
X. Zhou et al. (Eds.): APPT 2003, LNCS 2834, pp. 241–248, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Parallel Algorithm for Mining Maximal Frequent
Patterns*

Hui Wang1,2**, Zhiting Xiao2, Hongjun Zhang1, and Shengyi Jiang1

1 Computer School,
Huazhong University of Science & Technology,

430074, WuHan, China
2 Wuhan Communication College,

430010,Wuhan, China
hustwanghui@mail.china.com

Abstract. We present a novel and powerful parallel algorithm for mining
maximal frequent patterns, called Par-MinMax. It decomposes the search space
by prefix-based equivalence classes, distributes work among the processors and
selectively duplicates databases in such a way that each processor can compute
the maximal frequent patterns independently. It utilizes multiple level backtrack
pruning strategy and other novel pruning strategies, along with vertical database
format, counting frequency by simple tid-list intersection operation. These
techniques eliminate the need for synchronization, drastically cutting down the
I/O overhead. The analysis and experimental results demonstrate the superb
efficiency of our approach in comparison with the existing work.

1 Introduction

Mining frequent patterns is to discover all frequent patterns in a given database. It
comprises the core of several data mining algorithms such as association rule mining
and sequence mining, and dominates the running time of those algorithms. It has been
shown to have an exponential worst case running time in the number of items,
therefore much research [1,2,3,4] has been devoted to increasing the efficiency of the
task.

Since both the data size and the computational costs are large, parallel algorithms
have been studied extensively. Frequent pattern discovery has become a challenge for
parallel programming since it is a highly complex operation on huge datasets
demanding efficient and scalable algorithms. Most previous parallel algorithms
[5,6,7,8,9,10] use complicated hash structures, make repeated passes over the
database partition, have to exchange the partial results among all the processors
during each iteration, resulting in additional maintaining overhead, high I/O overhead,
expensive communication and synchronization cost.

* This paper is supported by the National Natural Science Foundation of China under Grant

No.60273075.
** Hui Wang is a PhD candidate in computer school, Huazhong university of science and

technology. Her research interests include data mining and parallel computing.

242 H. Wang et al.

We present a novel and powerful parallel algorithm for mining maximal frequent
patterns, called Par-MinMax, which is based on its serial version MinMax[11]. The
new algorithm decomposes the original search space into smaller pieces by prefix-
based equivalence classes, schedules classes among processors by the weights,
distributes work among the processors and selectively duplicates databases in such a
way that each processor can compute the frequent patterns independently. It uses
depth-first search and a novel multiple level backtrack pruning strategy[11] and other
powerful pruning strategies, along with vertical tid-list database format, counting
frequency by simple tid-list intersection operation. These techniques eliminate the
need for synchronization, drastically cutting down the I/O overhead. The analysis and
experimental results demonstrate the superb efficiency of our approach in comparison
with the previous work.

The rest of this paper is organized as follows: In section 2 we describe the
maximal frequent pattern problem. The serial version MinMax is briefly described in
Section 3. Section 4 describes our new algorithm Par-MinMax. We show the
experimental results in section 5. The conclusions are in section 6.

2 Problem Statement

The problem of mining maximal frequent patterns is formally stated by definitions 1-
4 and theorems 1-2. To describe our algorithm clearly, definition 5-9, propositions 1-2
and theorem 3 are given in this paper.

Let I={i1,i2,……,im} be a set of m distinct items. Let D denote a database of
transactions where each transaction has a unique identifier (tid) and contains a set of
items.

Definition 1: (pattern)
A set X ⊆ I is called a pattern (an itemset). A pattern with k items is called a k-pattern.

Definition 2: (pattern’s frequency σ)

The frequency of a pattern X, denoted by σ (X), is defined as the number of
transactions in which the pattern occurs as a subset, called the support of the pattern.

With the vertical database layout, the database is comprised by items with
corresponding tid-lists.

Let x∈I, tid-list(x)={ti| x appeared in ti }. σ (x)=|tid-list(x)|. Let X ⊆ I,

X={x1,x2,……,xk}, σ (X)=| �
Xxi

xilisttid
∈

−)(|.

Definition 3: (frequent pattern)

Let ε be the threshold minimum frequency value specified by user. If σ (X) ≥ ε , X
is called a frequent pattern. The frequent 1-pattern is called a frequent item. The set of
all the frequent k-patterns in D is denoted by Fk.

Definition 4: (maximal frequent pattern)

If σ (X) ≥ ε ∧ ¬∃Y(Y ⊃ X) ∧ �σ (Y) ≥ ε , we say X is a maximal frequent pattern.

Parallel Algorithm for Mining Maximal Frequent Patterns 243

Let F={X | X ⊆ I ∧ σ (X) ≥ ε }, M={X | X ∈F ∧ ¬∃Y (Y ⊃ X) ∧ Y ∈F }, so
M ⊆ F. Since a maximal frequent m-pattern includes 2m frequent patterns, |M|<<|F|.
Given a threshold minimum frequency valueε and a database D, the mining goal is
to find F from D. Since the maximal frequent patterns contain all the frequent ones, it
is wise to compute M instead of F.

It is profitable to view the frequency mining as a search problem. Each node in
search space is composed of two parts: head and tail. In the initial status, the only
node is root where head= ∅ and tail=F1. The number of items in node’s tail is the
number of nodes in the next level that the node node can be frequently extended. Let
node’s tail={a1,a2,……,an}, where head� {ai} is frequent, i=1, 2, …, n, then node

(head, tail) can be extended n nodes: head� {ai}, {ai+1, ai+2, ……, an}, i=1,2,……,n.

The goal is to find all the heads. We use head� tail to represent the node itself.
According to definition 3, the following theorems hold.

Theorem 1: Any sub_patterns of a frequent pattern are frequent.

Theorem 2: Any super_patterns of an infrequent pattern are infrequent.

Definition 5: (item’s infrequency λ)

A frequent item x’s infrequency λ is defined as the number of infrequent 2-patterns it
makes.

λ (x) = | {y | y∈F1 ∧ x∈F1 ∧ σ ({x,y}) <ε } |

Proposition 1: If λ (x1) > λ (x2), then x2 makes more infrequent patterns than x1.

Proof: Due to the definition 5, the proposition holds.

Proposition 2: If σ (x1) <σ (x2), then x1 makes more infrequent patterns than x2.

Proof: Let T be a transaction in D, x1, x2, y∈I. Let P(x) be the probability that x
occurs in T. Let P(xy) denote the probability that both x and y occur in T. Since σ (x1)

<σ (x2), so P(x1)<P(x2). Because P(xy)=P(x)*P(y), so P(x1y)<P(x2y), then σ (x1y)

<σ (x2y). This implies that x1 makes more infrequent patterns than x2.

Theorem 3: Let P be maximal frequent pattern in the sub-tree rooted with node
node(head,tail). If P=head� tail, then all nodes in this sub-tree are frequent.

Proof: In terms of the extending process, for any node son-node in the sub-tree rooted
with node, son-node ⊆ head� tail holds. Since P=head� tail, we have son-
node ⊆ P. As P is frequent, so son-node is frequent.

Definition 6: (equivalence relation)
Let P be a set. An equivalence relation on P is a binary relation ≡ such that for all X,
Y, Z ∈ P, the relation is:
1) Reflexive: X ≡ X.
2) Symmetric: X ≡ Y implies Y ≡ X.
3) Transitive: X ≡ Y and Y ≡ Z, implies X ≡ Z.

Definition 7: (equivalence class)

244 H. Wang et al.

The equivalence relation partitions the set P into disjoint subsets called equivalence
classes. The equivalence class of an element X ∈ P is given as
[X]={Y|Y∈P ∧ X ≡ Y}.

Define a function p: P(I)×N� P(I) where p(X, k) = X[1:k], the k length prefix
of X.

Definition 8: (prefix-based equivalence relation)
Define an equivalence relation θk on the lattice P(I) as follows: ∀ X,Y∈ P(I), X θk Y
⇔ p(X, k) = p(Y, k). That is, two patterns are in the same class if they share a

common k length prefix. We therefore call θk a prefix-based equivalence relation.

Definition 9: (equivalence class weight)
Let [x] denote an equivalence class on F2, based on equivalence relation θ1 , m be the

number of class [x], ω (x) denote the weight of class [x], ω (x)= ∑
∈][}{}{:

)(
xyxy

y
�

λ /m.

3 MinMax: An Efficient Serial Algorithm

MinMax is an iterative algorithm based on a depth-first traversal over the search tree
rooted with F1 and returns the exact set of M. The basic idea of MinMax is to find out
maximal frequent patterns as soon as possible and to use them to prune away the non-
maximal frequent patterns which have superset in M. It has a stack keeping search
trace and performs multiple level backtrack pruning (see line 7). Initially, F1 was

sorted by λ ↓ σ�↑ according to propositions 1 and 2. It makes head with smaller
tail and gets to a maximal frequent pattern much faster. MinMax also uses pruning
strategies based on theorems 1(see line 6) and 2(see line 5) to make the process more
efficiently.

MinMax(F1,M)/* MinMax outputs the set of all the maximal frequent patterns M, F1
was the input */

1. sort F1 by λ ↓ σ�↑ ;

2. stack P was initialized as (∅ ,F1,0);
3. select the most left item ai in tail which flagbits(ai) is 0;
4. current_head ← P.head� {ai};

5. current_tail:={y|y∈P.tail ∧ y>ai ∧ current_head� {y} is frequent};

6. if current_head� current_tail has a superset in M then flagbits(ai) ← 1; goto 3
else goto 7

7. if current_tail== ∅ and current_head has no superset in M then

M=M� current_head; backtrack to the oldest ancestor which

head� tail==current_head; flagbits(ai) ← 1; goto 3

8. if current_tail ≠ ∅ then push (current_head, current_tail, 0); goto 3

Parallel Algorithm for Mining Maximal Frequent Patterns 245

9. if all the flagbits==1 then x0 ← the last item in P.head; pop; flagbits(x0) ← 1;
goto 3

10. if the stack P’s end status is arrived then return M.
End

4 Par-MinMax: Algorithm Design and Implementation

The new algorithm Par-MinMax overcomes the shortcomings of the Count and
Candidate Distribution algorithms. It utilizes the aggregate memory of the system by
partitioning the patterns into disjoint sets, which are assigned to different processors.
The dependence among the processors is decoupled right in the beginning. Since each
processor can proceed independently, there is no costly synchronization. Furthermore
the new algorithm uses the vertical database layout which clusters all relevant
information in an pattern's tid-list. Each processor computes all the frequent patterns
from one class before proceeding to the next. The local database partition is scanned
only once. As the pattern size increases, the size of the tid-list decreases, resulting in
very fast intersections.

There are three distinct phases in the algorithms. The initialization phase,
responsible for scheduling equivalence classes and distributing related tid-lists among
the processors; the asynchronous phase, which generates local maximal frequent
patterns, and the final reduction phase, which kicks out all the local maximal but not
maximal frequent patterns in global. The more detail is as following:

(1) Equivalence Class Generating and Scheduling: We first partition F2 into
equivalence classes by θ1, then computer each class’s weight by definition 9,
and sort the classes on the weights. We use a greedy algorithm to schedule the
classes among the processors by assigning each class in turn to the least loaded
processor at that point.

(2) Database Repartitioning: Database was partitioned roughly equal among
processors. To minimize communication and make each processor work
independently, each processor scans the item tid-lists in its local database
partition and writes it to a transmit region which is mapped for receive on
other processors. The other processors extract the tid-list from the receive
region if it belongs to any class assigned to them.

(3) Asynchronous Mining: At the end of the initialization step, the relevant tid-
lists are available locally on each host, thus each processor can independently
generate the maximal frequent patterns from its assigned classes eliminating
the need for synchronization with other processors. Each class is processed in
its entirety before moving on to the next class in the schedule.

(4) Final Post-processing: Since the results by each processor might be local
maximal but not global maximal frequent patterns, so the non-maximal
frequent patterns will be killed in the final post-processing.

246 H. Wang et al.

The new algorithm Par-MinMax is described as follows:

Par-MinMax(F1,M)/* Par-MinMax outputs all the maximal frequent patterns, F1 is
the input */
/* Initialization phase */
Generate independent classes from F2 by θ1;
Schedule the classes among the processors on the weight of each class, by
definition 9.
Scan local database partition ; Transmit relevant tid-lists to other processors; Receive
tid-lists from other processors;
/* Asynchronous Phase */
for each processor Pi:
for each assigned class [x]:
Y={y|{x}� {y}∈[x]};
MinMax(Y,Mi);
/* Final post-process Phase */
Aggregate Results and kick out all the non-maximal patterns and Output M
End

Table 1. The synthetic databases

Database T I D D1 D2 D4 D6
T10.I4.D2084K 10 4 2,084,000 91MB 182MB 364MB 546MB
T15.I4.D1471K 15 4 1,471,000 93MB 186MB 372MB 558MB
T20.I6.D1137K 20 6 1,137,000 92MB 184MB 368MB 552MB

Table 2. Speedup experiments

Number of processors T10.I4.D2084
K

T15.I4.D1471K T20.I6.D1137K

1 144 315 810
2 81 225 495
4 72 180 360
8 54 135 262

Table 3. Sizeup experiments

r T10.I4.D2084K T15.I4.D1471K T20.I6.D1137K
1 20 40 80
2 35 60 150
4 72 180 360
6 158 320 700

Parallel Algorithm for Mining Maximal Frequent Patterns 247

5 Experimental Results

We implemented the algorithms on Dawn 3000 with 3 hosts, each host has 4
processors shared 2GB RAM, 9GB hard disk, each processor has the CPU 375MHz,
by several synthetic datasets. It shows that our parallel algorithm Par-MinMax is well
scalable in speedup and in sizeup.

We use the synthetic databases shown in table 1 to test our algorithm. Where T
denotes the average transaction size , I the average maximal potentially frequent
pattern size, Dr the number of transactions , where r is the replication factor. For r = 1,
all the databases are roughly 90MB in size. In speedup experiments, r=4. In sizeup
experiments, the number of processors is 4. The speedup and sizeup experiment
results are shown in table 2 and table 3 respectively. It shows that the speedup and
sizeup are nearly linear.

6 Conclusions

In this paper we proposed a new parallel algorithm Par-MinMax for mining maximal
frequent patterns. The algorithm uses the prefix-based decomposition technique, and
the multiple level backtrack pruning strategy. The set of independent classes is
scheduled among the processors, and the database is also selectively replicated so that
the portion of the database needed for the computation of frequency is local to each
processor. After the initial setup phase the algorithm does not need any further
communication or synchronization. We implemented the algorithms on Dawn 3000
by several synthetic datasets. It shows that our parallel algorithm Par-MinMax is well
scalable in speedup and in sizeup. Naturally, the load balance schema used by most
parallel mining algorithms are static, our current research is directed to applying
dynamic load balance schema to our algorithm, it would be hopeful to achieve better
performance.

References

1. R.Agrawal, H.Mannila, R.Srikant, H.Toivonen and A.I. Verkamo: Fast Discovery of
Association Rules. Advances in Knowledge Discovery and Data Mining, Chapter 12,
AAAI/MIT Press, 1995.

2. R. J. Bayardo Jr.. Efficiently Mining Long Patterns from Databases. Proc. of the ACM
SIGMOD Conference on Management of Data, Seattle, pages 85-93, June 1998.

3. D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: a maximal frequent itemset algorithm
for transactional databases. In Intl. Conf. on Data Engineering, Apr. 2001.

4. K. Gouda, M. J. Zaki. Efficiently Mining Maximal Frequent Itemsets. In 1st IEEE Intl.
Conf. On data mining, Nov. 2001.

5. R. Agrawal and J. Shafer, Parallel Mining of Association Rules, IEEE Trans. on
Knowledge and Data Engg., 8(6):962–969, December 1996.

6. M.J.Zaki, S. Parthasarathy, M. Ogihara, and W. Li, New parallel algorithms for fast
discovery of association rules, Data Mining and Knowledge Discovery: An International
Journal, 1(4):343–373, December 1997.

248 H. Wang et al.

7. M.J.Zaki: Parallel and Distributed Association Mining: A Survey, IEEE Concurrency,
Vol.7, No.4, pp.14–25, 1999.

8. Ruoming Jin and Gagan Agrawal. Shared Memory Parallelization of Data Mining
Algorithms: Techniques, Programming Interface, and Performance. In Proceedings of the
second SIAM conference on Data Mining, April 2002.

9. Srinivasan Parthasarathy, Mohammed Zaki, Mitsunori Ogihara, Wei Li, Parallel Data
Mining for Association Rules on Shared-memory Systems, in Knowledge and Information
Systems, Volume 3, Number 1, pp 1–29, Feb 2001.

10. Karlton Sequeira, Mohammed J. Zaki, ADMIT: Anomaly-base Data Mining for Intrusions,
8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
July 2002.

11. H.Wang, Q.Li, A Maximal Frequent Itemset Algorithm, Lecture Notes in Computer
Science 2639, May 2003.

	Introduction
	Problem Statement
	MinMax: An Efficient Serial Algorithm
	Par-MinMax: Algorithm Design and Implementation
	Experimental Results
	Conclusions

