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Abstract. Managing the various capabilities of computing environments to best
support users’ goals has proven a difficult problem in transportation systems
and hand-held devices. In the case of mobile users, the goal of safe and efficient
navigation is a persistent part of the users’ context and therefore in the online
decisions on what information and services to provide. We present a feasibility
test of general methods for measuring and predicting actors’ goal-directed per-
formance, and outline their use in effecting decisions with regard to initiating
and halting interactions with users, anticipation of users’ needs, and the evalua-
tion of Ambient Intelligence designs.

1 Introduction

A current challenge to the development of the envisioned seamless integration of
users’ computational and ecological (physical) environments is to manage all the
available capabilities of Ambient Intelligence (Aml) to meet the demanding physical
goals. In cars, aircrafts, and hand-held computing devices the need to manage the flux
of available information and the use of communications and infotainment during
operations has been most pressing [4],[5]. Several information management systems
have been recently developed, and some related products are expected to reach the
market in a few years [9],[17].

Underlying problems such as deciding when to initiate and halt interaction with the
user, anticipating users’ actions, and evaluating the ability of designs to support goal-
directed actions still persist however, and are the current subject of intense research
and development efforts [2].
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Further challenges arise in the need to achieve Aml for mobile users across tasks and
domains (e.g., home, workplace, a car). Current methods of information management
are therefore required to become increasingly general to handle a spectrum of goals
that may arise in users’ everyday lives, as well as be adaptable to each individual’s
changing needs'.

In the following we briefly outline some current approaches to information man-
agement and identify where the proposed methods can be of service in overcoming
the above challenges.

1.1 Current Challenges in AmI Information Management

Initiation and Cessation of AmlI Activities. Many currently available approaches to
online information management effect a decision on questions such as whether to
pass an incoming phone call to the user while the user is walking in a busy street in
the following manner. First, the automated manager assembles all the available per-
formance data (e.g., speed of vehicles, the average reaction-time of the user, work-
load etc.). It then identifies the most relevant measures for the achievement of the
goal (e.g., reach the office quickly and safely). Finally, it decides on how to combine
those into an overall measure of performance by which the current “state” of goal
achievement is determined [e.g., 8]. Such a measure forms the basis for AmI deci-
sions on initiating, halting, and prioritizing interactions with the user.

Partial measures, however, such as task duration, number of mistakes, among
many others cover different aspects (dimensions) of performance and require a
method to reconcile time, cognitive load, force, and number as components of goal
achievement. Methods that can robustly quantify the connection between users’ dy-
namics and constraints of different goals are needed.

Evaluation of AmI Designs. Currently available approaches attempt to establish the
value of a given design through both subjective and cognitive measures (e.g., “ex-
pert” evaluation, users questionnaires), as well as by using partial performance meas-
ures. The proliferation of measures, however, opens door for a given design to be
shown as better than a competitor by some of the measures and worse by others.
Therefore, an overall measure of goal-relevant performance is additionally required
by designers of Aml.

Anticipation of Goal-Relevant Performance. Prediction of users’ performance on
partial performance measures can be of great value. For example, predicting the ef-
fect that a phone ring will have on a given walker’s deviation from a straight line can

' Much research is currently dedicated to developing interfaces that allow users to explicitly
specify their goals to the AmI environment more easily [e.g., 15]. Other efforts are dedicated
to developing automated Aml systems that can infer users’ goals from their gestures and ex-
pressions [e.g., 5]. In this presentation we assume a goal has been specified and tackle the
problem of managing Aml capabilities to support users in its achievement.
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serve in the decision of whether to signal the user while the user is about to cross a
street. Goals, such as reaching the office as quickly as possible, however, require a
more general prediction. Predictions of whole dynamical paths are necessary, for
example, to reschedule an incoming call to a later time or situation that would be
optimal from the perspective of achieving the user’s goal.

In the following we outline the proposed methods and measures, demonstrate their
potential utility in solving the discussed problems in Aml implementation, and fi-
nally, we present empirical results from a recent experiment testing the feasibility of
the framework.

2  Methods of Intentional Dynamics

2.1 Rationale

In the approach we take, goals are treated as a set of constraints on the outcome
and/or process of performing tasks. For example, a person in the bedroom intending
to go to the kitchen faces the task of walking (i.e., transportation). Getting to the
kitchen as quickly as possible (i.e., minimal duration) sets a constraint on the task of
walking and the observed dynamics will reflect that change to some degree. If a
method can be found by which to quantify the influence (coupling) goal-constraints
have on the dynamics, it will open three possibilities: First, a measure sensitive to
every constraint on the dynamics should have properties by which determine when
the actor is meeting the goal in all respects. Second, by the same argument the meas-
ure might also open the way to rank goal-performance for complete processes. Third,
such an encompassing performance measure may reveal predictable regularities in
goal-constrained dynamics where partial ones could not.

2.2 Methods?

To make the calculations explicit, we present an experiment where four volunteers
controlled the motion of a graphically displayed sphere with a force-feedback joystick
(i.e., a forcestick) [11].

The goal of the task (conveyed verbally) was to bring the controlled sphere to coin-
cide with the target sphere in the shortest duration they can manage on every trial.
Participants pressed a trigger to “release” the sphere and terminate the trial. Each
participant performed ten sessions (in separate meetings) each consisting of five hun-
dred trials. Data from a trial is termed a path. It consists of a sequence of samples of
the forcestick’s handle positions along two linear dimensions in time,

2 In the following we give but a brief and intuitive outline of the methods. The reader is re-
ferred to [10] for further details on the approach. For further details on Simulated Annealing
and related Monte Carlo techniques see e.g., [1,16].
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[q]= {qo,...,qc,...,qf} , where 0 <¢< f stands for the current time-slice and f the

final one in a completed path.

Fig. 1. The experimental setup. The graphics display (leff), and Immersion’s Impulse Engine
2000 force-feedback joystick (right)

For the purpose of presentation, the task we chose is simple relative to activities
found in practice. Nevertheless, the task does involve all the basic components of the
general transportation problem and the methods we present are applicable to the more
complex cases.

Initiation and Cessation of AmlI Activities. To support users’ goal achievement,
Aml requires a measure by which to determine online whether users’ actions do not
fulfill all the goal constraints and therefore assistance should be initiated. The same
measure should also indicate when performance is adequate so that assistance could
be properly terminated. In the following we outline the two computational stages by
which the required indicator is achieved.

1. Path identification

The first step in the determination of whether a participant’s performance satisfies the
goal of the task is to identify at each time-slice (sample) all the paths that can reach
the target and satisfy all the constraints. To achieve that we use a Simulated Anneal-
ing algorithm, which is a general method of sampling high-dimensional spaces [12].
The method is particularly advantageous in identifying paths when the number of
constraints is large, and can do so for constraints originating from essentially any
task.
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The algorithm starts its search for goal-paths by constructing a random path. It
then constructs a new path from the old one by randomly changing (perturbing) the
old positions on some of the time-slices. This first out of two stages of the algorithm
is termed the generating stage. Any known user or environmental constraints on path
creation are treated here. For example, if the average maximal speed for the actor is
known through any means, the algorithm directs its search to regions of the path
space that include realistic paths for the actors’ current capabilities.

In the acceptance stage, the algorithm selects which one of the paths will be re-
corded in a frequency table of goal-paths according to the following rule: if the new
path is of shorter duration than the old, as the goal required, then the new path’s
counter is increased by one. If the new path is of longer duration it is not always re-
jected, rather, it is put to the following test:

-t 4t
If, exp| —24—nev >rand[0,1), then accept.
O-l

The test is known as the Metropolis criterion [14], and in the case of our goal says: if
the new path is not “much longer” in time than the old one then it will still be ac-
cepted. “Much longer” is quantified in the denominator by the standard deviation of
observed trial duration for that actor, and the relative probability of acceptance is
given by the negative exponent of the ratio. If the new path is still rejected the old
path is recorded in the frequency table.

When set up properly, the algorithm approximates to a high degree the globally
minimal (goal) path distribution within a few thousand samples. Correspondingly, the
frequency table is divided by the number of samples yielding the probability distribu-
tions of goal-paths scaled to the known constraints on the user and the environment.

This stage of the analysis provides a set of paths in space and time that satisfy the
goal to different degrees and may be executed by the user. In step 2. we develop a
measure that indicates which path the user is actually following and ranks the feasible
alternatives that Aml may promote.

2. Dynamics quantification

As all the goal and task constraints are implicit in the simulated paths, we need to
quantify the dynamics that will be involved in producing such goal paths from the
current time-slice. To get an intuition into what “quantifying dynamics” means in this
context we first recall that the goal was to reach the target in minimal duration. We
would like to consider all the forces and energy that might lead to the violation of the
goal-constraints. For example, if the sphere controlled by the actor does not travel
along the shortest distance to the target it will not be reached in minimal time. Simi-
larly, if the sphere changes directions or speed unnecessarily, travel time will be pro-
longed. The same applies to any other goal (e.g., transport with minimal accelera-
tions). We need to quantify all those relevant dimensions into a single scalar.
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To achieve that, we sum three action terms along the mean simulated path

[q*] = {q s }, from the current time-slice to the final time-slice when the
c f

sphere would have reached the target’,

SE=E |5l o L B dalbare S oo
t=c+l t=c+1 1=c+l

Action is the highest level dynamical variable and can be computed in several ways.
The first term on the right side of the equation computes the action associated with
the kinetic energy of the sphere’s motion (where ||q ," is the speed). The second term

computes the action associated with the component of the resultant force signifying
changes to the direction of motion (where F,L is the Normal component of the force,

and ||q ,|| is the distance along the path). The third quantifies the action arising from

the changes to speed along the path. We term the sum of these components prospec-
tive action.

Similarly, at each time-slice we compute the amount of action already exerted up
to the current one along the path traveled:

t=c . t=c t=c 2
SeI= 5|2l | ars Sl ol o S faflo @

t=0

We finally arrive at the quantity we were after by summing the prospective and retro-
spective actions into generalized action (GA) at time-slice c:

Slel= "]+ sle]. 3)

It is the constructed property of this quantity that serves as an indicator of the state of
performance relative to the goal. More explicitly, in constructing the simulated paths
we have essentially set up a new tracking task at each time-slice. Therefore, as long
as the tracking is precise from one time-slice to the next the retrospective and pro-
spective actions are complements and leave the values of GA invariant. In other
words, if the actions of the user do not bring about the necessary dynamics required
to satisfy the goal, invariance is not maintained. Such an indicator can therefore be
used by Aml to determine when interventions are needed and when they are no
longer required.

3 1In general, there is a fourth term associated with a change in the orientation of the sphere,
(i.e., a rotation around an axis). In our setup, the forcestick does not allow that degree of
freedom.
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For presentation purposes we set the target at x = y = 40mm, and clamp the maxi-
mal speed ¢, of the forcestick at 4mm/hundredth of a second along each axis (i.e.,

dmax = 5.66 in the Euclidean sense). By further setting the mass of the simulated

object at 2 units, we get GA constant at 416.0.

Table 1. Action values for each time-slice in a goal-path

Time-

slice X,y GA Retro Prosp
0 0,0 416.0 0.00 416.0
1 4,4 416.0 128.0 288.0
2 8,8 416.0 160.0 256.0
3 12,12 416.0 192.0 224.0
4 16,16 416.0 224.0 192.0
5 20,20 416.0 256.0 160.0
6 24,24 416.0 288.0 128.0
7 28,28 416.0 320.0 96.0
8 32,32 416.0 352.0 64.0
9 36,36 416.0 384.0 32.0
10 40,40 416.0 416.0 0.0

TGA 4,576

Table 2. Constraint violation and the breakdown of invariance

Time-

slice Xy GA Retro Prosp
0 0,0 416.0 0.0 416.0
1 44 416.0 128.0 288.0
2 8,8 416.0 160.0 256.0
3 12,12 416.0 192.0 224.0
4 16,16 416.0 224.0 192.0
5 20,20 416.0 256.0 160.0
6 24,24 416.0 288.0 128.0
7 28,28 416.0 320.0 96.0
8 32,32 416.0 352.0 64.0
9 35,35 400.0 364.0 36.0
10 39,39 400.0 404.0 4.0
11 40,40 400.0 400.0 0.0

TGA 4,944

Invariance disappears for any violation such as the slowdown occurring on time-slice
9 in Table 2 below. Invariance returns as all the constraints are met and the motion is
at maximal speed in the direction of the target from the tenth time-slice.
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As we can see, this invariance of GA under goal-directed dynamics gives the sought
after indicator to determine whether participants satisfy their goal while in the proc-
ess.

Evaluation of AmlI Designs. The sum of GA, Total-Generalized-Action (TGA) for a
complete path j,

o e=f” 4

is minimal for goal-paths as can be seen from the previous tables and the next one.

Table 3. TGA calculations*

Time-slice  x,y GA Retro Prosp
0 0,0 416.00 0.00 416.00
1 43 398.66 100.00 298.66
2 6,5 386.85 104.13 282.73
3 10,7 421.46 144.29 277.17
4 12,11 438.67 189.59 249.08
5 16,15 438.67 248.80 189.87
6 18,18 443.74 259.52 184.22
7 21,22 445.79 294.27 151.52
8 25,24 482.30 330.29 152.01
9 29,27 470.77 366.91 103.86
10 33,31 470.77 411.70 59.07
11 37,35 470.77 443.70 27.07
f'* O 40,39 470.77 472.50 1.74
f'* 40,40 470.77 470.77 0.00
TGA 6,226

Therefore, TGA is an overall measure of success in satisfying the goal for a complete
process. As the constraints of the goal are violated TGA increases and can therefore
serve to rank the observed paths according to their merit in goal achievement. Com-
paring the effectiveness of competing Aml designs in facilitating users goal-relevant
behaviour can therefore be carried out through the TGA measure.

4 In case the sphere is triggered away from the target the simulation completes the path; hence
/" instead of 1 .
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Anticipation of Goal-Relevant Performance. Predictions of goal-directed
behaviour may arise from knowledge of human cognitive and physical abilities and
constraints. In the following we present a test of feasibility for a complementary
approach to the human-centered approach. In the goal-centered approach we search
for a principle capturing the predictable regularities in actors’ task dynamics under
goal-constraints. More specifically, we would like to formulate a principle that
predicts for any given actor the probability distribution of TGA (i.e., the relative
frequency of occurrence in repeated experiments). We formulate a “least-TGA
principle” given by the Boltzmann distribution:

Pr{g./‘ =§}EP_, =%w)exp —% , )
where,
2@-Soaf -2, (©)
7 w
and,
w=og-T . )

In words, the probability of observing a path (in repeated experiments) is an expo-
nential function of the (negative) value of TGA (i.e., s ); the higher the value of TGA
for a path, the less likely the path is.

In addition to TGA, there are two quantities in the denominator affecting the dis-
tribution of TGA.

o, = \/%i(S ; [ ]—<S].[f]>)Z , where < ) signifies the mean (average), is the stan-
j=l

dard deviation of (retrospective) action distribution observed for a participant up to
the time of prediction (N trials)?.

The standard deviation of the observed action distribution serves as the standard
unit by which we measure TGA, and 0 <7 <o is a multiplying factor which esti-
mates the magnitude of the effect the goal-constraints had on the actor’s performance
(i.e., goal-coupling strength). More explicitly, when 7" — oo, the effect of the mini-
mization principle disappears and the resulting distribution is the consequence of a
random-walk under the constraints of the generating stage of the algorithm alone. As
T — 0, the shape of the distribution shifts towards the exponential of the Boltzmann
distribution as can be seen by comparing the next two figures. Improving skill quanti-
fied by the generating parameters (e.g., maximal observed speed) may allow a user to
produce paths with smaller TGA values. The observed change in the distribution due

3 In the implementation presented we measure the action after each trial (i.e., at the final time-
slice 1 ).
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to that is a displacement towards the origin. 7 on the other hand, influences the rela-
tive frequencies with which paths with smaller values are performed. It is that type of
improvement that is associated with developing goal-relevant expertise and gauged
by T.

An observed TGA distribution of an experimental session (500 trials) is plotted in
red. Given the large value of 7', the predicted distribution in blue gives the random-
walk result.
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Fig. 2. T = 5,000

At lower values, the predicted distribution changes its shape towards the exponential.
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Fig.3. T = 500
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T is therefore estimated by a separate Simulated Annealing algorithm searching for a
value which brings the means of the distributions to coincide.

The feasibility test of the above principle should boost confidence in the approach by
showing that the least-TGA principle both predicts the data of every participant to a
large extent, as well as by demonstrating that participants converge to the Boltzmann
equilibrium distribution of that measure as the number of session increases.

1. First experimental hypothesis, Hl(l) i 4>>0.

Using only three generating parameters of maximal speed observed, mean reaction-
time to trial onset, and the standard deviation of final (Euclidean) distance from the
target, close to 60% of the total distribution of every session of every participant in
the study were predicted. Due to space constraints we show only a sequence of a few
sessions of one participant in the following figures.

Subjectl Condition2 Sessionl
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Fig. 4. A sequence of predicted sessions

We use the percentage similarity measure, also known as Weitzman’s A (delta)
measure [6], to quantify the level of prediction. As its name suggests, the measure
yields the percentage of the observed distribution intersected (overlapped) by the
predicted one,

4= min(p?®, pr), (®)

where i are the values of TGA for which both the observed and predicted distribu-
tions have probability larger than zero.

As a first approximation, the approach seems promising, predicting most of every
session in the study. Much improvement can be expected with the introduction of
more elaborate path construction schemes and additional constraining parameters.
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®. p 0.

N—>oo

When researchers use the simulated annealing algorithm as an integration or simula-
tion tool they try to make sure the algorithm converges to the globally optimal (equi-
librium) distribution they seek. One of the components in achieving that result is to
construct paths at the generating stage which are independent of one another. The
(Metropolis) acceptance criterion can then make sure that the path sequence (chain)
converges to the optimal distribution. In our use of the algorithm as the model for
users’ learning process, the paths are strongly dependent and convergence is not
guaranteed. Participants in our case are in charge of constraining their control to meet
the goal requirements as much as they can, given their skill-level measured by the
generating parameters (e.g., maximal observed speed).

The second experimental hypothesis is therefore that participants will show a de-
creasing distance from the predicted equilibrium distribution (i.e., the optimal distri-
bution) as the number of trials (sessions) is increased. In the next figure we compare
the red observed distribution with the black equilibrium distribution generated (sam-
pled) at the same level of standard deviation o (i.e., bin-size along the horizontal

2. Second experimental hypothesis, H

axis). The latter distribution signifies the best goal-relevant performance this partici-
pant may achieve given his/her current sensitivity to the goal-constraints.
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Fig. 5. The observed and the equilibrium distributions

To test whether participants’ distributions show convergence to the Boltzmann equi-
librium distribution specified by our principle, we measure for each of them the
(variation) distance of the observed distribution from the ﬂ(O j) distribution at each

session [e.g., 7]:

€)

p-L5llog ) it

Distance values between the distributions were fitted with a least-square line. The
slope of that line was tested through a reshuffling technique [13] to statistically de-
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termine whether it is significantly different from zero. As can be seen in the figures
below, convergence of modest rate was detected for three out of the four participants.
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Fig. 6. Convergence assessment

These preliminary results are quite promising in showing good data fits and the pos-
sibility of convergence. Of course, further work is required and testing the methods’
performance on more realistically complex tasks is necessary. However, the evidence
is quite strong that the approach is feasible and that further work is warranted.

3 Summary of Contributions

Methods were outlined for the solution of three general problems currently impeding
the development of management systems of Aml. We outlined the methods’ execu-
tion of decisions on the initiation and cessation of Aml interventions, overall design
assessment through the evaluation of the level of goal achievement by the TGA
measure, and the prediction of goal-directed performance. The methods and measures
demonstrated are generally applicable and are particularly suited for adapting to dif-
ferent users’ changing capabilities and goals. If shown valid for the complex tasks
found in practice, the offered methods promise to facilitate the solution to some of
most hindering problems in AmI’s development.
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