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Abstract. Recognizing human face is one of the most important part
in biometrics. However, drastic change of facial pose makes it a difficult
problem. In this paper, we propose linear pose transformation method
in feature space. At first, we extracted features from input face image at
each pose. Then, we used extracted features to transform an input pose
image into its corresponding frontal pose image. The experimental results
show that recognition rate with pose transformation is much better than
the result without pose transformation.

1 Introduction

In modern life, the need for personal security and access control becomes impor-
tant issue. Biometrics is a technology which is expected to replace traditional
authentication methods which is easy to be stolen, forgotten and duplicated.
Fingerprints, face, iris, and voiceprints are commonly used biometric features.
Among these features, face provides more direct, friendly and convenient identifi-
cation way and is more acceptable compared with individual identification ways
of other biometrics features[1]. Thus, face recognition takes one of the most
important parts in biometrics. Many researchers have investigated face recogni-
tion. However, face appearance in nature scenes varies drastically with changes
of facial pose, illumination conditions and so forth. Such variations make face
recognition process difficult. Among these difficulties, pose variation is the most
critical and challenging one.

Beymer[2], Biuk[3],and Huang[4] divided face images into several subsets ac-
cording to facial angles and model each view subspace respectively. Then they
estimated the pose angle of input facial image and projected the image onto
the corresponding subspace. Finally they classified the face image in projected
subspace. Such view-based scheme is preferred because it is avoided to explic-
itly establish 3D model from each pose image, which often tends to be a more
complicate problem.

In this paper, we propose linear pose transformation method in feature space.
First we compute subspace of each pose images using PCA or kernel PCA. Then
we compute pose transformation matrix between input pose subspace and frontal
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Fig. 1. Process of Pose Transformation

pose subspace. We can represent any input face by a linear combination of basis
vectors. If we have a pair of posed facial image and its corresponding frontal facial
image for the same person, we can obtain an estimation of the transformation
between posed image and frontal image by using the coefficients of training data.
Using obtained pose transformation matrix, we can transform any input posed
image to frontal posed image. Finally we have images transformed to frontal
pose, then we can use usual face recognition method such as LDA[5], GDA[6],
NDA[7][8] and nearest neighbor. Fig.1 shows the process of our proposed method.

2 Subspace Representation

Input facial image is generally very high-dimensional data and pose transfor-
mation in input space shows usually low performance. Therefore we need to
represent facial image in subspace not only for dimensionality reduction, but
also for relevant feature extraction. In this section, we review two methods of
subspace representation PCA and kernel PCA.

2.1 Principal Component Analysis

From the viewpoint of both the curse of dimensionality and the optimality of the
pattern classification, it is desirable to reduce the dimensionality of feature space
of the data. In PCA[9], a set of observed n-dimensional data vector X = {xp},
p ∈ {1, · · · , N} is reduced to a set of m-dimensional feature vector S = {sp},
p ∈ {1, · · · , N} by a transformation matrix T as

sp = T t(xp − E [x]), (1)

where m ≤ n, T = (w1, · · · , wm) and the vector wj is the eigenvector which
corresponds to the jth largest eigenvalue of the sample covariance matrix C =
1
N

∑N
p=1(xp − E [x])(xp − E [x])T , such that Cwk = λkwk. The m principal

axes T are orthonormal axes onto which the retained variance under projection
is maximal. One property of PCA is that projection onto the principal subspace
minimizes the squared reconstruction error

∑ ‖ xp − x̂ ‖2. The optimal linear
reconstruction of x̂ is given by x̂ = Tsp + E [x], where sp = T t(xt − E [x]), and
the orthogonal columns of T span the space of the principal m eigenvectors of
C.
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2.2 Kernel Principal Component Analysis

Kernel PCA[10] computes the principal components in a high-dimensional fea-
ture space, which is nonlinearly related to the input space. The basic idea of
kernel PCA is that first map the input data x into a high-dimensional feature
space F via a nonlinear mapping Φ and then perform a linear PCA in F . We
assume that we are dealing with centered data,i.e.,

∑N
i=1 Φ(xi) = 0, where N is

the number of input data. Kernel PCA diagonalizes the covariance matrix of the
mapped data Φ(xi)

C =
1
N

N∑
i=1

Φ(xi) · Φ(xi). (2)

To do this, one has to solve the eigenvalue equation λv = Cv for eigenvalues
λ ≥ 0 and v ∈ F \ {0}. As Cv = 1

N

∑N
i=1(Φ(xi) · v)Φ(xi), all solutions v with

λ �= 0 lie within the span of Φ(x1), · · ·Φ(xN ). Thus there exists coefficients
αi(i = 1, . . . , N) such that

v =
N∑

i=1

αiΦ(xi) (3)

If we consider the following set of equations,

λ(Φ(xi) · v) = (Φ(xi) · Cv) for all i = 1, . . . , N. (4)

we can substitute (2) and (3) into (4). By defining an N ×N matrix K by Kij ≡
(Φ(xi) · Φ(xj)), we arrive at a problem which is cast in terms of dot products:
solve

Nλα = Kα (5)

where α = (α1, . . . , αN )T . Normalizing the solutions vk, i.e.(vk · vk) = 1 trans-
lates into λk(αk · αk) = 1. To extract nonlinear principal components of a test
data x, we compute the projection onto the k-th component by βk := (vk ·Φ(x)) =∑N

i=1 αk
i k(x, xi).

3 Pose Transformation

Our goal is to generate a frontal pose image of unseen test facial image, given
its image at certain pose. At first, we extracted features from input face image
at each pose using PCA and kernel PCA. Then, we use extracted features to
transform an input pose image into its corresponding frontal pose image, i.e. we
compute the relation between features at the input pose image and the features
at the corresponding frontal pose. A given facial image at each pose can be
represented as linear combination of basis vectors at that pose as shown in Fig.2.
If we could have the relationship between the coefficient of input pose and that
of frontal pose, we can also get the frontal image of input image, because we
know each basis vectors of input pose and frontal pose from the training phase.
This is our main idea of pose transformation between a given pose and a frontal
pose.
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Fig. 2. Representing Input Image by Linear Combination of Basis Vectors

3.1 Obtaining Transformation Matrix by Least Square Estimation

We use m basis functions, ΦF and ΦP for subspace representation for each pose
image, with m ≤ N , the number of training images at each pose. From the
training set covariance matrix, the ΦF and ΦP are known and for a given image
at pose P and corresponding frontal image are represented as Fig.2. If we define
linear pose transformation matrix between pose P and pose F, U = [u1 · · ·um],
we can derive following equation :

αi = uT
i β (6)

= βT ui (7)

where αi is i-th coefficient of frontal image, ui = (ui,1 · · ·ui,m) is i-th vector
of transformation matrix U , and β = (β1 · · ·βm) is coefficient vector of pose
image. We have N training pair images, so we can use least square estimation
to solve equation 7. Equation 7 is equivalent to the following equation.

⎛
⎜⎝

α1
i
...

αN
i

⎞
⎟⎠ =

⎛
⎜⎝

β1
1 · · · β1

m
...

. . .
...

βN
1 · · · βN

m

⎞
⎟⎠

⎛
⎜⎝

ui,1

...
ui,m

⎞
⎟⎠ (8)

where αN
i is i-th coefficient of N -th frontal image, and βN

m is m-th coefficient
of N -th pose image. This can be written as :

AF = ALu (9)
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where

AF =

⎛
⎜⎝

α1
i
...

αN
i

⎞
⎟⎠ (10)

AL =

⎛
⎜⎜⎜⎝

β1
1 · · · β1

m
...

. . .
...

βN
1 · · · βN

m

⎞
⎟⎟⎟⎠ (11)

u =

⎛
⎜⎝

ui,1

...
ui,m

⎞
⎟⎠ (12)

If AT
LAL is nonsingular, u is unique and given by

u = (AT
LAL)−1AT

LAF (13)

We have m coefficients, accordingly we need to estimate m vectors of u to
complete pose transformation matrix U . We can obtain pose transformation
matrix between input pose and frontal pose using the method we stated. For
example, we can write the image of the person at pose L as IL =

∑m
i=1 αL

i ΦL
i ,

where ΦL
i is i-th basis vector for subspace of pose L, and αL

i is its corresponding
coefficient for representing image IL. Since we have pose transformation matrix
between left pose and frontal pose ULF , we can represent pose transformed
version of input image as follow : IF =

∑m
i=1 uT

i αLΦF
i .

4 Recognition Methods

After pose transformation, we have images transformed to frontal pose. As a re-
sult, we can use algorithms generally used for face recognition such as LDA[5],
GDA[6], NDA[7][8], and nearest neighbor for experiments. In this section, we
review recognition methods we used for experiments.

4.1 LDA and GDA

The face recognition method using LDA is called the fisherface method. It can be
applied directly to the gray image[11] [12], or feature vectors of the gray image
extracted on a sparse grid[13]. In both cases the classification performance is
significantly better than the classification performance of using PCA instead of
LDA. LDA is a well-known classical statistical technique using the projection
which maximizes the ratio of scatter among the data of different classes to the
scatter within the data of the same class[14]. Features obtained by LDA are
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useful for pattern classification since they make the data of the same class closer
to each other, and the data of different classes further away from each other.
Typically, LDA is compared to PCA because both methods are multivariate
statistical techniques for projection. PCA attempts to locate the projection that
reduces the dimensionality of a data set while retaining as variation in the data
set as much as possible[15]. Since PCA does not use class information of data
set, LDA usually outperforms PCA for pattern classification.

GDA is nonlinear version of LDA. It generalize LDA to nonlinear problems
by mapping the input space into a high dimensional feature space with linear
properties. The main idea is to map the input space into a convenient feature
space in which variables are nonlinearly related to the input space[6].

4.2 NDA

NDA has similar properties with LDA. It seeks the subspace which can effec-
tively discriminate data classes using within and between class scatter matrices.
The main difference is that NDA does not make any assumption about the dis-
tribution of data, while LDA assumes each class has gaussian distribution. We
briefly review the construction of scatter matrices for NDA, detailed explanation
of NDA could be found in [7][8].

For computing nonparametric between scatter matrix, we should obtain
extra-class nearest neighbor and intra-class nearest neighbor for all sample
points. The extra-class nearest neighbor for a sample x of class Ck is defined
as xE = {x′ ∈ Ck/‖x′ −x‖ ≤ ‖z−x‖, ∀z ∈ Ck} and intra-class nearest neighbor
is defined as xI = {x′ ∈ Ck/‖x′ −x‖ ≤ ‖z−x‖, ∀z ∈ Ck}. From these neighbors,
the extra-class difference and intra-class difference is defined as �E = x − xE

and �I = x − xI , respectively. Then the nonparametric between scatter matrix
is defined as

SE =
1
N

N∑
n=1

wn(�E
n )(�E

n )T (14)

where N is number of all class samples, �E
n is the extra-class difference for

sample xn, and wn is a sample weight defined as

wn =
min{‖ �E

n ‖α, ‖ �I
n ‖α}

‖ �E
n ‖α + ‖ �I

n ‖α
(15)

where α is a control parameter between zero and infinity. The sample weight
controls the influence of samples away from class boundaries.

The within-class scatter matrix is defined the same as LDA.

SI =
1
K

K∑
k=1

Σk (16)
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Fig. 3. Examples of Database Image

where Σk is the class-conditional covariance matrix, estimated from the sam-
ple set and K is total number of classes.

5 Experimental Results

5.1 Face Database

We used XM2VT database which consists of 2950 images, i.e. 2 session images of
5 poses for 295 persons. The size of image is 46×56 and each image is aligned by
the eye location. The alignment is performed manually. The database contains
5 pose images for each person as shown in Fig.3. We describe each pose as ’F’,
’L’, ’R’, ’U’, ’D’ respectively.

5.2 Result of Pose Transformation

Fig.4 shows reconstructed pose transformed images of a person. As you can see
in Fig.4-(b), transformed images from each pose are similar to each other and
they are also similar to the original frontal image. Table.1 represents average
reconstruction error of all test images in root-mean squared sense. As expected,
the reconstruction error of frontal pose image is the least among 5 poses. But

Fig. 4. (a) Original Images (b) Images Transformed to Frontal Pose
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Table 1. Reconstruction Error

FF RF LF UF DF

Reconstruction Error 22.5672 30.1874 29.9827 29.6667 30.1382
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Fig. 5. Recognition Rate with Nearest Neighbor Method
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Fig. 6. Recognition Rate with LDA

the reconstruction errors of other pose images are also small enough for each
pose image to be used for recognition purpose.

5.3 Recognition Results with Pose Transformed Image

We used 2450 images of 245 persons for training basis vectors of each pose and
pose transformation matrix. In addition, we used 500 images of 50 persons for
evaluating the recognition performance of pose transformed images. We used
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Table 2. Recognition Results

Pose Transformation? Recognition Method RF LF UF DF Avg.

No NN (in input space) 9 16 29 34 22
Trransformation NN (in PCA space with 50 dim.) 8 20 23 37 22

LDA (in PCA space) 72 67 76 75 72

Pose Transformation NN (in PCA space with 50 dim.) 67 76 82 74 74.75
with PCA Representation LDA (in PCA space) 75 84 90 77 81.5

GDA (in PCA space) 67 82 88 79 79
NDA (in PCA space) 72 76 87 79 78.5

Pose Transformation NN (in kernel space with 200 dim.) 70 86 90 80 81.5
with KPCA Representation LDA (in kernel space) 82 90 91 82 86.25

GDA (in kernel space) 77 85 89 83 83.5
NDA (in kernel space) 85 89 91 91 89

PCA and Kernel PCA for subspace representation and LDA, GDA, NDA, and
nearest neighbor method for face recognition. For recognition experiments, we
used two frontal image as gallery and two posed image as probe. For example,
RF means that two right posed images are used as probe, two frontal images as
gallery.

Table.2 shows the recognition rate. We divided the experiment for 3 parts.
First, we checked the recognition rate when no pose transformation is performed.
Next, we checked the recognition rate when PCA is used for subspace representa-
tion. Finally, we performed the experiment with KPCA as subspace representa-
tion. From Fig.5 and Fig.6, you can see recognition rate with pose transformation
is much better than no pose transformation case. In addition, we can compare
which subspace representation method is better for pose transformation. As you
can see in Table.2, recognition rate using kernel PCA is better than PCA case. It
is mainly because the nonlinear mapping of KPCA. This makes KPCA represent
the input data more effectively than linear PCA. When we use NDA as recogni-
tion method, we got the best recognition rate for KPCA case. Because NDA is
a nonparametric method, it does not make any assumption about the distribu-
tion of data, while LDA assumes each class has gaussian distribution. Moreover,
it is uncertain that the transformed frontal pose images of a class are grouped
together. Consequently, NDA is a suitable method for this problem. When we
used KPCA as subspace representation and NDA as recognition method, we got
the best recognition rate.

6 Conclusion

In this paper, we proposed linear pose transformation method in feature space.
Our method has some merits, since we used 2D appearance based approach in-
stead of using 3D model based method which requires many preprocessing steps,
complicated computing steps, and much execution time. We performed various
experiments to show the usefulness of proposed pose transformation method for
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face recognition. We compared recognition rate with pose transformation and
without pose transformation. Moreover, we compared which subspace represen-
tation method is better for pose transformation. According to the experimental
results, when we use KPCA as subspace representation and NDA as recognition
method, we got the best recognition rate.
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