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Abstract. To consider spatial information in spatial clustering, the
Neighborhood Expectation-Maximization (NEM) algorithm incorporates
a spatial penalty term in the objective function. Such an addition leads
to multiple iterations in the E-step. Besides, the clustering result de-
pends mainly on the choice of the spatial coefficient, which is used to
weigh the penalty term but is hard to determine a priori. Furthermore,
it may not be appropriate to assign a fixed coefficient to every site, re-
gardless of whether it is in the class interior or on the class border. In
estimating class posterior probabilities, sites in the class interior should
receive stronger influence from their neighbors than those on the border.
To that end, this paper presents a variant of NEM using varying coeffi-
cients, which are determined by the correlation of explanatory attributes
inside the neighborhood. Our experimental results on real data sets show
that it only needs one iteration in the E-step and consequently converges
faster than NEM. The final clustering quality is also better than NEM.

1 Introduction

Compared to conventional data, the attributes under consideration for spatial
data include not only non-spatial normal attributes, but also spatial attributes
that describe the object’s spatial information such as location and shape. The
assumption of independent and identical distribution is no longer valid for spa-
tial data. In practice, almost every site is related to its neighbors. To that end,
Ambroise et al. proposed the Neighborhood Expectation-Maximization (NEM)
algorithm [I], which incorporates a spatial penalty term in the objective func-
tion to encourage neighboring sites with similar class posterior probabilities. In
contrast to the standard EM algorithm [2] that maximizes likelihood alone, such
an addition involves multiple iterations in the E-step. Besides, the clustering
results rely heavily on the spatial coefficient, which specifies the degree of spa-
tial smoothness in the clustering solution but is hard to determine a priori in
practice. Furthermore, it may not be appropriate to assign a fixed coefficient to
every site, regardless of whether it is in the class interior or on the class border.

Based on the observation above, this paper presents a Neighborhood EM
algorithm using Varying coefficients (NEMV). Rather than set empirically, the
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coefficient is determined by the correlation of true explanatory attributes inside
the neighborhood. Our experimental results on real data sets show that it only
needs one iteration in the E-step and consequently converges faster than NEM.
The final clustering quality is also consistently better than NEM.

The rest of the paper is organized as follows. Section 2 reviews the prob-
lem background and related work. In Section 3, we first outline NEM and then
present our NEMV algorithm. Experimental evaluation is reported in Section 4.
Finally Section 5 concludes this paper with a summary and discussion of future
work.

2 Background and Related Work

In this section, we first introduce the background by formulating the problem.
Then we briefly review related work.

2.1 Problem Formulation

The goal of spatial clustering is to partition data into groups or clusters so that
pairwise dissimilarity, in both attribute space and spatial space, between those
assigned to the same cluster tend to be smaller than those in different clusters.
Let S denote the set of locations, e.g., the set of triple (index, latitude, lon-
gitude). Spatial clustering can be formulated as an unsupervised classification
problem. We are given a spatial framework of n sites,S = {s;}I; with a neigh-
bor relation N C S x S. Sites s; and s; are neighbors iff (s;,s;) € N,i # j. Let
N(si) ={sj : (si,sj) € N} denote the neighborhood of s;. We assume N is given
by a contiguity matrix W whose W (i, j) = 1 iff (s;,s;) € N and W(4,j) =0
otherwise. Associated with each s;, there is a d-dimensional feature vector of
normal attributes x; = x(s;) € R?. We need to find a many-to-one mapping
fo =it — {1,..., K}. If each object x; has a true class label y; € {1, ..., K},
naturally the ultimate goal is to maximize similarity between obtained cluster-
ing and true classification. However, since the class information is unavailable
during learning, the objective in practice is to optimize some criterion function
such as likelihood. Besides, spatial clustering imposes the following constraint of
spatial autocorrelation. y; is not only affected by x;, but also by (x;,y;) of its
neighbors N(s;). Hence it is more appropriate to model the distribution of y;
with P(y; | i, {(x5,y;) : s; € N(s;)}) instead of P(y;|x;).

2.2 Related Work

Many methods have been proposed to incorporate spatial information in the
clustering process. The simplest one is adding spatial information, e.g., spatial
coordinates, directly into datasets [3]. Others achieve this goal by modifying
existing algorithms, e.g., allowing an object assigned to a class if and only if this
class already contains its neighbor [4]. Another class, where our algorithm falls,
selects a model that encompasses spatial information [I]. This can be achieved by
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modifying a criterion function that includes spatial constraints [5], which mainly
comes from image analysis where Markov random field and EM style algorithms
were intensively used [67].

Clustering using mixture models with EM can be regarded as a soft K-means
algorithm in that the output is posterior probability rather than hard classi-
fication. It does not account for spatial information and usually cannot give
satisfactory performance on spatial data. NEM extends EM by adding a spatial
penalty term in the criterion, but this makes it need more iterations in each
E-step. If further information about structure is available, the structural EM
algorithm may be used to learn Bayesian networks for clustering [§]. In our case,
we assume that soft constraints can be derived with locations of sites. Another
relevant problem is semi-supervised clustering, where some pairs of instances
are known belonging to same or different clusters [9]. In their case, the goal
is to fit the mixture model to the data while minimizing the violation of hard
constraints.

3 The NEMYV Algorithm

In this section, we first outline the basics of NEM. Then we present the NEMV
algorithm.

3.1 NEM for Spatial Clustering

We assume the data X = {x}}"_; come from a mixture model of K components
f(x|®?) = Zszl 7 [ (x]0k ), where 7y, is k-th component’s prior probability, miss-
ing data (cluster label) y € {1, ..., K} indicate which component x comes from,
ie, p(x|ly = k) = fr(x|0k), and @ denotes the set of all parameters. Because it is
hard to directly maximize the sample likelihood L(®) = Y1 | In[f(x;|?)] , EM
tries to iteratively maximize L in the context of missing data y. Let P denote
a set of fuzzy classifications representing the grade of membership of x; to class
(component) k, i.e., { P;z = P(y; = k)}. As highlighted in [10], the new objective
function U of NEM that incorporates a spatial penalty term can be written as

U(P,®) = F(P,?)+ BG(P)
where
F(P,®) = Ep[ln(P({x,y}®))] + H(P)
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Compared to standard EM, in addition to maximizing L(®) which is achieved
by maximizing F'(P,®), NEM also tries to increase G(P), the spatial penalty
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that encourages neighboring sites with similar class posterior probabilities. The
spatial penalty is weighted by # > 0, a fixed coefficient that determines the
degree of smoothness in the solution clustering. U can be maximized by alter-
nately estimating its two parameters P and @. Starting from an initial PO, NEM
iterates the following two steps:

1. M-step: With P' fixed, set ¢ = argmaxgU (Pt7 &), which is exactly the same
as the M-step in EM, for G dose not depend on ®.

2. E-step: With &' fixed, set P = argmaxpU(P,®") by applying Eq. ()
repeatedly until convergence.

. Tk [ (X |0k )exp (ﬂ Z?:l Wi]‘P;k>

> i—1 mfi(xi]0r)exp (ﬂ 21 WiJ'le)

3.2 NEM with Varying Coefficients

EM is not appropriate for spatial clustering since it does not account for spa-
tial information. In contrast, although NEM incorporates spatial information,
it requires multiple iterations in E-step and the spatial coefficient is hard to
determine a priori. To overcome these difficulties, we propose NEMV, which is
based on the observation that it may not be appropriate to assign a constant
coeflicient to every site. For those in the class interior, the whole neighborhood
is from the same class and hence the site should receive more influence from its
neighbors, especially when their posterior estimates are accurate. For those on
the class border, because their neighbors are from different classes, its own class
membership should be determined mostly by its own explanatory attributes.
Along this line, NEMV employs a site-sensitive spatial coefficient, the lo-
cal Moran’s I measure, which is determined by the correlation of explanatory
attributes inside the neighborhood [I1]. Let z;, denote the normalized p-th
attribute of site s;, i.e., z;, = x; — zp, where x, is the global mean of the
p-th attribute. Let o, denote the global standard deviation of the p-th at-
tribute. Then, for the p-th attribute at site s;, the local I measure is defined
as Iy = 72 >_; Wijzjp, where W is a row-normalized (sum to 1) version of the
original biilary W. A high I (e.g., I > 1) implies a high local spatial autocor-
relation at site s;, which is likely to occur in the class interior. In NEMV, §; is

obtained by first averaging I;, over all attributes and then normalizing to [0, 1],
I7j —mini {17}

e {13 b—ming {1} Then the new penalty and criterion

i.e., I; = mean,(l;,), B; =
become

n n K
G = ; ZﬁiZWijZPikij
k=1

i=1 j=1
U(P,®) = F(P, &) + G(P)

Besides, we find that one iteration is usually enough for the E-step in NEMV.
Therefore, NEMV proceeds as follows.
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a:SATI b:sAT2

Fig. 1. Satimage data with site’s location synthesized: (a) SAT1 (contiguity ratio 0.96)
and (b) SAT2 (contiguity ratio 0.89)

1. E-step: Set P = argmax,U (P, d'~!) by applying Eq. ({l) once, where 3 has
been replaced by 8; in Eq. (D).

2. M-step: Set ¢! = argmaxqu(Pt, @), which is exactly the same as the M-step
in EM.

4 Experimental Evaluation

In this section, we first introduce the clustering validation measures used in our
experiments. Then we report comparative results on two real datasets.

4.1 Performance Criteria

If every site has a true class label, they can be used to evaluate the final clustering
quality via external validation measures. Let C,\Y € {1,..., K} denote the true
class label and the cluster label, respectively. Then clustering quality can be
measured with conditional entropy H(C|Y") defined in Eq. (), which equals zero
if their distributions are the same. We also use a more intuitive measure, error
rate E(C|Y"), which computes the misclassified fraction of data in each cluster
after assuming the true class label should be the major class in the cluster.
The above two measures are only for the discrete target value. When the target
variable C' is continuous, we calculate the standard deviation defined in Eq. @),
where std(-) denotes the standard deviation operator and (C|Y = k) denotes
the C’s values in cluster Y = k.

K

H(ClY)=> P(Y =k) x HCY =k) (2)
k}:{l

S(CIY)=>_ P(Y =k) x std(C|Y = k) (3)

~
Il
-

4.2 Experimental Results

Satimage Dataset. We first evaluate NEMV on a real landcover dataset,
Satimage, which is available at the UCI repository. It consists of the four multi-
spectral values of pixels in a satellite image together with the class label from a
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Table 1. Clustering performance on the Satimage dataset: "SAT1 and *SAT2

SAT1 SAT2
supervised EM NEM NEMV NEM NEMV
entropy  0.5121  0.6320 0.5391 0.5094 0.5635 0.5340
error 0.1508  0.2315 0.2039 0.1816 0.2142 0.2004
—U(104) 5.1884% 5.1406% 5.1029 5.0926 5.1416 5.1102
5.2274*  5.1717F
—L(104) 5.8128  5.7711 5.8207 5.7842 5.8141 5.7804

Table 2. Clustering performance on the Satimage dataset by NEMV with varying
number of iterations of E-step

SAT1 SAT2
#E-step 1 10 20 30 1 5 10
entropy 0.5094 0.5092 0.5088 0.5086 0.5340 0.5332 0.5330
error  0.1816 0.1813 0.1810 0.1809 0.2004 0.2001 0.2000
—U(10%) 5.0926 5.0916 5.0913 5.0912 5.1102 5.1101 5.1099
—L(10%) 5.7842 5.7836 5.7834 5.7833 5.7804 5.7802 5.7801

six soil type set. Because the dataset is given in random order and there is no
spatial location, we synthesize their spatial coordinates and allocate them in a
64 x 69 grid. 4-neighborhood is used in construction of W and contiguity ratio
is computed as the fraction of edges shared by the pixels from the same class.
To emphasize spatial autocorrelation, we generate two images SAT1 and SAT?2
in Fig.[[(a) and (b) with high contiguity ratios 0.96 and 0.89, respectively.

We test NEM and set 8 = 1 empirically to maximize U. With random initial-
ization, Table [Tl gives the average results of 10 runs recorded at maximum L for
EM, and maximum U for NEM and NEMV. The U values for EM are computed
using the definition in NEM. For clarity, we report —L and —U so that all crite-
ria in the tables are to be minimized. Note that due to different 8 used in NEM
and NEMYV, it is meaningless to compare U for them. For comparison, we also
list the results under supervised mode where each component’s parameters are
estimated with all data from a single true class. We can see that the entropy and
error generally decrease as —U, rather than —L, decreases. NEMV gives better
results than NEM. As expected, both of them perform better on SAT1 than on
SAT2, for the former’s contiguity ratio is higher and hence fits our assumption
more.

To see if one iteration of E-step is really enough in NEMV, we perform a
series of experiments by varying the number of iterations of E-step. The average
results of 10 runs are shown in Table 21 Note that 30/10 is the number of itera-
tions of E-step we used in the standard NEM. Although the computational cost
has been increased by an order of magnitude, we can see that the improvement
is not significant, especially in error rate and U.
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a: house price distribution b: histogram of house price
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Fig. 2. (a) shows house price distribution in 506 towns in Boston area. The correspond-
ing histogram is plotted in (b). Two sample clustering results are shown in (c) and (d)
for NEM and NEMV, respectively.

Table 3. Clustering performance on the house dataset

EM NEM NEMV

std  8.3377 8.3486 8.3088
—U(10%) 1.2580 1.2675 1.2557
—L(10%) 1.3942 1.4014 1.3966

House Dataset. We also evaluate NEMV on a real house price dataset with 12
explanatory variables, such as nitric oxides concentration and crime rate. The
clustering performance is evaluated with the target variable, median values of
owner-occupied homes, which is expected to has a small spread in each cluster.
Fig. 2(a) shows the true house values of 506 towns in Boston area. Their his-
togram is plotted in Fig. B(b). Using a Gaussian mixture of two components,
we set § = 1 for NEM and about 20 iterations are needed for convergence in its
E-step. Table[3] gives the average results of 10 runs. One can see that NEM per-
formance is slightly worse than EM in terms of either standard deviation or U.
But NEMV still gives the best results. Two sample clustering results are shown
in Fig. 2c) and (d) for NEM and NEMYV, respectively. We can see that NEM
yields a clustering with even stronger spatial continuity than that of NEMV,
which may not be appropriate for such a mixed dataset with many borders sites
on the class boundary.

5 Conclusion

Compared to EM, the incorporation of a weighted spatial penalty term into the
criterion function makes NEM need multiple iterations in each E-step. Besides,
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it is difficult to determine the spatial coefficient, on which the clustering results
depend heavily. This paper presented a variant of NEM algorithm using Vari-
able coefficients (NEMV). The site-sensitive coefficients are determined by the
local Moran’s I measure using correlation of explanatory attributes inside the
neighborhood. Empirical results on real data sets indicated that it not only led
to better results than NEM, but also converged faster with only one iteration
needed in the E-step. For future work, we plan to investigate online or stochastic
versions of EM to reduce dependence on initialization. Other optimization tech-
niques, such as genetic algorithms [I2], are worth trying to improve convergence
rate and final clustering quality. Finally, theoretical analysis and justification are
also needed for NEMV.
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