
P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 241–255, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Continuous Adaptive Object-Code Re-optimization
Framework

Howard Chen, Jiwei Lu, Wei-Chung Hsu, and Pen-Chung Yew

University of Minnesota, Department of Computer Science
Minneapolis, MN 55414, USA

{chenh, jiwei, hsu, yew}@cs.umn.edu
http://www.cs.umn.edu/~hsu/dynopt

Abstract. Dynamic optimization presents opportunities for finding run-time
bottlenecks and deploying optimizations in statically compiled programs. In
this paper, we discuss our current implementation of our hardware sampling
based dynamic optimization framework and applying our dynamic optimization
system to various SPEC2000 benchmarks compiled with the ORC compiler at
optimization level O2 and executed on an Itanium-2 machine. We use our op-
timization system to apply memory prefetching optimizations, improving the
performance of multiple benchmark programs.

1 Introduction

Dynamic optimization presents an opportunity to perform many optimizations that
are difficult to apply at compile time due to information that is unavailable during
static compilation. For instance, dynamic link libraries limit the scope of procedure
inlining and inter-procedural optimizations, two optimizations that are known to be
very effective [2]. In addition, a typical shared library calling sequence includes ex-
pensive indirect loads and indirect branches. Such instruction sequences are good
targets for dynamic optimizations once the shared libraries are loaded.

Dynamic optimization also provides an opportunity to perform micro-architectural
optimizations. Recompiling a program to a new micro-architecture has been shown to
greatly improve performance [9]. Dynamic optimization provides a way to re-
optimize a program to new micro-architectures without requiring recompilation of the
original source code.

Finally, dynamic optimization can specialize a program to a specific input set or
user which has been applied successfully by Profile Based Optimization (PBO)
[2],[5] in the past, but are difficult to apply for due to concerns over excessive com-
pile time, instrumentation-based profiling overhead, complex build processes, and
inadequate training input data set [14]. Dynamic optimization can be used to deploy
more aggressive optimizations, such as predication [13], speculation [10], and even
register allocation and instruction scheduling according to current program behavior
and with less risk of degrading performance.

242 H. Chen et al.

In short, dynamic object code re-optimization allows code to be generated specifi-
cally for a specific execution environment. It adapts optimizations to the actual exe-
cution profiles, micro-architectural behavior, and exploits the opportunity to optimize
across shared libraries. However, a dynamic optimization system must detect and
apply optimizations efficiently to be profitable. If the overhead of the system is
greater than the time saved by optimizations, the runtime of the optimized program
will increase.

We present our design and implementation of our adaptive object-code re-
optimization framework to detect and deploy dynamic optimizations with a minimal
amount of overhead on modern hardware. Our prototype system detects time-
consuming execution paths and performance bottlenecks in several unmodified
SPEC2000 benchmarks by continuously sampling Itanium performance monitoring
registers throughout the program’s execution [6]. We use the collected information to
create executable traces at runtime, and deploy these optimizations by modifying
branch instructions in existing code to execute our instructions in place of hot paths in
the original code. We examine the overhead of our detection system, and show that
this technique can be applied with less than 2% of overhead while speeding up vari-
ous SPEC2000 benchmarks.

2 Background

Dynamic optimization has been presented in the past in frameworks such as Dynamo
[3] and Continuous Profiling and Optimization (CPO)[12]. Dynamo uses a method
similar to dynamic compilation used in virtual machines. Native binaries are inter-
preted to collect an execution profile and fragments of frequently executed code are
emitted and executed in place of interpretation. Dynamo requires no additional in-
formation beyond the executable binary to operate, and this allows it to be applied on
arbitrary binaries without needing access to the original code or IR. CPO presents a
model closer to traditional PBO where the original code is instrumented, and the
profile information is used to compile optimized versions of code. In CPO, profiled
information is used to drive PBO while the program is running and the compiled
result is hot-swapped into the program. The advantage of this scheme is that the IR
information makes application of many optimizations easier.

However, since the applied optimizations compete with the dynamic optimization
system’s overhead, interpretation and instrumentation-based profiling dynamic opti-
mizers often try to limit the time spent collecting profiled information, sometimes at
the expense of optimizations. For example, Dynamo only interprets unique execution
paths a small number of times before selecting traces to optimize to avoid interpreta-
tion overhead. Instrumentation incurs less overhead than interpretation, but even
efficient implementations of instrumentation [4] generate measurable overheads. This
may lead to profiling of initialization behaviors that do not represent dominant execu-
tion behavior. Even after attempting to reduce optimization system costs, the dynamic
optimization systems still produce a relatively high amount of overhead, which works

Continuous Adaptive Object-Code Re-optimization Framework 243

against the profitability of optimizations. In our system, we seek to limit the overhead
of the techniques used to profile and deploy dynamic optimizations.

Existing dynamic optimization systems can generally be broken down into three
stages: profiling/detection, optimization, and deployment. The detection stage deals
with the collection of information necessary to select and guide optimizations. The
optimization stage uses the collected information to select a set of optimizations to
deploy in a target program. The deployment stage handles the application of the se-
lected optimizations to a running program. Each of these stages requires runtime
processing which leads to a slowdown of the original program. We try to reduce tar-
get profiling and deployment costs to improve the performance of the entire dynamic
optimization system.

Our overall goal is to move towards a dynamic optimization framework that incurs
minimal overhead while providing good potential for optimization speedups. Other
techniques seek to perform similar goals [15], [16] using hardware. Like these
schemes, our work uses specialized hardware to collect information useful for our
planned optimizations. However, these schemes propose the implementation of new
hardware to process data. In contrast, our work gathers data from existing perform-
ance monitoring hardware and analyzes it using a user program. Previous work in
periodic sampling of hardware structures is presented in [1], [7], [8]. These schemes
concentrate on applying this information to guide static PBO rather than dynamic
optimizations.

3 Architecture

3.1 Overview

Our architecture performs three main tasks: detection, optimization, and deployment.
Detection deals with the collection of raw performance event information that is use-
ful for identifying and applying optimizations like D-cache misses, IPC, and branch
paths commonly leading up to performance events. Optimization deals with generat-
ing optimized code to replace existing executable code. Deployment deals with the
issues presented by redirecting execution from the original program to optimized
code.

The code for our dynamic optimizer is first executed when a program executes the
C run-time startup routines. We compile our own custom version of C run-time li-
brary to start a thread dedicated to dynamic optimization and initialize a shared mem-
ory area to place optimized code. The dynamic optimization thread begins monitoring
the behavior of the original primary thread, and generates and deploys optimized
code later in execution. After initialization of the dynamic optimization thread is
complete, the C run-time library startup routines continue and begin executing the
original program while the optimization thread begins detecting optimization oppor-
tunities.

244 H. Chen et al.

3.2 Performance Event Detection

3.2.1 Performance Monitoring Hardware
We use the Performance Monitoring Unit (PMU) on Itanium processors to collect
information and signal the operating system to collect and store profiled information.
The primary PMU features we use for the detection work are the performance-event
counters and the Branch Trace Buffer (BTB)[11]. The performance-event counters
are a set of registers that track the number of times performance events like cache
misses and branch mispredictions occur. These counters are used to throw interrupts
periodically after a number of events occur. For instance, we can choose to throw a
system interrupt once every million clock cycles, once every ten thousand D-cache
misses, or once every one-hundred branch mispredictions. During each interrupt, we
can save information about the type of interrupt and BTB information in memory for
later processing.

The BTB, not to be confused with a branch target buffer used in branch prediction,
is a set of eight registers that store the last four branches and branch targets. When the
performance monitor throws an interrupt, we use the BTB to find the last four taken
branch instructions and branch targets that lead up to the performance event interrupt.
By monitoring only taken branches, we can form longer traces than if we had moni-
tored all branches since not-taken branch information can easily be reconstructed by
scanning the instructions between the last branch target and the next taken branch
instruction. The BTB also allows us to generate an edge profile without scanning and
decoding the original source code.

A detailed discussion of PMU hardware on Itanium processors can be found in
[11].

3.2.2 Perfmon
Our hardware information is collected using perflib, a library from the Perfmon tool-
set. The Perfmon toolset configures and collects raw performance information from
Itanium programs running on 64-bit Linux. Perfmon sends system calls to a Linux
kernel driver to configure the PMU and automatically collects samples of the PMU
registers for later processing.

Once the PMU stores raw register information to memory, it can be consumed in-
dependently from the monitored program. All information collected by Perfmon is
done without modifying the original program binary. Perfmon is described in greater
detail in [20].

3.2.3 Hot Trace Selection
The goal of our hot trace detector is to find a small number of traces that lead up to
performance critical blocks. To collect these hot traces, we sample sets of four taken
branches and branch targets from the BTB at regular intervals and sort the results into
a hash table, while keeping track of the frequency of the different sample paths. The
most frequently sampled paths are marked for optimization in the table under the
assumption that they dominate execution time, and traces are selected to include these
hot spots.

Continuous Adaptive Object-Code Re-optimization Framework 245

Since the optimization and deployment of traces requires processing time, we limit
the traces we select to those we believe we can optimize profitably. The best traces to
optimize are the traces that contribute the most execution time for the remainder of
the program, and contain a performance event that we can optimize. The performance
monitoring hardware provides the information we need to see if a performance event
commonly occurs on any path we select. However, to predict which traces will con-
tinue to dominate execution time in the future and prevent optimizing traces with
performance events that only occur for very short periods of time, we perform addi-
tional work to estimate when program behavior is most stable.

3.2.4 Phase Change Detection
We assume that programs generally enter different “phases” of execution, periods of
time when characteristics like IPC, D-cache hit rate, and the current working set of
hot code follow similar patterns throughout a phase [17],[18]. Since our current op-
timizations focus on optimizing D-cache misses and improving IPC, we use the num-
ber of D-cache misses per cycle and IPC over time as metrics to guess when the be-
haviors we wish to optimize are most stable.

Our goal is to select hot traces to optimize the first time we encounter a new phase
and to keep it in our working set for the remainder of program execution. As long as
the execution of the program remains in a stable phase, no further changes are made
to the optimized traces. Changes in execution phases will be detected, and such
changes will trigger further optimizations.

Every second of execution time, we measure the number of D-cache misses and
IPC over the past second and compare it to previously measured values. If the D-
cache and IPC values are stable for several seconds (deviating less than a set percent-
age), we assume that the D-cache and general program behavior is stable enough to
select a set of hot traces that may execute for some time into the future, and select a
set of traces from the samples in the current stable phase.

Conversely, when D-cache and IPC values fluctuate, it indicates that program be-
havior has changed and that new hot traces may need to be selected or existing se-
lected traces may no longer be hot. When D-cache miss rate and IPC values deviate
from the previous few seconds, we recheck our collected sampled data to look for
new hot traces to add to our working set.

The weakness of this metric is that D-cache miss and IPC values are composite
values for all the code that is executing in a program over an interval. This can lead to
a false measurement of a stable phase since it is possible that program behavior has
completely changed but averages out to similar values. In practice, we found that a
stable D-cache miss rate and IPC values indicated a stable phase. We did not observe
this behavior in any of our measurements of SPEC benchmarks, but it remains a pos-
sibility for other programs.

A more likely problem with this metric is that program behavior patterns com-
monly have sub-patterns. For instance, an outer loop may contain two inner loops:
one with stable exploitable behavior, and one with unstable behavior. The stable sub-
phase, or repeated stable behavior contained within the larger phase, can be optimized

246 H. Chen et al.

despite instability in the D-cache and IPC metrics. However, this behavior was also
uncommon in the SPEC benchmarks we measured.

However, these problems indicate the potential need for deeper phase change de-
tection to fully exploit all the stable behavior in a program that may be further sup-
ported in future work studying phase detection of programs outside of the SPEC
benchmark suite.

3.3 Optimization

3.3.1 Trace Generation
Every time a set of traces is selected, executable code corresponding to each trace is
assigned a type name according to its behavior. For instance, a loop is a type assigned
to any trace that is completely enclosed in a trace. A subroutine is a type assigned to
traces that are targeted by “br.call” instructions and end with a “br.ret” instruction,
both indicators of a subroutine. Traces of different types are optimized in different
ways. Data prefetching loop optimizations are particularly applied only to loop-typed
traces, while inter-trace optimizations are more likely to be applied in subroutines.
Code is then generated in our trace buffer for our selected traces, a shared memory
area that contains our optimized executable code. The selected traces are then “cross-
patched” or set to return to original code if execution leaves the path of the trace.

3.3.2 Trace Cross-Patching
Cross-patching refers to patching optimized traces to branch to other optimized
traces. Ideally, once a good set of optimized traces is selected, control should rarely
return to the original program. To perform cross-patching, a graph is generated with
one node for each selected trace and edges to connected traces. When the code for the
trace is generated, the branch instructions in optimized traces are then modified to
branch to other optimized traces instead of returning to the original code.

3.3.3 Architecture Safe Optimization
Code scheduling/motion and other aggressive transformations may cause problems
for preserving the original order of architecture state changes. This may create prob-
lems if a user trap handler expects to have the precise architecture state at the excep-
tion. To avoid these problems, we first attempt optimizations that do not change ar-
chitecture states such as trace layout and data cache prefetching. Although data cache
prefetch transformations require some temporary registers to hold prefetch addresses,
we have the compiler (ORC compiler) reserve four general purpose and two predicate
registers for such a purpose. Due to the large register file in the Itanium architecture,
reserving a small number of registers has essentially no performance impact on the
compiled code. We have verified this by comparing the performance of compiled
code at various optimization levels with/without the reserved registers.

Continuous Adaptive Object-Code Re-optimization Framework 247

3.3.4 Data Prefetching
In our dynamic optimization system, we target D-cache misses for optimization be-
cause they are well known to be a common dominant performance problem in pro-
grams, but are difficult to detect statically [19]. Using our ability to detect instructions
that cause D-cache misses, our dynamic optimization system can take advantage of
information that is only available at run-time.

To detect which memory operation generates data cache misses during runtime, D-
cache miss events are sampled by the performance monitoring unit and associated
with the corresponding load/store instructions in the selected traces. Once a memory
operation is found with a miss latency that contributes greater than 5% of execution
time based on performance monitoring counters, the trace where this instruction re-
sides will be scheduled for optimization.

The optimizer then determines if any of the implemented prefetch optimizations
are appropriate. We implement three types of data prefetching for loops: array refer-
ence, indirect array reference, and pointer chasing.

Here is an example of the code generated in an indirect array reference before pre-
fetching:

loop:

ld4 r17=[r43] // cache miss from loading the address stored in the array

sxt4 r17=r17

add r43=4,r43 // the array pointer is incremented

add r17=r39,r17

add r17=-1,r17

ld1 [r17] // cache miss from loading the data value from the address

...

br loop

A frequent D-cache missed indirect array reference will trigger two-level data cache
prefetching. The first level is a direct array reference prefetch to prefetch for the array
containing the addresses of the data. The second level prefetches the value at the
address from the array. Note that the first level runs a few iterations ahead of the
second level of prefetching. Here is an example of the prefetch code generated to
optimize the previous indirect array-reference code:

add r30=128,r43 // this initializes the direct reference prefetch

add r28=64,r43 // this initializes the indirect prefetch

loop:

lfetch [r30],4 // this prefetches the address from the array

...

248 H. Chen et al.

ld4.sa r29=[r28],4 // this loads the prefetched address

 // (prefetched in a previous iteration)

sxt4 r29=r29

add r29=r39,r29

add r29=-1,r29

lfetch [r29] // this prefetches the indirect value from the array address

...

br loop

This is an example of pointer chasing code before optimization:
loop:

add r22=24,r11 // calculate offset of pointer to next list element

ld8 r11=[r22] // cache miss from loading address of next list element

br loop

For pointer-chasing prefetching, the key memory address which controls the memory
references (i.e.the possible "->next" pointer for linked lists) is found and prefetched
by assuming a constant stride:

loop: (assume r28 is reserved unused by static compiler)

add r28=0,r11 // remember the old value of r11

add r22=24,r11

ld8 r11=[r22]

sub r28=r11,r28 // calculate the difference of old and new value

shladd r28=r28,2,r11 // use the difference as stride to prefetch

lfetch [r28] // prefetch ahead in the linked lists.

3.4 Deploying Optimizations

3.4.1 Patching Branch Targets
We redirect execution from the original code to traces in our trace buffer by modify-
ing frequently executed branch instructions to branch to the corresponding optimized
code in the trace buffer. However, modifying executable instructions in a running
program creates a number of issues ranging from memory protection to updating the
I-cache line with the modified instruction.

Continuous Adaptive Object-Code Re-optimization Framework 249

3.4.2 Memory Protection
The memory protection on the original code pages is read-only by default. When we
wish to modify branch instructions in the address space of existing code, we make a
system call to allow writing to memory pages of the original code. We then replace
all branches at once, then restore write-protection to the original code to protect the
original code from accidental changes.

3.4.3 Branch Patching Distance
Most programs compiled for the Itanium architecture use a short branch, which al-
lows a relative branch distance of 20-bits or about a million bundles (i.e. 16 mega-
bytes). There are cases when the original code size is larger than 16 megabytes and a
branch cannot be easily patched by simply changing the address field of a branch
instruction. In some cases, the entire bundle containing the branch instruction must be
replaced with a long branch instruction to reach the memory space of the trace buffer.
The long branch instruction in the Itanium architecture allows the branch to reach
anywhere in the 64-bit virtual address space. One alternative to using a long branch is
to use an indirect branch instruction sequence, but this is more expensive, more likely
to be mispredicted, and is more difficult to patch atomically.

Since the Itanium uses an explicitly parallel instruction computing (EPIC) architec-
ture, instructions are combined into 128-bit “bundles” which usually contain three
instructions. Bundles with long-branch instructions can only contain two instructions.
If the second instruction in a bundle that was replaced contains a “nop” in the middle
slot, a common case, the entire bundle can be replaced at once. However, if the bun-
dle you wish to replace with a long branch uses all three slots, the trace patcher can-
not replace the instruction with a single instruction and we patch the target of the
short branch instruction with an unconditional long branch to our optimized traces.

3.4.4 Atomic Write Issues
Another issue with replacing instruction bundles is that bundles are 128 bits long
while the processor only supports 64-bit atomic write instructions. That means that
we need to take steps to prevent partially modified bundles from being executed. To
deal with this case, we first patch the first half of the bundle with an illegal bundle
type and handle the exception if the bundle is executed before we finish patching it.
We then modify the second half of the bundle with the replacement bundle, and com-
plete the process by modifying the first half of the long-branch instruction bundle.

It is also possible that a context switch occurs while a bundle is only partially exe-
cuted. This can happen if a cache miss occurs in a bundle. As long as the memory
operation occurs in the first slot, this bundle can still be replaced with a long branch
instruction. If the partially executed bundle is replaced with a bundle with a long
branch, the bundle resumes execution at the second slot in the bundle, the long branch
instruction.

3.4.5 Repatching Issues
When a phase changes, some previously optimized traces may not be “hot”. In gen-
eral we do not undo or remove existing patched traces for two reasons. First, when we

250 H. Chen et al.

optimize a trace, it often requires less execution time and therefore appears less “hot”.
However, removing the optimization would lead to the code taking more execution
time, so we are better off keeping the trace patched into the program. There are cases
when we attempt to optimize a trace, and it requires more execution time than before
due to additional cache misses. In the future, we plan to further explore the benefits of
tracking the performance of our optimization at run-time and removing optimizations
that appear to degrade performance.

Second, we found that phase behavior tends to repeat over time and previously
generated traces are often used again in the future. If existing traces are no longer hot,
the patched traces generally have very little performance impact. This can save some
processing work to regenerate the trace if the behavior becomes hot again. For long
running programs that exercise many different execution paths, this may lead to
fragmentation of generated traces that may affect I-cache performance. We plan to
explore the benefits of optimized trace layout management in memory in the future.

4 Experiments and Discussion

Our results are collected using ORC version 2.0 compiled SPEC2000 benchmarks
with -O2 and software pipelined loops disabled on a dual processor Itanium-2 ma-
chine. We compile using O2 because that is the typical optimization level used by
software vendors. Our current optimizer does not support register renaming in soft-
ware-pipelined loops, so we disable software pipelining at compile time. For SPECint
benchmarks, we found that disabling pipelining results in a slightly higher runtime
performance when measuring results using ORC.

4.1 Speedup and Coverage

Execution time is collected using the unix “time” command and averaged over sev-
eral runs. The reported execution time includes all detection, profiling, optimization
and deployment overhead. Relative speedup is calculated as ((baseline
time)/(optimized time) - 1) * 100%.

Figures 1 and 2 show the speedup of applying our system to various spec pro-
grams. We apply different sampling rates to collect data and select new traces every
second of execution time. Data that is “continuous” selects new phases upon a sus-
pected phase change while “single” data selects the first stable phase identified in a
program.

As Figure 3 shows, art, bzip, equake, fma, galgel, lucas, mcf, and swim benefit
from regular and indirect array reference prefetching. Mcf benefits primarily from
pointer reference prefetching. In Figure 2, at one hundred thousand cycles per sample
facerec speeds up by 10%. Although the D-cache miss rate of facerec appears to in-
crease in Figure 5, the actual execution time of the program decreases. The D-cache
miss rate increases but these misses overlap with each other more effectively than in
the original program leading to improved program performance. In contrast, equake’s
D-cache performance is noticeably improved in Figure 4. Lower sampling rates for

Continuous Adaptive Object-Code Re-optimization Framework 251

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

am
m

p

ap
pl

u ar
t

bz
ip

2

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

ga
p

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

sw
im

vo
rt

ex vp
r

cr
af

ty

B e n c h m a r k

E
xe

cu
tio

n
T

im
e

(s
)

1 0 0 k c y c le s p e r s a m p le c o n t i n u o u s 1 0 0 k c y c le s p e r s a m p le s in g le

1 M c y c le s p e r s a m p le c o n t i n u o u s 1 M c y c le s p e r s a m p le s in g le

1 0 M c y c le s p e r s a m p le c o n t i n u o u s 1 0 M c y c le s p e r s a m p le s in g le

-3 0 %
-2 0 %
-1 0 %

0 %
1 0 %
2 0 %
3 0 %
4 0 %
5 0 %

am
m

p

ap
pl

u

ar
t

bz
ip

2

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

ga
p

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

sw
im

vo
rt

ex vp
r

cr
af

ty

B e n c h m a r k

R
el

at
iv

e
S

p
ee

d
u

p
 in

E
xe

cu
ti

o
n

 T
im

e

1 0 0 k c y c le s p e r s a m p le c o n t in u o u s 1 0 0 k c y c le s p e r s a m p le s in g le

1 M c y c le s p e r s a m p le c o n t in u o u s 1 M c y c le s p e r s a m p le s in g le

1 0 M c y c le s p e r s a m p le c o n t in u o u s 1 0 M c y c le s p e r s a m p le s in g le

Figs. 1 (top) and 2 (bottom). Figure 1 shows the execution time of dynamically optimized
programs with data collected at different sampling rates. Figure 2 shows the relative speedup at
different sampling rates

- 1 0 %

0 %

1 0 %

2 0 %

3 0 %

4 0 %

5 0 %

am
m

p

ap
pl

u ar
t

bz
ip

2

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

ga
p

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

sw
im

vo
rt

ex vp
r

cr
af

ty

B e n c h m a r k

R
el

at
iv

e
S

p
ee

d
u

p
 in

 E
xe

cu
ti

o
n

T
im

e

Fig. 3. Relative speedup at one million cycles per sample

facerec do not improve performance because at slower sampling rates the primary
execution path is not optimized properly on the first pass and since we do not cur-
rently monitor the performance of generated traces, the problem is not corrected in
future intervals. Although this problem is most dramatic in facerec, this trend can be
seen in all the programs at a slower sampling rate. It may be valuable to study track-
ing and removal of sub-optimal traces in the future to deal with this problem.

252 H. Chen et al.

D -c a c h e M is s e s p e r C yc le in E q u a k e

0

0 .0 0 0 5

0 .0 0 1

0 .0 0 1 5

0 .0 0 2

0 .0 0 2 5

0 .0 0 3

0 .0 0 3 5

T im e

D
-c

ac
h

e
m

is
se

s
p

er
 c

yc
le

o rig in a l

o p t im iz e d

D -ca ch e M iss es p e r C yc le in F ac ere c O v er T im e

0

0.0 005

0 .001

0 .0 015

0 .002

0 .0 025

0 .003

T im e

D
-c

ac
h

e
m

is
se

s
p

er

cy
cl

e o rig ina l

o p tim ized

Figs. 4 and 5. Figure 4 shows the D-cache misses per cycle in Equake before and after optimi-
zation at one sample every 100k cycles. Figure 5 shows the D-cache misses per cycle in
Facerec before and after optimization at one sample every 100k cycles.

Other benchmarks do not benefit from the implemented prefetching optimizations
and are primarily slowed down by the overhead of sampling, additional I-cache
misses from branching to our generated traces, and increased D-cache misses due to
ineffectual prefetches. The overhead of our optimization and patching is generally
very small, less than 1% of the original program’s execution time, so the majority of
the slowdown in programs can be attributed to these factors. The largest reported
slowdown is from gzip due to failed prefetching increasing D-cache misses. This
demonstrates the need for additional work in tracking the effectiveness of optimiza-
tions and removing optimizations that fail to improve performance.

In general, increasing the sampling rate results in higher overhead due to the time
required to store sampled PMU information. However, it also detects a set of hotspots
faster than slower sampling rates, which means hot traces may be applied earlier to a
program than at slower sampling rates. Mcf and art both have small loops that no-
ticeably speed up after being optimized and therefore benefit from higher sampling
rates. In contrast, equake and swim perform better at one sample taken every one
million cycles. At one sample every one million and hundred thousand cycles, these
two programs generally found similar hotspots, but at one-hundred thousand cycles
per sample, the overhead of sampling is about 5% higher than at one sample every 1
million cycles.

Using a rate of ten million cycles per sample, continuously selecting traces yields
worse performance than selecting a single set of traces once. At a rate of ten million
cycles per sample, the system starts with correctly selected paths and later selects sub-
optimal paths that degrade performance. Because traces occur after a fixed interval,
one second, the sampling error from the small pool of samples falsely detects traces

Continuous Adaptive Object-Code Re-optimization Framework 253

as hot. Since the sampling error of a program is related to the size of the footprint we
need to detect, this indicates that it might be worthwhile to estimate the size of the
working set and adjust the number of samples required to select hot-spots accord-
ingly. However, performance is improved for continuously selected traces due to the
ability to select new hot traces that do not occur earlier in execution.

The largest slowdown in figure 3 is parser at 5%. This is mainly due to generated
trace overhead from the selection of a large number of traces, and the lack of any
effective D-cache prefetching. However, other programs like gap, gcc, and gzip gen-
erate less than 2% overhead.

Finally, in some cases selecting a set of traces after the first detected hot phase per-
formed better than continuous selection. Continuous selection is sensitive to short
term behavior changes leading the optimizer to generate more traces and more over-
head than making a single selection.

4.2 Run-Time Overhead

The overhead for our run-time system is fairly stable, with the profiling thread gener-
ating a consistent 0.3%-0.6% overhead over no profiling. Optimization overhead is
proportional to the number of traces selected to optimize and consistently less than
1%. Turning off patching has a negligible effect on overhead indicating that the cost
of patching traces is much smaller than the cost of profiling and optimization.
Sampling overhead averaged approximately 4% at one sample every hundred thou-
sand cycles, about 1% at one sample every million cycles, and much less than 1% at
lower sampling rates. The overhead is not directly proportional to the sampling rate
because this includes the overhead of inserting branch information into the trace se-
lection table. Slowdowns of greater than 1% are primarily due to optimizations result-
ing in larger loops.

5 Summary and Future Work

Dynamic optimization promises to provide a useful mechanism for deploying aggres-
sive optimizations targeting run-time behavior. We present our system as a prototype
for finding and deploying optimizations, and support this claim by using our proto-
type to speedup various SPEC2000 benchmarks compiled by the ORC 2.0 compiler at
O2. We are able to speed up several benchmarks dominated by D-cache misses, while
maintaining a maximum slowdown of 5% in parser and crafty.

Future directions for this work include enhancements to our current system, moni-
toring current optimizations and tracking the performance of generated traces, im-
proving phase detection, evaluating other optimization techniques, and exploring
dynamic optimization opportunities in different environments.

254 H. Chen et al.

References

1. J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.A. Leung, R.L.
Sites, M.T. Vandevoorde, C.A. Waldspurger and W.E. Weihl. “Continuous profiling:
where have all the cycles gone?” ACM Transaction on Computer Systems, vol. 15, no. 4,
Nov. 1997

2. A. Andrew, S. De Jong, J. Peyton, and R. Schooler "Scalable Cross-Module Optimiza-
tion", In Proceedings of the ACM SIGPLAN '98 conference on Programming language
design and implementation, PLDI'98, June 1998.

3. V. Bala, E. Duesterwald, S. Banerjia. “Dynamo: A Transparent Dynamic Optimization
System”, In Proceedings of the ACM SIGPLAN '2000 conference on Programming lan-
guage design and implementation, PLDI'2000, June 2000.

4. Ball, T., and Larus, J. R. “Efficient Path Profiling,” In Proceedings of the 29th Annual
International Symposium on Microarchitecture (Micro-29), Paris, 1996.

5. P. Chang, S. Mahlke and W. Hwu, "Using Profile Information to Assist Classic Com-
piler Code Optimizations," Software Practice and Experience, Dec. 1991.

6. H. Chen, W. Hsu, J. Lu, P. -C. Yew and D. -Y. Chen, “Dynamic Trace Selection Using
Performance Monitoring Hardware Sampling”, International Symposium on Code
Generation and Optimization, CGO 2003, March, 2003.

7. R.S. Cohn, D.W. Goodwin, P.G. Lowney, “Optimizing Alpha Executables on Windows
NT with Spike”, Digital Technical Journal, Vol 9 No 4, June 1998.

8. T. Conte, B. Patel, J Cox. “Using Branch Handling Hardware to Support Profile-Driven
Optimization”, In Proceedings of the 27th Annual International Symposium on Microar-
chitecture (Micro-27), 1994

9. A. M. Holler, “Optimization for a Superscalar Out-of-Order Machine,” In Proceedings
of the 29th Annual International Symposium on Microarchitecture (Micro-29), Decem-
ber 1996.

10. Intel, Intel IA-64 Architecture Software Developer’s Manual, Vol. 1: IA-64 Application
Architecture.

11. Intel, Intel IA-64 Architecture Software Developer’s Manual, Vol. 2: IA-64 System
Architecture.

12. T. Kistler, M. Franz. “Continuous Program Optimization: Design and Evaluation”, IEEE
Transaction on Computers, vol. 50, no. 6, June 2001.

13. S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, “Effective
Compiler Support for Predicated Execution Using the Hyperblock”, In Proceedings of
the 25th Annual International Symposium on Microarchitectures. (Micro-25), 1992 .

14. S. McFarling, “Reality-Based Optimizations”, International Symposium on Code Gen-
eration and Optimization, CGO 2003, March, 2003.

15. M. Merten, A. Trick, E. M. Nystrom, R. D. Barnes, W. Hwu, “A Hardware Mechanism
for Dynamic Extraction and Relayout of Program Hot Spots”, In Proceedings, Interna-
tional Symposium on Computer Architecture, ISCA-27, 2000

16. S. Patel, S. S. Lumetta, “Replay: A Hardware Framework for Dynamic Optimization”,
IEEE Transaction on Computers, vol. 50, no. 6, June 2001.

17. T. Sherwood, E. Perelman, G. Hamerly, B. Calder. “Automatically Characterizing Large
Scale Program Behavior. 10th International Conference on Architectural Support for
Programming Languages and Operating Systems, October 2002.

18. T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis to find peri-
odic behavior and simulation points in applications. In International Conference on Par-
allel Architectures and Compilation Techniques, September 2001.

Continuous Adaptive Object-Code Re-optimization Framework 255

19. Y. Wu. “Efficient Discovery of Regular Stride Patterns in Irregular Programs”, PLDI
2002:210-221.

20. Hewlett Packard, “Perfmon Project Website”, webpage, http://www.hpl.hp.com/research
/linux/perfmon/index.php4.

	1 Introduction
	2 Background
	3 Architecture
	3.1 Overview
	3.2 Performance Event Detection
	3.2.1 Performance Monitoring Hardware
	3.2.2 Perfmon
	3.2.3 Hot Trace Selection
	3.2.4 Phase Change Detection

	3.3 Optimization
	3.3.1 Trace Generation
	3.3.2 Trace Cross-Patching
	3.3.3 Architecture Safe Optimization
	3.3.4 Data Prefetching

	3.4 Deploying Optimizations
	3.4.1 Patching Branch Targets
	3.4.2 Memory Protection
	3.4.3 Branch Patching Distance
	3.4.4 Atomic Write Issues
	3.4.5 Repatching Issues

	4 Experiments and Discussion
	4.1 Speedup and Coverage
	4.2 Run-Time Overhead

	5 Summary and Future Work

