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Abstract. This paper analyses the uncertainty in the estimation of
shape from motion and stereo. It is shown that there are computational
limitations of a statistical nature that previously have not been recog-
nized. Because there is noise in all the input parameters, we cannot
avoid bias. The analysis rests on a new constraint which relates image
lines and rotation to shape. Because the human visual system has to
cope with bias as well, it makes errors. This explains the underestima-
tion of slant found in computational and psychophysical experiments,
and demonstrated here for an illusory display. We discuss properties of
the best known estimators with regard to the problem, as well as possible
avenues for visual systems to deal with the bias.

1 Introduction

At the apogee of visual recovery are shape models of the scene. Cues such as
motion, texture, shading, and contours encode information about the scene sur-
faces. By inverting the image formation process (optical and geometrical) it is
possible to recover three dimensional information about the scene in view. How-
ever, despite tremendous progress there are still many difficulties. For the case of
reconstruction of structure from multiple views, and even when the 3D viewing
geometry is estimated correctly, the shape often is incorrect.

Why? Is there some fundamental reason that this happens, or is it due to
the inadequacy and lack of sophistication of our computational models? The
literature in psychophysics reports that humans also experience difficulties in
computing 3D shape and this has been demonstrated by many experiments.
For a variety of conditions and from a number of cues the mis-estimation is an
underestimation of slant. For example, planar surface patches estimated from
texture [6], contour, stereopsis, and motion of various parameters [I1] have been
found to be estimated with smaller slant, that is, closer in orientation to a front-
parallel plane than they actual are.

In this paper we investigate the problem of 3D shape estimation from multi-
ple views (motion and stereo). We show that there exist inherent computational
limitations. These result from the well known statistical dilemma. Shape recov-
ery processes are estimation processes. But because there is noise in the image
data, and because the complexity of the visual computations does not allow to
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accurately estimate the noise parameters, there is bias in the estimation. Thus,
we find, that one of the reasons for inaccuracy in shape estimation, is systematic
error, i.e. bias.

The paper accomplishes three things. (a) We introduce a new constraint for
shape from multiple views (motion and stereo) which relates shape and rotation
to image lines. Why image lines (i.e. edges)? Because shape (i.e. surface normals)
change only with rotation and there is a natural way to deal with the rotation of
projected lines. The new constraint makes it possible to: (b) provide a statistical
analysis of shape from motion, which reveals an underestimation of slant as ex-
perienced by humans and by most programs. An understanding of the bias allows
us to create displays that give rise to illusory erroneous depth perception. Since
we understand the parameters involved in the bias we can set them such that the
bias is very large causing mis-perception. (¢) We discuss and implement the sta-
tistical procedures which are best for shape estimation. We found that we only
can slightly reduce the bias. The theoretically best thing to do is to partially cor-
rect for the bias. We then suggest how we may do better in structure from motion.

2 Overview and the Main Concepts

The idea underlying the statistical analysis is simple. The constraints in the
recovery of shape can be formulated as linear equations in the unknown pa-
rameters. Thus the problem is reduced to finding the “best” solution to an
over-determined equation system of the form A’v’ = b’ where A’ € RVN*K and
b € RN*! and N > K. The observations A’ and b’ are always corrupted by the
errors, and in addition there is system error. We are dealing with what is called
the errors-in-variable (EIV) model in statistical regression, which is defined as:

Definition 1. (Errors-In-Variable Model)

b=Au-+e¢
b =b+6
A/:A—F(SA

u are the true but unknown parameters. A" and b’ are observations of the true
but unknown values A and b. §4,0p are the measurement errors and € is the
system error which exists if A and b are not perfect related.

The most common choice to solving the system is by means of LS (least
squares) estimation. However, it is well known, that the LS estimator w;, whose
solution is characterized by u; = (AT A’)~LA’TY | generally is biased [12].

Consider the simple case where all elements in 64 and §, are i.i.d random
variables with zero mean and variance 2. Then

lim E(u; —u) = —o?( lim (lATA))_lu, (1)

n— 00 n—oo N

which implies that wu; is asymptotically biased. Large variance in 64, ill-
conditioned A or an w which is oriented close to the eigenvector of the smallest
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singular value of A all could increase the bias and push the LS solution
away from the real solution. Generally it leads to an underestimation of the
parameters.

Using the bias from least squares we analyze in Sections ] the estimation
of shape from motion and extend the analysis in Section Ml to stereo. Section
Bl describes other properties of other estimators with respect to our problem.
Section [6] shows experiments, and Section [[lsummarizes the study and discusses
possible avenues to deal with the bias.

Some previous studies analysed the statistics of visual processes. In particu-
lar, bias was shown for 2D feature estimation [3] and optical flow [10].

In [8] bias was discussed for a number of visual recovery processes, and some
studies analysed the statistics of structure from motion [1J2]. However, these
analyses stayed at the general level of parameter estimation; no one has shown
before the effects on the estimated shape.

Shape from motion, or in general shape from multiple views is an active
research area, and many research groups are involved in extracting 3D models
on the basis of multiple view geometry [7]. The theory proceeds by first solving
for camera geometry (where are the cameras?). After the cameras are placed,
the structure of the scene is obtained by extending the lines from the camera
centers to corresponding features; their intersections provide points in 3D space
which make up a 3D model.

Thus, the structure of the scene requires both the translation and the rotation
between views. But the structure can be viewed as consisting of two components:
(a) the shape, i.e. the normals to the surface and (b) the (scaled) depth. It is quite
simple to show that shape depends only on the rotation between two views, while
depth depends also on the translation. This new constraint, which is explained
next, allows us to perform an uncertainty analysis of the estimation of shape
from motion and deduce the underestimation of slant.

3 Shape from Motion

3.1 Formulation of the Constraint

Consider the scene to be a textured plane with surface normal n. The texture is
described by the lines on the plane. A line L in 3d space is described by Pliicker
coordinates L = (Lg, L,,), where

Ly =P — Py;
Lm:LdXP:PQX.Pl.

for any points P, Py, P, on the line. L, denotes the direction of the line in space,
and L,, its moment. Ly and L,, are perpendicular, that is Ly - L,, = 0. The
projection of the 3D line L on the image is just L,, and normalized to have the

third coordinate 1, it is:
1

g:
2Ly,

Ly,
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Fig. 1. Two views of a planar patch containing a line.

Let us first describe the intuition: The camera undergoes a rigid motion
described by a translation vector T" and a rotation matrix R, as shown in Fig.
[ Let subscripts ; and 5 denote quantities at time instances ¢; and ¢,. Using
projective coordinates [; and ls represent the normals to the planes defined by
the camera centers (O; and O2) and the projections of a line L in space on the
images. L is the intersection of these two planes. Thus the crossproduct of /; and
l5 is parallel to L. Writing this equation in the first coordinate system, we obtain

I x RTly = kL (2)

with k a scalar. (Note: We can find using rotation only a line parallel to L, but
not the line L. To find L we need translation.) The immediate consequence is
that from two corresponding lines in two views we can find the shape of the patch
containing the lines. Since L4 is perpendicular to the surface normal, n, we obtain

(I x RT1y) -n=0.

We model here differential motion, that is a point in space has velocity P=
t +w X P, in which case we have that
Ldzpl—szwX (Pl—PQ):wad
Lm:PQXP1+P2XP1:tXLd+wXLm

Hence . . .
: Ly ELp Ly, 1 ZLm
C=<L. "L, 3L, L, X FRatwxf4 el
and the constraint in (2) takes the form
: t-¢
£x (€ — 0) = Lg. 3
X (f—wx0) = 1L 3)

Thus, if the 3D line is on the plane with normal vector n, its image ¢ must
obey the following constraint

n-Ux(—wxl)=0 or (4)
n-e=0 (5)
with e = (£ x ({ —w x £))
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3.2 Error Analysis

Let n = (n1,n9,1) be the surface normal, and let {¢; = (a;,b;,1)} denote the
lines on the plane, and {Zl = (di,i)i,O)} denote the motion parameters of the
lines ¢;. We estimate the orientation of the plane using LS estimation.

From (B) we know, that n in the ideal case should satisfy equation,

(erea)- (1) = ea (6)

N2

where .
e1, = —b; + (= (1 + b?)w; + a;bjws + a;ws)

i

ey, = a; + (aibiwl — (1 + af)wz + ble)

i

€3, = (azbz - bzaz) + (a,wl + bjwoy — (Cll2 =+ b?)w?,)

i

There is noise in the measurements of the line locations and the measure-
ments of line motion. For simplicity of notation, let us ignore here the error
in the estimates of the rotation parameters. Throughout the paper let primed
letters denote estimates, unprimed letters denote real values, and ¢’s denote the
errors. That is, da; = a — a; and 61'% = b; — i)i with expected value 0, variance
82; 6a; = al — a; and §b; = b, — b; with expected value 0 and variance J5. Then
we have

(€1 + der)ny + (e2 + dea)nl, = —(e3 + des).

Let E and 6E denote the N x 2 matrices and G denote the N x 1 matrix as
follows,

E = (€1i7€2i)]\/7 0F = ((561“5621)]\/,

G = (*631.)]\[, 5G = (7563)]\].

Then the estimation ' = (n}, n}) is obtained by solving the equation,
(E+0E)'(E+6FE)u = (E+0E)T (G +6G).

Let M denote ETE. Assuming that the errors are much smaller than the
real values, we develop the LS solution of ' in a Taylor expansion and obtain
as an approximation for the estimate:

6251 Jey;ea, d%ey, €3,
/ 2 -1 ot? ot? 1 ot2
U =u— oty (M i ' u+ M i
Z Z ¢ ( Dey, ez, 62521' + 82€2i63i ’
i tEV a2 o2 at2

where V' is the set of all variables {a;, b;, a;, bz}

For the simplicity of expression, we consider a; and b; to be independent ran-
dom variables which are symmetric with respect to the center of the image coor-
dinate system; in other words, E(a¥) = E(b¥) = 0,k = 1,2. Then with enough
equations, the expected value for the LS solution v’ is well approximated by

Bu')=u— M Y0?D +62F)u — M~ 155H, (7)



410 H. Ji and C. Fermiller

where

N
o NO X o wlbe
D<0 N>’ HWSZ(O afu)g)’

r_ al <4b?w% + w3 + W3 ciwiwe )

— \ ciwiws ciw? + datwi + w3

3

where ¢; = a? + b?

3.3 The Effects on Slant

The slant o is the angle between the surface normal and the negative Z-axis (0°
slant corresponds to a plane parallel to the image plane, 90° slant corresponds
to a plane that contains the optical axis) and the tilt 7 is the angle between
the direction of the projection of the surface normal onto the XY -plane and the
X-axis. Using these coordinates ity = (cosTsino,sinTsino, cos o).

For the case when rotation around the Z-axis can be ignored (i.e, w3 = 0)
equation () simplifies to

E(') = (I —6a)u=(I—M (62D + 62F))u.

Since D and F' are positive definite matrices, so is d 4. And usually the pertur-
bation s are small. Then the eigenvalues of (I — §4) are between zero and one,
which leads to the Rayleigh quotient inequality:

EW)TE)

- < | =6a] < 1.

u-u

Since o = cos (1 + u”'u) is a strictly increasing function, by linear approxima-
tion, we have
E(d') < o,

which shows that slant is underestimated. The degree of underestimation highly
depends on the structure of matrix M; the inverse of M is involved in equation
(@. Thus, the smaller the determinant of matrix M, the larger the bias in the
estimation. The velocity of rotation also contributes to the magnitude of the
bias as can be seen from matrix F'; larger velocity more bias.

We can say more about the dependence of slant estimation on the texture
distribution. Recall from equation (&) that

_(t-0)

3L,

Ld7

Let us consider a slanted plane whose texture only has two major directional
components. Let the directional components be Ly, = (cos Ty sinoy,sin 7 sinoy,
cosoy) and Lg, = (cos T sin o9, sin 72 sin 09, cos 03). Then we have
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2
M = ETE — Zel,; ZeliGZz‘
<Z €1, €2, Z C%i
2

Tl g . o cos? 7 sin T cos Ty
= g ( )* sin® oq 2

2L, sin 7 cos 11 sin“ 1y

N Z( T 2 sin’ oy cos? 7o sin 7 cos T2
zZL sin 7o coS To sin? o
K3

and the determinant det(M) of M amounts to

det(M) = [(% Z(}i)%%(% Z(%)z)% sin oy sin oy sin(r; — 7)]%.

The smaller det(M), the larger the underestimation. Using our model we
can predict the findings from experiments in the psychological literature ([11]).
For example, it has been observed in [11], that an increase in the slant of a
rotating surface causes increased underestimation of the slant. By our formula,
it is easy to see that det(M) has a factor sin(o1) sin(os), where o1 and o4 are the
the angles between the directions of the line in space and the negative Z-axis.
Unless, they are 0 degree, these values decrease with an increase of the slant
of the plane, and this leads to a smaller det(M). Hence, we get a larger error
towards underestimation of the slant.

To demonstrate the predictive power of the model we created two illusory
displays. In the first one, the scene consists of a plane with two textures, one in
the upper half, the other in the lower half. Figure[Za shows the plane when it is
parallel to the screen. The texture in the upper part consists of two line clusters
with slope 8° and 98°. The lower part has two lines clusters with slope 45° and
135°. A video was created for the camera orbiting the sphere along a great circle
in the YZ plane as shown in Figure[Zb — that is the camera translates and rotates
such that it keeps fixating at the center. At the beginning of the motion, the slant
of the plane with respect to the camera is 15°, at the end it is 45°. The image
sequence can be seen in [4]. As can be experienced, it creates the perception of
the plane to be segmented into two parts, with the upper part having a much
smaller slant.

This is predicted by the biases in the different textures. For the upper texture
the bias is much larger, thus producing larger underestimation of the slant, and
the underestimation gets worse as the slant increases. The ratio of the determi-
nants of the upper and lower texture is a good measure. For the given scene it
takes values between 0.08 (for 15° slant) and 0.25. (for 45° slant). In a second
display the plane is divided into multiple segments with two alternating textures.
In every other segment there is large bias, and this gives rise to the perception
of the plane folding as if it were a staircase.
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Fig. 2. (a) The plane in view (b) Scene geometry in the shape from motion demon-
stration.

4 Shape from Stereo

Here we adopt the symmetric stereo setting. That is, the coordinate system is in
between the two cameras whose rotations with respect to this coordinate system
are described by the rotation matrices R and RT. We obtain the linear system

kLy = (Rly) x (RT45)

The transformation between the two views is a translation in the X Z plane and
a rotation around the Y-axis with angle 2¢t. By the same notion as in the previous
section, we have as the prime equation for n = (ny,ne,1): (eq,,es,) - (Zl> =

2
—es,, where

e1, = by, (ag, sint + cost) — (—ag, sint + cost)by,
€9, = —(aq, sint + cost)(ag, cost —sint) — (ay, cost + sint)(ag, sint + cost)
es, = —(aq, cost + sint)by, + (ag, cost — sint)by,

The measurement errors in the line locations are assumed to be i.i.d. with
zero-mean and covariance d2. Let E = (ey,, e2,)n. Under the small baseline as-
sumption and some alignment of the image, we obtain as approximation for the

expected value of the LS solution:
E(')=u—nM"'Fu,
where M = E*E and asymptotically

s, (Glal, +a3 + b1 +05,1)0
— 72\ G(ai +a3,,2t) )’

where G(x,t) = E(x)sin®t + cos?t. By the same arguments as in the case of
shape from motion, the slant is underestimated.
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5 Statistical Alternatives

The statistical model that describes the data in visual estimation processes is
the errors-in-variable model (Definition [l). The main problem with Least squares
(LS) estimation is that it does not consider errors in the explanatory variables,
that is 6 4. The obvious question thus arises: Are there better alternatives that
reduce the bias? Clearly, bias is not the only thing that matters. There is a
trade-off between bias and variance. Generally an estimator correcting for bias
increases the variance while decreasing the bias.

Next we discuss well known approaches from the literature.

CLS (Corrected Least Squares) estimation is the classical way to correct for
the bias. If the variance of the error is known, it gives asymptotically unbiased
estimation. The problem is that accurate estimation of the variance of the error
is a challenging task if the sample size is small. For small amounts of data the
estimation of the variance has high variance itself. Consequently this leads to
higher variance for CLS.

Usually the mean squared error (MSE) is used as a criterion for the perfor-
mance of an estimator. It amounts to the sum of the square of the bias plus
the variance of the estimator. According to this criterion the best linear estima-
tion (linear in b) should be a partial correction using the CLS; the smaller the
variance the larger the correction.

TLS ( Total Least Square). The basic idea underlying this nonlinear tech-
nique [12] is to deal with the errors in A’ and b" symmetrically. If all errors d 4, d
are i.i.d., then TLS estimation is asymptotically unbiased. In the case they are
not, one would need to whiten the data. But this requires the estimation of the
ratio of the error variances d4 and Jp, which is at least as hard as obtaining
the variance of J§,. An incorrect value of the ratio often results in an unaccept-
ably large over correction for the bias. However, the main problem for TLS is
system error. We can have multiple tests to obtain the measurement error, like
re-measuring or re-sampling; but unless we know the exact parameters of the
model, we can’t test the system error.

Resampling techniques, such as bootstrap and Jacknife are useful for esti-
mating the variance, but cannot correct for the bias.

The technique of instrumental variables is an attractive alternative which
deals with the errors in the explanatory variables but does not require the error
variance as a priori. This techniques uses additional variables, the instrumental
variables, which could be additional measurements of the explanatory variables (
multiple edge detections, fitting schemes, and difference operators). If the errors
in the measurements of the two methods can be treated as independent, an
asymptotically unbiased estimator [5] can be created, whose variance is close to
the variance of the CLS estimator.

5.1 Discussion of the Errors in Shape from Motion

The measurements are the line parameters {a;,b;}, and the image motion pa-
rameters of the lines, {a;,b;}. We can expect four types of noise:
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Sensor noise: effects the measurements of image intensity I(x,y,t). It seems
reasonable to approximate the sensor noise as i.i.d.. But we have to consider
dependencies when the images are smoothed.
Fitting error: Estimating the line parameters a;, b; amounts to edge detection.
Clearly there are errors in this process. Longer edgels are associated with smaller
errors and shorter edgels with larger errors.
Discretization Error: Derivatives are computed using difference operators,
which have truncation errors associated with them. The magnitude of the error
depends on the smoothness and the frequency of the texture.
System error: When computing the motion of lines, we assume that the image
intensity is constant between frames. Significant errors occur at specular com-
ponents. We use first order expansions when deriving velocities. Thus, errors are
expected for large local velocities. Furthermore, the modeling of the scene as con-
sisting of planar patches is an approximation to the actual surface of the scene.
Among the errors above, sensor noise has been considered in a number of pa-
pers in structure from motion ([9/I0]). Other errors have hardly been mentioned
or have been simply ignored. But actually other errors could contribute much
more to the error than the sensor noise. Furthermore, the sensor characteris-
tics may stay fixed. But other noise components do not. They change with the
lighting conditions, the physical properties of the scene, and viewing orientation.
Considering all the errors, the errors 6 A4; and db; are due to a number of
different components and cannot be assumed to be independent and identical.
This makes the estimation of the variance unreliable. Thus CLS and TLS are
not useful for correcting the bias. The technique of instrumental variables still
can handle this model. Our experiments showed that this method resulted in
some improvement, although minor.

6 Experiments

We compared the different regression methods for the estimation of slant from
motion using simple textured planes as in the illusory video. TLS estimation
was implemented by assuming all errors to be i.i.d.. CLS was implemented by
assuming the errors in e; and es to be i.i.d.. The variance of the errors was
estimated by the SVD method, that is by taking the smallest singular value
of the matrix [A;b] as the estimation of the variance. In the first bootstrap
methods the samples (ey,, ea;) were bootstrapped, in the second the residuals
€1,n1+eg,n2—es,. For the instrumental variable method we used three differently
sized Gaussian filters to obtain three samples for the image gradients.

We generated data sets of random textures with sparse line elements as in
the videos. In texture set No.1 the lines have dominant directions 10° and 100°;
in texture set No.2 the dominant directions are 45° and 135°. We tested for two
slants, 45° and 60°. The motion in the sequences was only translation, thus there
is nor error due to rotation. The tables below show the average estimated value
of the slant for the four data sets.



Bias in Shape Estimation 415

Experiments with the slant 45°

No.|LS CLS TLS Jack |Boot 1 |[Boot 2 |Inst. Var.
1 |41.8675(37.5327(54.8778|44.4426|43.0787(41.5363|43.0123
39.8156(40.8279(42.7695|39.0638|40.4007(40.1554|41.9675

Experiments with the slant 60°

No.|LS CLS TLS Jack |Boot 1 |Boot 2 |Inst. Var.
1 ]45.7148|46.0307|46.6830(45.9929|46.2710(45.6726(49.3678
2 142.5746|44.4127|43.3031(47.1324|45.5572|42.8377|48.1202

The experiments demonstrate that LS tends to underestimate the parame-
ters. TLS tends to give larger estimates than LS, but sometimes it overestimates
the parameters, that is, it tends to over-correct the bias. CLS corrects the bias
little. The reason could be either that the estimation of the variance is not trust-
able, or that the assumption that the measurement errors are independent is not
correct. The performance of Bootstrap and Jacknife is not much better. The bias
hardly gets corrected. The instrumental variable method seems a bit better than
the other methods, but it still only corrects the bias by a small amount.

7 Conclusions and Discussion: The Key is Not in the
Estimation

This paper analyzed the statistics of shape estimation. We showed that bias is a
serious problem. We analyzed the bias for least squares estimation and we showed
that it predicts the underestimation of slant, which is known from computational
and psychophysical experiments.

One may question that LS estimation is a proper model for human vision. We
discussed and showed experimentally that most elaborate estimators (CLS (un-
less one largely overestimates the variance) Bootstrap, Instrumental Variables)
also have bias which is qualitatively of the same form as the one of LS. Thus
these estimators, too, would lead to an underestimation of slant. TLS, depending
on the ratio of variances, may give the opposite result.

Our analysis of shape from motion was possible because of a new constraint
which relates shape and rotation only to image features. One may argue that
using non-linear techniques we may estimate iteratively the parameters of the
errors as well as the parameters of motion and structure. If we knew the error
model and had a lot of data available, theoretically it would be possible to
correct. However, we usually don’t have enough data to obtain the errors, which
depend on many factors. Furthermore, we don’t know the exact error model.

The question, thus, for computational vision arises: How can we deal with the
bias? Clearly, bias is not confined to shape estimation only. Other processes of
visual reconstruction are estimation processes as well and thus will suffer from
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the same problem. Since better estimation techniques are not the answer, we
have to use the data such that bias does (mostly) not effect the goal, that is
what we want to do with the data. First, we should use the data selectively.
Since we understand how the the different parameters influence the bias, we can
choose data that is not effected much by the bias. For example in computing
shape from motion we can avoid patches with textures corresponding to a badly
conditioned matrix M. Second, we should use when possible, the data globally.
Large amounts of data usually are not directionally biased, and thus the bias in
estimation will be small. For example, when estimating 3D motion from image
motion we should make use of all the data from the whole image. The same ap-
plies to shape estimation. Third, the statistics of structure from motion is easier
for the discrete case than the continuous case, since in the discrete case the errors
in the image measurements are expected to be less correlated. Thus, it is advan-
tageous to estimate shape from views far apart. Of course, using far away views
we run into the difficulty of finding good correspondence. The way to address
structure from motion then is to use continuous motion to obtain a preliminary
estimate of the 3D motion and shape, and subsequently use these estimates to
obtain shape from views far apart. New constraints are needed for this task.
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