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Abstract. Quantification of object elasticity properties has important
technical implications as well as significant practical applications, such
as civil structural integrity inspection, machine fatigue assessment, and
medical disease diagnosis. In general, given noisy measurements on the
kinematic states of the objects from imaging or other data, the aim is
to recover the elasticity parameters for assumed material constitutive
models of the objects. Various versions of the least-square (LS) meth-
ods have been widely used in practice, which, however, do not perform
well under reasonably realistic levels of disturbances. Another popular
strategy, based on the extended Kalman filter (EKF), is also far from
optimal and subject to divergence if either the initializations are poor or
the noises are not Gaussian. In this paper, we propose a robust system
identification paradigm for the quantitative analysis of object elasticity.
It is derived and extended from the H filtering principles and is partic-
ularly powerful for real-world situations where the types and levels of the
disturbances are unknown. Specifically, we show the results of applying
this strategy to synthetic data for accuracy assessment and for compari-
son to LS and EKF results, and using canine magnetic resonance imaging
data for the recovery of myocardial material parametersﬁ.

1 Introduction

Quantitative and noninvasive assessment of the intrinsic material properties pro-
vides invaluable insights into the objects’ physical conditions, i.e. the structural
integrity of bridges and the material fatigue states of airplanes. Of particular cur-
rent interests, there have been plenty studies on living soft tissues, such as heart
[219], breast [BI10], skin [11], and blood vessels [§], under the clinical assump-
tions that diseases are highly correlated with changes of local tissue elasticity.
From computer vision and medical image analysis perspectives, the goal is to
use image-derived noisy observations on the kinematic states to arrive at accu-
rate, robust, and meaningful measurement of the object elasticity distribution,
where the recovered information is key to the better formulation and under-
standing of many physically-based vision problems, including motion tracking,
object segmentation, virtual-reality systems, and computer-assisted diagnosis.
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1.1 Related Works

The forward processes, which provide the image-derived measurement data on
the kinematic states, have strong implications on the reliability of the inverse
processes, which recover the material parameters. In addition to reservoir of
motion analysis strategies in computer vision, there have been efforts aimed
at establishing displacement fields from specialized medical imaging techniques,
such as elastography [6] which measures tissue motion induced by external or
internal forces, and magnetic resonance (MR) tagging [14] which creates a sparse
magnetization grid that tags the underlying tissue and provides tissue movement
information through the tracking of the grid deformation.

The inverse algorithms, which are the main focuses of this paper, reconstruct
the elasticity distributions from the motion measurement data. The first type
of efforts attempt to quantify the material Young’s modulus by inverting the
measured mechanical responses based on numerical solution of the elasticity
equation [4], which describes the mechanical equilibrium of a deformed medium.
Ignoring terms related to pressure, the equation becomes a function of the spatial
derivatives of the Young’s modulus E, which, in principle, could then be used
to reconstruct the distribution of E [10]. An related approach re-arranges the
linearly discretized equations that describe the forward problem, such that the
modulus distribution directly becomes the unknown variables to be solved [7].

The second group of efforts try to minimize criteria that measure the good-
ness of fit between the model-predicted and data-measured mechanical responses.
In [2], finite element (FE) meshes are constructed with loading parameters mea-
sured during imaging. FE solutions are then performed using small-strain, small-
displacement theory, and corresponding strains are computed independently us-
ing imaging-derived data. The material parameters are determined for strain en-
ergy functions that maximize the agreement between the observed (from imag-
ing) and the predicted (from FE analysis) strains. Similar in spirit, iterative
descent methods are used for various FE models of the elasticity equations to
fit, in least-squares sense, a set of tissue displacement fields [BJTT].

1.2 Contributions

We present several robust estimation schemes for the recovery of object elas-
ticity parameters from imaging data. Constructing the object dynamics from
continuum mechanics laws and finite element method, we convert the system
equation into state-space representation, which is further reformulated as a gen-
eral non-linear system identification problem for the spatially varying material
Young’s modulus. Within this paradigm, we examine the validity and limita-
tions of the existing works, largely based on the least-square (LS) estimators
and the extended Kalman filters (EKF), both of which adopt the minimum-
mean-square-error criteria in terms of the reconstructed state, and assume that
the noises of the measurement data are Gaussian. We then present two robust
strategies, the full-state-derivative information (FSDI) and the noise-perturbed
full-state information (NPFSI) methods, which are derived and extended from
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the Ho filtering principles and provide the minimum-maximum-error (minimax)
solutions to the material property estimation problem, without assumptions on
the noise statistics. Using synthetic data, we investigate the sensitivity of the al-
gorithms towards noise types and levels, as well as towards system initializations.
The experimental results show consistently superior performance of the robust
methods, especially the NPFSI form, over the LS and EKF algorithms for non-
Gaussian data. We also present EKF and NPFSI estimation results from MR
imaging data of a canine heart, both showing good agreement with histological
tissue staining of the myocardium, the clinical gold standard.

2 Parameter Identification Problem Formulation

2.1 Continuum Mechanics Model and State-Space Representation

In general, natural objects such as biological tissues have very complicated con-
tinuum mechanical properties in terms of their constitutive laws [E]. For com-
putational simplicity and feasibility, we assume that the objects under consid-
eration are nearly incompressible linear elastic solids. For such a material, the
strain energy function W has the form W = %cijklsijskl, where €;; and € are
components of the infinitesimal strain tensor and c¢;;r; is the material specific
elastic constant. In our case, the stress-strain relationship obeys the Hooke’s law,
which states that the stress tensor o35 is linearly proportional to the stain tensor:
0ij = Cijki€k- Under the assumptions that the material is isotropic, where the
elastic properties are identical in all directions, and the strain and stress tensors
are symmetric, there are exactly two elastic constants which characterize the
material and we have the linear isotropic constitutive relationship:

Oij = >\5ij5kk + 2,Lt€ij (1)

where A and p are the Lame constants, and J;; is the Kronecher’s delta func-
tion. In matrix form, under two dimensional Cartesian coordinate system, [o] =
[D] [e]. Assuming the displacement components along the x— and y—axis to be
u(z,y) and v(z,y) respectively, the infinitesimal strain tensor [¢] and the mate-
rial matrix [D] under plane strain situation are:

a
ou = 0
= ox
fl=| 5 05 M
u T v 9 i v
Dy Oz oy Ox
1—v v 0
=2 Ty (=20)
Dl = E | tryi—m) Tr0-2) 0 )
0 0 1—2v

2(14+v)(1—2v)

Here, derived from the Lame constants, the Young’s modulus E measures of the
stiffness and the Poisson’s ratio ¥ measures the compressibility of the material.
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Fig. 1. Generation of the synthetic kinematic data: original state (left), deformed
state (middle), and the displacement field (right). The colors of the left figure
indicate the Young’s moduli of the hard (red), normal (white), and soft (blue)
tissues, respectively.

The finite element method is used to discretize the regions of interests into
small elements, the Delaunay triangles of the sampling nodes in our implemen-
tation. Specifically, an isoparametric formulation defined in a natural coordinate
system is used, in which the interpolation of the element coordinates and ele-
ment displacements use the same basis functions. The nodal displacement based
governing dynamic equation of each element is established under the minimum
potential energy principle [1], and is then assembled together in matrix form as

MU +CU+ KU =R (3)

with mass matrix M, stiffness matrix K which is related to the material Young’s

modulus E and Poisson’s ratio v, and Rayleigh damping matrix C' = aM + K.
Equation[3 can be converted into a state-space representation of a continuous

time linear system by making z = (U, U)T (T denotes transpose) such that:

&(t) = A(0)z(t) + Bw(t) (4)

where the material parameter vector 6, the state vector z, the system matrices
A and B, and the control (input) term w are:

s ao-[38]. o]
4= [—Mo_lK —MI‘IC}’ e [8 MO_I}

Note that, for this particular paper, we are only interested in estimating the
Young’s modulus whereas the Poisson’s ratio is fixed. In principle, however,
both E and v can be estimated simultaneously [9].
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2.2 System Dynamics in Parameter Identification Form

Since our goal is to recover the parameter vector § = F, instead of the more
typical problem of estimating the state vector x, the system Equation ] needs
to be reformulated in the form of &(t) = A.(x(t))0 + B, to facilitate the process.
Submitting in C' = aM + K and rearranging the system equation to:

U] _ 0 U (o o 0 5)
U(t) | -M'KU —aU - BM~'KU 0 M '||R
we now need to convert all the terms which contain K into functions of E:
KU = G1FE and KU = GyF.

According to the finite element method, the global stiffness matrix K is
assembled from the element stiffness K.:

K=Y K.=) /Q BTD.B. df2. (6)

where (2. is the domain of an arbitrary element e, B, is the local element strain-
displacement matrix, and D, is the element material matrix. The element stiff-
ness matrix K, can then be stated in terms of its unknown Young’s modulus
E.:

K. =E, / B'D.B. d2. = E.K,/ (7)
‘QE

Then, the iterative steps of recasting KU to G1 F (and KU to G5 F in the exactly
same fashion) are:

1. Initialize a NxN, null matrix G; with zero entries, where N = number of
system nodal variables and N, = number of system elements.

2. Initialize a Nx/N null matrix K, with zero entries.

3. For an arbitrary element N, construct the local element matrix K EVJ: fol-
lowing Equation [7}

4. Using established correspondence between local and global numbering
schemes, change the subscript indices of the coefficients in the K f\fx matrix
to the global indices.

5. Insert K f\fx terms into the corresponding K matrix in the locations desig-
nated by their indices.

6. Insert K U, which is now a column vector reflecting the contribution by
element N, to the N* column of the G; matrix.

7. Return to step 2 and repeat this procedure for next element until all elements
have been so treated.

Once the numerical procedures of computing G; and G2 are completed, Equa-
tion [ is converted into the parameter identification form which can be used for
the estimation of the Young’s modulus distribution:

#(t) = Fo + A (x())0 + Bow(t) 8)
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Table 1. Estimated Young’s moduli from the synthetic data. Each data cell
represents the mean + standard derivation for the normal (75), hard (105), and

soft (45) tissues

Method

Tissue

Noise-Free

20dB(Gau)

30dB(Gau)

20dB(Poi)

30dB(Poi)

LS

Normal
Hard
Soft

75.0 £ 0.0
105.0+ 0.0
45.0 £ 0.0

FAILED
FAILED
FAILED

749 £ 2.9
106.2+ 9.1
45.3 £ 3.2

FAILED
FAILED
FAILED

75.1 £ 3.6
104.8+ 7.9
44.9 £ 2.8

EKF

Normal
Hard
Soft

749 £ 1.7
105.2+ 1.0
46.0 £ 1.8

76.0 £ 5.5
101.8+ 10.1
46.0 = 3.8

76.6 £ 3.0
104.2+ 3.8
471 £ 34

77.1 £ 6.6
100.6£ 23.0
50.1 £ 5.7

75.0 £ 3.6
103.8+ 9.9
479 £ 3.8

FDSI

Normal
Hard
Soft

75.0 £ 0.0
105.0+ 0.0
45.0 £ 0.0

FAILED
FAILED
FAILED

74.8 £5.0
106.4+ 9.4
454 £ 5.7

FAILED
FAILED
FAILED

75.1 £ 3.0
104.7£ 5.8
449 £ 1.3

NPFSI

Normal
Hard
Soft

74.8 £ 1.5
104.1+ 1.2
46.3 £ 2.1

73.3 £ 84
100.9+ 24.0
47.0 £ 5.9

73.8 £ 3.4
102.6+ 9.1
449 £ 2.7

748 £ 7.2
100.1£ 15.7
45.2 £ 4.6

73.9 £ 3.1
102.3+ 7.2
44.8 £ 2.5

where

0
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0
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3 Parameter Identification Algorithms

3.1 Synthetic Data for Evaluation

k

I
—al

In order to illustrate the accuracy and robustness of the material parameters
estimates, synthetic data with known kinematics are generated, as shown in Fig.
[ The rectangular testing object, with dimension of 28 (height) x 16 (width)
x 1 (thickness), is made of three components of different material elasticities,
Eara = 105 for the hard (red) part, Enormar = 75 for the normal (white) part,
and Es,p¢ = 45 for the soft (blue) part, while Poisson’s ratio is set to 0.49 for
all parts. The elastic medium is constrained to deform 1.2 displacement in the
vertical direction at the top side and 0 at the bottom side. Using these boundary
conditions, we solve the forward problem and the resulting displacements are
labelled as the ideal measurement data. Different types and levels of noises are
then added to generate the noisy data.
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Fig. 2. Estimated elasticity modulus distributions using the EKF (top row) and
NPFSI (bottom row) methods for noisy input data (left to right): SNR = 20dB
(Gaussian), SNR = 30dB (Gaussian), SNR = 20dB (Poisson), and SNR =
30dB (Poisson).

3.2 Least Squares Approximation

Least-squares algorithms are often considered static, where the uncertainties of
the measurements and the system are not of concern. Rearrange Equation [] as:

A.(z)) =& — Fx — Bow(t) =4 — B 9)

the parameter vector 6 can then be directly estimated from the least-squares
approximation:

6= [ATA) AL (& — B) (10)

Method Evaluation Using the synthetic data, the LS estimated Young’s mod-
ulus values for ideal and noisy inputs of displacement measurements are shown
in Table 1. For clean and low noise (30dB) cases, the LS method does give ex-
cellent performance. However, when the noise levels (20dB) increase, LS fails
to provide any meaningful results. Clearly, the LS strategy does not have the
capability to handle uncertainties of the system modeling and the measurement
data. Further, it is actually a pseudo-inverse process, and we are going to discuss
the more efficient least-square solution based on the Kalman filters.

3.3 Extended Kalman Filter

The EKF approach to parameter estimation in dynamical system has a rather
long history. It has the flexibility to easily incorporate both system modeling and
measurement uncertainties. The basic idea is to consider system parameters as
part of an augmented state vector, and with measurements taken over time, the
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Fig. 3. Converging speed of the average Young’s modulus in the soft region using
EKF (the two left figures) and Hoo (NPFSI) (the two right figures) methods:
SNR = 30dB Gaussian inputs and SN R = 30dB Poisson inputs

system response and the parameter estimates are adjusted so that they match
the data in an optimal manner:

[xgt)] _ |:FIE+AC(QC())9+BCW(t):| N {U(t)] (11)

y=[10] m +e(t) (12)

This augmented system is nonlinear due to the cross-product between x and 6.
If the process noise v(t) and measurement noise e(t) are both white Gaussian
with covariances @, and R, respectively, the EKF solution comes from [12]:

[I(;) _ |:F£i' + Ac(i‘())é + Bcw(t)} + PHTRe(t)_l[y o H?:’] (13)
P=LP+PL" +Q,— PH'R.(t)"'HP (14)

F+ Z{A(x)0 + Baw(t)} Ad(2)

0 0
One difficulty EKF faces is that there is no general, cost effective theory for
choosing optimal R., @, and Py. Prior knowledge thus often plays important
roles in the ad hoc determination of these parameters.

where P(0) = Py > 0,H =[I 0],and L =

Method Evaluation For measurement data inputs with various noise types
and levels, the average EKF based parameter estimation results are tabulated
in Table 1, and the recovered elasticity distributions are shown in Fig.

Due to the coupling between the state variables and system parameters, the
precision of the EKF estimate for the noise-free case has dropped from the LS
result. For input data corrupted by Gaussian noises, however, EKF typically
achieves much better results, even though the convergence speed is quite slow
(Fig. B). It is also well known that EKF could be greatly affected by the quality
of the initializations. In order to investigate the effect of initial modulus values on
the algorithm convergence, experiments have been conducted using é(O) = 95,
0(0) = 65, and 0(0) = 35 for Gaussian data inputs. As shown in Fig. @ a
faster convergence is achieved when a proper initial value is chosen. However, the
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Fig. 4. Convergence sensitivity to different initial values (Gaussian inputs) for
the EKF (left) and Hoo-NPFSI (right) estimation of the soft region.

convergence rates from the upper side and the lower side of the initializations are
not symmetric, which hinder the possibility to choose the optimal initial values
in a symmetric fashion. Further, comparing the estimation results for Gaussian
and Poisson inputs (Fig. [), it is indicative that EKF is far from optimal for
non-Gaussian noises and may be subject to divergence, at least during certain
period of the iterative process, which motivates us to seek more robust strategies.

3.4 'H Filters

Because of the deficiency of the LS and EKF methods to deal with noisy inputs,
especially the non-Gaussian measurement data, we have developed two robust,
mini-max parameter identification strategies based on the H filtering principles
[3], which assume no specific types of noise distribution. While the full-state-
derivative information (FSDI) method takes into account of the process noise

v(t) and the initial parameter estimation error  — H(AO), the noise-perturbed full-
state information (NPFSI) method also considers the measurement noise e(t)

and the initial state estimation error z — £(0).

FSDI Method We introduce a cost function that measures the worst-case
attenuation from the additive process disturbance as well as error in the initial
estimate of 6 to the estimation error over an interval of interest:

0 — 02
sup | ”QA 5 < 72 (15)
[oll* + 16 — 6(0)[3,

where 6(0) is an a priori estimate of the parameter vector 6, || o H% is a Lo semi-
norm with weighting function @, | e |%0 is the Euclidean norm of e7'Qge, and v is
the process noise. Different from Hy (Kalman) filter based framework, the Hoo
method has many solutions corresponding to different ~y values. Nevertheless,
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Fig. 5. Estimation sensitivity under different types (Gaussian and Poisson) of
noises: EKF (left) and Hoo-NPFSI (right) methods

if the optimal performance level v* does exist [3], the following solutions are
optimal in mini-max sense for every v > v*:

0=5"14"( - B) (16)
P=ASA—77%Q; 2(0)=Qo (17)
Hence, the H, filter of FSDI form can be treated as a more general framework
for material parameter estimation from clean kinematics measurement. If we let

v — o0, the limiting filter would converge to the aforementioned least-squares
estimator. Let Q = A.T A., we have the following:

7' =1,0=Qv AT (¢ - B) (18)
which is the generalized least-mean-squares filter.
NPFSI Method In practice, inaccuracies are often due to unmodeled dynamics

or measurement errors that are not considered when the model is built. To cope
with such situations, we introduce a more complete cost function for all v > v*:

16 — 611

2
sup ~ - < (19)
[0l + llell? + 16 — 6(0)I3, + = — 2(0)[3,,

Here, #(0) is initial estimates for 2(0), Q1 is a weighting factor, and e models
the measurement uncertainty. Under this criterion, we come to the solution:

(-G ] omen

I B FEA R
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In general, it is difficult to determine the optimal v*, and it may even be infinite
which means that no guaranteed disturbance attenuation level can be achieved.
In fact, however, if @ is chosen, v* can be obtained analytically. For a fixed
v, it is necessary to have X > 0 for the existence of the identifier. Note that
Xy Xy
XT3
and only if IT = XT3, —42Q > 0,11(0) = Qo and %1 > 0. Hence, if X(0) is
chosen to be identity matrix and Q = X7 Xy, v* will be 1 [3].

partitioning this matrix as X' = [ } , the Schur test implies that X' > 0 if

Method Evaluation The two H, methods are evaluated using the synthetic
data and the convergence criteria are the same as the EKF one. v = 3 has
been used in our experiments. The estimated Young’s moduli are listed in Ta-
ble 1 (both FSDI and NPFSI) and shown in Fig. 2 (NPFSI results only). As
a generalized LS methods, the FSDI performs well for noise-free and low-noise
inputs, but fails to converge for 20dB cases. While underperforming EKF estima-
tor somewhat for Gaussian inputs, it is obvious that the H,.-NPFSI framework
gives the best overall results when the data noises are not Gaussian. Further,
even for Gaussian noises, NPFSI converges much faster than EKF, and it is not
affected by the initial values of the Young’s modulus (Fig. d). In Fig. B, the
mean values with standard derivation of the estimates are plotted as a function
of iterative numbers. It is evident that NPFSI results in faster and more stable
convergence of the estimates for both Gaussian and Poisson inputs.

In a further sensitivity test of the algorithms to different types of noises,
the convergence of the Young’s modulus estimate for a particular element is
given in Fig. [B, where the red and blue curves are generated for the SNR =
30dB (Gaussian) and SN R = 30dB (Poisson) input data respectively. It is clear
that EKF has certain desirable optimality properties for Gaussian noisy inputs.
However, the EKF results for Poisson noises are pretty bad, with unstable bursts
during the convergence process. It seems that if the assumptions on the noise
statistics are violated, it is possible that small noise errors may lead to large
estimation errors for EKF. On the other hand, very stable convergence results
are obtained using the NPFSI method for two sets of data contaminated by
different types of noise, showing its desired robustness for real-world problems.

4 Applications and Discussion

4.1 Canine Imaging Data

The displacements of the canine heart wall are reconstructed using the active
region model [I3] on MR phase contrast images, which also provides the cor-
responding velocity information. The histological staining of the post mortem
myocardium (Figure[7), with the infarct region highlighted, provides the clinical
gold standard for the assessment of the image analysis results. Based on the re-
constructed displacements and measured velocities (Fig. ), the Ho.-NPFSI and
the EKF frameworks are used to recover the elasticity modulus distribution,
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Fig. 6. A mid-ventricle MR image of a canine heart (left), velocity data (mid-
dle), and the displacement data acquired from the spatio-temporal active region
method (right).

Fig. 7. TTC-stained post mortem left ventricular myocardium with infarcted
zone highlighted (left), NPFSI (middle) and EKF (right) estimated Young’s
modulus maps.

where Poisson’s ratio are fixed at 0.47 to model approximate incompressibility
and the initial estimates of Young’s modulus are set to be 75kPa.

4.2 Results and Discussion

The experimental results obtained with real canine imaging data are presented
in Fig.[1, where the middle map depicts the NPFSI results and the right one for
EKEF results. It is observed that both the estimated Young’s modulus distribution
patterns agree pretty well with the highlighted histological staining results, i.e.
the infarcted myocardium is harder than the normal tissue. As a continuation
of this work, future study will be extended to time-varying estimation of the
elasticity with more realistic material models.
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