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Abstract. We present a novel and powerful parallel algorithm for mining 
maximal frequent patterns, called Par-MinMax. It decomposes the search space 
by prefix-based equivalence classes, distributes work among the processors and 
selectively duplicates databases in such a way that each processor can compute 
the maximal frequent patterns independently. It utilizes multiple level backtrack 
pruning strategy and other novel pruning strategies, along with vertical database 
format, counting frequency by simple tid-list intersection operation.  These 
techniques eliminate the need for synchronization, drastically cutting down the 
I/O overhead. The analysis and experimental results demonstrate the superb 
efficiency of our approach in comparison with the existing work. 

1   Introduction 

Mining frequent patterns is to discover all frequent patterns in a given database. It 
comprises the core of several data mining algorithms such as association rule mining 
and sequence mining, and dominates the running time of those algorithms. It has been 
shown to have an exponential worst case running time in the number of items, 
therefore much research [1,2,3,4] has been devoted to increasing the efficiency of the 
task.  

Since both the data size and the computational costs are large, parallel algorithms 
have been studied extensively. Frequent pattern discovery has become a challenge for 
parallel programming since it is a highly complex operation on huge datasets 
demanding efficient and scalable algorithms. Most previous parallel algorithms 
[5,6,7,8,9,10] use complicated hash structures, make repeated passes over the 
database partition, have to exchange the partial results among all the processors 
during each iteration, resulting in additional maintaining overhead, high I/O overhead, 
expensive communication and synchronization cost.  
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We present a novel and powerful parallel algorithm for mining maximal frequent 
patterns, called Par-MinMax, which is based on its serial version MinMax[11]. The 
new algorithm decomposes the original search space into smaller pieces by prefix-
based equivalence classes, schedules classes among processors by the weights, 
distributes work among the processors and selectively duplicates databases in such a 
way that each processor can compute the frequent patterns independently. It uses 
depth-first search and a novel multiple level backtrack pruning strategy[11] and other 
powerful pruning strategies, along with vertical tid-list database format, counting 
frequency by simple tid-list intersection operation.  These techniques eliminate the 
need for synchronization, drastically cutting down the I/O overhead. The analysis and 
experimental results demonstrate the superb efficiency of our approach in comparison 
with the previous work. 

The rest of this paper is organized as follows: In section 2 we describe the 
maximal frequent pattern problem. The serial version MinMax is briefly described in 
Section 3. Section 4 describes our new algorithm Par-MinMax. We show the 
experimental results in section 5. The conclusions are in section 6. 

2   Problem Statement 

The problem of mining maximal frequent patterns is formally stated by definitions 1-
4 and theorems 1-2. To describe our algorithm clearly, definition 5-9, propositions 1-2 
and theorem 3 are given in this paper. 

Let I={i1,i2,……,im} be a set of m distinct items. Let D denote a database of 
transactions where each transaction has a unique identifier (tid) and contains a set of 
items.  

Definition 1: (pattern) 
A set X ⊆ I is called a pattern (an itemset). A pattern with k items is called a k-pattern.  

Definition 2: (pattern’s frequency σ ) 

The frequency of a pattern X, denoted by σ (X), is defined as the number of 
transactions in which the pattern occurs as a subset, called the support of the pattern. 

With the vertical database layout, the database is comprised by items with 
corresponding tid-lists.  

Let x∈I, tid-list(x)={ti| x appeared in ti }. σ (x)=|tid-list(x)|. Let X ⊆ I, 

X={x1,x2,……,xk}, σ (X)=| �
Xxi

xilisttid
∈

− )( |. 

Definition 3: (frequent pattern) 

Let ε  be the threshold minimum frequency value specified by user. If σ (X) ≥ ε , X 
is called a frequent pattern. The frequent 1-pattern is called a frequent item. The set of 
all the frequent k-patterns in D is denoted by Fk. 

Definition 4: (maximal frequent pattern) 

If σ (X) ≥ ε ∧ ¬∃Y(Y ⊃ X) ∧ �σ (Y) ≥ ε , we say X is a maximal frequent pattern. 
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Let F={X | X ⊆ I ∧ σ (X) ≥ ε }, M={X | X ∈F ∧ ¬∃Y (Y ⊃ X) ∧  Y ∈F }, so 
M ⊆ F. Since a maximal frequent m-pattern includes 2m frequent patterns, |M|<<|F|. 
Given a threshold minimum frequency valueε  and a database D, the mining goal is 
to find F from D. Since the maximal frequent patterns contain all the frequent ones, it 
is wise to compute M instead of F. 

It is profitable to view the frequency mining as a search problem. Each node in 
search space is composed of two parts: head and tail. In the initial status, the only 
node is root where head= ∅ and tail=F1. The number of items in node’s tail is the 
number of nodes in the next level that the node node can be frequently extended. Let 
node’s tail={a1,a2,……,an}, where head� {ai} is frequent, i=1, 2, …, n, then node 

(head, tail) can be extended n nodes: head� {ai}, {ai+1, ai+2, ……, an}, i=1,2,……,n. 

The goal is to find all the heads. We use head� tail to represent the node itself. 
According to definition 3, the following theorems hold. 

Theorem 1: Any sub_patterns of a frequent pattern are frequent. 

Theorem 2: Any super_patterns of an infrequent pattern are infrequent. 

Definition 5: (item’s infrequency λ ) 

A frequent item x’s infrequency λ is defined as the number of infrequent 2-patterns it 
makes.  

λ (x) = | {y | y∈F1 ∧  x∈F1 ∧ σ ({x,y}) <ε } | 

Proposition 1: If λ (x1) > λ (x2), then x2 makes more infrequent patterns than x1. 

Proof: Due to the definition 5, the proposition holds. 

Proposition 2: If σ (x1) <σ (x2), then x1 makes more infrequent patterns than x2. 

Proof: Let T be a transaction in D, x1, x2, y∈I. Let P(x) be the probability that x 
occurs in T. Let P(xy) denote the probability that both x and y occur in T. Since σ (x1) 

<σ (x2), so P(x1)<P(x2). Because P(xy)=P(x)*P(y), so P(x1y)<P(x2y), then σ (x1y) 

<σ  (x2y). This implies that x1 makes more infrequent patterns than x2.  

Theorem 3: Let P be maximal frequent pattern in the sub-tree rooted with node 
node(head,tail). If P=head� tail, then all nodes in this sub-tree are frequent. 

Proof: In terms of the extending process, for any node son-node in the sub-tree rooted 
with node, son-node ⊆  head� tail holds. Since P=head� tail, we have son-
node ⊆ P. As P is frequent, so son-node is frequent. 

Definition 6: (equivalence relation) 
Let P be a set. An equivalence relation on P is a binary relation ≡  such that for all X, 
Y, Z ∈  P, the relation is:  
1) Reflexive: X ≡  X.  
2) Symmetric: X ≡  Y implies Y ≡ X.  
3) Transitive: X ≡ Y and Y ≡  Z, implies X ≡  Z.  

Definition 7: (equivalence class) 
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The equivalence relation partitions the set P into disjoint subsets called equivalence 
classes. The equivalence class of an element X ∈  P is given as 
[X]={Y|Y∈P ∧ X ≡ Y}.  

Define a function p: P(I)×N� P(I) where p(X, k) = X[1:k], the k length prefix 
of X.  

Definition 8: (prefix-based equivalence relation) 
Define an equivalence relation θk on the lattice P(I) as follows: ∀ X,Y∈  P(I), X θk Y 
⇔ p(X, k) = p(Y, k). That is, two patterns are in the same class if they share a 

common k length prefix. We therefore call θk a prefix-based equivalence relation.  

Definition 9: (equivalence class weight) 
Let [x] denote an equivalence class on F2, based on equivalence relation θ1 , m be the 

number of class [x], ω (x) denote the weight of class [x], ω (x)= ∑
∈ ][}{}{:

)(
xyxy

y
�

λ /m. 

3   MinMax: An Efficient Serial Algorithm 

MinMax is an iterative algorithm based on a depth-first traversal over the search tree 
rooted with F1 and returns the exact set of M. The basic idea of MinMax is to find out  
maximal frequent patterns as soon as possible and to use them to prune away the non-
maximal frequent patterns which have superset in M. It has a stack keeping search 
trace and performs multiple level backtrack pruning (see line 7). Initially, F1 was 

sorted by λ ↓ σ�↑  according to propositions 1 and 2. It makes head with smaller 
tail and gets to a maximal frequent pattern much faster. MinMax also uses pruning 
strategies based on theorems 1(see line 6) and 2(see line 5) to make the process more 
efficiently. 

MinMax(F1,M)/* MinMax outputs the set of all the maximal frequent patterns M, F1 
was the input */ 

1. sort F1 by λ ↓ σ�↑ ; 

2. stack P was initialized as ( ∅ ,F1,0); 
3. select the most left item ai in tail which flagbits(ai) is 0; 
4. current_head ← P.head� {ai}; 

5. current_tail:={y|y∈P.tail ∧ y>ai ∧ current_head� {y} is frequent}; 

6. if current_head� current_tail has a superset in M then flagbits(ai) ← 1; goto 3 
else goto 7 

7. if current_tail== ∅  and current_head has no superset in M then 

M=M� current_head; backtrack to the oldest ancestor which 

head� tail==current_head; flagbits(ai) ← 1; goto 3 

8. if current_tail ≠ ∅  then push (current_head, current_tail, 0); goto 3 
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9. if all the flagbits==1 then x0 ← the last item in P.head; pop; flagbits(x0) ← 1; 
goto 3 

10. if the stack P’s end status is arrived then return M. 
End 

4   Par-MinMax: Algorithm Design and Implementation 

The new algorithm Par-MinMax overcomes the shortcomings of the Count and 
Candidate Distribution algorithms. It utilizes the aggregate memory of the system by 
partitioning the patterns into disjoint sets, which are assigned to different processors. 
The dependence among the processors is decoupled right in the beginning. Since each 
processor can proceed independently, there is no costly synchronization. Furthermore 
the new algorithm uses the vertical database layout which clusters all relevant 
information in an pattern's tid-list. Each processor computes all the frequent patterns 
from one class before proceeding to the next. The local database partition is scanned 
only once. As the pattern size increases, the size of the tid-list decreases, resulting in 
very fast intersections.  

There are three distinct phases in the algorithms. The initialization phase, 
responsible for scheduling equivalence classes and distributing related tid-lists among 
the processors; the asynchronous phase, which generates local maximal frequent 
patterns, and the final reduction phase, which kicks out all the local maximal but not 
maximal frequent patterns in global. The more detail is as following: 

(1) Equivalence Class Generating and Scheduling: We first partition F2 into 
equivalence classes by θ1, then computer each class’s weight by definition 9, 
and sort the classes on the weights. We use a greedy algorithm to schedule the 
classes among the processors by assigning each class in turn to the least loaded 
processor at that point.  

(2) Database Repartitioning: Database was partitioned roughly equal among 
processors. To minimize communication and make each processor  work 
independently, each processor scans the item tid-lists in its local database 
partition and writes it to a transmit region which is mapped for receive on 
other processors. The other processors extract the tid-list from the receive 
region if it belongs to any class assigned to them. 

(3) Asynchronous Mining: At the end of the initialization step, the relevant tid-
lists are available locally on each host, thus each processor can independently 
generate the maximal frequent patterns from its assigned classes eliminating 
the need for synchronization with other processors. Each class is processed in 
its entirety before moving on to the next class in the schedule.  

(4) Final Post-processing: Since the results by each processor might be local 
maximal but not global maximal frequent patterns, so the non-maximal 
frequent patterns will be killed in the final post-processing. 
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The new algorithm Par-MinMax is described as follows: 

Par-MinMax(F1,M)/* Par-MinMax outputs all the maximal frequent patterns, F1 is 
the input */ 
/* Initialization phase */ 
Generate independent classes from F2 by θ1; 
Schedule the classes among the processors on the weight of each class, by 
definition 9. 
Scan local database partition ; Transmit relevant tid-lists to other processors; Receive 
tid-lists from other processors;  
/* Asynchronous Phase */  
for each processor Pi: 
for each assigned class [x]: 
Y={y|{x}� {y}∈[x]}; 
MinMax(Y,Mi); 
/* Final post-process Phase */  
Aggregate Results and kick out all the non-maximal patterns and Output M 
End  

Table 1. The synthetic databases 

Database T I D D1 D2 D4 D6 
T10.I4.D2084K 10 4 2,084,000 91MB 182MB 364MB 546MB 
T15.I4.D1471K 15 4 1,471,000 93MB 186MB 372MB 558MB 
T20.I6.D1137K 20 6 1,137,000 92MB 184MB 368MB 552MB 

Table 2. Speedup experiments 

Number of processors T10.I4.D2084
K 

T15.I4.D1471K T20.I6.D1137K 

1 144 315 810 
2 81 225 495 
4 72 180 360 
8 54 135 262 

Table 3. Sizeup experiments 

r T10.I4.D2084K T15.I4.D1471K T20.I6.D1137K 
1 20 40 80 
2 35 60 150 
4 72 180 360 
6 158 320 700 
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5   Experimental Results 

We implemented the algorithms on Dawn 3000 with 3 hosts, each host has 4 
processors shared 2GB RAM, 9GB hard disk, each processor has the CPU 375MHz, 
by several synthetic datasets. It shows that our parallel algorithm Par-MinMax is well 
scalable in speedup and in sizeup.  

We use the synthetic databases shown in table 1 to test our algorithm. Where T 
denotes the average transaction size , I the average maximal potentially frequent 
pattern size, Dr the number of transactions , where r is the replication factor. For r = 1, 
all the databases are roughly 90MB in size. In speedup experiments, r=4. In sizeup 
experiments, the number of processors is 4. The speedup and sizeup experiment 
results are shown in table 2 and table 3 respectively. It shows that the speedup and 
sizeup are nearly linear. 

6   Conclusions 

In this paper we proposed a new parallel algorithm Par-MinMax for mining maximal 
frequent patterns. The algorithm uses the prefix-based decomposition technique, and 
the multiple level backtrack pruning strategy. The set of independent classes is 
scheduled among the processors, and the database is also selectively replicated so that 
the portion of the database needed for the computation of  frequency is local to each 
processor. After the initial setup phase the algorithm does not need any further 
communication or synchronization. We implemented the algorithms on Dawn 3000 
by several synthetic datasets. It shows that our parallel algorithm Par-MinMax is well 
scalable in speedup and in sizeup. Naturally, the load balance schema used by most 
parallel mining algorithms are static, our current research is directed to applying 
dynamic load balance schema to our algorithm, it would be hopeful to achieve better 
performance. 
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