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Abstract. We set up differential calculi in the Cartesian-closed category
CONYV of convergence spaces. The central idea is to uniformly define the
3-place relation is a differential of at for each pair of
convergence spaces X, Y in the category, where the first and second argu-
ments are elements of Hom(X,Y') and the third argument is an element
of X, in such a way as to (1) obtain the chain rule, (2) have the relation
be in agreement with standard definitions from real and complex anal-
ysis, and (3) depend only on the convergence structures native to the
spaces X and Y. All topological spaces and all reflexive directed graphs
(i.e. discrete structures) are included in CONV. Accordingly, ramified
hybridizations of discrete and continuous spaces occur in CONV. More-
over, the convergence structure within each space local to each point,
individually, can be discrete, continuous, or hybrid.

Keywords: Differential, convergence space, discrete structure, hybrid
structure.

1 Introduction

With topology, continuity of functions generalizes from the contexts of classical
analysis to a huge collection of structures, the topological spaces. The purpose
here is to do the same for differentiability and also to allow for differentiation of
such functions as, for example, functions between discrete structures (represented
as reflexive directed graphs) as well as functions between discrete structures
and topological spaces, particularly continua commonly occurring in elementary
analysis.

Just as continuity itself neither presupposes any separation strength nor any
notion of linearity, neither does differentiability. The familiar differential calculus
on Euclidean spaces is of course intrinsically dependent on the vector space
structure, but this is due to the choice of functions used to serve as differentials,
and the consequent determination of the conditions under which functions are
differentiable. What matters is the differentiability relation “differential g is a
differential of f at x”. Unless we demand of g that it satisfy some kind of
linearity property, linearity does not intrinsically enter into the relation.
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A word about derivatives: The derivative of a function at a point is a differ-
ential. For example, the derivative of A\xz.z? at 1 is Az .2z, the linear function
with slope 2. The derivative of a function f on a subset of the function’s domain
is another function that maps each point = of the subset to the derivative of f at
x. The point is that derivatives are differential-valued. In the case of E!, the real
numbers with the standard Euclidean topology, the space of linear functions,
i.e. the space of differentials, is taken with a topology making it homeomorphic
to E!. For situations where no such homeomorphism is available, we expect the
codomain of a derivative of f to be different from the codomain of f. This is
evident already with 2-dimensional vector spaces over the reals.

We will set up differential calculi in the Cartesian-closed category CONV of
convergence spaces. The central idea is to uniformly define the 3-place relation

is a differential of at

for each pair of convergence spaces X,Y in the category, where the first and
second arguments are elements of Hom(X,Y) and the third argument is an
element of X, in such a way as to (1) obtain the chain rule, (2) have the relation
be in agreement with standard definitions in real and complex analysis, and (3)
depend only on the convergence structure native to the spaces X and Y.

Plan of the papers: In section 2 we define convergence spaces and the notion of
continuity of functions at a point and discuss some of relevant properties of the
resulting category CONV. The representation of reflexive digraphs and topolog-
ical spaces as convergence structures is discussed in section 3. Section 4 presents
the algebraic ideas that constitute the extraction of linear structure from the
symmetries of a convergence space’s convergence structure. Section 5 gives the
definition of a differential calculus involving homogeneous spaces and the defi-
nition of the 3-place differentiability relation. Section 5 includes the statement
and proof of the chain rule and identifies the differential calculi associated with
CONV. Section 6 presents examples of differential calculi. Section 7 concludes
the paper by extending the ideas to differential calculi that include nonhomoge-
neous spaces.

It is important to note that the spaces and functions of interest are natu-
rally organized into categories and to note the nature of the containments and
embeddings that are involved. In particular, any method for constructing a dif-
ferential calculus for mappings between arbitrary convergence spaces gives such
a method for all reflexive digraphs and all topological spaces. The results of this
paper should thus be seen as constituing a tool-kit for setting up mathematical
structures that import techniques from continuous mathematics into discrete
contexts.

2 Convergence Spaces, CONV and Prior Work

There is a beautiful paper including a brief but powerful tutorial on convergence
spaces due to R. Heckmann [2003]. We present a few of the fundamental ideas
necessary for our work.
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A filter on a set X is a collection of subsets of X closed under finite intersection
and reverse inclusion. F is a proper filter if the empty set is not a member of F.
Let ¢(X) denote the set of all filters on X. For a subset A of X, { B|AC B C
X } is a member of #(X). We denote this filter by [A]. In the special case where
A is a singleton {2} we denote [A] by [z] and call this the point filter at x.

Definition 1. [1967), [2003] A convergence structure on X is a relation | (read
as “converges to”) between members of ®(X) and members of X such that for
each x € X: (1) [x] converges to x, and (2) the set of filters converging to x
is closed under reverse inclusion. A pair (X,]) consisting of a set X and a
convergence structure | on X is called a convergence space.

A fuqction f: X — Y where X and Y are sets, induces functions f R
and f: ®(X) — B(Y). f is defined by f(A) = {f(a) | a € A}, which we call
the f-image of A. For F € @(X) note that the collection of all supersets of f-

images of members of F forms a filter which we call f(F). Hereafter we overload
notation and drop the ~and ~annotations.

When convenient, we will refer to a convergence space (X, |) by its carrier,
X.

Definition 2. 2003] Let f : X — Y where X and Y are convergence
spaces, and let xg € X. f is continuous at xg iff for each F € ®(X), if F | xo
in X, then f(F) | f(xo) inY. f is continuous iff f is continuous at every point
of X.

Continuity can be characterized in terms of filter members, which play a role
analogous to the role played by neighborhoods, as supersets of open sets, in
topological spaces.

Proposition 1. Let f : X — Y where X and Y are convergence spaces,
and let xo be a point of X. [ is continuous at xo iff for every filter F con-
verging to xo in X, there is a filter G converging to f(x¢) in Y such that
(VV e G)3U € F)[f(U) CV].

Definition 3. [1967)] A homeomorphism between two convergence spaces is a
continuous bijection whose inverse is continuous.

The objects of the category of convergence spaces CONV are the convergence
spaces. For convergence spaces X and Y, HOM(X,Y) is the set of continuous
functions from X to Y.

The category CONV includes all topological spaces but enjoys several sub-
stantial advantages over the category TOP of topological spaces. Importantly
for computation, CONV contains multiple representations of all reflexive di-
rected graphs (finite and infinite). Among digraphs, continuity is the property
of being edge-preserving, i.e. a digraph homomorphism. But, powerfully, and
unlike TOP, CONYV is a Cartesian-closed category. Several immediate conse-
quences of Cartesian-closure and the relationship between TOP and CONV are:
(1) convergence spaces preserve the notion of continuity on topological spaces;
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(2) convergence spaces allow fine control over continuity, and in various circum-
stances allow for strengthening the conditions for continuity; (3) at one’s option,
there is a uniform way of regarding all spaces of continuous functions as conver-
gence spaces, but other topological structures, (for example, a structure derived
from a norm) are available, and (4) function composition and application are
continuous.

Over time, a number of researchers have sought to generalize differentiability
to spaces where the generalization is non-obvious. Some of the more serious and
sophisticated results in this direction have employed one or another restriction
of the notion of convergence space, often near to pre-topological spaces, or else
stayed within TOP [1946), 1968, 1966, 1966, 1945, 1966, 1974, 1983, 1963, 1940).
These explorations assumed the existence of additional structure characterizing
linearity. [I983] recognized the importance of Cartesian-closure for obtaining a
robust chain-rule.

3 Reflexive Digraphs and Topological Spaces as
Convergence Spaces

Definition 4. Let x be a point of a convergence space X, and let U be a subset
of X. U is said to be a neighborhood of z iff U belongs to every filter converging
to x.

Definition 5. [1977] A convergence space (X, |) is said to be a pretopological
space if and only if | is a pretopology, i.e. for each x € X, the collection of all
neighborhoods of x converges to x.

Proposition 2. Let f: X — Y where X and Y are pretopological spaces, and
let g € X. [ is continuous at xq iff for every neighborhood V' of f(xq), there is
a neighborhood U of xg such that f(U) C V.

It is evident that every topological space is a pretopological space (cf. [1947, 1940,
[1959]), and that the convergence space notion of continuity and the topological
space notion of continuity coincide for topological spaces. As indicated in the
introduction, the spaces and functions of interest to us are naturally organized
as categories. The main categories of interest in this paper are:

CONV the category of convergence spaces and continuous functions
PreTOP the category of pretopological spaces and continuous functions
TOP the category of topological spaces and continuous functions
ReRe the category of reflexive digraphs (i.e. directed graphs

with a loop at each vertex) and edge-preserving functions
PostD the full subcategory of CONV whose objects are the
postdiscrete (see below) convergence spaces

TOP is a full subcategory of PreTOP, which, in turn, is a full subcategory
of CONYV. Both of these full inclusions are reflective, via induced pretopology
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and induced topology operations, respectively. ReRe is isomorphic to PostD,
which, in turn, embeds into PreTOPEl

The reflection functor PreT from CONYV to PreTOP can be realized by
letting the carrier of PreT(X) be the carrier of X, and and letting a filter F
converge to a point = in PreT(X) iff the collection of all neighborhoods of x in
X is a subcollection of F.

Similarly, the reflection functor T from PreTOP to TOP can be realized by
letting the carrier of T(X) be the carrier of X, and defining the topology on
T(X) as {U C X |U is a neighborhood in X of each point of U}.

ReRe can be embedded, in more than one way, as a full subcategory of
CONV.

Definition 6. A convergence space X will be said to be postdiscrete if and only
if every convergent proper filter is a point filter.

Proposition 3. The postdiscrete pretopological spaces are precisely the discrete
topological spaces.

Definition 7. Let (V, E) be a reflexive digraph. Induce a convergence structure
on V' by letting a proper filter F converge to a vertex x iff F = [y] for some
vertex y with an edge in E from x to y.

Tt is readily verified that if (Vi, E1) and (Va, Es) are reflexive digraphs, then a
function f : V3 — V4 is continuous (with respect to the induced convergence
structures on V3 and Va) iff, for all edges (z,y) in Ei, the edge (f(z), f(y)) is
present in Fjs.

Proposition 4. The construction in Definition [] embeds ReRe as a full sub-
category of CONYV, namely the full subcategory whose objects are the post-
discrete spaces where this embedding is coreflective. The coreflection functor
ReR : CONV — ReRe can be obtained letting the vertices of ReR(X) be
the members of X, and letting an ordered pair (x,y) be an edge of ReR(X) iff
[y] | z in X.

Alternatively, ReRe can be embedded as a full subcategory of PreTOP, and
thence as a full subcategory of CONYV [2001], 2003], by letting a filter F converge
to a vertex z iff {y| (z,y) € E'} is a member of F.

In general, this embedding of ReRe into PreTOP imposes a weaker conver-
gence structure on reflexive digraphs than the embedding in Definition [7

Proposition 5. The embedding of ReRe into PreTOP [2001, [2003] is the
composite of the embedding in Definition [] of ReRe into CONYV with the re-
flection functor from CONYV to PreTOP, and embeds ReRe as a full, core-
flective subcategory of PreT OP, and thence as a full, coreflective subcategory of
CONYV. The coreflection functor from PreTOP to ReRe (and the coreflection
functor from CONYV to ReRe via PreTOP) can be obtained in precisely the
same way as in Proposition [

! The embedding is the restriction of the induced pretopology reflection from CONV
to PostD.
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The reflexive digraphs whose induced pretopologies are topological are precisely
those in which the underlying binary relation is transitive as well as reflexive.
[20011, 2003] Unlike TOP and PreTOP, CONYV is a Cartesian closed category

(97T, 975, 1990, 2001, T965] ):
Definition 8. [1965]

Let X and Y be convergence spaces. The function space YX is the set of all
continuous functions from X to'Y, equipped with the convergence structure |
defined as follows: For each H € ®(YX) and each fo € YX, let H | fo if, and
only if, for each xo € X and each F | xo, {{f(zx)|f € Hx e F}|H e H,F €
F} is a base for a filter which converges to f(xg) inY.

4 Translation Groups and Homogeneous Convergence
Spaces

Definition 9. An automorphism of a convergence space X is a homeomorphism
f:X—X.

Definition 10. A translation group on a convergence space X is a group T of
automorphisms of X such that, for each pair of points p and q of X, there is at
most one member of T which maps p to q. In general, we will denote this unique
member of T (if it exists) by (¢ — p).

Notation: The group operation of a translation group T on a convergence space
X will be written additively, whether or not T is Abelian. Furthermore, for all
TeT and all x € X, we will write T(z) as © + .
In this notation, the requirement that the translation (¢ —p) (if it exists) maps
p to q becomes the familiar requirement that if (q—p) exists, then p+(q—p) = q.
A full translation group on a convergence space X is a translation group on
X which contains a translation (¢ — p) for each pair of points p and q.

Proposition 6

i. Bvery convergence space X can be embedded as a subspace of a convergence
space HX which has a full translation group.

ii. X and HX have the same cardinality if and only if the cardinality of X is
either zero or infinite.

iii. The embedding of X into HX is onto HX if and only if X is empty.

iv. If X andY are arbitrary convergence spaces then every continuous function
f: X — Y can be be extended to a continuous function Hf : HX — HY .

v. If f is a homeomorphism, then so is Hf.

An immediate consequence of (ii) in Proposition [ is that, if X is a non-empty
finite space with (or without) a full translation group, then HX cannot be
homomeomorphic to X. It should also be noted that, given a particular f, the
continuous extention H f need not be unique.
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Definition 11. A convergence space X is homogeneous iff for each pair of
points x1 and xo of X, there is an automorphism of X which maps x1 to x5

Observation 1. A convergence space which has a full translation group must be
homogeneous. Furthermore, a full translation group on a nonempty convergence
space X must have the same cardinality as X.

5 Differential Calculi

Definition 12. A differential calculus is a category D in which

i. every object of D is a triple X = (X,0,T) such that X is a convergence
space, 0 is a point of X (called the origin of X' ), and T is a full translation
group on X.

it. every arrow in D from an object (X,0x,Tx) to an object (Y,0y,Ty) is a
continuous function from X to'Y which maps Ox to Oy

1. composition of arrows in D is function composition.
w. for every object X = (X,0x,Tx), the identity function on X is an arrow in
D from X to X

v. for each pair of objects X = (X,0x,Tx) and Y = (Y,0y,Ty), the constant

function mapping every point of X to Oy is an arrow in D from X to ).

In view of Proposition[f] the requirement that each object have a full translation
group is not unduly restrictive. We are now in a position to define the differen-
tiability relation. Let a € A C X and let B C Y, where X = (X,0x,Tx) and
Y = (Y,0y,Ty) are objects of a differential calculus D. Let f: A — B be an
arbitrary function.

Let L € D(X,Y), where D(X,)) is the set of all arrows in D from X to ),
equipped with the subspace convergence structure inherited from the function
space YX in CONV.

Definition 13. L is a differential of f at a iff
for every F | a in A, there is some H | L in D(X,)) such that

i. H C[L], and
u. for every H € 'H, there is some F' € F such that
for every point x € F, there is at least one function t € H such that

tr —a) = f(x) - f(a))

In Definition I3 (f(a) — 0y)oto (0x — a) is called an extrapolant of f through
(@, f(a)) and (z, f(z)).

Definition 14. A function from A to B is differentiable (respectively, uniquely
differentiable) at a point a iff it has at least one (respectively, precisely one)
differential at a. A function from A to B is differentiable (respectively, uniquely
differentiable) iff it is differentiable (respectively, uniquely differentiable) at each
point of A.
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We next obtain the chain rule. As we indicated in the introduction, the chain
rule plays a central role in differential calculi. In elementary real and complex
analysis, for example, the product rule follows from the chain rule after obtaining
the differential of the multiplication operation.

Ezxample 1. Expressed in terms of differentials, the product rule for real-valued
functions of a real variable reduces to matrix multiplication (i.e. composition of
linear functions).

Dy (mult o (f,9)) = D5.g)@mult o Dy (f,9)
= D(4(a),g(zpmult o (Dy f, Dyg)

~ sl | 77|
=9(@) Dz f + f(x)Dzg

Returning to our more general setting, let a € A C X, let B C Y, and
let C' C Z, where X = (X,0x,Tx), Y = (Y,0y,Ty), and Z = (Z,0z,T) are
objects of a differential calculus D. Let f : A — B and g : B — C be arbitrary
functions. Let K : X — Y and L : Y — Z be arrows of D.

Theorem 2. (Chain Rule) Suppose that f is continuous at a. Also suppose
that K is a differential of  at a, and L is a differential of g at f(a). Then Lo K
1s a differential of go f at a.

Proof: Let F be a filter converging to a in X. Since K is a differential of f
at a, there is some G | K in D(X,)) such that G C [K] and, for every G € G,
there is some F} ¢ € F such that for each point x € F} ¢ there is some function
sa,« € G such that

sq.x(z —a) = f(z) = f(a) (1)

On the other hand, since f is continuous at a, we have f(F) | f(a) in B.
Since L is a differential of g at f(a), there is some filter H | L in D(Y, Z) such
that H C [L] and, for every H € H, there is some Ny € f(F) such that for each
point y € Ny, there is some function ¢g,, € H such that

try(y — f(a)) = 9(f(z)) — 9(f(a)) 2)

Consider such a set Ng. By definition, Ny € f(F), i.e. there is some Fy y € F
such that

f(Fo,m) € Nu
By @), for each point x € F, , we have
tr,p(a) (f (@) + Oy — f(a))) = g(f(x)) + (02 — g(f(a))) (3)

Next, note that { { hoohi|h1 € G,he € H} |G € G, H € H } is a basis for a
filter J on D(X, Z), and that J C [L o K].
By joint continuity of composition, J | Lo L in D(X, Z).
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Let J be an arbitrary member of 7. There exist G € G and H € H such that
{h20h1|h1 €G7h2€H} cJ

Let F' = Fi,¢ N Fy . Then F € F. For each point = € F, we have sg, € G
and t () € H, and therefore tg ¢(,) © 8¢, € J. Furthermore, by () and (@),

005 =0) = o 0+ 03—F(0) = (50 + 05907 0)
4
Thus, (g(f(a)) —0z) oty (z)©5c,20(0x —a) is the required extrapolant of go f
through (a, g(f(a)) and (z, g(f ().
Since the selection of x is arbitrary (once G and H have been chosen), Lo K
is indeed a differential of g o f at a.

6 Examples

Throughout, let R be the real line (equipped with its Euclidean topology), and
let N be the set of all natural numbers.

Ezample 2. The classical differential calculus of real variables: The ob-
jects of this differential calculus are the spaces R" (n € N), equipped with their
respective Euclidean topologies, with their respective zero vectors as origins, and
with their usual translation groups. The arrows of this calculus are the R-linear
functions. In this calculus, differentiability and unique differentiability are equiv-
alent, and a function f has a differential at a point p iff f is differentiable (in
the usual sense) at p.

Ezxample 3. The directional calculus of real variables: Again, the objects
are the sets R" (n € N), with their respective zero vectors as origins, and with
their usual translation groups. Again, R is equipped with its Euclidean topology.

However, for n > 1, the convergence structure imposed on R" is stronger than
the (Euclidean) product structure. In the directional calculus of real variables, a
filter F will be said to converge to a point p iff there is some unit vector ¢ such
that {p+ aq|a € R,|a] < e} € F for every real number € > 0.

The arrows of this calculus are the R-homogeneous functions of degree one.

In this calculus, differentiabilty and unique differentiabilty are equivalent, but
a function f has a differential at a point p iff f has directional derivatives in all
directions at p.

Ezample /. Boolean differential calculus (cf. Boolean derivatives [T954] [T959,
[1990]): Let B be a complete digraph with two vertices, F and T, and equipped with
the induced postdiscrete convergence structure (cf. Definition [).

Both of the point filters on B converge both to F' and to T. (This convergence
structure differs from the induced pretopological structure (namely, the indis-
crete structure) in that the filter {F, T} does not converge in B, but converges
to both points in the indiscrete structure.)
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In this calculus, the carriers of objects are the spaces B" ( n € N). Each
carrier is equipped with the product convergence structure (which coincides with
the postdiscrete convergence structure induced by the complete digraph on the
carrier).

For each n, the bit vector (F, F,..., F') of length n is taken as the origin of
B".

The group generated by the flips hi, ho, ..., h, is taken as the translation
group of B", where (as one would expect) hi(b) is obtained from bit vector b
by changing the k' bit of b (and leaving every other bit unchanged).

For each m and n, the arrows from B™ to B™ are defined to be all origin-
preserving functions from B" to B"™. (This is compatible with our definition of
a differential calculus, since every function between complete digraphs preserves
edges.)

In particular, there are precisely two arrows between B and itself, namely, the
identity function, and the constant function which returns F'.

In the Boolean differential calculus, every function between B and itself is
uniquely differentiable.

Example 5. Differentiating a function from 3R to K5: Kj is the complete
directed graph on 3 vertices, but with one edge from one vertex to another
removed. It is universal for the all pretopological convergence spaces in the sense
that every pretopological space embeds in some Cartesian power of it, (Bourdaud
[1976]). The space 3R is our designation for the set of real numbers equipped
with Euclidean filter structure at each real number r, and in addition at r, all
filters containing the filters generated by the open intervals whose right end point
is r, and all filters containing the filters generated by the open intervals whose
left end point is r. Take all functions from 3R to K3 that are piecewise constant
at 0 for differentials. Then g : 3R — Kj is a differential of f : 3R — K at
xo iff f is constant on an open interval whose right end point is r» and constant
on an open interval whose left end point is r.

7 Differential Calculi with Nonhomogeneous Objects

In the preceding development, convergence spaces without full translation groups
are “second class citizens” in the sense that they cannot be the carriers of objects
of a differential calculus. A somewhat more general (and slightly more compli-
cated) concept of “differential calculus” permits all convergence spaces to be
carriers of objects.

Observation 3. Let T be a translation group on a convergence space X. For
each point x of X, let [x], be the T-orbit of z, i.e. [x], ={x+ 7|7 €T}.

If X is nonempty, then the set of all T orbits partitions X into homogeneous
subspaces. For each T-orbit [z, the restrictions of the members of T to [x|p
form a full translation group Ty, on [x],.

Each T, is a quotient group of T.
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Definition 15. A system of origins for a convergence space X with respect to
a translation group T is a set of representatives of the T-orbits, i.e., a subset O
of X containing precisely one member of each T-orbit.

For each point x of X, let 0, be the unique member of O belonging to the
same T'-orbit as x.

Definition 16. Let f : X — Y be a function between convergence spaces. Let
Ox (Oy, respectively) be a system of origins for X with respect to a translation
group S (for Y with respect to a translation group T, respectively).

i. f will be said to respect orbits iff, for each pair of points p and q of X, if p
and q lie in the same S-orbit, then f(p) and f(q) lic in the same T-orbit.
it. f will be said to be preserve origins iff f(Ox) C Oy.

Definition 17. A generalized differential calculus is a category D in which

i. every object of D is a triple X = (X, T,0) such that X is a convergence
space, T is a translation group on X, and O is a system of origins for X
with respect to T'.

it. every arrow in D from an object (X,S,Ox) to an object (Y, T,Oy) is a
continuous, orbit-respecting, origin-preserving function from X toY .

1. composition of arrows in D is function composition.
. for every object X = (X, T, ), the identity function on X is an arrow in D
from X to X

v. for each pair of objects X = (X,5,0x) and Y = (Y,T,Oy) and each ¢ in
Oy, the constant function mapping every point of X to ¢ is an arrow in D
from X to Y

A differential calculus (in the sense of Definition [[2) is essentially the same
notion as a generalized differential calculus in which the translation group of
every object is a full translation group.

At the opposite extreme, there are generalized differential calculii in which the
translation group of every object is trivial (and hence all orbits are singletons).

Example 6. CONYV as a generalized differential calculus

The objects of the trivial generalized differential calculus are all convergence
spaces, equipped with trivial translation groups. The arrows from an object X
to an object Y are all continuous functions from X to Y. (Since all orbits are
singletons, every function is orbit-respecting and origin-preserving.)

Let « € X and let b € Y, where X = (X,S5,0x) and Y = (Y, T,Oy) are
objects of a generalized differential calculus D. Let f : A — B be an arbitrary
function.

Let L € D(X,)), where, again, D(X,Y) is the set of all arrows in D from
X to ), equipped with the subspace convergence structure inherited from the
function space YX in CONV.
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Definition 18. L is a differential of f at a iff
for every F | a in X, there is some H | L in D(X,Y) such that

i. HC[{L}], and
1. for every H € 'H, there is some F' € F such that
for every point x € F, there is at least one function t € H such that

Hx + (0p —a)) = f(z) + (0s) — fla))
Differentiability and unique differentiability are defined exactly as before.

Ezample 7. The classical affine differential calculus of real variables
The objects of this generalized differential calculus are the Euclidean spaces,
equipped with trivial translation groups. The arrows from R™ to R" are all
affine functions from R™ to R"

As in the classical linear differential calculus, a function f has a differential
at a point p iff f is differentiable (in the usual sense) at p.

Let E,f be the differential of f at p in the classical affine differential calculus
of real variables. That is, E,(f) is the affine function which best approximates
f in arbitrarily small neighhborhoods of p.

Then the differential of f at p in the classical linear differential calculus is the
unique linear function which can be obtained from F), f by composing it on both
sides with translations (in the usual sense), i.e. the function which maps each
point ¢ to f(p) + (Epf)(q — p).

Next, we obtain the chain rule for generalized differential calculi. Let a € X,
where X = (X,R,0x), Y = (V,5,0y), and Z = (Z,T,0y) are objects of a
generalized differential calculus D. Let f : X — Y and g : Y — Z be arbitrary
functions. Let K : X — Y and L : Y — Z be arrows of D.

Theorem 4. (Chain Rule)
Suppose that f is continuous at a. Also suppose that K is a differential of f at
a, and L is a differential of g at f(a).

Then Lo K is a differential of go f at a.

Proof: Similar to the proof of Theorem 2, but with the obvious modifications.
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