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Abstract. This paper presents an alternative to distance-based neural
networks. A distance measure is the underlying property on which many
neural models rely, for example self-organizing maps or neural gas. How-
ever, a distance measure implies some requirements on the data which
are not always easy to satisfy in practice. This paper shows that a weaker
measure, the similarity measure, is sufficient in many cases. As an ex-
ample, similarity-based networks for strings are presented. Although a
metric can also be defined on strings, similarity is the established mea-
sure in string-intensive research, like computational molecular biology.
Similarity-based neural networks process data based on the same crite-
ria as other tools for analyzing DNA or amino-acid sequences.

1 Introduction

In respect to underlying mathematical properties, most artificial neural networks
used today can be classified as scalar product-based or distance-based. Of these,
multi-layer perceptrons and LVQ [1] are typical representatives.

In distance-based models, each neuron is assigned a pattern to which it is
sensitive. Appearance of the same or a similar pattern on the input results in
a high activation of that neuron — similarity being here understood as the
opposite of distance.

For numerical data, distance-based neural networks can easily be defined,
for there is a wide choice of distance measures, the Euclidean distance being
certainly the best known. In some applications, however, the data cannot be
represented as numbers or vectors. Although it may sometimes still be possible
to define a distance on them, such a measure is not always natural, in the sense
that it well represents relationships between data.

One such example are symbol strings, like DNA or amino-acid sequences
which are often subject to research in computational molecular biology. There, a
different measure – similarity – is usually used. It takes into account mutability of
symbols, which is determined through complex observations on many biologically
close sequences. To process such sequences with neural networks, it is preferable
to use a measure which is well empirically founded.
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This paper discusses the possibility of defining neural networks to rely on
similarity instead of distance and shows examples of such networks for symbol
strings. Some results of processing artificial and natural data are presented below.

2 Distance and Similarity

Distance is usually, but not necessarily, defined on a vector space. For x,y,z ∈
X , any function d : X 2 → R fulfilling the following properties is a distance
measure on X :

1. d(x,y) ≥ 0
2. d(x,y) = 0 ⇔ x = y
3. d(x,y) = d(y,x)
4. d(x,y) + d(y,z) ≥ d(x,z)

For strings, one such measure is the Levenshtein distance [2], also known as
edit distance, which is the minimum number of basic edit operations - insertions,
deletions and replacements of a symbol - needed to transform one string into
another. Edit operations can be given different costs, depending on the operation
and the symbols involved. Such weighted Levenshtein distance can, depending
on the chosen weighting, cease to be distance in the above sense of the word.

Another measure for quantifying how much two strings differ is “feature
distance” [3]. Each string is assigned a collection of its substrings of a fixed
length. The substrings – the features – are typically two or three symbols long.
The feature distance is then the number of features in which two strings differ. It
should be noted that this measure is not really a distance, for different strings can
have a zero distance: consider, for example, strings AABA and ABAA. Nevertheless,
feature distance has a practical advantage over the Levenshtein by being much
easier to compute.

A similarity measure is simpler than distance. Any function s : X 2 → R can
be declared similarity – the question is only if it reflects the natural relationship
between data. In practice, such functions are often symmetrical and assign a
higher value to two identical elements than to distinct ones, but this is not
required.

For strings, similarity is closely related to alignment.

A (global) alignment of two strings S1 and S2 is obtained by first insert-
ing chosen spaces (or dashes), either into or at the ends of S1 and S2,
and then placing the two resulting strings one above the other so that
every character or space in either string is opposite a unique character
or a unique space in the other string. [4]

The spaces (or dashes) are special symbols (not from the alphabet over which
the strings are defined) used to mark positions in a string where the symbol from
the other string is not aligned with any symbol. For example, for strings AABCE
and ABCD,
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AABC-E
-ABCD-

is an alignment, not necessarily optimal. Each alignment can be assigned a score
according to certain rules. In most simple cases, a similarity score is assigned
to each pair of symbols in the alphabet, as well as for pairs of a symbol and a
space. The score for two aligned strings is computed as the sum of similarity
scores of their aligned symbols. Such similarity measure is called “additive”.
There are also more complex schemes, for example charging contiguous spaces
less then isolated. The similarity of the strings is defined as the score of their
highest-scoring alignment.

In computational molecular biology, similarity is most often computed for
DNA or amino-acid sequences (sequence and string are used as synonyms here),
where similarity between symbols is established empirically to reflect observed
mutability/stability of symbols. Because each pair of symbols can have a different
similarity and no obvious regularity exists, similarities are stored in look-up
tables, which have the form of a quadratic matrix. Among scoring matrices, the
PAM (point accepted mutations) [5] and BLOSUM (block substitution matrix)
[6] families are the most often used.

It is intuitively clear that distance and similarity are somehow related, but
quantifying the relationship is not always straightforward. For additive measures,
if the similarity of each symbol with itself is the same, it can be established by
a simple equation [7]:

〈s1|s2〉 + d(s1, s2) =
M

2
· (|s1| + |s2|). (1)

The notation 〈s1|s2〉 is used to symbolize the optimal alignment score of strings
s1 and s2, |s| the string length, and M is an arbitrary constant. The distance
d(s1, s2) is defined as the minimal cost for transforming one string into the other.
The cost is the sum of the symbol replacement costs c(αi, βi), αi and βi being
the symbols comprising s1 and s2, and the insertion/deletion costs, each of the
operations costing some h > 0 per symbol. These values are related to the values
comprising the string similarity:

p(α, β) = M − c(α, β) and

g =
M

2
− h. (2)

where p(α, β) is the similarity score for the symbols α and β and g is the value
of space in the alignment (usually a negative one). For the condition (2) on
the distance to be satisfied, c(α, α) must be always zero, that is, p(α, α) must
be constant for all α. Unfortunately, the above mentioned PAM and BLOSUM
scoring matrices do not satisfy this condition.

Especially for searching large databases of protein and DNA sequences, so-
phisticated, fast heuristics like FASTA [8] and BLAST [9] have been developed.
They have been fine-tuned not only for speed, but also for finding biologically
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meaningful results. For example, from an evolutionary point of view, a compact
gap of 10 symbols in an aligned string is not twice as probable as a gap of 20 sym-
bols at the same position. Thus, non-additive scoring schemes are applied. This
is another reason why the above described method for computing the distance
from similarity is not applicable.

A simple method for computing “distance” from similarity score for proteins
was applied in [10]. For computing the score normalized scoring matrices with
values scaled to [0, 1] were used, and for spaces a fixed value of 0.1 were applied.
The scores for all pairs of proteins from the data set were computed and ordered
into a new matrix S. The element S[i][j] was the similarity score for the i-th
and j-th protein from the data set. This matrix was subsequently also scaled to
[0, 1]. The distance between i-th and j-th protein was then computed as

D[i][j] = 1 − S[i][j]. (3)

This approach has several disadvantages: First, the computational and storage
overheads are obvious. In most applications pair-wise similarity scores of all data
are not needed. Also, this method is not applicable for on-line algorithms, with
data sets of unknown and maybe even infinite sizes. But more than that, it is
not clear, if the above function is a distance at all. It is easy to see that simple
scaling of the S matrix can lead to a situation where the requirement (2) for
distance is violated. Such a case appears when the diagonal elements – standing
for self-similarities of strings – are not all equal. A workaround, like attempt to
scale the matrix row- or column-wise, so that the diagonal elements are all ones,
would cause a violation of the symmetry relationship (3). Element S[i][j] would
generally be scaled differently than S[j][i] so the two would not be equal any
more. And finally, the triangle inequality – requirement (4) – is not guaranteed
to be satisfied.

3 Distance-Based Neural Networks

As presented in the introduction, distance-based neural networks rely on distance
for choosing the nearest neuron. However, in the training phase the distance is
also involved, at least implicitly. All distance based neural networks known to
the author try to place or adapt neurons in such a way that they serve as good
prototypes of the input data for which they are sensitive. If the Euclidean dis-
tance is used, the natural prototype is the arithmetic mean. It can be expressed
in terms of distance as the element having the smallest sum of squared distances
over the data set. This property is helpful if operations like addition and division
are not defined for the data, but a distance measure is provided.

Another kind of prototype is the median. For scalar data, the median is the
middle element of the ordered set members. Like mean, it can be expressed
through distance. It is easy to see that the median has the smallest sum of
distances over the data set. Thus the concept of median can be generalized on
arbitrary data for which a distance measure is defined.



212 I. Fischer

Based on distance measures for strings and relying on the above mentioned
properties of mean and median, neural networks for strings have been defined.
Self organizing map and learning vector quantization – have been defined both
in the batch [11] and on-line [12] form. As is often the case, the on-line version
has been shown to be significantly faster than the batch form.

Finding the mean or the median of a set of strings is not quite easy. The
first algorithms [13] performed an extensive search through many artificially
generated strings in order to find the one with the smallest sum of (squared)
distances. A later and much faster algorithm [12] used a by-product of comput-
ing the distance – the edit transcript – for finding the prototype string. The edit
transcript is a list of operations needed to transform one string into another. It
is not actually needed for computing the distance, but it can be directly deduced
by backtracing through the so-called dynamic programming table, which is an
intermediate result when computing Levenshtein or related distance. Starting
from an approximation of the prototype, the edit operations needed for trans-
forming it into every of the set strings were computed. Then, at each position,
the edit operation appearing most frequently in all transcripts was applied, as
long as it minimized the sum of (squared) distances. This is only a best effort
approach and it can get stuck in a local optimum. Moreover, since strings are
discrete structures, the mean or the median are not always unambiguous. For
example, for the set of two strings, { A, B }, both A and B are equally good mean
and median.

4 Similarity-Based Neural Networks

As mentioned in section 2, for some applications similarity is a more natural
measure than distance. Taking the above discussed inconveniences that can ap-
pear when using distance, one could attempt to circumvent it altogether. If one
were able to define a prototype based on similarity, a neural network could be
described by an algorithm almost identical to the distance-based networks: one
only needs to search for the neuron with the highest similarity instead of the one
with the minimum distance. Of course, if the distance is defined in a way that
properly reflects the reality, similarity can be defined as the negative distance
and the two paradigms converge.

Computing the prototype based on similarity can indeed be performed, at
least for strings. Recall that the similarity between two strings is computed from
their optimal alignment by summing the similarity scores of aligned symbols.
Three or more strings can also be aligned, in which case one speaks of a multiple
alignment. Having computed the multiple alignment (let the question how to
compute it efficiently be put aside for the moment), the prototype string s̄ can
be defined as the string maximizing the sum of similarities with all strings from
the set:

s̄ :
∑

i

〈s̄|si〉 ≥
∑

i

〈sk|si〉 ∀sk �= s̄. (4)



Similarity-Based Neural Networks 213

Not quite identical, but in practice also often used prototype is the “consensus
string”, defined as the string having at each position the most common symbol
appearing at that position in all aligned strings.

5 Implementation Considerations

Many of the ideas presented here rely on approximate string matching algo-
rithms. Efficient implementation of a neural network based on string similarity
should take care of the following issues: computing the similarity, finding the
most similar string in the given set and computing multiple alignment.

5.1 Computing the Similarity

Similarity is computed from aligned strings, and alignment can be found using
dynamic programming. The simplest algorithms have quadratic time and space
complexity. Both can be reduced under certain circumstances, but also increased
if more complex scoring schemes are used (for literature cf. [4,7,14]).

An adaptation of the original algorithm, which includes a divide-and-conquer
strategy [15], computes the alignment in linear space for the price of roughly
doubling the computation time. If the alignment itself is not needed, but only
the similarity score, the computation time can remain the same.

5.2 Finding the Most Similar String

Such a case appears in the search for the neuron most similar to the input
string. A simple approach would be to go through all neurons and compute their
similarity to the string, retaining the most similar. Alignments between neurons
and the string are never needed. This algorithm can further be refined: not only
alignment, but even exact similarity need not be computed for all neurons.

The idea is roughly the following: suppose one expects the most similar neu-
ron to have the similarity score above a certain threshold. This expectation
can be based on experience from previous iterations or on knowledge about the
strings. Then one can go through neurons, start computing the similarity for
each and break off the computation as soon as it becomes obvious that the score
would be below the threshold. If the threshold was correct, the algorithm finds
the most similar neuron by computing the similarity only on a fraction of them.
Else, the threshold is reduced and the whole process repeated.

The above idea is implemented by computing only the similarity matrix
elements in a limited band around its diagonal, thus reducing the complexity
to O(kn) [16], k being the band width and n the string length. The observed
speed-up is about an order of magnitude.
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5.3 Computing Multiple Alignments

Multiple alignment is considered the “holy grail” in computational molecular
biology [4]. Exact computation can be performed by dynamic programming,
but with time complexity exponential in the number of sequences. Therefore a
number of approximate algorithms have been developed. In this work, the “star
alignment” [17] is used, not only for its speed and simplicity, but also because
it’s close relatedness to the problem of finding a prototype string.

In star alignment, the multiple alignment is produced by starting from one
string – the “star center” – and aligning it successively with other strings. Spaces
inserted into the center in course of an alignment are retained for further align-
ments and simultaneously inserted into all previously aligned strings. That way,
the previous alignments with the center are preserved.

The choice of the star center is not critical. At the beginning, one can use
the string from the set that maximizes equation (4), and the current prototype
in all consecutive iterations. Measurements presented below show that iterative
search for the prototype is not very sensitive to the initialization.

6 Experimental Results

To show that computing the string prototype from a set of similar strings is quite
robust to initialization, a series of experiments has been performed. In one, the
prototype string was computed from a set of strings, all derived from an original
random string by adding noise (insertions, deletions and replacements of random
symbols), and starting from one of these strings. In repeated runs, keeping the
noise level at 50%, the computed prototype converged to the original string in
97% of cases. Even increasing the noise level to 75% still resulted in 80% of
prototypes converging to the original string.

In another type of experiment, everything was left the same, except that the
algorithm started from a completely random string. Even then, a 89% conver-
gence was observed in case of 50% noise and 62% in case of 75% noise.

Small-scale experiments on similarity-based self-organizing maps were per-
formed on a set of 1750 words generated artificially by adding noise to 7 English
words (Figure 1). Care was taken that no original words appear in the set. Even
at the noise level of 75% and with random initialization, the resulting 8×12 map
converged to a state with the original 7 words placed at distinct closed regions.

In a real-world test, a self-organizing map was tested on a set of 68 sequences
from seven protein families. The 12 × 10 map was initialized by random se-
quences ordered along their Sammon projection [18]. The map was computed
using BLOSUM62 similarity matrix and additive scoring. The map (Figure 2)
showed all families distributed on it, although one of them (transducin) much
weaker. On the class boundaries, unidentified “mutations” appeared.

Another real-world example is shown in figure 3. The mapping is produced
from 320 hemoglobine alpha and beta chain sequences of different species, as
used in [19].
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Fig. 1. A simple example of similarity string SOM. The mapping is produced from
the set of English words corrupted by 75% noise. Above: Initial map with corrupted
words randomly distributed over it. Below: The converged map after 300 iterations.
The algorithm has extracted the original (prototypic) words from the noisy set and
ordered them into distinct regions on the map. Artificial “transition” words appear on
regions borders.

Table 1. LVQ classification of seven protein family samples, using 15 prototypes, on
average two per class. µij denotes the j-th prototype of the i-th class and Ni is the
number of elements from class i assigned to the prototype in the corresponding column.
In this set, six sequences are incorrectly classified.

µ11 µ12 µ13 µ21 µ22 µ31 µ41 µ42 µ51 µ52 µ61 µ62 µ63 µ71 µ72

N1 3 3 4
N2 9 2
N3 2 6
N4 4 5 1
N5 5 5
N6 1 7 1 1
N7 1 1 4 4



216 I. Fischer

Fig. 2. Similarity string SOM of seven protein families. Each square represents a node
in the map , and different families are represented by different fill patterns. The area
filled by a pattern corresponds to the node similarity to the protein. All families are
well expressed except transducin (the black squares).

Fig. 3. Similarity string SOM of hemoglobine sequences. Two different chains, α (dark
shades) and β (light shades), occupy distinct map areas. Moreover, weakly expressed
subclusters can be recognized in each of the chains (white-dotted and black for α, and
white for β).
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Attempting to classify the seven protein families by LVQ, using 15 prototype
strings led to the results presented in Table 1. Six sequences (about 9% of the
data set) were incorrectly classified. On the simpler hemoglobine data, perfect
classification is obtained by already two prototypes.

7 Conclusion and Outlook

This paper shows that already a simple similarity measure, combined with an
algorithm for its local maximization, is sufficient to define a large class of neural
networks. A distance measure is not necessary. Even if it is defined, like, for
example, for symbol strings, it is not always a ’good’ measure. In some applica-
tions, like molecular biology, a similarity measure is more natural than distance
and is preferred in comparing protein sequences. It is shown that such data
can be successfully processed by similarity-based neural networks. It can there-
fore be concluded that similarity-based neural networks are a promising tool for
processing and analyzing non-metric data.

In the presented work, simple, additive similarity measures for strings were
used. Further experiments, for example embedding BLAST search engine, are in
preparation.
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