 in the above examples. Work
Packages would then sum up, in two or more steps, to projects, which would sum up
to programs, etc. This would give a hierarchy of five or more levels from Work
Packages up to owner or corporate management. However: although it may be plau-
sible (although not probable) that all projects in one company’s program are statisti-
cally independent, it is not possible that all Work Packages in a single project could
be statistically independent (although they are often assumed to be, without any
analysis). Therefore, account would have to be taken of correlations or dependen-
cies between Work Packages, which is an interesting subject that has been insuffi-
ciently investigated.

The discussion above applied to costs. Similar observations and conclusions can
be reached by substituting “duration” for “cost” and “schedule” for “budget.”
Actually, there are some new and interesting issues and results when considering
durations and schedules rather than cost estimates and budgets, but these are again
beyond the intent of this chapter.

9.5 Correlation Effect

As previously noted, the variance of the sum of a number of correlated work pack-
ages is the sum of all the covariances in the covariance matrix. Sometimes in these
notes, for expository reasons, the covariance matrix is simplified by assuming that
all work packages have the same standard deviation o. A simplified correlation
matrix may be the following, in which all pairs of work packages have the same
correlation, p, as in the 10 by 10 correlation matrix below:
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1 2 3 4 5 6 7 8 9 10]
110 p p p p p p p p P
2 p 10 p p p p p p p p
3 p p 10O p p p p p p p
4 p p p 1O p p p p p p
5 pp p p 10 p p p p p
6 p p p p p 1O p p p p
T p p p p p p 1O p p p
8 p p p p p p p 1O p p
9 p p p p p p p p 10 p

10 p p p p p p p p p L10]

If the number of work packages is N, then the variance and the standard deviation
of the total cost for this pattern of correlations may be written:

Var(T)=0; =0’N[1+p(N-1)]
o, =GJN[1+p(N—1)]

. . . o
Figure 9.2 shows the variance of the total project cost —- versus o” for several

values of p. (Multiply the ordinates by ¢ to obtain the true values for the variance
of the total project cost.)
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Fig. 9.2 Variance of total project costs
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Fig. 9.3 Standard deviation of total project costs

. .. . o
Figure 9.3 shows the standard deviations of the total project cost —— versus N

c
for several values of p. (Multiply the ordinates by o to obtain the true value for the
standard deviation of the total project cost.)

Another simple correlation pattern that uses exponentially-decaying correla-
tions is:

1 2 3 4 5 6 7 8 9 10
110 p p> p p" p p* p PP
2 p 10 p p* p pt P P p P
3 .p° p 10 p p* p* pt p p° P
4 p* p* p 10 p p* p pt p p°
5 p0 p p* p 10 p p* p opt P’
6 p° p' p p p 10 p p* p p
7 0% p pt p Pt p 10 p p P
8 p' p* p pt P p p 10 p p’
9 p* pl P P pt PPt p 10 p

10 p” p* p" p* p’ pt P P p 10]

If the number of work packages is N, then the variance and the standard deviation
of the total cost for this pattern of correlations may be written:
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Var(T) = o =0'{N+2§(N—k)pk}

k=1

o, :6\/{N+2g(N—k)pk}

. . . o]
Figure 9.4 shows the variance of the total project cost —- versus N for several

values of p. (Multiply the ordinates by ¢ to obtain the true values for the variance
of the total project cost.) o
Figure 9.5 shows the standard deviations of the total project cost —— versus N

for several values of p. (Multiply the ordinates by o to obtain the true \(/yalue for the
standard deviation of the total project cost.)

An example illustrates the effect of correlations on the assessment of the project
or program risk. Consider the example stated above, with N = 10; p = 4000 for all
the work packages; o = 1000 for all the work packages; p = 0.00 for the case with
independent work packages; and p = 0.75 using the exponentially decaying correla-
tion pattern above.

Figure 9.6 compares the risk function or probability density function for the case
with correlated work packages and the case with all independent work packages.
Figure 9.6 shows that the mean values for the two cases are identical, but the stan-
dard deviations are greatly different, the standard deviation of the total project cost
being much greater for the correlated case than for the independent case.

Figure 9.7 below plots the same information in the form of the cumulative prob-
ability distribution functions for the correlated and uncorrelated cases. In this fig-
ure it is easily seen that, if the project owner wishes to set a project budget at the
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Fig. 9.4 Variances vs number of activities; exponential decay
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95% confidence level, the budget including contingency would be about $45,000
if all the N work packages were independent. However, if the N work packages are
correlated, with p = 0.75 as shown earlier, then the required budget would be about
$57,000. Conversely, if the project manager assumed that all the work packages
were independent, and set a budget with contingency at the 95% level of $45,000,
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the risk that this budget would be overrun is, from the graph below, about 32%.
That is, in this example, if the project manager assumes that all work packages are
independent, then he believes that there is only one chance in 20 of overrunning
his budget of $45,000. However, if the work packages are actually correlated
(using the decaying exponential pattern given), then the project manager has
under-estimated the risk and there is really one chance in three of overrunning this
budget amount.

9.6 Practice Problems

Problem 9.6.1 Consider Problem 3.5.1 from Chap. 3. Assuming that uncertainty
comes from the schedule only (i.e. the cost of materials and labor are deterministic
and set at their mean value), calculate the required contingency funds to meet 95%
confidence level. How would your result change if all the activities are positively
and negatively correlated?

Problem 9.6.2 A state highway engineer has to determine contingency funds for
asphalt paving program for next planning period. There 12 jobs to be executed and
the engineering estimate of the total tons of asphalt to be placed are available and
shown in Table 9.2. Assuming that the estimates are mean values and that the typi-
cal coefficient of variation for asphalt placing jobs is 0.2, calculate contingency
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Table 9.2 Problem data

Tons of asphalt to be placed
Job index | Job title Job number | Estimated (mean)
1 Guilford Road Resurfacing 1035 11,936
2 Mebane Oaks Road and Highway 119 1036 9,900
3 State Highway 49 at Trollingwood Road | 1037 31,900
4 State Highway 49 at Orange Street 1038 12,753
5 Alamance at Guilford Road 1040 15,389
6 Davidson County Resurfacing 20,452 62,039
7 City of Reidsville 20,454 3,143
8 US 52 Northbound Lanes Shoulder 20,461 11,900
9 US 52 Southbound Lanes Shoulder 20,462 12,450
10 US 220 at Guilford Road 20,466 7,941
11 City of Thomasville 20,469 2,842
12 Business 40 and US 431 Ramps 20,474 4,112
Sum 186,305

level (in tons of asphalt) at the program level that meet confidence interval of 95%.
How would your results change if the asphalt quantities are positively or nega-
tively correlated? What can cause quantities to be correlated? If the agency’s bud-
get allows only for 40,000 tons extra, what is the probability that the program will
run out of money?
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Chapter 10
Bayesian Revision of Probability Estimates

Abstract In this chapter we introduce Bayesian methods for updating model
parameters based on new project-specific data. We provide formal introduction of
Bayes theorem to update parameters of probability distributions used in project risk
analysis. We discuss examples of updating the probability of arrival of machine
breakdown and new change orders using Bayes theorem.

Keywords Bayes law - Estimation of parameter distribution - Poisson process

10.1 Introduction

Generating models is an essential element of risk management. After all, it is diffi-
cult to manage risks if you don’t what the risks are. Lacking clairvoyance, our prem-
ise is that the past is some kind of guide to the future — although by no means a
perfectly reliable guide. Therefore our first aim in modeling is to create a represen-
tation of the process that is applicable to the past. Developing a model is to devise
the form of the model or models that we think are potential candidates for this rep-
resentation. There is no unique form of model for any situation, because a model
must also meet the test of parsimony — it should be as complex as necessary to
represent the process, but not more so. Clearly, a model has to run (on a computer
or in the brain) faster than the real world — a model that is so complicated that its
execution lags the real process is of no use to us. (Although such a model may be of
use to scientists — early computer models of the weather ran more slowly than actual
atmospheric processes).

After formulating a possible form for a model, the next step is to fit the parame-
ters of the model to the available historical data. Therefore, a model has to contain
at least one free parameter that can be adjusted to fit the data. The step of fitting the
parameters to the model requires that we have some definition of what we mean by
fitting, and what constitutes a good fit versus a bad fit. In a large number of cases,
best fit means choosing the parameters to minimize the sum of the squares of the
deviations of the model predictions from the actual data. Here, predictions means
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backcasting, not forecasting: that is, using the model to predict the past, not the
future. Of course, no one can make a living by predicting the past, so this step is
only to establish the validity of the proposed model when compared to the measured
results. Hence, this step is called model validation or model verification.

To provide forecasting potential our models should also be able to make the use
of the data that project itself generates; in other words, we should be able to revise
our “generic” value of the estimated parameters with the parameters that fit the
newly observed — project data. One may argue this is still backcasting, but it is a
backcasting based on the actual project circumstances, not on the “average” circum-
stances of all projects done in past. To provide this model update based on new
project-specific data we rely on Bayes’ theorem.

In probability theory and statistics, Bayes’ theorem (also known as Bayes’ law or
Bayes’ rule) describes the probability of an event, based on conditions that might be
related to the event. Bayes law for events X and Y can be derived as follows (DeGroot
and Schervish 2012):

P{XnY}=P{X|v}P{r}=P{Y|X|P{X}

P{X|r} :%
P{xny} P{x|r}P{r}
e O R 25

One way of looking at this formulation is as an expression of the conditional
probability distribution of cause given the observed evidence using the converse
conditional probability of observing evidence given the cause:

P(Cause)

P (Cause| Evidence) =P (Evidence| Cause) P(E—d)
vidence

Bayes theorem can be easily extended to update the parameters of a model given
observed outcomes

pP{Dne}=P{D|®}P{O}=P{O|D|P{D}

P{D|®}:%
P{@|D}=%

where, P{DI® }= Conditional probability that outcome D would be observed given
parameters ©.
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Table 10.1 Prior probability Prior
distribution of 6; Parameter | probability

Index j | value 6; P[0)]

1 0.48 0.20

2 0.49 0.20

3 0.50 0.20

4 0.51 0.20

5 0.52 0.20

Sum 1.00

P{®ID}= Posterior conditional probability that ® is the value of the parameters
given observed outcomes D.

If we have two sets of observations D, = first set of observations (data) and D, =
second set of observations (data) then

P{D,n®} P{D,|0}P{®} P{D,|0O}P{O|D,|
ORI T ey T

Where, P{®ID,}= posterior conditional probability © is the value of the param-
eters given observed outcomes D, and D,.

For example, let’s consider a situation when one would like to determine if the
coin unbiased based on consecutive observations of the coin flip outcomes. Let 6 =
probability of heads be our initial uncertainty about the value of the parameter. Here
6 = 0.5 implies that the coin is unbiased. Table below summarizes our prior esti-
mates. Since we are unsure what estimates are more likely than the others we will
assume that they are all equally likely; this is often referred as noninformative prior
(see Table 10.1).

Figure 10.1 illustrates probability mass function for a uniform noninformative
prior (tabulated in Table 10.1).

After one flip of the coin; D = Tails, given that

" S0

P{plo,}P{o,}

Now we have the following results (See Table 10.2).

After five flips of the coin, D = Tails-Tails-Tails-Tails-Tails, our estimates change.
Table 10.3 shows the posterior mass function.

Figures 10.2 and 10.3 show estimated probability given the Run of eight con-
secutive Tails and alternating Tail-Head sequence.
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Fig. 10.1 Probability mass function for a uniform noninformative prior
Table 10.2 Posterior probability distribution of 6, after D = Tails
Prior
Index | Parameter value | probability P{Tails|9; | Posterior
J 0,0, = P{Heads} | P|0}] P{D =Tails\0;} | }P{6;} probability P{d|D = Tails}
1 0.48 0.20 0.52 0.104 0.208
2 0.49 0.20 0.51 0.102 0.204
3 0.50 0.20 0.50 0.100 0.200
4 0.51 0.20 0.49 0.098 0.196
5 0.52 0.20 0.48 0.096 0.192
Sum 1.00 0.500 1.000

Table 10.3 Posterior probability distribution of 6; after D = Tail-Tails

-Tails-Tails-Tails

Parameter value | Prior
Index | 6; probability P{Tails|9;} P | Posterior
j 0, = P{Heads} | P|[6)] P{D = Tuilsl0;} | {6;} probabilityP{9)|D = Tails}
1 0.48 0.20 (0.52)° 0.00760408 | 0.2414
2 0.49 0.20 (0.51)° 0.00690051 | 0.2191
3 0.50 0.20 (0.50)° 0.00625000 | 0.1984
4 0.51 0.20 (0.49)° 0.00564950 | 0.1793
5 0.52 0.20 (0.48)° 0.00509608 | 0.1618
SUM 1.00 0.03150017 | 1.000
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10.2 Poisson Process

The model most commonly used to represent systems of random events, indepen-
dent of each other, occurring in time, is the Poisson model (Kingman 1992). Many
real processes in engineering project management have been successfully modeled
as Poisson processes. The Poisson model assumes that events occur at some rate,
and the process has no memory (that is, the time of an event is completely unrelated
to the timing of any previous events.

A derivation of the Poisson process can be found in virtually every undergradu-
ate probability textbook. An abbreviated version is presented here primarily to
expose some of the assumptions that underlie the Poisson model.

Let T'be a time interval, with the starting point of the interval at any random point
in time. The derivation is predicated on the following assumptions or stipulations:

e The probability of observing exactly n events in the time interval 7 is the same,
no matter where the starting point of the time interval is located. That is, the
Poisson process is a memoryless equilibrium process, the same everywhere in
time.

» The probability that exactly one event will be observed in an interval d7 is AdT.

 The probability that two or more events in the interval dT is proportional to (dT)?,
which is of higher order than dT.

Let P{n,T} be the probability that exactly n events occur in time period 7. Then
exactly n events can occur in time period 7 + dT in the following ways:

e pevents in time 7 and no events in time d7T;
e 15— 1 events in time 7T and one event in time d7T;
e 15— 2events in time T and two events in time dT; etc.

Then the probability of this is:
P{n,T+dT}=P{nT}P{0dT}+P{n—1T}P{LdT}+P{n-2,T} P{2.dT}+...
Note that the conditions with n events and with n — 1 events are mutually
exclusive.

The following probability identity holds:

1=P{0.dT}+P{LdT}+P{2dT}+...
S P{0dT}=1-P{1dT}—-P{2dT}+...

Substituting P{0,dT?} into the equation above gives:
P{n.T+dT}=P{nT}[1-P{LdT}-P{2.dT}+...]+ P{n—LT} P{LdT}+...

Rearranging and dividing by dT gives:
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P{nT +d5T} -P{nT} _ P{;;IT} [P{n—LT} —P{n,T}] +P{1dT}+...

Under the assumption that the probability distribution is differentiable, the term
on the left of the above equation is the derivative of P{n, T} with respect to 7. The
higher-order terms on the right hand side go to zero in the limit, and using the
identity.

P{1,dT} = dT
gives the equation

dPin,T
dpinT} }+/1P{n,T} =AP{n—1T}
dTr

Solution of this differential equation recursively for values of n starting with
n =0 gives the Poisson probability mass function:

AT n
e (AT
P {n,T} - #
n!
The cumulative probability distribution must be found by summing up the prob-
abilities for n = 1,2,3, etc.

10.3 Failure Rates Using the Poisson Distribution
and Bayes’ Law

Consider the case in which events, such as equipment breakdowns, occur indepen-
dently in time, with N(7) the number of events in time 7. As noted earlier that, if the
hazard rate is constant, if the process has no memory, and if at most one event can
occur in infinitesimal time At, then the probability of exactly N(f) = m events in any
finite time interval ¢ is given by the Poisson distribution:

—At mn
P, (1) :ﬂform =0,1,2,3,4,...
m:

Of course, to use this equation one must have information on the value of the
failure rate A (equipment breakdowns per day) or the reciprocal, 1/4, the mean time
between breakdowns (MTBF). Often, the only data available on the breakdown rate
are obtained from observing the equipment itself. To escape this dilemma, we com-
bine subjective information possessed by the project manager and construction
engineer, based on experience on past projects with similar equipment with data
collected on the present job for the specific equipment of interest.



214 10 Bayesian Revision of Probability Estimates

To do this, we can apply Bayes’ Law to update our estimate of the failure rate as
additional failures are observed. Here, the parameter A is treated as a random vari-
able and is described by a probability distribution, not a deterministic value. By the
discrete form of Bayes’ Theorem, if X and Y are events,

P{XnY}=P{X}P{Y|X}=P{v}P{X|Y|

The variables X and Y may be considered logical values; that is, they have either
the value True or the value False. The meaning of the terms above is as follows:

e P{X}, the marginal probability of X is the probability that X has value True,
regardless of the value taken on by Y.

e P{Y}, the marginal probability of Y is the probability that Y has value True,
regardless of the value taken on by X.

e P{X n Y]}, the joint probability of event X and event Y, is the probability that
events X and Y are both True at the same time.

There are four logical possibilities, as given in Table 10.4.
From a relative frequency viewpoint, one would say that, of all the occurrences
of event X and event Y, as given in the above truth table,

e P{X N Y} is the relative number of times both X and Y have the value True, or the
frequency of being in the cell on the northwest corner in the table.

e P{XIY}, the conditional probability of X given Y, is the probability one would
assign to X being True if it were known for a fact that Y is True.

e P{YIX}, the conditional probability of Y given X, is the probability one would
assign to Y being True if it were known for a fact that X is True.

If knowledge of Y has no effect on the assignment of probability that X is True,
then:
P{X|r}=P{X}
P{XnY}=P{X|Y}P{r}=P{X}|P{Y}
The last equation is the condition of independence; X and Y are said to be statisti-
cally independent if P{X1Y} = P{X} and P{YIX} = P{Y}.

Suppose now that Y is actually a set of mutually exclusive and collectively
exhaustive events,

A0 AN A

Table 10.4 Logical Y = True Y = False
outcomes of X and Y

X=True | Xistrueand Yistrue |Xistrue and Y is false
X =False | Xis false and Yis true | X is false and Y is false
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Assume that the occurrence of one or another of these events is a necessary con-
dition for the occurrence of event X. That is, one of these events must be True in
order for X to be True. Then the Bayes’ equation may be written:

P{X Y} =P{X}P{Y|X}=P{Y,} P{X|Y,}

We are interested in the conditional probability that some Y is True, given that
we observe that X is True, so the above equation is rewritten as:

P{Yklx}P{Kiflek}
P PAX|Y)

TP P+ PAX|Y Y P{Y 4 PXIY P (Y ot P{X|Y ) PLY )

P{y|x}

This is the probability that one of the events Y, is True, given that we have
observed X. We assume that the machine or process in question has an underlying
failure rate, 4, which we cannot observe directly. We can directly observe, however,
the failures or breakdown events. So, we now use the Bayes equation to infer a value
for the failure rate, given that we observe a series of breakdowns (time between
failures).

A formulation using probability density functions for 4 as a continuous random
variate is possible, but we use the discrete form here because the derivation is
straightforward, and its application is simple to implement. Suppose then that 4 is
considered a discrete random variate that can take on any one of n discrete values,
A 1 < k < n; then, let Y, represent the specific event A = /;.

Also let X represent the event that exactly N(f) = m breakdowns are observed in
the interval from time O (when we start counting) to time 7. Then we wish to find the
probability that the underlying breakdown rate has the value /,, conditional on the
fact that we have observed m breakdowns in time 7. Note that we are assuming a
constant underlying failure rate.

Bayes’ law (above) becomes, substituting in the above general case:

e Y, isthe event A = 4;; that is, Y} is true if 4, is the underlying failure rate

* X is the event that m failures occur in time #; this is the event that is directly
observed

e X1Y, is the event that we observe m failures in time #, conditional on the underly-
ing failure rate being ;, and so P{N(r) = mlA = 4;} is the probability that we
would observe exactly m failures in time ¢ if the underlying failure rate were A,

e P{X} = P{N(t) = m} is the probability that we would observe exactly m failures
in time ¢, taken over all values of 4,

e Py{4} is the prior probability (that is, prior to observing any breakdowns) we
assign to the event that the underlying failure rate is 4,

With these substitutions, Bayes’ equation becomes:



216

10 Bayesian Revision of Probability Estimates
P{A=4,AN(t)=m}=P{A =4} P{N(t)=m|i=2]}
=P{N(t)=m}P{A=A|N(t)=m}
This can be rewritten as:

PIN()=m|A=2 PR {A=2])
P{N(t)=m|

That is, the posterior (after the fact) probability that 4 is some particular value /;,

PR =2 N(1)=m]} =

given that we have observed exactly N(f) = m events in time ¢, is P{1 = LIN(f) = m}.
This probability can be determined for all values of k from the above equation, in
which:

P{N(t) = mlA = 4,} is the probability of getting exactly m breakdowns in time f,
given that the underlying breakdown rate is 4;. This probability is obtained from
the Poisson equation:

e (A"

P{m|2,}=P,(1)= -

P{N(t)=m}=>P{N(t)=m|A=A} P {A=4} is the total probability of
k=1

observing exactly m failures, summed over all values of 1.

Po{A = 1;} is the prior (before the fact) probability assigned to 4;.

Then the Bayesian procedure (for discrete values) is as follows.

Set some number 7 of possible discrete values of 1
Set discrete values for all A,
Estimate some prior distribution Po{A = 4;} on the probability of each 4, with the

restriction that Zn:PO {), = ).,} =1
j=1

(Note that, in the Bayes equation, if the prior probability is zero for some value

of A, such that Py{4;} = 0, then, P,{A,} = O; that is, the posterior probability will
always be zero for that 4,. Note also that the mean value of the prior distribution is

I:Zn“xjpo h

Atithe first breakdown, m = 1, note the time #,. Then, for all values of j,
compute:
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" 1
P{m=12,} = : Ef“ftl) =Ane

e The total probability of exactly one event in time t; is the sum of the terms
P{m = 114;}Py{4;} for all values of j:

ljtl 1 "
SRS S D KIS PPYTS

1!

j=1

* Application of the general Bayes’ equation gives:

)=14=2}P{A=2}
P{N(t)=1}

Atie P (A}

tZ),e "P{ }

P{A=2|N(t)=1}= P{N

P {2 |m=1}=

This last equation, applied to all k, gives the posterior probability of each 4,
based on the prior distribution Py{4;} and the observed time at the first breakdown.
Note that now the mean value of the breakdown rate, based on the revised (poste-

rior) set of probabilities, is: A= Z:)LJ.P1 {)Lj|m = 1} .
j=1
When the next event, m =2 at ¢ = t,, occurs, we update the probability mass func-
tion for A by using the previous posterior distribution P,{4;Jm = 1} as the prior,
computing the new posterior distribution P,{A/[m = 2}. There are two equivalent
methods for doing this.

Method A. Use the original prior distribution Py{/;} as the prior, updated by the
Poisson equation for m = 2. (That is, two events occur in time interval t,). Then:

P{N(1)=2{A=A4}R {2 =14}
P{N(r)=2}
e

Ze M( ) 0{)“/}

P{A=A|N(t)=2}=

This process continues for m = 3,4,5, etc., using the Poisson equation for m
events but the original prior Py{4;} at each update.

Method B. Set At, = t, — t; and use the computed posterior distribution
P {Adm = 1} as the prior, based on one observed event in time #,, updated by the
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Poisson equation for m = 1, the probability that one additional event occurs in time
At,). Then:

Pz{/l=/1k|N(fz)=2}

e'*kA‘z (/lkArz P, {;tk}

Pz{/lk|N(t2)=2}

Example 10.1

A certain process was started, and the prior probability distribution was taken as the
uninformative prior, that is, one in which all discrete values of 4, are equal. Here, the
user is in effect saying that he cannot distinguish between different values of the
failure rate from 4, = 0.05 to 4, = 0.20. As there are 20 possible values for 4, each
has prior probability 0.05.

The first observed period from start to the first failure is 9.8 days, resulting in the
following plot of the posterior probability for each of the 4, (see Fig. 10.4; the uni-
form prior is the dotted line, the posterior is the heavy solid line).

The second failure occurs after an interval of 11.7 days, so the new posterior
distribution is shown below (as the heavy solid line; the posterior after one failure is
the light line): (see Fig. 10.5).

0.07

== e = Prior
0.06

0.05

0.04

Probability

0.03

0.02 1

0.01

0 T T T T T T T

0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19
Lambda

Fig. 10.4 Prior and posterior distributions after one observation
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Fig. 10.5 Prior and posterior distributions after two observations
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Fig. 10.6 Prior and posterior distributions after three observations

The third failure occurs after an interval of 7.0 days; the revised posterior is
shown in Fig. 10.6.

After 12 failure periods, the times between failures are given in Table 10.5:

The resulting posterior distributions after each of the 12 periods are shown in

Fig. 10.7.
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Table 10.5 Time between Time between
failure data Period | failures, days
9.8
11.7
7.0
5.7
14.4
7.7
6.5
6.3
4.4
9.6
11.3
7.7
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Fig. 10.7 Prior and posterior distributions after 12 observations
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10.3.1 Continuous Probability Density Function

As noted before, random events, such as earthquakes, machine breakdowns, and
other phenomena occur independently in time. Call N(r) the number of events
observed in time ¢. Then N(7) is called a counting process. It was noted earlier that,
if the hazard rate is constant, if the process has no memory, and if at most one event
can occur in infinitesimal time At, then the probability of exactly N(¢) = m events in
any finite time interval ¢ can be approximated by the Poisson distribution:

At ) m
P (t)z%formzo,l,z&é...
m:

Of course, to use this equation one must have information on the value of the
failure rate A (earthquakes per year, equipment breakdowns per day) or the recipro-

1 . .
cal, E , the mean time between events (MTBF). Often, the only data available on

the breakdown rate for some construction equipment are obtained from observing
the equipment itself. However, subjective information possessed by the construction
engineer, based on experience on past projects with similar equipment, can be com-
bined with data collected on the present job for the specific equipment of interest.

As previously, we assume that the machine or process in question has an under-
lying failure rate, 4, which we cannot observe directly. We can directly observe,
however, the failures or breakdowns. So, we now use the Bayes equation to infer a
probability distribution on the value for the failure rate, given that we observe a
series of breakdowns (time between failures). A formulation using probability
density functions for 1 as a continuous random variate, rather than discrete-valued,
assumes that A can take on any positive value, 0 < 4 < co.

Suppose that exactly N(7) = m breakdowns are observed in the interval from time
0 (when we start counting) to time t. Then we wish to find the probability that the
underlying breakdown rate lies in some interval [1, A+ AA], conditional on the fact
that we have observed m breakdowns in time t. Note that we are assuming a constant
underlying failure rate. P{N(t) = m} is the Poisson probability that we would observe
exactly m failures in time ¢, conditional on A. This is a counting process, so we
assume that m is a nonnegative integer.

The prior probability density function on the failure rate (that is, prior to observ-
ing any breakdowns) is assumed to be the Erlang (or Gamma) probability. (The
reason for this choice will be seen below). The Erlang formula (for @ an integer) is:

B )vafle—(/l/ﬁ)

p(ﬂ,)—(

—;A>0
a-1)1p°

Here the random variable is A, and a and f are the parameters of the Erlang
distribution.
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The mean value and the variance of this probability density function are

E[A]=0ap
Var[l] =af’

Note that, if @ = 1, then the Erlang distribution reduces to the exponential
distribution:

- aete M I )
PO a5
E[A]=8
var[A]=p*

After some integration of the Bayes function, it can be shown that the posterior
probability density function for 4 using the Erlang prior distribution (conditional on
having observed m events in time ?) is:

Amret exp{—ﬂ, (t + ;ﬂ(t + ;j’” '
p(l|m,t) =

(m+a—1)!

A>0

This function is also an Erlang probability distribution, with updated parameters,

1

such that the parameter « in the prior is replaced by m + « in the posterior, and —
in the prior is replaced by t+% in the posterior. The Erlang distribution is said to

be conjugate because an Erlang prior distribution generates an Erlang posterior dis-
tribution, and vice versa (Forbes et al. 2011).
The mean and variance of this probability density function are

E[2] - (m+a)
)
var[)L]:—(m+a)

-

Then the Bayesian inference procedure is summarized as follows:

» Estimate the mean and variance E[1], var[4] of the prior (Erlang) distribution;
e Determine the prior values of the Erlang parameters a, f from
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_E[]
B Var[).]
~ var[A]

o)

* Adjust the mean and variance estimates such that « is an integer. If a is not an
integer, then the term (@ — 1)! in the Erlang density functions must be replaced
by the gamma function I'(@).

* The prior probability distribution on A is then

/la—lef(llﬁ)
p().,) = W,A >0

e After any number of events, m, note the time z. Then the posterior probability
distribution on A, after m observed events in time ¢, is given by

Amret exp{—)« (t + ;ﬂ(t + [13]'”“"

(m+a—1)!

p()L|m,t)= A>0

This can be applied any number of times, with the posterior being the prior in the
next cycle. Note that, as m is the number of observed events since time 0, the inter-
pretation of our expert judgment, as expressed in the prior probability distribution,
is equivalent to having observed a breakdowns in our prior experience before time
0. This interpretation depends on a being an integer.

10.3.2 Derivation of the Posterior Probability Density
Function

We assumed, in the above argument, that the prior probability density function on
the rate of occurrence of events A is given by the Erlang function (for a an
integer):

)va—lef(),/ﬁ)
p(/l) = m,k >0

We also assumed that the arrival of events is Poisson, so:
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—At m
F(N(1)=m2) :ﬂform ~0.1,2.3.4,...
m:

As usual when using Bayes’ Law, we write the joint probability distribution (in
this case the continuous probability density function) as the product of the two dis-

tributions above:
_ ~ eﬁu (lt)m Aa—lef(l/ﬂ)
f[N(t)—mﬂ)L]—{ - ]{(a—l)!ﬁ“}

Then the marginal distribution on m is obtained by integrating A out (integration
replaces summation because here 4 is a continuous variable rather than discrete, as
before). Then:

" T 1
N(t)=m|=————|exp| -A| t+— | |A""*dA
VO =m= ] p{ ( BH
Integrating then gives the marginal density function:

tm(m+a—1)!

1 m+ao
a—1)18%] t+L
m!(a—1)!p (t+’8]

f[N(t):mJ:

Then the posterior density function for A, conditional on the observation N(f) =
m, is the quotient of the joint distribution divided by the marginal:

fI[N(t)=mn2]
f[N(t):mJ

exp {—/1 [t + lﬂ Amret (t + ljm+a
B B

(m+a—1)!

o[AN () =n]-

[N =]

Example 10.2

Consider the prior distribution as the Gamma Distribution with the failure data the
same as in the previous example (E[A] = 0.2; var[A] = 0.0064; o[A] = 0.08;
COV[A] =0.4; a=6.25; f=0.032; 1/ = 31.25). Figure 10.8 shows, for each event,
the revised posterior probability distribution on the rate.
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Fig. 10.8 Bayesian revision with gamma distribution

10.4 Project Change Orders Using the Poisson Model
and Bayes’ Law

Suppose that, on some project, a contractor is concerned about change orders.
Change orders most often increase the cost or the duration of the project, or both.
Consequently, the contractor is worried that the number of change orders he might
get on this project would exceed the resources available. He decides that he needs
some contingency factor to cover the possibility of an unexpected number of change
orders.

This contingency could be expressed in dollars, representing a management
reserve on the project costs to cover change orders, or expressed in time, represent-
ing a contingency in the project duration to allow for delays due to change orders.
Touran (2003) considers both types of contingency, and applies probability distribu-
tions to the costs and delays of each change order to quantify these contingencies.
Here we deal only with contingency expressed in change orders. For example, the
project manager may wish to increase the number of engineers, construction per-
sonnel, or others assigned to the project in order to process these change orders.

Suppose the schedule for the project mentioned above is 50 weeks, and the proj-
ect manager estimates, based on judgment, that the change order rate on the project
would be one change every 4 weeks on the average. Hence, 4 = 0.25 change orders
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Fig. 10.9 Cumulative poisson distribution using mean rate

per week, T = 50 weeks, and AT = 12.5 change orders over the life of the project.
Figure 10.9 shows a plot of the cumulative Poisson distribution for these parame-
ters, and the complementary cumulative, 1 — CDF, which gives the probability that
there will be more than X change orders during the project. From the figure it is seen
that, if the project manager wants to be 95% confident about his ability to handle
these change orders, he must have a contingency plan adequate for 18 major change
orders over the life of the project. This implies an average rate of 0.36 change orders
per week, about 50% more than the project manager’s expected value. The contin-
gency is the number the project manager chooses to prepare for, above the expected
value. That is, the contingency at the 95% confidence level is 18—12 = 6 change
orders over the life of the project. Note that the impact of the change orders on the
project duration is not considered in this example, so any project delays due to
change orders would increase the length of time that the project is exposed to addi-
tional change orders.

The contingency determine here is dependent on the project manager’s attitude
to risk. At the 95% confidence level, there is only a 5% chance that the project man-
ager will be unpleasantly surprised by receiving more than 18 change orders. If the
project manager will accept a greater risk of surprises, then the contingency may be
reduced. At the 50% confidence level, for example, the value for the number of
change orders is equal to the mean, and contingency is zero if one defines contin-
gency to be the difference between the value used for planning and risk manage-
ment and the expected value. If the project manager chooses a 50% confidence
level, then he is risk neutral; risk averse project managers will choose some confi-
dence level above 50%.
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The Poisson model assumes that the change order rate is constant in time,
although it is possible to use an average rate if the rate is not believed to be constant.
For example, the project manager might expect that the rate of receipt of change
orders will not be constant but will vary like an inverted U, with a peak some time
during the project duration. Note that it would be extremely difficult, based only on
the data generated on one job, to discriminate between a constant rate and a variable
rate, due to the random nature of the change orders. The Poisson model has the limi-
tation that it has only one parameter, 4, and by estimating the mean time between

1 . . 1
change orders (EJ we automatically set the variance as well rER On the other

hand, this means that we only have to estimate one parameter.

Given the above model, the project manager wishes to estimate the underlying
rate at which change orders are issued based on observations of the times at which
new change orders are received. That is, the assumption is that the change orders
follow the Poisson process, and that there is some rate A that governs this process,
which we don’t know but can try to estimate from some available information, in
addition to experience. Consequently, there are two errors the project manager can
make:

e The process is assumed to be Poisson but really is not, because the arrival of a
change order is not independent of those previously issued. This is model mis-
specification error, the error due to using the wrong model. For example, in the

Poisson model, the mean time between events is — and the variance of the inter-
1 A
event time is?. Hence, the coefficient of variation for a Poisson process is

always 1. Consequently, if we estimate the mean and standard deviation of the
times between events and the coefficient of variation is not 1, then the process is
not Poisson.

* The process is in fact approximately Poisson in nature, but the project manager
estimates the rate incorrectly. This is model-fit error.

To revise our initial estimate of the rate, based on information gained form the
on-going project, we will use Bayesian analysis, as discussed previously, to update
our beliefs about the rate of change orders every time one is received. Hence, this is
a learning process. For conceptual simplicity, we will here use the discrete form of
Bayes’ Rule. Those readers who have taken more advanced courses in Bayesian
statistics will wonder why we do not use a more elegant closed-form solution. There
is no doubt that there are better solutions to this problem, but the point here is to
demonstrate that the Bayesian analysis can be applied in a relatively simple and
straightforward way, and those who are aware of more elegant approaches can use
them and see how close the answers given here are.

As mentioned above, for the simple Poisson model we will assume that there is
a finite set of discrete values for the rate. Call these values 4;, 1 <j <J. Let n repre-
sent the number of change orders observed in time #, where ¢ is measured from the
start of the project. Then the Poisson probability distribution for n change orders in
time ¢, given that A is the change order rate, is:
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e M)

Pl "1

If 4; is some assumed particular value of 4, then, as we discussed before, the
Poisson distribution, conditional on A = 4j, is:

BYPSY
Pln|A=1] LD (4)

Bayes’ Law relates the joint distribution of n and 4; to the conditional distribu-
tions at every time t, when n is the number of change orders in time ¢, by:

P[nna;|=P[n2, P[4, ]=P[A]n]P[n]

Rearranging the above equation:

P[], P[4, ]= P A,|n]P[n]
o ] PP

P[]

The denominator in the equation above is the likelihood of receiving n change
orders, which is just the numerator summed over all possible values of j:

J

Pln]=2p[nl2, ]P[2 ]

J=1

Then one possible Bayesian approach for estimating the value of the change
order rate from the observations is as follows:

* Assign values for the set of discrete breakdown rates [4;].

» Estimate a priori probabilities P[4;] based on experience, judgment, etc.

* When a change order is received, at time ¢, update the total number of change
ordersn=n+ 1.

 Using the updated values of n and ¢, compute P[nlA = 4,] from the Poisson equa-
tion for all values of j.

* Using P[nl4;] from the last computation, and the prior estimates of P[4;], compute
J
P[n]= ZP[”MJ']P[)“J‘] '
j=1

e Compute P[4 = Ajn] for all values of j. These are the updated posterior A esti-
mates for the probability of each discrete change order rate.
* Goto step 3.
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* The best single point value for A is the mean value obtained from

Assume that the job has just begun, and there are as yet no change orders. We
have no experience with this client, so how do we set the prior probabilities?

e We can use our experience on other jobs with other clients.
*  We can ask other people who are familiar with this client.
*  We can ask other people who are familiar with similar types of projects.

It may be easier for people to estimate the Poisson parameter by thinking of the
. 1 .
time between change orders n rather than the change order production rate, 4.

Suppose that we do ask other people, and based on their experience and ours, we
decide that:

e The least value for the mean time between change orders that is credible is
2 weeks, or 4 = 0.50 change orders per week, approximately (A7 = 25 change
orders).

e The greatest value that one can assume for the mean time between change orders
is 40 weeks, or 4 = 0.025 change orders per week, approximately (A7 = 1.25)

e This range is divided into 20 discrete values, as given by the following relation-
ship: 4,=0.025j, 1<,;<20; 0.025 <4;<0.50.

e If we plead ignorance or any prior information about the probability distribution
on the 4;, we assume a priori that each of these values is equally probable, or
P[4;]1 =1/20, 1 <j <20. This is the noninformative prior, and implies that our
estimates of 4 will be based on the actual observations of change orders on this
job, not experience on any other jobs.

Now we use the actual data as reported in the Bayesian revision algorithm. The
first three change order arrives at times 3, 4, and 10 after the start of the project, as
in the Table 10.6.

Figure 10.10 shows the posterior probability distributions on the rate 1 after each
of the three change orders. Also shown is the uniform (uninformative) prior distri-
bution. After the first change order, the mode (most likely value) of 4 is about 0.325
but he distribution is very flat after only one change order. After the second change

Table 10.6 First three Time Time
change order arrivals Change order number n | interval | since start
1 3 3
2 1 4
3 6 10
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Fig. 10.10 Bayes’ results based on observations of three change orders
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Fig. 10.11 Bayes’ results based on observations of seven change orders

order, the mode moves up to about 0.425, and after the third change order the mode

is down somewhat to 0.350.

Figure 10.11 shows a plot of the results after seven change orders. Time has pro-
gressed to 24 weeks out of 50 scheduled (see Table 10.7).
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Table 10.7 First seven Time Time
change order arrivals Change order number n | interval | since start

1 3 3

2 1 4

3 6 10

4 1 11

5 2 13

6 1 14

7 10 24

The probability density curves are getting noticeably tighter, as the additional
information reduces the variance in (uncertainty of) the value of the parameter A.
The most likely value (mode) of 1 is still, however, about 0.35.

10.5 Practice Problems

Problem 10.5.1 Consider “Truck Arrival Time” on the project site in Problem 4.7.3
from Chap. 4. Assume that prior to collecting data project engineer assumed that
truck arrivals can be modeled using a homogeneous Poisson process with an arrival
rate defined with a uniform prior with the minimum of 0.2 and the maximum of 1.
How did the project engineer’s estimates of the arrival rate changed with each new
observation?

Problem 10.5.2 The new office building project has been using a pile construction
subcontractor, AABB, with a single pile drilling machine, as site restrictions prevent
more than one machine from operating at a time. After a period of time on the job,
the project manager for the general contractor has raised some questions about the
productivity of this subcontractor, and in particular about the reliability of its equip-
ment, and whether it breaks down more often than would be expected, to meet the
schedule date. Your assignment as field construction engineer is to review the per-
formance of the AABB subcontractor so far and recommend any decisions or
actions that should be taken for the remainder of the job.

The project records show the number of meters of concrete piles in each day that
the subcontractor has been on the job. The table below shows the number of meters
of piles driven on each day after mobilization by the subcontractor. The days with
zero production represent days in which the pile driver is believed to have been
broken down and under repair. To simplify the problem conceptually, assume that:

e Every morning after a day of production, an attempt is made to start up the equip-
ment and it either works or it doesn’t. If it works, it does a day’s work and if it
doesn’t it is sent to repair for the entire day, producing nothing.
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* Every morning after a day under repair, an attempt is made to start up the equip-
ment and it either works or it doesn’t. If it works, it does a day’s work and if it
doesn’t it remains under repair and out of service for the entire day.

Assume there are two separate processes going on, which affect the productivity,
and build two separate probability models, concerning:

* Reliability of the equipment, with respect to time between breakdowns and time
to repair; and
* Productivity of the equipment and crew given that the pile driver is working.

Assuming that (a) the critical (i.e. maximum) failure rate that would make the
project still complete on time is 0.2; and (b) the data from previous projects indicate
that the mean and standard deviation of the arrival rate is 0.15 and 0.05 respectively,
calculate the probability that the equipment failure rate will not result in project
delays after each new observation. Assume Erlang distribution can be used to repre-
sent distribution of the arrival rate parameter.

Similarly, assuming that (a) the critical (i.e. minimum) productivity rate that
would make the project still complete on time is 50 m per day per; and (b) the data
from previous projects indicate the mean and standard decision of the productivity
is 60 and 15 respectively, calculate the probability that the productivity rate will not
result in project delays after each new observation. Assume Normal distribution can
be used to represent distribution of the productivity rate; and true standard deviation
is 0 = 20. Posterior distributions for unknown mean (assuming Normal distribution)
are shown in Table 10.8.

Table 10.8 Problem data

Days since | Meters of piles Number of | Days since | Meters of piles Number of
start reported piles start reported piles
1 22.10 1 45 60.2 3

2 40.00 2 46 423 2

3 20.00 1 47 95.4 4

4 43.30 2 48 23 1

5 23.85 1 49 70.4 3

6 44.50 2 50 23 1

7 24.90 1 51 24 1

8 0 0 52 70.8 3

9 0 0 53 475 2

10 0 0 54 70.7 3

(continued)
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Table 10.8 (continued)

Days since | Meters of piles Number of | Days since | Meters of piles Number of
start reported piles start reported piles
11 0 0 55 72 3
12 0 0 56 71 3
13 0 0 57 48 2
14 0 0 58 0 0
15 0 0 59 0 0
16 47 2 60 24.3 1
17 0 0 61 72.4 3
18 22 1 62 47.85 2
19 0 0 63 69 3
20 20.1 1 64 46 2
21 46 2 65 46 2
22 23.5 1 66 0 0
23 69.7 3 67 0 0
24 45.6 2 68 0 0
25 46 2 69 0 0
26 46 2 70 46 2
27 0 0 71 0 0
28 46.5 2 72 23 1
29 0 0 73 0 0
30 22.8 1 74 23 1
31 40.6 2 75 0 0
32 69.5 3 76 0 0
33 70.4 3 77 46 2
34 24.1 1 78 0 0
35 48 2 79 0 0
36 48 2 80 67 3
37 47.8 2 81 22 1
38 48.4 2 82 66 3
39 69.8 3 83 66 3
40 67.8 3 84 44 2
41 24 1 85 40 2
42 71 3 86 66 3
43 23 1 87 65 3
44 233 1 88 69 3
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Chapter 11
Managing Contingency and Budget
to Complete

Abstract In this chapter we discuss methods for updating and managing project
contingency as the outcomes work packages become known. More specifically we
provide bivariate and multivariate formulation with a number of examples to illus-
trate different situations in which the presented methods can be implemented.

Keywords Budget to complete - Contingency - Correlation - Bayesian update

11.1 Introduction

Projects are learning experiences, and project organizations should learn as much as
possible about risk and performance from the execution of the project under way.
This chapter addresses the reassessment of project risks and the revision of budget
and schedule contingencies as a project progresses, based on elementary probability
theory. Projects are characterized as networks of activities or work packages, and as
noted elsewhere in this book, the costs and durations of these activities may be (and
most likely are) correlated. If the costs of work packages are correlated, then infor-
mation about the actual cost of one completed activity or work package conveys
information about the probability distributions of the others. The process that does
this revision of the estimates is known as Bayes’ law.

Using Bayes’ law (discussed in more detail in Chap. 10), and the assumption that
the activity costs and durations are Normally distributed, it is then possible to re-
compute the probability distribution on the total project cost and duration every
time a work package is completed. The revised risk functions are then available for
use by project or program management to assess the best predictions of the final
project cost and duration. This process starts with estimating the risk function on
cost and duration during project planning, and continues with the revisions to these
risk functions as the project progresses, until it completes.

If the revised predictions of total cost and duration exceed the acceptable val-
ues, the project manager or sponsor may take some steps, up to and including
termination of the project in mid-course. This chapter does not deal with possible
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risk mitigation actions if that should occur. Here, the focus is on project budgets
and contingencies. The principle is that the project manager sets a budget, which
includes an amount for contingency, appropriate to the project when the project
begins, and that this contingency is reset, up or down, as the project evolves. That
is, if actual costs on the early work packages are less than the original expected
values, then the project manager may believe that the risk of cost overrun is less
than originally anticipated and some of the contingency (or management reserve)
can be released to other projects where it is needed. Conversely, if the initial actual
costs are higher than originally estimated, then more contingency may be needed,
or, if this is not possible, then the risk that the project will overrun the existing
budget (including contingency) will increase above the allowable risk.

Figure 11.1 shows a generic illustration of the method. At the project go-ahead,
the estimated expected project cost is 70, plus a contingency or management reserve
of 30, for a total budget of 100. Here, contingency has been set at the 95% confi-
dence level; that is, there is only a 5% likelihood that the total budget will be
exceeded. Actual costs for work packages, as they are obtained, are higher than the
expected values, so the mean estimated cost at completion rises, as shown in the
figure. However, the overall project budget, the sum of the expected cost at comple-
tion plus the contingency, remains at 100, while the management reserve falls. This
is because, in this case, the increased actual costs are offset by a reduction in risk
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Fig. 11.1 Contingency vs. work completed



11.1  Introduction 237

due to the progress in completing the project. At about 30% complete, the project’s
risks have been reduced to such an extent that not only can the contingency be
reduced, but the total project budget can be reduced. This can free up resources for
other projects.

Cost and schedule contingencies should be established at the outset of projects,
in order to set project budgets and schedules with allowances for uncertainties, and
this chapter addresses how to revise these initial contingencies as new information
is being obtained during the project execution. People with project experience
acknowledge that the performance on the earlier activities can be diagnostic of the
performance to be expected for the rest of the project. What is needed is a usable
method for doing this diagnosis.

Of course, even as a project progresses, the remaining work continues to have
risks and therefore the project continues to need contingency, until all the work
packages are complete, and there is no further need for contingency. This chapter
describes an approach for setting and managing project budgets and schedules,
including the revisions of contingencies, throughout the project duration, using a
consistent definition of contingency. The method given here adopts a dynamic
approach for revising the estimates of remaining project risks throughout the project
duration. This method uses past results on the project to determine the uncertainties
and contingencies on the future cost to complete. The method is founded on the
most elementary project models: additive models for total project cost (the sum of
all the individual work package costs) and for total project duration (the sum of the
activity durations on the critical path). Although other models are possible, additive
models are the most familiar. As will be seen, the method treats each work package
identically, and is therefore suited for automatic operation. At any time during the
project, the total budget is the sum of the sunk costs (the actual costs of the work
packages completed), plus the expected value of the estimated cost to complete,
plus the remaining contingency required to meet an acceptable level of risk.

Chapter 9 has discussed methods for setting contingencies in budget and sched-
ule in order to reflect the existence of uncertainty or variability in knowledge
about future costs, resources, and durations. At this point, one might reasonably
raise the question: Should these initial contingencies be revised as the project
progresses, given that information is being obtained in the process about how well
the early stages of the project are doing compared to the estimates? When count-
ing the votes on election night, analysis of the early returns is believed to give a
good idea about the final results, and similarly many project managers and others
with project experience acknowledge that the performance on the early work
packages and activities can be diagnostic of the performance to be expected for the
rest of the project. The problem is, none of these authorities gives a method for
doing this diagnosis.

In the method presented here, it is assumed that work package or task costs (and
activity durations) are not necessarily independent, but may in fact be correlated,
and these dependencies permit information from past work package costs to be used
to modify the estimates of future work package costs. Consider two work packages,
say WP1 and WP2, numbered from the last to the first, such that WP2 is completed
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before WP1 finishes. Consider that you make an estimate of the cost of WP1 and
WP2 before either is started. Then, after WP2 is complete, but before WP1 finishes,
you are given the actual cost of WP2 and asked to make a re-estimate of the cost of
WP1. Would you take the known cost of WP2 into consideration, or would you stay
with your original estimate for WP1, regardless of the actual cost of WP2? If infor-
mation about the actual cost of WP2, no matter what it is, would not cause you to
change your estimate of the cost of WP1, then you believe that these two work pack-
ages are independent. Conversely, if information on the actual cost of WP2 would
cause you to revise your estimate of the cost of WP1, either up or down, then you
believe that the two work packages are correlated (either positively or negatively).
Note that correlation does not necessarily imply causality — that something about
WP2 causes the cost of WP1 to be higher or lower. It may be that WP2 and WP1 are
related only through some third factor, perhaps even a hidden factor.

In the approach discussed here, as each work package is completed, the correla-
tion between work package costs is used to re-estimate the future work package
costs and cost to complete, and to recompute the contingency required to cover the
risks for the remainder of the project. That is, the total project budget, the cost to
complete, and the remaining contingency are recomputed on the basis of project
cost experience, and continually adjusted as the project progresses. Because actual
cost performance can provide information that reduces the uncertainty about future
costs, it may be true that the required contingency, and hence the project budget
including contingency, declines over the project lifetime, providing unused contin-
gency funds that may be reallocated to other projects. Of course, it may also be true
that the required contingency goes up, because the additional information about
actual performance shows that the original contingency was inadequate. In this cir-
cumstance, additional contingency may be needed, and if it is not available, then the
risk of over-running the budget may be higher than the original risk assessment or
the risk desired.

The method described here is based on the assumption that the project manager
holds or controls all the contingency. Each work package (or network activity) may
draw upon the contingency as it needs to, but no predetermined amount of contin-
gency is assigned to each work package. Therefore, the cost of the work does not
expand to fill the contingency — at the work package level or at the project level. If
the initial project contingency is not needed to cover the risk of overrun, then the
project budget may be reduced and the available amount used for other projects in
the owner’s program. The objective here is to define one method for rationally
assigning and managing contingencies over the entire project or program. To do so,
the project manager must be able to reallocate contingencies among work packages
as necessary.

Note that the method discussed here does not apply to certain events, such as
natural causes (sometimes call Acts of God), the occurrences of which are described
by the Poisson distribution (for example, Markov processes). Such Poisson events
are by definition independent; the time between arrivals is Exponentially distrib-
uted, and knowledge of the time since the last event says nothing about the time of
arrival of the next event.
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11.2 Bivariate Case

To understand the method, it is assumed here for simplicity of exposition that the
project under consideration consists of only two work packages. The general case
with N work packages will be presented later. Let x; and x, be random variates rep-
resenting the costs of work packages 1 and 2, respectively. (They could also be
activity durations.) Let u, p, be the mean values for the work package costs and let
01, 0, be the standard deviations of the work package costs. That is, ¢, and o, are the
parameters in the marginal distribution for x;, which is assumed here to be approxi-
mated by the Univariate Normal distribution:

1 1 1~ M ’
fi(xl):mexp{_a[x o-‘u J }

A similar expression holds for the marginal distribution of x,. Now, let p,, repre-
sent the correlation coefficient between the two work package costs. Assume that
the joint probability density function for the work package costs is Bivariate Normal,
the expression for which is:

2
1 1 X, — M
S (X%, ) =| ——————— [exp { ! 1)
HEES 2700, ll—Plzz 2(1_/)122){ o,
_Zp(xl _#1)(x2_u2)+[xz_ﬂzJ2]

0,0, o,

The marginal distribution of the random variate x; may be obtained by integrat-
ing the expression for the joint distribution, given above, over all values of x, in the
interval [—o0,+00]. The result of this integration is the Univariate Normal density
function, as given before:

fl(xl)=5$qexp{—§[x';‘“l J}

That is, the marginal distribution of the cost for work package 1 is Normal with
mean y,and standard deviation ¢,. Similarly, the marginal distribution of the random
variate x, may be obtained by integrating the expression above for the joint distribu-
tion over all values of x; in the interval [—oo, +00]. The result of this integration is:
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That is, the marginal distribution of the cost for work package 2 is Normal with
mean y, and standard deviation o,, and the two marginal or univariate distributions
are related through the bivariate distribution through the parameter p;,. These same
relationships will hold for the more general case of the Multivariate Normal distri-
bution, discussed later. In the general case, if one has a N-dimensional multivariate
distribution, one can find the marginal distribution for any single variate by integrat-
ing out all the other N — 1 variates. Or, one may obtain the bivariate distribution for
any pair of variates by integrating out all the remaining N — 2 variates, and so on.

11.2.1 Prior Distribution of Total Project Costs

The total project cost is a random variate 7, because it is determined by the sum of
the individual work package costs, which are random variates:

T=x+x,

[If the variables are sequential activities in a project network, then the sum 7 is
the length of the path composed of these two activities. This may be generalized to
the sum of the sequential activities on each path from the project start to completion.
This method can be used to find the uncertainty on the length of any path through
the network, but it does not necessarily define the critical path length].

The a priori expected value of the total project cost is:

E[T]=m +n,

The covariance matrix is given as usual by

2
V= ( o, plzc’lo—zj
2
P12010, 0,

The a priori variance of the total cost is the sum of all the terms in the covariance
matrix, or

— 2 2 2
Var[T] =0, =0, +2p,,0,0,+0,

Having determined the first two moments, E[7] and var[7], of the total cost, the
next step is to set the budget based on these parameters such that the risk of over-
running this budget is acceptable. The total project budget is presumed to be set
such that the risk, or probability, that this budget will be exceeded is some predeter-
mined value a, which may depend on the type of project, the owner’s aversion to
risk, etc. Equivalently, if By is the a priori budget including contingency, before any
work packages have been executed, the probabilities of under-running and over-
running this value are, respectively:
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Pr{T <B,}
Pr{T > B,}

l-«a
a

To relate B, and a, it is necessary to assume some probability density function for
T. If all the work package costs were independent, then 7" would be Normally dis-
tributed, by the well-known Central Limit Theorem. But the independent case is not
very interesting, for, as will be seen below, a known value for one variate says noth-
ing about the values of all the others, and is not very realistic, either. The Central
Limit Theorem is not applicable if the variates are correlated, but this fact does not
imply that 7 is not Normally distributed; it only implies that the Normality of 7 can-
not be proven theoretically. There are many true statements that cannot be proven
mathematically, and this is one of them.

Extensive Monte Carlo computer simulations have shown that the empirical
probability distributions for the sum of a number of correlated variates are indistin-
guishable from Normal distributions, for all values of the correlations. That is,
empirically if not theoretically, it is valid to assume the Normal distribution for 7.
Then the a priori budget B, is set as the expected value of the sum 7 plus some
multiple k of the standard deviation of the total cost:

B, = E[T]+kyvar[T] = u, +p, +ko,

By =, + 1, +k\/612 +2p,0,0, +0;

The appropriate value of k is determined from the tables of the Normal distribu-
tion, corresponding to the probability of exceedance a determined by the client.
For example, if @ = 0.15, then k = 1 standard deviation; or, if @ = 0.05, then
k= 1.645.

Another way to look at this is as follows. The integral of the probability density
function for the total cost T from the value T = B, to the value T = +o0 is, of course,
a, the probability that there is a cost overrun:

Tf(t)dtza

In a similar way, one could compute the expected value of the cost overrun,
which is the integral from 7 = B, to T = +o0 of the product of the cost times the prob-
ability density (Jorion 2001):

E[cost overrun| = J'tf(t)dt = Value — at — Risk = VaR

By

Or, one may compute the conditional expected value of the overrun, given that
there is an overrun, from the ratio:
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+00

lff(l‘)dl‘ 17
E[cost overrunloverrun] = f‘;— =— Itf(t)dt
. (t)dr &5

This integral, the Value-at-Risk (VaR), is the conditional expected value of the
cost overruns on the project, whereas a is the probability of a cost overrun, no mat-
ter how large. If one chooses to use this approach, then B, is determined such that
the VaR is an acceptable value.

Once the budget B, is determined from the acceptable risk level, the contingency
is defined as the increment to be added to the mean value to reach the desired risk
level,

B,=E [T] + contingency, or

contingency = B, —E[T] = k\/al2 +2p,,0,6,+0,

The contingency, as defined here, is added to the expected cost of the project; it
is not added to the project estimate, the most likely cost, the median cost, or any
other value than the mean, because project work package cost estimates may con-
tain hidden contingencies of unknown magnitude.

11.2.2 Posterior Distribution of Project Costs

Now, suppose that the work packages are performed in sequence, and that work
package 2 has been completed, and the cost is known for certain to be X,. (In this
exposition, it is always assumed that the values of the costs, once the work is com-
pleted, are known exactly, with no errors. Permitting the case in which the costs are
reported inaccurately would add excessive complexity to this introductory argu-
ment.) The notation here uses lower case letters for random variates, and upper case
letters for specific values (or realizations) of these variates. Then the conditional
probability distribution on cost x;, given that x, is some specific value X, is fi»(x,1x,),
which is determined from the joint probability density function and the marginal
distribution by a fundamental law of probability, also often known as Bayes’s Law
or Bayes’s Theorem (Gelman et al. 2013):

fl,z (xl ’xz) = fm (xl |x2 )fz (x2 ) = fzp (xz |x1 )fl (xl)

That is, the joint probability density function on two variables is the product of
one conditional distribution and one marginal distribution. The joint probability
distribution was given above as the Bivariate Normal, and it was also shown above
that the marginal distributions can be derived by integrating the joint distribution.
With this information, it is possible to solve for the conditional probability density
function as:
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fqz (xl |x2) =fis (xl ’xz)/fz (xz)

It can be readily shown by this division that the conditional probability density
function fx(x;lx,) is Normal with parameters

E[xl |x2 = X2:| =H Tt P [%](Xz _:uz)
2

var[ x,|x, =X, | =0} (1—,0122)

With x, = X, known, the cost to complete the project is x;, which is still a random
variable. If x; and x, are independent, then p;, = 0 and knowing the value x, = X,
provides no information about the remaining cost. This can be easily seen by substi-
tuting p;, = 0 in the two equations above; the result is E[xlx, = X,] = u; and
var[x1 |x2 = XJ =0, the a priori values. Knowing the value of x, = X, does
reduce the project risk, of course, as now there is no risk associated with the cost of
work package 2, and this reduced risk can be reflected in the contingency needed
after x, = X, has been determined.

On the other hand, if x,, x, are dependent, that is, p,, # 0, then knowing that
X, = X, provides new information about the probability distribution of the remain-
ing work package, that is, the remaining cost to complete. For example, if x;, x,
are positively correlated, that is, p;, > 0 and if the actual cost of work package 2
is less than its expected value, that is, X, < u», then E[xlx, = X;] < y,. That is, the
a posteriori expected cost of the remaining work package is less than the a priori
expected value.

Of course, different results may be obtained, as can be seen by substituting
P12 <0 or X, > p, in the above expressions. If the correlation coefficient is nega-
tive, then the values of x, and x, tend to move in opposite directions, and a value
X, < u, leads to E[x,lx, = X,] > p;. However, any dependence, positive or nega-
tive, that is, p;, # 0, reduces the variance of the remaining work package cost,
compared to the a priori value, regardless of the value of x, = X,, because
var[x,lx, = X,] depends on pfz . That is, any information about x, reduces the
uncertainty in x;, if they are correlated. Hence, if there is dependence, informa-
tion about the actual cost of work completed can be used to generate better esti-
mates of the cost to complete, with lower variance. If there is no dependence,
then the actual cost of the work completed provides no information about the
cost of the work remaining.

To explore this fact, assume that the project manager has a consistent view of
contingency, in that the budget for the project after the completion of work package
2 should be set such that the probability of overrunning this amount is the same
probability, a, that was used in the a priori situation. That is, whatever risk factor
was appropriate at the beginning of the project remains appropriate throughout the
project life cycle. This means, of course, that the value of k also remains constant,
even though the standard deviation changes. Therefore, after the completion of
work package 2, a new budget value, B,, is set, such that:
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B, = cost of work completed + expected cost to complete + contingency.

Hence, using the above expressions:

B, =X, +E| x|x, = X, | +kvar[ x |x, = X, |
Bz =Xz + U+ P (%](Xz —,L12)+k0'1\/1—p122

2

Thus, knowledge of the actual cost of work package 2 may result in a change to
the total project budget (shown here as a budget reduction) of By — By:

B, ~B, = |:.u1 TH, +k\/612 +2p,0,0, +622j|_

|:X2 TH TP, (%J(Xz _:uz)+k61\/1_p122:|

2

o
B,-B, =u, - X, +p, [G—lj(yz —X2)+k[\/c712 +2p,,0,0, +c722 —Gl\/l—prJ

2

This budget differential (reduction) can be seen to consist of three parts:

e 1, — Xo, which represents the direct saving due to an underrun on work package
2 (assuming the case that y, > Xj);

Lo i ( W, —Xz), which represents the expected saving on work package 1,
o

2
based on the reported under-run on work package 2 and the correlation between
the two work packages. It also depends on the ratio of the two standard devia-
tions: the greater the standard deviation of work package 1 relative to work pack-
age 2, the greater the saving; and

ek [\/ o; +2p,0,0,+0; =0, \/ 1-p., J, which represents a reduction in the con-

tingency necessary to cover the risk, corresponding to a reduced uncertainty
caused by the information provided by the fact that one work package is com-
plete. Note that this term is independent of the actual reported cost, X,.

This situation might have one of two possible outcomes:

e The budget could be reduced, and the difference could be returned to the client
for use on other projects.

e The budget could be held constant. This would correspond to a greater contin-
gency and a reduction in the risk factor a, as long as scope changes are not per-
mitted to consume the available budget.
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Of course, if the experience on the work completed was unfavorable, that is, if y,
< X,, or if the correlation were negative, then the differential might be negative, and
if increasing the budget is not acceptable to the client, then the available contin-
gency would go down. This would increase the risk of a cost overrun above the
original maximum desired value a.

Note that it is not necessary to assume that the only possible policy is to maintain
a constant value for the risk of cost overrun a throughout the entire project. The
project manager might, for example, wish to have the risk of a cost overrun decrease
over the life of the project, if possible. That is, he might be willing to start a project
with a risk of cost overrun of, say, @ = 0.25 a priori, with the goal that this should
be reduced to, say, @ = 0.05 when the project is three-quarters complete. Other strat-
egies may also be imagined.

Example 11.1
To illustrate the points above, assume the following a priori data:

My = p, =$100k
o, =0, =$40k
a =0.05

Then, the coefficient of variation for both work packages is 40%, and the value
of k corresponding to the risk 0.05 is k = 1.645. Consider two conditions:

(a) Independence, p;, =0.0
(b) High correlation, p;, = 0.9

In both conditions, the a priori expected value of the total project cost, E[T] =
$200K. However, the covariance matrices differ for the two dependence

conditions:
1600 0 1600 1440
V, = and V, =
0 1600 1440 1600

By summing the terms in the covariance matrices, the a priori variances of the
total project costs for the two dependency conditions are:

e Condition A: var[T] = 3200, so o, = $57K and coefficient of variation = 28%.
e Condition B: var[T] = 6080, so o = $78K and coefficient of variation = 39%.

The contingency ko7 at the 5% level for the independent condition is $93K, and
for the correlated condition is $128K. This gives budgets including contingency of
$293K for condition a, and $328K for condition B. Clearly, in this case, the depen-
dency between the work package costs raises the required budget with contingency
at the 5% level by a significant amount, $35K.
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Suppose that the actual cost of work package 2 1is reported to be
X, =X, =$100K = u,. As the actual value is exactly the mean, it implies that the best
estimate for the cost to complete is the a priori mean of x,. For the independent
condition A, Var[)c1 |)c2 = Xz] =0, for any value of X, so the covariance matrix for

the cost to complete is just V= 1600. Hence, for the independent condition, the total
a posteriori project budget to maintain a constant risk factor is:

B, =X, + 1, + ko, =100+100+1.645,/1600 = $266K

The required budget with contingency has gone down from $293K to $266K,
which implies that $27K of contingency could be reallocated to other projects.
In the correlated condition, b, the best estimate for the cost to complete is also the

a priori mean of x;. For this condition, the conditional variance depends on the values
of ¢, and pyy; that is, var [xl |x2 = Xz] =0, (1—,0122 ) =1600(1.00—-0.81) =304 for
any value of X, so the covariance matrix for the cost to complete is just V = 304.
Hence, for the dependent condition, the total a posteriori project budget is:

B, = X, + 1, + ko, =100+100+1.645/304 = $229K

The required budget with contingency has gone down from $328K to $229K,
which implies that $99K could be returned to the sponsor. Hence, the initial bud-
get was higher for the dependent condition, but the budget reduction after work
package 2 is also much higher, due to the reduction in the uncertainty caused by
the dependency. As a result, condition B. now has a lower budget than the inde-
pendent condition.

Suppose instead that the actual cost of work package 2 is reported to be lower
that the expectation, say x, = X, = $80K < u, = 100. For the independent condition
A, the actual value of X, has no influence on the cost to complete or the remaining
uncertainty. Hence, for the independent condition, the total a posteriori project bud-
get is:

B, =X, + 11, + ko, =80+100+1.645,/1600 = $246K

In this case, the required budget with contingency has gone down from $293K to
$246K, which implies that $47K could be put to more productive uses, without
affecting the risk on this project, which is still 5%.

In the positively correlated condition B, the reported value of x, below
its mean implies that the best estimate for the cost to complete is now
less than the a priori mean of x,. For this condition,

oy =y +[p120'|
(o3

)(x2 —1,)=100+0.9(80-100) =$82K .  The  covariance

2
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matrix for the cost to complete is still V = 304. Hence, for the dependent
condition, the total a posteriori project budget is:

B, =X, + 11y, + ko, =80 +82+1.645y/304 = $191K

Due to the favorable result on work package 2, and the reduction in uncer-
tainty due to dependence, the required budget with contingency has gone down
from $328K to $191K, which implies that $137K could be otherwise allocated.
As a result, condition B now has a much lower budget than the independent con-
dition A.

Suppose now that the actual cost of work package 2 is reported to be
X, =X, =$127K > u, = 100. For the independent condition A, the total a posteriori
project budget is:

B, = X, + 1, + ko, =127+100+1.645,/1600 = $293K

The over-run on work package 2 used up some of the project contingency, but the
required a posteriori budget with contingency now happens to be exactly the same
as the original a priori budget. The risk is still 5%.

In the correlated condition B, the reported value of x, above its mean implies that
the best estimate for the cost to complete is now more than the a priori mean of x;.

For this condition, g, = u, + (ﬁj(xz —1,)=100+0.9(127-100) = $124K .
O

2
The variance of the cost to complete is unchanged. Hence, for the dependent condi-

tion, the total a posteriori project budget is now:

B, = X, + 1y, + ko, =127 +124+1.645:/304 = $280K

Even with the unfavorable result on work package 2, the reduction in uncer-
tainty due to the dependence means that the required budget with contingency has
gone down from $328K to $280K, which implies that $48K could be put to other
uses.

As a final example, suppose that the actual cost of work package 2 is reported to
be x, = X5 = $152K > p, = 100. For the independent condition, the total a posteriori
project budget is:

B, = X, + 11, + ko, =152+100+1.645,/1600 = $318K

The required budget with contingency is now more than the original a priori
budget. This means that the owner must add $25K to the original budget to maintain
the risk at the original 5%. More likely, however, the original budget, $293K, will
remain the same and the $25K will be taken out of the contingency. That is, the
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result on work package 2 used up $25K of contingency, which reduces the total
contingency ($293K — $252K) to $41K. This value corresponds to k = 1.025, and a
risk of project overrun of 15%.

In the correlated condition

My = I +(p'2‘7' j(x2 ~1,)=100+0.9(152-100) = $147K . Hence, for the
62

dependent condition, the total a posteriori project budget is now:

B, =X, + p, +ko, =152+147+1.645V304 = $328K

In this case, the reduction in uncertainty due to the dependence has offset the
very unfavorable result on work package 2, and so the required budget with contin-
gency is the same as the original budget; all the overrun on work package 2 has
come out of contingency and the risk remains at 5%.

One might pose the question: Does the risk of a project necessarily decline over
the life of the project? Here, risk is taken to mean the probability of a cost over-run,
a. Consider the case that this risk remains constant. For a to remain constant, then
k must remain constant. Then, from the equations above, one can determine the
values that X, can take on such that the a priori and the a posteriori budgets are the
same, and the factor k remains the same. That is,

c
|:,u1 + U, +k\/0'12 +2p,0,0, -0—(722 :| = |:X2 +u +p, {G—IJ(XZ —y2)+k0'1\ll—p2:|

2

o )
|:(X2 —u2)+p]2 [G_IJ(XZ —H, )i| = k|:\/0-12 +2,D,20'10'2 +Gzz -0, \/l_plzzJ
2
(Xz _‘uz)|:l+p12 [?j} = k|:\/0-12 +2/)120-162 +0-22 _Gl\/l_plzz:|

2

k|:\/0-12 +2p,0,0, +622 _61\/1 _p122:|
O-l
I+p,| —
62

The value of X, from the equation above marks the boundary between the regime
in which the risk is increasing and the regime in which the risk is decreasing. Even
in the simple bivariate case, the value of this expression depends on almost all the
parameters: p, 6y, 03, P12, k.

Substituting into the equation for the parameters of condition A, with p;, = 0,
gives the value X, = $127K. That is, if the actual reported cost of work package 2 is
exactly $127K, then the risk of over-running with a constant budget remains

X, =u,+

2
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constant; if the actual value is less than $127K, then the risk decreases; if the actual
value is more than $127K then the risk increases.

Substituting into the equation for the parameters of condition B, with p;, = 0.9,
gives the value X, = $152K. That is, if the actual reported cost of work package 2 is
exactly $152K, then the risk of over-running with a constant budget remains con-
stant; if the actual value is less than $152K, then the risk decreases; if the actual
value is more than $152K then the risk increases.

The conclusion from this is that whether the risk decreases or increases is a com-
plex function of virtually all the parameters of the problem, but can be determined
easily by a computer calculation.

11.3 General Multivariate Case

Of course, projects have many more than two work packages. The general expres-
sion gives the joint multivariate Normal probability density function in N random
variates xi, X, Xs, ... , Xy (Hald 1952). Let

x =N X 1 column vector of work package costs (random variables) {x, X, X3, ... ,xy}7
=N x 1 column vector of mean values of work package costs {sy, p, iz, .. spy}’
V = N x N covariance matrix

|Vl = determinant of the covariance matrix.

V-! = inverse of the covariance matrix.

then,

o) = ——exp =25 V7 (x-)

(27)2 V]

Note that the equation just above puts a restriction on the covariance matrix V: it
must be invertible. And in order that its inverse exist, V must be positive definite.
That is, any square symmetric matrix is not necessarily a valid covariance matrix; to
be a valid covariance matrix, a matrix must be square, symmetric, and positive
definite.

To use this equation, we first consider the situation before any actual cost reports
are available; this is the a priori condition, and we compute the required contin-
gency to meet the defined level of risk as before. That is, we compute the mean
value of the total project cost as:

ElT]- 30

and the variance of the total cost is the sum of all the terms in the covariance matrix:
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From the mean and the standard deviation of 7 we compute the risk of overrun-
ning any chosen value of the cost from the tables of the Normal distribution.

Suppose that the work packages are numbered (or renumbered) such that work
package N is completed first. Then the process is to use the known value xy = Xy to
revise the means and variances of the other N — 1 work packages as appropriate,
using the approach described earlier. Then this is repeated for the next work pack-
age to be completed, say xy_; = Xy_;, and so on until the only remaining work pack-
age is x;.

In the case with N random variables, we first partition the x and p vectors.
Partition x into a vector of N — 1 values, called x,, plus a scalar, called xy; and simi-
larly for p, a (N — 1) vector, and py, a scalar:

X = {Xl((Nl)xl) } = {”1((N1)x1) }
XN(lxl) (n1) ”N(lxl) (nx1)

We then partition the N x N covariance matrix V in a conformal way:

Vll((N—l)x(N—l)) . VlN((N—l)xl)
V(NxN) = vV Y
N1(1x(N-1)) NN(1x1)

(NxN )

By this partitioning, xy is a univariate Normal random variable, with mean yy and
variance Vyy. And, x, is distributed as (N — 1) multivariate Normal with mean
(N — 1) vector u, and covariance (N — 1) x (N — 1)) matrix V.

As soon as the actual value xy = X) is observed, the conditional distribution of x;,
given xy = Xy, or xilxy = Xy, is multivariate (N — 1) x (N — 1)) Normal with mean
(N — 1) vector pyy and (N — 1) x (N — 1)) covariance matrix Vy |y, given by the
equations:

M =My + VINVNN% (XN - :“N)
Vin=Vu- V1NVNN71VN1

11N

In the a posteriori condition, we know the reported value. From this, we compute
the revised conditional mean vector and covariance matrix from the equations
above. Using these, we compute the required contingency to meet the defined level
of risk by computing the a posteriori mean of the total remaining cost, by:

N-1
E|:T|xN = XN:| = ;Hl\m
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and the variance of the total remaining cost as the sum of all the terms in the
conditional covariance matrix:

N-IN-1

var[ Tlxy = Xy ] = 23 Vi,

i=l j=1

From the known value Xy and the mean and the standard deviation of Tlxy = Xy
we compute the risk of overrunning any chosen value of the cost from the tables of
the Normal distribution.

For the next cycle, we reset N <~ N — 1 and repeat the process, step by step, until
N =2, at which point we have reached the situation discussed in the earlier part of
this text.

The recursive operations stated in the general case are actually quite straightfor-
ward, but the difficulties of notation make the equations appear more complex than
they really are. Perhaps the most difficult computation is the determination of
whether the given original covariance matrix is invertible; that is, positive definite.
The process above does not actually require the inversion of the whole covariance
matrix, but it does require that the matrix be invertible in order that the multivariate
joint Normal distribution should exist. Obviously, one can determine whether the
covariance matrix is invertible by trying to invert it; the process either succeeds or
fails. Unfortunately, if the inversion process fails, it provides little guidance on what
to do about the problem. The computation of the eigenvalues of the covariance
matrix, to determine if it is positive definite, and to adjust the covariances if it isn’t,
is discussed elsewhere in this book (see Chap. 4).

The process in the general multivariate case is illustrated below by the trivariate
problem (that is, for N = 3). (Space limitations make it difficult to show larger matri-
ces.) Here, we will start with three work packages, and reduce the trivariate case to
the bivariate case, as illustrated in Part a of this chapter.

Therefore, we consider three work package costs: x;, x,, and x;. To help distin-
guish the parameters in the revision process, here we use the following notation:

a priori means for each work package: m; m, and m;
a priori standard deviations for each work package: s; s, and s3
a priori correlation coefficients for each pair of WPs: ry,, ri3 and r»;

The third work package will be finished first, so we wish to use the actual value
reported for this work package to revise the estimates for the remaining two. The a
priori covariance matrix, using the above notation, is:

|:5 153713 :|
5383753

2
|:V|1 V|2:||:V13:| S S50,
2
Var Voo J|[Vas _{Vn Vm} 5157, 5>
2
[°]

[V31 V32]|[V33] ) Vo Vo [ 5153713 st3r23]
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Note the partitioning of the covariance matrix between rows 2 and 3 and columns

2 and 3; this will be used later. To perform the a priori analysis, we compute the
expected value and the variance of the total cost, T:
E[T]:m1 +m, +m,

2 2 2
Var[T]—s1 +8,7 +8, +28,8,1, 28,81, +25,5,7,,

With this mean and variance, we determine the a priori budget B, at the risk
level a:

B, = E[T]+kyvar[T]

_ 2 2 2
B, =m +m,+m, +k\/sl +8,7 + 8, +28,8,1, +28,85,1, + 25,87,

In this notation, the work packages are numbered backward, so that work pack-
age N is the first to complete and work package 1 is the last. Thus, when work pack-
age 3 reports, we observe the actual value x; = X;. We now use the equation above,

Mgy =My + VINVNN71 (XN _.uzv)

with N = 3 to compute the revised means for the two remaining work packages. Let
U3 be the revised expected value for work package 1, conditional on obtaining the
actual cost X; for work package 3, and let y,; be the revised mean for work package
2, given x3 = X3. Then the N — 1 =2 equations for these revised expected values are:
My =1y + VgV (Xa —m3)
Moy =My + VyVsy (X3 - m3)

Note that, in this process, the only term actually inverted is the scalar term V.
Substituting into the above equations, the revised means are:

s
—_— 1 a—
oy =, +s }’13(X3 mz)
3

s
_ 2

oy =1, +_s T (X3 —m3)
3

Now use the general equation given above for the revised covariance matrix,

V,

11N

=V, - VINVNN_IVNI

With N = 3, this becomes
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V11\3 =V, - V13V33_1V31

Vi Vi Vi Vi Vis -1
= - Vi3 [V13 st]
Vs Vaaps Va Vo Va3
v v 2
np vy v IV Vi = VaVyy [ Vg
v

2
Vo Vaops 2 ViV Vi Yy vy vy

Substituting in the values for the a priori variances gives:

2 2
Vig Viap Sy (1_”13 ) 515, (”12 —}’13}”23)
Vap - Vap 515, (rIZ _rlsrzs) szz (1—r232)
However, we know from the bivariate case discussed earlier that the covariance
matrix, after work package 2 has reported its costs, must be given by the following,
in which o, and o, represent the revised standard deviations for work packages 1 and

2, respectively, and p,, represents the correlation coefficient between the costs of
work package 1 and work package 2:

V.

2]

2 Vv v,
_ O, G 0,0, | | 1P 123
23~ -

2
0,0, 0, Vzlp V22\3

2 2
2 K (l—r ) s.8, (r, —r.r,
{ o, Glazplz} 1 13 12(12 13 23)

2 2
515, (’32_’]3723) 5 (l—r23 )

2
0,0,P1 0,

From the main diagonal terms in this expression, we can immediately determine
the revised variances,

22 2
oy =5 (1_”13)

2 _ 2 2
o, =S, (l—r23 )

Substituting these values into the off-diagonal terms (which are of course equal,
by symmetry), gives
0,0,P1, =515, (1 - "132 )(1 - "232 )plz =55, (rlz LS )

(’"12 —rer)

(1=n7) (1)

P =
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We now have revised values for the expected values, variances, and correlation
coefficient for the case with two work packages, which is just the situation covered
in the bivariate case. We compute the revised mean and variance of the total cost as
before:

E[T]:/’ll +H, + Xy
var[T]|=0+0," +2p,,0,0,

In terms of the original parameters for the a priori case of three work packages,
these are,

E[T]=m1+m2+s—';’13(X3—m3)+s—2r23(X3—m3)+X3
s

3 3
var [T] = 512 (1 - '"132 ) + s22 (1 — ;’232 ) +2s,5, (r12 — 13 )
Example 11.2
To illustrate the trivariate example, assume the following a priori data:

m, =m, =m, =$100K
s, =5, =5, =$40K
P = Pz =Py =08
a=0.15k=1.0

Inserting these numerical values into the a priori equations given above,

E[T] =m, +m, +m, = $300K

2 2 2 _
Var[T] =87+, +8, +28,8,1, +25,85,1; +25,8,1,, =12480

With this mean and variance, we determine the a priori budget B, at the risk level
a=0.15:

B, =E[T]+kvar[T] =300+1.0(111.7) =$411.7K

This implies a contingency of $111.7K or 37% of the expected value of the total
cost, corresponding to a 15% probability of a cost overrun.
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Now suppose that work package 3 is completed at a cost of $95K. The revised
expected values for the two work packages remaining are, from the above
equations,

gy =m, +Lry (X, —m,) =100—(0.8)5 = $96K
S3

= m, +i_zr23 (X, —my)=100-(0.8)5=$96K

3

The revised variances are, similarly:

And, the revised correlation coefficient is:

P, = (r12 _’33rz3) _0.44

()

The revised expected value and variance of the total cost, with one work package
known, are:

E[T] =ty + 1, + X, = 96+96+95 = $287K
var[T] =0 +0,> +2p,0,0, = 1664

This give an overall coefficient of variation for the total cost of 0.14, compared
to 0.37 in the a priori case. The revised budget is

B, =$287K +1.0(40.8) = $327.8K

This represents a substantial reduction from the a priori budget, including con-
tingency, of $411.7K.

Note that the coefficient of variation of the cost for each work package in the
original case is 40/100 = 0.4, which falls to 24/96 = 0.25 for the two work packages
after work package 3 reports. Also, the original correlation coefficients, 0.8, fall to
0.44 after one work package is known. Although the specific results of course vary
according to the initial parameters and the number of work packages, this behavior
is typical. As more information becomes available on actual costs, the variability
and the correlation between the remaining variables decrease.
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11.3.1 Discussion

Unfortunately, there are few data on how project managers actually manage project
contingencies. The analysis above shows that a consistent contingency strategy can
be developed based on maintaining a constant risk of cost overruns throughout the
project life. In the case that tasks or work packages are correlated, the project man-
ager can learn, from experience on early work packages, to modify the predictions
of costs on later work packages and therefore to reduce the uncertainty in project
total cost. In this approach, a reduction in uncertainty reduces the need for contin-
gency. Then, given moderately favorable cost experience, the project manager may
be able to reduce the contingency amount and to release money from the contin-
gency pool to other uses.

In this approach, contingency is never parceled out to individual tasks or work
packages; it is always retained by the project manager and thus is available for real-
location to other work packages that overrun, or for return to the owner, or for other
uses. In this second moment model, contingency is related to uncertainty, or igno-
rance about the true costs in the future. Contingency is not an appropriate way to
deal with risks of extraordinary events, with very high impact but very low likeli-
hood, which may or may not occur.

It is often recommended that, if there is some high magnitude risk, with very low
probability p and very high cost C, then one should apply a contingency equal to the
expected loss, pC. This view is not taken here, on the basis that a contingency so
derived is never of any use. If the event never occurs, which almost always will be
true, with probability Pr = (1 — p) = 1, then one has simply increased the cost of the
project by pC. On the other hand, if the event occurs, the contingency in reserve,
pC < C, is always inadequate to cover the need. That is, there are other and better
ways to handle rare events than through contingency reserves.

The first priority is to assure that there are enough funds in reserve to get the
project done. The risk of overrunning cannot be made zero, but it can be analyzed
as shown above and reduced to some acceptable value, given as . In some projects,
poor cost performance coupled with excessive risk values will mean that all the
original contingency is used up, and then some. However, there will be projects with
adequate original contingency and favorable cost experience, and these projects will
be able to free up contingency reserves for other uses.

The best use of released contingency reserves would be to return them to the
owner, or to whomever is funding the project, who can then allocate these funds to
other projects or other uses. That is, the contingency funds belong to the owner or
sponsor, not to the project, to use in whatever manner it wishes, and if the contin-
gency is not being used, it should be returned to its rightful owner.

Example 11.3

The second moment method provides a simple, convenient way to adjust the risks,
and hence the required contingencies to cover the risks, as a project proceeds and
evidence is obtained on how well (or badly) it is going, compared to the initial esti-
mates. The objective of this approach is to react as soon as possible to information
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on recent project performance that confirms or disconfirms the current estimates.
The key parameter is the expected cost at completion (or, the expected time at com-
pletion). If the best estimate of the cost at completion, updated with the most recent
progress information, is higher than the original estimate, then, assuming no scope
changes, more contingency may be required or some program management correc-
tive action may be needed to bring the project back on target. Conversely, if the
updated best estimate of the cost at completion is the same as or lower than the
original estimate, then the contingency required can be decreased and this contin-
gency released to the program manager, as needed elsewhere. In the approach dis-
cussed here, the estimates of all future work packages are updated as the actual costs
for each completed work package become available.

This point is illustrated by an example, very much simplified for exposition. To
keep the example small enough to present here, we consider a project of only six
work packages; real projects might have hundreds of work packages. Also, to keep
it simple, we assume that the expected cost (the mean, the median, and the mode)
for each work package is $100,000, and the uncertainty in each work package cost
is given by the coefficient of variation, which is assumed in this example to be
40% for every work package. As the coefficient of variation is the standard devia-
tion divided by the expected value (times 100), the estimated values for the stan-
dard deviations for all work packages are $40,000 each. Then the best estimate of
the total cost at completion is the sum of the expected values for the work pack-
ages, or $600,000.

The correlation matrix used in this example is as follows:

(WP 1 2 3 4 5 6

1 1.000 0.900 0.810 0.729 0.656 0.590
2 0900 1.000 0.900 0.810 0.729 0.656
3 0810 0900 1.000 0.900 0.810 0.729
4 0729 0.810 0.900 1.000 0.900 0.810
5 0.656 0.729 0.810 0.900 1.000 0.900
16 0590 0.656 0.729 0.811 0.900 1.000 |

These correlations were computed from the formula:

P =p,"p, =090

Then the second moment method described above gives a computed value for the
standard deviation of the total cost of $217,830 (the detailed equations and calcula-
tions are not reproduced here). This means that the coefficient of variation of the
total project cost is 36.3%, which is less than the coefficient of variation for each of
the six work packages taken separately. Assume that we wish to set the contingency
at the 90% confidence limit; which is to say that the budget is to be set such that
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Table 11.1 Revised best estimate of cost
Work package |1 2 3 4 5 6 Total cost

Best estimate | $140,000 | $135,960 | $132,360 | $129,120 | $126,210 | $123,590 | $787,240
of cost Actual

there is a 10% chance or less that the budget will be overrun, and a 90% chance that
the budget will not be overrun. The normal factor for one-sided 90% confidence is
1.283, so the required budget at the 90% confidence value is $600,000 plus
1.283($217,830) = $879.,480.

Now suppose that the first work package is completed for an actual cost of
$140,000, or 40% higher than the expected value of $100,000. Given this informa-
tion, the revised best estimates for the remaining work packages, based on the
method descried earlier, are as given in Table 11.1.

The fact that the first work package was completed for substantially more than
the best prior estimate of $100,000, and the correlation between the work package
costs, means that there is some evidence that the cost estimates on this project may
be low, and accordingly we should revise our estimates of the costs of the remaining
work packages upward. The table above shows these revised cost estimates. The
best estimates for the remaining work packages, after obtaining the information
about the actual cost of work package one, vary from $135,960 to $123,590.
Consequently, the best estimate of the total cost at completion is now $787,240, up
$187,240 from the initial estimate of $600,000. Assuming that the sponsor does not
increase the budget, so that the budget with contingency remains constant at the
original value of $879,480, the remaining contingency is only $879,480 — $787,240
= $92,240. This is positive, but less than the required contingency to cover the
remaining costs at the 90% confidence level. That is, step one has actually used up
some of the project contingency, even though no specific contingency was assigned
to step one, and now the probability of overrunning the budget is more than 10%. In
fact, the probability of overrunning the established budget with contingency is now
20%, and the budget corresponds to the 80% confidence level. The revised values
for cost at completion and budget with contingency after step one are plotted in
Fig. 11.2 below. (At this point, of course, only the step one results are known.)

The original best estimate of the cost at completion, the required contingency,
and the 90% confidence value for the budget including contingency are shown on
the axis for zero steps complete. When the first activity (step) is completed, for
$140,000, the best estimate of the cost at completion increases, the available contin-
gency falls, and the budget remains the same, although this now corresponds to the
80% confidence limit rather than the 90% confidence limit.

Suppose now that the second activity is completed for a cost of $135,000. This is
actually very slightly lower than the updated prediction (the best estimate for the
step two cost after step one was completed was $135,960) but $35,000 higher than
the original estimate. This additional evidence tends to confirm that the project costs
are running higher than the estimates (or, that the estimates were low). The revised
values for the best estimates of the incomplete steps are now given in Table 11.2.
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Table 11.2 Revised best estimate of cost

Work package |1 2 3 4 5 6 Total cost
Best estimate | $140,000 | $135.000 | $131,500 | $128,350 | $125,520 | $122,970 | $783,340
of cost Actual | Actual

Table 11.3 Revised best estimate of cost
Work package |1 2 3 4 5 6 Total cost

Best estimate | $140,000 | $135,000 | $132.000 | $128,800 | $125,920 | $122,970 | $785,050
of cost Actual | Actual | Actual

Even though step two was much higher than the original estimate, the best esti-
mate of the cost at completion has fallen somewhat, from $787,240 to $783,340.
After two of the six work packages have been completed, and assuming that the
project budget has not been increased, the available contingency is now $96,140,
slightly above the $92,240 after step one, but still below the value to meet the 90%
confidence limit. In fact, the established budget with contingency corresponds to
the 87% confidence value; there is a probability of 13% of exceeding the value
$879,480.

Suppose now that the third activity is completed for a cost of $132,000. This is
modestly higher than predicted (the best estimate for this cost after step two was
completed was $128,350). The revised values for the best estimates of the incom-
plete steps are now given in Table 11.3.
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Table 11.4 Revised best estimate of cost

Work package | 1 2 3 4 5 6 Total cost
Best estimate | $140.000 | $135.000 | $132.000 | $130.000 | $127,000 | $124,300 | $788,300
of cost Actual | Actual | Actual | Actual

Table 11.5 Revised best estimate of cost

Work package | 1 2 3 4 5 6 Total cost
Best estimate | $140.000 | $135.000 | $132.000 | $130.000 | $129.000 | $126,110 | $792,110
of cost Actual Actual Actual Actual Actual

Table 11.6 Revised best estimate of cost

Work package 2 3 4 5 6 Total cost
Best estimate | $140.000 | $135.000 | $132.000 | $130.000 | $129.000 | $131.000 | $797.000
Actual Actual Actual Actual Actual Actual Actual

—_

After the third work package has been completed, the best estimate of the cost of
completion has gone up slightly to $785,050, but the required contingency has gone
down to $77,280 (it goes down even though the cost of activity three was higher
than estimated, because there are fewer remaining risks), and the 90% confidence
budget can now actually be decreased to $862,330, even though all the three work
packages have been higher than the original estimates.

Suppose now that the fourth activity is completed for a cost of $130,000, slightly
higher than predicted. The revised best estimates of the incomplete steps are now
given in the Table 11.4.

After four of the six work packages have been completed, the best estimate of the
cost of completion has gone up to $788,300, but the required contingency has gone
down to $47,890 (it goes down even though the cost of activity four was high,
because there are fewer remaining risks), and the 90% confidence budget can
actually be decreased to $836,200.

Suppose now that the fifth activity is completed for a cost of $129,000, slightly
higher than predicted. The revised best estimate of the single incomplete step is now
given in Table 11.5.

After five of the six work packages have been completed, the best estimate of the
cost of completion has crept up again, to $792,110, but the required contingency has
gone down to $22,200, and the 90% confidence budget can be decreased to $814,310.

Suppose finally that the sixth activity is completed for a cost of $131,000. The
actual costs are as given in Table 11.6.

The variations in the revised budgets and expected costs at completion, after
each work package or step is completed, are shown in the figure given above. The
objective of using the confidence limits is to keep the confidence band positioned
so that it envelops the (unknown) actual cost at completion. That is, no one can
predict the future (the actual cost at completion) with certainty, but we can try to
define a confidence band that bounds where we expect to find it (with probability
90%, in this case). Although the lower confidence bound is not shown in the figure
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(it is the expected cost at completion minus the contingency), it is clear that, for
this example at least, the method has achieved the goal of keeping the 90% confi-
dence limit above the actual cost at completion (that is, above $797,000) for every
step in the process up to project completion. Of course, even though the costs
increased over the original estimates, this example was actually well behaved in
that it never ran out of contingency (although contingency was being used up for
some period of time).

Figure 11.3 shows the change in uncertainty regarding the final cost at comple-
tion as every work package is completed, providing additional information about
where the project is going. Before any work is done, the prior estimate of the prob-
ability for the cost at completion is centered on $600,000, but has a very high vari-
ance (uncertainty), as shown in the figure below. After the completion of step one,
the probability distribution shifts to the right, and is centered $787,240. As each
subsequent work package is completed, the best estimate or most likely value for
the cost at completion creeps up somewhat, depending on the latest actual cost
reports, but the uncertainty (the width of the distribution) always lessens. The figure
illustrates how the method starts with a high degree of uncertainty and zeros in on
the target as more information becomes available about actual project
performance.

Example 11.4

As another numerical example, the project is the same as in Example 11.3, but with
different realizations. That is, all the work packages, estimates, correlations, etc.,
are identical to those in Example 11.3, but the actual project outcomes are differ-
ent. Thus, as in Example 11.3, the expected value of the total project cost is
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Table 11.7 Revised best estimate of cost

Work package 1 2 3 4 5 6 Total cost
Best estimate of cost | $90,000 | $91,010 | $91,910 | $92,720 | $93,450 | $94,100 | $553,190
Actual

Table 11.8 Revised best estimate of cost

Work package 1 2 3 4 5 6 Total cost
Best estimate of cost | $90.000 | $95.000 | $95,490 | $95,940 | $96,350 |$96,710 | $569,490
Actual | Actual

Table 11.9 Revised best estimate of cost
Work package 1 2 3 4 5 6 Total cost

Best estimate of cost | $90.000 | $95.000 | $105.000 | $104,500 | $104,050 | $103,640 | $602,190
Actual | Actual | Actual

$600,000, and the standard deviation of the total cost is $217,830, and the required
budget at the 90% confidence value is $879,480.

The first work package is completed, this time at an actual cost of $90,000, lower
than the expected value. The revised best estimates for the remaining work packages
are shown in Table 11.7.

The fact that the first work package was completed for less than the best prior
estimate of $100,000 means that there is some evidence that the cost estimates may
be high on this project, and accordingly we should revise our estimates of the costs
of the remaining work packages downward, given the correlations between the
work package costs. That is, our best estimate of the total cost at completion is now
$553,190, down from $600,000. The required contingency to cover the remaining
costs at the 90% confidence level has gone down to $142,580, a significant reduc-
tion from the initial value of $217,830, freeing up $75,250 in contingency funds to
be deployed elsewhere. The 90% confidence budget is now $695,770, down
$183,710 from the original value of $879,480.

The second activity is completed for a cost of $95,000. This is lower than the
original estimate but somewhat higher than the updated prediction (the best estimate
for this cost after step one was completed was given in the table above as $91,010).
The revised values for the best estimates of the work packages and cost at comple-
tion are now showing in Table 11.8.

After two of the six work packages have been completed, the best estimate of the
cost of completion has gone up somewhat from $$553,190 to $569,490 (still less
than the original estimate), but the required contingency has gone down to $109,110
and the 90% confidence budget has decreased to $678,600. The third activity is
completed for a cost of $105,000. This is higher than predicted (the best estimate for
this cost after step two was completed was $95,490). The best estimates of the costs
of the incomplete steps are shown in Table 11.9:

After three work packages have been completed, the best estimate of the cost of
completion has gone up to $602,190, but the required contingency has gone down
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Table 11.10 Revised best estimate of cost

Work package 1 2 3 4 5 6 Total cost
Best estimate of cost | $90,000 | $95.000 | $105.000 | $106.000 | $105,400 | $104,860 | $606,260
Actual | Actual | Actual Actual

Table 11.11 Revised best estimate of cost
Work package 1 2 3 4 5 6 Total cost

Best estimate of cost | $90,000 | $95.000 | $105.000 | $106.000 | $93.000 | $97,250 | $590,250
Actual | Actual | Actual Actual Actual

Table 11.12 Revised best estimate of cost

Work package |1 2 3 4 5 6 Total cost
Actual $90.000 |$95.000 | $105.000 | $106.000 | $93.000 |$103.000 |$596.000

to $77,280. The 90% confidence budget has remained approximately steady at
$679,470. The fourth activity is completed for a cost of $106,000, slightly higher
than predicted. The revised best estimates of the incomplete steps are shown in
Table 11.10.

The expected cost at completion goes up to $606,260, but the required contin-
gency goes down to $47,890 and the 90% confidence budget decreases to $654,150.
The fifth activity is completed for a cost of $93,000, lower than predicted. The
revised best estimate of the single incomplete step is shown in Table 11.11:

After five of the six work packages have been completed, the best estimate of
the cost of completion has gone down again, to $590,250, and the required contin-
gency has gone down to $22,200, and the 90% confidence budget decreases to
$612,450.

Finally, the sixth activity is completed for a cost of $103,000. The actual costs
are shown in Table 11.12.

The variations in the revised budgets and expected costs at completion, after each
work package or step is completed, are plotted in Fig. 11.4.

Figure 11.5 shows the change in uncertainty regarding the final cost at comple-
tion as every work package is completed. As each work package is completed, the
estimated cost at completion goes down, then up, then down again, but the uncer-
tainty in the cost at completion always decreases, zeroing in on the target as
information becomes available.

11.4 Managing the Contingency: Cost to Complete

Suppose that a project consists of M work packages and that at some time N work
packages remain to be done. (That is, M—N work packages have been completed
and reported.) Let z represent the remaining cost to complete the project, recalling
that the work packages are numbered from M down to 1, the last:
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It is assumed that the expected values of the remaining work packages, along
with their variances and the correlation matrix, have been updated at the completion
of each work package by the method described earlier. Then,

N+1

£ld)=£lr]- 2,
Var[z] = Var[T]

That is, the uncertainty in the remaining cost to complete is just the uncertainty
in the total cost at completion, because completed work packages have no uncer-
tainty. Let f(z) be the probability density function for the remaining cost to com-
plete, where f(z) is conditional on the actual reported values Xy, Xy _ 1, ... , Xy41.
Let B_y be the budget, including contingency, to cover the cost to complete the
last N work packages (not the total cost at completion). The Expected Value-at-
Risk is then:

©

EVaR, = I f (z)dz

By

This represents the expected value of the budget overrun when N work packages
remain and B,y is the budget to complete. The expected value of the cost to com-
plete is:

E[<]= ];zf(z)dz

(Note that the lower limit of integration is merely for notational convenience; the
cost to complete can never be negative.)
Now let’s define the ratio R as:

_EVaR, _ J :Z'sz (2)dz
- E[Z] B I:zf(z)dz

Then 100R is the expected budget overrun as a percentage of the expected cost to
complete, when B,y is the remaining budget to complete. In the previous examples,
the contingency was adjusted in order to keep the probability of a budget overrun
constant throughout the project. One alternate approach to contingency manage-
ment might be to adjust the contingency (contained in B, , the remaining budget to
complete) so that R is a constant, where 100R is the expected budget overrun as a
percentage of the expected cost to go. For example, one might set R = 0.05, which
means that the budget to go should be set such that the expected budget overrun is
always 5% of the cost to go.
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In the current notation, ay is the probability of exceeding the budget B,y when
there are N work packages yet to be done:

o, = Tf(z)dz

Given that f(x) is Normal, which is the assumption here,
VaR = o (k)+u[1-® (k)]

Here ¢(k) and @ (k) are, respectively, the probability density function and the
cumulative probability distribution for the Unit Normal. In the notation used here,
this equation becomes:

VaR,, = \Jvar[z]p (k)+E[z][1-® (k)]

Dividing this by E[z] gives:

VaR, var[z]

"] 7] ER

o (k) +1-D (k)

var | z]
E|z

N work packages remain, and E[z] and Var[z] are conditional on the reported costs
for the work packages M through N + 1, computed by the method described above.

Note that

is the Coefficient of Variation of the cost-to-complete when

Then, with R specified and

E[ ] computed, the contingency to maintain a
Z

constant R can be found by solving the following equation for k:

R—-1+®(k)- “Var[z]qb(k):o

E[z]

Then the contingency to go is &k Var[z] , the budget to go is
B ,=E [z]+k Var[z], and the probability that this budget will be overrun is

ay=1— O(k).

Figure 11.6 shows the variation of ay for various values of the Coefficient of
Variation (COV) of the cost to go, when R is held constant (at R =0.05 and R = 0.10).
Note that higher values of the COV imply lower probabilities of overrunning the
budget, when R is fixed. (Why?) As one might expect the COV of the cost to com-
plete to decrease as the project moves forward, holding R constant implies that the
budgets to go have an increasing probability of being overrun.
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Example 11.5

The second moment method provides a simple, convenient way to adjust the risks,
and hence the required contingencies to cover the risks, as a project proceeds and
evidence is obtained on how well (or badly) it is going, compared to the initial
estimates. The objective of this approach is to react as soon as possible to informa-
tion on recent project performance that confirms or disconfirms the current esti-
mates. The key parameter is the expected cost at completion (or, the expected time
at completion). If the best estimate of the cost at completion, updated with the
most recent progress information, is higher than the original estimate, then, assum-
ing no scope changes, more contingency may be required or some program man-
agement corrective action may be needed to bring the project back on target.
Conversely, if the updated best estimate of the cost at completion is the same as or
lower than the original estimate, then the contingency required can be decreased
and this contingency released to the program manager, as needed elsewhere. In the
approach here, the estimates of all future units are updated as the actual cost for
each completed unit becomes available.

Consider a project of 20 units. For ease of understanding, the units are consid-
ered to be identical. This is not required by the analysis, which can handle cases
in which all units are different, but the simpler assumption is easier to follow.
Then assume that the expected cost (the mean, the median, and the mode) for each
unit is $100, and the uncertainty in each unit cost is given by the COV, which is
assumed in this example to be 40% for every unit. As the COV is the standard
deviation divided by the expected value (times 100 to give a percentage), the esti-
mated values for the standard deviations for all units are $40 each. Then the best
estimate of the total cost at completion is the sum of the expected values for the
20 units, or $2000.

The correlation matrix used in this example is as follows:
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(WP 1 2 3 4 5 6

1.000 0.900 0.810 0.729 0.656 0.590
0.900 1.000 0.900 0.810 0.729 0.656
0.810 0.900 1.000 0.900 0.810 0.729
0.729 0.810 0.900 1.000 0.900 0.810
0.656 0.729 0.810 0.900 1.000 0.900
0.590 0.656 0.729 0.811 0.900 1.000 |

AN L AW

These correlations were computed from the formula:

p.=p)"p, =090

Although the 20 by 20 covariance matrix is too large to show here, all the terms
are computed by the equations given above, and the sum of all the covariances in
the matrix is 355014.1. This is the a priori variance of the project total cost, and
the square root of this, $595.83, is the a priori standard deviation of the total proj-
ect cost. Assume now that the project manager has some aversion to risk, and
wants to be 90% confident of successful completion of the project within the
budget. This level of risk aversion implies, using the one-sided Normal distribu-
tion, that the available budget must be $2000 + 1.282($595.83) = $2763.86. That
is, the probability of a cost overrun at this project budget is 10% and this level of
risk is acceptable to the project manager. As has been seen before, this value
($2763.86 in this case) is called the Value-at-Risk (VaR). Note that if one were to
set the budget at the expected total cost, $2000, the probability of an over-run
would be 50% and the project manager would have only a 50-50 chance of suc-
cess. This would typically be considered an excessive probability of over-run.
This does not imply that such risky budgets are never set; only that the high prob-
ability of failure should be recognized.

To summarize: before the project begins, the project manager concludes that the
best estimate of the total project cost is $2000, based on an average unit cost of
$100, and the project manager has access to an amount of $2763.86 for 90% confi-
dence that the cost will not exceed the available funding. This figure represents a
contingency or markup of 38% over the expected cost, but it is not computed from
the expected cost, it is computed from the risk in the unit costs. Note that $2763.86
is not necessarily the bid price, because it does not include explicit allowance for
overhead and profit.

Now suppose that the first unit (denoted here as N = 20) is completed for an
actual cost of $105, or 5% higher than the expected value of $100. The fact that the
first unit was completed for somewhat more than the best prior estimate of $100
means that there is some evidence that the cost estimates on this project may be low,
and accordingly we should revise our estimates of the costs of the remaining units
upward. Given this information, the revised best estimates for the remaining 19
units, based on the method described earlier, are as given in the Table 11.13:
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Table 11.13 Revised unit cost estimate

Unit Prior expected cost of future units, $ Revised predicted cost of future units, $
20 105 actual cost 105.00
19 100 104.50
18 100 104.05
17 100 103.64
16 100 103.28
15 100 102.95
14 100 102.66
13 100 102.39
12 100 102.15
11 100 101.94
10 100 101.74
9 100 101.57
8 100 101.41
7 100 101.27
6 100 101.14
5 100 101.03
4 100 100.93
3 100 100.83
2 100 100.75
1 100 100.68
Total 2005 2043.92

This result is also shown in the following figures. Figure 11.7 below represents
the prior situation, in which the predicted cost of each unit is $100.

Figure 11.8 just above shows the predicted values for all of the 19 remaining
units, given that the first unit cost $105. These predicted values approach $100 for
the later units, as the impacts of the $105 actual cost are diminished down the chain
(diminished because the correlation coefficients are <1). The total job cost at com-
pletion, the sum of all the unit costs, actual and predicted, is forecast to be $2043.92,
which is over the expected value but well under the allocated funding including
management reserve of $2763.86.

The figure below shows the revised cost estimates for each remaining unit after
the second unit has been completed at cost $111 (and the first unit at $105). The
effect of these costs above the prior is to increase the estimate for the costs for each
unit in the future, as shown graphically in Fig. 11.9.

Suppose now that the third unit is completed for a cost of $97. This is actually
slightly lower than the prior estimate ($100) and the updated prediction (the best
estimate for the third unit after the completion of the second unit is $109.90). This
additional evidence tends to indicate that the unit costs are running both above
and below the estimates. The revised values for the best estimates of the costs of
the 17 incomplete units, using the same algorithm as before, are now given in the
table below.
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Figure 11.10 show the revised forecasts for the cost for each unit after the third
unit has been shown to cost $97 (the curve with the large box symbols). The com-
bined effect of these actual costs both above and below the previous forecasts is to
give a new estimate close to the original estimate — in fact, somewhat below the
original estimate ($1990.50 vs. $2000.00).
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Continuing on with this example, the fourth unit when complete is found to cost
$108, again above the prior expected value and also above the latest prediction (see
Fig. 11.11).

The fifth unit is completed at cost $112, above the prior expected value and
above the latest prediction (see Fig. 11.12).

The sixth unit is found to cost $101. (See Fig. 11.13).
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Figure 11.14 shows the revised predicted costs per unit after the seventh unit
completed has been shown to cost $112 (the curve with the large box symbols).

This series goes on as shown above, until all the units have been completed.
Table 11.14 shows the actual costs for all units, the revised predictions of the cost at
completion after each unit is completed, and the total project cost at completion.
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Fig. 11.14 Predicted unit costs after seven units complete

The actual cost at completion is $2586 or 29% more than the a priori estimated cost
of $2000. However, this actual cost is less than the a priori 90% confidence budget,
which was $2763.86. Therefore, the project ended up over the estimate but under

the budget.
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Table 1.1.14 Revised unit Actual unit Predicted cost at
cost estimate Unit | costs, $ completion, $
20 105 2000.00
19 111 2043.92
18 97 2100.14
17 108 1990.50
16 112 2079.66
15 101 2118.76
14 112 2040.94
13 115 2126.55
12 124 2157.87
11 123 2233.22
10 145 2242.82
9 160 2401.09
8 155 2520.55
7 160 2526.24
6 158 2581.02
5 150 2599.76
4 155 2590.76
3 142 2625.15
2 136 2604.82
1 117 2601.40
Total | 2586 2586.00

11.5 Practice Problems

Problem 11.5.1 Carlos is the project manager for a project that has two activities or
work packages (so that this assignment can be done on a pocket calculator). Using
a three-point estimation process, Carlos estimates the Sth, 50th, and 95th percentiles
of the probability distributions for work package 1 and work package 2 (see
Table 11.15). Then he uses the Pearson-Tukey equations to estimate the means and
standard deviations of the two work packages.

Based on experience, Archie estimates the correlation coefficient between the
two work packages to be 0.50. He also determines that he wants to be 90% confident
that the total actual cost for the project will not exceed his budget, which is to be
determined. Using @ = 0.10 and a table of the Normal distribution, what is the risk
multiplier k Archie needs to use?

The a priori expected value of the total project cost is:

E[T]:.ul'l':uz

The covariance matrix V is given by:
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Table 11.15 Problem data

Work package Xos Xso Xos
1 $120K $200K $280K
2 $ 60K $100K $140K
2
V= ( g, puo'lczj
2
P12,0,0, 0,

The a priori variance of the total cost is the sum of all the terms in the covariance
matrix, or:

— 2 2 2
Var[T] =0, =0, +2p,,0,0,+0,

What is the a priori expectation, variance, and standard deviation of the total
cost? What is the a priori contingency ko (that is, the contingency before any work
is done)? What is the a priori project budget?

Problem 11.5.2 Now, suppose that the two work packages are completed in
sequence, first work package 2 and then work package 1. Carlos is informed that
work package 2 has been completed, and the cost is now known for certain to be X,
= $150K, which is well over the original estimated cost. Because the two work
packages are correlated, this means the re-estimated cost of work package 1 will be
higher than the original estimate too. As a result, Archie is going to request a
budget increase in order to keep his risk of overrunning the project budget at the
prior value a = 0.10.

The conditional probability distribution on cost, given that x, is the known
reported value X, is f,(x,1x,), which is determined from the joint probability den-
sity function and the marginal distribution by Bayes’s Law. Then the conditional
probability density function f;,(xlx, = X;) is Normal with parameters

mean =E[ x,|x, = X, |= 1, + p,, [%](Xz -1u,)
2

. _ _ _ 2 2
variance = var[x1 |x2 = Xz] =0, (1— plz)

(e}
Bz =Xz +‘u1 +p12 [G_IJ(Xz _H2)+ko-1\/1_p122

2

with x, = X, = 150K known, the cost to complete the project is x;.

What is the variance of x, given x, = X, from the above equation? What is the
contingency ko;? And What should be the proposed revised budget, after work
package 2 is completed? Is it higher or lower than his original a priori budget? What
is the expected value of x,, the cost to complete?
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Chapter 12 )
Statistical Project Control ST

Abstract In this chapter we introduce statistical project control methods. We focus
on the problems of determining whether project-generated data fall within or out-
side specification limits. The examples included in this chapter address construction
quality problems, earned-value management, and project performance prediction.

Keywords Statistical project control - Control charts - Range charts -
Specification limits

12.1 Introduction

As has been discussed so far, all quantities and processes associated with project are
subject to natural variation. These variations are due to common causes, which may
be internal causes, external causes, or simply inability to predict the future. One of
the central questions that derives from the areas of Statistical Quality Control (SQC)
or Statistical Process Control (SPC) is to determine whether the observed variation
in a process lies within its natural variability or is outside it.

If the process lies within its natural or inherent variability, it is said to be in sta-
tistical control. A process that is in statistical control may or may not be satisfactory
from the viewpoint of the project requirements or specification (Thompson and
Koronaki 2002). A process that is in statistical control and meets the specifications
for variability is said to be capable of achieving the specifications; otherwise it is
not capable. A process that does not stay within its natural variability is said to be
out of statistical control. Therefore, any project process may be in one of three
states:

1. The output of the process is controlled by common causes and lies within its
natural process variability and meets the requirements and specifications for
variability; it is capable and in statistical control.

© Springer Nature Switzerland AG 2020 277
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. The output of the process is controlled by common causes and lies within its

natural process variability but does not meet the requirements and specifications
for variability; it is in statistical control but not meeting the requirements.

. The output of the process is controlled by some assignable cause or causes; it

lies outside its natural process variability; it is not in statistical control.

Of these three states, one is acceptable and two are not acceptable. The response

of project management to theses states is as follows:

. Do nothing; the process is working.
. The natural variability of the process as defined is excessive; it is necessary to

find a process with lower variability. For example, the process could be stainless
steel pipe welding, performed manually by welders. The variation in product
quality (percentage of welds accepted or rejected after radiographic examina-
tion) may be within the natural variability of the manual welding process, but
may be excessive compared to the requirements of the project. Hence, a switch
to automatic pipe welding may be required to reduce weld quality variability. As
another example, the process could be writing code in a software development
project. The variation in product quality (number of software bugs) could be
within the natural variability of software coding, but may be excessive to meet
the requirements for completing the project on time. Hence, some change in the
coding process may be required.

. The process, which may originally have been capable and in statistical control,

has changed in some (perhaps unknown) way. The assignable cause of this
change in process must be found and corrected, or the entire process (and proj-
ect) is at risk.

The project manager is faced with determining, from the available evidence,

which of these three states the project is in and whether or not the process is in con-
trol. In this decision, the project manager is susceptible to two kinds of errors:

Type I (error by obliviousness). The project manager determines that the process
(or project) is in statistical control when it is actually out of control. Hence, no
changes are made to the process when change would be beneficial, and the grow-
ing risks are not mitigated. The cost of this error is that the process may degrade
until it is uncorrectable, leading to large risks, potential failure of the project, and
failure on the part of the project manager.

Type II (error by panic). The project manager determines that the process is out
of control when it is in fact in control. Hence, changes are made when no changes
are needed. The cost of this error is that the project is disrupted, the changes may
be in fact detrimental, the credibility of project management is lost, and the proj-
ect manager does not succeed.

Unfortunately, an attempt to avoid Type I errors may only lead to increasing the

likelihood of Type II errors, and conversely. The best way to reduce the likelihood
of each type of error is to learn how to distinguish the three states reliably.
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12.2 Earned Value Management

Quality Control (QC) and Earned Value Management (EVM) are two project areas
in which statistical process control may be applied. In EVM, project progress
reports typically track Earned Value data by tabulations or graphs of the plan — the
Budgeted Cost of Work Scheduled (BCWS), and the performance - the Budgeted
Cost of Work Performed (BCWP) and the Actual Cost of Work Performed (ACWP),
versus time (reporting period) (Solomon and Young 2007). Also, one may track the
variance, or cumulative deviation of the actual performance compared to the plan.
[The term variance as used in Earned Value and in this chapter has no statistical
meaning or connection to ¢%. In Earned Value parlance, variance simply means
diference.

However, these conventional forms of presentation, which track the cumulative
BCWP and ACWP over time, may obscure short-term effects. That is, when well
into the job, the cumulative BCWP and ACWP numbers are largely determined by
history and little impacted by recent events. It takes a substantial change in any
single reporting period to have any visible effect on the accumulated BCWP and
ACWP. Moreover, differences in rates from period to period are shown as changes
in slope, and it may be difficult for an observer to judge derivatives. It is easy to
discern long-term trends after the fact, but difficult to see what is happening cur-
rently, due to the necessary scale of the cumulative plot and the inertial effect of the
past data.

Also, commonly tracked are the two dimensionless EV indices, the Schedule
Performance Index (SPI) and the Cost Performance Index (CPI), where, by
convention,

spr = BEWP
BCWS
cpy - BEWP
ACWP

However, these dimensionless ratios, although useful, also suffer from the same
problem, that after some time they are largely determined by the inertia of history.
Therefore, they cannot serve the function of leading indicators. The question
addressed here, as discussed above, is, how can a potentially adverse trend in the
process be distinguished from mere random fluctuations in progress reporting? That
is, how should a project engineer decide when some intervention is necessary, wish-
ing to avoid the error of taking action when no action is needed, and to avoid the
error of not taking action when action is needed?

Useful leading indicators may be obtained by applying the methods of Statistical
Process Control (SPC). Statistical Process Control (or Statistical Quality Control,
SQC) has been used in the manufacturing industries for over 70 years (e.g., Shewhart
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1931). The SPC control charts also form an essential part of Total Quality
Management (TQM) and Six-Sigma (Eckes 2001).
The standard EVMS reporting quantities are defined as:

* BCWS(#)= cumulative Budgeted Cost of Work Scheduled through reporting
period £,

* BCWP(t) = cumulative Budgeted Cost of Work Performed through reporting
period £,

* ACWP(t) = cumulative Actual Cost of Work Performed through reporting period
L

BCWP (1) ,
e SPI (t) = ———— = Schedule Performance Index cumulative through report-
BCWS (1)
ing period ¢
BCWP(1) _ .
e CPI (t) =——-—— = Cost Performance Index cumulative through reporting
ACWP (1)
period ¢

To apply control charting methods, it is necessary to track metrics that are sta-
tionary throughout the life of the activity. BCWP(t) varies over job duration as the
logistic or S-curve, whereas CPI(t) and SPI(f) should be constant over a job. The
earned value quantities for each reporting period ¢ (such as week or month) may be
written as follows (in which upper case denotes cumulative, lower case denotes
incremental or period-by-period):

* bcws(t) = incremental budgeted cost of work scheduled in reporting period #;
* bcwp(t) = incremental budgeted cost of work performed in reporting period #;
* acwp(t) = incremental actual cost of work performed in reporting period

) bcwp (t)
spi(t)=——"=
P ( ) bews (t)

bcwp(t)

acwp(t)
The cumulative and incremental definitions are linked by:

* bews(t) = BCWS(t) — BCWS(t — 1) or BCWS(t) = BCWS(t — 1) + bews(1)

o bewp(t) = BCWP(t) — BCWP(t — 1) or BCWP(f) = BCWP(t — 1) + bewp(r)
o acwp(t) = ACWP(t) — ACWP(t — 1) or ACWP(t) = ACWP(t — 1) + acwp(t)

= incremental schedule performance index

o opi(t)= = incremental cost performance Index

That is, acwp(?) is the actual cost of work performed in the time period ¢, whereas
ACWP(t) is the cumulative cost of the work performed from the start through time
t. Note that CPI(t) is not equal to CPI(t — 1) + cpi(t).

Due to random fluctuations in project conditions, the dimensionless indices spi(7)
and cpi(t) will vary with reporting date. If the project is in a state of statistical con-
trol, the sample statistics will be characteristic of the underlying population and
hence will be stable, varying around their constant central values. The mean values
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of spi(t) and cpi(r) should be 1.0 and the variances (that is, period-by-period varia-
tions) of both should be within the inherent limits of the process. If a job has gone
out of statistical control, either the mean of spi(f) or cpi(¢) is changing or the vari-
ance is changing, or both. We accept random variations as representing the effects
of the common causes acting on the project process, as long as the variation is ran-
dom and stable. If the spi(¢) or cpi(t) plots are not random, but exhibit some pattern,
then there is some assignable cause operating that is changing the process. If the
process was in control to begin with, it may be going out of control due to the
assignable cause. And this may mean that the job will go over schedule or over
budget.

To evaluate whether a change is occurring in the mean or variance, one should
first establish statistics based, if possible, on historical data on jobs that are consid-
ered to have been good performers. Then Upper and Lower Natural Process Limits,
which are conventionally three standard deviations above and below the mean, can
then be derived from experience. Then, the probability that the measured spi(¢) will
be below the three sigma Lower Natural Process Limit (based on the Normal distri-
bution), due to statistical fluctuations alone, is 0.0013, and the probability that spi(7)
would be above the Upper Natural Process Limit is also 0.0013.

Formally, we say that if the value of spi(r) falls outside the natural process limits,
we reject the null hypothesis that this is a random draw from a probability distribu-
tion describing a stable population. This is an indicator that the process may be
going out of control, as the probability that this value would occur with the process
in control (stable) is only about 1/400. More specifically, if project management
were to follow up on every value of spi(7) outside the Natural Process Limits to
investigate a possible change in the process, management would be wasting its
effort only once in 400 times.

As an indicator of variability, control charting methods often use the period-to-
period range, which is the absolute magnitude of the difference between the current
period value and that in the previous period, e.g.,:

o spirange(t) = spi(t) — spi(t — 1)| for the range of the schedule performance index.
e cpirange(t) = cpi(t) — cpi(t — 1)| for the range of the cost performance index.

The mean and the variance for the range can be determined by statistical meth-
ods, and the Upper Control Limit and the Lower Control Limit for the range estab-
lished. Note that the mean of the process, E[cpi(f)], could be changing with no
change in the variance, or vice versa. Also, some changes will appear to be benefi-
cial: a decrease in E[cpi(#)] may indicate that the job is running over budget but an
increase in E[cpi(#)] may mean finishing under budget. Similarly, a reduction in the
standard deviation of cpi(f) appears to be favorable, whereas an increase in the stan-
dard deviation may be indicative of future problems. People are naturally more
interested in adverse trends than favorable trends, but both kinds indicate that some
assignable cause we don’t know about is apparently changing a project process that
we thought was stable, and the cause of this instability should be investigated and
understood. That is, if cpi(f) is decreasing, the project may go over budget, and so
the project manager needs to identify the assignable cause and correct it before the
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problem becomes intractable. If, however, cpi(t) is increasing, the project is trend-
ing under budget, and so the project manager wants to identify the assignable cause
so that he can take advantage of it on other jobs.

Of course, the +3 sigma process limits are simply points on a Normal probability
distribution, and by themselves say nothing about quality. To use the reported prog-
ress data for control, one must know what acceptable performance is. That is, one
must establish the Upper and Lower Specification Limits (USL and LSL), which
define the band of acceptable performance; that is, the band in which the values
should lie under acceptable project practices and specifications. Then, if
LSL < LNPL < UNPL < USL, the process lies within the specification requirements;
orif LNPL < LSL < USL < UNPL, the process lies outside the specification require-
ments, and management should be taking action.

A comparable metric is the capability index, Cp, which may be defined as

(USL-LSL) . . o
P = T if Cp < 1, the process is not capable; that is, it cannot produce
c

acceptable quality performance. As an obvious example, in the case of spi(f) and
cpi(t) variables, the Natural Process Limits should include the target value
1.0:u—36 <1 < u +30 .Ifnot, the process is incapable of being on time or
on budget.

Then, in the statistical analysis of a project process, we are interested in two
separate issues:

 Is the process inherently capable of meeting the specification limits?

» Is the process consistent (stays within the Natural Process Limits)? Note that a
process may be consistently within its own limits and still not meet the specifica-
tion limits.

Generally, three sigma quality is regarded as excellent quality. It means that there
is only one chance in 400 that any progress observation will lie outside the (two-
sided) Specification Limits (which, of course, must be outside the Natural Process
Limits). If the project process is highly variable, then the +3 sigma process limits
may be too wide. Suppose that the Specification limits lie inside the +3 sigma con-
trol limits, 4 — 36 < LSL < USL < u + 30 but lie outside the four-sigma limits
LSL<u—20<u+20<USL.

Then one might say that management has achieved two sigma but not three sigma
quality. This is not as good as three sigma, but it might be all that is achievable.

One of the difficulties in applying statistical process control to project is, how to
set the specification limits. Appropriate specification limits for variability in con-
crete breaking strengths, for example, may be available from engineering consider-
ations and long histories of concrete tests, but management may have little
experience in specifying variability limits for the process of placing concrete. It is,
of course, difficult to achieve high quality in anything if one doesn’t know what
quality is.

Because spi(t) and cpi(f) are normalized dimensionless ratios, they are not influ-
enced by job size or duration. The spread between the upper and lower process
limits can be considered a measure of the quality of job management. If this band
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gets smaller over a number of jobs, then management is improving. If reasonable,
acceptable specification limits are set, and the +3 sigma process limits consistently
lie inside the specification limits, then one could say that project management has
achieved three sigma quality.

12.3 Creating Control Charts for Project-Related Processes

If data are available from other projects or activities which are similar to the activity
at hand and considered to be jobs under control, then the Control Limits should be
set from these data. It is preferable that these data be within the specifications for the
process, if the specifications are known, but this is not essential. It is essential that
these baseline projects should be consistent; that is, in statistical control.

If comparable baseline projects are not available, then the initial period of the job
at hand can be used to set the baseline control limits, if it appears from the data that
the process starts off in control. Perhaps the only practical way to really determine
this is to use the initial period to derive the Natural Process Limits and then to check
if the initial baseline data are consistent with these limits. If they are not consistent,
then the job has gotten off to a bad start and management attention is needed imme-
diately. The discussion here assumes that there is an initial period in which the
process starts in statistical control. If the subsequent data (after the baseline period)
also appear to be consistent with the derived Control Limits, then the baseline may
be extended and the Natural Process Limits recomputed with the additional data. Do
not, however, use inconsistent (out of control) data to derive Control Limits.

Let Xj represent either the period j schedule performance index spi(j) or the
period j cost performance index cpi(j), or some other measure of productivity at the
project or activity level that is expected to be stationary over the period of the job.
Assume that we have data on m periods in the baseline, which we will use to deter-
mine the Natural Process Limits for Xj (that is, for spi(j) and cpi(j)). The best esti-
mate of the population mean (in the baseline period, it is assumed that all observations
are drawn from the same population) is the mean over the m samples:

3

X = X

J

In a typical statistical quality control application, there are multiple (for example,
m) observations in each sample, and these were averaged. In a process control appli-
cation, there is only one observation per sample (that is, one cpi(f) per reporting
period), so that observation is the sample average.

The range is used to estimate the standard deviation, but in this application, with
only one observation per period, the Range, R;, is defined as the absolute difference
between successive observations; that is,

R =|X,-X,|
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Table 12.1 Control charts parameters

n dy E, A, G, D, D,

2 1.128 2.660 1.880 0.853 3.267 0.000
3 1.693 1.772 1.023 0.888 2.574 0.000
4 2.059 1.457 0.729 0.880 2.282 0.000
5 2.326 1.290 0.577 0.864 2.114 0.000
6 2.534 1.184 0.483 0.848 2.004 0.000
7 2.704 1.109 0.419 0.833 1.924 0.076
8 2.847 1.054 0.373 0.820 1.864 0.136
9 2.970 1.010 0.337 0.808 1.816 0.184
10 3.078 0.975 0.308 0.797 1.777 0.223

Note that there are only m — 1 ranges if we start counting with j = 1. Then the
Mean Range is the average:

e 1
R_EZ;RJ._EQXJ.—XJ._J

We can get an estimate for the standard deviation of the population oy by divid-
ing the mean range by a number called d, (this nomenclature was established by
Shewhart 70 years ago). Values of d, are given in Table 12.1 for various values of n,
the number of observations in each sample:

In the case of the moving range, use the value of d, for n = 2, that is, d, = 1.128.

The natural process limits for the observations are then defined by the mean plus
and minus three standard deviations (for £3 sigma limits):

LNPL=X-36,=X-3R/d,=X-E,R
UNPL=X+36, =X+3R/d, =X +E,R

where E, is given in the table above for both +3 sigma process limits. [Note:
6, =Gy, the estimated standard deviation of the mean is equal to the process mean
when there is only one observation per sample.] This defines the control chart for
X [spi(t) and cpi(?)].

To obtain the control limits for the range plot, we observe that the standard devia-
tion of the range, oy, is a multiple of oy, o = c,0x, Where ¢, is given in Table 12.1.
Then,

o, =¢,0, =¢,R/d,

UNPL =R+30, =R+3Rc,/d, =R[1+3c, /d,]

UNPL = D,R where D, =1 + 3c,/d,

LNPL = D,R where D; = max {0, 1 — 3c,/d,}

The factors D, and D; for the +3 sigma limits are also given in Table 12.1. For the
moving range, n =2, D, = 3.267, and D; = 0.0 for £3 sigma. For two sigma, replace
3 by 2 in the equations for UNPL and LNPL.
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12.3.1 Control Charts for Quality Control and Process Control

To compare Quality Control and Process Control expressions, sees Table 12.2. Use
the column at the left for Quality Control (the mean of n observations per sample)
and the column on the right for Process Control (one observation per reporting

period) (Breyfogle 1999).

Figures 12.1 and 12.2, respectively, show quality and process control charts.
Figure 12.1 shows a control chart for the mean of three concrete cylinder tests, with
two sigma upper and lower natural process limits, plotted against pour number.

Table 12.2 Quality control and process control comparison

Quality control

Process control

n observations for sample j: X; 1, X; 5, X; 4, ..., Xj ,

1 observation for period j: X;

— 1&
Mean for sample j: X, =— ) X,
L=

Mean for period j: X;

Estimated process mean:

_ m_ 1 m 1 n
X = X =— -y X
e

1
m

. s 1 &
Estimated process mean: X = —ZX .
m45

Range for sample j: R; = max,{X; ;} — min{X] ,}

Range for period j:
R =|x,-X,,| forj=2

_ 1l
Average range: R = —ZR/.
m

Average range:

S 1 g
R=—o R.:m;‘Xj—XH‘

J
m-143

Estimate of population standard deviation:
. R

X d2

Estimate of population standard deviation:

In which d, is taken from the table for n = number
of observations used in the computation of range

In which d, is taken from the table for n =2
(number of observations used in the
computation of range)

Estimate of the standard deviation of the mean:
. 6y

Oy \/;

Estimate of the standard deviation of the
mean: , &y

(e}
BN

Center line of the control chart for X: CL = X

Center_line of the control chart for X:
CL=X

Upper natural process limit (+3 sigma) for the
control chart for X:

Upper natural process limit (3 sigma) for
the control chart for X:

UNPL =X +36, = X+36, /n

UNPL = X +36,, = X +36,

UNPL = X+3R/(d,\n)= X+ A,R

UNPL=X+3R/d,=X+E,R

(continued)
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Table 12.2 (continued)
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Quality control

Process control

In which

In which

4,=3/(dn)

E,=3/d,

See table for values of A, vs. n

See table for values of E, (using n = 2)

Lower natural process limit (£3 sigma) for the
control chart for X: LNPL =X -A,R

Lower natural process limit (+3 sigma) for
the control chart for X: LNPL = X - E,R

Center line of the control chart for range: CL = R

Center line of the control chart for range:
CL=R

Upper natural process limit (+3 sigma) for the
control chart for range:

Upper natural process limit (+3 sigma) for
the control chart for range:

A

G, =C,0, =C,R/d,

A

G, =0, =C,R/d,

UNPL = R+36, = R+3c,6,

UNPL = R+36, = R+3¢,6,

UNPL=R+3c,R/d, =R(1+3c,/d,)

UNPL=R+3c,R/d, =R(1+3c,/d,)

UNPL = RD, in which D, =1+3c,/d,

UNPL = RD, in which D, =1+3c, /d,

Lower natural process limit (+3 sigma) for the
control chart for range:

Lower natural process limit (+3 sigma) for
the control chart for range:

LNPL = RD,

LNPL = RD,

in which Dy= max {0, 1— 3c¢,/d,}

in which Dy = max {0, 1 - 3c¢,/d,}

See table for values of D; and D, vs. n

See table for values of D; and D, (recall that
n =2 for range)

3400
3300
M 3200 —
5]
§ 3100 - =
=
= 3000 : — A — ;
B
5 2900 Y
2. 2800 _
a —ean - 2 Sigma
~ 2700 —Mean [
2600 A Mean + 2 Sigma
Sample Average
2500 T T T T T T L) Ll L} T T T T T T T Ll L] T T
0.1 23 45 & 7 8910 3% 12 13 1215 1617 18719 2021

Pour Number

Fig. 12.1 Control chart for mean 7-day strength
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Fig. 12.2 Project cpi series

Figure 12.2 shows a plot of the month-to-month incremental cost performance
index for a major (over $1,000,000,000) project with +3 sigma upper and lower
natural process limits. Is this process in statistical control? Is this process capable?

12.4 Statistical Quality Control

The underlying issue in statistical quality control is variability. Suppose an engineer
is performing receipt inspection at a site, by examining one item of a shipment of
parts or equipment to see if it meets the engineer’s specification. If there were no
variability, examination of one item would be conclusive: if that part is good, then
the whole shipment is good; if that part is unacceptable, then so are all the rest. In
this ideal case, statistical quality control is irrelevant. But, of course, there is vari-
ability, and so inspection of a single item in a shipment is not conclusive evidence
of the remaining items.

At the other extreme, the engineer could perform 100% inspection. All the good
parts would be identified and accepted; all the bad parts would be identified and
rejected. There would never be any doubt about the quality of the uninspected parts
because there would be no uninspected parts. In this ideal case, statistical quality
control would be irrelevant.
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In the presence of variability, inspection of one part is inadequate but 100%
inspection is expensive. (And probably even fallible; there is some evidence that
even 100% inspection is only about 80% effective, due to human factors (Breyfogle
1999).) Therefore, it is desirable to inspect some number or some proportion of the
total shipment of parts, and to base a decision whether to accept or reject the entire
shipment based on this sample. However, this sample is subject to small sample size
limitations, such that there is always some probability of an error, insofar as the
small sample is not representative of the population of all items. If, based on a
sample, we decide to accept the entire shipment, then there is some probability that
there is actually an excessive number of bad parts in the shipment. Conversely, if,
based on a sample, we decide to reject the entire shipment, then there is some prob-
ability that the parts in the shipment actually meet the specification. The first case is
sometimes called the consumer’s risk (the risk of accepting a shipment when the
parts are actually no good; the second case is sometimes called the producer’s risk
(the risk that the purchaser will reject the material when it actually meets his speci-
fication). Both risks decrease as the sample size gets larger (and theoretically
become zero if the sample is 100% of the shipment).

Statistics is then just a way of estimating the risk (probability) that we will make
an error by accepting a shipment of bad parts or rejecting a shipment of good parts.
Either error costs money, wastes time, and makes us look bad. However, there is no
way of avoiding these risks, short of inspecting every part.

Quality may be measured by the proportion of bad parts in a shipment, or in
other ways, and quality-related decisions may go further than simply accepting or
rejecting a shipment. Consider another type of quality that is determined by mea-
surements: cast in place concrete. As a quality control measure, typically three test
cylinders are cast along with the concrete placement, for every batch of concrete.
These cylinders are tested 7 days after placement, and the compressive strength
measured. The values for the three sample cylinders are averaged. If the measure-
ments do not meet the specification requirements, then either the engineers have to
be called in, to determine if the low strength concrete can be accepted, or the 7-day
old concrete has to be jack hammered out. These things are expensive. But if the
concrete strength is much larger than necessary, this costs money too. Because of
variability, we cannot design the concrete mix to be exactly the strength desired; we
must make it stronger. The cost of variability can be seen from a simple example.

Suppose we want concrete with ultimate strength of, say, 3000 at 7 days. If )_(j
represents the average for the j-th sample of n cylinders broken at 7 days, then we
may require that )_(J. 23000 . But, due to variability in the test specimens, we must
restate this requirement in a probabilistic sense: P {Xj < 3000} <a ,where a is the
probability of an error in accepting that the entire concrete batch has strength >3000
when it actually has strength <3000. Suppose that the true distribution of the mea-
sured values has mean value y and variance o°. That is, each cylinder test is a ran-
dom draw from a population (assumed Normal) with mean value x and variance o”.
Of course, we don’t know what these values are. Because of our uncertainty (or
ignorance) about the strength parameters, we have to break the test cylinders to
make some estimates of these parameters. From the tests, we compute the sample
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mean X ; and use it as an estimate of the population mean 4. Since, by definition, if
X, is the breaking strength for cylinder &, in sample j, then

i
ZX/ k

nkl

If we have tested m samples, then we can compute the average over all samples
as:

gl

m 4 -

Here X is a better estimate of the process mean than the single sample mean. We
know from elementary statistics that the variance of the sample mean is:

o, :Var[)?] = %Var[X] = %62

o
oy =—

" n

In this case, we will call the value 3000 the Lower Specification Limit (LSL),
that is, the lowest value for the sample mean that is acceptable by the specification
and let @ = 0.025. That is, we will accept a process in which 1 out of 40 sample
means is below the specification limit and 39 out of 40 are above the specification
limit. This value of a corresponds approximately to the 4o level. That is, using the
standard tables for the Normal distribution, the probability that X ;1s less than the
mean minus 2oy, (or greater than the mean plus 2,) is 0.023 (close enough for this
work). Let n = 3. If we know the population standard deviation, say ¢ = 125, then

1
o il » =100 . Then we must design the concrete mix to have a mean
M \/’ \/’

strength of 3000 + 20,, = 3200 (see Fig. 12.3).

Suppose, however, that the concrete mix process was more variable, such that the
population standard deviation was, say, ¢ = 865. Then o, =865/ f 500 . To
overcome the variability and assure that the Lower Spemﬁcatlon Limit is violated
not more than a% of the time, we have to raise the mean strength. In this case, the
mix design would require a mean of 3000 + 20, = 4000. Clearly the higher vari-
ability is going to increase the requirement for cement and hence the cost of the
concrete.

The quality of the concrete is represented by the probability that a sample will be
accepted as satisfying the specification. It is conventional to refer to this quality in
terms of numbers of standard deviations. That is, in the concrete case we set the
Lower Specification Limit to be 4 — fo),, where 7 is an integer, 1, 2, 3, etc. We con-
sider only the one-sided or one-tailed case, because in general we don’t reject con-
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Table 12.3 Probability of rejecting concrete batch

LSL % Batches rejected Design p if 6 =865 |Designpu ifo=175
H— Oy 15.87% ~1/6 3500 3100
u—20y 2.28% ~1/44 4000 3200
u—30y | 0.135% ~1/740 4500 3300
pu—4cy |0.00317% ~1/32,000 5000 3400
u— S0y |0.0000287% ~1/3,500,000 5500 3500
pu— 60y | 0.0000000987% | ~1/1,000,000,000 | 6000 3600

crete for being too strong, only for being too week. Table 12.3 shows the probability
of rejecting a batch of concrete for different values of 7, and the mean design strength
we must use to meet this level of quality for the cases in which 6 =175 and ¢ = 865.

Therefore, if we aspired to 66 quality, we would reject only one batch in a billion,
but we would have to design for a mean strength of 6000 to achieve this, if ¢ = 865.
It is unlikely that anyone pouring concrete would require 6¢ quality, as one would
never see a batch rejected in a lifetime. However, setting the Lower Specification
Limit (LSL) at 4 — 30y, is not unreasonable, and would produce concrete such that
about one in 740 batches would be rejected. In some cases, LSL = u — 40, might be
appropriate, but this level of quality would require raising the mean design strength
to 5000.

The above example illustrates why many people say that quality in costs a lot of
money. It does, if quality is obtained by over design, as in this case. If LSL = u — 30y,
for example, about 98% of all batches have mean strength over 3500, when only
3000 is required, so a lot of cement is being wasted. The objective of the Six Sigma
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process is to meet the quality objectives by process improvement rather than gross
over-design. In this example, if the process can be improved to the point that
o =175, then the LSL = u — 30y, criterion can be met by designing the concrete to
achieve a mean sample strength of 3300 instead of 4500. Reduction in process vari-
ation can actually save money. For example, increasing quality by lowering the LSL
from y — 20, to u — 30, reduces the frequency of rejects from 1 in 44 to 1 in 740.
In other words, for every batch rejected at the 3o quality level, 17 batches would be
rejected at the 20 level. As, by assumption, the concrete has been in the forms for
7 days prior to the tests, removing this rejected concrete could cost a lot of money,
even if it were possible.

How can the process variation be reduced? That is what the engineer is paid to
determine.

Suppose that instead of (or in addition to) specifying a constraint on the average
breaking strength of n specimens per batch, the specification writer put a constraint
on the minimum value of the n specimens.

In each batch, one computes the sample mean strength )_(j from the three (or n)
test specimens. It is also necessary to compute the sample variance. It is conven-
tional in Statistical Quality Control to compute the sample standard deviation from
the Range of the sample, where Range is defined as

R, :maxk[Xk]—mink [X,{] for sample j

This usage may be in part because, when SQC was developed (by Shewhart and
others), computing the squares and square roots in the usual equation for sample
standard deviation was difficult, without computers or even pocket calculators, so
simpler formulations were preferred. Also, the sample sizes are very small, so cor-
rections were applied to these calculations to compensate for small sample size.
These corrections are tabulated and are so widely used that they are essentially part
of the method. Therefore, they will be used here.

If there are many samples in each batch, then one can approximate the sample
standard deviation by:

R.
6=—2

6

Here, & is an approximation to the true, but unknown, standard deviation, .
This approximation is based on the fact that, for the Normal distribution, the area
(probability) between the mean minus three standard deviations and the mean plus
three standard deviations is 0.9974, which is close to 1.00. Then, the Range is very
close to being six standard deviations (6 — o), and one can estimate the standard
deviation as one-sixth of the observed Range. However, this approximation cannot
be used for small sample sizes.

Let R be the average range over some number of samples (that is, concrete
batches). That is, there are m samples (or batches), indexed by j, and n specimens in
a sample, indexed by k, then:
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R; = max, [ijk ] —min, [ijk ]for sample j

_ 1 m
R=—)>R,
m <

Then, an estimate for the population standard deviation that is valid for small
samples is:

. R
o, =—
X d2

Here d, is a function of n, the sample size, and is tabulated in Table 12.1 for n
from 2 to 10. For values of n greater than 10, use d, = x/; .

From the above discussion, an estimate for the standard deviation of the mean
strength is:

.6,
O-Mzﬁ

In using Statistical Quality Control, one often displays the information on a
Control Chart. On a control chart for the mean sample strength X are shown the
following, plotted for the number of samples (see figure below):

e The desired mean, p, as given in the specification

e The Center Line, or CL, determined by the sample mean, X

e The Upper Specification Limit, USL, usually given by u + 30y,

e The Lower Specification Limit, LSL, usually given by y — 30y, defining the Six
Sigma specification USL — LSL = (u + 30y, — (4 — 304) = 60y (However, in the
example above we defined the LSL as y — 20),)

e The Upper Natural Process Limit, UNPL, given by the estimated process param-

3G_X:)_(+i[£]:)?+A2R. The table in

Jn Jn\d

2

eters, UNPL=X+36, =X+

Chap. 20 gives values for A,
e The Lower Natural Process Limit, LNPL, using the estimated process
parameters,

LNPL =X 36, = X - 0x :X—i(ﬁj:)?_/;zﬁ_

Jn n

* The observed sample means }?j

Figure 12.4 shows a control chart for sample means with the Lower Specification
Limit (LSL) indicated at the y — 35,, = 3300 — 3(100) =3000 level. Also shown are
the computed values for the process mean and the Lower Natural Process Limit
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(LNPL). Here it is clear that the LNPL lies inside of (above) the LSL, at about the
3100 level. That is, the process is producing results that are acceptable or even better
than the specification. If the process has LNPL > LSL, and, if appropriate, UNPL <
USL, then the process is said to be capable of meeting the quality specification.

Figure 12.5 shows a control chart for sample means with the Lower Specification
Limit (LSL) indicate at the 4 — 305, = 3300 — 3(100) =3000 level. Also shown are
the computed values for the process mean and the Lower Natural Process Limit.
Here it is clear that the LNPL lies outside of (below) the LSL, at about the 2850
level. That is, the process is actually producing results that, statistically, do not meet
the specification because a higher number than permitted are below the LSL due to
higher variation than the baseline. If the process has LNPL < LSL, and, if appropri-
ate, UNPL > USL, then the process is said to be not capable of meeting the quality
specification.

The values for the horizontal lines in the control chart are determined based on a
process that is in statistical control. That is, there is variation, but this variation is
considered an acceptable part of the process. If the process is under statistical
control, the variations in the actual observations are random. Random variations are
generated by some common cause or causes. If the variations are not random, then
the variations are due to some assignable cause, and the process is not under statisti-
cal control. This means that the engineer must find the assignable causes and elimi-
nate than before the process goes off track. The function of the control charts is to
help the engineer identify whether the process is under control, in order to do some-
thing about an assignable cause before it becomes a major problem.

Are the actual sample averages in the figure just above random? Why or why
not?
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Suppose, in the example above, we wanted a process with the LSL set as y — 30y,
= 3000. Then, assuming we consider a standard deviation of 500 to be acceptable
variation, we must design the concrete mix for a mean strength of 4500 (that is, the
Coefficient of Variation is 500 / 4500 = o/u = 11%). If this process as observed is
performing under statistical control, the likelihood that a sample mean strength
would be less than 3000 is 0.0013, or about 1 in 1000. Suppose that some sample
average is in fact less than 3000. Then there are two possible hypotheses:

1. The process is in statistical control but just happened to generate a random event
with probability 1 in 1000.
2. The process is not in statistical control.

If we consider 1 in 1000 to be a small probability, then we can reject hypothesis
1 and go looking for the assignable cause. Still, there is 1 chance in 1000 that we are
wrong, that hypothesis 1 is correct, and the process is still in control.

12.4.1 Range Charts

In addition to the control charts for X , the sample mean, one can define a number
of other control charts. The chart that will be discussed here is the control chart for
Range. Range was defined above. The control chart for range has a center line at the
mean Range,
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R= iR

mi5 /

The UNPL, also called the Upper Control Limit (UCL), and LNPL, also called
the Lower Control Limit (LCL), are given by:

UCL =D,R
LCL=D,R

The coefficients D; and D, for various values of n, the sample size, are given in
the Table 12.1.

Example 12.1
Consider project data in Table 12.4 (this example is adopted from Breyfogle (1999),
pages 165-166).
Is X process in statistical control? How about Range process? Is it in statistical
control? Figure 12.6 shows the data and natural process limits and process mean.
Note the three points indicated by arrows that lie outside the 66 band. This pro-
cess is not in statistical control and the engineer should seek to identify the assign-
able cause or causes for these three points. Figure 12.7 shows Range Control Chart
for the same data.

Table 12.4 Project data

Sample no. X1 X2 X3 X4 X5 Mean X Range R
1 36 35 34 33 32 34 4
2 31 31 34 32 30 31.6 4
3 30 30 32 30 32 30.8 2
4 32 33 33 32 35 33 3
5 32 34 37 37 35 35 5
6 32 32 31 33 33 322 2
7 33 33 36 32 31 33 5
8 23 33 36 35 36 32.6 13
9 43 36 35 24 31 33.8 19
10 36 35 36 41 41 37.8 6
11 34 38 35 34 38 35.8 4
12 36 38 39 39 40 38.4 4
13 36 40 35 26 33 34 14
14 36 35 37 34 33 35 4
15 30 37 33 34 35 33.8 7
16 28 31 33 33 33 31.6 5
17 33 30 34 33 35 33 5
18 27 28 29 27 30 28.2 3
19 35 36 29 27 32 31.8 9
20 33 35 35 39 36 35.6 6
Mean 33.55 6.2
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Note the two points indicated by arrows that lie outside the 60 band. The ranges
for two of the samples are significantly greater than the ranges for the other 18
samples. This process is not in statistical control and the engineer should seek to
identify the assignable cause or causes for these two points.

12.5 Control Charts and Statistical Project Control

Suppose the project manager wishes to use Project Control Charts for a project. A
simple form of run chart could be obtained by plotting the cost of each sequential
unit against unit number as completed. This is shown in Fig. 12.8. The mean cost is
of course 100, and the standard deviation of each cost is 40, so the Upper Natural
Process Limits are at mean+oc = 140, mean+2¢ = 180, and mean+3¢ = 220; only
mean+o = 140 and mean+2¢ = 180 are shown. The run chart indicates that this pro-
cess, consisting of the construction of identical units, is in statistical control; no
points break through the mean+2¢ line, much less the mean+3¢ line. However, there
is some question about a long run, with 14 consecutive values above the mean line,
a highly improbable event, perhaps indicating that the project is not in statistical
control. However, by the time the project manager could detect such a long run the
project is nearly over.

Where on this run chart would one place the Specification Limit? One could put
it at the mean line, or 100, implying the specification that unit costs should not
exceed the estimated $100 per unit, but this would result in, on the average, 50% of
the units being declared out-of-spec. Is the process shown in the figure below in-
spec or out-of-spec? Where should the Specification Limit be placed?

e |JNPL: Mean + 2 Sigma
— NPL
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o

Sample Range
]
[=]
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40

20

= Mean Unit Cost
LNPL: Mean - Sigma
et Actual

N
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Fig. 12.8 Run chart for unit cost
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An alternate approach could be to generate a run chart for the expected cost at
completion, as shown in Fig. 12.9, rather than the individual unit costs. The a priori
mean cost at completion is $2000 and the standard deviation of the cost at comple-
tion was determined previously to be $595.83, so mean+lo is $2595.83 and
mean+20 is $3191.66. Again, the process appears at first to be in statistical control,
with no value making it to the mean+2¢ limit, let alone a mean+3o limit. Still, this
chart has 17 values in a row all above the mean line, a statistically highly improba-
ble event, so the process may be declared out of statistical control. However, this run
length criterion may be suitable for manufacturing operations, which are generally
unlimited in time, but projects are limited in duration and detecting out-of-control
situations based on run lengths may not be very helpful.

But, where is the Specification Limit? Again, it might be placed at the mean, but
this gives a 50% probability of being out-of-spec, too large to be helpful. It might be
placed at the mean+1o line, where the probability of being out-of-spec is about
16%, but this is rather arbitrary. In fact, the location of the Specification Limit has
nothing to do with the location of the Natural Process Limits; the two concepts
measure different things.

The control chart in Fig. 12.10 adopts a statistical approach. It was stated earlier
that the project manager wanted a budget such that the probability of success would
be 90% or more and the probability of failure (exceeding the budget) would be 10%
or less. That budget was determined to be $2763.86. Therefore, the project manag-
er’s clear specification for this project is that the probability of over-running the
$2763.86 limit should be less than 10%. This is reflected in the chart below. The
Specification Limit is the horizontal line representing a 10% probability of overrun-
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ning. The probability of a cost overrun is computed by the approach given above
and plotted in the control chart. Here it is seen that the probability of overrun
exceeds 10% when 13 of the 20 units have been completed, and so the process is
out-of-spec at that point.

Computing the probability of an overrun is not difficult is not difficult if a spread-
sheet is used for the control chart. After seven units have been completed, the pre-
dicted cost at completion is $2126.55. The standard deviation of this prediction is
calculated by the equations above to be $329.12. Then the probability that the cost
at completion will under run the available funding, namely $2763.86, is 0.9736, so
the probability of overrunning is 1.0-0.9736 = 0.0264. Therefore, based on the
results from the first seven units completed, the project manager has only a proba-
bility of about 2.6% of failing to meet the available funding limitation, as shown in
Fig. 12.10.

An alternate metric for tracking through a control chart is the Value-at-Risk.
Before the project began, the project manager (or his client) was willing to accept a
VaR at the 90% confidence level of $2763.86. As each unit is complete, the poste-
rior VaR can be computed from the newly-acquired cost information. For example,
after the completion of seven units, the revised expected value of the cost at
completion is computed to be $2126.55. The computed standard deviation of the
cost at completion is $329.12. The VaR at this time may be 2548.33. Hence the
posterior VaR is less than the initial VaR by the amount $215.53, and the project is
in-spec with regard to cost. Figure 12.11 shows the Specification Limit as the hori-
zontal line at the initial or prior value of the VaR, at $2763.86. Any VaR below this
line is in-spec; any VaR above it is out-of-spec with regard to cost.
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The variations in the revised budgets and expected costs at completion, after each
work package, unit, is completed, are shown in the figures given above. The objec-
tive of using the confidence limits is to keep the confidence band positioned so that
it envelops the (unknown) actual cost at completion. That is, no one can predict the
future (the actual cost at completion) with certainty, but we can try to define a con-
fidence band that bounds where we expect to find it (with probability 90%, in this
case). Although the lower confidence bound is not shown in the figure (it is the
expected cost at completion minus the contingency), it is clear that, for this example
at least, the method has achieved the goal of keeping the 90% confidence limit
above the actual cost at completion for every step in the process up to project com-
pletion. Of course, even though the costs increased over the original estimates, this
example was actually well behaved in that it never ran out of contingency (although
contingency was being used up for some period of time).

Figure 12.12 shows the change in uncertainty regarding the final cost at comple-
tion as each unit is completed, providing additional information about where the
project is going. (Some units have been omitted from the figure for clarity; plotting
all 20 units results in a graph too difficult to read.) Before any work is done, the
prior estimate of the probability for the cost at completion is centered on $2000, but
has a very high standard deviation (uncertainty), as shown in the figure below. After
the completion of the first unit, the probability distribution becomes narrower and
shifts to the right. As each subsequent unit is completed, the best estimate or most
likely value for the cost at completion increases somewhat, depending on the latest
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actual reported cost, but the uncertainty (the width of the distribution) always
decreases. The figure illustrates how the method starts with a high degree of uncer-
tainty and zeros in on the target as more information becomes available about actual
project cost performance.

12.6 Practice Problems

Problem 12.6.1 You are a Construction Engineer working for an asphalt paving
contractor. The general superintendent is concerned about the allowances for small
tools and supplies that are included in bids for jobs. Obviously, a bid allowance
that is too low leads to loss of profits, whereas an allowance that is too high may
lead to loss of jobs to competitors. The allowance for small tools and supplies cur-
rently used in bid development is 10 cents per ton of asphalt placed, and the
superintendent wants to know if this factor is still valid, if any particular jobs have
significantly overrun the allowance, and if there is any time trend in the small tools
expense. Data on 19 actual jobs, showing the actual tons of asphalt placed and the
actual expenditures on small tools and supplies, are shown in Table 12.5, in chron-
ological order.
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Table 12.5 Problem data

Description Job # Tons asphalt placed $ small tools
Guilford road resurfacing 1035 8961 2080
Mebane Oaks road and highway 119 1036 17,406 2726
State highway 49 at Trollingwood road 1037 32,048 3380
State highway 49 at Orange street 1038 12,377 1954
Alamance at Guilford road 1040 16,921 5973
Davidson county resurfacing 20,452 56,836 9217
City of Reidsville 20,454 2632 704
City of Winston 20,459 15,885 2882
US 52 Northbound lanes shoulder 20,461 9524 2626
US 52 Southbound lanes shoulder 20,462 10,196 2467
US 220 at Guilford road 20,466 6189 379
City of Thomasville 20,469 2905 1083
WBS 37193 20,472 4833 1899
Business 40 and US 431 ramps 20,474 3599 1158
WBS 36788 20,475 10,116 4641
Bluff school road 20,476 1684 442
Kivett drive 20,477 2561 1397
Orange and Caswell 20,480 13,725 2275
Davidson county 20,484 20,998 1560

Show a control chart for dollars expended on small tools per ton of asphalt, as a
function of time. Is this process homogeneous (in statistical control)? Explain why
or why not. Show upper and lower process limits. Is it possible to define specifica-
tion limits? If so, what should they be? Do any jobs stand out, high or low? Is the
actual expense for small tools a linear function of the job size, as is implied by the
10 cents per ton factor, or is some other relationship with job size better?

Problem 12.6.2 When the Wehner Building was under construction, project engi-
neers made observations on the time it took to drill in foundations. The raw data for
eight sampled holes are shown in Table 12.6, in order of drilling. The total drilling
time for each hole is the sum of the shaft drilling time and the bell drilling time.
Movement of the drilling equipment, etc., from one hole to another is not included.
Setting of rebar cages is not included. Many other holes were drilled but not
recorded, but there is no reason to believe that they differed statistically from this
limited sample.

* Compute the means and standard deviations for the bell, the shaft, and the total
drilling time per hole.

e Compute the Three Sigma Upper Natural Process Limit and the Lower Natural
Process Limit for the bell and the shaft.

¢ Plot the run chart with LNPL and UNPL for the bell and the shaft (both on the
same plot).
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Table 12.6 Problem data
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Hole Shaft Drilling Time Bell Drilling Time
(Number) (Hours) (Minutes) (Seconds) (Hours) (Minutes) (Seconds)
P48K 0 33 41 0 55 50

P48H 0 30 57 0 52 12

P48G 0 47 9 1 15 47

P48A 0 25 34 0 48 23

P48U 0 31 46 1 6 52

P48R 0 42 49 1 3 43

P48M 0 40 52 1 10 24

P48L 0 38 57 1 3 38

e By examination of the run plots, are the bell times and the shaft times correlated?
Compute the correlation coefficient between the bell time and the shaft time.

e Compute the mean and the standard deviation for the total time, and then plot the
run chart with LNPL and UNPL for the total time.

* Repeat the above for the Range Charts for the bell, the shaft, and the total time

each hole.

Is this process under statistical control? Why or why not? What is your recom-
mendation about this process? Do you think there should be specification limits? If
so, what should they be?
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Chapter 13
Forecasting Project Completion

Abstract In this chapter we discuss methods for forecasting future job progress.
More specifically we focus on forecasting two important project performance crite-
ria — completion time and cost-at-completion, on the basis of past progress data. We
introduce a class of S-curves that is suitable for representing job progress as well as
discuss how to develop the confidence intervals around the forecasts. In addition we
show how Bayesian methods can be used to update the parameters of the S-curve
models.

Keywords Earned value - Forecasting - S-curves

13.1 Introduction

One might say that project management is all about forecasting, because a project
manager constantly needs to forecast future job progress, and in particular to fore-
cast completion time and cost at completion, on the basis of past progress. If the
predicted cost is close to the project budget, and the predicted completion date is
close to the project schedule, then the project manager may not need to do anything.
On the other hand, if the predicted cost at completion is much greater than the bud-
get, or the predicted time at completion is much greater than the schedule, the proj-
ect manager may need to do something immediately.

One might also like to place confidence intervals around the forecasts, in order to
assess the reliability of the prediction, so that the project manager does not err by
taking action when no action is needed, or by taking no action when action is
required. Clearly, this approach has its limitations, one of which is the lack of data
to work with, especially early in the job. Nevertheless, forecasting project comple-
tion is essential to effective project management, and often the lack of precision in
all of the forecasting approaches means that there is value to be gained from using
multiple, independent forecasting methods.
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13.2 Prediction Using Earned Value Management

At some time ¢, it is desired to estimate the cost at completion, EAC or ECAC, from
the progress to date. Then,

e BAC is the Budget at Completion, or the total budgeted cost.
e FAC(7) is the estimated cost-at-completion based on information at time ¢, to be
determined.

e BCWS(2) is the plan, the Budgeted Cost of the Work Scheduled at time z.

e ACWP(2) is the reported actual cost of construction performed up to time 7.

e BCWP(t) is the earned value reported at time . BCWP ( t)

e CPI(z) is the Cost Performance Index at time ¢, CPI (t) =
ACWP (1)

Clearly, the estimated cost at completion has to exceed the cost of the project to
date, if the project is incomplete, or EAC(f) > ACWP(t). The remaining work, or
value, at the budgeted rates, is BAC — BCWP(t). Based on the project to date, the
ACWP(t) 1.0
BCWP(1) CPI(t)
the assumption that the average CPI observed for the work done to date will be true
of the work to be done,

average ratio of actual cost to budgeted cost is Then, based on

EAC(1)= ACWP(t)+[BAC—BCWP(t)]{ACWP(I)}

BCWP (1)

ACWP(1)

EAC(1)= ACWP(1)+ BACI:BCWP(IJ —ACWP(1)

Therefore, to estimate the cost at completion at any time, one simply scales the
original budget by the inverse of the current CPI.
Predicting the duration of the project is not so straightforward. Define

e SDAC = the original Scheduled Duration at Completion, or the earliest time 7 at
which BCWP(t) = BAC.
e EDAC(t) = the Estimated Duration at Completion, made at time .

By analogy with the cost estimate, one might say that

This estimate is here called EDAC(f) because it is only one possible estimate. To
arrive at another estimate, the average rate of accomplishing work, that is, earning
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BCWP (1)

value, is (given that the project started at time 0). The remaining work,

or value to go, at the budgeted rates, is, as above, BAC — BCWP(t). The time left
until the estimated completion is EDAC(f) — t. That is, the remaining value,
BAC — BCWP(1), has to be earned in the remaining time EDAC(f) — t. Assuming
that the average rate of doing work (value earned per unit time) is the same in the
future as it was to date,

BAC - BCWP (1)

BCWP(t)/t = EDAG, (1)~
%}fmt—t:EDAQ(O_I
BAC BAC
EDAC, (t)= t(BCWP(t)J - t[BCWS(t)SPI(t)J

Therefore, by the second method, to estimate the project duration, or the date at
completion, one simply divides the current project time by the proportion of the
value earned to date.

Unfortunately, the two methods do not usually give the same predictions.
Consider a project where BAC = 100 and SDAC = 66.

Figure 13.1 shows BCWS(t) (dotted line) and BCWP(t) (solid line), while
Fig. 13.2 shows SPI(¢). The actual earned value starts slower than the plan but then
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Fig. 13.1 BCWS(t) vs. BCWP(t)
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Fig. 13.2 Schedule Performance Index SPI(t)

catches up, so that the actual project duration is exactly the scheduled duration,
66 weeks.

Figure 13.2 shows the Schedule Performance Index SPI(f) determined at each
time ?.

Based on the SPI, the project manager would conclude that the project shown
here is behind schedule up to the half-way point (# = 33 weeks), and ahead of sched-
ule after that.

Figure 13.3 shows the estimated dates of completion given by the two methods
defined above. Method 1 (EDACT1) is the dotted line and Method 2 (EDAC2) gives
the solid line. Both substantially overestimate the duration, up to the half-way point,
and then both underestimate the duration. The second method gives more extreme
deviations than the first.

Other methods for prediction have been proposed, but none is generally accepted.
The two methods discussed here have the common characteristic of overestimating
the project duration based upon early results, and underestimating the duration late
in the project. If these prediction methods are actually used by project managers, as
seen in the example, the forecasts (and the SPI) might encourage them to add
resources early on, even though the project would have completed on time with no
intervention. Then, later in the project, both methods underestimate the duration,
possibly leading project managers to release resources prematurely, in the optimis-
tic expectation of early completion. Thus, erroneous forecasts could lead to stagna-
tion late in projects and hence lead to overruns.
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Fig. 13.3 Estimated duration at completion

Table 13.1 Percentage job Period | Progress %
complete, first ten reporting 0
periods |

2.4
3.2
4.7
6.1
7.8
12.3
14.1
25.1
273

O |0 N NN R W= O

—_
(=)

13.3 Linear Regression

Perhaps the first thing that comes to mind regarding forecasting is to plot the actual
reported progress curve, BCWP, against time, ¢, fit a straight line to the past data
points, and then extrapolate this line to obtain the Estimated Date at Completion
(EDAC), when the BCWP equals the Budget at Completion (BAC). However, very
often tasks, jobs, or projects start slowly and the rate of progress increases over
time, rather than remaining constant, as the linear extrapolation would assume.
Consider, as an example, the reported progress (in percentage of the total Budget at
Completion) for the first ten reporting periods shown in Table 13.1.

Figure 13.4 shows the result of a linear fit to the reported data set. Clearly the fit
is poor, and using this function to extrapolate to the date at which the job would be
complete would not be credible.
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Fig. 13.5 Exponential fit to first ten periods in Table 13.1, and exponential extrapolation

If the linear fit is not very attractive, the next thought, based on the convex cur-
vature of the plot of the data, might be that a quadratic or exponential fit would be
appropriate (Pindyck and Rubinfeld 1976). The following plot in Fig. 13.5 shows an
exponential fit to the same data points. Clearly, the fit is somewhat better, but one
might observe that real projects tend to slow down toward the end, and the exponen-
tial fit indicates that the rate of progress (the slope) is still accelerating just as the
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project finishes (becomes 100% complete). A quadratic fit gives similar results.
These results lead us to try sigmoidal, or S-shaped curves, as a better representation
of how projects actually go through their life cycles.

13.4 Sigmoidal Curves

The S-shaped, or logistic, curve is ubiquitous in projects. In fact, this curve might
be said to be at the heart of all projects, because it has a beginning, a middle, and an
end. Consider, as a simple model, that there are two pools of work: Work-done and
Work-to-be-done, and the job consists of the process of transferring work units from
Work-to-be-done to Work-done. When all the work has been transferred from Work-
to-be-done to Work-done, then the job is finished. Because the project is finite
(indefinite work without a beginning or an end is not a project), there is a rising
S-shaped curve that shows the cumulative Work-done as a function of time. There is
also a falling, or reverse S-curve, which shows the decline of Work-to-be-done over
time. The sum of Work-done plus Work-to-be-done is, of course, a constant (barring
scope changes and rebaselining). The fundamental nature of the logistic in projects
can hardly be overemphasized. Many projects are actually managed by the S-curves.
Some people misunderstand the S-curve as the result of the changing levels of
resources used during the successive stages of the life cycle. However, this state-
ment has it backwards, by confusing cause and effect: the changing levels of
resources are the result, not the cause, of the inherent S-shape of progress on
projects.

To generate a simple model, we first assume that we have some reliable metric of
work performed on a project (Work-done). For example, in a construction field
activity, this might be the number of units (such as piping spool pieces) installed to
date. We assume that all the units are equal, or that each has been assigned some
weighting factor to make them equivalent, so they can be added together. One typi-
cal weighting factor is the estimated number of man-hours for each type and size of
spool piece, and progress is the cumulative sum of the product of spool pieces
installed times man-hours per spool piece, expressed as equivalent man-hours. Here
we assume that we know the total work at completion (the initial value of Work-to-
be-done) and the cumulative work accomplished (Work-done) at each reporting
period.

13.4.1 The Pearl Curve

To generate a simple model with enough generality for many types of jobs, let us
consider the rate of doing work (the rate of flow of completed work out of Work-to-
be-done and into Work-done). Let Ay(t) be the amount of work accomplished in a
reporting period At (for example, a week or a month). Let y(¢) be the cumulative
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by(O[S = y(0)]
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Fig. 13.6 Work-to-be-done schematic diagram

Work-done accomplished up to time ¢, and let S be the initial amount of Work-to-be-
done (and the final amount of Work-done). Then S — y(¢) is the amount of work
remaining to be done at time ¢ (see Fig. 13.6).

What might we say about the flow between these variables? One might reason,

(1)
At
Work-done, y(t). This seems reasonable because, on any project, some work must be
accomplished in order to enable other work to be done. Work tends to fan out from
the project inception, as shown by typical project networks. The work that can be
done, based on the work already done, is sometimes called the work face. When
little work has yet been accomplished, the work face is very limited, little can effi-

ciently be built on it or from it, and so progress initially is slow.
So, we may say, an approximate relation might be:

based on observation of projects, that the rate of doing work is related to the

oc At = constant

Conversely, we might also say that the rate of doing work is related to the

Work-to-be-done, S — y(t), the amount of work remaining at time ¢. Work tends to
fan in toward the project completion, as shown by typical project networks. When
little work remains to be done, the work face is again limited, less work can be
accomplished in a given time period, and progress slows down. Then,
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Ay(t) oc At = constant
S=y(1)

d

. (:) < S-y()

Thus, we may combine these concepts into an approximate relation as:

AyA(t) = y(1)[S=x(r)]

Ay(tt) _

= ()[s-x(1)]

In this equation, b is a rate constant dependent on the nature of the job and the

Ay(1)

amount of resources applied to it. In this formulation, the rate of work Y is
t
zero when y(f) = 0, and approaches zero again as y(¢) — S. In the limit this gives the

differential equation:

. Ay dy
limAt -5 0,— — —=by(S -
At dt y( y)

The solution to this differential equation is the well-known logistic equation
(also called the Pearl curve):

_ S
1+ ae™

y(t)

In this equation, the parameter b controls the slope, whereas the parameter a is a
constant of integration that shifts the curve along the time axis. You may verify this
solution by differentiating y(¢) in the equation and comparing this with the deriva-
tive given above. This equation has the familiar S-shape, and is sometimes called
the Pearl curve (Nelder 1961). Figure 13.7 shows the general shape of the Pearl
curve, in which S = 100 and the duration of the job is 25-time units. Two additional
S-shaped curves are also shown, which will be discussed later.

Note that the parameter b may depend upon the level of resources applied. If the
resource level is increased, then b is increased, and the S-curve is steeper, but it is
always S-shaped. The logic of the above derivation is, no matter how many resources
are thrown at the project, the curve of Work-done is always S-shaped, due to the fan
out — fan in characteristics discussed above. As applying too many resources would
be inefficient and costly, the actual number of resources used is tailored to the
amount of work Ay(f) that can be done in each time period. That is, the changing
level of resources in a project is the result of the inherent S-shape, not the cause of
it. And this simple model produces the classic S-shape. It has only two parameters,
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Fig. 13.8 First derivatives of three sigmoidal curves (Pearl, Gompertz, and Dual Gompertz)

so we don’t need a lot of data to define the parameters of the curve. However, this
also means that we don’t have a lot of control over the shape of the curve.
The first derivatives of these curves are given in Fig. 13.8.
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13.4.2 The Gompertz Curve
Av(1)

At
proportional to Work-done, y(t), multiplied by Work-to-be-done, S — y(t), the differ-
ence between the total project scope and the Work-done to date; that is:

In deriving the Pearl curve, we assumed that the rate of doing work

was

Ay(1)

—2 oy (1)[S-y(1)]

At

Suppose instead we assume that the rate of work is proportional to the difference
between the logarithms of the total project work and the Work-done to date, or

Ay(r) o y(1){In(s)~ [ y(1)]}

At
dy S
“_p In——
dt ¥(1) ny(t)

That is, we assume that the rate at which work is accomplished is proportional to
the work done to date, y(¢), multiplied by the logarithm of the ratio of S to y(7) rather
than the difference of S and y(#). The rate is zero when y(¢) = 0, and approaches zero
as y(t) — S. The resulting curve is sigmoidal, as with the Pearl formulation, but the

rate is different, as the derivative approaches zero as In {%} — 0 rather than as
ylt

S — y(f) = 0. The solution to this differential equation is:

y(t) =8x e[_ae(ibr)]

in which b is the rate coefficient and a is a constant of integration (shift constant).
You may verify this solution by differentiating y() in the equation and comparing
this to the derivative given above.

This is sometimes called the Gompertz curve. The Pearl curve given earlier is
anti-symmetric about the median (the first derivative is symmetric), but the
Gompertz curve is not anti-symmetric, and the inflection point is below the mid-
point. The inflection point can be seen in Fig. 13.7, but is most easily seen in
Fig. 13.8, as the inflection point occurs when the first derivative goes through a
maximum. The Gompertz curve is skewed to the right, because the curve, and its
first derivative, have a short tail to the left and a long tail to the right, i.e., the job
starts with a fairly rapid rate but takes a relatively long time to accomplish the last
units of work. Compared to the Pearl curve, the Gompertz curve represents a job
that is a fast starter but a slow finisher. See Figs. 13.7 and 13.8 above for the
Gompertz curve and its first derivative, compared to the Pearl equation.
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13.4.3 The Dual (Reverse or Complementary) Gompertz

Previously we assumed that the rate of work was proportional to the product of
Work-done and Work-to-be-done, y(t)[S — y(1)], to derive the equation for the Pearl
curve. Alternately, we assumed that the rate of work was proportional to the product
of the work done to date and the logarithm of the ratio of the total work to the work

¥(1)
Suppose now that we assume that the rate of work is proportional to the product of

the Work-to-be-done and the logarithm of the ratio of total work to work remaining,
or:

done to date, y(7) y(t)x lnl: 5 } to derive the equation for the Gompertz curve.

dy S
—=b(S-y)1
dt (52) H{S—y}

Notice that this is similar to the differential equation that led to the derivation of
the Gompertz function, except that S — y appears here where y appears in the

. . . .. d
Gompertz formulation. In this formulation, the derivative o —0 asy() — S, and

is zero for y(f) = 0, because ln[ } — 0 as y(¢) = 0. Therefore, the behavior

_s
S=y(1)
is sigmoidal, similar to that obtained before, but the rates are somewhat different.
This differential equation has the solution:

olo)= sx(1-d")

This S-curve doesn’t seem to have a standard name, but because it is sort of the
complement or reverse of the Gompertz, we may call it here the Dual Gompertz
curve. It is in a way the mirror image of the Gompertz, skewed to the left, that is, it
has its inflection point above the midpoint, with a shorter tail to the right and a lon-
ger one to the left, as shown in Figs. 13.7 and 13.8. A job described by this function
is a slow starter but a fast finisher, compared to the Pearl curve.

13.4.4 Fitting the Logistic Curves

As mentioned above, one practical problem with the Pearl equation and the dual
Gompertz equations may be immediately observed: with the initial condition

y(0) = 0, then ?(O) =0 and work never gets started, never mind completed. We
t
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can never plot the point y(#) = O for it occurs at = — co. However, we can make an
approximation, just as we use the Normal distribution, which is defined on the range
— o0 <x< + oo, but apply it to a finite range.

One engineering approximation is to define an upper asymptote, say A, > S, and
a lower asymptote, say A; < 0, such that the Pearl and Gompertz curves fit inside the
asymptotic limits A; < y(f) < Ay. Then, for example, the Pearl curve is given by:

A, A
Y(t):AL+ ﬁ
dyd(tt) =b[y(t)_AL]{/ZU—_y/§Z)}

Then, we can use as a boundary condition the finite time at which the project
starts, that is, the time 7, at which y(#,) = O using the offset equation. We use this
boundary condition to solve for the shift factor, a, in the modified Pearl equation.
Substituting in the modified equation above:

A, - A, }

y(to):O =4 +L+ae(b'“)

With algebraic manipulation gives:

A —A
Y :|:1 - (}71;0):|
+ae

1+ael™) = {—AU —A }

AL
ae(*bto) __ AU _AL 1= _A_U
AL AL
A
a= __Ue(‘bfo)
A

So, given the start date #,, we can solve for the shift parameter a. If the time axis

o . . A
for the project is scaled such that £, = 0, then this equation reduces to a=——-.

Note that a > 0 because A, < 0 by definition. ‘

If we specify the finite time at which the job finishes as 7,, when y(t,) = S, then we
have two points on the curve: y(t,) at f, and y(z,) at t,. With these two endpoints, we
can solve for the rate constant b and the shift coefficient a that fit the Pearl curve to
the two time points £, and f:

A, —-A

i) | A |

1+ae(
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Some algebraic manipulation leads to:

A, —A
5a Ak

1+ae
1+ae™) = A =4
S -A,

a _|Ay-A | _[A-S
el?s) | S5 -4, S —A,
e(’b’s):a S_AL

A, -S
bzih{a[s-&ﬂ
tg A, =S

If the job starts at #, = 0, then

=)
tg A )\ A, =S

The simple Pearl and Gompertz equations are highly generic, as they assume that
tasks typically follow the S-shape of the logistic. By adjusting the asymptotes A
and A; one can get tails as long or short as one likes. There are only two undeter-
mined coefficients, a and b, and one of these (a) is used up just defining the start
time. The symmetric Pearl function may be used in default of any better informa-
tion, for example, if we don’t have good information about the work schedule (i.e.,

the BCWS(?) as a function of time) or if we just want a simple approximation. If we
have data, then we use whichever equation fits the data best.

13.5 Finding the Best Fit Curve

We can find the parameters of a sigmoid curve from the values at the endpoints ¢,
and 7,, but that gives no help in forecasting, as the finish date 7, is what we are look-
ing for. Of course, we could use any two points to define the curve, because all of
the functions above have only two undetermined parameters, but if there are three
or more reporting dates it is not obvious which two to use. To generate the most
reliable forecasts with any of these equations, we want to use all the reported data
points. So, we find the best fit of the parameters to the reported progress data using
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some curve-fitting technique and then use the equation to extrapolate from the pres-
ent to the future; that is, to job completion (when y() = S).

Suppose that earned value y; is reported at the end of reporting period j (that is,
at time ¢;), for 1 <j < n. Then we would like to find values for a and b (solving for
S is considered later) that minimize the sum of the squares of the deviations of the
reported values from the postulated curve. That is, for the Pearl approximation, we
want to find a and b that minimize

2
Z N
SSD:.Z|:yj_ (—btj):|

1+ae

The deviations are squared so that negative deviations count as much as positive
deviations, and the square is used because there is a whole body of statistical devel-
opment and regression based on the sum of squares. The sigmoid functions are
nonlinear, so we could solve for the optimal values of a and b that minimize SSD
using some nonlinear optimization procedure, such as the Solver function in Excel.
Here, however, we will use a more simple method, linear regression analysis,
because it is familiar to most engineers and managers, and it provides the confi-
dence intervals we would like to have about the precision of the forecast.

To use standard linear regression with ordinary least squares, we need to linear-
ize the problem. One way this can be done is to rearrange, for example, the Pearl

. S .
equation y(t)= T into the form:

1+ae™ = S

¥ ()

and then take logarithms:
In S——y(t) =Iln a—-bt
¥(1)

This is equivalent to the linear equation ¥ = A + Bt if one makes the
substitutions:
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This is a linear equation in time ¢ and the transformed dependent variable

S—yl(t
ln{ y( )} and basically the procedure is to plot reported values of the

¥(1) {S_y(t)

transformed variable Y (¢)=In
(1) 0

fits the points, and determine the equation of the line. Using the modified Pearl
equation with the asymptotes A, and A, gives the equation derived earlier:

A, —A
o0-a.e| 2]

:I against ¢, draw a straight line that best

Some algebraic manipulation leads to:

y(1)-4A, {LA)}

1+ ae

1+ae'™ = A4
)’(t)_AL

1{%}:1/(0:111 a—bt=A+ Bt

. AU -y (t) . . .
That is, we plot Y(t) =In| —————=| against 7 and find the best-fit straight line

y (t ) -4
through these points. Following that we can determine the intercept A and slope B
and finally compute a = ¢* and b = — B.

To forecast, we can either:

1. Determine the Pearl parameters a = ¢* and b = — B from the intercept and slope
of the best fit straight line, and then forecast values of y(#) for some future time ¢
using the Pearl equation;

2. Forecast values of Y(f) for some future time ¢ using the linear equation
Y(r) = A + Bt and then transform these values back into the original dependent
variable y() by

S
y(t) = 1+ eY(t)

The same approach may be taken to linearize the Gompertz equation for linear
fitting to the data. From above, the Gompertz equation was derived as:
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y(t) = sx(e[aew)})

Performing some algebraic manipulations leads to:

ae” :1n(y£J
In(a—br)= h{m[yﬁtﬂ

This is the form of a linear equation,

ln(il for 0<y <S8
Vi

Extrapolated forecasts Y, can be made with the linear equation for larger values

of  and may be inverted to obtain forecasts in the original variables by reversing the
above derivation:

Y =A+Bt

13

with Y = lr{
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Thus, by transforming the original reported progress data y(#) into the new vari-
able Y(#), we can fit a straight-line Y(f) = A + Bt, and then determine the parameters
a=e" and b= — B, from the intercept and slope of the linear equation. We can then
either forecast y(7) directly, using these parameters in the Gompertz equation, or
forecast Y(#)) using the linear equation Y(¢) = A + Bt and transform back to the origi-

nal variables using y(r)= —5oT-
e
Finally, the same approach may be taken to linearize the Dual Gompertz equa-

tion for linear fitting to the data. From above, the Dual Gompertz equation was

derived as:
)
y, = Sx [1 - e[ ] j
We can rewrite this as:

y, =S- Se[“w})

t e[_g((w)]

Take the logarithm of both sides of the above equation:

ae(b’) =In L
S_yt

In a+bt=In|1n 5
S_yt

This is the form of a linear equation,

Take logarithms again:

Y =A+Bt

with Y, =In|In
S-y,

Azln(a)
B=b

Hforo <y <S8
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Extrapolated forecasts Y, can be made with the linear equation for larger values
of  and may be inverted to obtain forecasts in the original variables by reversing the
above derivation:

e

)

I __s
S—y,

S-y = S

Thus, by transforming the original reported progress data y(¢) into the new vari-
able Y(#), we can fit a straight-line Y(#) = A + Bt, and then determine the parameters
a=e*and b= — B, from the intercept and slope of the linear equation. We can then
either forecast y(f) by using these parameters in the Dual Gompertz equation
directly, or forecast Y(f) using the linear equation Y(f) = A + Bt and transform back

to the original variables using y, = § {1 —%} .

We can use the entire record for ¢ mpé%e(ﬂ jobs of the same type, to determine
the equation that best fits the progress curve for the past work. Then, this equation
can be used to plan and track future jobs of the same kind. For example, if the prog-
ress data for completed jobs of the same type are best fit by Gompertz functions,
then this is evidence that we should use a Gompertz function to fit the data on a job
in progress that we are trying to forecast. To eliminate the effect of job size, we can
normalize the equation by dividing by the total number of units installed (or BAC)
for each job, so that in the equation S = 1.0 (or S = 100%) and y(7) represents the
fraction (or percentage) of the total work done at any time #, and at completion
y(t) =S =1 (or 100%).

Then, for a job in progress, we can use the progress record up to the current date
to find the best fitting line of the type selected in Part 1, and extrapolate the line to
completion. For example, if

S = Budget at Completion (BAC), and
y = Budgeted Cost of the Work Performed [BCWP(¢)],
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BAC
BCWP(1)-1
Y(r) versus t. If the reported data points plot as (approximately) a straight line, then
BCWP(?) is (approximately) following the Pearl curve. If the plotted points do not
follow a straight line, even approximately, then some other equation is needed to fit
the data.

Linear regression eliminates the guesswork and subjectivity from the forecasting
process and at the same time determines the confidence band on the extrapolated
values. Linear regression finds the values of A and B that minimize the sum of the
squares of the deviations of the reported points from the straight line:

then we compute the transformed variable Y (t) = ln{ } and plot

SSD = z[ ~(A+B)]

in which 7 is the number of progress reporting periods prior to the time of the fore-
cast. Having found A and B for the first n reporting periods, we use the equation

S

e")
Note that these regressions against the independent variable time often give very
large values for R? (R? > 0.99) is not uncommon). This is because the amount of
work completed is obviously highly correlated with the passage of time. Note also
that, if the data are not well fit by the Pearl or Gompertz equations (which only have
two unknown coefficients, a and b), then the regression residuals will not be ran-
domly distributed and independent, but will often show long runs of positive or
negative values. The Durbin-Watson test may be used to evaluate whether the resid-
uals are autocorrelated.

Example 13.1

As an example, we use the n = 10 data points in Table 13.1 given earlier. In this
example, we set S = 100, so y(7) represents the percentage of the total job completed
at time 7. Using these ten points, the linear regression method using the Dual or
Reverse Gompertz equation gives the values A =4.616 and B = 0.360. These values
give the parameters a = ¢* =0.00989, b = 0.360 in the Dual Gompertz equation, with
R*>=0.977. The closeness of the fitted values is indicated in the Table 13.2.

Figure 13.9 shows some results for these data. The reported progress percentages
and the fitted Dual Gompertz curve are shown up to time period 10 to indicate the
closeness of the fit. Then the fitted function is extrapolated forward to indicate com-
pletion in about time period 19. Of course, due to uncertainty, there is a likelihood
of about 50% that the job would actually take longer. In forecasting, we use the
best-fit equation plus some statistics output from the linear regression program to
give the confidence intervals on the forecasts. In this case, an 80% confidence inter-
val was used; that is, we expect from the variance computed from the historical data

Y(r)=A + Bt to forecast Y(#) (and hence y(r) = ) for any time ¢ in the future.
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Table 13.2 Fitted values for Actual | Fitted

data from regression Time | value value

equation, n = 10 1 1.0 1.41
2 24 2.01
3 32 2.87
4 4.7 4.09
5 6.1 5.81
6 7.8 8.23
7 12.3 11.58
8 14.1 16.17
9 25.1 22.34
10 27.3 3041

— Actual

— Future

100

— Fitted
Low Conf
20

— Extrapolated

| Ipper Conf

40

Percent complete
[#))]
22

Time Period (t)

Fig. 13.9 Dual Gompertz fit to reported data and extrapolation

that the interval will cover the future progress, when it is reported, 80% of the time,
with 10% above the upper limit, 10% below. We could also use 50%, 90%, or 95%
confidence intervals. Figure 13.9 shows the 80% confidence band for the forecast
from period 11 through period 20. Also shown in this figure for comparison are the
future data points for periods 11 through 20, when the job actually completed. There
is a 10% chance that the actual results would fall below the lower confidence line
generated at time 10, and we see that in this case the results did fall outside this limit
starting in period 16.

Is this a good forecast? The answer to that depends on what the forecast is used
for. Clearly, this job took somewhat longer than the best forecast, and fell in a range
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Fig. 13.10 Reverse Gompertz function fitted to entire job sequence

with probability less than 10%. However, the actual results clearly fall inside the
six-sigma band around the forecast, so we would probably say that this job was
under statistical control, although the variance may be greater than we would like to
see.

Was the Dual Gompertz a reasonable function to use for forecasting? After this
job is over, we can fit the Dual Gompertz to the full set of data points. This ex post
fit is shown in Fig. 13.10, below. Clearly this job is a slow starter and a fast finisher,
although perhaps not as fast as the Dual Gompertz function would indicate. Still, the
fit is close enough that it would be difficult to find another mathematical function
that would fit better. Based on these results, we would probably feel justified in
using the Dual Gompertz function to forecast future jobs of this same type — although
you are welcome to try to find a better one.

At this point, one may well ask what is the probability distribution of the fore-
casts. The answer is the Normal, which in this case is justified by an argument from
statistical independence. The linear regression equation can be written:

Yj=A+Btj+ej
where

Y; is the observed (transformed) variable and
g; is a random error term. The classical Normal linear regression model assumes
that:

Elg] =0, V j; the error terms ¢; all have zero mean;
Elef] =0, VJ; the error terms ¢; all have constant variance
Eleie,] =0, Vj,V ksuch that j # k; the ¢; are all statistically independent
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¢; is Normally distributed, N[0, 6*]

These assumptions imply that, if the classical Normal linear regression model
applies, then the dependent variables Y are also Normally distributed, by the repro-
ductive property of the Normal, with expected value E[Y;] = A + Bt; and constant
variance o> Also, the Y; are assumed to be statistically independent, because the
covariance between the Y; and Y, at different times is, by the above assumptions:

E{(v, -E[Y,])(v, -E[v,])} =E{[A+Bt, +&, —(A+Bt ) |[A+ B, +2, —(A+Br,)]|
Covariance(Y/,Yk): Elee :| =0 for Vj, Vksuchthat j # k

k

It turns out, however, that by this set of assumptions the differences are not sta-
tistically independent. Whether or not these assumptions are met in any given case
should be checked. Also, these are the assumed properties of the transformed vari-

S—-y
ables Y;, where Y, =1In {u] not the original data. As the values of Y, are

y.
. .I (S -y j )
assumed to be Normally distributed, then
Yj

LY are not lognormally distributed, as the log-
[1 +e’ ]

normal is defined on the range [0, o], but y, is non zero only over the finite range
O<y<S.

For prediction, however, we determine the confidence limits for the forecasts of
the transformed variable Y and then convert these to confidence limits for the origi-
nal variables y, rather than determining the confidence limits for y directly. The
confidence limits are actually set by the ¢ probability distribution, not the Normal,
because in practice we don’t know the error variance but have to estimate it from the
data. However, the 7-distribution is very close to the Normal distribution when the
number of data points is large (say 30 or so). This procedure, although approximate,
is much easier because it permits the use of standard linear regression codes, and the
error introduced by using the transformed confidence limits for Y as the confidence
limits for y is generally negligible in comparison to the likely accuracy in which y
can be measured, much less forecasted.

Applying this approach generates the entries in Table 13.3, below, which repeats
the actual and fitted points for the first 10 reporting periods from Table 13.2, and
forecasts the job progress forward, for time periods 11 through 20. The table shows
the best predicted value Corresponding to a 50% likelihood that the job will take
longer), the lower confidence limit (corresponding to a 10% likelihood that the job
will take longer), and the upper confidence limit (corresponding to a 90% likelihood
that the job will take longer). The entries in this table are the values plotted in
Fig. 13.10.

As soon as the reported progress is received from the next reporting period, the
entire calculation is repeated, now with 11 data points, to generate a new regression
equation, new values for A and B, and a new set of forecasts for time 12 through

must be lognormally distributed,

but the original variables y, =
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Table 13.3 Forecast with 80% confidence bounds, reverse Gompertz curve

Reporting | Reported Fitted value Forecast Forecast Forecast
(Percent Reverse Lower 10% Best fit Upper 10%

(Period) | complete) Gompertz bound mean bound

0 0.0

1 1.0 1.41

2 24 2.01

3 32 2.87

4 4.7 4.09

5 6.1 5.81

6 7.8 8.23

7 12.3 11.58

8 14.1 16.17

9 25.1 22.34

10 27.3 30.41

11 28.91 40.53 54.68

12 38.08 52.52 68.59

13 48.91 65.63 81.69

14 60.91 78.36 91.75

15 73.06 88.86 97.46

16 83.94 95.70 99.55

17 92.17 98.90 99.97

18 97.11 99.84 100.00

19 99.27 99.99 100.00

20 99.89 100.00 100.00

time 20 (or whatever seems appropriate). This rolling procedure continues as the job
advances.

13.5.1 [Inverting the Variables

In the previous example of predicting project duration, time, that is, reporting
period, was the independent variable, and earned value, or BCWP, was the depen-
dent variable. This is consistent with common usage, in which the abscissa is usu-
ally time and the ordinate is whatever variable is dependent on time. It is also
consistent with normal regression using ordinary least squares, in which it is
assumed that the independent variable is known perfectly and has no error, and all
the errors are concentrated in the dependent variable. Certainly, the reporting period
should be known for sure, although the observations or measurements on the BCWP
are certainly subject to error. However, although the reporting period may have no
error, it does have variance. If the reporting interval is 1 month, different months
have different numbers of workdays. Even if the reporting interval is 1 week, weeks
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may have different length due to holidays. Even so, it makes sense that time is the
independent variable, because nothing can be done to influence it, and although one
can say that the passage of time is the cause of work being accomplished, one would
not say that work causes time to pass. (If it did, that would be another good reason
to stop working)

As we have seen, placing all the errors on the BCWP means that the probability
distributions and confidence bands are on BCWP. This allows one to determine the
probability that some value for BCWP or more (or less) will be earned by some
fixed date. However, what we may really be concerned about is the confidence band
on the project duration, so that one can state the probability that the project will be
completed on or before some given critical date. This can be done, but it may require
breaking all the rules given above.

Using the same example as given just before, we seek to predict the completion
of this project based on (in the example) ten observations on the BCWP. However,
here we treat BCWP as the independent variable and reporting time as the depen-
dent variable. Using ordinary least squares, this is equivalent to the assumption that
there are no errors in observing the earned value, and all the errors lie in the report-
ing date. The project is complete when BCWP(t) = BAC (the budget at completion),
so that one only has to enter the abscissa at BCWP = BAC and read the completion
time off the curve.

Figure 13.11 below shows the same observed data as before, which could have
been plotted exactly as before, but to emphasize the difference the abscissa remains
the independent variable, and now becomes the reported earned value, and the ordi-
nate remains the dependent variable, and now becomes the time.

20 | O Original
15
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> 10 - 8
e o
O
a
a
5 =)
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(]
a
u
0 T T T r T r T T T
0 10 20 30 40 50 60 70 80 90 100

Work Done (BCWP)

Fig. 13.11 Dual Gompertz data
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Fig. 13.12 Linearized data

We apply the linear transformation as used before, again assuming the Dual
Gompertz function. That is, for the Dual Gompertz,

BCWP (1) =y, =S{1—exp[ —aexp(bt) ]|

This leads, as before, to the transformed variable

i)

Here S = 100 as before. The previous example plotted Y, = A + Bt. Here, however,
we plot = A" + B'Y,. This plot is shown in Fig. 13.12. The transformed data points
seem to follow a straight line, an indication that the Dual Gompertz is giving a good
fit.

Performing the regression on the transformed data set gives the following results:

* Adjusted R>=0.974

e Intercept=A" = 12.65139; t-test = 30.5, p < 1.5 x 10~°

e Slope =B =2.713743; t-test = 18.5, p < 7.4 x 1078

e F=344;p<7x107?

e Standard deviation of the estimate = 0.484 (this will be used in determining the
confidence band).

The fitted line is plotted in Fig. 13.13 in the transformed (linearized) coordinates.
Also shown is the extension of this line, extrapolated out to project completion. The
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Fig. 13.13 Linearized data with fitted line

budget at completion (BAC) is S = 100; effective completion of 99.999 becomes, in
the transformed coordinates, Y = 2.44. It is easily seen in the linear plot that the
expected time of completion is about 19 months.

The fitted line, now transformed back to the original coordinates, is plotted in
Fig. 13.14. Also shown is the fitted Dual Gompertz function extrapolated to project
completion at about 19 months.

To obtain the confidence band on the times for various amounts of work accom-
plished, we determine the standard error of the forecast from the standard error of
the estimate. Using a 80% confidence band as before (the probability of a duration
more than the upper confidence limit is 0.10; the probability of a duration less than
the lower confidence limit is 0.10), the Fig. 13.15 shows the confidence band added
to the linear (transformed) plot. It is clear that there is about a 10% chance of finish-
inginless than 18 months, and about a 10% chance of taking longer than 20.5 months.

Figure 13.16 shows the confidence bounds transformed back into the original
coordinates.

13.5.2 Determination of Confidence Bands on Forecasts
of S-Curves

When making project forecasts, it is highly desirable to have some indication of the
confidence in these forecasts. If we can compute some estimate of the confidence
band, we can estimate the likelihood of overrunning and given EDAC (Estimated
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Fig. 13.14 Dual Gompertz data and fitted model
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Fig. 13.15 Linearized data with model fit and confidence intervals
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Fig. 13.16 Dual Gompertz data with model fit and confidence intervals

Date at Completion). Suppose that the true relationship between the (transformed)
dependent variable and time (or reporting period) is given by:

Y=A+Bt

By regression through n time steps (reporting periods), we determine estimates
for the regression coefficients A, B, We wish to forecast values for Y, k time steps
into the future, by using the linear regression equation:

Y, =E[Y, ]=A+Bt,,, k=123,...

n+k?

The forecast error at future period n + k is:
én+k = Yn+k _Yn+k = (A_A)+(B_B)tn+k +&

Note that there are two sources of error in this forecast:

1. The random error or noise term &, , ;
2. The errors due to the estimates of the regression coefficients, which are them-
selves random variables. Note in particular how any error in the slope coefficient

( B- B)is magnified by the time ahead at which the forecast is desired, 7, . ;.

Qualitatively, it is obvious that the confidence band, whatever it is numerically,
must widen with increasing forecast time, 7, , ;.
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The error of the linearized forecast must be Normally distributed, because the
ordinary regression method assumes that A B ¢ .+ are all Normally distributed,
and any linear combination of Normal variates is Normally distributed. Moreover,
the error of the forecast has zero mean, which we see by taking expectations (note
that t,,, is not a random variate):

E[é,]=E[A-A|+E[B-Bi,, +E[z,,]=0

Define the standard error of the forecast k steps ahead as o(k); then the variance

of the forecast error is:

o (K)=E[(6,) |- E[(A —A)2}+E[(E—B)2}r2m
+E[(2,0,)" |+ E[(A-)(B-B) |21,

In this, a number of the cross-product terms in the squares of the forecast errors,
é2.., are zero because it is assumed in deriving the regression equation that the
random error terms are not serially correlated, and hence are not correlated with the
regression estimates. Note that, for regressions involving fitting of the various
sigmoidal curves to data, this may or may not be a good assumption. How good or
bad this assumption is may be tested by visual inspection, by plotting the residuals,
or numerically, by using the Durbin-Watson test for serial correlation. Proceeding
nevertheless, we have then, from the equation above:

o (k)= V&I‘(A) + 2tn+kcov(;\, f?) + tzwkvar(é) +

From the basic equations for ordinary least squares fit to the data, we have (see a
textbook on regression analysis for the derivations of the following results):

var(A) = .
( ) ”Z(ti_?)z
i=1
var (B) = —
(ti_T)z
i=l1
cov(A,B)=-—
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in which 7 is the mean value of the time periods 1 through n covered by the
regression:

If the reporting periods are equally spaced (each week, for example, so that
t;=1(At)), and there are data for every time period, then these equations can be sim-
plified. The equations above allow for varying intervals between the observations.
Substituting these three equations into the previous one gives:

therefore:

B
3

> (t,—7) +nt? | -

i=1 _ =l =+

ng(t,._f)z n[Z::(tl.—T)z " (-7

which gives, after some algebraic simplification,

Recalling that 7 is fixed by the n observations available for the regression, note
especially the term in (tn+ P~ 7)2 ; as one tries to forecast further into the future, the
error goes up as the square of the difference between that future time and the mean
time of the past observations. Unfortunately, of course, we do not know ¢%; we can
only estimate it from the regression, as s
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Then,
or

2 2 1 i (tn+k _?)2

=57 | 1+—+—
Z(ti_?)z

i=1

With sy, the standard error 0:[" the forecast, we can determine confidence intervals
about the future forecasts of Y ,, for all values of k of interest. These confidence
intervals are, of course, with reference to the transformed variables used in the lin-
ear regression; we must now transform them back into the original variables, ¥, ., .
That is, we reverse transform the confidence intervals in the same way that we

reverse transform the forecasts. In the case of the Pearl function, the linearization
derived above was:
S—
Y =In [_y,}
Vi

The inverse transformation is then:

Y, _ S — X
e =
Vi
ye' =S-y,
Y, (1 +e" ) =S
y, = S
.
in general, and in particular,
5 = S
n+k 1+ e?"*"

13.6 Assessment of the Methods Discussed

Extensive bench marking and use of this approach to forecast actual construction
projects has shown that the forecasts given by this method can often be more accu-
rate than forecasts made by more sophisticated methods. However, they can
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sometimes be seriously in error, when the regression is based on only a few points.
This problem is most severe when the data have high variability around the regres-
sion line and the progress to date is well below the inflection point of the curve (as
The Pearl equation is symmetric, the inflection point occurs at the midway point, or

when y([) :% . It is very difficult to forecast accurately when this inflection point

will occur, given only data below the inflection point. Given reported data above the

inflection point, the method is more reliable. Of course, forecasts at early stages of

work are much more useful than those made later. The user is advised to apply this

method to historical data first, if possible to obtain a feel for how well the method

fits the jobs of interest, before placing too much confidence in it. In any case, the

forecasts made using this approach should be compared to other information.
Some of the indicators that may be symptomatic of problems:

1. The extrapolated completion date is much later than the project scheduled com-
pletion. This may indicate difficulties in calculating progress in the early stages
of the job, but may also indicate that the job is starting slowly and the time lost
may not be recovered later unless there is a significant learning effect in
operation.

2. The confidence band is unusually large. This probably indicates erratic progress
or inaccurate progress reporting, which should be investigated and corrected in
order to get a valid picture of job progress. This is similar to the information
presented in a control chart for the incremental schedule performance index spi.

3. The projected completion date or the width of the confidence band changes sig-
nificantly from one reporting period to another. This isn’t unusual in the early
stages of the job, for less than 10% completion, but if it occurs later than this it
may indicate that some major change has occurred with the job.

Several points should be kept in mind about this procedure:

1. The Sum of Squares that is minimized by the linear regression uses the devia-
tions from the linearized equation, not the deviations from the logistic equation.
Hence, the fitted values A and B which are optimal for the linearized equation do
not necessarily convert to optimal values a and b for the nonlinear logistic equa-
tion. In this sense, the fitted curve is not necessarily the best fit to the logistic
function. Both the regression coefficients and the confidence bands will be
affected.

2. The method assumes that the entire job will follow a standard generic S-curve,
and tries to find the parameters of this curve as a basis for extrapolation. It cannot
account for later changes that affect the entire shape of the curve. It is necessary
to keep in mind that the method inherently assumes that the underlying model of
the project does not change. If the project changes, then the initial model may
become invalid. Suppose, for example, that a forecast is made using one of the
above methods, and this forecast indicates that the project will complete far in
excess of the scheduled date. As a result of this prediction, the project manager
puts the project on extended work weeks to recover the schedule. As a result of
this change, the project finishes on the original scheduled date. Therefore, the
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early forecast is now wrong — the project actually finished on time whereas the
prediction was to finish late. However, the project finished on time because the
underlying model changed (from regular time to overtime), and without the fore-
cast the change might not have been made. Therefore, the forecast served its
purpose. The forecast was conditional on model remaining constant, but the
function of the project manager is to change the model when necessary.

3. The forecasts are extrapolated from the initial data. Early on, when there are few
data points, inaccurate data will have a large effect on the fitted equation, leading
to poor (in hindsight) forecasts, in which the confidence band does not cover the
actual results. Difficulties can be diagnosed if (i) the confidence band is very
broad, or (ii) the confidence band changes substantially when a new data point is
added. Basically, the method is founded on the assumption that historical data
incorporate information about the future, and if this assumption is violated the
forecasts will unquestionably be bad. Unfortunately, bad data give bad forecasts.
Sometimes even good data give bad forecasts.

4. The function used above is about the simplest possible, with one independent
variable (time). It is hardly necessary to use a linear regression package to solve
this small a problem, in one independent variable — the solution equations can
easily be written out explicitly. However, it is certainly feasible to construct more
realistic fitting functions with several or many independent variables, giving
some function y(7) = f(t,x1,x,.... X,), where xy, x,.... x, are additional indepen-
dent variables. To use standard linear regression, it must be possible to linearize
this expression, as discussed earlier. Also, it is necessary to chose the indepen-
dent variables such that they can be measured, and also such that they can be
independently predicted. For example, the weather might be an independent
variable that could help explain job progress, but to be useable in forecasting it
must be capable of being predicted ahead to job completion, perhaps using
National Weather Service long-range forecasts.

5. In computing confidence intervals, it is essential to use the standard error of the
forecast, not the standard error of the estimate from the regression analysis. The
standard error of the estimate reflects the scatter of the reported data points about
the regression line, but the standard error of the forecast reflects both this scatter
and the error in fitting the regression line from the data. As the forecasts repre-
sent future time, the variances of both these effects must be included in determin-
ing the confidence bounds.

The method described may appear simplistic, but it has been used for tracking
many projects. It is, based on experience, often as accurate as much more expensive
and time-consuming methods. Some of its advantages are:

1. It is automatic and completely objective. The whole forecast can be computer-
generated. A spreadsheet will suffice. There are no subjective factors, guesses,
hunches, judgment, or biases. The only thing the user has to do is to enter the
reported progress every reporting period. The objectivity of the forecasts is often
useful when having discussions with projects as to whether they are or are not on
schedule.
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2. It generates confidence intervals on the forecasts — 50%, 90% or whatever is
desired.
3. It can easily be used by higher levels of management.

Quick and dirty forecasting is often useful, and construction engineers may wish
to have multiple methods for evaluating project progress and forecasting comple-
tion, and should combine the results from several independent methods. (There is
no point to using methods that are not independent; if several methods give highly
correlated results, all but one can be dropped).

With all these methods to choose from, plus many more, how is one to select the
best forecast? One useful exercise is to obtain feedback from real projects on the
accuracy of cost estimates. When a project is complete, a post mortem analysis is
needed to improve forecasting accuracy.

13.7 Methods Based on Bayesian Inference

Bayesian inferencing, or the revision of beliefs about future activities based on the
information gained about past activities, offers a number of opportunities for mak-
ing more reliable forecasts of future outcomes — and for making reliable forecasts
sooner, when they are more valuable to project management (Gelman et al. 2013).
Of course, as elsewhere in this book, we are concerned not with making point esti-
mates of future outcomes, but with determining confidence bands on our estimates —
and for making these confidence bands as narrow as possible, as soon as possible.

With a number of families of sigmoid curves available, it is assumed that one can
find some functional relation that can be fitted to the available BCWS() plan, either
by linear regression, by minimizing the sum of the squares of the errors, or by eye.
As stated earlier, the method assumes that the actual BCWP(r) progress will follow
the same family as the fitted BCWS(t) curve, but with different parameters. The
method given here tries to determine the best estimate for these parameters using the
BCWP(t) progress reports as they arrive.

The focus of this method is not so much on high accuracy as on early warning.
An accurate prediction of the actual task duration, b in the above functions, obtained
late in the task, is worth very little. An approximate prediction of the task duration
obtained very early in the task may be highly valuable to the project manager. This
method seeks an early warning of deviations of the actual progress (BCWP) from
the plan (BCWS). Although Bayes’ rule is slightly more complicated, and probably
less familiar, than linear regression, test results indicate that it may be able to give
earlier warning that other methods.

We start with two parameter problems: b and n. Actually, one parameter would
be simpler, but the major conceptual difficulty is in going from one parameter to two
or more, so this discussion focuses on a two-parameter problem.

Assume that we have fitted a function from one of the families above to the
planned BCWS() data and have obtained the values 5* and n* as the best fit param-
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eters. Now, as progress reports on the BCWP(¢) are obtained, we wish to determine
whether the actual progress data support the same values of b* and n*, in which case
the project manager can believe that the task is on schedule, or whether the data
support some other values of b and n, and the project manager should change his
belief, especially if b > b**. We apply Bayes’ rule to advise the project manager on
whether he should alter his belief.

The parameters b and n are continuous variables, and there are mathematical
methods available to handle Bayesian inferencing problems using continuous vari-
ables. However, the presentation here will discretize the parameters. This greatly
simplifies the presentation, and such discretization is a common practice in engi-
neering. Suppose, to be specific, that we discretize both b and n into nine values
each. Moreover, we center the range of the discrete values of b on the value b*,
which is our a priori best estimate for the task duration, obtained from the fit to the
BCWS(t) curve; and similarly for n. Then, we have a nine by nine table of matrix
for b and n:

Each of these pairs is considered an event. That is, the event [b = b;, n = n,] is the
event that the true value of b is b; and the true value of n is ny, and there are 9x9 =81
possible events. Values of b or n that fall outside the matrix are considered impos-
sible (have probability zero), so the range of the table should be extend far enough
to avoid excluding real possibilities. Of course, one can use a table with more entries
than 9 x9. Whatever the size of the matrix, the sum of the prior probability distribu-
tions over all the events must equal one:

zzp[bzbj,nznk :1.0]
Jj ok

The Bayesian approach requires a prior probability distribution over the set of all
events. This prior distribution must be set by the decision maker, in this case the
project manager. The prior distribution depends on the project manager’s degree of
belief in the various outcomes. For example, if the project manager very strongly
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believes that the actual task BCWP(t) is going to track the planned BCWS(7) very
closely, then he could set P[b = b*,n = n*] = 0.90 and assign all of the other events
probability 1/800. This kind of strong prior would make it very difficult for the
project manager’s beliefs to be changed based on the actual BCWP(¢) data, no mat-
ter what they were.
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Another method would be to have the prior probability the largest for {b*,n*},
but with decreasing probability for {b, n} further away from this value. An example
might be the prior probability matrix just below, in which every entry is to be divided
by 369.

. b, b, b, b, b b b b b,]
n, 1 2 3 4 5 4 3 2 1
L 2 3 4 5 6 5 4 3 2
n, 3 4 5 6 7 6 5 4 3
n, 4 5 6 7 8 7 6 5 4
" 5 6 7 8 9 8 7 6 5
nn 4 5 6 7 8 71 6 5 4
n, 3 4 5 6 71 6 5 4 3
n, 2 3 4 5 6 5 4 3 2
n, 1 2 3 4 5 4 3 2 1|

One could use a bivariate normal distribution to set the prior probabilities, or
some other probability distribution.

Another prior could be the uniform prior, P[b =b;,n=n] =1/81, Vj, Vk.In
this case the prior probability matrix would be the following table, with each entry
divided by 81.
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b, b, b, b, b b b, b b,
n, 1 1 1 1 1 1 1 1 1
n, 1 1 1 1 1 1 1 1 1
n, 1 1 1 1 1 1 1 1 1
n, 1 1 1 1 1 1 1 1 1
o1 1 1 1 1 1 1 1 1
no 11 1 1 1 1 1 1 1
n, 1 1 1 1 1 1 1 1 1
ny 1 1 1 1 1 1 1 1 1
n, 11 1 1 1 1 1 1 1

This is sometimes referred to as the noninformative prior, because it provides no
information to discriminate between any events. That is, the project manager shows
no preference for any particular values of b and n, and wishes to have these values
chosen entirely by the data. In the examples following, the noninformative prior will
be used in order to allow the solutions to be determined entirely by the data, not by
any prior opinions. However, it must be emphasized that, in the Bayesian approach,
the project manager always has some prior information or knowledge, and there is
no reason why the project manager should not allow his prior convictions to influ-
ence the results, through the prior probability matrix, if he so desires.

The discussion in Chap. 10 identified Bayes’ rule as the following:

e D =the data set, which initially is the full BCWS plan, and then is revised as each
BCWP(¢) progress report is received.

* O = {b,n} the set of parameters for the curve.

e P(DI®) = the conditional probability that the particular outcomes D would be
observed, given the probability parameters ©;

e P(DI®) = the conditional probability that © is the value taken on by the set of
parameters given that the outcomes D were observed.

In the Bayesian approach, both the observables D = BCWP(¢) and the model
parameters ® = {b,n} are considered random variates. We start then with a prior
distribution P{®IBCWS} the initial distribution on the parameters ® = {b,n}, con-
ditional on the fit to the BCWS(¢) curve. Then the joint distribution of the observa-
tions D, which are the values reported for the BCWP(t), and the parameters 0, is:

P{Dn O} =P{DI®}P{©} = P{OID} P{D}

where P{D} is the marginal distribution of the observables D. Then, this expression
can be rewritten as:
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DNO} P{DI®
P{@ID}:P{P{D}}z 1;{{0}}

where P{®ID} is now the posterior distribution of the parameters ®, given that the
outcomes D were observed. Determining this posterior distribution is the objective
of Bayesian analysis.

The last expression may be rewritten in terms of the two parameters of the sig-
moid function as:

{BCWP(t)1b=b, n=n,}
P{BCWP(t)}

P{b=b;, n=n, | BCWP(t)} =P

Here, P{b = b,n = nd BCWP(t)} is the posterior distribution on the parameters
{b,n} and P{b = b;,n = n;} is the prior distribution on the parameters, which after
every BCWP(¢) time step is reset equal to the previous posterior. That is, the poste-
rior distribution computed at time ¢ becomes the prior distribution used in the com-
putation at time ¢ + 1, and so on.

The term in the denominator of the above equation is just the probability of
observing the data that were observed, over all possible values of the parameters:

P[BCWP(1)]= .5 P[BCWP(1)1b=b,.n=n,]

The remaining term in the equation is P{BCWP(1)|b = b;,n = n,}. This is just the
probability of observing the actual data, conditional on the parameters. This is
sometimes called the likelihood function. Given that the parameters have values b =
b; and n = ny, the likelihood that the actual data BCWP(t) would be observed is
P{BCWP()|b = b;,n = n,}. Suppose that we assume some values of the parameters,
such that b = b; and n = n,. This choice defines a sigmoid curve for BCWP versus
time. The actual progress reported at time #, BCWP(t), may not lie exactly on this
curve. However, this could still be the true curve, as we must allow for some error
in measuring the reported BCWP(t). We assume that the measurement errors are
distributed Normally, as N[0, 6] around the sigmoid curve. That is, the mean error
is zero, so the errors are not biased up or down, but have standard deviation ¢. This
is the same assumption made in regression analysis, in which it is also assumed that
the error variance is constant (homoscedastic). In the Bayesian approach, we can
also assume homoscedasticity, or we can assume that the variance is not constant.
In the example here, it is assumed that the reporting error is small at the beginning
of the task (there should be little error in reporting BCWP when very little work is
being done) and increases proportionally to the amount of work accomplished in
each time period (that is, the reporting error is largest when the most work is going
on, when the rate of progress is greatest). The assumption that the measurement
error is proportional to the rate of progress implies that the reporting error becomes
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small as the task nears completion; this may or may not be a realistic assumption. In
any case, the user can make his own assumption about the reporting errors and is not
limited to homoscedasticity.

Then, at every time period ¢, the reported progress is BCWP(t). The progress if
the task were actually following the sigmoid function with parameters b = b; and n
= n, would be y(#1b = b; and n = ny). The deviation is:

d(tlb=b;andn=n,)=y(b=b andn=n, )~ BCWP(r).

Using the Normal distribution for the error, N[0, 6*], we can determine the likeli-
hood that a deviation this large would be observed due to random reporting error,
when the true parameters are b = b; and n = n;. One simple way to determine this
likelihood is to compute the Normal probability density function

d(t1b=b,n=n,)

(o2

and then multiply this by some interval to convert from probability density to prob-
ability. The actual value used is not critical, as we normalize all the quantities after
they have been computed. That is, the probability that the actual reported progress
belonged to one of the sigmoid curves defined by the matrix is exactly one (values
of the parameters not in the matrix are impossible), so we adjust all the computed
values such that

P[BCWP(1)]=Y">P[BCWP(t)Ib=b,,n=n, =1]

j ok

Thus, we have now identified all the terms in the Bayesian equation, and we can
compute the posterior distribution over all the pairs of parameters at each reporting
period ¢ from:

P{b=b,, n=n, | BCWP(t){ = P{BCWP(t)|b=b,,n=n}P{b=b n=n,|

Having the posterior distribution at each time t, we must infer the values of b and
n. One method is to use the most likely values. That is, we select the pair b= b;, n =
n; that maximizes the posterior probability P{b = b;,n = n,/ BCWP(t)}. However, it
is possible that the most likely set changes from time to time, until the process set-
tles down on some steady-state value. Therefore, it has proved more successful to
compute the mean values of b and n based on the posterior distribution, and then to
use these mean values to generate a sigmoid curve that represents the best prediction
of the future BCWP curve. Unlike the modes (the most likely values), the means are
stable over multiple time periods.
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As mentioned earlier, we are interested in the confidence band for the projects of
BCWP. If a sigmoid function like one of those discussed above, in which the param-
eter b represents the duration of the task, one can obtain an estimate of the confi-
dence bounds on b by either plotting a histogram of the distribution of b, or by
computing the standard deviation of b from the posterior probabilities for each b;,
and then using the Normal distribution to assign confidence bands at the desired
confidence levels.

Example 13.2

As a simple example, assume that a project has a planned BCWS curve that is rea-
sonably approximated by a symmetric Pearl curve, as shown in the Fig. 13.17. The
Budget at Completion = $950 (in thousands), and the upper asymptote of the Pearl
curve is taken as S = 1000. The planned duration is 29 weeks, and progress
[BCWP(1)] is reported every week. The fitted parameters of the Pearl curve are
a=060and b =0.25.

S
H(0)= 1 = Bews 1)

In this example we will use a 9 x9 matrix of possible pairs of values for a and b,
with the noninformative prior as shown below (divide all cell values by 81):
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% 0.17 0.9 021 023 025 027 029 031 0.33
48 1 1 1 1 1 1 1 1 1
5.1 1 1 1 1 1 1 1 1
54 1 1 1 1 1 1 1 1 1
57 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1
66 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1
72 1 1 1 1 1 1 1 1 1

For each pair of values {a;, b,} we can generate a Pearl curve {y(#)la;, b }. Then,
as each weekly report of BCWP(t) is received, we compute the likelihood that this
value would be obtained as a random error if the true curve that the BCWP is fol-
lowing were {y(t)la;, b;}. With these values for all the possible pairs, we compute by
Bayes” Theorem the posterior probability for each of the combinations {a;,b;}.
From these probabilities, we compute the average values for the parameters a and b
and use these to forecast. Figure 13.17 shows a snapshot after week 8 of the exam-
ple. The actual reported BCWP(t) are shown with triangular symbols.

It would be obvious at week 8, just by plotting the reported BCWP(f) compared
to the planned BCWS(7), that the project is falling behind schedule. The more inter-
esting question is, When 1is it going to finish? This is shown in Fig. 13.18 by the
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Fig. 13.18 Forecast at week 8
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forecast curve, which is a Pearl curve with the average parameters computed by the
Bayes process through week 8, extrapolated to the future. The curve plotted in the
figure represents the mean or expected value of the forecast BCWP(¢). Figure 13.19
shows the probability distributions for the estimated date at completion computed
from the reported data for weeks 1 through 8.

The probability distributions are shown here as Normal distributions. It can be
seen here how the probability distributions on the duration narrow as more informa-
tion is obtained, and shift to the right. At week 8, the probability distribution is
centered around the mean value of 38 weeks. Moreover, it is clear from the week 8
probability distribution that the original estimate of the duration, 29 weeks, has less
than a 10% chance of happening (the area under the week 8 probability distribution
to the left of 29 weeks is less than 0.10).

Figure 13.20 shows the actual reported BCWP(t) for the entire project, the trian-
gular symbols indicating the reported values. Also shown, as the curve labeled
BCWRP, is the Pearl curve that best fits the actual performance across the complete
project. The differences between these two curves are the random reporting errors.

Figure 13.21 that plots the confidence band for the prediction of the project dura-
tion against the time at which the prediction was made. The upper or 90% confi-
dence limit shows the values for the duration that would be exceed with probability
0.10, and would not be exceeded with probability 0.90. Because of the assumption
of symmetry, the mean line is also the median, or 50% confidence limit; it is equally
likely that the actual duration would be above or below this line. The lower confi-
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Fig. 13.20 BCWS and BCWP

dence limit is the value that would be exceeded with probability 0.90, and not
exceeded with probability 0.10. Therefore, the actual values should lie between the
upper and lower confidence bands about 80% of the time.

Of course, at any time, only the confidence band to the left of 7 (that is, before 7)
is known. By inspection of the confidence limits at week 8, it is apparent at this time
that the planned duration of 29 weeks lies below the lower confidence limit, and so
there is less than 10% probability that the project will finish in the planned time. At
this same time, the expected value of the duration, the mean line, is about 37 weeks.
That is, after week 8, meeting the original schedule is highly improbable, and proj-
ect management should be working with the assumption of a median duration of 37
or 38 weeks instead of 29.

Comparing this figure with the previous one, it is possible to see how the fluctua-
tions in the reported values for BCWP(¢) cause the confidence band to vary with
time. However, the width of the confidence band narrows as more information is
obtained on subsequent values for the actual BCWP(r). Of course, the confidence
limits shown here are actually too narrow, because they relate to the comparison of
the actual reported values to the fitted Pearl curve. There are some errors in fitting
the Pearl function to the planned BCWS(#), namely the sum of the squares of the
deviations between the fitted Pearl curve and the planned values, and neglecting this
source of variance makes the confidence band look narrower than it should be. It is
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possible that this variance could be included, but in general, if the fit between the
BCWS(t) and the idealized function (Pearl or one of the others discussed) is close,
the error is considered negligible.

As it turns out, the actual completion date is at week 38, but the point here is not
that this value was accurately predicted, but that, with a few exceptions, it always
was inside the 80% confidence band. Although we would like the confidence band
to be as narrow as possible, the main objective is that the ultimate solution should
lie within the confidence band from the beginning of the process to its completion.
In this case, the Bayesian revision of probabilities has substantially met this
objective.

13.8 Practice Problems

Problem 13.8.1 You are a Construction Engineer on a large coal-fired power plant
jobsite, acting as supervisor for large pipe hanger installation. The schedule for
completion of the large pipe hanger installation is 36 months after start of this phase.
The Planned Value or Budgeted Cost of the Work Scheduled is shown in the second
column of Table 13.4. Quantities have been normalized so that BAC = 100.
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Table 13.4 Problem data

Month Cumulative PV (BCWS) Monthly earned value Cumulative EV (BCWP)
0 0 0 0

1 0.2 0 0

2 0.9 0 0

3 2 1.1 1.1
4 34 1.1 2.2
5 53 2 4.2
6 7.4 1.6 5.8
7 9.9 1 6.8
8 12.6 0.1 6.9
9 15.6 3.5 10.3
10 18.9 2.7 13.1
11 223 32 16.3
12 25.9 1.5 17.8
13 29.7 1.2 18.9
14 33.6

15 37.6

16 41.7

17 45.8

18 50

19 54.2

20 58.3

21 62.4

22 66.4

23 70.3

24 74.1

25 77.7

26 81.1

27 84.4

28 87.4

29 90.1

30 92.6

31 94.7

32 96.6

33 98

34 99.1

35 99.8

36 100

At the end of the 13th month of installation, the project-to-date values of the
Earned Value per month and the cumulative EV or Budgeted Cost of the Work
Performed are shown in the third and fourth columns of the table.
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At this time, the Site Superintendent calls you to his trailer to tell you that the
company VP for power plant construction, who reads the monthly EV reports,
called him to say that he is very much concerned because the large bore pipe hanger
SPI is only 0.6. At this rate, the hanger completion will be 24 months late. (Using
the relation Estimated Duration at Completion = Planned Duration/
SPI = 36/0.6 = 60). A schedule overrun in the large pipe hanger area will surely
delay startup of the project and jeopardize the company’s incentive fee for on time
start of system tests (and eliminate your bonus as well).

The Site Superintendent also knows that, with 23 months to go and no current
problems with on-time deliveries of large bore pipe hangers from the fabricator,
approximately 3—4 months can be gained by rescheduling large bore pipe installa-
tion efforts to concentrate first on those piping systems that will go into system test
first, thereby overlapping hanger installation and system tests by about 3 months.
This rescheduling will increase some labor costs, due to installation out of optimal
sequence, but this additional cost would be far less than the incentive fee at risk.

The Site Superintendent, to respond to the corporate VP, directs you to prepare a
report to him giving a reliable prediction of the time at which large bore pipe hanger
installation will be complete on this site.

* What is your forecast date for large bore pipe hanger completion? What curve
would you use to make the forecast? State your assumptions.
* How confident are you that you will finish on or before this committed date?

Problem 13.8.2 Johnny Mize, Assistant Project Manager at the Odessa refinery
upgrade project, was sitting at home watching the St. Louis Cardinals on TV when
he got a call from Leo Durocher, Vice President for Construction at the home office.
“I have heard rumors about the situation down at the Chocolate Bayou job, and I
want you to be there tomorrow morning and report back to me about what is going

29

on.

Johnny didn’t know much about the Chocolate Bayou job and didn’t want to
walk into something blind, so he decided to call some friends of his in the company
at various jobs to get some advance scoop on the situation. So Johnny placed a call
to Paul Dean, Chief Electrical Supervisor at the Odessa job, who told him that “All
I have heard about that site is that everything is OK except they are under-staffed
and have been affected by a shortage of crafts.”

Frankie Frisch, Chief Construction Engineer at the company’s site in Abu Dhabi,
told Johnny: “I have heard that, due to the owner’s financial condition, that job is
heavily cost-driven. The owner controls the cash flow expenditures every week
down to the penny, and nobody can get an authorization to spend any money above
the preset spending limits. Everybody is spending a lot of time and effort managing
to the cash flow limits, which results in stop-start inefficiencies.”

Pepper Martin, Welding Supervisor at the Odessa job, told Johnny that “Chocolate
Bayou initially had a hard time hiring qualified pipe welders at that location, due to
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the volume of construction going on around there that sucked up all the welders in
the vicinity, and pipe welding is on the critical path. So they decided to bring in
travelers. They imported a bunch of pipewelder travelers and had to promise them a
lot of overtime to get them there. But once they got them, they have been going like
gangbusters, beating their numbers.”

(Note: a traveler is a construction craftsman who does not work near his home
but rather travels around the globe working at major industrial construction projects.
Travelers are highly skilled and very productive, and demand lots of overtime to
come to any job, from which they make lots of money).

Finally, Nub Kleinke, General Superintendent at the Guinea LNG job, told
Johnny that “From what I hear, the job is highly schedule-driven. Due to changing
economic conditions, the client decided he really wants the project done on time, so,
shortly after they mobilized, the owner decided to set up some schedule milestones
and to offer some large cash incentives for hitting these milestones, and so they are
holding tight to the original schedule.”

From this, Johnny wonders if they are all talking about the same project. So, he
goes onto the company’s Web site for the Chocolate Bayou project and finds the
EVMS chart for this work, current up to the 30th week of the project. Johnny wants
to reconcile the quantitative EVMS data with the anecdotal information and narra-
tives he got in his phone calls. Help Johnny out by linking these verbal scenarios to
the graphs in color shown below. Give the best match-up between the anecdotal
remarks and the EVM plots. Note: You must fully explain your logic and reasoning
as to why each dialogue best fits the chosen EVM chart.

For each of the four charts shown below (Figs. 13.22, 13.23, 13.24, and 13.25):

e Compute SPI and CPI at the end of 30 weeks and write these values on each
chart.

* Forcaset completion for both the BCWP and ACWP curves. State your assump-
tions and explain your reasoning.

e The comments made by Paul Dean best fit the situation shown in which Chart
Number?

e The comments made by Frankie Frisch best fit the situation shown in Chart
Number?

e The comments made by Pepper Martin best fit the situation shown in Chart
Number?

e The comments made by Nub Kleinke best fit the situation shown in Chart
Number?

(Explain why you reached the conclusions).

Problem 13.8.3 Consider Example 13.1 from this Chapter. Using ten data points,
the linear regression method using the Reverse Gompertz equation gives the values
A =—-4.616 and B = 0.360. These values give the estimates of the parameters a =
e =0.00989, b = 0.360 in the Dual Gompertz equation, with R?>=0.977. Table 13.5
shows the initial 10 data points used to estimate the parameters and 10 subsequent
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Table 13.5 Project data

Reported percent

Reporting period complete Fitted value reverse Gompertz
0 0.0

1 1.0 1.41
2 2.4 2.01
3 32 2.87
4 4.7 4.09
5 6.1 5.81
6 7.8 8.23
7 12.3 11.58
8 14.1 16.17
9 25.1 22.34
10 27.3 30.41
11 (36.2)

12 (40.9)

13 (49.5)

14 (56.9)

15 (73.2)

16 (86.2)

17 (92.0)

18 (96.1)

19 (98.2)

20 (99.2)

355

measurements, from Period 11 to 20) (shown in parenthesis). Use Bayesian method
to show how the parameter estimates would change with each new observation.
State your assumptions.
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Chapter 14
Forecasting with Learning Curve Models

Check for
updates

Abstract In this chapter we discuss the effect of learning on project efficiency and/
or productivity. We introduce the concept of learning curves and provide the model-
ing approaches to forecast project completion time and cost. We use examples from
projects characterized with repetitive tasks and where the learning effect is highly
visible such as tunneling.

Keywords Learning model - Project learning - Forecasting

14.1 Introduction

Everyone is familiar with the situation, in everyday life, in which one becomes more
proficient at some activity. One says, ‘“Practice makes perfect.” The same is true in
industry: the larger the number of cumulative repetitions, the more efficient the
process becomes. Projects may exhibit similar behavior, if they last long enough.
The term learning curve refers to a situation in which the efficiency or productivity
of an operation improves as the work progresses. This effect may be due to a variety
of reasons, which are collectively called learning. These may include traditional
learning (and its complement, feaching), but may also include such factors as
increased capital investment in machinery, etc.

14.2 Learning Curve Model

Learning can be expressed as a reduction in the unit rate or the marginal cost of each
unit with the number of units completed. The Crawford learning curve model
expresses the marginal cost of the n-th unit, mc(n) as a power function (Mosheiov
and Sidney 2003):
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in which 7} and b are parameters to be determined. In this model, the ratio of
marginal costs for different units in the sequence, say unit n and unit gn, where ¢
is some dimensionless proportionality factor, depends only on their relative posi-
tion in the sequence and not on their absolute numbers:

me(pn) _T(en) _
mczpn): Tq;b —¢

1

In particular, the learning slope or learning rate is conventionally defined as the
ratio of marginal costs when the number of units is doubled. That is, for ¢ = 2,

p= mc(2n) _ T (2}2)'] b
mc(n) Tin

The plausible range for the learning rate is often taken to be:

l< <1
2 p=

-1<b<0

For example, the 90% learning rate corresponds to p = 0.90, which corresponds,
in the equation just above, to b = —0.152. Because of the doubling characteristic,
the 64th unit costs 90% of the cost of the 32nd unit, which costs 90% of the cost
of the 16th unit, which costs 90% of the cost of the 8th unit, which costs 90% of
the cost of the 4th unit, which costs 90% of the cost of the 2nd unit, which costs
90% as much as the first unit. Or, summarizing the sequence, the 64th unit costs
(0.9)° = 53%, about one-half as much as the first unit. Figure 14.1 shows the mar-
ginal cost versus the unit number for learning rates 0.80, 0.85, 0.90, 0.95. Note
that the larger the learning slope or learning rate, the smaller the reduction in
marginal cost. That is, a learning slope of 1.00 or 100% means no reduction in
marginal cost at all.

By taking logarithms of the basic Crawford power function,

mc(n) =Tn"

ln[mc(n)} = ln[TI ]+ bln[n]

Plotting In[mc(n)] vs. In[xn] for various observed values of n, if this learning
curve model is valid, should give a straight line, with intercept In[7] and slope b.
(But note that this b is negative, from the above discussion.)

Figure 14.2 shows the logarithm of the marginal cost versus the logarithm of the
unit number, for learning rates 0.80, 0.85, 0.90, 0.95. Note the negative slopes in the
log-log plots.



14.3  Learning Curve for Projects 359

1200

— (.95

1000 e— e
—0.85
0.8
800 41—

0>
% \
=]
L]
S
= \
1] ~,
s 400

200

0 T Ll T Ll T T
0 10 20 30 40 50 60 70

Unit Number (n)

Fig. 14.1 Learning curves

7.5
— (.95
—().9
7 0.85
B
=]
© 65
©
=
g
©
g 6
c
-
5.5
5 T T T T T T T T
0 0.5 1 15 2 2.5 3 35 4 45

Fig. 14.2 Learning curves in log-log scales

14.3 Learning Curve for Projects

Although knowing marginal costs is desirable for management purposes, measuring
marginal costs in a project is not necessarily easy. Typically, we have to deal with a
reporting period, such as a week or month, for which we can observe the number of
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units accomplished (the incremental or period-by-period work performed) and the
labor and other costs (the actual cost of the work performed during the reporting
period). That is, the marginal cost is in practice the average cost of some number of
units in some reporting period.

To avoid estimating marginal costs, the Wright learning curve model expresses
the cumulative average cost, ac(n), of unit n as a power function of n (Anzanello
and Fogliatto 2011):

ac(n) =An’
By taking logarithms of this, one obtains:
ln[ac(n)J = ln[A1 ] +pB ln[n]

Plotting In[ac(n)] vs. In[n] should, if the model is appropriate, give a straight
line with intercept In[A,] and slope /.

A relation may be established between the Crawford model and the Wright
model. Using the Wright power function, the total cost, tc(n), after n units is the
product of the average cost and the number of units:

ac(n) =An"
tc(n) = n[ac(n)] =An""’

The marginal cost, for any n, is by definition the derivative of the total cost with
respect to n:

d d 1+
me(n) =Etc(n) =%[Aln ﬁ] =A (1+ﬁ)nﬁ

Compare this expression for the marginal cost to that for the Crawford model:
mc(n) = Tlnb
The two expressions are equivalent if:

=1+ )4,
b=p

The definitions given above represent the classical approach to learning curves.
However, these definitions are not based on any particular theory, and actual data
may or may not show this behavior. For example, in these definitions, the greatest
amount of learning occurs when going from the first unit to the second. The slope of
the learning curve, that is, the change in the marginal cost, decreases thereafter. This
behavior may be questioned for a number of reasons.
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In order to determine the shape of the learning curve, one needs to address the
question of why learning should occur at all on projects. In many cases, it probably
does not, if the nature of the work changes before much learning can occur.
Learning is presumed to occur only when there are enough repetitions of similar
but not necessarily identical operations in a construction process. On the one hand,
learning is desirable because it represents a reduction in the unit costs. On the other
hand, learning may be undesirable because it indicates that the initial unit costs
were high.

Whatever learning may be, it is not caused by the construction crafts learning
their skills. It is not carpenters learning to drive nails or saw lumber. It is not iron-
workers learning how to tighten bolts. Skilled craftsmen already know these things.
If any person in the process is learning anything, it is the construction supervisor,
who is learning how to staff, plan, control, and manage the work, in a form of on-
the-job-training. If a construction process were well planned, if the plan were simu-
lated to find the optimal methods, if the workers were trained in advance, then there
should be little or no learning on the job — because it would have started close to the
peak of productivity, far down the learning curve. Learning may occur because the
process was not adequately planned, simulated, and optimized before the work
started. Learning occurs when these activities that should have been done up-front
take place only after the actual work starts.

We may then consider that learning consists of a process of trial and error, in
which the supervisor and the work crew in general experiment with different
approaches, sequences, allocations of resources, etc., retaining the best and discard-
ing the worst. Consequently, learning may be considered to be a search process
conducted in real time, on the job, by the crews actually doing the work. From an
optimization viewpoint, it may be considered a form of hill-climbing or random
search, in which one adjusts the direction of change according to the results obtained.
Or, it may be considered a form of genetic algorithm, in which many work methods
are proposed and tested, and new work methods are formed out of combinations of
the previously tested ones, in an evolutionary process. Because construction work is
never perfectly repetitious (as manufacturing may be), some adjustments to the pro-
cess are always required. These changes go on until the job is complete. Then on the
next job, the tasks are different, the personnel change, planning is again inadequate,
and learning starts all over again.

Although the general learning model above is not specific, if it is valid in general
outline, then we might expect some departures from the classical power function
models given earlier. These might include:

* Learning (improvement in unit rates or marginal costs) would not be fastest
immediately after starting the job, as it would take some time for the trial and
error process described above to become effective. Therefore, the learning curve
would not be convex everywhere, as with the power function, but would be con-
cave to start and then become convex.

* Learning improvement would not continue forever, with the unit rate approach-
ing zero, as with the power function, but would be asymptotic to some horizontal
line or minimum value.
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e Improved planning, simulation, optimization, and training would decrease the
potential for learning (initial unit rates would be closer to the long term asymp-
tote), and would increase the rate of learning (trial and error changes would be
more effective).

As an example of what this might look like, consider Fig. 14.3.

To obtain an equation for a learning curve like that in Fig. 14.3, let x(n) = x, =
unit rate after n units are complete; x(co0) = x,, = asymptotic lower bound on unit
rate; x(0) = xo = upper bound on unit rate; and b = constant. Now suppose that the
slope of the learning curve dx(n)/dn is proportional to the amount of learning done
so far, xy — x, and the potential for improvement: the amount of potential learning

yet to do, x,, — x; therefore, = b(xn -x, )(xo -X, ) . By a change of variable,

this expression can be transformed into the following equation. Let y, = x,, — x, or
X, =Xy +y,and S = x,, — x, then:

dx, dy,

E:E:b(xo +3, = x,)(=v,) = by, (x, - x,-,)
Y _ _

dn by(S y)

The solution to this differential equation is given as:

ye S
1+ ae™

in which a is a constant of integration.
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Converting back to the current notation, this becomes:

X, —X
X, =Xy +——
1+ae

This is the function shown Fig. 14.3, in which x(1) = 100; S =30; a = 20;
b =0.075. Also shown is the first derivative (not to the same scale). In this particu-
lar situation, the rate of improvement of the unit rate is a maximum at n = 40 units,
and improvement has virtually ceased at n = 100 units.

14.4 Forecasting with Learning Curves

Consider a simple case of a repetitive construction operation, drilling a tunnel. The
number of meters of advance is recorded for every day. Table 14.1 shows the situa-
tion for a certain actual tunnel after 35 days or 5 weeks of construction. Clearly the
daily advance is highly random, but taken from a limited set of only six different
values: 1.2, 1.5, 2.4, 3.0, 4.5, and 7.5 m/day.

Figure 14.4 shows a plot of the daily rate of advance for the first 35 days. The
average advance for these 35 days is 97.5/35 = 2.7857 m/day. The total length of the
tunnel when completed will be 1035 m. The objective of the data analysis is to pre-
dict the completion of the tunnel given that the current methods and policies are
continued.

Therefore, the best estimate of the completion time as a result of the first 35 days’
experience is 1035/2.7857 = 372 days. The question at this point is, is there a learn-
ing effect that could lead to an earlier completion, and what is the probability that
the tunnel will be completed on any given date?

This example will be used to illustrate the learning curve power function model
given at the beginning of this chapter. Here, the interest is in time to complete, as it
is considered that the cost of the tunnel is directly proportional to the time it takes
to drill it. Using the Crawford learning curve model, the marginal cost is the number
of days per meter of advance, the reciprocal of the rate in meters per day.

Let m represent the number of units (meters) completed, and let d(m) represent
the marginal cost in days per meter when m meters have been done. Then the
Crawford model is d(m) = Tym", in which T, and b are to be determined from the first
35 days’ data. Data showing d(m) vs. m for the 35 days’ is presented in Fig. 14.5.

Taking natural logarithms, as suggested above, for d(m) and m transforms the
data as shown in Fig. 14.6.

A straight line fit to these 35 points gives In[d(m)] = — 0.0915 — 0.2509 In (m)
with R? = 0.41. This relation would fit the equation as above

d(m) = Tlmb

d(m)=0.91256m"*"
p — 240.2509 — 0.84
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Table 14.1 Tunneling data Meters Cumulative
Day | accomplished | advance (m)
1 1.2 1.2
2 1.2 2.4
3 24 4.8
4 2.4 7.2
5 2.4 9.6
6 1.2 10.8
7 2.4 132
8 2.4 15.6
9 24 18
10 |24 20.4
11 |24 22.8
12 |12 24
13 |12 25.2
14 |24 27.6
15 |24 30
16 |3 33
17 |3 36
18 |3 39
19 |3 42
20 |3 45
21 |3 48
22 |3 51
23 |3 54
24 |3 57
25 |3 60
26 |3 63
27 |3 66
28 |3 69
29 |6 75
30 |3 78
31 |45 82.5
32 |3 85.5
33 |15 87
34 |3 90
35 |75 97.5

This would indicate a learning slope of 84%.

However, as the marginal costs (days/meter) vary widely, and as the stated objec-
tive of the analysis is to estimate the completion date, not the marginal costs, the
example from this point will take an alternate path. Let #(m) represent the total time
to advance a total of m meters. Then, extending the Wright model given above to
total cost (total time) we get #(m) = Aym' *7. If we now take logarithms we get:
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ln[t(m)] =ln[A,]+(1—[3)ln[m]

The plot of In[#(m)] vs. In[m] for the known 35 days is shown in Fig. 14.7. The
equation for the least squares fitted line shown in Fig. 14.7 also:



366 14 Forecasting with Learning Curve Models

1 15 2 25 3 35 4 45
-0.5
‘ —e—log(Days/Meter) | ﬁm.

[

Log(Days/Meter)

e
v
4
—

-2.5
Log Meters

Fig. 14.6 Transformation of progress data

35

25 1| —e=Iog(time)
4| ——Fit 35
; ~

Log Time
%]

Log Meters

Fig. 14.7 Model fit

In[ £(m)]=-0.13968+0.818147In[m]

t(m) = 0.869636m°¥5
£ =0.818147-1.000000 = —0.181853
p — 270.181853 — 0.88
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The learning slope 0.88 is not far off from the estimate of 0.84 made with the
marginal costs. The adjusted R*> = 0.997 is much higher than before, but this is
attributed to the high correlations between successive values of the logarithms of
total time (0.999), compared to the relatively low correlations between successive
values of the logarithms of the marginal costs (0.371). From the linear regression
calculations, the residual sum of squares is 0.065045, so the residual variance is
0.065045/(35-2) = 0.001971; and the residual standard deviation is then
1/0.001971 = 0.044396 .

This value is also known as the standard error of the estimate. However, the con-
cern here is with the standard error of the forecast, given that the desired forecast for
the completion date requires considerable extrapolation. Earlier, it was determined
that a simple estimate of the time to drill 1035 m at the average of the first 35 days
would be 372 days, meaning that the linear model derived from the known data
must be extrapolated more than tenfold (372/35 = 10.6). To establish confidence
bounds on the forecast to complete that far out, it is necessary to determine the stan-
dard error of the forecast when m = 1035 m.

The main results are given below, with a change of notation to correspond to the
nomenclature used here.

in=—

m.
355

Here, m; is the observed total progress through day j, 1 <j < 35; s?is the variance
of the residuals from the regression analysis; and m is the forecast number of meters
completed, mss <m < 1035.

The forecast process is then as follows:

» Forecast the mean of the logarithm of the time at the meters of advance m using
the linear equation /n[t(m)] = — 0.13968 + 0.818147 In [m]

» Forecast the confidence bounds for the linear equation using the relation
mean — ksy (m) < confidence band < mean + ksy(m). Here, the 80% confidence
interval is used, with 10% probability that the tunnel completes in time less than
the lower bound, and 90% probability that it completes in less time than the
upper bound, so k = 1.282, on the assumption that the residuals are Normal.

» Convert the values for the mean and the two confidence bounds to the original
variables by computing exp(x).

The forecast for the linear model is shown in Fig. 14.8.
The dotted line shows the actual observations for the first 35 days. Note that the
forecast period appears short compared to the 35 day period of the observations
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because the axes are in logarithms. Figure 14.9 shows transforming the confidence
bands back to the original variables and forecasting at day 35:

This plot clearly shows how the uncertainty expands with forecasts further out.
By estimating the learning effect, the expected completion date (the time at 1035 m)
is now 255 days, with a 10% probability if finishing in less than 206 days, and a
10% chance of taking more than 314 days. The curvature in the mean forecast
reflects the learning effect. Note that in the linear (that is, logarithmic) plot, the
confidence bounds are symmetric, but this is not the case in the graph above, in
which the lower bound is (255-206) = 49 days below the median, and the upper
bound is (314-255) = 59 days above the median. This indicates that the probability
distribution of the time to complete the tunnel is somewhat shifted to the right (that
is, to higher values). In this formulation, the probability distribution is on the time
to reach any given distance of advance, not on the distance achieved in a given time.

As the tunnel advances, more data are obtained and the analysis above can be
repeated again and again to generate revised forecasts for the completion date. As
the tunnel advances, the time to completion should decrease and the confidence
band should get narrower. If the confidence band widens, this would indicate an
increase in variability. If the expected completion date gets further away, this would
indicate some decline in the rate of advance. In this approach, one manages the job
by the forecast of the time at completion, including both the both the expected
completion time and the confidence band on the completion time.

14.5 Practice Problems

Problem 14.5.1 You are a Construction Engineer on a jobsite, acting as the supervi-
sor in charge of two crews on a certain construction activity. This is your first job
with real supervisory responsibility and you want to make a good impression on the
site resident manager.

On Tuesday of the third week of work on this activity, you get a visit from the site
cost accountant, who tells you that he has determined, based on the first 2 weeks of
production, that you are trending far over budget. The cost estimate for this work
package was 1 man-hour per unit, and the average cost per unit is already 65%
higher than that, so this activity will end up over the cost budget and over the sched-
ule too, unless you immediately add more workers (see Table 14.2). The cost
accountant tells you that he is going to bring up the substandard performance of
your two crews at the site superintendent’s next review meeting tomorrow.

Per the estimate, the activity consists of installing a total of 7148 units, projected
to last 20 weeks (5-day work weeks). Plot the marginal cost per unit (man-hours per
unit installed in each day, by each crew) vs. the number of units installed, for the
2 weeks of actual data followed by the learning model forecast. Is there a difference
between the performance of your two crews? What is the predicted average cost per
unit at the completion of the activity? How confident are you in your projections?
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Table 14.2 Problem data

Day Crew 1 hpaid |Crew 1 units installed |Crew 2 hpaid | Crew 2 units installed
1 30 10 52 15
2 27 11 39 23
3 42 21 57 36
4 31 17 28 18
5 18 11 34 26
6 44 31 55 40
7 35 22 21 15
8 28 19 25 18
9 35 24 11 9
10 29 19 34 24
Total | 319 185 356 224

What are you going to tell the site superintendent if the cost accountant raises the
issue of your apparent overrun in tomorrow’s project review meeting?

Problem 14.5.2 The U.S. Army is responsible for decontaminating a of site. The
decontamination planning and execution was contracted to a major engineer-
constructor. This project has been in operation for 18 months but is apparently over
budget and behind schedule. Some facts about the project are given below. The CEO
of the engineer-constructor has tasked your team with the job of re-estimating the
cost and duration and developing a recovery plan, if possible (see below).

* Scope: Decontaminate 1690 containers of highly toxic waste

e Original contract: 31 month operational period

e Original plan: Ramp up decontamination over a 6 month period until reaching a
steady-state of 60 containers per month. That is, increase processing rate reach-
ing 60 per month, then constant at 60 per month until completion of all 1690
containers at 31 months

 Original price: $214.5 million.

The current project is 18 months in the operational phase. Project expenditures to
date are $132 million. The project plan called for budgeted costs of $128 million at
this point. The project has actually processed 522 containers, at an average rate of
522/18 = 29 containers per month. The actual number of containers processed in
each month to date is variable and shown in Table 14.3.

Site management estimates that the project is 31% complete, based on the num-
ber of containers completed to date: 522/1690 = 0.31. According to the project
accountant, costs on this project are largely fixed rather than variable; that is, the
costs are not directly dependent on the number of containers processed; the total
cost depends on how long it takes to completely process all the containers and shut
down the facility. The fixed costs average $7.34 million per month ($132 mil-
lion/18 months = $7.34 million per month. (Considering only the 18 month opera-
tional phase as having costs; hence, over-estimating cost per month.) The project
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Table 14.3 Problem data Monthly
containers Cumulative
Month of project | processed containers
1 11 11
2 8 19
3 0 19
4 2 21
5 7 28
6 16 44
7 4 48
8 38 86
9 45 131
10 48 179
11 37 216
12 31 247
13 23 270
14 51 321
15 52 373
16 53 426
17 34 460
18 62 522

believes that project duration and operational costs would be minimized by process-
ing the remaining containers in the shortest time possible.

The contractor’s CEO at the home office is unhappy about the apparent overruns
on this project in both duration and cost. The CEO sends your team to the site to
provide a report to him on the forecast for this job, and your recommendations, to

include, but not necessarily limited to:

* Is there any learning curve effects on this project?

*  When do you believe this project will finish, if there are no changes to the project
from the status quo? (Estimated Duration to Complete; Estimated Duration at

Completion)

e What is your confidence level on the predicted duration?
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A
Actual cost of work performed (ACWP), 279
Agnostic uncertainty
agonistic, 8
dialectic, 8, 9
volitional, 6, 7
Agonistic uncertainty, 8
Aleatory uncertainty, 4, 5
Algebraic manipulation, 320
Algebraic simplification, 335
Ambiguity, 10
Anchoring, 111
Approximation approach, 171
Autoregressive process, 87

B

Bayesian approach, 340, 342

Bayesian inferencing, 339-341

Bayesian methods, 9

Bayesian networks, 39

Bayes’ law
Bayesian P(heads) run of tails, 211
description, 235
failure rates, 213-218
model validation/model verification, 208
posterior conditional probability, 209
posterior probability distribution, 210
prior and posterior distributions, 218-220
prior probability distribution, 209
probability mass function, 209, 210
probability of an event, 208
problem data, 232-233
revised risk functions, 235
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time between failure data, 220
See also Poisson process
Bayes’ theorem, 346
Beta distribution, 111, 112
probability distribution, 113
Beta vs. triangular distribution, 115, 116
Binomial distribution, 73, 74
Binormal distribution, 129, 130
Budgeted cost of work performed (BCWS), 279
Budget reserve analysis, 185
Budget to complete and contigency
management
actual cost performance, 238
bivariate case, 239, 240
cost management, 263, 265-272, 274
general multivariate case, 249-255
individual tasks/work packages, 256
Markov process, 238
posterior distribution of project costs,
242-249
projects, 235
revised risk functions, 235
second moment method, 256-263
total project cost, 237, 240-242
total project duration, 237
vs. work completed, 236
work packages, 237, 238

C

Caveat, 70

Central Limit Theorem, 50, 89, 156
Cholesky decomposition, 69

Classical normal linear regression model, 326
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Coefficient of variation (COV), 57-59, 96,
97,132
Common cause events
definition of, 149
no common cause, 149-151
with an underlying, 151-154
Conditional probability distributions, 169
Condition-If-Then constructs, 38
Contingency, 30, 31, 33
additional funds, 190
budget at completion, 184
budget reserve analysis, 185
construction period, 191
construction personnel, 187
correlation effect, 197-202
cost estimation, 185
definition, 181, 182
errors, types of, 182
fixed-price contract, 189
individual distributions, 187
initial funding allocation, 186
management reserve, 184, 191
mean values, distributions, 190
micromanaging, 186
out-of-scope project improvements, 184
percentage, 188
private owner, 191
probabilistic statements, 183
probability density function, 185
problem data, 202, 203
program management, 192-197
project organization, 181
project policy and procedures documents, 188
project schedule and cost outcomes, 185
project valve use, 183
public agency, 186
quantity development function, 183
risk-adjusted budget, 190
risk assessment and probabilistic
estimating techniques, 181
strategic business/political conditions, 188
waste remediation project, 189
Contingency vs. correlation, 161
Contingency vs. weather forecasting error, 160
Continuous probability density function,
221-223
Control chart, 286, 292
Control charts parameters, 284
Correlated second moment approach, 119
Correlation
bivariate Normal, 82
coefficient, 82
conditional probability, 81
definition, 83

Index

diagonal, 86

equal probability, 82

expectation operator, 83

expert judgment, 132

first moment, 83

independent, 82

joint probability, 81

kurtosis/flatness/pointedness of

distribution, 85

marginal probability, 81, 82

mean value, 83

overrunning, 81

path lengths, 168

probability density function, 83

probability distribution, 84

second moment, 83, 85

skewness, 85

statistically independent, 82, 84, 87

substantial mathematical simplification, 86

between variables, 132

variances, 83, 84

zero correlation, 82
Correlation coefficients

duration of activities, 172

estimation, 133, 134

work packages, 158

work packages and total cost, 147-149
Correlation effect, 197-202
Correlation matrix, spreadsheet, 138, 139
Cost and schedule contingencies, 237
Cost estimates, work packages, 154, 158
Cost overrun, 300
Counting process, 221
Covariance matrix, 119, 144, 157
Covariance matrix, project activities, 166
Covariances, duration of activities, 173
Crawford learning curve model, 357, 363
Crawford model, 360, 363
Crawford power function, 358
Critical Path Method (CPM), 135-136
Cumulative density function (cdf), 129
Cumulative distributions, 118, 119
Cumulative probability distribution, 123,

169, 170

D

Dempster-Shafer theory, 10

Dependent/independent comparison, activity
paths, 177

Dialectic uncertainty, 8, 9

Drilling equipment, 302

Dual Gompertz curve, 324

Dual Gompertz data, 329, 333
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Dual Gompertz equation, 322, 352
Dual Gompertz function, 326, 330, 331
Durbin-Watson test, 324

E
Earned value chart 1, 353
Earned value chart 2, 353
Earned value chart 3, 354
Earned value chart 4, 354
Earned value management (EVM), 279
capability index, 282
control charting methods, 280
cumulative and incremental definitions, 280
dimensionless ratios, 282
historical data, 281
quantities, 280
random variations, 281
statistical analysis, 282
statistical methods, 281
Eigenvalues/characteristic values, 70
Elementary probability theory, 169, 235
Empirical data, 110
Entropy, 10
Epistemic uncertainty, 6
Erlang distribution, 101
Erlang prior distribution, 222
Estimated date at completion (EDAC), 309
Event Trees (ET), 39
Expert judgments
aggregation, 138-140
subjective methods, 111

F
Failure modes and effects analysis (FMEA),
29,38
Fault Tree Analysis (FTA), 39
Forecasting, 339
budgeted rates, 307
construction field activity, 311
methods, 308
project duration, 308
project management, 305
reporting periods, 309
S-curve, 311
Forecast process, 367
Frequency vs. intensity of the hazard, 37
Fuzzy sets, 10

G
Gamma distribution, 225
Gompertz curve, 315-317
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Gompertz equation, 320, 322, 324
Gompertz function, 323
Gumbel Type II distribution vs. binormal
distribution, 130, 131
Gumbel Type II Extreme Value Distribution, 123
best judgment, 124
cumulative distribution, 125, 127-129
histogram, 125
mean and variance, 124, 125
parameters, 124
shift zero, 125, 126

H

Hazard, vulnerability and consequence (HVC), 36
Heisenberg’s uncertainty principle, 3
Howard’s formulation, 54

HVC risk modeling approach, 37, 38

I

Info-gap theory, 10

Integrated project team (IPT), 28

International Organization for Standardization
(ISO), 27

Interval probabilities, 10

J
Job progress data, 365

L
Learning curve model

differential equation, 362

genetic algorithm, 361

learning model, 361

learning rate, 358

marginal costs, 358, 360
Learning effect, 368, 369
Linear correlation coefficient, work package,

150, 151

Linearized data, 330, 332
Linearized forecast, 334
Linear model, 367
Linear pool, 140
Linear regression, 309, 324, 337
Logarithmic option pool, 139
Logistic curves, 317
Logistic equation, 313
Log-log plots, 358
Longest paths, project activities, 166
Lower control limit (LCL), 295
Lower specification limit (LSL), 289, 290, 292
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M
Managing risks, 27
Markov process, 87, 92
Mathematical aggregation, 139
Matrix notation, summation, 145
Mean time between breakdowns (MTBF), 213
Mean values, activity durations, 173
Median values, activity durations, 173
Model-fit error, 227
Model validation, 208
Model verification, 208
Monte Carlo computer simulations, 241
Monte Carlo simulation, 19, 45, 47, 49, 50,
56-60, 89, 102, 114, 122, 171, 177
alternate hypothesis, 73
attribute outcomes, 72
binomial distribution, 73, 74
confidence band, 76
confidence bounds, 66
confidence interval, 75
correlated lognormal variables, 70, 71
correlated random variates, 6870
covariance matrices, 67, 68
double sampling plan, 77
independent random variates, 66
iterations, 77
modeling errors, 73
multiple-step sampling plan, 77
null hypothesis, 73
physical experiments, 65
physical measurements, 66
probability distributions, 65
problem data, 79
project sponsor, 72
random errors, 73
risk-adjusted schedule, 72
risk assessment, 72
ROI, 72
sample size, 66, 73
single-step sampling plan, 77
statistical criteria, 76
symmetric confidence interval, 74
two-tailed test, 75
types, 65
Monte Carlo simulation vs. probability
distribution, 178
Monte Carlo simulation vs. second moment
approach, 117
Monte Carlo solution, 118, 119

N
Natural process limits, 295
Negative correlation, 168

Index

Network algorithm, 166
Network representation of risk, 39
Newton’s laws, 4
Noninformative prior, 342, 345
Nonlinear models, 45
Normal distribution, 50, 57, 74, 76, 82, 85,
97-99
limitations, 122
mean, 123
standard deviation, 123
values, 122
Normal random variables, 177

(0]

Organizational restructuring, 35

P
Pareto sensitivity chart, 148
Pearl curve, 311, 313, 315, 317, 345, 348
Pearl equation, 317
Pearl formulation, 315
Pearl parameters, 320
Pearson correlation coefficient, 82
Pearson-Tukey approximation, 121
Pearson-Tukey equation, 121
Pearson-Tukey formula, 155, 172
PERT method
estimation values, 113
mean and variance, 113, 114
Poisson process
assumptions/stipulations, 212
description, 212
Poisson probability mass function, 213
probability identity, 212
Possibility theory, 10
Posterior conditional probability, 209
Posterior distribution, 343
Posterior probability density function, 223,
224, 301
Probability, 5, 7, 39
Probability density function, 123, 170
Probability distribution
correlated and uncorrelated cases, 200
cost estimation/scheduling, 192
project cost, 192
Probability of overrunning, activity paths, 176
Problem data, 371
Program management, 192-197
Project change orders, 225-231
Project completion, 305
Project cost estimates, range of, 116
Project costs
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statistical dependence and independence
assumptions, 99, 100
asymmetric probability distribution, 100
cost estimation, 98
COV, 96, 97
Erlang distribution, 101
expressions, 99
implications, 96
linear algebra, 96
linear expression, 95
probability, 99
relative dispersion, 97
safety factor/buffer, 97
safety factor/contingency, 97
self-reproducing property, 101
subcontract estimators, 102
subjective arguments, 99
substantial simplification, 95
unbiased, 102
unconservative, 102
variables, 98
work packages, 100-102
Project data, 295
Project Definition Rating Index
(PDRI), 9
Project Management Body of Knowledge
(PMBOK), 184, 185
Project Management Institute (PMI), 27
Project network, 166
Project performance functions, 61
Project risk management, 40
Projects
learning experiences and organizations, 235
networks of activities/work packages, 235
Project scheduling, 175-177
Project time series and autocorrelation
AR(1) equation, 87, 88
autocovariance, 88
Central Limit Theorem, 89
confidence bands, 93
first-order, 87
first-order autoregressive process, 88
infinite series, 91, 92
logistic curve, 92
milestones, 89, 91, 92, 94
partial series, 91
project completion, 93
project process model, 93
residuals, 89
stationary, 87
statistical dependence, 87
successive deviations, 92
successive states, 92
time series, 93, 94
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Project uncertainty and risks
acceptance tests/quality control tests, 24
construction projects, 24
cost, 26
engineering projects, 23
environmental restoration projects, 24
excavation, 23
external factors, 27
mission, use, business case/economic
viability, 25
performance, scope, quality/technological
risks, 26
project cost and duration, 25
schedule, 26
scientific and R&D projects, 24
systems notation, 27
unit rates and costs, 24
varieties
catastrophic risks, 26
incremental risks, 26
yards, 23
Prototyping, 24

Q
Qualitative assessments, 18
Quality control (QC), 279
and process control comparison,
285-286
Quantitative assessments, 45

R
Random error, 182
Random variations, 293
Range control chart, 296
Rates of return (ROI), 72
Regression analysis, 334, 343
Regression equation, 334
Resource-loaded schedule, 40
Reverse Gompertz equation, 324, 352
Reverse Gompertz function, 326
Risk analyses, methods, 132, 133
Risk assessment

qualitative, 29

quantitative (high impact, low probability),

31,32,36
quantitative (low impact, high probability),
30, 31, 35

Risk assumption, 35
Risk avoidance, 34
Risk buffering/hedging, 33, 34
Risk control, 34
Risk identification, 28, 29, 38
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Risk management framework

assessment (qualitative), 29, 30

assessment (quantitative), 30-32

assessment, treatment, monitoring and
communication, 27

contractors and consultants, 27

identification, 28, 29

mitigation and treatment approaches,
32-35

PMI classification, 28

Risk mitigation

assumption, 35

avoidance, 34

buffering, 33, 34

control, 34

insurance, 32

options and alternatives, 34, 35
organizational structures, 35
transfer, 32, 33

Risks

holistic approaches, 21, 22

managerial attitudes
academic decision theorists, 17
decision-theoretic vs. managerial

viewpoint, 21

depends on situations, 19, 20
description, 17
economists and financial analysts, 17
empirical managerial approaches, 20
exposure, 17, 18
gut feel, 18
inference problem, 19
intuitive management approach, 21
multidimensional concept, 19
perceived controllable, 20
project managers, 21

Risk transfer, 32, 33
Run chart for unit cost, 297

S

Sample mean control chart, 296
Schedule performance index (SPI), 279, 283, 308
Second moment approach, 118

aircraft design, 46

bottoms-up method, 47

correlation coefficients, 48, 51

covariance matrix, 49, 50, 52

critical path, 50

cumulative density function, 53

dependent/independent random variates, 50

discrete random variables, linear and
nonlinear models, 61, 62

Index

mean values, 51
mnemonics, 49
moments, 51
nonlinear functions
annual revenue, 55
combinations of variables, 54
comparative results, 57-59
correlation matrix, 56, 58
cumulative probability distribution
functions, 59
data, 56
expression, 54
mean values, 54
partial derivatives, 54
probability density functions, 57-59
skewness, 59
variance, 55
power plant under construction, 51
probability density function, 53
probability distributions, 45, 47, 49
software development projects, 47
statistical control, 47
suppliers/subcontractors, 47
time management, 46, 47
user’s specification/requirement, 46
variability/uncertainty, 46
variances and covariances, 48
work packages, 48
Sigmoidal curves, 311, 314
Sigmoid functions, 319
Six sigma process, 10, 290-291
Society for risk analysis (SRA), 27
Software development, 24
Spearman’s rank order correlation
coefficient, 83
Spiral development model, 24
Standard deviation
activity paths, 176
work packages, 157, 159
Statement of work (SOW), 28
Statistical process control (SPC), 10, 41,
279, 282
Statistical quality control (SQC), 10, 11, 292
concrete batch, 290
concrete strength, 288
consumer’s risk, 288
LSL, 291,293
quality, 288
six standard deviations, 291
standard deviation, 291
strength parameters, 288
Stochastic simulation, 109
Systematic error, 182
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T

Theory of evidence, 10

Three-moment approach, 130

Three point approximations, 120-122

3 sigma process, 282

Three Sigma Upper Natural Process Limit, 302
Three sigmoidal curves, 314

Total cost, work packages, 144, 145, 147
Triangle density functions, 117
Triangular distribution, 114

Truncated correlation matrix, 139
Tunnel advances, 369

Tunneling data, 364

U

Uncertainty
agnostic, 6-9
aleatory, 4, 5
Bayesian methods, 9
Chinese language symbol, 14
classification, 4
cumulative distribution functions, 14
cumulative probability distributions, 15
epistemic, 6
erroneous assumptions, 4
fuzzy sets, 10
gambling tables, 9
philosophical viewpoints, 3
probabilities and decisions, 12, 13
probability density functions, 14, 15
probability notation, 16
process variability, 10-12
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project documentation, 4
project manager, 14, 16
quantum mechanics, 3
risk (see Risks)
risk assessment decision process, 13
school of thought, 3
technologies, 14
theory of evidence and Dempster-Shafer
theory, 10
Univariate normal distribution, 239
Upper and lower natural process limits, 281
Upper control limit (UCL), 295

\%

Value-at-risk (VaR), 160, 242

Variance, activity paths, 167

Variance-covariance matrices, 86, 117, 174

Variance ratio vs. correlation coefficient,
135, 136

Volitional uncertainty, 6, 7

W
Work breakdown structures (WBS), 28
correlation, 135, 136
level description, 136
levels, 137, 138
Work face, 312
Work packages, 197
Work-to-be-done schematic diagram, 312
Wright learning curve model, 360
Wright power function, 360
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