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Abstract. We show that it is NP-hard to 2" -approximate the integral
of a positive, smooth, polynomial-time computable n-variate function,
for any fixed integer k.

1 Introduction

Suppose F'(-) is a real positive function defined on a cube C in Euclidean n-
dimensional space R™. We consider the problem of approximating the integral
I(F) of F over C, with relative error ¢, under the additional assumption that F
satisfies a smoothness condition.

The exact integration of multivariate functions is hard, under the widely
conjectured hardness of #P, given the result in [3], which implies that the exact
calculation of the volume of an n-dimensional polytope is #P-complete. In view
of this, we would like to address the question whether there is an algorithm that
returns a value V such that 1/(1 +¢) < I(F)/V < (1+ €), in other words an
algorithm that e-approximates I(F').

The first somewhat surprising answer to this question came with the ma-
jor result of Dyer, Frieze and Kannan ([5]), who showed that there is a fully
polynomial randomized approximation scheme (FPRAS) for the volume of an
n-dimensional convex body. More precisely, they showed that the volume of an
n-dimensional convex body K given by a weak membership oracle M, can be
e-approximated with failure probability &, with poly(n, e, log&™1) calls to M.
Here, M can be thought of as a black-box algorithm that decides whether a
given point is in /. This directly implies that there is a FPRAS for the integra-
tion of n-variate concave functions that can be evaluated in time poly(n) at any
point in the cube C.

Subsequently, Applegate and Kannan ([2]), extended this result to positive,
smooth and nearly log-concave functions. Define

F(X) = F(X)

and let ¢ be the edge length of C, t(n) be an upper bound on the time needed
to evaluate F' at any point in C, and «, 3 satisfy

760 = 1)1 < o o b (1)
FOX + (1= N)Y) 2 M(X) + (1 - NF(Y) ~ @)
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for all x,y € C and A € [0,1]. Their algorithm has running time

7
n' 5 5 o9 n dan
O(t(n)e—Qc a’e logglog T)
It can be seen that a measures the smoothness of F. This gives rise to the
following definition of smoothness.

Definition 1. A function F(-) is called k-smooth if it satisfies a < n*. We
denote by Sy the set of k-smooth functions, and by S = J, Sk the set of smooth
functions .

If = 0, the function is log-concave (i.e. its logarithm is concave), so 5 can be
viewed as a measure of the distance of F' from log-concavity. The natural question
is whether the dependence on (8 can be removed or somewhat alleviated. The
contribution of this paper is to show that for any fixed integer k, it is NP-hard to
Q”k-approximate the integral of positive smooth functions that are computable
in polynomial time. In fact, we show that considerably small improvements on
the dependence on (8 would imply unexpected (and rather indirect) algorithmic
improvements for well studied NP-complete problems. Formally, we show the
following.

Theorem 1. For any fixed integer k > 3, if there is a (randomized) on’ ap-
prozimation algorithm with time complexity O(poly(a)29)) for the problem of
integration of functions from Skis, then there is a O(poly(a)n(g(”))HS) (ran-
domized) algorithm for the Hamilton Path problem on graphs with n vertices.

Corollary 1. For any fized integer k, it is NP-hard to 2”k-approximate the
integral of polynomial-time computable functions from S.

We note here that, in general, only a few negative results concerning the ap-
proximability of counting problems are known. As observed in [6], the hardness
of counting problems in most cases follows either from the NP-completeness
of the corresponding decision problem, or from applying some “boosting” re-
duction which exploits an embedded NP-complete problem (see [I0J6]). There
appears to be a paucity of results that prove the hardness of approximate count-
ing problems for some other more “interesting” reason. One such case is [4],
which proves that there is no FPRAS for counting the number of independent
sets in graphs of maximum degree A > 25, unless NP=RP. As noted in [7],
in view of the lack of “satisfactory” results that prove inapproximability under
reasonable complexity-theoretical assumptions, research efforts have often been
directed towards proving that certain restricted algorithmic approaches fail (see
section 4 of [7] and the references therein).

The rest of the paper is organized as follows. In section 2l we give an overview
of the proof technique, in section [3 we give the details of the proof and finally
in section @l we make some concluding comments.
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2 Overview

We derive the result through a reduction from Hamilton Path (HP for short).
Recall that HP is one of the first problems shown to be NP-complete (see [9]).
Given a graph G (in some usual representation), HP asks whether there exists a
simple path of length n, i.e. a path that goes through every vertex of G exactly
once.

With every graph G, we associate a function F. If G has n vertices, Fg is
a function of n? variables. The function Fi has the the following useful char-
acteristics. It can be computed at any point = in a cube C' of interest, in time
polynomial in n. The parameters «, 3 of F (defined in inequalities [Pl ), are
polynomial in n. Also, the value of the integral of Fz depends on whether G
contains a Hamilton Path or not. Specifically, if there is a HP, the integral of Fg
over a cube C of constant edge size ¢, is lower bounded by an explicitly known
quantity . If not, it is upper bounded by Ing, with Iy/Ing > Q”k, for any
fixed constant k. It follows that the integral is not Q"k—approximable.

Also, since 8 = O(n?) for some constant d (the smallest value of d we are
able to exhibit in this paper is 6), an improvement of the running time of the
integration algorithm to poly(n,e’l,a,2b(1/d)7€/), for any e’ > 0, would give a
2°(") randomized algorithm for Hamilton Path (the best currently known upper
bound is O(2"), see [1]), and through the Sparsificiation Lemma of [§] a 2°(")
randomized algorithm for 3-SAT, where now n is the number of variables.

3 The Proof

3.1 Definition and Properties of the Function Fg

Let G be a graph with n vertices and P be the set of length-n paths of G. The
function Fg(X) is a function of n? variables, X = {z11,...,%n,}. Each path
p € P is associated with a term f,(X), and Fo(X) =" p fp(X).

We now describe the term f,(X) for a path p. Assume an arbitrary numbering
of the graph vertices with numbers in [n]. We consider p as an ordered set of
vertices v1, .. ., v,, where v; € [n]. We let m = n*, where k is an integer constant
to be discussed later. We define

£6) = [[9:(X)

with

1—1 m
Hj:l xvq,j
m
ﬂii

9i(X) = ——

We will integrate F over the cube C' = [1, c]"2, so we study its properties
in this cube. Each term f,(X) is increasing in the variables appearing in the
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numerator and decreasing in the variables appearing in the denominator. By
setting the former to ¢ and the latter to 1, we get that the maximum value
of fp(X) is O(c”2m). Since there are at most n! paths, it follows that for any
X € C, Fg(X) can be expressed with O(mn?logn) bits.

As noted in [2], the smoothness parameter «, can be upper bounded by

2 pep 0Fp(X)/ O
ZpE’P fP(X)

Let x; € X be any variable. Since the exponent of x; is at most nm, for all
points X in C, we have

a<n?® max ‘

- XeCux;eX

811-

)
lnF(X)‘ =n?
XeCx;eX

O < sy (X)

which combined with inequality Bl gives o < n3m.

A note about the algorithm of [2] is due here. The algorithm operates on a
grid imposed on C. The coordinates of the grid are multiples of v < 1/2«. From
the bound on « it follows that we are interested in evaluating F at points which
are rationals expressible in polynomial space. From the definition of Fg, its value
at any point of the grid is also a rational expressible in polynomial space.

The definition of § trivially implies that any upper bound for f(X) is also an

upper bound for 3. From the above analysis we get 3 < O(mn®logn). For a lower
bound on § note that f(X) can be written as f(X) = In P(X)—m 3=, ;c(, Inxij,
where P(X) is a multivariate polynomial. Since P(X) is not log-concave in
general, the value of 3 can be lower bounded from the value of 3 for the function
f(X)=-m >_i jen) InTij, which can be seen to be O(mn?). Thus,we get 3 >
mn?.
We finally note that F(X) has some additional interesting properties. First,
F¢ has derivatives of any order, everywhere in the cube C. Also, its form is
relatively simple, as it is a sum of rational multivariate polynomials. In addition,
given a graph G we can easily obtain a closed form for the integral of Fg, though
of exponential length.

3.2 A Polynomial Time Algorithm for the Evaluation of Fg

We give an algorithm that computes F(X) at any point X, in n time steps. We
extend the definition of the path terms, to paths of length ¢. Concretely, we let

fo(X) = Hgi(X)

with

| P
gi(X) — ]TM

Vit
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Let P:(v) be the set of paths of length ¢ that end in node v. Also, let Q1 (v) =
z,;". Inductively, assume that just before time step ¢, for every v € V' we have

computed
Qi1(v) = > f(X)
PEPt—1(v)

Let N(v) denote the set of neighbors of node v. At step ¢, for each node v we
compute

t—1
Q) = [z T | > Q)
Jj=1 v’ €N (v)

After n steps the quantities @, (v) have been computed for all vertices v € V.
Then,

FX) =3 Qulv)
veV

The computation of Q:(V) requires a polynomial number of operations. Since
there are n steps and n vertices, it follows that Fg can be computed with a
polynomial number of operations. The points we are interested in are ratio-
nals expressible in polynomial space, and from the observations of the previous
subsection, all the intermediate quantities are expressible in polynomial space.
It follows that Fg(X) can be evaluated exactly, at any point X € C, in time
polynomial in n.

3.3 Bounding the Integrals

We integrate F'(X) over a cube C' = [1, c]"2. Let dX =dz11 - ... dzy, and 7 be
a permutation of the variable names. Since

/Xec Z fpl X)X = Z /Xec fplX)aX

pEP pEP

we can consider the integral of each path separately. We will refer to the value of
the integral of a term corresponding to a path p as the integral of p. Also, since

/ (@11, s )dX = fy (T(@1), - 7(@nn)) dX
XeCl XeCl

we can rename the variables in any term of F'. It is then easy to see that the
integral of a path depends only on the structure of the path and not on the
particular vertices appearing on it.

We first consider the integral of a HP. Since HP is a simple path, there are
no cancellations of variables and its integral is

n

_ 1. m | gx =
IHP/XGC (Hl xm> [ =p)ax

1<i<n ,1<j<i—1

_ (m + 1)—n(n—1)/2(m _ 1)n(1 _ c—m—i—l)n(cm—i-l _ 1)n(n—1)/2(c _ 1)n(n—1)/2
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Let us now consider the integrals of other non-simple paths. Suppose a path p
goes through n — d distinct nodes. Then, the corresponding term f, is of the
form

n—d 1 n(n+1)/2—t
fp(X) = (H x—m) : I =
i=1 "t i=n—d+1

where t and a; are integers that depend on the structure of p. In this case, d
monomials in the denominator cancel with variables in the numerator, so that

n(n—1)/2—t
Z a;=n(n—-1)/2—-d
i=n—d+1
By integrating, we get
n(n—1)/2—t
/ fo(X) < (1= cmHp=d(e — pnetn/zee [ emm
Xeo i=n—d+1

n(n—1)/2—t
< chCm(Zi:n—aHl a;) _ Cn2cmn(n71)/2cfmd

Now suppose we are given a non-Hamiltonian graph. Since there are at most
n! < ™ paths in the graph, the integral of the associated function is

Ing < c2n2cmn(n71)/267m
On the other hand, if the given graph is Hamiltonian (and even if we consider
only the integral of the HP), the integral of the associated function is

Iy > CfO(n2 logn)cmn(nfl)/Q

which gives a large gap, namely

Iu zcm—O(nzlogn)

Ing

Recall that m = n*. By taking any fixed k > 3 we get Theorem [Tl

4 Conclusions

We showed that it is NP-hard to Z”k—approximate the integral of smooth positive
n-variate functions, for any fixed integer k. We also argued that the currently
best known integration algorithm cannot be substantially improved, unless there
exist faster algorithms for Hamilton Path and 3-SAT.

Note that the Q”k—inapproximability holds for (k+ 3)-smooth functions, with
k > 3. Also, in order to obtain the full range of our inapproximability result, we
make use of functions that progressively become less efficiently computable. It
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is an interesting question whether similar inapproximability properties can be
shown for classes of functions with different trade-offs between their evaluation
time complexity and the value of their «, § parameters.

We feel that the most interesting open question is whether a lower bound
can be proved on (3, for any smooth polynomially computable function Fg which
can be constructed using the techniques of this paper.
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