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Abstract. The paper proposes an agent-based approach to the multiple-
objective selection of reference vectors from original datasets. Effective
and dependable selection procedures are of vital importance to machine
learning and data mining. The suggested approach is based on the mul-
tiple agent paradigm. The authors propose using JABAT middleware
as a tool and the original instance reduction procedure as a method
for selecting reference vectors under multiple objectives. The paper con-
tains a brief introduction to the multiple objective optimization, followed
by the formulation of the multiple-objective, agent-based, reference vec-
tors selection optimization problem. Further sections of the paper pro-
vide details on the proposed algorithm generating a non-dominated (or
Pareto-optimal) set of reference vector sets. To validate the approach the
computational experiment has been planned and carried out. Presenta-
tion and discussion of experiment results conclude the paper.

1 Introduction

As it has been observed in [9], in supervised learning, a machine-learning algo-
rithm is shown a training set, which is a collection of training examples called
instances. After learning from the training set, the learning algorithm is pre-
sented with additional input vectors, and the algorithm must generalize, that is
to decide what the output value should be.

It is well known that in order to avoid excessive storage and time complexity
and to improve generalization accuracy by avoiding noise and overfitting, it is
often advisable to reduce original training set by removing some instances before
learning phase or to modify the instances using a new representation.

Instances reduction, often referred to as a selection of reference vectors, be-
comes especially important in case of large data sets, since overcoming storage
and complexity constraints might become computationally very expensive. Al-
though a variety of instance reduction methods has been so far proposed in the
literature (see, for example the review [9]), no single approach can be considered
as superior nor guaranteeing satisfactory results and a reduction of the learning
error or increased efficiency of the supervised learning. Therefore, the problem
of selecting the reference instances remains an interesting field of research.
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One of the most important application areas of the machine learning meth-
ods and tools is data mining understood as the extraction of implicit, previously
unknown, and potentially useful information from data. Unfortunately, several
useful machine learning tools and techniques as for example neural networks,
support vector machines or statistical methods do not provide explanations on
how they solve problems. In some application areas like medicine or safety as-
surance this may cause some doubts or even lower the trust of the users. In
such cases users may prefer approaches where the process of knowledge extrac-
tion from data is easier comprehensible by human beings. An obvious approach
would be using methods leading to the extraction of some logical rules repre-
senting the knowledge about phenomenon at hand. Extracting precise, reliable,
useful and easy to comprehend rules from datasets is not a trivial task [10][13].

Most widely used techniques for the rules generation, such as, for example,
algorithms C4.5 and CART [14][15], are based on decision trees. However in
case of the large datasets the resulting decision tree might become very complex
making it difficult to understand and evaluate by the human being. Possible
way to overcome the problem is to select a set of reference vectors as an input
to the decision tree generating algorithm producing than, so called, prototype-
based model [10]. It is expected that instance reduction through selection of
reference vectors may bring about several benefits including increased quality
of generalization, easier to comprehend set of rules, decreased requirements for
storage and computational resources and increased simplicity of the extracted
knowledge.

Selecting reference vectors is inherently a multiple-objective problem. The
resulting set should be evaluated not only in terms of generalization (classifica-
tion) quality of the prototype model, but also in terms of the resulting number of
rules, their complexity, data compression level, computational time required etc.
Considering the above, in this paper the selection of reference vectors is seen
as a multi-objective optimization problem which solution is a non-dominated
(or Pareto-optimal) set of reference vector sets. To obtain solutions to such
problems an agent-based approach is suggested.

The paper proposes the multiple-objective agent-based optimization of refer-
ence vectors selection algorithm, implemented using the JABAT environment.
JABAT is a middleware supporting the construction of the dedicated A-Team
architectures that can be used for solving a variety of computationally hard
optimization problems [3].

The paper is organized as follows. Section 2 reviews briefly a general multiple-
objective, optimization problem. Section 3 of the paper contains formulation
of the multiple-objective, agent-based, reference vectors selection optimization
problem. Section 4 provides details on the proposed algorithm generating a non-
dominated (or Pareto-optimal) set of reference vector sets. To validate the ap-
proach the computational experiment has been planned and carried out. Its
results are presented and discussed in Section 5. Finally, in the last section some
conclusions are drawn and directions for future research are suggested.
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2 Multiple-Objective Optimization

The general multiple-objective optimization problem is formulated following [11]
as:

max{zi,...,z2;} = maz{fi(x),..., fs(x)} (1)
or
min{z1,..., 27 = min{f1(x),..., fr(x)} (2)
where € D and solution x = [z1,...,;] is a vector of decision variables,

D is the set of feasible solutions and z is a vector of objective functions z;,
j=1,...,J. The type of the variables may describe different classes of problems.
When the variables are discrete the multiple-objective optimization problem is
called as multiple-objective combinational optimization problem.

The image of a solution z in the objective space is a point z* = [z, ..., 2],
where 27 = f(z;), j=1,...,J.

Point z dominates 2/, if, for the maximization case, z; > z} (for each j) and
z; > z; for at least one j, and vice versa for the minimization problem.

A solution z € D is Pareto-optimal, if there is no 2’ € D that dominates x.
A point being an image of Pareto-optimal solution is called non-dominated. The
set of all Pareto-optimal solutions is called the Pareto-optimal set. The image of
the Pareto-optimal set in objective space is called the non-dominated set.

An approximation of the non-dominated set is a set A of feasible points such
that =3z1, 29 € A such that z; dominated zs.

Weighted linear scalarizing functions are defined as:

J
si(z,A) = Z Ajzj, (3)

where A = [l1,...,1;] is a weight vector such that A; > 0 and Z;I:l Aj=1.
Others scalarizing functions are based on calculation of distances between z;

and 29, where 2° is a references point. The weighted Tchebycheff scalarizing

function may serve as an example of such a function. It is defined as follows:

Soo(2,2°,4) = m?x{/\j(z? —zj)} (4)

Further details in respect to the multiple-objective optimization can be found,
for example, in [11].

3 Multiple-Objective Selection of Reference Instances

Instance reduction problem concerns removing a number of instances from the
original training set 7" and thus producing the reduced training set S. Let N
denote the number of instances in 7' and n-the number of attributes. Total
length of each instance (i.e. training example) is equal to n + 1, where element
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numbered n + 1 contains the output value. Let also X = {z;;} (¢ = 1,...,N,
j=1,...,n+1) denote a matrix of n+ 1 columns and N rows containing values
of all instances from T

Usually, instance reduction algorithms are based on distance calculation be-
tween instances in the training set. In such a case selected instances, which are
situated close to the center of clusters of similar instances, serve as the refer-
ence instances. The approach requires using some clustering algorithms. Other
methods, known as similarity-based methods, remove k nearest neighbors from a
given category based on an assumption that all instances from the neighbor will
be, after all, correctly classified. The third group of methods eliminates training
examples based on an evaluation using some removal criteria [9] [12].

In this paper instance reduction (or reference vector selection) is seen as a
multiple-objective optimization problem. It can be solved by producing a set of
Pareto-optimal solution instances each being a non-dominated set of reference
vectors. The following criteria are used to evaluate reference vectors:

Classification quality - f;

- Data compression level - f5
Number of rules - f3

- Length of rules -fy

It is clear that the above set of criteria represents a situation with several con-
flicting goals. Selection of the preferred reference vector from the set of Pareto-
optimal ones is left to the user. Hence, solving an instance reduction problem is
seen as generating a set of non-dominated solutions each, in turn, representing
a set of the selected reference vectors.

4 Agent-Based Algorithm for Generating Pareto-Optimal
Sets of Reference Vectors

4.1 Instance Reduction Algorithm

It is proposed to base instance reduction on the idea of Instance Reduction Al-
gorithm (IRA) proposed in the earlier paper of the authors [12]. The IRA was
originally proposed as a tool for solving a single objective version of instance
reduction problem. It was shown in [12] that the approach can result in reducing
the number of instances and still preserving a quality of the data mining re-
sults. It has been also demonstrated that in some cases reducing the training set
size can increase efficiency of the supervised learning. The proposed algorithm
is based on calculating, for each instance from the original set, the value of its
similarity coefficient, and then grouping instances into clusters consisting of in-
stances with identical values of this coefficient, selecting the representation of
instances for each cluster and removing the remaining instances, thus producing
the reduced training set. The algorithm involves the following steps:

Stage 1. Transform X normalizing value of each x;; into interval [0, 1] and then
rounding it to the nearest integer, that is 0 or 1.
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Stage 2. Calculate for each instance from the original training set the value of
its similarity coefficient I;:

n+1
IZ':ZI',‘]‘S]‘77;:].,...7N7 (5)
j=1
where:
N
Sj:ZI'ij,j:].,...7n+].. (6)
i=1

Stage 3. Map input vectors (i.e. rows from X) into ¢ clusters denoted as Y,
v = 1,...,t. Each cluster contains input vectors with identical value of the
similarity coefficient I and ¢ is a number of different values of I.

Stage 4. Select input vectors to be retained in each cluster. Let |Y,| denote a
number of input vectors in cluster v. Then the following rules for selecting input
vectors are applied:

- If|Y,| =1 then S=SUY,.

- If [Y,| > 1 then S = SU {«}}, where z¥ are reference instances from the
cluster Y, selected by applying the JABAT and where the number of selected
instances corresponds to multi objective optimization problem.

4.2 Overview of the JABAT

The single objective instance reduction is a combinatorial and computationally
difficult problem [12]. Its multiple-objective version can not be computationally
easier. To deal with the multiple-objective instance reduction it is proposed to
use the population-based approach with optimization procedures implemented
as an asynchronous team of agents (A-Team), originally introduced by Talukdar
[2]. An A-Team is a collection of software agents that cooperate to solve a prob-
lem by dynamically evolving a population of solutions. An A-Team usually uses
combination of approaches inspired by natural phenomena including, for exam-
ple, insect societies [4], evolutionary processes [5] or particle swarm optimization
[7], as well as local search techniques like, for example, tabu search [6].

An A-Tam is a cyclic network of autonomous agents and shared, common
memories. Each agent contains some problems solving skills and each memory
contains a population of temporary solutions to the problem to be solved. All
the agents can work asynchronously and parallel. During their works agents co-
operate by selecting and modifying these solutions. In the reported approach the
A-Team was designed and implemented using JADE-based A-Team (JABAT)
environment.

JABAT is a middleware allowing to design and implement an A-Team archi-
tecture for solving combinatorial optimization problems. The main features of
JABAT include:

- The system can in parallel solve instances of several different problems.
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- A user, having a list of all algorithms implemented for given problem may
choose how many and which of them should be used.

- The optimization process can be performed on many computers. The user
can easily adjoin or delete a computer from the system. In both cases JABAT
will adapt to the changes, commanding the agents working within the system
to migrate.

The JABAT produces solutions to combinatorial optimization problems using a
set of optimising agents, each representing an improvement algorithm. To escape
getting trapped into a local optimum an initial population of solutions called
individuals is generated or constructed. Individuals forming an initial popula-
tion are, at the following computation stages, improved by independently acting
agents, thus increasing chances for reaching a global optimum.

Main functionality of the proposed environment is searching for the optimum
solution of a given problem instance through employing a variety of the solution
improvement algorithms. The search involves a sequence of the following steps:

- Generation of an initial population of solutions.

- Application of solution improvement algorithms which draw individuals from
the common memory and store them back after attempted improvement,
using some user defined replacement strategy.

- Continuation of the reading-improving-replacing cycle until a stopping cri-
terion is met.

The above functionality is realized by the two main types of classes. The first one
includes OptiAgents, which are implementations of the improvement algorithms.
The second are SolutionManagers, which are agents responsible for maintenance
and updating of individuals in the common memory. All agents act in paral-
lel. Each OptiAgent is representing a single improvement algorithm (for exam-
ple simulated annealing, tabu search, genetic algorithm, local search heuristics
etc.). An Optidgent has two basic behaviors defined. The first is sending around
messages on readiness for action including the required number of individuals
(solutions). The second is activated upon receiving a message from some So-
lutionManager containing the problem instance description and the required
number of individuals. This behaviour involves improving fitness of individuals
and resending the improved ones to a sender. A SolutionManager is brought
to life for each problem instance. Its behaviour involves sending individuals to
OptiAgents and updating the common memory.

Main assumption behind the proposed approach is its independence from
a problem definition and solution algorithms. Hence, main classes Task and
Solution upon which agents act, have been defined at a rather general level.
Interfaces of both classes include function ontology(), which returns JADE’s
ontology designed for classes Task and Solution, respectively. Ontology in JADE
is a class enabling definition of the vocabulary and semantics for the content of
message exchange between agents. More precisely, an ontology defines how the
class is transformed into the text message exchanged between agents and how
the text message is used to construct the class (here either Task or Solution).
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4.3 Implementation of the Multiple-Objective Instance Reduction
Algorithm

The JABAT environment has served as the tool for solving instances of the
multiple-objective instance reduction problem. All the required classes have been
defined in the package called MORIS (multiple-objective reference instances se-
lection). The MORIS includes the following classes: MORIS Task inheriting
form the Task class, MORIS Solution inheriting from the Solution class. The
MORIS Task identifies data set and creates the clusters of potential reference
instances. MORIS Solution contains representation of the solution. It consists of
the list of the selected references instances from original data set and the values
of the cost factors corresponding respectively to the classification accuracy, the
percentage of compression of the training set and the number of rules. To obtain
values of these factors the C 4.5 classification tool is used. For each decision tree
produced by the C 4.5 the size of rules is additionally calculated and recorded.

To communication between optimization agents and the solution manager the
MORIS TaskOntology and MORIS SolutionOntology classes have been also de-
fined through over-ridding the TaskOntology and SolutionOntology, respectively.
The TaskOntology is needed to enable sending between agents and the common
memory task parameters and instance numbers belonging to respective clusters
and representing potential reference instances. The SolutionOntology is needed
to enable sending around potential solutions.

Each optimization agent operates on one individual (solution) provided and
randomly selected form the population by the SolutionManager. Its role is to
improve quality of the solution. After the stopping criterion has been met, each
agent resends individuals to the SolutionManager, which, in turn, updates com-
mon memory by replacing randomly selected individual with the improved ones.
Generally, the SolutionManager manages the population of solutions, which on
initial phase is generated randomly. The generation of an initial population of
solutions is designed to obtain a population consisting of solutions with differ-
ent number of reference instances in each clusters. The SolutionManager, after
adding to the population a solution received from the OptiAgent, overwrides and
updates the set of potentially Pareto-optimal solutions.

To solve the discussed multiple objective problem two types of agents repre-
senting different improvement procedures have been implemented. In each case
the agent’s classes are inherited from the OptiAgent class. Both procedures aim
at improving current solution through modification and exchange of the refer-
ence vectors in different clusters. After having received a solution to be improved
an optimization agent generates random vector of weights A. It is used to obtain
the normalized function s(z,A), which, in turn, is used to evaluate potential
solutions.

The first optimization agent - local search with tabu list (in short: RLS),
modifies the current solution by removing the randomly selected reference vector
from the randomly chosen cluster and replacing it with some other randomly
chosen reference vector thus far not included within the improved solution. The
modification takes place providing the vector to be replaced is not on the tabu
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list. After the modification the newly added reference vector is placed on the tabu
list and remains there for a given number of iterations. This number depends on
the cluster size and decreases for smaller clusters. The modified solution replaces
the current one if it is evaluated as a better one using the current normalized
function s(z, A).

The second optimization agent - incremental/decremental local serach (in
short: IDLS), modifies the current solution either by removing the randomly
selected reference vector from the randomly chosen cluster or by adding some
other randomly chosen reference vector thus far not included within the improved
solution. Increasing or decreasing a number of reference vectors within clusters
is a random move executed with equal probabilities. Pseudo-codes showing both
types of the discussed optimization agents are shown in Example 1 and 2.

Example 1: Pseudo code of the RLS type optimization agent

public class RandomLocalSearch extends OptiAgent {
public void improveSolution() {
Initiate the list of tabu moves;
Draw at random a weight vector L;
MORIS_Solution x = (MORIS_Solution)solution.clone();
/*where x is the solution that has been sent to optimizex/
do{
Select randomly cluster from x;
Select randomly n, where n corresponds to instance number
from selected cluster;
If (n is not on the list of tabu active moves){
Select randomly n’, where n’ corresponds to instance
number which is not represented within x;
Remove n from x and add n’ to x producing x’;
Calculate fitness of the x’ on s(z,L);
if(x’ is better on s(z,L) then x) x=x’;
Add n to the list of tabu moves and during next s
iterations do not change this instance number;
X
Update the list of tabu moves;
}while (!terminatingCondition);
/*solution is ready to be sent back*/
solution = x;}

Ezxample 2: Pseudo code of the IDLS type optimization agent

public class IncDecLocalSearch extends OptiAgent {

public void improveSolution() {
Draw at random a weight vector L;
Set s as a parameter determining decremental/incremental phase;
MORIS_Solution x = (MORIS_Solution)solution.clone();
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/*where x is the solution that has been sent to optimizex/
do{

counter=0;

Select randomly cluster from x;

if (( counter % s ) == 0)

{
Generate a random binary digit;
if (a random digit is 0)
{
Select randomly n, where n corresponds to instance number
which is not represented within x;
Add n to x;
X
else
{
Select randomly n, where n corresponds to instance
number from selected cluster;
Remove n from x;
X

X

Select randomly n, where n corresponds to instance number

from selected cluster;

Select randomly n’, where n’ corresponds to instance

number which is not represented within x;

Remove n from x and add n’ to x producing x’;

Calculate fitness of the x’ on s(z,L);

if (x’ is better on s(z,L) then x) x=x’;

counter++;

}while (!terminatingCondition);

/*solution is ready to be sent backx/

solution = x;}

5 Computational Experiment Results

To validate the proposed approach several benchmark instances have been solved.
The main aim of the experiment has been to evaluate usefulness and effectiveness
of the agent-based approach to solving the problem of multiple-objective selection
of reference vectors. This has been achieved through establishing experimentally
how different strategies of selecting and using optimization agents affect the com-
putation results.

The proposed approach has been used to solve four well known classification
problems - Cleveland heart disease (303 instances, 13 attributes, 2 classes), credit
approval (690, 15, 2), Wisconsin breast cancer (699, 9, 2) and sonar problem
(208, 60, 2). The respective datasets have been obtained from [8].
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Experiment plan has been based on the 10-cross-validation approach. Each
thus obtained training set 7' has been then reduced to a subset S containing
reference vectors. Each reference vectors set has been, in turn, used to produce a
decision tree. This has been evaluated from the point of view of the four criteria
discussed in Section 3. Each decision tree was created using only the instances
in S and each C 4.5 classifier was trained without pruned leaves.

For each benchmarking problem the experiment has been repeated 50 times
and the reported values of the quality measures have been averaged over all
runs. All optimization agents have been allowed to continue iterating until 100
iterations have been performed. The common memory size in JABAT was set
to 100 individuals. The number of iterations, the size of common memory and
selection criteria have been set out experimentally at the fine-tuning phase. The
search for solutions was satisfactory performed at reasonable computation time.

In order to evaluate the resulting Pareto-optimal sets approximations two
quality measures have been used [11]. The first measure is the average of the best
values of weighted Tchebycheff scalarizing function over a set of systematically
generated normalized weight vectors. The set of such weight vectors is denoted
and defined as ¥, = {A = [\1,..., ;] € #|\; € {0, ,lv, i,..., }71,1}}, where ¥
is the set of all normalized weight vectors and k is a sampling parameter.

Finally, the measure is calculated in the following way:

ZAE‘I/S SZO('ZOa A7 A)

R(AY=1— s
“) 2|

(7)
where s*_(2°, A, A) = min.ca{s.0(2,2° A)} and is the best value achieving by
function s (2,2% A) on set A. Before calculating the value of this measure the
reference point 20 was set as an ideal point.

Table 1. Performance of different agent combinations measured using average values
of C"'and R

C measure and R measure and
standard deviations standard deviations
wn wn i i
— i}
= a = =
g @ 9 F 4 7
S
o0 S ~ a A a é 0
g - n = n -
IS '_'n wn + ' + - &)
g A a A a A 2 I
= a wn
g o=t = o=t ~ o=t = fﬁ - fﬁ
= ) = = = = A
o ®) ®) O ®) O ~ — ~

fi, f2, fs, fa 0,464 0,618 0,862 0,208 0,760 0,328 0,858 0,857 0,859
40,12 +0,073 +0,149 +0,084 0,254 =£0,11 0,003 =+0,003 =+0,002

fi, fo 0,361 0,798 0,735 0430 0,867 0,422 0,732 0,732 0,734
40,172 +0,155 0,087 =£0,096 =0,153 =£0,183 =+0,004 0,004 =£0,003

fi, fs 0,623 0,728 0,827 0,390 0,824 0,435 0,959 0,961 0,959
40,103 +0,052 0,158 0,139 =0,084 £0,194 =+0,003 0,003 =£0,007
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The second measure is the coverage of the two approximations of the non-
dominated set and is defined as:

{2 eB}F € A -2

where the value C'(A, B) = 1 means that all points in B are dominated by or
are equal to some points in A. The value C'(A4, B) = 0 means that no point in
B is covered by any point in A.

Experiment results for different combinations of optimization agents averaged
over all benchmark datasets and instances are shown in Table 1. The cost factors
(optimization criteria) include classification accuracy, percentage of compression
of the training set, number of rules and size of the decision tree. Values of the R
measure have been calculated with the sampling parameter k set to 100 and 5
for the bi-objective and four-objective cases, respectively.

1 07
CANCER >< CREDIT
0.8 1 X ©bLs 0 < IDLS
X RLS 0.65 XRLS
¢ O RLS+IDLS
0.6 1 O RLS+DLS
! o 8
= S 0.6 1 %%
04 1 R X 23
8 8 A O<><>><
gRRBOO X o
021 0851 80 @)
0 ‘ ‘ ‘ 05 ‘ ‘
0.05 01 (100f)100 02 0 0.1 (100-;)/100 03
0.85 0.98
HEART SONAR
; X ¢bLs 0.96 | X o DLS
0.8 1 o X RLS - X X RLS
g O RLS+DLS O RLS+DLS
* o} § X 0.94 | OX
0.75 4 o O X CORX
% X | ©O Om
o) % X X« OB & o)
07| 86000 oo OX o
0.65 ‘ ‘ ‘ ‘ 0.88 ‘ ‘ :
0.1 02 03 (100-f;)/100 05 0.1 0.15 02 025 (100-f)/100 0.35

Fig. 1. Example Pareto fronts - instances of the bi-objective optimization (fi1 and f2)
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Fig. 2. Example Pareto fronts - instances of the bi-objective optimization (fi1 and f3)

The results of Pareto-optimal set approximations using the R measure in-
dicate that each combination of agents produces similar results. There are no
statistically significant differences between average values of the R measure for
all investigated combination of agents.

The results of Pareto-optimal set approximations using the C' measure indicate
that IDLS produces a better coverage then RLS and RLS+IDLS better coverage
then either RLS or IDLS. This observation holds for all investigated cases i.e.
multi-objective optimization with two and four objectives and is independent on
dimensionality of problems. Thus RLS+IDLS generates best approximation of
the Pareto-optimal (non-dominated set).

The values of C' measure have been also used to carry a pair-wise comparison
of average performance of different combinations of optimization agents. It has
been observed that the following inequalities are statistically significant:

- C(IDLS,RLS) > C(RLS,IDLS),
- C(RLS + IDLS, RLS) > C(RLS, RLS + IDLS),
- O(RLS + IDLS,IDLS) > C(IDLS, RLS + IDLS).
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Fig. 3. Example approximations of Pareto-optimal sets - an instance of the four-
objective optimization problem

In Fig. 1 and 2 example Pareto fronts obtained by solving a single instance
of each of the considered problem types are shown. Each set of points has been
obtained in a single run for the respective bi-objective optimization problem.

In Fig. 3 example approximations of Pareto-optimal sets produced by different
combination of agents for an instance of the four-objective selection of reference
vector problem are presented.

6 Conclusion

The paper proposes an agent-based multiple-objective approach to the selection
of reference vectors from original datasets. Effective and dependable selection
procedures are of vital importance to machine learning and data mining. The
suggested approach is based on the multiple agent paradigm. Using a team of
agents brings about several advantages including better use of computational
resources, flexibility and ability to carry computations in the distributed envi-
ronment. The focus of the paper is however not on efficiency of the agent based
approach but rather on the methodology of dealing with the multiple-objective
selection of reference vectors through employing a team of agents. It has been
shown that there exist adequate methodology and suitable tools allowing to
obtain good approximations of the Pareto-optimal solutions to problems of the
discussed type. The proposed method and tools can be used to design customized
machine learning and data mining systems corresponding better to the user re-
quirements and needs. The approach allows also for discovery of interactions
between composition of various vector selection optimization procedures and a
quality of generalization measured using multiple criteria. Such knowledge can
be used for evaluation and selection of optimization agents and procedures.

Future research should focus on refining the theoretical framework for agent-
based, multiple-objective optimization of reference vector selection as well as
on designing more user friendly tools for solving practical multiple objective
reference vectors selection problems.
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