
X. Zhou et al. (Eds.): APPT 2003, LNCS 2834, pp. 50–56, 2003.
© Springer-Verlag Berlin Heidelberg 2003

IA64 Oriented OpenMP Compiler: Design and
Implementation of Fortran Front End

Hongshan Jiang, Suqin Zhang, and Jinlan Tian

Department of CS&T,
Tsinghua University,

Beijing, 100084, China

Abstract. This paper presents an OpenMP compiler Fortran Front End. It
introduces principles and algorithms to deal with the implicit data parallelism,
which is directed by WORKSHARE directive in OpenMP Fortran API V2.0.
For implementation, automatic parallel computation division by compiler is
achieved by front end’s converting implicit data parallelism to explicit one in
Very High WHIRL. In addition, this paper presents some optimization
techniques to handle compiler-generated redundant synchronization and
consistent DO loop. At the end, a performance experiment is given to prove the
effectiveness of mentioned strategy.

1 Introduction

IA64 (Itanium Architecture)[1] is a 64-bit architecture published recently by the Intel
Corporation. The main characteristics of this architecture include the following. The
instruction level parallelism is enhanced by more structural components such as
bigger register heap and instruction bundles that are able to accommodate up to three
instructions. By using the branch registers, the conditional registers and the
conditional execution instructions, branches have been reduced to the least. By
allowing compilers to schedule load operation beforehand and enabling cache
management of memory hierarchy, the storage latency is concealed. Finally, the
special hardware enabled function returning and invoking mechanism supports those
modular codes generated by compilers.

OpenMP is a shared-memory parallel programming language initiated by DEC,
IBM, Intel and SGI in Oct. 1997. OpenMP inherits a number of features from ANSI
X3H5 standard and Pthreads of IEEE. Its most prominent features[2,3] are its support
of incremental parallelism and its suitability for developing coarse-grain parallelism
in the thread level. Because of its easy learning and usage together with the wide
support from several famous parallel machine venders, it has become the standard of
shared-memory parallel programming language.

Using IA64 processors to construct SMP and adopting OpenMP as the parallel
programming environment has many advantages due to its effective utilization of
IA64’s powerful instruction level parallelism capability in conjunction with
OpenMP’s advantage in thread level parallelism. ORC (Open Research Compiler) is a
public compiler research infrastructure aimed for the IA64 architecture. Based on it,

IA64 Oriented OpenMP Compiler 51

we have developed an OpenMP compiler to support OpenMP Fortran API V2.0. This
paper mainly discusses the design and implementation of the Fortran front end of this
OpenMP compiler.

2 Design and Implementation

The front end of ORC includes a C/C++ front end and a Fortran front end. It performs
lexical analysis, syntax analysis and semantic analysis on source code and finally
generates its corresponding Very High WHIRL intermediate presentation. The
Fortran front end descends from Cray F90 front end. Its architecture is shown in
figure 1.

Fig. 1. Control flow and data flow of Fortran FE.

OpenMP is not an independent programming language. It can be considered as a
parallel extension to current sequential high-level language such as Fortran or C/C++.
The extensions can be compiling directives in source code, functions in programming
libraries or OS environment variables. Each front-end processes corresponding
version of OpenMP separately.

Current version of Fortran front end can only handle OpenMP Fortran API V1.0
directives. Based on it, we added the processing mechanism for new features in
OpenMP Fortran API V2.0, such as the support for NUM_THREADS,
COPYPRIVATE clause and WORKSHARE[3] directive etc. Moreover, some
semantic processing needs modification, such as the processing for REDUCTION
clause. The processing of OpenMP directive spreads over every phase of the front end
from lexical analysis to semantic analysis. After being translated to VH WHIRL,
OpenMP directives are changed to pragma statements or WHIRL regions with
pragma labels.

The handling of WORKSHARE directive, which occupies a large amount of
workload for the compiler implementation, is difficult for Fortran front end.
WORKSHARE directive is a means for OpenMP Fortran API V2.0 to support
implicit data parallelism in Fortran90 i.e. it does not specify the parallel model
explicitly. For instance, in the array assignment operation of Fortran90, assignment of
different elements of arrays can be executed in parallel, but how these assignment
operations are dispatched to different processors is not specified distinctly. The

52 H. Jiang, S. Zhang, and J. Tian

implicit data parallelism can be regarded as a simple way for programmers to specify
parallel behaviors so as to free programmers from some trivial issues such as
computation division of parallelism. The only thing a programmer should to do is to
supply some necessary simple information, the remainder is taken care of by the
compiler.

Our solution for implicit data parallelism is to transform WORKSHARE region to
WHIRL region with WORKWHARE pragma by front end, and then translate implicit
data parallelism in WORKSHARE region to explicit form. This involves the division
of computation. In the next section, we will elaborate computation division principles,
algorithms and implementations. Furthermore, we will introduce some optimization
techniques for the special features of OpenMP. The IA64 related optimization is
placed in the back end.

3 Process of Implicit Data Parallelism

A basic block that can be executed in data parallelism is specified by WORKSHARE
directive in OpenMP. The data parallelism manner of such basic block is not specified
explicitly but handled by the compiler. Syntax of WORKSHARE directive is shown
in figure 2.

Fig. 2. Syntax of WORKSHARE directive.

In the figure, statements in the block are the array assignment of Fortran90.
WORKSHARE directive indicates that work of each statement in block is shared i.e.
they are divided into separate units of work and are executed by a group of threads in
parallel. If it is guaranteed that each unit will be executed exactly once, the units of
work may be assigned to threads of the PARALLEL region[3] in any manner.

3.1 Computation Division Principle

Array operations of Fortran90 can be classified into four categories: elemental
operations, query operations, reduction operations and complex operations. According
to the semantics of WORKSHARE directive, we introduce the following computation
division principle of array operations in the WORKSHARE region.
1. In the case of elemental operations, the evaluation for each element of the array is

counted as one unit of computation.
2. In the case of the reduction operation, current work is divided into several units

with each unit being executed in one thread. Each unit is to evaluate the local
reductive result, and then an additional work unit is added to deduce local results to
global reductive results. Necessary synchronization is added at the end of each
local reduction.

!$OMP WORKSHARE
block

!$OMP END WORKSHARE [NOWAIT]

IA64 Oriented OpenMP Compiler 53

3. In the case of complex array function operations, the computation division depends
on semantics. The principle is to assign irrelevant operations to separate threads.
For operations that have strong internal data dependency such as PACK[4] and
UNPACK[4], the whole operation forms a single unit of work.

4. If none of the above rules applied, that operation is treated as a single unit of work.

3.2 Computation Division Algorithm

According to semantic requirement, statements in the WORKSHARE region are array
assignments, scalar assignments, FORALL statements or WHERE statements[4].
Actually, the last two are conditional assignments, so the main issue of parallel
compiling algorithm is the assignment division and the expression division.

Assignment division belongs to the elemental computation division, which can be
processed according to the aforementioned principles. Solution of expression division
is discussed as follows. The evaluation of expression can be treated as the post-order
traversal of an expression binary tree. Every internal node of the tree corresponds to a
single array operation while every leaf node corresponds to an array or scalar.
Therefore, expression can be mapped to a series of single evaluation statements by
post-order traversing an expression tree. For every single evaluation statement, its
right value is an array expression that has no more than one operator or function,
while its left value is a temporary variable of an array or a scalar. We divide every
single evaluation statements into units of work by the rule of aforementioned
principles, combine consistent work units, eliminate redundant temporary variables,
and thus generate statement series that have been divided into work units. Consistency
of work units herein means to compute the elements in the same position of two
arrays of the same shape.

For instance, suppose the number of current threads is 2, A and B are one-
dimensional arrays of length N. According to statement WHERE(B<0)B= A-MIN(A),
its computation division is illustrated in Figure 3.

Fig. 3. Example of computation division.

54 H. Jiang, S. Zhang, and J. Tian

3.3 Implementation

Our implementation is to convert implicit parallelism to explicit one in VH WHIRL.
For each array operation in Fortran90, we give its corresponding explicit form of
operation. For instance, if A is a two dimensional array of shape N×M,
B=TRANSPOSE(A) can be translated to the explicit parallel form as in Figure 4.

Fig. 4. Explicit form of parallelism of B=TRANSPOSE(A).

After a series of processing, this explicit form will be compiled to parallel codes by
the back end. The particular way of computation division is decided by the number of
threads at the time and environment variables such as OMP_SCHEDULE.

4 Compilation Optimization

The compilation optimizations are mainly focused on the optimization in VH WHIRL
for features of OpenMP directive. Synchronization exists implicitly in many OpenMP
directives and may leads to additional cost. How to reduce the synchronization cost to
minimum is the main problem that the compilation optimization should care about.
Moreover, most parallel computations of OpenMP program exist in loop statements.
Therefore, the optimization of loop statement of OpenMP is also a problem needs
consideration. The following are the optimization techniques we adopt.

1) Removal of Redundant Synchronization
Synchronization is implied at the end of DO loop directive

of OpenMP. If successive loop directives are not data
dependent, their redundant synchronization can be removed in
order to reduce the waiting time and improve the parallel
efficiency. As Figure 5 illustrates, A and B are two successive
tasks which have no data dependency. These two tasks are
executed by 2 threads in parallel. A synchronization operation
occurs between them. Because of the workload imbalance,
after thread 1 finishes A2 at time t1, it will wait till thread 0
finishes A1. At time t2, these 2 threads start to execute B.
This will bring unnecessary extra execution time. We can see
that after the removal of redundant synchronization between
A and B, unnecessary waiting time is saved and parallel
efficiency is improved.

The time saved by the removal of redundant
synchronization equals to the minimum waiting time of all
threads, i.e. Tsaved = MIN(Twaiting1, Twaiting2, …, Twaitingn). In fact

!$OMP DO PRIVATE(I,J)
DO I=1,M

DO J=1,N
B(I,J) = A(J,I)

END DO
END DO

Fig. 5. Case of remo-
val of redundant syn-
chronization.

IA64 Oriented OpenMP Compiler 55

synchronization always brings additional cost, so Twaiting1, Twaiting2, …, Twaingn > 0, thus
Tsaved > 0.

2) Combination of consistent loop
For successive loop statements, if their lower bound, upper bound and step length

are all identical, and no data dependency occurs between loop bodies of different
subscript, their loop bodies can be combined into one loop body. The execution order
of these statements must be kept same as before. This can reduce iteration times, thus
enhance the efficiency. Such cases usually exist in statement series converted from
implicit parallel statements in Fortran90.

3) Optimization for Orphan Directives[5]
An orphan directive is an OpenMP directive that does not appear in the lexical

extent of a PARALLEL construct, but may lie in its dynamic extent. If this directive
does not lie in the dynamic extent of a PARALLEL construct, executing the
sequential codes could gain higher performance. Therefore, for each orphan directive,
whether to execute its parallel codes or to execute its sequential codes is dynamically
determined by its context. Our solution is to add a statement, i.e.
IF(OMP_IN_PARALLEL()), to tell if the directive is in parallel context or in
sequential context. If in parallel context, the parallel version is executed, otherwise
the sequential version is executed.

4) Parallelism of data independent Operations
Some operations inside WORKSHARE directive cannot be divided into parallel

work units for their tightly coupling. Yet there is no data dependency among those
operations. Hence it might be more efficient to execute them in parallel. Our solution
is to put data independent operations into different SECTION blocks in one
SECTIONS region[3] to execute them in parallel.

Removal of redundant synchronization has little influence on efficiency in
balanced workload cases, meanwhile in imbalanced workload cases, efficiency
improvement is proportional to the minimum waiting time of all threads. Combination
of loops brings about 7% enhancements in efficiency depending on loop body sizes.
Optimization for orphan directives can enhance efficiency in sequential cases only if
the decision cost is less than that of parallel codes.

5 Test Result

On an Itanium2 parallel machine with four CPUs of 900MHz, 4G bytes memory, we
tested our compiler which adopting the above compilation strategy. The tested
programs use WORKSHARE directive and Fortran90 array operation statements.
They are numeric computation programs such as array addition, multiplication and
Jacobi Iteration Method. Testing data includes an integer array of 1 million elements.
Table 1 shows the result of addition and multiplication of arrays: D=A+B*C, where
A,B,C,D are integer arrays of 1 million elements. Table 2 shows the result of using
Jacobi Iteration Method to solve the equation: (d2/dx2)u+(d2/dy2)u –u = f, where u(x,y)
= (1-x2)(1-y2) (-1<x<1, -1<y<1), f(x,y) = -2(1-y2)-2(1-x2)- (1-x2) (1-y2), with grid size
100 * 100, iterative parameter 0.1, maximum tolerant error 10-7, iterative number
61309.

56 H. Jiang, S. Zhang, and J. Tian

Thread
Number

Execution
Time (s)

Speed-
up

Eff.
(%)

 Thread
Number

Execution
Time (s)

Speed-
up

Eff.
(%)

1 1.323 1 1 190.02 1
2 0.673 1.97 98.5 2 109.25 1.74 87
3 0.462 2.86 95.3 3 74.12 2.56 85.3
4 0.414 3.20 80 4 56.37 3.37 84.3

The results show that our parallel compilation strategy has gained considerable
efficiency.

6 Conclusion

How to take advantage of new features in architecture development and to actively
make progress in bridging the gap between architecture and programming interface
has long been a hotspot of IT community. This paper introduces the design and
implementation of Fortran front end of an IA64 oriented OpenMP compiler. It mainly
discusses the processing of implicit data parallelism supported by OpenMP, and
elaborates some optimization techniques related to OpenMP programming features.
The proposed algorithm and methodology have general meaning to the design of
friendly parallel programming interface and to the dispatching of many detail issues,
like computation division of parallelism, to compiler for automatic processing so as to
improve the programming efficiency. In addition, transformation between control
dependency and data dependency has to be further studied to take advantage of new
features of conditional instruction of IA64.

References

[1] Intel Cop., Intel®IA-64 Architecture Software Developer’s Manual[OL].
http://segfault.net/~scut/cpu/ia64/, July 2000.

[2] CHEN Guoliang. Parallel Computing : Architecture, Algorithm and Programming[M].
Beijing:Higher Education Press, 1999. (In Chinese).

[3] The OpenMP ARB, OpenMP Fortran Application Program Interface Version 2.0[OL].
http://www.openmp.org/specs/, November 2000.

[4] Michael Metcalf, John Reid. Fortran 90 Explained[M]. London.:Oxford University
Press,1990

[5] Matthias Müller. Some Simple OpenMP Optimization Techniques[A]. Rudolf
Eigenmann, Michael J. Voss. OpenMP Shared Memory Parallel Programming[C].
Berlin:Springer, 2001. 31–39.

Table 1. Addition and multiplication Table 2. Jacobi Iteration Method

	Introduction
	Design and Implementation
	Process of Implicit Data Parallelism
	Computation Division Principle
	Computation Division Algorithm
	Implementation

	Compilation Optimization
	Test Result
	Conclusion

