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Abstract. This paper examines two players’ turn-based perfect-infor-
mation games played on infinite graphs. Our attention is focused on the
classes of games where winning conditions are boolean combinations of
the following two conditions: (1) the first one states that an infinite play
is won by player 0 if during the play infinitely many different vertices were
visited, (2) the second one is the well known parity condition generalized
to a countable number of priorities.

We show that, in most cases, both players have positional winning
strategies and we characterize their respective winning sets. In the special
case of pushdown graphs, we use these results to show that the sets of
winning positions are regular and we show how to compute them as well
as positional winning strategies in exponential time.

1 Introduction

Two-player games played on graphs have attracted a lot of attention in computer
science. In verification of reactive systems it is natural to see the interactions
between a system and its environment as a two-person game [19, 9], in control
theory the problem of controller synthesis amounts often to finding a winning
strategy in an associated game [1].

Depending on the nature of the examined systems various types of two-player
games are considered. The interactions between players can be turn-based [23, 19]
or concurrent [7, 8], finite like in reachability games or infinite like in parity
or Muller games, the players can have perfect or imperfect information about
the play. Moreover, the transitions may be deterministic or stochastic [6, 8] and
finally the system itself can be finite or infinite.

Another source of diversity comes from players’ objectives, i.e. winning con-
ditions.

Our work has as a framework turn-based perfect information infinite games
on pushdown graphs. The vertices of such graphs correspond to configurations
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of a pushdown automaton and edges are induced by push-down automaton tran-
sitions. The interest in such games comes, at least in part, from practical con-
siderations, pushdown systems can model, to some extent, recursive procedure
calls. On the other hand, pushdown graphs constitute one of the simplest class
of infinite graphs that admit non trivial positive decidability results and since
the seminal paper of Muller and Schupp [14] many other problems are shown to
be decidable for this class [2, 13, 5, 18, 3, 22, 4, 17].

Let us describe briefly a play of such a game. The set of vertices is parti-
tioned into two sets: vertices belonging to player 0 and vertices belonging to his
adversary 1. Initially, a pebble is placed on a vertex. At each turn the owner
of the vertex with the pebble chooses a successor vertex and moves the pebble
onto it. Then the owner of this new vertex proceeds in the same way, and so on.
The successive pebble positions form an infinite path in the graph, this is the
resulting play.

In this framework, different objectives have been studied. Such an objective
is described in general as the set of infinite plays that are winning for player 0,
and it is called a winning condition. A lot of attention has been given to the case
where this set is regular, which gives rise to Müller and parity winning conditions
[23, 22, 19] which lie on the level ∆2 of the Borel hierarchy. However, recently
Cachat et al. [5], presented a new winning condition of Borel complexity Σ3 which
still remains decidable. This Σ3-condition specifies that player 0 wins a play if
there is no vertex visited infinitely often. Yet another condition, unboundedness,
was introduced by Bouquet et al. [3]. The unboundedness condition states that
player 0 wins a play if the corresponding sequence of stack heights is unbounded.
Obviously the conditions of [5] and [3] are tightly related, if no configuration of
the push-down system is visited infinitely often then the stack is unbounded. The
converse can be established as well if the winning strategies are memoryless, i.e.
do not depend on the past.

In this paper, we first transfer the condition of [3] to arbitrary infinite graphs
of finite degree. In the context of arbitrary infinite graphs we examine Exploration
condition which states that a play is won by player 0 if the pebble visits an
infinite number of different vertices. Obviously for the particular case of push-
down graphs this gives the same condition as [3]. In fact we go a step further
and consider the games whose winning conditions are boolean combinations of
Exploration condition and of the classical parity condition. We note respectively
Exp ∪ Parity and Exp ∩ Parity the games obtained by taking the union and the
intersection of Exploration and Parity conditions.

We also consider a particular extension of the classical Parity condition to
the case with an infinite number of priorities and denote it Parity∞ (see also
[11] for another approach to parity games with an infinity of priorities).

We prove the following results in the context of the games over any infinite
graphs:

– Both players have positional winning strategies for the game with the win-
ning condition Exp ∪ Parity, including the case where there is an infinite
number of priorities.
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– In the case where there are finitely many priorities, player 1 has also a
winning positional strategy in the game where the winning condition for
player 0 is of type Exp∩Parity. Moreover, we can easily characterize the set
of winning positions of player 0.

Even if general results concerning winning strategies over arbitrary infinite
graphs are of some interest we are much more interested in decidability results
for the special case of pushdown graphs. In the case where the game graph is a
pushdown graph, we prove for both types of games Exp∪Parity and Exp∩Parity
that the sets of winning configurations (positions) for player 0 (and also for player
1) are regular subsets of QΓ ∗ where Q is the set of states of pushdown system
and Γ is the stack alphabet. We provide also an algorithm for computing a Büchi
automaton with 2O(d2|Q|2+|Γ |) states recognizing those winning sets, where d is
the number of priorities of the underlying parity game and Q and Γ are as
stated above. Moreover, we show that for both games and both players, the
set of winning positional strategies is regular and recognized by an alternating
Büchi automaton. In the case of the Exp ∪ Parityd game, this automaton has
O(d|Q|2 + |Γ |) states whereas in the case of the Exp ∩ Parityd game, it has
O(d2|Q|2 + d|Γ |) states

These results constitute an extension of the results of [5, 3, 22, 18, 20]: The
papers [22, 20, 18] examine only Parity conditions with a finite number of prior-
ities for pushdown games. Bouquet et al. [3] were able to extend the decidability
results to the games with the winning condition of the form Exp ∪ Buchi or
Exp ∩ Buchi, i.e. union and intersections of Büchi condition with Exploration
condition. However this class of conditions is not closed under boolean opera-
tions (intersecting Büchi and co-Büchi conditions with an Exploration condition
is not in this class). In our paper we go even further since we allow boolean com-
binations of Exp conditions with parity conditions. Since parity conditions, after
appropriate transformations, are closed under boolean operations we show in fact
that it is decidable to determine a winner for the smallest class of conditions
containing Exploration and Büchi conditions and closed under finite boolean
operations.

For computing the winning sets and the winning strategies, we make use of
tree automata techniques close to the one originated in the paper of Vardi [20]
and applied in [16, 12]. This is a radical departure from the techniques applied
in [21, 22, 3, 18] which are based on game-reductions.

This paper is organized as follows. In the first part, we introduce some basic
definitions and the notions of Exploration and Parity games. In the second part,
we prove the results concerning the winning strategies for the games Exp ∪
Parity∞ and Exp∩Parity, and make some comments about the Parity∞ game. In
the third part, we describe the construction of automata computing the winning
sets and the winning positional strategies. Due to space limitation, most proofs
are omitted and can be found in the full version [10].
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2 Parity and Exploration Games

In this section, we present basic notions about games and we define different
winning conditions.

2.1 Generalities

The games we study are played on oriented graphs of finite degree, with no
dead-ends, whose vertex set is partitioned between the vertices of player 0 and
the vertices of player 1. Such a graph is called an arena. At the beginning of
a play, a pebble is put on a vertex. During the play, the owner of the vertex
with the pebble moves it to one of the successors vertices. A play is the infinite
path visited by the pebble. A winning condition determines which player is the
winner. Here follows the formal description of these notions.

Notations. Let G = (V, E) be an oriented graph with the set E ⊂ V × V of
edges. Given a vertex v, vE denotes the set of successors of v, vE = {w ∈ V :
(v, w) ∈ E}, whereas Ev is the set of predecessors of v. For a set H ⊆ E of
edges, Dom(H), the domain of H, denotes the set of the vertices adjacent to
edges of H.

Parity Arenas. An arena is a tuple (V, V0, V1, E), where (V, E) is a graph of
finite degree with no dead-ends and (V0, V1) is a partition of V . Let i ∈ {0, 1} be
a player. Vi is the set of vertices of player i. We will often say that G = (V, E)
itself is an arena, when the partition (V0, V1) is obvious. An infinite path in G is
called a play, whereas a finite path in G is called a finite play. When the vertices
of G are labeled with natural numbers with a map φ : V → N, G is said to be a
parity arena.

Winning Conditions and Games. A winning condition determines the winner of
a play. Formally, it is a subset Vic ⊆ V ω of the set of infinite plays. A game is
a couple (G, Vic) made of an arena and a winning condition. Often, when the
arena G is obvious, we will say that Vic itself is a game. A play p ∈ V ω is won
by player 0 if p ∈ Vic. Otherwise, if p �∈ Vic, it is said to be won by player 1.
Vic is said to be concatenation-closed if V ∗ Vic = Vic.

Strategies, Winning Strategies and Winning Sets. Depending on the finite path
followed by the pebble, a strategy allows a player to choose between a restricted
number of successor vertices. Let i ∈ {0, 1} be a player. Formally, a strategy for
player i is a map σ, which associates to any finite play v0 · · · vn such that vn ∈ Vi

a nonempty subset σ(v0...vn) ⊆ vnE. A play p = (vn)n∈N ∈ V ω is said to be
consistent with σ if, for any n such that vn ∈ Vi, vn+1 ∈ σ(v0 · · · vn). Given a
subset X ⊆ V of the vertices, A strategy for player i is said to be winning the
game (G, Vic) on X if any infinite play starting in X and consistent with this
strategy is won by player i. If there exists such a strategy, we say that player i
wins (G, Vic) on X. If X = V , we simply say that i wins (G, Vic). The winning
set of player i is the greatest set of vertices such that i wins Vic on this set.
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Positional Strategies. With certain strategies, the choices advised to the player
depend only on the current vertex. Such a strategy can be simply described by
the set of edges it allows the players to use. σ ⊆ E is a positional strategy for
player i in the arena G if there is no dead-end in the subgraph (Dom(σ), σ)
induced by σ and σ does not restrict the moves of the adversary: if v ∈ V1−i ∩
Dom(σ) then {v}×vE ⊆ σ. Let X ⊆ V be a subset of vertices. If Dom(σ) = X,
σ is said to be defined on X. We say that a player wins positionally a game Vic
on X if he has a positional strategy winning on X.

Subarenas and Traps. Let X ⊆ V be a subset of vertices and F ⊆ E a subset
of edges. G[X] denotes the graph (X, E ∩ X2) and G[X, F ] denotes the graph
(Dom(F ) ∩ X, F ∩ X2). When G[X] or G[X, F ] is an arena, it is said to be a
subarena of G. X is said to be a trap for player i in G if G[X] is a subarena and
player i can’t move outside of X, i.e. ∀v ∈ X ∩ Vi, vE ⊆ X.

2.2 Winning Conditions

Let G = (V, V0, V1, E) be an arena and X ⊆ V . We define various winning
conditions.

Attraction Game to X. Player 0 wins if the pebble visits X at least once. The
corresponding winning condition is Attraction(X) = V ∗XV ω. The winning set
for player 0 is denoted by Att0(G, X) or Att0(X), when G is obvious. Symmetri-
cally, we define Att1(G, X) and Att1(X), the sets of vertices where player 1 can
attract the pebble to X. Note that for this game, both players have positional
winning strategies.

Trap Game and Büchi Game to X. Player 0 wins the trap game in X if the
pebble stays ultimately in X. The winning condition is TrapX = V ∗Xω. The
dual game is the Büchi game to X, where player 0 wins if the pebble visits X
infinitely often. The winning condition is Buchi(X) = (V ∗X)ω.

Exploration Game. This is a game over an infinite graph, where player 0 wins a
play if the pebble visits infinitely many different vertices. The winning condition
is Exp = {v0v1 · · · ∈ V ω | the set {v0, v1, . . .} is infinite}.

The exploration condition is an extension of the Unboundedness condition
introduced in [3]. The Unboundedness condition concerns games played on the
configuration graph of a pushdown system. On such a graph, the set of plays is
exactly the set of runs of the underlying pushdown automaton, and 0 wins a play
if the height of the stack is unbounded, which happens if and only if infinitely
many different configurations of the pushdown automaton are visited.

The exploration condition is also closely related to the Σ3-condition consid-
ered in [5], which states that 0 wins a play if every vertex is visited finitely often.
Notice that such a play is necessarily also winning for the exploration condition,
but the converse is not true. However, given an arena, it is easy to see that
each player has the same positional winning strategies for both games. Since
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the Exploration game is won positionally by both players (cf. Proposition 1), it
implies both games have the same winning positions. Hence, in that sense, the
Explosion game and the Σ3-game introduced in [5] are equivalent.

Parity Game. G is a parity arena equipped with a priority mapping φ : V → N.
Player 0 wins a play if there exists a highest priority visited infinitely often and
this priority is even, or if the sequence of priorities is unbounded. Thus, the
winning condition is

Parity∞ = {(vi)i∈N : lim
i∈N

φ(vi) ∈ {0, 2, . . . , +∞}}

where limi∈N φ(vi) = limi∈N supj≥i φ(vj) denotes the limit sup of the infinite
sequence of visited priorities. If G is labeled by a finite number of priorities, i.e.
if there exists d ∈ N such that φ : V → [0, d], we write also the winning condition
as Parityd. In this case, a classical result [9, 19, 23] states that both players win
this game positionally.

In this section we study the winning strategies for the games Exp∪Parity∞ and
Exp ∩ Parityd. In the case of the game Exp ∪ Parity∞, we show that each player
has a positional strategy, winning on the set of his winning posiitons. Concerning
the game Exp ∩ Parityd, we show that this remains true for player 1, and we
exhibit an arena where no winning strategy of player 0 is positional. However,
we give a characterization of the winning set of player 0.

G is a parity arena equipped with φ : V → N.

Proposition 1. Each player wins positionally the game Exp ∪ Parity∞ on his
winning set.

Proof. It is crucial to observe that Exp ∪ Parity∞ can be expressed as the limit
of a decreasing sequence of winning conditions:

Exp ∪ Parity∞ =
⋂

n∈N

V icn ,

where

V icn = Attraction({n + 1, n + 2, . . .}) ∪ Parity∞ .

Moreover, each game (G, V icn) is won positionally by players 0 and 1 on their
winning sets Xn and V \Xn. It is easy to establish that player 1 wins positionally

3 Playing the Games Exp ∪ Parity∞ and Exp ∩ Parityd

3.1 The Game Exp ∪ Parity∞
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(G,
⋂

n V icn) on
⋃

n V \Xn = V \ ⋂
n Xn. For winning positionally

⋂
n V icn on⋂

n Xn, player 0 can manage to play in such a way that, as long as the pebble
stays in {0, 1, . . . , n}, the play is consistent with a winning strategy for V icn.
Then, if the pebble stays bounded in some set {n, n + 1, . . .}, the play is won for
condition

⋂
m≥n V icm ⊂ Parity∞. If the pebble leaves every set {0, . . . , n}, then

the play visits infinitely many different vertices and the play is won for Exp by
player 0. 
�

Since the Exp game is a special case of the Exp∪Parity∞ game where all the
vertices are labeled with priority 1, we get the following corollary.

Corollary 1. Each player wins positionally the game Exp on his winning set.

A natural question that arises is whether the players have some positional win-
nign strategies for the Parity∞ game. Notice that Exp ⊆ Parity∞ in the special
case where, for every priority d, φ−1(d) is finite. Indeed, any play visiting in-
finitely many different vertices will visit infinitely many different priorities.

Hence, in this special case, by Proposition 1, the game Parity∞ is won posi-
tionally by both players. This is not true anymore if φ−1(d) is infinite for some
d. Consider the example given on Fig. 1. The circles are the vertices of player 0
and the squares those of player 1. Player 0 wins Parity∞ from everywhere but
has no positional winning strategy.

1 1 1 1 ...

0 2 4 6 ...

0 0 0 0 ...

1 3 5 7 ...

Fig. 1. Player 0’s strategy must recall the highest odd vertex reached by player 1 in
the lower row in order to answer with a higher even vertex in the second row

It is interesting to note that if the winning player is determined by the lowest
priority visited infinitely often rather than by the greatest one, then both players
have positional winning strategies, even if infinitely many priorities are assumed
[11].

The analysis of the Exp∩Parityd game extends the results of [23]. In this section,
G is a parity arena equipped with φ : V → [0, d].

3.2 The Game Parity∞

3.3 The Game Exp ∩ Parityd
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Proposition 2. Player 1 wins positionally the game Exp ∩ Parityd on his win-
ning set.

Proof. Without loss of generality, we can assume that player 1 wins everywhere.
The proof is by induction on d.

If d = 0, it is impossible for player 1 to win any play and his winning set
is empty. If d is odd and d �= 0, let W be the attractor for player 1 in the set
of vertices coloured by the maximal odd priority d. Since V \W is a trap for
player 1 coloured from 0 to d − 1, and by inductive hypothesis, player 1 can
win positionally (G[V \W ],Exp ∩ Parityd−1) with some strategy σV \W . To win,
player 1 shall use σV \W inside V \W and shall attract the pebble to a vertex of
colour d when it reaches the set W . That way, either the play stays ultimately
in V \W and some suffix is consistent with σV \W or it reaches the odd priority
d infinitely often. In both cases, player 1 is the winner.

The case where d is even is less trivial. It is easy to prove that there exists
the greatest subarena of G where player 1 wins positionally. It remains to prove
that this subarena coincides with the whole arena. 
�

It may happen that player 0 has a winning strategy from every vertex but
he has no positional winning strategy. Such an example is given by Fig. 2.

1 1 1 12 ...

Fig. 2. To win the Exp ∩ Parity2 game, player 0 has to visit new vertices arbitrarily
far to the right hand side of the arena and has also to visit the unique vertex of color
2 infinitely often

Nevertheless, we can characterize the arenas in which player 0 wins the game
Exp ∩ Parityd from every position:

Proposition 3. Let G = (V, E) be an arena, coloured from 0 to d > 0. Let D
be the set of vertices coloured by d. Player 0 wins the game (G, Exp ∩ Parityd)
on V if and only if there exists a subarena G[W ], coloured from 0 to d − 1 such
that one of the following conditions holds:

• Case d even: Player 0 wins the games (G[W ], Exp∩Parityd−1) and (G, Exp)
everywhere and she wins the game (G, Attraction(D)) on V \W .

• Case d odd: Player 0 wins the game (G, Trap(W )) with a positional strategy
σTrap(W ) and she wins the game (G[W, σTrap(W )], Exp ∩ Parityd−1).

The conditions of Proposition 3 are illustrated on Fig. 3.

Remark 1. Note that winning the game (G[W, σTrap(W )],Exp∩Parityd−1) means
that player 0 has a strategy σW winning the game (G[W ],Exp ∩ Parityd−1)
which advises player 0 to play moves consistent with the positional strategy
σTrap(W).
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Odd Case Even Case

Exploration

Trap in W

Priority d

Priority d

Attraction in d

W W

Fig. 3. Conditions of Proposition 3

Proof. We sketch the proof of the direct implication. In the case where d is even
this proof is simple. Consider W = V \Att0(D). Since V \W is a trap, player 0
wins (G[V \W ],Exp ∩ Parityd). The other claims are trivially true.

The case where d is odd is more tricky. We establish first that the family of
subarenas of G where Proposition 3 holds is closed by arbitrary union, then we
prove that the maximal arena of this family is necessarily G itself.

We sketch the proof of the converse implication. We shall construct a strategy
σG for player 0 winning the game (G,Exp∩Parityd). This construction depends
on the parity of d.

d Odd: By hypothesis, player 0 has a positional strategy σTrap(W ) winning the
game (G, Trap(W )) and a strategy σSub winning the game (G[W, σTrap(W )],
Exp ∩ Parityd−1). The strategy σG is constructed in the following way:

• If the pebble is not in W , player 0 plays according to her positional strategy
σTrap(W ).
• If the pebble is in W , player 0 uses her strategy σSub in the following way: Let
p be the sequence of vertices visited up to now and let p′ be the longest suffix
of p consisting of vertices of W . Player 0 takes a move according to σSub(p′).

The strategy σG is winning for the game (G,Exp ∩ Parityd). Indeed, since
σSub is a strategy in the arena G[W, σTrap(W )], all moves consistent with σG

are consistent with σTrap(W ). Hence, the play is ultimately trapped in W and is
ultimately consistent with σW , thus won by player 0.

d Even: By hypothesis and by Corollary 1, player 0 has a positional strategy
σExp ⊆ E winning (G, Exp). She has also a positional strategy σAtt ⊆ E winning
(G, Attraction(D)) on V \W and a strategy σSub winning the game (G[W ],Exp∩
Parityd−1).

σG is constructed in the following way. At a a given moment player 0 is in
one of the three playing modes: Attraction, Sub or Exploration. It can change
the mode when the pebble moves to a new vertex. Player 0 begins to play
in Exploration mode. Here follows the precise description of the strategy σG,
summarized by Fig. 4.
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• The playing mode Exploration can occur wherever the pebble is. Player 0
plays according to her positional strategy σExp. When a new vertex v is
visited for the first time the mode is changed either to Sub mode if v ∈ W
or to Attraction mode if v �∈ W .

• The playing mode Attraction can occur only if the pebble is not in W . Player
0 plays according to her positional strategy σAtt. When a vertex of priority
d is eventually visited, the playing mode is switched to Exploration.

• The playing mode Sub can occur only if the pebble is in W . Player 0 plays
using her strategy σSub in the following way. Let p be the sequence of vertices
visited up to now and p′ the longest suffix of p consisting of vertices of W .
Then 0 takes a move according to σSub(p′). If the pebble leaves W , the
playing mode is switched to Exploration.

Exploration σExp

Attraction σAtt

Sub σSub

Discovering a
new vertex v

v �∈ W ?

v ∈ W ?

Reaching colour d

Going out of W

Fig. 4. Rules of transition between playing modes

Notice that, by definition of σAtt and σExp, it is not possible that an infi-
nite play consistent with σG stays forever in the playing modes Attraction or
Exploration. Hence, such a play can be of two different types. Either the pebble
stays ultimately in the playing mode Sub or it goes infinitely often in the modes
Exploration and Attraction. In the first case, it stays ultimately in W and the
play is ultimately consistent with σSub. In the second case, the pebble visits
infinitely often the even priority d and discovers infinitely often a new vertex. In
both cases, this play is won by player 0 for the Exp ∩ Parityd condition. 
�

4 Computation of the Winning Sets and Strategies on
Pushdown Arenas

In this section, we apply our results to the case where the infinite graph is the
graph of the configurations of a pushdown automaton. And we get an algorithm
to compute the winning sets. Moreover, in all cases except for player 0 in the
game Exp ∩ Parityd, we can also compute winning positional strategies.
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Definitions. A pushdown system is a tuple P = (Q, Γ, ∆,⊥) where Q is a finite
set of control states, Γ is a finite stack alphabet, ⊥ is a special letter called the
stack bottom, ⊥ �∈ Γ and ∆ ⊆ Q × (Γ ∪ {⊥}) × (Γ ∪ {−1}) × Q is the set of
transitions.

The transition (q, α, β, r) ∈ ∆ is said to be a push transition if β ∈ Γ and
a pop transition if β = −1. In both cases, it is said to be an α-transition and
a (q, α)-transition. Concerning ⊥, we impose the restriction that there exists no
pop ⊥-transition. Moreover, we work only with complete pushdown systems, in
the sense that, for every couple (q, α) ∈ Q × (Γ ∪ {⊥}), there exists at least one
(q, α)-transition.

Notice that, in the sense of language recognition, any pushdown automaton
is equivalent to one of this kind, and the reduction is polynomial.

A configuration of P is a sequence qγ, where q ∈ Q and γ ∈ Γ ∗. Intuitively, q
represents the current state of P while γ is the stack content above the bottom
symbol ⊥. We assume that the symbols on the right of γ are at the top of the
stack. Note that ⊥ is assumed implicitly at the bottom of the stack, i.e. actually
the complete stack content is always ⊥γ.

The set of all configurations of P is denoted by VP . Transition relation EP
over configurations is defined in the usual way: Let qγα, where q ∈ Q, γ ∈
Γ ∗ and α ∈ Γ , be a configuration.

• (qγα, rγ) ∈ EP if there exists a pop transition (q, α, −1, r) ∈ ∆,
• (qγα, rγαβ) ∈ EP if there exists a push transition (q, α, β, r) ∈ ∆ .

Let qε be a configuration with empty stack. Then

• (qε, rβ) ∈ EP if there exists a push transition (q, ⊥, β, r) ∈ ∆ .

We shall write qγ
δ−→ rγ′ to express that a transition δ ∈ ∆ of the pushdown

automaton corresponds to an edge (qγ, rγ′) ∈ EP between two configurations.
The graph GP = (VP , EP) is called the pushdown graph of P.

If Q is partitioned in (Q0, Q1), this partition extends naturally to the set of
configurations of P and we GP is an arena. Moreover, when the control states
Q are labeled by priorities with a map φ : Q → [0, d], this labeling extends
naturally to VP by setting φ(qγ) = φ(q). GP is then a parity arena.

Subgraph Trees and Strategy Trees. With any subset σ ⊆ EP of the edges of a
pushdown arena we associate a tree Tσ : Γ ∗ → 2∆ with vertices labeled by sets
of transition of P. This construction is illustrated by Fig. 5.

A vertex of the tree is a stack content of P. A transition δ ∈ ∆ belongs to
the set labeling a vertex γ ∈ Γ ∗ if there exists a state q ∈ Q and a configuration
rγ′ such that qγ

δ−→ rγ′ and (qγ, rγ′) ∈ σ. Such a tree is called the coding tree
of σ. Notice that the transformation σ → Tσ is one-to-one. If σ is a strategy for
player i, we call Tσ a strategy tree for player i.

The next theorem states that the languages of positional winning strategies is
regular. Thus, we can build a Büchi alternating automaton of size O(d|Q|2 + |Γ |)
which recognizes the language of couples (σ0, σ1) such that σi is a winning posi-
tional strategy for player i and the domains of σ0 and σ1 constitute a partition of
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qε rε

qα rα

qαβ rαβ

qβ rβ

qβα rβα qββ rββ

(q,⊥,α,q)
(r,⊥,β,q)

(r,α,−1,r)
(r,α,β,q)

(q,β,α,r)
(r,β,β,q)
(r,β,β,r)

∅ ∅
(q,α,−1,q)
(r,α,−1,q)
(r,α,−1,r)

(q, β, −1, r)

Fig. 5. A finite subset of EP and its coding tree. Only the labels of the vertices
{ε, α, β, αα, αβ, βα, ββ} are represented. Other vertices of the coding tree are labeled
with ∅

VP . In the case of the Parityd and Exp∪Parityd games, Proposition 1 establishes
that this language is non-empty. Hence it is possible to compute a regular tree
(σ0, σ1) of size 2O(d|Q|2+|Γ |). This regular tree can be seen as the description of
a couple of winning stack strategies for both players. This kind of strategy has
been defined in [21].

Theorem 1. Let i be a player and Vic ∈ {Parityd, Exp∪Parityd, Exp∩Parityd}.
The language of strategy trees which correspond to winning positional strategies
for player i is regular. One can effectively construct an alternating Büchi au-
tomaton AVic,i with O(d|Q|2 + |Γ |) states which recognizes it.

Proof. The construction of AVic,i uses techniques close to the one of [20, 16].
Unfortunately, we couldn’t manage to use directly the results of those papers
about two-way tree automata, because we don’t know how to use a two-way
automata to detect a cycle in a strategy tree.

Our aim is to construct a tree automaton recognizing a tree t : Γ ∗ → 2∆ iff
there exists a winning positional strategy σ such that t = Tσ. In fact we shall
rather construct a Büchi alternating automaton recognizing the complement of
the set {Tσ|σ winning positional strategy }. First of all it is easy to implement
an alternating automaton verifying if the tree t is or is not a strategy tree. It is
less trivial to construct the automaton checking if a positional strategy σ ⊂ EP
is winning or not. However, it can be expressed by a simple criterion concerning
the cycles and the exploration paths of the graph (Dom(σ), σ) induced by σ.
Those criteria are summarized in Table 1.

We have to construct automata checking each condition of Table 1. They are
derived from an automaton detecting the existence of a special kind of finite
path called a jump. A jump between two vertices with the same stack γ is a
path between those vertices, that never pops any letter of γ (see Fig. 4).
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Table 1. Characterization of winning positional strategies

Winning Condition i Condition on cycles Condition on exploration paths
Parity 0 Even Even

1 Odd Odd
Exp ∪ Parityd 0 Even No condition

1 Odd No exploration path
Exp ∩ Parityd 0 No cycle Even

1 No condition Odd

q r

Fig. 6. A jump from qγ to rγ in a strategy tree

This kind of path is interesting since a cycle is simply a jump from a vertex to
itself, and because the existence of an exploration path of priority c is equivalent
to the existence of one of the two kinds of paths illustrated on Fig. 7.

Due to the high computational power of alternation, it is possible to construct
automata checking the existence of jumps and detecting the kinds of paths of
Fig. 7, with only O(d|Q2| + |Γ |) control states. 
�

Computation of Winning Sets. Using the automata recognizing languages of
winning positional strategies, it is possible to recognize the language of winning
positions. For each player i, Theorem 2 leads to an EXPTIME procedure to
compute a regular tree Γ ∗ → 2Q of exponential size that associates with a stack
γ the set {q ∈ Q : qγ is winning for player i}. Once computed, deciding if a
given position is winning for player i can be done in linear time.

Theorem 2. For each player i and each winning condition Vic ∈ {Parityd,
Exp ∪ Parityd, Exp ∩ Parityd}, the tree Γ ∗ → 2Q which associates with a stack
γ the set {q ∈ Q : qγ is winning for i} is regular and one can compute a non-
deterministic Büchi automaton recognizing it. Such an automaton has
2O(d|Q|2+|Γ |) states if Vic ∈ {Parityd, Exp∪Parityd} and 2O(d2|Q|2+d|Γ |) if Vic =
Exp ∩ Parityd.

Proof. For the games Parityd and Exp ∪ Parityd, this Theorem is a direct corol-
lary of Theorem 1. In fact, we can build a Büchi alternating automaton which
recognizes the language of couples (σ0, σ1) such that σi is a winning positional
strategy for player i and the domains of σ0 and σ1 are a partition of VP . The
winning sets are then obtained by projection, which requires to transform this
alternating automaton to a non-deterministic one and leads to an exponential
blowup of the state space [15].
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... ...

Fig. 7. The dotted arrows are jumps of priority less than c. The top-down regular
arrows are push transitions, while the down-top ones are pop-transitions. On the left
hand side, infinitely many jumps have priority c. On the right hand side, the upper
jump, that is a loop, has priority c

In the case of the Exp∩Parityd game, we use also the characterization of the
winning sets given by Proposition 3. We define the notion of a winning-proof,
which is a tree on Γ ∗ labeled by tuples of subsets of ∆, and is defined such that
the existence of a winning-proof in an arena is equivalent to the conditions of
Proposition 3. Here follows the definition of a winning-proof in a subarena G of
a pushdown arena GP .

In the case where d = 0, it is a strategy tree TσExp winning the game (G,Exp).
In the case where d > 0 and is even, it is a tuple Td = (T ′, TσExp , TσAtt , Td−1)

where T ′ is the coding tree of a subarena G′ of G, TσExp is a strategy tree winning
the game (G,Exp), TσAtt is a strategy tree winning the game (G,Attraction(D))
on Dom(G′) and Td−1 is a (d − 1)-winning proof in G′.

In the case where d is odd, it is a tuple Td = (T ′, TσTrap , Td−1) where T ′ is
the coding tree of a subarena G′ of G, TσTrap is a strategy tree winning the game
(G,Trap(Dom(G′))) and Td−1 is a (d − 1)-winning proof in G′.

Each one of those O(d) conditions can be verified with an alternating au-
tomaton with O(d|Q|2 + |Γ |) states. The corresponding automata constructions
are very close to the ones of Theorem 1. Hence, the language of d-winning proofs
is regular and recognized by an alternating automaton with O(d2|Q|2 + d|Γ |)
states.

As in the positional case, by projection, we obtain the desired non-
deterministic automaton with 2O(d2|Q|2+d|Γ |) states. 
�
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