
R. de Lemos et al. (Eds.): Architecting Dependable Systems II, LNCS 3069, pp. 191–214, 2004.
© Springer-Verlag Berlin Heidelberg 2004

On Designing Dependable Services
with Diverse Off-the-Shelf SQL Servers

Ilir Gashi, Peter Popov, Vladimir Stankovic, and Lorenzo Strigini

Centre for Software Reliability, City University,
Northampton Square, London EC1V 0HB, UK
{I.Gashi,V.Stankovic}@city.ac.uk
{Ptp,Strigini}@csr.city.ac.uk

http://www.csr.city.ac.uk

Abstract. The most important non-functional requirements for an SQL server
are performance and dependability. This paper argues, based on empirical re-
sults from our on-going research with diverse SQL servers, in favour of diverse
redundancy as a way of improving both. We show evidence that current data
replication solutions are insufficient to protect against the range of faults docu-
mented for database servers; outline possible fault-tolerant architectures using
diverse servers; discuss the design problems involved; and offer evidence of the
potential for performance improvement through diverse redundancy.

1 Introduction

‘Do not put all eggs in the same basket’, ‘Two heads are better than one’ summarise
the intuitive human belief about the value of redundancy and diversity as a means of
reducing the risk of failure. We are more likely to trust the results of our complex
calculation if a colleague has arrived independently at the same result. In this regard,
Charles Babbage was probably the first person to advocate using two computers -
although by computer he meant a person [1].

In many cases, e.g. in team games, people with diverse, complementary abilities
signify a way of improving the overall team performance. Every football team in the
world would benefit from having an exceptional player such as Ronaldo1. A good
team is one in which there is a balance of defenders, midfielders and attackers be-
cause the game consists of defending, play making and, of course, scoring. Therefore,
a team of 11 Ronaldos has little chance of making a good team.

High performance of computing systems is often as important as the correctness of
the results produced. When a system performs various tasks, optimising the perform-
ance with respect to only one of them is insufficient; good response time must be
achieved on different tasks, similarly to how a good team provides a balanced per-
formance in defence, midfield and attack. When both performance and dependability
are taken into account, there is often a trade-off between the two. The balance chosen
will depend on the priorities set for the system. In some cases, improving performance
has a higher priority for users than improving dependability. For instance, a timely,

1 At the time of writing the Brazilian footballer Ronaldo is recognised as one of the best for-

wards in the world.

192 Ilir Gashi et al.

only approximately correct response is sometimes more desirable than one that is
absolutely correct but late.

The value of redundancy and diversity as a means of tolerating faults in computing
systems has long been recognised. Replication of hardware is often seen as an ade-
quate mechanism for tolerating ’random’ hardware faults. If hardware is very com-
plex, however, e.g. VLSI chips, and hence design faults are likely, then diverse re-
dundancy is used as a protection against hardware design faults [2]. For software
faults as well, non-diverse replication will fail to detect, or recover from, all those
failures that do not produce obvious symptoms like crashes, or that occur in identical
ways on all the copies of a replicated system, and at each retry of the same operations.
For these kinds of failures, diverse redundancy (often referred to as ’design diversity’)
is required. The assumptions about the failure modes of the system to be protected
dictate the choice between diverse and non-diverse replication.

Diverse redundancy has been known for almost 30 years [3] and is a thoroughly
studied subject [4]. Many implementations of the idea exist, for instance recovery
blocks [3], N-version programming [5] and self-checking modular redundancy [6].

Over the years, diverse redundancy has found its way to various industrial applica-
tions [7]. Its adoption, however, has been much more limited than the adoption of
non-diverse replication. The main reason has been the cost of developing several
versions of software to the same specification. Also, system integration with diverse
versions poses additional design problems, compared to non-diverse replication [8],
[4], [9].

The first obstacle – the cost of bespoke development of the versions - has been to a
large extent eliminated in many areas due to the success of standard products in vari-
ous industries and the resulting growth in the market for off-the-shelf components.
For many categories of applications software from different vendors, compliant with a
particular standard specification, has become an affordable commodity and can be
acquired off-the-shelf2. Deploying several diverse off-the-shelf components (or com-
plete software solutions) in a fault-tolerant configuration is now an affordable option
for system integrators who need to improve service dependability.

In this paper we take a concrete example of a type of system for which replication
can be (and indeed has been) used – SQL servers3. We investigate whether design
diversity is useful in this domain from the perspectives of dependability and perform-
ance.

Many vendors offer support for fault-tolerance in the form of server ‘fail-over’, i.e.
solutions with replicated servers, which cope with crashes of individual servers by
redistributing the load to the remaining available servers. Despite the relatively long
history of database replication [10], effort on standardisation in the area has only
started recently [11]. Fail-over delivers some improvement over non-replicated serv-
ers although limited effectiveness has been observed in some cases [12]. Fail-over can

2 The difference between commercial-off-the-shelf (COTS) and just off-the-shelf (e.g. free-

ware or open-source software) is not important for our discussion despite the possible huge
difference in cost. Even if the user is to pay thousands for a COTS product, e.g. a commercial
SQL server, this is a tiny fraction of the development cost of the product.

3 Although many prefer relational Databases Management System (RDBMS), we instead use
the term SQL server to emphasise that Structured Query Language (SQL) will be used by the
clients to interact with the RDBMS.

On Designing Dependable Services with Diverse Off-the-Shelf SQL Servers 193

be used as a recovery strategy irrespective of the type of failure (not necessarily “fail-
stop” [13]). However its known implementations assume crash failures, as they de-
pend on detecting a crash for triggering recovery.

The rest of the paper is organised as follows. In Section 2 we summarise the results
of a study on fault diversity of four SQL servers [14] which run against the common
assumptions that SQL servers fail-stop and failures can be tolerated simply by roll-
back and retry. In Section 3, we study the architectural implications of moving from
non-diverse replication with several replicas of the same SQL server to using diverse
SQL servers, and discuss the main design problems that this implies. We also demon-
strate the potential for diversity to deliver performance advantages and compensate
for the overhead created by replication, and in Section 4 we present preliminary em-
pirical results suggesting that these improvements can indeed be realised with at least
two existing servers. This appears to be a new dimension of the usefulness of design
diversity, not recognised before. In Section 5 we review some recent results on data
replication. In Section 6 we discuss some general implications of our results. Finally,
in Section 7 some conclusions are presented together with several open questions
worth addressing in the future.

2 A Study of Faults in Four SQL Servers

Whether SQL servers require diversity to achieve fault tolerance depends on how
likely they are to fail in ways that would not be tolerated by non-diverse replication.
There is little published evidence about this. First, we must consider detection: some
failures (e.g. crashes) are easily detected even in a non-diverse setting. A study using
fault injection [15] found that 2% of the bugs of Postgres95 server violated the fail-
stop property (i.e., they were not detected before corrupting the state of the database)
even when using the transaction mechanism of Postgres95. 2% is a high percentage
for applications with high reliability requirements. The other question is about recov-
ery. Jim Gray [16] observed that many software-caused failures were tolerated by
non-diverse replication. They were caused by apparently non-deterministic bugs
(“Heisenbugs”), which only cause failures under circumstances that are difficult to
reproduce. These failures are not replicated when the same input sequence is repeated
after a rollback, or applied to two copies of the same software. However, a recent
study of fault reports about three open-source applications (including MySQL) [17]
found that only a small fraction of faults (5-14%) were triggered by transient condi-
tions (probable Heisenbugs).

We have recently addressed these issues via a study on fault diversity in SQL serv-
ers. We collected 181 reports of known bugs reported for two open-source SQL serv-
ers (PostgreSQL 7.0 and Interbase 6.04) and two commercial SQL servers (Microsoft
SQL 7.0 and Oracle 8.0.5). The results of the study are described in detail in [14].
Here we concentrate on the aspects relevant to our discussion.

4 Made available as an open-source product under this name by Borland Inc. in 2000. The

company reverted to closed development for subsequent releases. The product continues to
be maintained as an open source development under a different name - “Firebird”.

194 Ilir Gashi et al.

2.1 SQL Servers Cannot Be Assumed to ‘Fail-Stop’

Table 1 summarises the results of the study. The bugs are classified according to the
characteristics of the failures they cause, as different failure types require different
recovery mechanisms:
Engine Crash failures: crashes or halts of the core engine.
Incorrect Result failures: not engine crashes, but incorrect outputs: the outputs do not
conform to the server’s specification or to the SQL standard.
Performance failures: the output is correct, but observed to carry an unacceptable
time penalty for the particular input.
Other failures.

Table 1. A summary of the study with reported bugs for 4 SQL servers. The first 6 rows repre-
sent the observations after running the bug scripts. Each shaded column represents the results of
running bug scripts on the server for which the bugs were reported, while the non-shaded col-
umns represent the results of running the scripts on the other three servers. The last 6 rows
represent a classification of the observed failures.

In
te

rb
as

e

Po
st

gr
eS

Q
L

O
ra

cl
e

M
SS

Q
L

Po
st

gr
eS

Q
L

In
te

rb
as

e

O
ra

cl
e

M
SS

Q
L

O
ra

cl
e

In
te

rb
as

e

M
SS

Q
L

Po
st

gr
eS

Q
L

M
SS

Q
L

In
te

rb
as

e

O
ra

cl
e

Po
st

gr
eS

Q
L

Total Scripts 55 55 55 55 57 57 57 57 18 18 18 18 51 51 51 51

Script cannot be run
(Functionality Missing) n/a 23 20 16 n/a 32 27 24 n/a 13 13 12 n/a 36 32 31

Further Work n/a 5 4 6 n/a 2 0 0 n/a 1 1 2 n/a 3 7 2
Total scripts run 55 27 31 33 57 23 30 33 18 4 4 4 51 12 12 18

No failure observed 8 26 31 31 5 23 30 31 4 4 4 3 12 11 12 12
Failure observed 47 1 0 2 52 0 0 2 14 0 0 1 39 1 0 6

Poor Performance 3 0 0 0 0 0 0 0 1 0 0 0 6 0 0 0

Engine Crash 7 0 0 0 11 0 0 0 3 0 0 0 5 0 0 0

Self-
evident 4 0 0 1 14 0 0 1 3 0 0 0 10 0 0 6

Incorrect
Result Non-self-

evident 23 1 0 1 20 0 0 1 7 0 0 1 17 1 0 0

Self-
evident 2 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 T

yp
es

 o
f

fa
ilu

re
s

Other
Non -self-
evident 8 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0

We also classified the failures according to their detectability by a client of the da-
tabase servers:
Self-Evident failures: engine crash failures, cases in which the server signals an inter-
nal failure as an exception (error message) and performance failures.
Non-Self-Evident failures: incorrect result failures, without server exceptions within
an accepted time delay.

[14] shows that the fraction of reported faults causing crash failures varies across
servers from 13% (MS SQL) to 21% (Oracle and PostgreSQL). These are small per-

On Designing Dependable Services with Diverse Off-the-Shelf SQL Servers 195

centages, despite crashes being easy to detect and thus likely to get reported [14].
More than 50% of the faults cause failures with incorrect but seemingly legal results,
i.e. a client application will not normally detect them. In other words, an assumption
that either a server will process a query correctly or the problem will be detected is
flatly wrong. Any replication scheme that tolerates server crashes only does not pro-
vide any guarantee against these failures – the incorrect results may be simply repli-
cated. Although our results do not show how likely non-self-evident failures are - the
percentages above are based on fault counts - the evidence in [14] seems overwhelm-
ing against assuming (until actual failure counts are available) that ‘fail-stop’ failures
are the main concern to be resolved by replication.

2.2 Potential of Design Diversity for Detecting/Diagnosing Failures

Table 2 gives another view on the reported bugs of the 4 SQL servers: what would
happen if 1-out-of-2 fault-tolerant SQL servers were built using these 4 SQL servers.

Table 2. Potential of diverse pairs of servers for tolerating the effects of the reported bugs in
our sample. IB stands for Interbase, PG for PostgreSQL, OR for Oracle and MS for MS SQL.

One out of two
servers failing

Both servers failing

Detectable Pairs of
servers

Number
of bug
scripts
run

Failure
Observed
(in at
least one
server)

Self-
evident

Non-
Self-
evident

Non–
Detectable Self-

evident

Non-
Self-
evident

IB + PG 62 43 17 25 1 0 0
IB + OR 62 29 8 21 0 0 0
IB + MS 69 35 11 21 2 1 0
PG + OR 64 30 13 16 0 0 1
PG + MS 76 46 18 21 1 6 0
OR + MS 71 14 7 7 0 0 0

What we want to find out is how many of the coincident failures are detectable in
the 2-version systems. We define:

Detectable failures: Self-Evident failures or those where servers return different in-
correct results (the comparison algorithm must be written to allow for possible differ-
ences in the representation of correct results). All failures affecting only one out of
two (or up to n-1 out of n) versions are detectable.

Non-Detectable failures: the two (or more) servers return identical incorrect results.

Replication with identical servers would only detect the self-evident failures: crash
failures, failures reported by the server itself and poor performance failures. For all
four servers, less than 50% of faults cause such failures. Instead, with diverse pairs of
servers many of the failures are detectable. All the possible two-version fault-tolerant
configurations detect the failures caused by at least 94% of the faults.

196 Ilir Gashi et al.

3 Architecture of a Fault-Tolerant Diverse SQL Server

3.1 General Scheme

Studying replication protocols is not the focus of this paper. Data replication is a well-
understood subject [10]. A recent study compared various replication protocols in
terms of their performance and the feasibility of their implementation [18]. One of the
oldest replication protocols, ‘Read once write all available (ROWAA)’ [10] comes
out as the best protocol for a very wide range of scenarios. In ROWAA, read opera-
tions are on just one copy of the database (e.g. the one that is physically nearest to the
client) while write operations must be replicated on all nodes. An important perform-
ance optimisation for the updates is executing the update statements only once and
propagating the updates to the other nodes [10]. This may lead to a very significant
improvement; with up to a fivefold reduction in execution time of the update state-
ments [19], [20]. However, these schemes would not tolerate non-self-evident failures
that cause incorrect updates or return incorrect results by select queries. For the for-
mer, incorrect updates would be propagated to the other replicas and for the latter,
incorrect results would be returned to the client. This deficiency can be overcome by
building a fault-tolerant server node (“FT-node”) from two or more diverse SQL
servers, wrapped together with a “middleware” layer to appear to each client as a
single SQL server and to each of the SQL servers as a set of clients, as shown in
Fig. 1.

Fig. 1. Fault-tolerant server node (FT-node) with two or more diverse SQL servers (in this case
two: SQL Server 1 and SQL Server 2). The middleware “hides” the servers from the clients (1
to n) for which the data storage appears as a single SQL server.

Some design considerations about this architecture follow.
The middleware must ensure connectivity with the clients and the multiple servers.

The connectivity between the clients and the middleware can implement a “standard”
API, e.g. JDBC/ODBC, or some proprietary API. The middleware communicates
with the servers using any one of the connectivity solutions available for the chosen
servers (with server independent API, e.g. JDBC/ODBC, or the server proprietary
API).

The rest of Section 3 deals with other design issues in this fault-tolerant design:

– synchronisation between the servers to guarantee data consistency between them;
– support for fault-tolerance for realistic modes of failure via mechanisms for:

– error detection;
– error containment;
– state recovery

– “replica determinism”: dealing with aspects of server behaviour which would cause
inconsistencies between database replicas even with identical sequences of queries;

On Designing Dependable Services with Diverse Off-the-Shelf SQL Servers 197

– translation of the SQL queries coming from the client to be “understood” by di-
verse SQL servers which use different “dialects” of the SQL syntax;

– “data diversity”: the potential for improving fault tolerance through expressing
(sequences of) client queries in alternative, logically equivalent ways;

– performance effects of diversity, which depending on the details of the chosen
fault-tolerance scheme may be negative or positive.

3.2 Fault Tolerance Strategies

This basic architecture can be used for various forms of fault-tolerance, with different
trade-offs between degree of replication, fault tolerance and performance [21].

We can discuss separately various aspects of fault tolerance:
– Failure detection and containment. Self-evident server failures are detected as in a

non-diverse server, via server error messages (i.e. via the existing error detection
mechanisms inside the servers), and time-outs for crash and performance failures.
Diversity gives the additional capability of detecting non-self-evident failures by
comparing the outputs of the different servers. In a FT-node with 3 or more diverse
versions, majority voting can be used to choose a result and thus mask the failure
to the clients, and identify the failed version which may need a recovery action to
correct its state. With a 2-diverse FT-node, if the two servers give different results,
the middleware cannot decide which server is in error: it needs to invoke some
form of manual or automated recovery. The middleware will present the failure to
the client as a delay in response (due to the time needed for recovery), or as a self-
evident failure (crash - a “fail-silent” FT-node; or an error message - a “self-
checking” FT-node). The voting/comparison algorithm will need to allow for
“cosmetic” differences between equivalent correct results, like padding characters
in character strings or different numbers of digits in the representations of floating
point numbers.

– Error recovery. As just described, diversity allows for more refined diagnosis
(identification of the failed server). This improves availability: the middleware can
selectively direct recovery actions at the server diagnosed as having failed, while
letting the other server(s) continue to provide the service. State recovery of the da-
tabase can be obtained in the following ways:
– via standard backward error recovery, which will be effective if the failures are

due to Heisenbugs. To command backward error recovery, the middleware may
use the standard database transaction mechanisms: aborting the failed transac-
tion and replaying its queries may produce a correct execution. Alternatively or
additionally, checkpointing [22] can be used. At regular intervals, the states of
the servers are saved (by database “backup” commands: e.g., in PostgreSQL the
pg_dump command). After a failure, the database is restored to the state before
the last checkpoint and the sequence of (all or just update) queries since then is
replayed to it;

– additionally, diversity offers ways of recovering from Bohrbug-caused failures,
by essentially copying the database state of a correct server into the failed one
(similarly to [23]). Since the formats of the database files differ between the
servers, the middleware would need to query the correct server[s] for their data-
base contents and command the failed server to write them into the correspond-
ing records in its database, similar to what is proposed in [11]. This would be

198 Ilir Gashi et al.

expensive, perhaps to be completed off-line, but a designer can use multi-level
recovery, in which the first step is to correct only those records that have been
found erroneous on read queries.

To increase the level of data replication a possibility is to integrate our FT-node
scheme with standard forms of replication, like ROWAA, possibly with the optimisa-
tion of writes [10]. One could integrate these strategies into our proposed middleware,
or for simplicity choose a layered implementation (possibly at a cost in terms of per-
formance) in which our fault-tolerant nodes are used as server nodes in a standard
ROWAA protocol. However, a layered architecture using, say, 2-diverse FT-nodes
may require more servers for tolerating a given number of server failures.

3.3 Data Consistency Between Diverse SQL Servers

Data consistency in database replication is usually defined in terms of 1-copy serialis-
ability between the transaction histories executed on the various nodes [10]. In practi-
cal implementations this is affected by:

– the order of delivery of queries to the replicas
– the order in which the servers execute the queries, which in turn is affected by:

– the execution plans created for the queries
– the execution of the plans by the execution engines of the servers, which are

normally non-deterministic and may differ between the servers, in particular
with the concurrency control mechanism implemented.

Normally, consistency relies on “totally ordered” [24] delivery of the queries by re-
liable multicast protocols. For the optimised schemes of data replication, e.g.
ROWAA, only the updates are delivered in total order to all the nodes. Diverse data
replication would also rely on the total ordering of messages.

In terms of execution of the queries the difference between non-diverse and diverse
replication is in the execution plans, which will be the same for replicas of the same
SQL server, but may differ significantly between diverse SQL servers. This may
result in significantly different times to process the queries. If many queries are exe-
cuted concurrently, identical execution plans across replicas do not guarantee the
same order of execution, due to for example multithreading. The allocation of CPU
time to threads is inherently non-deterministic. In other words, non-determinism must
be dealt with in both non-diverse and diverse replication schemes. The phenomenon
of inconsistent behaviour between replicas that receive equivalent (from some view-
point) sequences of requests is not limited to database servers [25] and there are well
known architectural solutions for dealing with it [26]. Empirically [27], we repeatedly
observed data inconsistency even with replication of the same SQL server.

To achieve data consistency, i.e. a 1-copy serialisable history [10] across replicas,
the concurrent execution of modifying transactions needs to be restricted. Two ex-
treme possible scenarios can be exploited to deal with non-determinism in SQL serv-
ers, and apply to both non-diverse and diverse SQL servers:

– non-determinism does not affect the combined result of executing concurrent
transactions: for instance, the transactions do not “clash”. No concurrent transac-
tions attempt modifications of the same data. If this is the case, all possible sub-
histories, which may result from various orders of executing the transactions con-
currently, are identical and thus 1-copy serialisability across all the replicas (no

On Designing Dependable Services with Diverse Off-the-Shelf SQL Servers 199

matter whether diverse or non-diverse) will be guaranteed despite the possibly dif-
ferent orders of execution of the transactions by the different servers;

– non-determinism is eliminated with respect to the modifying transactions by exe-
cuting them one at a time. Again, 1-copy serialisability is achieved [27]. This re-
gime of serialisability may be limited to within each individual database, thus al-
lowing concurrency between modifying transactions executed on different
databases.

Combinations of these two are possible: concurrent transactions are allowed to
execute concurrently, but if a “clash” is detected, all transactions involved in the clash
are rolled back and then serialised according to some total order [24].

3.4 Differences in Features and SQL “Dialects” Between SQL Servers

3.4.1 Missing and Proprietary Features
With two SQL standards (SQL-92 and SQL-99 (SQL 3)) and several different levels
of compliance to these, it is not surprising that SQL servers implement many different
variants of SQL. Most of the servers with significant user bases guarantee SQL-92
Entry Level of compliance or higher. SQL-92 Entry Level covers the basic types of
queries and allows in many cases the developers to write code which requires no
modification when ported to a different SQL server. However some very widely used
queries are not part of the Entry Level, e.g. the various built-in JOIN operators [28].
Triggers and stored procedures [29] are another example of very useful functionality,
used in many business databases, which are not part of SQL-92 (surprisingly they are
not yet supported in MySQL, one of the most widely used SQL servers).

In addition vendors may introduce proprietary extensions in their products. For ex-
ample Microsoft intends to incorporate .NET in “Yukon”, their new SQL server [30].

3.4.2 Differences in Dialects for Common Features
In addition to the missing and proprietary features, there are differences even in the
dialect of the SQL that is common among servers. For instance the example below
shows differences in the syntax for outer joins between the SQL dialects of three
servers which we used in experiments with diverse SQL servers [27] (Oracle uses a
non-standard syntax for outer joins):

ORACLE 8.0.5
select items.number
 from items, orders
 where items.number = orders.item_number (+)
 group by items.number
 having items.number < 20000
 order by items.number desc

MS SQL 7.0 and INTERBASE 6.0
select items.number
 from items
 left outer join orders on items.number =
 orders.item_number
 group by items.number
 having items.number < 20000
 order by items.number desc

200 Ilir Gashi et al.

Although the difference in the syntax is marginal, Oracle 8.0.5 will not parse the
standard syntax. Significant differences exist between the syntax of other SQL con-
structs, e.g. stored procedures and triggers. For instance, Oracle’s support for SQLJ
for stored procedures differs slightly from the standard syntax.

3.4.3 Reconciling the Differences Between Dialects and Features of SQL Servers
Standardisation is unlikely to resolve the existing differences between the SQL dia-
lects in the foreseeable future, although there have been attempts to improve interop-
erability by standardising “persistent modules” [29] (also called “stored procedures”
in most major SQL servers or “functions” in PostgreSQL). However, some vendors
still undermine standardisation by adding proprietary extensions in their products.

To use replication with diverse SQL servers, the differences between the servers
must be reconciled. Two possibilities are:

– requiring the client applications to use the SQL sub-set which is common to all the
SQL servers in the FT-node, and reconciling the differences between the dialects
by implementing “translators” that translate the syntax used by the client applica-
tions to the syntax understood by the respective servers. Such “translators” can be-
come part of the replication middleware (Fig 1). One may:
– require the client applications to use ANSI SQL to work with the middleware,

which will contain translators for all SQL dialects used in the FT-node;
– allow the clients to use the SQL dialect of their choice (e.g. the dialect of a spe-

cific SQL server or ANSI SQL), to allow legacy applications written for a spe-
cific SQL server to be “ported” and run with diverse replication.

– expressing some of the missing SQL features through equivalent transformation of
the client query to query(ies) supported by the SQL servers used in the FT-node
(see 3.6).

In either case, translation between the dialects of the SQL servers is needed.
Translation is certainly feasible. Surprisingly, though, we could not find off-the-shelf
tools to assist with the translation even though “porting” database schema from one
SQL server product to another is a common practice.

3.5 Replica Determinism: The Example of DDL Support

The differences between SQL servers also affect the Data Definition Language
(DDL), i.e., the part of SQL that deals with the metadata (schema) of a database. The
DDL does not require special attention with non-diverse replication: the same DDL
statement is just copied to all replicas. We outline here an aspect of using DDL which
may lead to data inconsistency: auto numeric fields.

SQL servers allow the clients to simplify the generation of unique numeric values
by defining a data type, which is under the direct control of the server. These unique
values are typically used for generating keys (primary and secondary) without too
much overhead on the client side: the client does not need to explicitly provide values
for these fields when inserting a new record. Implementations of this feature differ
between servers (Identity() function in MS SQL, generators in Interbase, etc.), but this
is not a serious problem. The real problem is that the different servers specify differ-
ent behaviours of this feature when a transaction is aborted within which unique num-
bers were generated. In some servers, the values generated in a transaction that was

On Designing Dependable Services with Diverse Off-the-Shelf SQL Servers 201

rolled back are “lost” and will never appear in the fields of committed data. Other
servers keep track of these “unused” values and generate them again in some later
transactions, which will be committed. This difference affects data consistency across
different SQL servers. The inconsistencies thus created must be handled explicitly, by
the middleware [27], or by the client applications by not using auto fields at all.

This is just one case of diversity causing violations of replica determinism [31];
others may exist, depending on the specific combination of diverse servers.

3.6 Data Diversity

Although diversity can dramatically improve error detection rates it does not make
them 100%, e.g. our study found four bugs causing identical non-self-evident failures
in two servers.

To improve the situation, one could use the mechanism called “data diversity” by
Ammann and Knight [32] (who studied it in a different context). The simplest exam-
ple of the idea in [32] would refer to computation of a continuous function of a con-
tinuous parameter. The values of the function computed for two close values of the
parameter are also close to each other. Thus, failures in the form of dramatic jumps of
the function on close values of the parameter can not only be detected but also cor-
rected by computing a “pseudo correct” value. This is done by trying slightly different
values of the parameter until a value of the function is calculated which is close to the
one before the failure. This was found [32] to be an effective way of masking failures,
i.e. delivering fault-tolerance. Data diversity thus can help not only with error detec-
tion but with recovery as well, and thus to tolerate some failures due to design faults
without the cost of design diversity.

Data diversity seems applicable to SQL servers because most queries can be “re-
phrased” into different, but logically equivalent [sequences of] queries. There are
cases where a particular query causes a failure in a server but a re-phrased version of
the same query does not. Examples of such queries often appear in bug reports as
“workarounds”. The example below is a bug script for PostgreSQL v7.0.0, producing
a non-self-evident failure (incorrect result) by returning one row instead of six.

create table employee (name varchar(10) not null, age
integer, salary float, deptname varchar(10), manager
varchar(10), primary key(name));
The following data exists in the table:

Name Age Salary Deptname Manager
Mike 28 1500.00 Shoe Edna
Sally 42 877.50 Toy Ted
Georgia 22 Book
Ted 2615.73 Toy Malcolm
Edna 39 2000.00 Shoe Malcolm
Malcolm 50 2750.00 Admin

CREATE VIEW avg_int AS SELECT AVG(salary) AS avg_sal
FROM employee;
CREATE VIEW average AS SELECT employee.name, em-
ployee.salary, avg_int.avg_sal, (salary-avg_sal) as
sal_diff FROM employee, avg_int;

202 Ilir Gashi et al.

SELECT * FROM average;

name | salary | avg_sal | sal_diff
------+--------+----------+----------
 Mike | 1500 | 1948.646 | -448.646

A workaround exists which is based on using a TEMP (temporary) table instead of
a view (in this case to hold the average salaries). The same table schema definition
and data given above are used together with the code below, and then the result is
correct.

/* This is the temporary table*/
SELECT AVG(salary) AS avg_sal INTO TEMP TABLE avg_int
FROM employee;

/* This view is same as above. */
CREATE VIEW average AS SELECT employee.name, em-
ployee.salary, avg_int.avg_sal, (salary-avg_sal) as
sal_diff FROM employee, avg_int;

SELECT * FROM average;
name | salary | avg_sal | sal_diff
--------+---------+----------+-----------
Mike | 1500 | 1948.646 | -448.646
Sally | 877.5 | 1948.646 | -1071.146
Georgia | | 1948.646 |
Ted | 2615.73 | 1948.646 | 667.084
Edna | 2000 | 1948.646 | 51.354
Malcolm | 2750 | 1948.646 | 801.354
 (6 rows)

Data diversity could be implemented via an algorithm in the middleware that re-
phrases queries according to predefined rules. For instance, one such rule could be to
break-up all complex nested SELECT queries so that the inner part of the query is
saved in a temporary table, and the outer part then uses the temporary table to gener-
ate the final result5.

Data diversity can be used with or without design diversity. In the case of databases
it would be attractive alone as it would for instance allow applications to use the full
set of features of an SQL server, including the proprietary ones. Architectural
schemes using data diversity are similar to those using design diversity. For instance,
Amman and Knight in [32] describe two schemes, which they call “retry block” and
“n-copy programming”, which can also be used for SQL servers. The “retry block” is
based on backward recovery. A query is only re-phrased if either the server “fail-
stops” or its output fails an acceptance test. In “n-copy programming”, a copy of the
query as issued by the client is sent to one of the servers and re-phrased variant[s] are
sent to the others; their results are voted to mask failures. The techniques for error
detection and state recovery would also be similar to the design diversity case (Sec-
tion 3.2). In the “retry block” scheme (backward error recovery), applied to one of

5 Re-phrasing algorithms can also be part of the translators for the different SQL dialects. A

complex statement which can be directly executed with some servers but not others may
need to be re-phrased as a logically equivalent sequence of simpler statements for the latter.

On Designing Dependable Services with Diverse Off-the-Shelf SQL Servers 203

the servers, a failed transaction would be rolled back, and the rephrased queries exe-
cuted from the rolled-back state thus obtained. In the “n-copy programming” scheme,
the state of a server diagnosed to be correct would be copied to the faulty server (for-
ward error recovery). Another possibility is not to use “re-phrasing” unless diverse
replicas produce different outputs with no majority. Then, the middleware could abort
the transaction and replay the queries, after “re-phrasing” them, to all or some of the
servers. Fig. 2 shows, at a high level, an example of architecture using both data di-
versity and design diversity with SQL servers. This example assumes a combination
of “N-version programming” and “n-copy programming”, with a single voter in the
middleware.

Fig. 2. A possible design for a fault-tolerant server using diverse SQL servers and data diver-
sity. The original query (A) is sent to the pair {Interbase 1, PostgreSQL 1}, the re-phrased
query (A‘) is sent to the pair {Interbase 2, PostgreSQL 2}. The middleware compares/votes the
results in one of the ways described in Section 3.2 for solutions without data diversity.

A designer would choose a combination of design diversity and data diversity as a
trade-off between the conflicting requirements of dependability, performance and
cost. At one extreme, combining both design and data diversity and re-phrasing all
those queries for which re-phrasing is possible would give the maximum potential for
failure detection, but with high cost.

3.7 Performance of Diverse-Replicated SQL Servers

Database replication with diverse SQL servers improves dependability, as discussed
in the previous sections. What are its implications for system performance? In Fig. 3
we sketch a timing diagram of the sequence of events associated with a query being
processed by an FT-node which includes two diverse SQL servers.

Processing every query will involve some synchronisation overhead. To “validate”
the results of executing each query, the middleware should wait for responses from
both servers, check if the two responses are identical and, in case they differ, initiate
recovery. We will use the term “pessimistic” for this regime of operation. If the re-
sponse times are close, the overhead due to differences in the performance of the
servers (shown in the diagram as dashed boxes) will be low. If the difference is sig-
nificant, then this overhead may become significant. If one of the servers is the slower
one on all queries, this slower server dictates the pace of processing. The service
offered by the FT node will be as fast as the service from a non-replicated node im-
plemented with the slower server, provided the extra overhead due to the middleware
is negligible compared to the processing time of the slower server. If, however, the

204 Ilir Gashi et al.

slower response may come from either server, the service provided by the FT-node
will be slower than if a non-replicated node with the slower server was used. This
slow-down due to the pessimistic regime is the cost of the extra dependability assur-
ance.

Many see performance (e.g. the server’s response time) as the most important non-
functional requirement of SQL servers. Is diversity always a bad news for those for
whom performance is more important than dependability? Fig. 4 depicts a scenario,
referred to as the “optimistic” regime. For this regime the only function of the mid-
dleware is to translate the client requests, send them to the servers and as soon as the
first response is received, return it back to the client.

Therefore, if the client is prepared to accept a higher risk of incorrect responses di-
versity can, in principle, improve performance compared with non-diverse solutions.

Fig. 3. Timing diagram with two diverse servers and middleware running in pessimistic regime.
The meaning of the arrows is: 1 – the client sends a query to the middleware; 2 – the middle-
ware translates the request to the dialects of the servers and sends the resulting queries, or
sequences of queries, to the respective servers; 3 – the faster response is received by the mid-
dleware; 4 – the slower response is received by the middleware; 5 – the middleware adjudicates
the two responses; 6 – the middleware sends the result back to the client or if none exists initi-
ates recovery or signals a failure.

Fig. 4. Timing diagram with two diverse servers and middleware running in optimistic regime.
The meaning of the arrows is: 1 – the client sends a query to the middleware, 2 – the middle-
ware translates the request to the dialects of the servers and sends the resulting queries, or
sequences of queries, to the respective servers; 3 – the fastest response is received by the mid-
dleware; 4 - the middleware sends the response to the client.

On Designing Dependable Services with Diverse Off-the-Shelf SQL Servers 205

How does the optimistic regime compare in terms of performance (e.g. response
time) with the two diverse servers used? If one of the servers is faster on every query,
diversity with the optimistic regime does not provide any improvement compared
with the faster server. If, however, the faster response comes from different servers
depending on the query, then the optimistic regime will give a faster service than the
faster of the two servers (provided the overhead of the middleware is not too high
compared with the response times of the servers).

The faster response for a query may come from either server (as shown in Fig. 4).
A similar effect is observed when accepting the faster response between those of two
or more identical servers. Similarly, in mirrored disk configurations one can take
advantage of the random difference between the physical disks’ response times to
reduce the average response time on reads [33]. What changes with diverse servers is
that they may systematically differ in their response times for different types of trans-
actions/queries, yielding a greater performance gain. The next section shows experi-
mental evidence of this effect.

4 Increasing Performance via Diversity

4.1 Performance Measures of Diverse SQL Servers

We conducted an empirical study to assess the performance effects of the pessimistic
and optimistic regimes using two open-source SQL servers, PostgreSQL 7.2.4 and
Interbase 6.0 (licenses for commercial SQL servers constrain the users’ rights to pub-
lish performance related results).

For this study, we used a client implementing the TPC-C industry-standard bench-
mark for on-line transaction processing [34]. TPC-C defines 5 types of transactions:
New-Order, Payment, Order-Status, Delivery and Stock-Level and sets the probability
of execution of each. The specified measure of throughput is the number of New-
Order transactions completed per minute (while all five types of transactions are
executing). The benchmark provides for performance comparisons of SQL servers
from different vendors, with different hardware configurations and operating systems.

We used several identical machines with different operating systems: Intel Pentium
4 (1.4 GHz), 640MB RAMBUS RAM, Microsoft Windows 2000 Professional for the
client(s) and the Interbase servers, Linux Red Hat 6.0 for the PostgreSQL servers. The
servers ran on four machines: 2 replicas of Interbase and two replicas of PostgreSQL.
Before the measurement sessions, the databases on all four servers were populated as
specified by the standard.

The client, implemented in Java, used JDBC drivers to connect to the servers. We
ran two experiments with different loads on the servers:

Experiment 1: A single TPC-C client for each server;

Experiment 2: 10 TPC-C clients for each server, each client using one of 10 TPC-C
databases managed by the same server, so that we could measure the servers’ per-
formance under increased load while preserving 1-copy serialisability.

Our objective of the study was not just to repeat the benchmark tests for these
servers, but also to get preliminary indications about the performance of an FT-node
using diverse servers, compared to one using identical servers and to a single server.
Our measurements were more detailed than the ones required by the TPC-C standard.

206 Ilir Gashi et al.

We recorded the response times for each individual transaction, for each server. We
were specifically interested in comparing two architectures:

– two diverse servers concurrently process the same stream of transactions (Fig. 1)
translated into their respective SQL dialects: the smallest possible configuration
with diverse redundancy.

– a reference, non-diverse architecture in which two identical servers concurrently
process the same stream of transactions.

All four servers were run concurrently, receiving the same stream of transactions
from the test harness, which produced four copies of each transaction/query. The
overhead that the test harness introduces (mainly due to using multi-threading for
communication with the different SQL servers) is the same with and without design
diversity.

Instead of translating the queries into the SQL dialects of the two servers on the
fly, the queries were hard-coded in the test harness. The comparison between the two
architectures is based on the transaction response times, neglecting all extra over-
heads that the FT-node’s middleware would introduce. This simplification may
somewhat distort the results, but also allows us to compare the potential of the two
architectures, and to look at possible trade-offs between dependability and perform-
ance, without the effects of the detailed implementation of the middleware.

We compare the performance of the two servers with each other and with the two
regimes, pessimistic (Fig. 3) and optimistic (Fig. 4). The performance measure we
calculated for the pessimistic regime represents the upper bound of the response time
for this particular mix of transactions while performance measure for the optimistic
regime represents the lower bound.

We used the following measures of interest:

– mean transaction response times for all five transaction types (Fig. 5)
– mean response times per transaction of each type (Fig. 6).

With two identical SQL servers (last two server pairs in Fig. 5), the difference be-
tween the mean times is minimal, within 10%. The mean times under the optimistic
and pessimistic regimes of operation remain very close (differences of <10% for In-
terbase and <15% for PostgreSQL). Interbase is the faster server, being almost twice
as fast as PostgreSQL, for this set of transactions.

When we combine two diverse SQL servers we get a very different picture. Now
the optimistic regime can deliver dramatically better performance than the faster
server, Interbase. The mean response time is almost 3 times shorter than for Interbase
alone (compare the first two bars for the first four pairs). When the pessimistic regime
is used, the value of the mean response time is larger than the respective value of the
slower server, PostgreSQL, but the slow down is within 40% of PostgreSQL’s mean
response time - the cost of the improved dependability assurance.

In order to understand why a diverse pair is so different from a non-diverse pair we
looked at the individual transaction types. The mean response times of the five trans-
action types individually are shown in Fig. 6. The figure indicates that the servers
“complement” each other in the sense that when Interbase is slow (on average) to
process one type of transaction PostgreSQL is fast (New-Order and Stock-Level) and
vice versa (Payment, Order-Status and Delivery). This illustrates why a diverse pair
outperforms a non-diverse one so much when the optimistic regime is used, and why
it is worse than the slower server when the pessimistic regime is used (Fig. 5).

On Designing Dependable Services with Diverse Off-the-Shelf SQL Servers 207

Fig. 5. Mean response time for all five transaction types over 10,000 transactions for two repli-
cas of Interbase 6.0 and two of PostgreSQL 7.2.4. The X-axis lists the servers grouped as pairs
(Server 1 and Server 2). Each server may be of type Interbase (IB) or PostgreSQL (PG). For
each of the 6 server pairs the vertical bars show: – the mean response times of the individual
servers and the mean response times calculated for the two regimes of operation of an FT-node
(optimistic and pessimistic).

Fig. 6. Mean response times by two replicas of Interbase 6.0 and PostgreSQL 7.2.4 for all five
transactions. The X-axis lists the transaction types (New-Order, Payment, Order-Status, Deliv-
ery and Stock-Level). The Y-axis gives the values of the mean response time in milliseconds for
each of the servers (IB1, IB2, PG1 and PG2) for a particular transaction type.

208 Ilir Gashi et al.

Fig. 7. Response times for the New-Order and Payment transactions. Every dot in the plots
represents the response times of two servers for an instance of the respective transaction type.
If the times were close to each other most of the dots would be concentrated around the unit
slope (observed for the pairs of identical servers, IB1 vs IB2 and PG1 vs PG2). If the dots are
mostly below the slope, Interbase is slower (as with the New-Order). If the dots are concen-
trated above the unit slope – PostgreSQL is slower (as with the Payment). Similar results were
obtained for the other three diverse server pairs.

In addition to the mean execution times, we have calculated the percentage of the
faster responses coming from either Interbase or PostgreSQL for each transaction. For
three transaction types the situation is clear-cut. Interbase is always the faster server
for Order-Status and Delivery transactions, while PostgreSQL is always the faster for
Stock-Level transactions. For New-Order and Payment transactions instead, the server
that is faster on average does not provide the faster response for each individual trans-
action. Consider the pair {IB1, PG1}. For New-Order transaction, PG1 is faster than
IB1 on 81.2% of the transactions but slower on 15.6% (3.2% of the response times
were equal). The situation is reversed for Payment transactions: 77.2% of the faster
responses come from IB1, 15.3% from PG1. This fluctuation is further revealed in
Fig. 7. Both observations confirm that diverse servers under the optimistic regime
would have performed better (for this transaction mix and load) than a pair of identi-
cal servers.

This pattern of the two SQL servers “complementing” each other was also ob-
served in Experiment 2 under increased load with 10 TPC-C clients. During this ex-
periment the servers were “stretched” so much that the virtual memories of the ma-
chines were exhausted. Similarly to the observations of Experiment 1, when two
identical servers are used the difference between the mean response times is minimal,
within 10%, and the difference between the mean response times of the optimistic and
pessimistic regime remain less than 10% for both servers. Again Interbase is the faster
server.

The mean response times when two diverse servers are considered under the opti-
mistic regime are around four times shorter than for Interbase alone. Under the pessi-
mistic regime, the mean response time is of course larger than the value of the slower
server (on average), PostgreSQL, but the slow down is within 60% of PostgreSQL’s
mean response time (it was 40% in Experiment 1, when a single client was used).

On Designing Dependable Services with Diverse Off-the-Shelf SQL Servers 209

4.2 Design Solutions for the Optimistic Regime

Under the optimistic regime, diversity offers better performance than each of the
diverse SQL servers used. Various design solutions are possible, with different trade-
offs between dependability and performance. We discuss two in more detail, for an
FT-node with two or more servers:

Non fault-tolerant solution: For each query, the middleware forwards the first re-
sponse to the client and discards all later responses. The performance gain depends on
whether, by the time the middleware relays a query to the servers, all servers have
finished processing the previous query6. If the slowest server is still processing the
previous query, there are two options:

– the middleware waits until the slowest server completes (aborting the query is not
an option because it will compromise data consistency); this delay may seriously
limit the performance gain given by the optimistic regime;

– the middleware forwards each query, of a transaction, immediately to those servers
that are done processing the previous one, but buffers it for servers that are not. If
the middleware only behaves like this within transactions, while on commits of
transactions it, inevitably, waits for the slowest server, 1-copy serialisability is pre-
served.

The transport delays and the client’s own processing delays are the two key factors,
which decide how much time will be gained using the optimistic regime. The trans-
port delays are implementation-specific and likely to be significant in multi-tier sys-
tems. Similarly, the client’s own delay is application specific. For interactive applica-
tions, it is very likely to be significant.

Fault-tolerant solution: The middleware optimistically forwards the first response to
the client, and keeps a copy to compare with later responses when they arrive. If they
differ, it initiates recovery. This is easily accomplished within a transaction: the trans-
action is rolled back, and the client is notified just as for any other transaction roll-
back decided by a server. This optimistic fault-tolerant scheme will be almost as fast
as discarding the late responses, except in the presumably rare case of discrepancy
between the servers' responses. The previous considerations about the impact of
transport delays and of the client’s processing delays still apply.

5 Related Work

Replicated databases are common, but most designs are not suitable for diverse re-
dundancy. We have referred in the previous section to some of the standard solutions
[10], [11], [19], [22] and [20].

Recent surveys exist of the mechanisms for eager replication of databases [35], and
for the replication mechanisms (mainly lazy replication) implemented in various SQL

6 This happens if the sum of the transport delay to deliver the fastest response to the client, the

client’s own processing time to produce the next query, and the transport delay to deliver the
next query to the middleware is longer than the extra time needed by the slower server to
complete query processing. In this case, both (or all) servers will be ready to take the next
query and the race between them will start over.

210 Ilir Gashi et al.

servers [36]. The Pronto protocol [37] attempts to reduce the negative effects of lazy
replication using ideas typical for eager replication. One of its selling points is that it
can be used with off-the-shelf SQL servers, but it is unclear whether this includes
diverse servers. A potential problem is the need to broadcast the SQL statement from
the primary to the replicas. The syntax of SQL statements varies between SQL serv-
ers, as discussed in Section 3.

A relevant discussion of the various ways of implementing database replication
with off-the-shelf SQL servers is in [38]. Three forms are discussed, treating the SQL
servers as black, white or grey boxes. All commercial vendors of SQL servers use the
white-box approach, where a suite necessary for replication is added to the code of the
non-replicated server. The black-box and the grey-box approaches are implemented in
the form of middleware on top of the existing SQL servers. The black-box approach,
like the design solutions discussed here, uses the standard interfaces of the servers and
its main advantage is applicability to a wide range of servers. The grey-box approach,
implemented in [39] and [40], assumes that the servers provide services specifically to
assist replication.

Comparisons of various replication protocols from the point of view of their per-
formance and feasibility are presented in [18], [19].

The problem of on-line recovery is scrutinised in [41] and [24] and cost-effective
solutions are proposed.

6 Discussion

The fault diversity figures (presented in Section 2) point to a serious potential gain in
reliability from using a fault tolerant SQL server built from two or more off-the-shelf
servers. There are limitations to what can be speculated from the bug reports alone,
because these do not address the frequency of the failures caused. The actual failure
reports would be more informative, especially if the vendors used automatic failure
reporting mechanisms. An even better analysis could be obtained if these mechanisms
gave indications about the users’ usage profile as proposed in [42]. However such
detailed dependability information is difficult to obtain from the vendors. Based on
the evidence of fault diversity presented in Section 2, using a diverse fault-tolerant
server would already appear a reasonable and relatively cheap precautionary decision
(even without good predictions of its effects) for a user that had: serious concerns
about dependability (e.g., interruptions of service or undetected incorrect data being
stored are very costly); client applications using mostly the core features common to
multiple off-the-shelf products (for instance a user who required portability of appli-
cations); modest throughput requirements for database updates which make it easy to
accept the synchronisation delays of a fault-tolerant server.

We have provided a more detailed discussion of the fault diversity results in [14].
Data diversity has been proposed as a possibility to detect failures that would oth-

erwise be un-detectable in some diverse server replication settings. We have provided
examples of this in Section 3.6. The possible benefits of this approach could be its
relatively lower cost (especially if OTS re-phrasing software becomes available) in
comparison with design diversity, and also that it can be used with or without design
diversity allowing for various cost-dependability trade-offs.

On Designing Dependable Services with Diverse Off-the-Shelf SQL Servers 211

In Section 4 we presented the results from our experiments on the performance of
two open-source SQL servers. We estimated the likely performance effect of diversity
under optimistic and pessimistic regime of operation.

The Quality of service provided by a database server can be defined to include both
performance and dependability. Clients with conflicting needs may benefit from de-
sign diversity according to their own priorities because an FT-node can apply differ-
ent regimes for different databases or different clients. When performance is top pri-
ority the optimistic regime can be used, possibly even in the non-fault-tolerant
variation, which discards the slower responses. In many practical cases this is likely to
produce significant improvement. At the other end of the spectrum, when dependabil-
ity is top priority, the pessimistic regime with a fully featured middleware for fault-
tolerance will provide significantly improved dependability assurance. Several inter-
mediate solutions are possible with different trade-offs between performance and
dependability. The optimistic regime can be used together with functionality for fault-
tolerance using the responses from all servers as discussed in Section 4.2.

7 Conclusions

Most users of SQL servers see performance as the most critical requirement. Depend-
ability, although important, is often assumed not to be a problem, and users who seek
to improve it are apparently satisfied with redundant solutions meant to tolerate crash
failures only.

We have argued that non-diverse replication is a limited solution, since many
server failures are non-self-evident and cannot be tolerated by non-diverse replication.
We have shown evidence of this problem from our “fault diversity” measurements.
To provide extended protection against non-self-evident failures, we have argued in
favour of using diverse SQL servers and outlined a range of possible architectural
solutions.

We have presented some encouraging empirical results which suggest that diver-
sity can improve the performance of a fault-tolerant server. To the best of our knowl-
edge, similar results have not been reported before. This possibility is due to the fact
that different SQL server may “complement” each other, as we have established em-
pirically for Interbase and PostgreSQL: one of the server is systematically faster in
processing some types of transactions while the other server is faster processing other
types of transactions. This is similar to the intuitive idea of forming teams of indi-
viduals who have different skills, which is an accepted view in various areas. Diver-
sity can improve both aspects of the service provided by the SQL servers, dependabil-
ity and performance.

We have outlined some design problems in implementing middleware for diverse
SQL servers. However, the technical benefits of having such a solution for data repli-
cation could be significant. There remain open questions worth studying in the future:

– the work on fault diversity can be extended by finding out whether the same pro-
portion of crash/non-crash failures will be observed with later versions of the serv-
ers, or even including other servers e.g. DB2, MySQL, etc.

– evidence of actual failure diversity (or lack thereof) in actual use is also to be
sought. We are currently running experiments to assess statistically the actual reli-
ability gains. We have so far run a few million queries on a configuration with

212 Ilir Gashi et al.

three off-the-shelf SQL servers (Interbase, Oracle and MSSQL), with various loads
without failures. We plan to continue these experiments for more complete test
loads

– demonstrating the feasibility of automatic translation of SQL queries from, say
ANSI/ISO SQL syntax to the SQL dialect implemented by the deployed SQL serv-
ers.

– empirical evaluation of whether the “optimistic” regime, discussed in Section 4, is
practicable for a range of widely used clients;

– implementing configurable middleware, deployable on diverse SQL servers, to
allow the clients to request quality of service in line with their specific require-
ments for performance and dependability, is a possibility for future work

Acknowledgement

This work was supported in part by the Engineering and Physical Sciences Research
Council (EPSRC) of the United Kingdom through the Interdisciplinary Research
Collaboration in Dependability (DIRC) and the DOTS (Diversity with Off-The-Shelf
Components) projects. We wish to thank Peter Bishop for comments on an earlier
version of this paper.

References

1. Babbage, C., On the Mathematical Powers of the Calculating Engine (Unpublished manu-
script, December 1837), in The Origins of Digital Computers: Selected Papers, B. Randell,
Editor, 1974, Springer, pp. 17-52.

2. Traverse, P.J., AIRBUS and ATR System Architecture and Specification, in Software diver-
sity in computerized control systems, U. Voges, Editor, 1988, Springer-Verlag, pp. 95-104.

3. Randell, B. System Structure for Software Fault-Tolerance, in International Conference on
Reliable Software, Los Angeles, California, April 1975, (in ACM SIGPLAN Notices, Vol.
10, No. 6, June 1975), 1975, pp. 437-449.

4. Lyu, M.R., ed. Software Fault Tolerance. Trends in Software Series. 1995, Wiley
5. Avizienis, A. and J.P.J. Kelly, Fault Tolerance by Design Diversity: Concepts and Experi-

ments, IEEE Computer, 1984, 17(8): pp. 67-80.
6. Laprie, J.C., et al., Definition and Analysis of Hardware-and-Software Fault-Tolerant Ar-

chitectures, IEEE Computer, 1990, 23(7): pp. 39-51.
7. Voges, U., ed. Software diversity in computerized control systems. Dependable Computing

and Fault-Tolerance series, ed. A. Avizienis, H. Kopetz, and J.C. Laprie. Vol. 2. 1988,
Springer-Verlag: Wien.

8. Avizienis, A., et al. The UCLA DEDIX System: A Distributed Testbed for Multiple-Version
Software, in Proc. of 15th IEEE International Symposium on Fault-Tolerant Computing
(FTCS-15), 1985, Ann Arbor, Michigan, USA, IEEE Computer Society Press, pp. 126-134.

9. Pullum, L., Software Fault Tolerance Techniques and Implementation, 2001, Artech
House.

10. Bernstein, P.A., V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in
Database Systems, 1987, Reading, Mass.: Addison-Wesley.

11. Sutter, H., SQL/Replication Scope and Requirements document, in ISO/IEC JTC 1/SC 32
Data Management and Interchange WG3 Database Languages, 2000, pp. 7.

On Designing Dependable Services with Diverse Off-the-Shelf SQL Servers 213

12. Kalyanakrishnam, M., Z. Kalbarczyk, and R. Iyer. Failure Data Analysis of LAN of Win-
dows NT Based Computers, in Proc. of 18th Symposium on Reliable and Distributed Sys-
tems (SRDS ’99), 1999, Lausanne, Switzerland, pp. 178-187.

13. Schneider, F., Byzantine generals in action: Implementing fail-stop processors, ACM
Transactions on Computing Systems, 1984, 2(2): pp. 145-154.

14. Gashi, I., P. Popov, and L. Strigini. Fault diversity among off-the-shelf SQL database serv-
ers, in Proc. of Inter. Conf. on Dependable Systems and Networks (DSN’04), 2004, Flor-
ence, Italy, IEEE Computer Society Press: to appear.

15. Chandra, S. and P.M. Chen. How fail-stop are programs, in Proc. of 28th IEEE Interna-
tional Symposium on Fault-Tolerant Computing (FTCS-28), 1998, IEEE Computer Society
Press, pp. 240-249.

16. Gray, J. Why do computers stop and what can be done about it?, in Proc. of 5th Symp. on
Reliability in Distributed Software and Database Systems (SRDSDS-5), 1986, Los Angeles,
CA, USA, IEEE Computer Society Press, pp. 3-12.

17. Chandra, S. and P.M. Chen. Whither Generic Recovery from Application Faults? A Fault
Study using Open-Source Software, in Proc. of Inter. Conf. on Dependable Systems and
Networks (DSN 2000), 2000, NY, USA, IEEE Computer Society Press, pp. 97-106.

18. Jimenez-Peris, R., et al., Are Quorums an Alternative for Data Replication?, ACM Trans-
actions on Database Systems, 2003, 28(3): pp. 257-294.

19. Jimenez-Peris, R., et al. How to Select a Replication Protocol According to Scalability,
Availability and Communication Overhead, in Proc. of Int. Symp. on Reliable Distributed
Systems (SRDS), 2001, New Orleans, Louisiana, IEEE Computer Society Press, pp. 24 -33.

20. Kemme, B. and G. Alonso. Don’t be lazy, be consistent: Postgres-R, A new way to imple-
ment Database Replication, in Proc. of Int. Conf. on Very Large Databases (VLDB), 2000,
Cairo, Egypt.

21. Anderson, T. and P.A. Lee, Fault Tolerance: Principles and Practice (Dependable Com-
puting and Fault Tolerant Systems, Vol 3), 2nd Revised ed, 1990, Springer- Verlag.

22. Gray, J. and A. Reuter, Transaction processing : concepts and techniques, 1993, Morgan
Kaufmann.

23. Tso, K.S. and A. and Avizienis. Community Error Recovery in N-Version Software: A De-
sign Study with Experimentation, in Proc. of 17th IEEE International Symposium on Fault-
Tolerant Computing (FTCS-17), Pittsburgh, Pennsylvania, July 6-8 1987, 1987, pp. 127-
133.

24. Jimenez-Peris, R., Patino-Martinez, and G. Alonso. An Algorithm for Non-Intrusive, Paral-
lel Recovery of Replicated Data and its Correctness, in Proc. of 21st IEEE Int. Symp. on
Reliable Distributed Systems (SRDS 2002), 2002, Osaka, Japan, pp. 150-159.

25. Poledna, S., Replica Determinism in Distributed Real-Time Systems: A Brief Survey, Real-
Time Systems Journal, 1994, 6: pp. 289-316.

26. Powell, D., Delta-4: A Generic Architecture for Dependable Distributed Computing,
Springer-Verlag Research Reports ESPRIT, 1992, Springer-Verlag.

27. Popov, P., et al. Software Fault-Tolerance with Off-the-Shelf SQL Servers, in Proc. of 3rd
International Conference on COTS-based Software Systems, ICCBSS’04, 2004, Redondo
Beach, CA USA, Springer: to appear.

28. Gruber, M., Mastering SQL, 2000, SYBEX.
29. Melton, J., (ISO-ANSI Working Draft) Persistent Stored Modules (SQL/PSM), 2002,

http://www.jtc1sc32.org/sc32/jtc1sc32.nsf/Attachments/9611E99B3901802188256D95005
B0184/$FILE/32N1008-WD9075-04-PSM-2003-09.PDF

30. Microsoft, SQL Server "Yukon", 2003,
http://www.microsoft.com/sql/yukon/productinfo/default.asp

31. Poledna, S., Fault-Tolerant Real-Time Systems: The Problem of Replica Determinism,
1996, Kluwer Academic Publishers.

32. Ammann, P.E. and J.C. Knight. Data Diversity: an Approach to Software Fault-Tolerance,
in Proc. of 17th IEEE International Symposium on Fault-Tolerant Computing (FTCS-17),
1987, Pittsburgh, Pennsylvania, USA, IEEE Computer Society Press, pp. 122-126.

214 Ilir Gashi et al.

33. Chen, P.M., et al., Raid: High-Performance, Reliable Secondary Storage, ACM Comput-
ing Surveys, 1994, 26(2): pp. 145-185.

34. TPC, TPC Benchmark C, Standard Specification, Version 5.0., 2002,
http://www.tpc.org/tpcc/

35. Weismann, M., F. Pedone, and A. Schiper. Database Replication Techniques: a Three Pa-
rameter Classification, in Proc. of 19th IEEE Symposium on Reliable Distributed Systems
(SRDS’00), 2000, Nurnberg, Germany, IEEE Computer Society Press, pp. 206-217.

36. Vaysburd, A. Fault Tolerance in Three-Tier Applications: Focusing on the Database Tier,
in Proc. of 18th IEEE Symposium on Reliable Distributed Systems (SRDS’99), 1999,
Lausanne, Switzerland, IEEE Computer Society Press, pp. 322-327.

37. Pedone, F. and S. Frolund. Pronto: A Fast Failover Protocol for Off-the-shelf Commercial
Databases, in Proc. of 19th IEEE Symposium on Reliable Distributed Systems (SRDS’00),
2000, Nurnberg, Germany, IEEE Computer Society Press, pp. 176-185.

38. Jimenez-Peris, R. and M. Patino-Martinez, D5: Transaction Support, 2003, ADAPT Mid-
dleware Technologies for Adaptive and Composable Distributed Components, pp. 20.

39. Patino-Martinez, M., R. Jimenez-Peris, and G. Alonso. Scalable Replication in Database
Clusters, in Proc. of International Conference on Distributed Computing, DISC’00, 2000,
Springer, pp. 315-329.

40. Jimenez-Peris, R., et al. Scalable Database Replication Middleware, in Proc. of 22nd IEEE
Int Conf on Distributed Computing Systems, 2002, Vienna, Austria, pp. 477-484.

41. Kemme, B., A. Bartoli, and O. Babaoglu. Online Reconfiguration in Replicated Databases
Based on Group Communication, in Proc. of Int. Conf. on Dependable Systems and Net-
works (DSN 2001), 2001, Goteborg, Sweden, IEEE Computer Society Press, pp. 117-126.

42. Voas, J., Deriving Accurate Operational Profiles for Mass-Marketed Software, 2000,
http://www.cigitallabs.com/resources/papers/

	1 Introduction
	2 A Study of Faults in Four SQL Servers
	2.1 SQL Servers Cannot Be Assumed to ‘Fail-Stop’
	2.2 Potential of Design Diversity for Detecting/Diagnosing Failures

	3 Architecture of a Fault-Tolerant Diverse SQL Server
	3.1 General Scheme
	3.2 Fault Tolerance Strategies
	3.3 Data Consistency Between Diverse SQL Servers
	3.4 Differences in Features and SQL “Dialects” Between SQL Servers
	3.5 Replica Determinism: The Example of DDL Support
	3.6 Data Diversity
	3.7 Performance of Diverse-Replicated SQL Servers

	4 Increasing Performance via Diversity
	4.1 Performance Measures of Diverse SQL Servers
	4.2 Design Solutions for the Optimistic Regime

	5 Related Work
	6 Discussion
	7 Conclusions
	References

