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Abstract. Frequent pattern mining has emerged as an important min-
ing task in data stream mining. A number of algorithms have been
proposed. These algorithms usually use a method of two steps: one is
calculating the frequency of itemsets while monitoring each arrival of the
data stream, and the other is to output the frequent itemsets according
to user’s requirement. Due to the large number of item combinations for
each transaction occurred in data stream, the first step costs lots of time.
Therefore, for high speed long transaction data streams, there may be not
enough time to process every transactions arrived in stream, which will
reduce the mining accuracy. In this paper, we propose a new approach to
deal with this issue. Our new approach is a kind of lazy approach, which
delays calculation of the frequency of each itemset to the second step.
So, the first step only stores necessary information for each transaction,
which can avoid missing any transaction arrival in data stream. In or-
der to improve accuracy, we propose monitoring items which are most
likely to be frequent. By this method, many candidate itemsets can be
pruned, which leads to the good performance of the algorithm, DELAY,
designed based on this method. A comprehensive experimental study
shows that our algorithm achieves some improvements over existing al-
gorithms, LossyCounting and FDPM, especially for long transaction data
streams.

1 Introduction

Data stream is a potentially uninterrupted flow of data that comes at a very
high rate. Mining data stream aims to extract knowledge structure represented
in models and patterns. A crucial issue in data stream mining that has attracted
significant attention is to find frequent patterns, which is spurred by business
applications, such as e-commerce, recommender systems, supply-chain manage-
ment and group decision support systems. A number of algorithms [5-16] have
been proposed in recent years to make this kind of searching fast and accurate.
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But how fast does the task need to be done on earth (challenge1)? The high
speed of streams answers the question: the algorithms should be as fast as the
streams flow at least, that is to say, it should be so fast as to avoid missing data
to guarantee the accuracy of mining results. Former algorithms [5-16] usually
divide this process into two steps. One is calculating the frequency of itemsets
while monitoring each arrival of the date stream (step1), and the other is to
output the frequent itemsets according to user’s requirement (step2). Due to the
large number of item combinations for each transaction occurred in data stream,
the first step costs lots of time. Therefore, for high speed long transaction data
streams, there may be not enough time to process every transaction arrived in
stream. As a result, some transactions may be missed, which will reduce the
mining accuracy.

This problem can also lead to another challenge. If calculating the frequency
of itemsets while monitoring each arrival of the date stream, the longer the
transaction is, the more inefficiently the algorithm performs (challenge2 ). Un-
fortunately the transactions in data streams are often large, for example, sales
transactions, IP packets, biological data from the fields of DNA and protein
analysis.

Finding long pattern is also a challenge for mining of the static data set.
Maxpattern [18] and closed-pattern [17] are two kinds of solutions proposed to
solve this problem. These methods could avoid outputting some sub-patterns of
frequent itemsets.

But for data stream what we concern more is how to reduce the processing
time per element in the data stream. So the key to the efficiency of the algorithm
is to reduce the number of candidates. Some papers [9,12,16] proposed several
solutions of pruning method. But they all prune candidates by itemsets. In order
to prune the candidate itemsets, frequency of itemsets must be calculated, which
turns to the challenge1.

In this paper, we try to address the challenges discussed above. Our contri-
butions are as follows.

(1) We propose a new approach, a kind of lazy approach to improve the process-
ing speed per item arrival in data stream. This method delays calculation of
the frequency of each itemset to step 2. So, the step 1 only stores necessary
information for each transaction, which can avoid missing any transaction
arrival in data stream. Furthermore, these two steps could be implemented
in parallel, as they can be done independently.

(2) In order to improve the accuracy of mining result, we propose monitoring
items which are most likely to be frequent. By this method, many candidate
itemsets can be pruned. Based on this method, we develop an algorithm,
DELAY, which can prune infrequent items and avoid generation of many
subsets of transactions, especially for long transactions.

(3) We conducted a comprehensive set of experiments to evaluate the new al-
gorithm. Experimental results show that our algorithm achieves some im-
provements over existing algorithms, LossyCounting and FDPM, especially
for long transaction data streams.
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The rest of the paper is organized as follows. In section 2, we review related
work. In section 3, we formally formulate the problem of mining frequent itemsets
over streams. Section 4 describes the proposed approach and algorithm, and
section 5 gives the experimental results. Finally, Section 6 concludes our paper.

2 Background and Related Work

Throughout the last decade, a lot of people have implemented various kinds of
algorithms to find frequent itemsets [2,4,17-20] from static data sets. In order to
apply these algorithms to data stream, many papers [5-9] fall back on partition
method such as sliding windows model proposed by Zhu and Shasha [5]. By
this method, only part of the data streams within the sliding window are stored
and processed when the data flows in. For example, a lossyCounting (a frequent
item mining algorithm) based algorithm [9] divides a stream into batches, in
which data is processed in a depth-first search style. For simplicity, we call this
algorithm LossyCounting too. Time-fading model is a variation of sliding win-
dow model, which is suitable for applications where people are only interested
in the most recent information of the data streams, such as stock monitoring
systems. This model is implemented in [10,11,13], which gets more information
and consumes more time and space in the meantime.

For the infinite of stream, seeking exact solution for mining frequent item-
sets over data stream is usually impossible, which leads to approximate solu-
tion of this mining task [9,12,16]. Algorithms of this kind can be divided into
two categories: false-positive oriented and false-negative oriented. The former
outputs some infrequent patterns, whereas the latter misses some frequent pat-
terns. LossyCounting [9] is a famous false-positive approximate algorithm in
data stream. Given two parameters: support s and error ε, it returns a set of
frequent patterns which are guaranteed by s and ε. Algorithm FDPM [16] is a
false-negative approximate algorithm based on Chernoff Bound and has better
performance than LossyCounting.

The above algorithms all perform well when transactions in data stream are
not large or the stream does not flow at a high speed, that is to say, these
algorithms could not meet the challenges mentioned in section 1. This could
be explained by too much computation on data, so it could happen that next
transaction has been here before last transaction is finished.

3 Problem Definition

Let I = {i1, . . . , im} be a set of items. An itemset X is a subset of I. X is
called k-itemset, if |X | = k, where k is the length of the itemset. A transaction
T is a pair (tid; X), where tid is a unique identifier of a transaction and X is
an itemset. A data stream D is an open set of transactions. N represents the
current length of the stream. There are two user-specified parameters: a support
threshold s ∈ (0, 1), and an error parameter ε ∈ (0, 1). Frequent-patterns of
a time interval mean the itemsets which appear more than sN times. When
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user submits a query for the frequent-patterns, our algorithm will produce the
answers that following these guarantees:

(1) All itemsets whose true frequency exceed (s + ε)N are output.
(2) No itemset with true frequency less than sN is output.There are no false

positive.
(3) Estimated frequencies are less than the true frequencies by at most εN .

4 A New Approach

The strongpoint of our approach is the quick reaction to data stream, so the
algorithm could achieve good performance for data streams flowing at high speed.
Our approach is also a two-step method. In the first step (step 1), we just store
necessary information of stream in a data structure. Frequent itemsets are found
until the second step (step 2), the query for them comimg. In the first step, some
itemsets which do not exceed a threshold are pruned so as to save space. The
criterion of pruning is whether the count of every item in the itemset exceeds a
threshold. The second step is a pattern fragment growth step which is the same
as the second step of FP-growth[19]. So in this paper we focus on the first step.

4.1 Data Structures

There are two main data structures in this algorithm: List and Trie. The List
is used to store possible frequent items; and the Trie is used to store possible
frequent itemsets.
List: a list of counters, each of which is a triple of (itemid, F, E), where itemid
is a unique identifier of an item, F is the estimation of the item’s frequency; and
E is the maximum error between F and the item’s true frequency.
Trie: a lexicographic tree, every node is a pair of (P, F ), where P is a pointer
that points one counter of List. In this way the association between itemsets and
items is constructed and that is why we could prune itemsets by items. F is the
estimated frequency of itemset that consists of the items from the root of Trie
down to this node.
List.update: A frequent itemset consists of frequent items. So, if any item of an
itemset is infrequent, then the itemset can not be frequent. Since data stream
flows rapidly, frequent itemsets are changing as well. Some frequent itemsets
may become non-frequent and some non-frequent itemsets may become frequent.
Therefore, technique to handle concept-drifting[3] needs to be considered. In this
paper, we dynamically maintain a List, in which every item’s estimated frequency
and estimated error is maintained by a frequency ascending order. The method
used to update the List is based on space-saving[1].
Trie.update: While updating List, the nodes which point the items deleted for
becoming infrequent will also be deleted. This is just the method by which we
implement itemsets’ pruning by items. For each transaction arrived in the data
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stream, its subset consisting of items maintained in the List will be inserted into
the Trie .

A example List and Trie for a stream with two transactions is shown in
Fig 1 (a).

4.2 Algorithm DELAY

Based on the new approach, we develop an algorithm, DELAY, which is shown
as followed.

Algorithm: DELAY (data stream S, support s, error ε)
Begin
1. List.length = �m/ε�;
2. For each transaction t in S
3. List.update (t);
4. Delete the items from t which are not in the list;
5. Insert t into trie;
6. If user submits a query for frequent-patterns
7. FP-growth(trie, s);
8. end if
9. end for
End.

Procedure List.update (transaction t, tree trie)
Begin
1. for each item, e, in t
2. If e is monitored, then increment the F of e;
3. else
4. let em be the element with least frequency, min
5. delete all node from trie which point to em;
6. Replace em with e;
7. Increment F;
8. Assign Ei the value min;
9. end if
10. end for
End.

The main steps of DELAY are as follows. First, we define the length of List,
l, to be �m/ε� (line 1),m is the average length of transactions in data stream.
Then, for every transaction t of data stream S, we update the List with the items
of the transaction by procedure List.update (line 3). For those items which are
not monitored in the List, delete them from t (line 4). Then insert transaction
t into the Trie (line 5). Whenever a user submits a query for frequent itemsets,
a procedure FP-growth[19] will be used to find and output answers using the
information stored in Trie (line 6-8).

The procedure of List.update is similar to space-saving[1]. If we observe an
item, e, that is monitored, we just increase its F (line 2). If e is not monitored,
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give it the benefit of doubt, and find from the List item em, the item that
currently has the least estimated hits, min (line 4). Nodes of the Trie which
point to item em are deleted (line 5). Then, item em is replaced by e (line 6).
Assign Fm the value (min+1) (line 7). For each monitored item ei, we keep track
of its over-estimation error, Ei, resulting from the initialization of its counter
when it was inserted into the List. That is, when starting to monitor ei, set
Ei = min, the estimated frequency of the evicted item em.

An example of this algorithm is shown in Fig 1. Fig 1 (a) and (b) show the
change of List and Trie without any item of List being replaced. In (c), with the
coming of transaction with items CF , the number of unique items has exceeded
the length of List, so the last item E in the List is replaced by F with frequency
2, and the nodes in Trie which point to E are deleted (the red one). In (d),
transaction CF is inserted into Trie.
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Fig. 1. An example

4.3 Properties of DELAY

Lemma 1. For any item(ei, Fi, Ei) monitored in List, Ei ≤ εN

This is proved in [1].

Lemma 2. Given a support threshold s, for a stream of length N , the error of
frequent itemset Ep is bounded by εN , that is, fp − Fp ≤ εN .

Proof. If itemset p is frequent, then Fp ≥ sN ;
Assume e1(e1, F1) is the item with the least estimated frequency in p, and

its real frequency is f1.
Assume e2(e2, F2) is the item with the least real frequency in p, and its real

frequency is f2.
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DELAY is a false-negative algorithm, so fi ≥ Fi.
So, Ep = fp − Fp = f2 − F1 ≤ f1 − F1 ≤ εN .

Theorem 1. An itemset p with fp ≥ (s + ε)N , must be found by DELAY.

Proof. For itemset p, according to lemma 2, fp ≤ Fp + εN . If fp ≥ (s + ε)N
then Fp ≥ sN , so our algorithm DELAY will output itemset p.

Theorem 2. Time spent in step 1 is bounded by O(Nm + Nt), where N is the
length of data stream, m is the average length of transactions in data stream,
and t is the time of inserting one itemset into Trie.

Proof. In step 1 each transaction needs to be processed by List.update first.
This part consumes time O(Nm). Then the transaction is inserted into Trie.
The time complexity of this part is difficult to estimate. Here we assume the
time of inserting one itemset into Trie is t ignoring the difference of length
between itemsets. For DELAY, one transaction one itemset needs to be inserted
into the Trie. so the time complexity of this part is O(Nt). So time spent in
step 1 is bounded by O(Nm + Nt). In the following we compare the times of
inserting between LossyCounting [9] and DELAY.

4.4 Comparison with Existing Work

4.4.1 Comparison with LossyCounting
Theorem 2 proves that time spent in the step 1 by DELAY is about O(Nm+Nt).
LossyCounting [9] has a bound of O((2m)N + (2m)N

kε t), where m is the average
length of transactions in data stream, k is the buffer size, N and t with the
same definition of Theorem 2. Let’s compare the time bound of DELAY and
LossyCounting.

The time of inserting itemsets into Trie is difficult to estimate, so we just
compare the times of inserting. The times of inserting in DELAY is N , that is
one transaction one insertion into Trie, whereas the times of inserting itemsets in
LossyCounting is 2mN

kε . In LossyCounting itemsets whose frequencies exceed εk
will be inserted into Trie, and every subsets of them will be inserted respectively
too. Nm + Nt < 2mN + 2mN

kε t, when k < 2m

ε , that is, given m = 30, ε =
0.001, only when k > 1012, DELAY will consume more time than LossyCounting
in step 1, but 1012 is a huge number for memory space. So DELAY usually
consumes less time. So we can see that the average length of transaction, m, is
the determinant of which one performs well, which is also demonstrated in the
following experiments.

4.4.2 Comparison with FDPM
FDPM proposed in [16] finds frequent patterns through two steps. First calculate
the frequency of itemsets, and then prune them based on Chernoff Bound. The
merit of it is in the space bound. As the method of calculating the frequency
of itemsets is not given in the paper, we could not estimate the time bound.
But as long as the algorithms need to calculate frequency of itemsets, they will
consume more time than the step 1 of DELAY for the same data set, which will
be proved in the following section.
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5 Experimental Results

In this section we conducted a comprehensive set of experiments to evaluate the
performance of DELAY. We focus on three aspects: time, space and sensitivity
to parameter. Algorithm DELAY is implemented in C++ and run in a Pentium
IV 2.4GHz PC with 1.0 G RAM and 40G Hard disk. In the experiments, we use
the synthetic datasets generated by IBM data generator[21].

5.1 DELAY

In this section, we design two sets of experiments to test the performance of
DELAY.

5.1.1 Time and Space
We fix s = 1%, ε = s/10, the average length of transaction L = 30, and vary the
length of data stream from 100k to 1000k. Fig.2(a) shows the time used in step
1 (step1 time ) and the time used in step 2( step2 time ), and Fig.2(b) shows
the memory consumption.

As shown in Fig.2(a) step1 time is linear with the length of data stream,
accounting for only a small part of the total runtime, which means that this
algorithm could deal with streams flowing at a high speed. Fig.2(b) shows that
the increase of the memory consumed slows down with the increase of the length
of stream.

This experiment proves that DELAY could potentially handle large-scale
data stream of high speed, consuming only limited memory space.
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Fig. 2. Time and Space

5.1.2 Sensitivity to the Support Threshold
In this set of experiments, We generate dataset T30.I10.D1000k, set ε = s/10,
and vary s from 0.1% to 1%. Fig.3(a), (b), (c) and (d) show the total runtime,
step1 time per pattern, step2 time per pattern, memory and memory per pattern
respectively as the support varies.

As shown in Fig.3(a), step1 time remains almost stable as support varies.
This is because step1 time is only relative to the length of stream, and DELAY
do nothing different for different support value. Fig.3(b) show that the average
run time per frequent pattern (itemset) decreases as support decreases though
the total time is increased. Fig.3(c) and Fig.3(d) indicate that more memory is
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needed as support decreases, but the memory consumed per frequent pattern
keeps steady on the whole.

The behavior of DELAY with the variation of error level, ε, is similar to the
results of this set of experiments. Due to space limitation, we do not give the
results here.

(a) (b) (c) (d)

Fig. 3. Sensitivity to the support threshold

5.2 Comparison with LossyCounting and FDPM

In this section, we compare DELAY with LossyCounting and FDPM in the
following aspects: reaction time, total run time, memory requirements under
different dataset size and support levels.

5.2.1 Average Length of Transactions
We fix s = 1%, ε = s/10, the length of data stream = 100k, and vary average
length of transaction from 10 to 60.
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Fig. 4. Transaction length

Fig.4 shows the change of run time of
DELAY, LossyCounting and FDPM as the
length of transactions increases. As shown
in Fig.4, DELAY significantly outperforms
LossyCounting and FDPM on the running
time, and the excellence of DELAY is more
evident when transaction becomes longer.
The reason has been explained in section 4.3.

5.2.2 Length of Stream
In this section we test the algorithms with two data sets: T30.I10.D?k and
T15.I6.D?k. For this set of experiments, we fix s = 1%, ε = s/10, and report
the time and memory usage as the length of data stream increases from 100k to
1000k.

For T30.I10.D?k, Fig.5 shows the results. As shown in Fig.5(a), DELAY sig-
nificantly outperforms LossyCounting and FDPM on the running time for the
stream with relatively longer transactions. Fig.5(b) shows that the increasing
speed of memory by DELAY as the increase of stream size is faster than Lossy-
Counting and FDPM, but the ability of processing streams of higher speed is
worthy of the sacrifice of memory.
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For T15.I10.D?k, Fig.5(c) shows the results. As shown in Fig.5(c), though
DELAY does not perform better than LossyCounting and FDPM do when trans-
actions are short, but the step1 time of DELAY shows that DELAY could work
on streams flowing at high speed.
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Fig. 5. Length of Stream

5.2.3 Support Threshold
In this section we test the algorithms with two data sets: T30.I10.D1000k and
T15.I6.D1000k. We fix ε = s/10, and vary s from 0.1% to 1%.

For T30.I10.D1000k, Fig.6(a), (b), (c) and (d) show the results. As shown in
Fig.6(a) and (b), DELAY outperforms LossyCounting and FDPM for streams
of long transactions as support increases. Fig.6(c) and (d) show that DELAY
consumes a bit more memory than LossyCounting and FDPM.

For T15.I10.D1000k, Fig.6(e) and (f) show the results. As shown in these
Figures, the step1 time of DELAY is almost unchanged with the varying of
support level. Though DELAY does not significantly outperform LossyCounting
and FDPM for short transactions overall, DELAY could perform better when
support level is relatively low.

0

2000

4000

6000

8000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e

 (
se

c.
)

support (%)

DELAY(step2)
DELAY(step1)
LossyCounting
FDPM

(a)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1tim
e

 p
e

r 
tr

a
n

sa
ct

io
n

(s
e

c.
)

support (%)

DELAY(step2)
DELAY(step1)
LossyCounting
FDPM

(b)

0
100
200
300
400
500
600
700
800
900

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
e

m
o

ry
 (

M
)

support (%)

DELAY
LossyCounting
FDPM

(c)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1m
e

m
o

ry
 p

e
r 

p
a

tt
e

rn
(M

)

support (%)

DELAY
LossyCounting
FDPM

(d)

0
100
200
300
400
500
600
700
800

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e

 (
se

c.
)

support (%)

DELAY(step2)
DELAY(step1)
LossyCounting
FDPM

(e)

0

0.005

0.01

0.015

0.02

0.025

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e

 p
e

r 
p

a
tt

e
rn

(s
e

c.
)

support (%)

DELAY(step2)
DELAY(step1)
LossyCounting
FDPM

(f)

Fig. 6. Varying s



12 H. Yang, H. Liu, and J. He

5.2.4 Recall and Precision
In order to evaluate the accuracy of these algorithms, we test the recall and pre-
cision for streams with different average length of transactions, different support
threshold and different error rate. Recall and precision are defined as follows.
Given a set A of true frequent itemsets and and a set B of frequent itemsets
output by the algorithms. The recall is |A∩B|

|A| and the precision is |A∩B|
|B| .

Fixing s = 1%, ε = s/10, the length of data stream 1000k, we vary the average
length of transactions from 10 to 50. Table 1 shows the recall and precision
of DELAY, LossyCounting and FDPM. DELAY is a false-negative algorithm,
which ensures its precisions to be 100%, DELAY achieves a little higher recall
than FDPM on the average.

For dataset T30.I10.D1000k, setting ε = s/10, Table 2 lists the recall and
precision of DELAY, LossyCounting and FDPM with different support thresh-
olds. It shows that recall increase as support thresholds decrease. That is because
the error of items is bound by εN , and the error distributes to lots of itemsets.
When the support decreases, there will be more frequent itemsets, so the error
per itemset becomes less.

For dataset T30.I10.D1000k, Table 3 shows the recall and precision of Lossy-
Counting and DELAY as ε increases from 0.01% to 0.1% and support is fixed
to be 1%. It tells us that DELAY can get high recall under the condition of
maintaining precision to be 1.

Table 1. Varying transac-
tion length

L DELAY FDPM LC
R P R P R P

10 1 1 1 1 1 0.89
20 1 1 1 1 1 0.6
30 0.96 1 0.93 1 1 0.54
40 0.92 1 0.93 1 1 0.51
50 0.9 1 0.9 1 1 0.42

Table 2. Varying support s

S % DELAY FDPM LC
R P R P R P

0.1 0.97 1 1 1 1 0.89
0.2 0.96 1 0.99 1 1 0.97
0.4 0.93 1 0.99 1 1 0.97
0.6 0.85 1 0.98 1 1 0.87
0.8 0.89 1 0.98 1 1 0.73
1 0.78 1 0.96 1 1 0.79

Table 3. Varying error ε

error% DELAY FDPM LC
R P R P R P

0.01 1 1 1 1 1 0.99
0.02 1 1 0.99 1 1 0.99
0.04 1 1 0.99 1 1 0.98
0.06 1 1 0.98 1 1 0.93
0.08 0.96 1 0.98 1 1 0.9
0.1 0.97 1 0.96 1 1 0.85

6 Conclusions

In this paper, we propose a lazy approach for mining frequent patterns over
a high speed data stream. Based on this approach, we develop an algorithm,
DELAY, which does not calculate the frequency of itemsets as soon as the data
arrive in data stream like other algorithms, but only stores necessary information.
The frequency is not calculated until the query for frequent itemsets comes,
which can avoid missing any transaction arrival in data stream. This kind of
delay also helps this method to perform well for long transaction data streams.
In order to reduce the information needed to store, we propose monitoring items
which are more likely to be frequent. In the meantime, this algorithm can also
guarantee a predefined error rate.



DELAY: A Lazy Approach for Mining Frequent Patterns 13

References

1. Metwally, A., Agrawal, D., Abbadi, A.E.: Efficient Computation of Frequent and
Top-k Elements in Data Streams. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS,
vol. 3363, Springer, Heidelberg (2004)

2. Bayardo Jr., R.J.: Efficiently Mining Long Patterns from Databases. In: Proceed-
ings of the ACM SIGKDD Conference (1998)

3. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining Concept-Drifting Data Streamsusing
Ensemble Classifiers. In: ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining (August 2003)

4. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of
Items in Massive Databases. In: Int’l Conf. on Management of Data (May 1993)

5. Zhu, Y., Shasha, D.: StatStream: Statistical Monitoring of Thousands of Data
Streams in Real Time. In: Int’l Conf. on Very Large Data Bases (2002)

6. Chi, Y., Wang, H., Yu, P.S., Richard, R.: Moment: Maintaining Closed Frequent
Itemsets over a Stream Sliding Window. In: IEEE Int’l Conf. on Data Mining
(November 2004)

7. Chang, J.H., Lee, W.S.: A Sliding Window Method for Finding Recently Frequent
Itemsets over Online Data Streams. Journal of Information Science and Engineering
(2004)

8. Cheng, J., Ke, Y., Ng, W.: Maintaining Frequent Itemsets over High-Speed Data
Streams. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006.
LNCS (LNAI), vol. 3918, Springer, Heidelberg (2006)

9. Manku, G.S., Motwani, R.: Approximate Frequency Counts over Data Streams. In:
Int’l Conf. on Very Large Databases (2002)

10. Chang, J.H., Lee, W.S., Zhou, A.: Finding Recent Frequent Itemsets Adaptively
over Online Data Streams. In: ACM SIGKDD Int’l Conf. on Knowledge Discovery
and Data Mining (August 2003)

11. Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining Frequent Patterns in
Data Streams at Multiple Time Granularities. In: Data Mining: Next Generation
Challenges and Future Directions, AAAI/MIT Press, Cambridge (2003)

12. Li, H.-F., Lee, S.-Y., Shan, M.-K.: An Efficient Algorithm for Mining Frequent
Itemsets over the Entire History of Data Streams. In: Int’l Workshop on Knowledge
Discovery in Data Streams (September 2004)

13. Chang, J.H., Lee, W.S.: A Sliding Window Method for Finding Recently Frequent
Itemsets over Online Data Streams. Journal of Information Science and Engineering
(2004)

14. Charikar, M., Chen, K., Farach-Colton, M.: Finding Frequent Items in Data
Streams. Theoretical Computer Science (2004)

15. Lin, C.-H., Chiu, D.-Y., Wu, Y.-H., Chen, A.L.P.: Mining Frequent Itemsets from
Data Streams with a Time-Sensitive Sliding Window. In: SIAM Int’l Conf. on Data
Mining (April 2005)

16. Yu, J.X., Chong, Z.H., Lu, H.J., Zhou, A.Y.: False positive or false negative: Mining
frequent Itemsets from high speed transactional data streams. In: Nascimento,
M.A., Kossmann, D. (eds.) VLDB 2004. Proc. of the 30th Int’l Conf. on Very
Large Data Bases, pp. 204–215. Morgan Kaufmann Publishers, Toronto (2004)

17. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, pp. 398–416. Springer, Heidelberg (1998)



14 H. Yang, H. Liu, and J. He

18. Bayardo Jr., R.J.: Efficiently mining long patterns from databases. In: Haas, L.M.,
Tiwary, A. (eds.) Proceedings of the 1998 ACM SIGMOD International Conference
on Management of Data. SIGMOD Record, vol. 27(2), pp. 85–93. ACM Press, New
York (1998)

19. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate gen-
eration: A frequent-pattern tree approach. Data Mining and Knowledge Discovery
(2003)

20. Zaki, M.J.: Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering 12(3), 372–390 (2000)

21. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of
20th Intl. Conf. on Very Large Data Bases, pp. 487–499 (1994)


	DELAY: A Lazy Approach for Mining Frequent Patterns over High Speed Data Streams
	Introduction
	Background and Related Work
	Problem Definition
	 A New Approach
	Data Structures
	Algorithm  $DELAY$ 
	Properties of  $DELAY$ 
	Comparison with Existing Work

	Experimental Results
	$DELAY$ 
	Comparison with $LossyCounting$ and $FDPM$ 

	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




