
Efficient Energy Computation

for Monte Carlo Simulation of Proteins

Itay Lotan, Fabian Schwarzer, and Jean-Claude Latombe

Dept. of Computer Science, Stanford University, Stanford, CA 94305
{itayl, schwarzf, latombe}@cs.stanford.edu

Abstract. Monte Carlo simulation (MCS) is a common methodology
to compute pathways and thermodynamic properties of proteins. A sim-
ulation run is a series of random steps in conformation space, each per-
turbing some degrees of freedom of the molecule. A step is accepted with
a probability that depends on the change in value of an energy func-
tion. Typical energy functions sum many terms. The most costly ones to
compute are contributed by atom pairs closer than some cutoff distance.
This paper introduces a new method that speeds up MCS by efficiently
computing the energy at each step. The method exploits the facts that
proteins are long kinematic chains and that few degrees of freedom are
changed at each step. A novel data structure, called the ChainTree, cap-
tures both the kinematics and the shape of a protein at successive levels
of detail. It is used to find all atom pairs contributing to the energy. It
also makes it possible to identify partial energy sums left unchanged by
a perturbation, thus allowing the energy value to be incrementally up-
dated. Computational tests on four proteins of sizes ranging from 68 to
755 amino acids show that MCS with the ChainTree method is signifi-
cantly faster (as much as 12 times faster for the largest protein) than with
the widely used grid method. They also indicate that speed-up increases
with larger proteins.

1 Introduction

1.1 Monte Carlo Simulation (MCS)

The study of the conformations adopted by proteins is an important topic in
structural biology. MCS [1] is one common methodology for this study. In this
context, it has been used for two purposes: (1) estimating thermodynamic quanti-
ties over a protein’s conformation space [2, 3, 4] and, in some cases, even kinetic
properties [5, 6]; and (2) searching for low-energy conformations of a protein,
including its native structure [7, 8, 9]. The approach was originally proposed
in [10], but many variants and improvements have later been suggested [11].

MCS is a series of randomly generated trial steps in the conformation space
of the studied molecule. Each such step consists of perturbing some degrees of
freedom (DOFs) of the molecule [4, 5, 6, 9, 12], in general torsion (dihedral)
angles around bonds (see Section 1.2). Classically, a trial step is accepted –
i.e., the simulation actually moves to the new conformation – with probability

G. Benson and R. Page (Eds.): WABI 2003, LNBI 2812, pp. 354–373, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein
 Bitanzahl pro Pixel: Wie Original Bit

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Untergruppen bilden unter: 100 %
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
 EPS-Info von DSC beibehalten: Nein
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

Efficient Energy Computation for Monte Carlo Simulation of Proteins 355

min{1, e−∆E/kbT } (the so-called Metropolis criterion [10]), where E is an energy
function defined over the conformation space, ∆E is the difference in energy
between the new and previous conformations, kb is the Boltzmann constant, and
T is the temperature of the system. So, a downhill step to a lower-energy con-
formation is always accepted, while an uphill step is accepted with a probability
that goes to zero as the energy barrier grows large. It has been shown that a
long MCS with the Metropolis criterion and an appropriate step generator pro-
duces a distribution of accepted conformations that converges to the Boltzmann
distribution.

The need for general algorithms to speed-up MCS has often been mentioned
in the biology literature, most recently in [4]. In this paper, we propose a new
algorithm that achieves this goal, independent of a specific energy function, step
generator, and acceptance criterion. More precisely, our algorithm reduces the
average time needed to decide whether a trial step is accepted, or not, without
affecting which steps are attempted, nor the outcome of the acceptance test. It
achieves this result by incorporating efficient techniques to incrementally update
the value of the energy function during simulation. Although we will describe
this algorithm for its application to classic MCS, it could also be used to speed
up other kinds of MCS methods, as well as other optimization and sampling
techniques. Several such applications will be discussed in Section 8.2.

1.2 Kinematic Structure of a Protein

A protein is the concatenation of small molecules (the amino acids) forming
a long backbone chain with small side chains. Since bond lengths and angles
between any two successive bonds are almost constant across all conformations
at room temperature [13], it is common practice to assume that the only DOFs
of a protein are its torsion angles, also called the internal coordinates. Each
amino acid contributes two torsion DOFs to the backbone – the so-called φ and
ψ angles. See Figure 1 for illustration. Thus, the backbone is commonly modelled
as a long chain of links separated by torsion joints (the backbone’s DOFs). A
link, which designates a rigid part of a kinematic chain, is a group of atoms
with no DOFs between them. For example, in the model of Figure 1a, the C
and O atoms of amino acid i − 1 together with the N and H atoms of amino
acid i form a link of the protein’s backbone, since none of the bonds between
them is rotatable. While a backbone may have many DOFs (between 136 and
1510 in the proteins used for the tests reported in this paper), each side-chain
has between 0 and 4 torsion DOFs (known as the χ angles). In Figure 1a, these
DOFs are hidden inside the ball marked R in each amino acid.

The model of Figure 1a is the most common torsion-DOF representation
used in the literature, and is also the one we use in this paper. However, it is
possible to apply our algorithm to models that include additional DOFs, such as:
ω angles (rotations about the peptide bonds C–N between adjacent amino acids),
bond lengths, and bond angles. At the limit, one can make each link a single
atom and each joint a rigid-body transform. However, while it is theoretically
possible to perform MCS in the Cartesian coordinate space, where each atom

356 I. Lotan, F. Schwarzer, and J.-C. Latombe

Amino acid
i−1

Amino acid
i

Amino acid
i+1

Amino acid
i+2

C

R

C

R

N C

C
C

R

C

R

N C

Cα

α

α

α

N

H

N

H

H OOH

O O

φ ψ
φ ψ

φ ψ
ψφ

1

2 3

4

(a) (b)

Fig. 1. (a) An illustration of a protein fragment with its backbone DOFs. R
represents any side-chain (b) A torsional DOF: it is the angle made by the two
planes containing the centers of atoms 1, 2, and 3, and 2, 3, and 4, respectively.

has 3 DOFs, it is more efficient to run it in the torsion-DOF space [14]. Hence,
the vast majority of MCS are run in this space [4, 5, 6, 9, 12].

Due to the chain kinematics of the protein, a small change in one DOF
of the backbone may cause large displacements of some atoms. Thus, in an
MCS, a high percentage of steps are rejected because they lead to high-energy
conformations, in particular conformations with steric clashes (self-collisions).
In fact, the rejection rate tends to grow quickly with the number k of DOFs
randomly changed in a single step. This fact is well-known in the literature [12,
15] and as a result it is common practice in MCS to change few DOFs (picked
at random) at each trial step [4, 5, 6, 9, 12, 16, 17].

1.3 Computing the Energy

Various energy functions have been proposed for proteins [16, 18, 19, 20, 21]. For
all of them, the dominant computation is the evaluation of non-bonded terms,
namely energy terms that depend on distances between pairs of non-bonded
atoms. These may be physical terms (e.g., van der Waals and electrostatic po-
tentials [20]), heuristic terms (e.g., potentials between atoms that should end
up in proximity to each other [18]) and/or statistical potentials derived from a
structural database (e.g. [16]).

To avoid the quadratic cost of computing and summing up the contributions
from all pairs, cutoff distances are usually introduced, exploiting the fact that
physical and heuristic potentials drop off quickly toward 0 as the distance be-
tween atoms increases. We refer to the pairs of atoms that are close enough to
contribute to the energy function as the interacting pairs. Because van der Waals
forces prevent atom centers from getting very close, the number of interacting
pairs in a protein is often less than quadratic in practice [22].

Hence, one may try to reduce computation by finding interacting pairs with-
out enumerating all atom pairs. A classical method to do this is the grid al-
gorithm (see Section 2), which indexes the position of each atom in a regular
three-dimensional grid. This method takes time linear in the number of atoms,

Efficient Energy Computation for Monte Carlo Simulation of Proteins 357

which is asymptotically optimal in the worst case. However, it does not exploit
an important property of proteins, namely that they form long kinematic chains.
It also does not take advantage of the common practice in MCS to change only a
few DOFs at each time-step. Moreover, it does not address the remaining prob-
lem of efficiently summing up the contributions of the interacting pairs. These
issues are addressed in this paper.

1.4 Contributions

A key consequence of making only a small number of DOF changes in a sin-
gle MCS step is that at every step large fragments of the protein remain rigid.
Hence, at each step, many partial energy sums are unaffected. The grid method
re-computes all interacting pairs at each step and cannot directly identify partial
sums that have remained constant. Instead, the method proposed in this paper
finds the new interacting pairs and retrieves unaffected partial sums without
enumerating all interacting pairs. It uses a novel hierarchical data structure –
the ChainTree – that captures both the chain kinematics and shape of a protein
at successive levels of detail. At each step, the ChainTree can be maintained
and queried efficiently to find new interacting pairs. It also enables the identifi-
cation of unchanged partial energy sums stored in a companion data structure
— the EnergyTree — thus allowing for efficient energy updates throughout the
simulation.

Our test results (see Section 6) show that MCS with the ChainTree method
is significantly faster than with the grid method when the number k of DOF
changes at each step is sufficiently small. We observed speed-ups by factors up
to 12 for the largest of the four proteins. Therefore, not only does a small k
sharply increases the step acceptance ratio, it also makes it possible to expedite
the evaluation of the acceptance criterion. Simulation methodologies other than
classical MCS may also benefit from our algorithm (see Section 8.2).

1.5 Outline of Paper

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 presents the ChainTree data structure. Section 4 introduces the al-
gorithm for finding new interacting atom pairs and Section 5 describes how to
efficiently update the energy at each simulation step. Section 6 gives experi-
mental results comparing our algorithm with the grid algorithm in MCS. A
downloadable version of our algorithm is described in Section 7. Section 8 dis-
cusses applications of our algorithm to other MCS methods as well as to other
types of molecular simulation methods and points to possible extensions and
future directions of research. The application of the ChainTree to testing a long
kinematic chain for self-collision was previously presented in [23].

Throughout this paper, we always use n to denote the number of links of
a kinematic chain (e.g., a protein’s backbone) and k to denote the number of
DOF changes per simulation step. Since the number of atoms in any amino

358 I. Lotan, F. Schwarzer, and J.-C. Latombe

acid is bounded by a constant, the number of atoms in a protein is always O(n).
Although k can be as big as O(n), it is much smaller in practice [4, 5, 6, 9, 12, 15].

2 Related Work

Because biologists are more interested in simulation results than in the com-
putational methods they use to achieve these results, the literature does not
extensively describe algorithms for MCS.

A prevailing algorithm – referred to as the grid algorithm in this paper –
reduces the complexity of finding all interacting pairs in a molecule to asymp-
totically linear time by indexing the atoms in a regular grid. This approach
exploits the fact that van der Waals potentials prevent atom centers from com-
ing very close to one another. In [22] it is formally shown that in a collection B
of n possibly overlapping balls of similar radii, such that no two sphere centers
are closer than a small fixed distance, the number of balls that intersect any
given ball of B is bounded by a constant. This result yields the grid algorithm,
which subdivides the 3D space into cubes whose sides are set to the maximum
diameter of the balls in B, computes the cubes intersected by each ball, and
stores the results in a hash-table. This data structure is re-computed after each
step in Θ(n) time. Determining which balls intersect any given ball of B then
takes O(1) time. Hence, finding all pairs of intersecting balls takes Θ(n) time.
The grid method can be used to find all pairs of atoms within some cutoff dis-
tance, by growing each atom by half this distance. The method is asymptotically
optimal in the worst case, but updating the data structure always takes linear
time. This is too costly for very large proteins, making it impractical to perform
MCS in this case.

A variant of this method mostly used for Molecular Dynamics simulation
maintains, for each atom, a list of atoms within a distance d somewhat larger
than the cutoff distance dc by updating it every s steps [24]. The idea is that
atoms further apart than d will not come closer than dc in less than s steps. There
is a tradeoff between s and d− dc since the larger this difference, the larger the
value of s that can be used. However, choosing d big causes the neighbor lists to
become too large to be efficient. A method for updating neighbor lists based on
monitoring the displacement of each atom is described in [25].

The ChainTree includes a bounding volume hierarchy (BVH) to represent a
protein at successive levels of detail. BVHs have been extensively used to detect
collisions and compute distances between rigid objects [26, 27, 28, 29, 30, 31].
They have been extended in [26, 31, 32] to handle deformable objects by exploit-
ing the facts that topological proximity in the meshed surface of an object is
invariant when the object deforms and implies spatial proximity. However, BVH
techniques alone lose efficiency when applied to testing a deformable object for
self-collision, because they cannot avoid detecting the trivial interaction of each
object component with itself. They also lose efficiency when many components
move independently.

Efficient Energy Computation for Monte Carlo Simulation of Proteins 359

Finding interacting pairs in a protein is equivalent to finding self-collision
in a deformable chain after having grown all links by the cutoff distance. The
ChainTree borrows from previous work on BVHs. It uses a BVH based on the
invariance of topological proximity along a chain. But it combines it with a
transform hierarchy that makes it possible to efficiently prune the search for
interacting pairs, when few DOFs change simultaneously.

3 The ChainTree

In this section we describe the ChainTree, the data structure we use to repre-
sent a protein. We begin by stating the key properties of proteins and MCS that
motivated this data structure (Subsection 3.1). Then follows a description of
the two hierarchies that make up the ChainTree. The transform hierarchy that
approximates the kinematics of the backbone is introduced in Subsections 3.2
and the bounding-volume hierarchy that approximates the geometry of the pro-
tein is presented in Subsection 3.3. Next, we discuss the representation of the
side-chains (Subsection 3.4). Finally, we describe how the two aforementioned
hierarchies are combined to form a single balanced binary tree (Subsection 3.5)
and the way it is updated (Subsection 3.6).

In the following we refer to the algorithm that updates the ChainTree as
the updating algorithm and to the algorithm that finds interacting pairs as the
testing algorithm.

3.1 Properties of Proteins and MCS

A protein backbone is commonly modelled as a kinematic chain made up of
a sequence of n links (atoms or rigid groups of atoms) connected by torsional
DOFs. The ChainTree is motivated by three key properties derived from this
model:

Local changes have global effects: Changing a single DOF causes all links
beyond this DOF, all the way to the end of the chain, to move. Any testing
algorithm that requires knowing the absolute position of every link at each
step must perform O(n) work at each step even when the number k of DOF
changes is O(1).

Small changes may cause large motions: The displacement of a link
caused by a DOF change depends not only on the angular variation, but
also on the distance between the DOF axis and the link (radius of rotation).
So, at each step, any link with a large radius of rotation undergoes a large
displacement.

Large sub-chains remain rigid at each step: If we only perturb few DOFs
at each step, as is the case during MCS, then large contiguous fragments of
the chain remain rigid between steps. So, there cannot be any new interacting
pairs inside each of these fragments.

360 I. Lotan, F. Schwarzer, and J.-C. Latombe

A

B

C

D

E I

HF

GTDE TFG THITBC

TAB TGHTEF
TCD

TAC TCE
TGITEG

TAE TEI

TAI

A

B

C

D

E

HF

G

(a) (b)

Fig. 2. The two hierarchies. (a) The transform hierarchy: grey ovals depict links;
Tαβ denotes the rigid-body transform between the reference frames of links α
and β. (b) The bounding volume hierarchy: each BV approximates the geometry
of a chain-contiguous sequence of links

3.2 Transform Hierarchy

We attach a reference frame to each link of the protein’s backbone and map each
DOF to the rigid-body transform between the frames of the two links it connects.
The transform hierarchy is a balanced binary tree of transforms. See Figure 2a,
where ovals and labelled arrows depict links and transforms, respectively. At the
lowest level of the tree, each transform represents a DOF of the chain. Products of
pairs of consecutive transforms give the transform at the next level. For instance,
in Figure 2a, TAC is the product of TAB and TBC . Similarly, each transform at
every level is the product of two consecutive transforms at the level just below.
The root of the tree is the transform between the frames of the first and last
links in the chain (TAI in the figure). Each of the logn levels of the tree can be
seen as a chain that has half the links and DOFs of the chain at the level just
below it. In total, O(n) transforms are cached in the hierarchy. We say that each
intermediate transform Tαβ shortcuts all the transforms that are in the subtree
rooted at Tαβ .

The transform hierarchy is used from the top down by the testing algorithm to
propagate transforms defining the relative positions of bounding volumes (from
the other hierarchy) that need to be tested for overlap.

3.3 Bounding-Volume Hierarchy

The bounding-volume (BV) hierarchy is similar to those used by prior collision
checkers (see Section 2). As spatial proximity in a deformable chain is not invari-
ant, our BVH is based on the proximity of links along the chain. See Figure 2b.
Like the transform hierarchy, the BVH is a balanced binary tree. It is constructed
bottom up in a “chain-aligned” fashion. At the lowest level, one BV bounds each
link. Then, pairs of neighboring BVs at each level are bounded by new BVs to
form the next level. The root BV encloses the entire chain. So, at each level, we
have a chain with half the number of BVs as the chain at the level below it. This
chain of BVs encloses the geometry of the chains of BVs at all lower levels.

The BV type we use is called RSS (for rectangle swept sphere). It was intro-
duced in [29] and is defined as the Minkowski sum of a sphere and a rectangle.

Efficient Energy Computation for Monte Carlo Simulation of Proteins 361

The RSS bounding a set of points in 3D is created as follows. The two principal
directions spanned by the points are computed and a rectangle is constructed
along these directions to enclose the projection of all points onto the plane de-
fined by these directions. The RSS is the Minkowski sum of this rectangle and
the sphere whose radius is half the length of the interval spanned by the point set
along the dimension perpendicular to the rectangle. To compute the distance be-
tween two RSSs, one simply computes the distance between the two underlying
rectangles minus the radii of the swept spheres. RSSs offer a good compromise
between tightness and efficiency of distance computation. They bound well both
globular objects (single atoms, small groups of atoms) and elongated objects
(chain fragments). In addition, RSSs are invariant to a rigid-body transform of
the geometry they bound.

We construct each intermediate RSS to enclose its two children, thus creating
what we term a not-so-tight hierarchy (in contrast to a tight hierarchy where each
BV tightly bounds the links of the sub-chain it encloses). In [23] we show that the
size of these BVs does not deteriorate too much as one climbs up the hierarchy.
As a result, the shape of the BV stored at each intermediate node depends only
on the two BVs held by this node’s children.

3.4 Side-Chain Representation

Side-chains, one per amino acid, are short chains with up to 20 atoms, that
protrude from the backbone [33]. A side-chain may have some internal torsional
DOFs (between 0 and 4). The biology literature proposes different ways to model
side-chains ranging from a single sphere approximating the entire side-chain, to
a full atomistic model [20, 33]. The choice depends on both the physical accuracy
one wishes to achieve and the amount of computation one is willing to pay per
simulation step. One may choose to make the side-chains completely rigid, or
allow their DOFs to change during the simulation. In both cases we expect the
overhead of using a sub-hierarchy for the side-chain atoms to exceed any benefit
it may provide. Therefore, we allow each link of the protein backbone to be an
aggregate of atoms represented in a single coordinate frame and contained in
a BV that is a leaf of the BVH. Each such aggregate includes one or several
backbone atoms forming a rigid piece of the backbone and the atoms of the
side-chain stemming from it (contained in the circle marked R in Figure 1a).

3.5 Combined Data Structure

The ChainTree combines both the transform and the BV hierarchies into a single
binary tree as the one depicted in Figure 3a. The leaves of the tree (labelled A
through H in the figure) correspond to the links of the protein’s backbone with
their attached side-chains (using any of the representations discussed above).
Each leaf holds both the BV of the corresponding link and the transform (sym-
bolized by a horizontal arrow in the figure) to the reference frame of the next
link. Each internal node (nodes J through P) has the frame of the leftmost link
in its sub-tree associated with it. It holds both the BV of the BVs of its two

362 I. Lotan, F. Schwarzer, and J.-C. Latombe

A B E HDC F G

J K L M

N O

P
Shares reference frame with

Holds transformation to

A B E HDC F G

J K L M

N O

P
Shares reference frame with

Holds transformation to

(a) (b)

Fig. 3. The ChainTree: (a) a binary tree that combines the transform and BV
hierarchies, and (b) after applying a 1-DOF perturbation. The transforms of the
nodes with bold contours (F and L) were updated. The BVs of the nodes in
grey (O and P) were re-computed.

children and the transform to the frame of the next node at the same level, if
any. The ChainTree contains both pointers from children to parents, which are
used by the updating algorithm to propagate updates from the bottom up, as
described below, and pointers from parents to children, which are used by the
testing algorithm (Section 4).

3.6 Updating the ChainTree

When a change is applied to a single arbitrary DOF in the backbone, the updat-
ing algorithm re-computes all transforms that shortcut this DOF and all BVs
that enclose the two links connected by this DOF. It does this in bottom-up
fashion, by tracing the path from the leaf node immediately to the left of the
changed DOF up to the root. A single node is affected at each level. If this node
holds a transform, this transform is updated. If it holds a BV that contains the
changed DOF, then the BV is re-computed. For example, see Figure 3a. Since
the shape of an RSS is invariant to a rigid-body transform of the objects it
bounds, all other BVs remain unchanged.

If a DOF is changed in a side-chain, the BV stored at the corresponding
leaf node of the ChainTree and the BVs of all the ancestors of this node are re-
computed, but all transforms in the hierarchy remain unchanged. By updating
from the bottom up, each affected transform is re-computed in O(1) time. By
using not-so-tight BVs – thus, trading tightness for speed – re-computing each
BV is also done in O(1) time. Since the ChainTree has O(log n) levels, and at
each level at most one transform and one BV are updated, the total cost of the
update process is O(log n).

When multiple DOFs are changed simultaneously (in the backbone and the
side-chains), the ChainTree is updated one level at a time, starting with the
lowest level. Hence, all affected transforms and BVs at each level are updated at
most once before proceeding to the next level above it. The total updating time
is then O(k log (n/k)). When k grows this bound never exceeds O(n).

Efficient Energy Computation for Monte Carlo Simulation of Proteins 363

The updating algorithm marks every node whose BV and/or transform is re-
computed. This mark will be used later by the testing algorithm. See Figure 3b.

4 Finding Interacting Pairs

BVHs have been widely used to detect collision or compute separation distance
between pairs of rigid objects, each described by its own hierarchy [27, 28, 29,
30, 31, 34]. If each object is divided into small fragments (e.g. links of a chain)
the hierarchies are easily applied to finding all pairs of fragments that are closer
than some threshold. A simple variant of this algorithm can detect pairs of
fragments of the same object that are closer than a threshold by testing the
BVH of the object against itself. This variant skips the test of a BV against
itself and proceeds directly to testing the BV’s children. However, it takes Ω(n)
time, since all leaves will inevitably be visited as each leaf is at distance 0 from
itself. The ChainTree allows us to avoid this lower bound by exploiting the third
property stated in Section 3.1 — large sub-chains remain rigid between steps.

Since each leaf BV may contain a number of atoms, when two leaf BVs are
within the cutoff distance, the interacting atom pairs are found by examining all
pairs of atoms, one from each leaf.

When only a small number k of DOFs are changed simultaneously, long sub-
chains remain rigid at each step. These sub-chains cannot contain new interacting
pairs. So, when we test the BVH contained in the ChainTree against itself, we
prune the branches of the search that would look for interacting pairs within
rigid sub-chains.

There are two distinct situations where pruning occurs:

1. If the algorithm is about to test a BV against itself and this BV was not
updated after the last DOF changes, then the test is pruned.

2. If the algorithm is about to test two different BVs, and neither BV was
updated after the last DOF changes, and no backbone DOF between those
two BVs was changed, then the test is pruned.

The last condition in this second situation – that no backbone DOF between
the two BVs was changed – is slightly more delicate to recognize efficiently. We
say that two nodes at the same level in the ChainTree are separated if there exists
another node between them at the same level that holds a transform that was
modified after the last DOF changes. This node will be dubbed separator. Hence,
if two nodes are separated, a DOF between them has changed. We remark that:

– If two nodes at any level are separated, then any pair consisting of a child
of one and a child of the other is also separated.

– If two nodes at any level are not separated, then a child of one and a child
of the other are separated if and only if they are separated by another child
of either parent.

364 I. Lotan, F. Schwarzer, and J.-C. Latombe

Hence, by pushing separation information downward, the testing algorithm
can know in constant time whether a DOF has changed between any two BVs it
is about to test. The algorithm also propagates transforms from the transform
tree downward to compute the relative position of any two separated BVs in
constant time before performing the overlap test.

To illustrate how the testing algorithm works, consider the ChainTree of
Figure 3b obtained after a change of the DOF between F and G. F and L are
the only separators. The algorithm first tests the BV stored in the root P against
itself. Since this BV has changed, the algorithm examines all pairs of its children,
(N,N), (N,O) and (O,O). The BV held in N was not changed, so (N,N) is
discarded (i.e., the search along this path is pruned). (N,O) is not discarded
since the BV of O has changed, leading the algorithm to consider the four pairs
of children (J, L), (J,M), (K,L), and (K,M). Both (J, L) and (K,L) satisfy
the conditions in the second situation described above; thus, they are discarded.
(J,M) is not discarded because J and M are separated by L. The same is true
for (K,M), and so on.

In [23] we proved that the worst-case complexity of the testing algorithm to
detect self-collision is Θ(n

4
3). This bound holds unchanged when using RSSs to

compute all interacting pairs. Note, however, that it is an asymptotic bound,
which relies on the fact that the number of atoms that may interact with any
given atom is bounded by a constant as the size n of the protein grows arbitrarily
large. For many proteins, this constant may correspond to a significant fraction
of n.

The worst-case bound on finding all interacting pairs using the ChainTree
hides the practical speed-up allowed by search pruning. We evaluate this speed-
up, in a set of benchmarks in Section 6.

5 Energy Maintenance

A typical energy function is of the form E = E1 + E2, where E1 sums terms
depending on a single parameter commonly referred to as bonded terms (e.g.,
torsion-angle and bond-stretching potentials) and E2 sums terms commonly
known as non-bonded terms, which account for interactions between pairs of
atoms or atom groups closer than a cutoff distance [5, 6, 12, 16, 17, 19]. Up-
dating E1 after a conformational change is straightforward. This is done by
computing the sum of the differences in energy in the terms affected by the
change and adding it to the previous value of E1. After a k-DOF change, there
are only O(k) affected single-parameter terms. So, in what follows we focus on
the maintenance of E2.

At each simulation step we must find the interacting pairs of atoms and
change E2 accordingly. When k is small, many interacting pairs are unaffected by
a k-DOF change. The number of affected interacting pairs, though still O(n) in
the worst case, is usually much smaller than the total number of interacting pairs
at the new conformation. Therefore, an algorithm like the grid algorithm that
computes all interacting pairs at each step is not optimal in practice. Moreover,

Efficient Energy Computation for Monte Carlo Simulation of Proteins 365

(A,E)
(A,F)
(B,E)
(B,F)

(A,G)
(A,H)
(B,G)
(B,H)

(A,C)
(A,D)
(B,C)
(B,D)

(C,E)
(C,F)
(D,E)
(D,F)

(C,G)
(C,H)
(D,G)
(D,H)

(E,G)
(E,H)
(F,G)
(F,H)

(N,O) (O,O)

(J,K)

(N,N)

(J,J) (K,K) (J,M) (K,L) (K,M)(J,L) (L,L) (L,M) (M,M)

(P,P)

(C,D)(A,B) (E,F) (G,H)

Fig. 4. EnergyTree for the ChainTree of Figure 3a. For simplification, leaves of
the form (α, α) are not shown.

after having computed the new set of interacting pairs, we still have to update
E2, either by re-computing it from scratch, or by scanning the old and new sets
of interacting pairs to determine which terms should be subtracted from the old
value of E2 and which terms should be added to get the new value. In either
case, we perform again a computation at least proportional to the total number of
interacting pairs. Instead, our method detects partial energy sums unaffected by
the DOF change (these sums correspond to interacting pairs where both atoms
belong to the same rigid sub-chains). The energy terms contributed by the new
pairs are then added to the unaffected partial sums to obtain the new value of
E2. In practice, the total cost of this computation is roughly proportional to the
number of changing interacting pairs.

Recall that when the testing algorithm examines a pair of sub-chains (in-
cluding the case of two copies of the same sub-chain), it first tests whether these
sub-chains have not been affected by the DOF change and are contained in the
same rigid sub-chain. If this is the case, the two sub-chains cannot contribute
new interacting pairs, and the algorithm prunes this search path. But, for this
same reason, the partial sum of energy terms contributed by the interacting
pairs from these sub-chains is also unchanged. So, we would like to be able to
retrieve it. To this end, we introduce another data structure, the EnergyTree, in
which we cache the partial sums corresponding to all pairs of sub-chains that
the testing algorithm may possibly examine. Figure 4 shows the EnergyTree for
the ChainTree of Figure 3a.

Let α and β be any two nodes (not necessarily distinct) from the same level
of the ChainTree. If they are not leaf nodes, let αl and αr (resp., βl and βr) be
the left and right children of α (β). Let E(α, β) denote the partial energy sum
contributed by all interacting pairs in which one atom belongs to the sub-chain
corresponding to α and the other atom belongs to the sub-chain corresponding
to β. If α �= β, we have:

E(α, β) = E(αl, βl) + E(αr, βr) + E(αl, βr) + E(αr, βl). (1)

Similarly, the partial energy sum E(α, α) contributed by the interacting pairs
inside the sub-chain corresponding to α can be decomposed as follows:

366 I. Lotan, F. Schwarzer, and J.-C. Latombe

E(α, α) = E(αl, αl) + E(αr , αr) + E(αl, αr). (2)

These two recursive equations yield the EnergyTree.
The EnergyTree has as many levels as the ChainTree. Its nodes at any level

are all the pairs (α, β), where α and β are nodes from the same level of the
ChainTree. If α �= β and they are not leaves of the ChainTree, then the node
(α, β) of the EnergyTree has four children (αl, βl), (αr, βr), (αl, βr), and (αr, βl).
A node (α, α) has three children (αl, αl), (αr, αr), and (αl, αr). The leaves of the
EnergyTree are all pairs of leaves of the ChainTree (hence, correspond to pairs of
links of the protein chain). For simplification, Figure 4 does not show the leaves
of the form (α, α). Each node (α, β) of the EnergyTree holds the partial energy
sum E(α, β) after the last accepted simulation step. The root holds the total
sum.

At each step, the testing algorithm is called to find new interacting pairs.
During this process, whenever the algorithm prunes a search path, it marks the
corresponding node of the EnergyTree to indicate that the energy sum stored at
this node is unaffected. The energy sums stored in the EnergyTree are updated
next. This is done by performing a recursive traversal of the tree. The recur-
sion along each path ends when it reaches a marked node or when it reaches
an unmarked leaf. In the second case, the sum held by the leaf is re-computed
by adding all the energy terms corresponding to the interacting pairs previously
found by the testing algorithm. When the recursion unwinds, the intermediate
sums are updated using Equations (1) and (2). In practice, the testing algo-
rithm and the updating of the EnergyTree are run concurrently, rather than
sequentially.

The size of the EnergyTree grows quadratically with the number n of links.
For most proteins this is not a critical issue. For example, in our experiments,
the memory used by the EnergyTree ranges from 0.4 MB for 1CTF (n = 137)
to 50 MB for 1JB0 (n = 1511). If needed, however, memory could be saved by
representing only those nodes of the EnergyTree which correspond to pairs of
RSSs closer than the cutoff distance.

6 Experimental Results for MCS

6.1 Experimental Setup

We implemented ChainTree as described in Section 3. Since each step of an MCS
may be rejected, we keep two copies of the ChainTree and the EnergyTree. RSS
and distance computation routines were borrowed from the PQP library [27, 29].
We also implemented the grid method (henceforth called Grid) to find interacting
pairs by setting the side length of the grid cubes to the cutoff distance. As we
mentioned in Section 5, Grid finds all interacting pairs at each step, not just
the new ones, and does not cache partial energy sums. So, it computes the new
energy value by summing the terms contributed by all the interacting pairs.

Tests were run on a 400 MHz UltraSPARC-II CPU of a Sun Ultra Enterprise
5500 machine with 4.0 GB of RAM.

Efficient Energy Computation for Monte Carlo Simulation of Proteins 367

We performed MCS with the ChainTree and Grid on the four proteins 1CTF,
1LE2, 1HTB and 1JB0 of length 68, 144, 374 and 755 amino-acids respectively,
which represent the different sizes of known proteins. The total number of atoms
in the MCS was between 487 (1CTF) and 5878 (1JB0). The side-chains were
included in the models, as rigid groups of atoms (no internal DOF) and no
sub-hierarchies was used to represent each link with its side-chain (see Subsec-
tion 3.4). So, if two leaf RSSs are within the cutoff distance, ChainTree finds
the interacting pairs from the two corresponding links by examining all pairs
of atoms. The energy function we used for these tests includes a van der Waals
(vdW) potential with a cutoff distance of 6Å, an electrostatic potential with a
cutoff of 10Å, and a native-contact attractive quadratic-well potential with a
cutoff of 12Å. Hence, the cutoff distance for both ChainTree and Grid was set
to 12Å.

Each simulation run consisted of 300,000 trial steps. The number k of DOFs
changed at each step was constant throughout a run. We performed runs with
k = 1, 5 and 10. Each change was generated by picking k backbone DOFs at
random and changing each DOF independently with a magnitude picked uni-
formly at random between 0◦ and 12◦. Each run started with a random, partially
extended conformation of the protein. Since the vdW term for a pair of atoms
grows as O(d−12) where d is the distance between the atom centers, it quickly
approaches infinity as d becomes small (steric clash). When a vdW term was
detected to cross a very large threshold, the energy computation was halted (in
both ChainTree and Grid), and the step was rejected.

ChainTree and Grid compute the same energy values for the same protein
conformations. Hence, to better compare their performance, we ran the same
MCS with both of them on each protein, by starting at the same initial confor-
mation and using the same seed of the random-number generator.

6.2 Results

The results for all the experiments are found in Table 1. Illustrations of the
average time results for k = 1 and k = 5 are presented in Figures 5a and 5b
respectively. As expected, ChainTree gave its best results for k = 1, requiring
on average one quarter of the time of Grid per step for the smallest protein
(1CTF) and one twelfth of the time for the largest protein (1JB0). The average
number of interacting pairs for which energy terms were evaluated at each step
was almost 5 times smaller with ChainTree than with Grid for 1CTF and 30
times smaller for 1JB0.

We see similar results when k = 5. In this case, ChainTree was only twice
as fast as Grid for 1CTF and 6 times faster for 1JB0. The average number of
interacting pairs for which energy terms were evaluated was twice smaller with
ChainTree for 1CTF and 14 times smaller for 1JB0. When k = 10, the relative
effectiveness of ChainTree declined further, being only 1.2 times faster than Grid
for 1CTF and 4 times faster for 1JB0. The average number of interacting pairs
for which energy terms were evaluated using ChainTree was 60% of the number
evaluated using Grid for 1CTF and 10 times smaller for 1JB0.

368 I. Lotan, F. Schwarzer, and J.-C. Latombe

20

260

140

120

100

80

60

40

280

1CTF 1JB01HTB1LE2

ChainTree

Grid

T
im

e
 (

in
 m

S
e

c
.)

120

100

80

60

40

20

140

1CTF 1JB01HTB1LE2

ChainTree

Grid

T
im

e
 (

in
 m

S
e

c
.)

(a) (b)

Fig. 5. Comparing the average time per MCS step of ChainTree and Grid (a)
when k = 1 and (b) when k = 5.

k = 1 k = 5 k = 10
CT Grid CT Grid CT Grid

1CTF 7.82 27.7 8.34 18.22 12.57 15.07
1LE2 11.16 65.05 14.31 48.84 14.29 27.12
1HTB 16.72 130.9 18.2 81.86 21.75 60.33
1JB0 21.71 271.4 22.18 130.5 29.88 133.8

k = 1 k = 5 k = 10
CT Grid CT Grid CT Grid

1CTF 5,100 25,100 7,400 16,900 8,000 13,500
1LE2 5,100 48,500 6,000 36,600 7,700 23,400
1HTB 5,400 100,000 7,000 56,800 8,200 43,100
1JB0 5,900 200,000 7,000 95,600 10,300 102,000

(a) (b)

Table 1. MCS results: (a) average time per simulation step (in milliseconds)
and (b) number of interacting pairs for which energy terms were evaluated per
step, when k = 1, 5 and 10. (CT stands for ChainTree.)

The larger k, the less effective our algorithm compared with Grid. When k
is small, there are few new interacting pairs at each step, and ChainTree is very
effective in exploiting this fact. For both ChainTree and Grid the average time
per step decreases when k increases. This stems from the fact that a larger k
is more likely to yield over-threshold vdW terms and so to terminate energy
computation sooner.

In order to examine the full effect of reusing partial energy sums, we re-ran
the simulations for the four proteins without the vdW threshold for k = 1 and
5. The results are presented in Tables 2a and 2b. Removing the vdW threshold
does not significantly alter the behavior of the algorithms. The average time per
step is of course larger, since no energy computation is cut short by a threshold
crossing. The relative speed-up of ChainTree over Grid is only slightly smaller
without the threshold.

6.3 Two-Pass ChainTree

In the previous MCS the percentage of steps that were rejected before energy
computation completed, due to an above-threshold vdW term for 1CTF, for

Efficient Energy Computation for Monte Carlo Simulation of Proteins 369

k = 1 k = 5
CT Grid CT Grid

1CTF 12.8 37.2 29.6 37.7
1LE2 20.9 86.5 24.6 65.4
1HTB 26.6 185 51.8 173
1JB0 40.0 401 89.1 348

k = 1 k = 5
ChainTree Grid ChainTree Grid

1CTF 8,600 33,300 21,000 34,700
1LE2 9,900 61,900 11,400 47,500
1HTB 9,900 134,000 21,500 129,000
1JB0 12,000 280,000 30,300 248,000

unfolded folded
CT CT+ CT CT+

1CTF 8.34 2.6 15.74 6.2
1LE2 14.31 6.4 32.37 9.06
1HTB 18.2 9.23 68.92 11.35
1JB0 22.18 6.33 81.15 15.51

(a) (b) (c)

Table 2. (a) Average time (in milliseconds) per step when running an MCS
without a threshold on the vdW terms. (b) Average number of interacting pairs
evaluated per step for the same simulation. (c) Average running times (in mil-
liseconds) of ChainTree and ChainTree+ per step when the simulations start at
unfolded conformations and when they start at the folded conformation of the
proteins. (CT stands for ChainTree.)

example, rose from 60% when k = 1 to 98% when k = 10. This observation
not only motivates choosing a small k. It also suggests the following two-pass
approach. In the first pass, ChainTree uses a very small cutoff distance chosen
such that atom pairs closer than this cutoff yield above-threshold vdW terms.
In this pass, the algorithm stops as soon as it finds an interacting pair, and then
the step is rejected. In the second pass the cutoff distance is set to the largest
cutoff over all energy terms and ChainTree computes the new energy value. We
refer to the implementation of this two-pass approach as ChainTree+.

We compared ChainTree and ChainTree+ by running an MCS of 300,000
trial steps with k = 5 and measuring the average time per step. The results for
the four proteins are given in Table 2c. We ran two different simulations for each
protein. One that started at a partially extended conformation and another that
started at the folded state of the protein. Hence, the conformations reached in the
first case were less compact than in the second case. Consequently, the rejection
rate due to self-collision was higher in the second case. While ChainTree+ is
faster in both cases, speed-up factors are greater (as much as 5) when starting
from the folded state.

7 MCS Software

We have extended our implementation of the ChainTree algorithm to include
a physical, full-atomic energy function. We chose to implement the force-field
EEF1 [19]. This force field is based on the CHARMM19 potential energy func-
tion [35] with an added implicit solvent term. We chose EEF1 because it has been
shown to discriminate well between folded and misfolded structures [36]. It is well
suited for ChainTree because its implicit solvent term is pairwise and thus our al-
gorithm can compute it efficiently. We have packaged our software into a program
that runs fast MCS. It can be downloaded from http://robotics.stanford.edu/

∼itayl/mcs.
This software loads an initial structure that is described in terms of its amino

acid sequence and the corresponding backbone angles of each residue. It then

370 I. Lotan, F. Schwarzer, and J.-C. Latombe

performs a classical MCS. The user can control some parameters of the simu-
lation (e.g. the number of angles to change, the length of the simulation, the
temperature . . .) by specifying them on the command line.

8 Conclusion

8.1 Summary of Contribution

This paper presents a novel algorithm based on the ChainTree and EnergyTree
data structures to reduce the average step time of MCS of proteins, independent
of the energy function, step generator, and acceptance criterion used by the sim-
ulator. Tests show that, when the number of simultaneous DOF changes at each
step is small (as is usually the case in MCS), the new method is significantly
faster than previous general methods — including the worst-case optimal grid
method — especially for large proteins. This increased efficiency stems from the
treatment of proteins as long kinematic chains and the hierarchical represen-
tation of their kinematics and shape. This representation — the ChainTree —
allows us to exploit the fact that long sub-chains stay rigid at each step, by sys-
tematically re-using unaffected partial energy sums cached in a companion data
structure — the EnergyTree. Our tests also demonstrate the advantage of using
the ChainTree to detect steric clash before computing the energy function.

8.2 Other Applications

Although we have presented the application of our algorithm to classical
Metropolis MCS, it can also be used to speed up other MCS methods as well as
other optimization and simulation methodologies.

For example, MCS methods that use a different acceptance criterion can ben-
efit from the same kind of speed-up as reported in Section 6, since the speed-up
only derives from the faster maintenance of the energy function when relatively
few DOFs are changed simultaneously, and is independent of the actual ac-
ceptance criterion. Such methods include Entropic Sampling MC [3], Parallel
Hyperbolic MC [4], and Parallel-hat Tempering MC [9]. MCS methods that use
Parallel Tempering [2] (also known as Replica Exchange) such as [4, 9], which
require running a number of replicas in parallel, could also benefit by using a
separate ChainTree and EnergyTree for each replica.

Some MCS methods use more sophisticated move sets (trial step generators).
Again, our algorithm can be applied when the move sets do not change many
DOFs simultaneously, which is in particular the case of the moves sets proposed
in [7, 8] (biasing the random torsion changes), and in [37] and [38] (moves based
on fragment replacement). More computationally intensive step generators use
the internal forces (the gradient of the energy function) to bias the choice of
the next conformation (e.g., Force-Biased MC [39], Smart MC [40] and MC
plus minimization [12]). For such step generators, the advantage of using our
algorithm is questionable, since they may change all DOFs at each step.

Efficient Energy Computation for Monte Carlo Simulation of Proteins 371

Some optimization approaches could also benefit from our algorithm. For
instance, a popular one uses genetic algorithms with crossover and mutation
operators [41, 42, 43]. The crossover operator generates a new conformation by
combining two halves, each extracted from a previously created conformation.
Most mutation operators also reuse long fragments from one or several previous
conformations. For both types of operators, our algorithm would allow partial
sums of energy terms computed in each fragment to be re-used, hence saving
considerable amounts of computation.

8.3 Current and Future Work

We are currently using our algorithm to run MCS of proteins on the order of
100 residues and larger using a full-atomic model and a physical energy function
(EEF1 [19]). To the best of our knowledge this has not been attempted so far.
We also intend to perform MCS of systems of several small proteins, in order to
study protein misfolding, which is known to cause diseases such as Alzheimer.
Each protein in the system will have its own ChainTree, which will be used to
detect interaction both within each molecule and between molecules.

One possible extension of our work would be to use the ChainTree to help
select “better” simulation steps. Indeed, the rejection rate in MCS becomes so
high for compact conformations that simulation comes to a quasi standstill.
This is a known weakness of MCS, which makes it less useful around the native
conformation. This happens because almost any DOF change causes a steric
clash. To select DOF changes less likely to create such clashes, one could pre-
compute the radius of rotation of every link relative to each DOF. These radii
and the distances between interacting atom pairs at each conformation would
allow computing the range of change for each DOF such that no steric clash will
occur.

Another natural extension, which exploits the hierarchical nature of the
ChainTree, is to vary the resolution of the molecular representation as MCS
progresses. This could be accomplished by changing on the fly the level of the
ChainTree that is considered the leaf level (the bottom level). For full atomic
resolution, searches in the ChainTree would continue until reaching the abso-
lute bottom level. If a coarser resolution can be tolerated, the search could be
stopped at a higher level in the hierarchy, where each node represents one or
some amino acids. A different energy function could then be used for each level
of resolution. This scheme could entail large savings in CPU time in regions of
the conformation space where the protein structure is not very compact, while
not compromising precision in other regions when it is needed.

Acknowledgements: This work was partially funded by NSF ITR grant
CCR-0086013 and a Stanford BioX Initiative grant.

372 I. Lotan, F. Schwarzer, and J.-C. Latombe

References

[1] Binder, K., Heerman, D.: Monte Carlo Simulation in Statistical Physics. 2nd edn.
Springer Verlag, Berlin (1992)

[2] Hansmann, U.: Parallel tempering algorithm for conformational studies of bio-
logical molecules. Chemical Physics Letters 281 (1997) 140–150

[3] Lee, J.: New Monte Carlo algorithm: entropic sampling. Physical Review Letters
71 (1993) 211–214

[4] Zhang, Y., Kihara, D., Skolnick, J.: Local energy landscape flattening: Parallel
hyperbolic Monte Carlo sampling of protein folding. Proteins 48 (2002) 192–201

[5] Shimada, J., Kussell, E., Shakhnovich, E.: The folding thermodynamics and ki-
netics of crambin using an all-atom Monte Carlo simulation. J. Mol. Bio. 308
(2001) 79–95

[6] Shimada, J., Shakhnovich, E.: The ensemble folding kinetics of protein G from
an all-atom Monte Carlo simulation. Proc. Natl. Acad. Sci. 99 (2002) 11175–80

[7] Abagyan, R., Totrov, M.: Biased probability Monte Carlo conformational seraches
and electrostatic calculations for peptides and proteins. J. Mol. Bio. 235 (1994)
983–1002

[8] Abagyan, R., Totrov, M.: Ab initio folding of peptides by the optimal-bias Monte
Carlo minimization procedure. J. of Computational Physics 151 (1999) 402–421

[9] Zhang, Y., Skolnick, J.: Parallel-hat tempering: A Monte Carlo search scheme for
the identification of low-energy structures. J. Chem. Phys. 115 (2001) 5027–32

[10] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of
state calculations by fast computing machines. J. Chem Phys 21 (1953) 1087–1092

[11] Hansmann, H., Okamoto, Y.: New Monte Carlo algorithms for protein folding.
Current Opinion in Structural Biology 9 (1999) 177–183

[12] Li, Z., Scheraga, H.: Monte Carlo-minimization approach to the multiple-minima
problem in protein folding. Proc. National Academy of Science. 84 (1987) 6611–15

[13] Grosberg, A., Khokhlov, A.: Statistical physics of macromolecules. AIP Press,
New York (1994)

[14] Northrup, S., McCammon, J.: Simulation methods for protein-structure fluctua-
tions. Biopolymers 19 (1980) 1001–1016

[15] Abagyan, R., Argos, P.: Optimal protocol and trajectory visualization for confor-
mational searches of peptides and proteins. J. Mol. Bio. 225 (1992) 519–532

[16] Kikuchi, T.: Inter-Ca atomic potentials derived from the statistics of average inter-
residue distances in proteins: Application to bovine pancreatic trypsin inhibitor.
J. of Comp. Chem. 17 (1996) 226–237

[17] Kussell, E., Shimada, J., Shakhnovich, E.: A structure-based method for deriva-
tion of all-atom potentials for protein folding. Proc. Natl. Acad. Sci. 99 (2002)
5343–8

[18] Gō, N., Abe, H.: Noninteracting local-structure model of folding and unfloding
transition in globular proteins. Biopolymers 20 (1981) 991–1011

[19] Lazaridis, T., Karplus, M.: Effective energy function for proteins in solution.
Proteins 35 (1999) 133–152

[20] Leach, A.: Molecular Modelling: Principles and Applications. Longman, Essex,
England (1996)

[21] Sun, S., Thomas, P., Dill, K.: A simple protein folding algorithm using a binary
code and secondary structure constraints. Protein Engineering 8 (1995) 769–778

[22] Halperin, D., Overmars, M.H.: Spheres, molecules and hidden surface removal.
Comp. Geom.: Theory and App. 11 (1998) 83–102

Efficient Energy Computation for Monte Carlo Simulation of Proteins 373

[23] Lotan, I., Schwarzer, F., Halperin, D., Latombe, J.C.: Efficient maintenance and
self-collision testing for kinematic chains. In: Symp. Comp. Geo. (2002) 43–52

[24] Thompson, S.: Use of neighbor lists in molecular dynamics. Information Quaterly,
CCP5 8 (1983) 20–28

[25] Mezei, M.: A near-neighbor algorithm for metropolis Monte Carlo simulation.
Molecular Simulations 1 (1988) 169–171

[26] Brown, J., Sorkin, S., Latombe, J.C., Montgomery, K., Stephanides, M.: Algorith-
mic tools for real time microsurgery simulation. Med. Im. Ana. 6 (2002) 289–300

[27] Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchical structure for
rapid interference detection. Comp. Graphics 30 (1996) 171–180

[28] Klosowski, J.T., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient collision de-
tection using bounding volume hierarchies of k-DOPs. IEEE Tr. on Visualization
and Comp. Graphics 4 (1998) 21–36

[29] Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast distance queries with
rectangular swept sphere volumes. In: IEEE Conf. on Rob. and Auto. (2000)

[30] Quinlan, S.: Efficient distance computation between non-convex objects. In: IEEE
Intern. Conf. on Rob. and Auto. (1994) 3324–29

[31] van den Bergen, G.: Efficient collision detection of complex deformable models
using AABB trees. J. of Graphics Tools 2 (1997) 1–13

[32] Guibas, L.J., Nguyen, A., Russel, D., Zhang, L.: Deforming necklaces. In: Symp.
Comp. Geo. (2002) 33–42

[33] Creighton, T.E.: Proteins : Structures and Molecular Properties. 2nd edn. W. H.
Freeman and Company, New York (1993)

[34] Hubbard, P.M.: Approximating polyhedra with spheres for time-critical collision
detection. ACM Tr. on Graphics 15 (1996) 179–210

[35] Brooks, B., Bruccoleri, R., Olafson, B., States, D., Swaminathan, S., Karplus,
M.: CHARMM: a program for macromolecular energy minimizationand dynamics
calculations. J. of Computational Chemistry 4 (1983) 187–217

[36] Lazaridis, T., Karplus, M.: Discrimination of the native from misfolded protein
models with an energy funbction including implicit solvation. J. Mol. Bio. 288
(1998) 477–487

[37] Elofsson, A., LeGrand, S., Eisenberg, D.: Local moves, an efficient method for
protein folding simulations. Proteins 23 (1995) 73–82

[38] Simons, K., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary
structure from fragments with similar local sequences using simulated annealing
and bayesian scoring functions. J. Mol. Bio. 268 (1997) 209–225

[39] Pangali, C., Rao, M., Berne, B.J.: On a novel Monte Carlo scheme for simulating
water and aqueous solutions. Chemical Physics Letters 55 (1978) 413–417

[40] Kidera, A.: Smart Monte Carlo simulation of a globular protein. Int. J. of Quan-
tum Chemistry 75 (1999) 207–214

[41] Pedersen, J., Moult, J.: Protein folding simulations with genetic algorithms and
a detailed molecular description. J. Mol. Bio. 269 (1997) 240–259

[42] Sun, S.: Reduced representation model of protein structure prediction: statistical
potential and genetic algorithms. Protein Science 2 (1993) 762–785

[43] Unger, R., Moult, J.: Genetic algorithm for protein folding simulations. J. Mol.
Bio. 231 (1993) 75–81

	Introduction
	Monte Carlo Simulation (MCS)
	Kinematic Structure of a Protein
	Computing the Energy
	Contributions
	Outline of Paper

	Related Work
	The ChainTree
	Properties of Proteins and MCS
	Transform Hierarchy
	Bounding-Volume Hierarchy
	Side-Chain Representation
	Combined Data Structure
	Updating the ChainTree

	Finding Interacting Pairs
	Energy Maintenance
	Experimental Results for MCS
	Experimental Setup
	Results
	Two-Pass ChainTree

	MCS Software
	Conclusion
	Summary of Contribution
	Other Applications
	Current and Future Work

