Mediator Based Open Multi-agent Architecture
for Web Based Learning

Hongen Lu

School of Information Technology
Deakin University
221 Burwood Highway, Burwood
VIC 3125, AUSTRALIA

helu@deakin.edu.au

Abstract. Web based learning plays an important role in modern teach-
ing environment. Many Web based tools are becoming available on this
huge marketplace. Agent technology contributes substantially to this
achievement. One of the fundamental problems facing both students and
education services providers is how to locate and integrate these valu-
able services in such a dynamic environment. In this paper, I present a
mediator based architecture to build open multi-agent applications for
eLearning. An agent services description language is presented to enable
services advertising and collaboration. The language exploits ontology
of service domain, and provides the flexibility for developers to plug
in any suitable constraint languages. Multiple matchmaking strategies
based on agent service ontology are given to help agents finding appro-
priate service providers. The series of strategies consider various features
of service providers, the nature of requirements, and more importantly
the relationships among services.

1 Introduction

The World Wide Web has the largest collection of knowledge ever in man kind
history. It is one of the most important resources in modern education. With
the success of search engines, such as Google, and the vast acceptance of online
learning systems, such as WebCT, students and teachers can search text and
images efficiently. These tools are changing our learning process in schools and
universities all over the world everyday. However, the Web has not reached its full
potential. At its early stage, the Web is solely a huge collection of digital informa-
tion. Nowadays, it is evolving into a huge growing marketplace for information
providers and consumers. Agent technology makes a substantial contribution to
this achievement.

However, how to find information providers and how to integrate information
agents in such an open environment are new challenges. Information agents, such
as Ahoy [6], ShopBot [3], and SportsFinder [5], are programs that assist people to
find specific information from the Web. They are information service providers,
which have the capabilities to find information for users, for example locating

W. Zhou et al. (Eds.): ICWL 2003, LNCS 2783, pp. 339-350] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: ¡M
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (¡M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

340 H. Lu

a person’s homepage, finding the cheapest available prices for music CDs, or
finding sports results of a team or a player. For a novice user, a challenge is
how to find these services; for an information agent, the challenges are how to
locate the service providers, and how to communicate with them to solve its
tasks cooperatively. This is one of the basic problems facing designers of open,
multi-agent systems for the Internet is the connection problem — finding the
other agents who might have the information or other capabilities that you need
[2].

In [4], two basic approaches to this connection problem are distinguished: di-
rect communication, in which agents handle their own coordination and assisted
coordination, in which agents rely on special system programs to achieve coordi-
nation. However in the Web application domain, where new agents might come
into existence or existing agents might disappear at any time, only the latter
approach promises the adaptability required to cope with the dynamic changes
in the environment.

2 Related Works

2.1 Ontology

Ontologies are content theories about objects, their properties, and relationships
among them that are possible in a specific domain of knowledge [1]. In a given
domain, its ontology clarifies the structure of knowledge in the domain. It forms
the heart of any system of knowledge representation for that domain. Without
an ontology, or the formal conceptualisations, there can not be any vocabulary
for representing knowledge, let alone automatic knowledge reasoning and infer-
ence. An ontology gives the terms used in a certain domain, as well as their
relationships. So that we can use these terms provided to assert specific proposi-
tions about a situation. For example, in computer science education domain, we
can represent a fact about a specific unit: unit SCC303, Software Engineering,
is a third year undergraduate unit, where SCC303 is an instance of the concept
unit. Once we have the basis for representing propositions, we can also represent
more advanced knowledge, such as hypothesise, believe, expect, ect. Thus, we
can construct a domain ontology step by step to describe the world.

2.2 'Web Service Description Languages

Web services are Web accessible programs and devices that not only provide
information to a user, but to enable a user to effect change in the world. Web
services are among the most important resources on the Web, and they are
garnering a great deal of interest from industry. Many emerging standards are
being developed for low-level descriptions of Web services.

— WSDL. Web Service Description Language provides a communication level
description of the messages and protocols used by a Web service. WSDL is

Mediator Based Open Multi-agent Architecture for Web Based Learning 341

an XML format for describing network services as a set of endpoints operat-
ing on messages containing either document-oriented or procedure-oriented
information. The operations and messages are described in abstract, and
then bound to a concrete network protocol and message format to define an
endpoint. Related concrete endpoints are combined into abstract endpoints
(services). WSDL is extensible to allow description of endpoints and their
messages regardless of what message formats or network protocols are used
to communicate.

— Semantic Web. The huge collection of information on the Web is fare
beyond a person’s ability to search and index. So machine-understandable
data is a high priority to automatic processing online information. Semantic
web is a step to define and link data on the Web in a way that it can be used
by machines not just for display purposes, but for automation, integration
and reuse of data across various applications.

2.3 WebCT

WebCT is one of the leading on-line education tools. It provides teachers a pow-
erful and convenient way to build up websites dedicated to publishing teaching
materials for their subjects; meanwhile it is also a place for students to feed-
back their progress. No wonder WebCT is widely accepted in various levels of
education institutes, especially for long distance learning. However, WebCT is a
closed system. It can only let the teachers and students in the same university or
in the same class to communicate each other. In this point of view, WebCT has
not taken the full advantage of the World Wide Web, which now is a fast grow-
ing collection of services. WebC'T is still based on the conventional client-server
architecture. While the Web offers more flexible options, for example everyone
on the Web could be an information provider and consumer at the same time.
Peer to peer communication is becoming the mainstream of on-line publishing
and marketing. I believe this is the future trend for on-line education, because
in such architecture teachers and students can easily swap their roles and learn
from each other. In addition, this architecture is open for everyone to join in.

3 Mediator Based Architecture

A mediator is a special kind of information agent acting as middle man to take as
input, a request to find an agent that provides a service, and returns as output,
a list of such agents and their cooperation relationships. A mediator also stores
the services offered by different agents in the existing environment, and when
a new agent is introduced into the environment it can register its capability to
the mediator, using an agent service description language, if this agent wants its
service to be used by others. Information agents also can unregister their services
to the mediator when they want to quit the cooperation or exit. Also when an
information agent receives a query or a subtask within a query that can not be
solved by itself, it can request the mediator to find out other agents that have

342 H. Lu

Mediator

Register

/
/

Marketing /
7/

Recommand

Request

Service Provider Service Consume

Fig. 1. Mediator Based Architecture

the capability or a set of agents who can work cooperatively to provide that
service.

4 Agent Services Ontology

Since information agents are developed geographically dispersed over the Web,
their capabilities are different from each other. SportsFinder [5] can find the
sports results of golf, cycling, football and basketball etc. for users; while Ahoy
[6] is good at locating people’s homepages. In an application domain, such as
Computer Science subjects, there exists a hierarchy relationship among these in-
formation agents. For example, information agent A can answer students’ query
about Software Engineering, while agent B is only capable of consulting on Risk
Analysis, which is a part of the subject Software Engineering; in this case the
service agent B can provide is a subset of agent A, i.e. Service(B) C Service(A).

To construct agent services ontology , it is necessary to identify their rela-
tions. Let S; denotes the service of information agent Z.4;, and a service identifier
to express in short what kind of service the agent can provide. For the above
example, we have Service(B)={Software Engineering}, while Service(.A)={Risk
Analysis}.

— Identical Service: S; = S3. This means the two services can provide the
same function in spite of the fact that they may have different service names.
As we know, information agents are being built over the Web using different
programming languages and architecture. It is no surprised to have two
agents running on different hosts that can offer the same service. Obviously,
two identical services can substitute each other.

— Subservice: S; C S. This relationship characterises two services offered by
agents, in which one service’s function is only a part of another. For instance,
an expert on C/C++ programming is good at tutoring lab project on Object

Mediator Based Open Multi-agent Architecture for Web Based Learning 343

Computer Science

Software
Data Structure C/C++ Language
Risk Analysis OO0 Design

Fig. 2. Fragment of Computer Science Subjects Ontology

Oriented Design in Software Engineering unit; but he/she may not capable
at formal methods in the same unit. In this point of view, the service offered
by a tutor on C/C++, is only a part of a lecturer on the whole subject.

— Substitute Service: a service S7 can be substituted by service So, S1 < Ss.
From the above description, we know that identical service and subservice
are two special cases of substitute service relationship. But the difference is
that identical services can substitute each other, while the subservice can
only be alternated by its “parent’ service, not vice versa.

— Partial Substitute Service: S; NSy # ¢. This relationship describes two
services that have some common subservices. In some circumstances, partial
substitute services can be alternated with each other, such as where the
service agent is offering, just by chance, the common subservice with its
partial substitute service, that is, the agent is not offering its full service to
others at the moment.

— Reciprocal Service: 35 = (57 U S2) AND (S1NS2) = ¢, then S; and So
are reciprocal with S. If two services are reciprocal, that means they have
no subservices in common, but they can work together to offer a “bigger”
service. From this definition we know that in case there is no current agent
available to provide the “bigger” service, these two reciprocal services can
cooperate as a single agent for this task. This gives us a message that by
combining the current agents in a different manner, we can tailor the system
to meet new requirements.

Agent service ontology gives a formal method to describe the relationships
among agent services. An agent service ontology contains all the services of in-
formation agents as well as their relationships. Basically, a directed cyclic graph
(DCG) is able to present the relations between agent services. The nodes in the
graph present the services, and the edges are labeled with the service relation-

344 H. Lu

ships. In Figure [2| a fragment of the ontology on computer science subjects is
given, in sense of the content of the topic and their relationships.

<asdl> ::= (service
:service-id <name>
:constraint-language <name>
:input (<param-spec>+)
:output (<param-spec>+)
:input-constraints (<constraint>+)
routput-constraints (<constraint>+)
:io-constraints (<constraint>+)
:service-ontology <name>
| :<relation> <name>
| :privacy <name>
| :quality <name>)

<param-spec> ::= (<name> <term>)
<relation> ::= identical | subservice | substitute
| reciprocal | part-sub
<term> ::= <constant> | <variable> |
(<constant> <term>+)
<constant> ::= <name>
<variable> ::= 7<name>
<name> ::= <Identifier>
<constraint> ::= << expression in constraint-language >>

Fig. 3. Syntax for Agent Service Description Language in BNF

5 Ontology Based Agent Service Description

The proposed language in Figure Bl allows plugging in of an independent con-
straint language, that is the syntax of our ASDL is open at this point. This is
described in the constraint-language field, which tells what language is used to
present the constraints that should be hold on input, output and input-output.
Also the cap-id field allows the specification of a name for this capability. The
name for the capability is used to enable the middle agent to build a service on-
tology, and allows the isa field to naming a capability from which this capability
will inherit the description. These two fields make it easier and simple to write a
service description based on the already existed service ontologies, which is given
as the value of cap-ontology field. The privacy and quality fields describe to
what degree can other agents access this service and what the quality of this
service is respectively. Depends on different domains, privacy and quality could
be described in terms or functions.

Mediator Based Open Multi-agent Architecture for Web Based Learning 345

6 Mediating Agent Services on the Web

Mediating is a process that utilise the knowledge on service domain to introduce
service providers and consumers. Mediating is a high-level services matching and
brokerage, in terms of level of knowledge applied, and directions of information
flow. First of all, why do we need to mediate agent services on the Web? Let us
look at the vast diversity of services that can be provided by agents all over the
Web. Services are different in many aspects, I just name a few in the following:

— Function. It is obvious to note that different services have different func-
tions. A sports agent has a totally different function to a shopping agent;

— Constraints. Even agents with the same function may impose different con-
straints on their input, output and input-output. For example, two lecturers
both can be tutors on the subject, Data Structure and Algorithms, but one
can only answer C questions, while the other is good at Java. Despite that
they are able to consult on the same assignment question, but they require
it in their capable language.

— Quality and Privacy. Quality and privacy are also varied from agent to
agent, since they are run on different machines. Even when agents have the
same function, due to the different implementations of the function, the
qualities of their services may vary;

— Names. Agents may have different names despite the fact that they can
provide the same service and have the same constraints and quality and
privacy values.

The reasons that cause so many differences among agent services are mainly
because of the open feature of the environment. Agents are developed over the
Internet with heterogeneous architecture, and their functions vary from one to
another. Due to diversity of agents, the requests of services are also various.
In most cases, we can not expect that for a service request there is at least
one agent to exactly provide that service, even through we suppose the service
advertisement and request can fully express what the services are. In fact, a
single agent can not have a global view of the whole system, it is not practical to
do that, its request of service is also limited by the agent’s “partial’” knowledge
of the environment.

7 Multiple Strategies for Services Matching

7.1 Type Matching

In the following definition, if type t; is a subtype of type to, it is denoted as
t1 =gt ta.

Definition 1. Type Match Let C be a service description in our ASDL con-
taining: an input specification I¢ containing the variables vy, ..., v,, and output
specification I€ . Let T be a service request in ASDL with input specification IT
containing variables uy, . .., Uy, and output specification O7 . C is type matched
with T, if

IT <. I and O° <, OT

346 H. Lu

where IT <4 I¢ means Yv; € I€ Ju; € I7 that u; =g v and for
i #k, uj 2et v, andu; =g vk, we have j # 1.

This is the simplest strategy that only matches the types in the input and
output fields of service advertisements against the correspondent field in require-
ments. It makes sure that a provider can take the inputs of requester, and its
outputs are compatible with the requester’s.

7.2 Constraint Matching

Definition 2. Constraint Match Let C be a capability description in ASDL
with input constraints C¢ = { Clcl, e C}ch } and output constraints C5 =
CcS Cglc b Let CT ={ CZ, cee C’ICT }and CL = { C’gl, cee Cng
} be the input and output constraints respectively of service T. T is constraint
matched with C if

17

OIT =<y CIC and C(C) =9 Cg
where =g denotes the 0-subsumption relation between constraints. For C’IT =9
C C C C . C
C} means VCZ ec] 3¢y, € CF that CZ =¢ C7, and for i # k, CZ 2o Cf,,
and 017; =9 CZ, we have j # [.

Since all the constraints are given in constraint-language, the details of
f-subsumption depends on the constraint-language. In first order predicate logic
(FOPL), which is the constraint-language used in examples, constraints are a set
of clauses. #-subsumption in FOPL means there exists a substitution between
two clauses.

7.3 Exact Matching

Exact match is most strict matching. It requires both the types and constraint
fields are well matched. This strategy deals with the services that have the
same functions but with different variable and type names. Considering the huge
amount of Web-based applications which implemented over times and locations,
there are many cases that developers may select different naming space.

7.4 Partial Matching

Definition 3. Partial Match Let C be a service description in our ASDL
containing: an input specification I¢ containing variables VICI,...,VICHC, and
output specification OF with variables Vgl ey ngc , and C’s input constraints
Cc¢ ={ C’Icl, e C?k_c } and output constraints CS = { C’gl, ceey ngc }. Let
T be another agent service with the correspondent description parts as: input IT
containing variables VIT, .. .,VIC , and output specification O7 with variables
nT
Vi, ..., VOTmT, and T ’s input constraints C] = { C’Z, e C’];T } and output

1?

constraints CJ = { C’gl, e C’ng }. We define T is partial matched with C if

Mediator Based Open Multi-agent Architecture for Web Based Learning 347

VT eI7,3VE € 1€ that VT <4 V{
VS, € 0°,3V] € OT that V§ =< V3,
3¢ € €] ,3CF, € Cf that Cf =4 Cf,
36§, € C§,3C), € CF, that C§ =4 C,

The above definition means for two capability descriptions, if some of their
input, output variables have subtype relations, and there are constraint clauses
in their input and output constraint specifications that are - subsumption, these
two services are partial matched. Semantically, in some circumstances, i.e. the
unmatched variables and constraints are irrelevant; the partial matched service
is applicable.

7.5 Privacy Matching

Due to a service provider agent’s privacy restriction, the matching result actually
is sent to the service provider instead to the service requester. In other words,
the provider agent wants to control the communication with consumers, it does
not want to expose itself before knowing who are requesting its service. For
instance, when recruiting for qualified software developers, some companies may
not like their names known by their competitors, so they ask the agencies (middle
agents) to keep their privacy. After the agency provides them with the resumes
of potential experienced programmers, they can decide whom they would like
to interview. Compared with other “conventional’ matching strategies, privacy
matching actually matches a service advertisement against service requests each
time, while all the other strategies are vice versa; the information flow is different;
the result of matching is transferred in a different direction. From the mediator’s
perspective, privacy matching is a service for capability providers. It supplies
service request information to providers to help them marketing their services.

7.6 Cooperative Matching

Matching is a process based on a cooperative partnership between information
providers and consumers. In cooperative matching process, the mediator first
tries to find out from the current available information agents who have the
capability that the query agent (information consumer) is asking for. In case
no available agent can fulfill the queried service singly, the mediator will infer
the relationships among available services, according to the domain ontology,
to find a set of available information agents that can cooperate in some way
to provide the requested service. This strategy requires an arbitrary amount of
deduction and knowledge to match any given service and request. It exploits
service ontology, knowledge on the application domain, to discover the hidden
relationships among currently available services. It returns the agents contact
information and their relationships.

348 H. Lu

8 TutorFinder: An Open Online Learning Tool

One great advantage of Web based learning is its openness. Everyone on the In-
ternet can participate the learning and education process at any time they like.
Traditional computer aided instruction (CAI) systems based on client-server
architecture can not cope with this requirement. In order to take the full ad-
vantages offered by the Web, a new trend of online learning is open systems
architecture, which introduces middleware to solve the connection problem.

il

File Matching Strategies Help
Mame | Huost \ Fart \ Service \
Tam quUeey.cs.mu.0z.au 8000 Software Engineeting
Jerry sky.cm.deakin.edu.au 9000 Data Structure
Bob earth.cm.deakin.eduau |8888 C/C++ Language
Jenny lister.cs.mu.oz.au 7T Risk Analysis

Fig. 4. Tutor Mediator

Based on the above mediator architecture and strategies, TutorFinder, an
online tool for students and lecturers to locate suitable tutors, is presented in
this section. TutorFinder is a mediator based open system. Any new available
agent, who is able to offer services related to a specific eLearning subject, can
register or advertise its ability to the TutorMediator, shown in Figure[dl who acts
a middle man to mediate services requests and advertisements. This paradigm
is open to any educators who wish to make their tools public over the Internet;
in addition it is also open to any learners who are seeking some kind of helps.
Service requests and advertisements are written in the proposed agent services
description language, which can be easily plugged into any agent communication
language. TutorMediator applies the multiple matching strategies to find out a
or a team of service providers to inform to a consumer. The matching process
can be reversed as a marketing campaign, in case the service provider would like
to remain unknown until it knows who are seeking its services, and then the
provider will target its marketing to the potential consumers. This procedure is
depicted in Figure [l as the dash line labeled with “Marketing”.

Mediator Based Open Multi-agent Architecture for Web Based Learning 349

8.1 Services Description and Matching in TutorFinder

The presented agent services description language based on ontology provides a
meaningful tool for service providers to express their capabilities. This is critical
in a Web based learning environment, considering the open nature of eLearning.
Using this language, online learning service providers can prescribe what kind of
services they can offer to the community. For example, a Web service dedicated
to answer students’ queries on subject SCC303 Software Engineering can register
its service to the above TutorMediator in the following format:

(service
:service-id SCC303Tutor
:constraint-language fopl
:input ((SCC303Question ?question))
:output ((Answer 7answer))
:input-constraints (
(elt ?question Question)
(SubjectIn ?question SoftwareEngineering))
:io-constraints (
(Correct ?question 7answer))
:service-ontology ComputerScience)

In this description, we know that the service SCC303Tutor takes questions
in subject SCC303, Software Engineering, as input, and gives the correspondent
answers. It requires an input to be a valid question defined in Computer Sci-
ence Subjects ontology, and the question should be in the topics of Software
Engineering; on these conditions, SCC303Tutor is able to give a correct answer.
Please note that the constraints in this example are written in First Order Pred-
icate Logic (FOPL), which is specified in constraint-language field. Actually,
developers can choose any formal languages independent from ASDL to write
constraints, and simply specify it in this field.

The ontology of Computer Science subjects is not only exploited in service
advertising, in which it defines all the terms and their relationships used in the
description, but also in service matching. Here I present a scenario in Figure [

In this scenario, there are four information agents available, and they can
provide tutoring services on subjects of Software Engineering, Data Structure,
C/C++ Language, and Risk Analysis to students. These four agents can be lo-
cated at different universities and institutes. When a student or an agent requests
services on Computer Science, TutorMediator can recommend a provider, or a
list of service providers working as a team in case that the requested service can
not be accomplished by any single agents. Considering a student who is doing
a programming project on Object Oriented Design and Analysis, at the current
situation, there is no single agents has the capability on OO Design and Analysis
programming; but this requested service can be achieved by two agents Tom and
Bob, who have the expertise on Software Engineering and C/C++ Language re-
spectively, working cooperatively as a team. So by exploiting service ontology
and cooperative matching strategy, TutorMediator can reply the student’s query

350 H. Lu

with Tom and Bob’s contact information, as well as their relationship in form-
ing the team. Without ontology and various matching strategies, this can not
be achieved. Powered with knowledge on the domain and a series of match-
ing strategies, TutorMediator in our architecture is not a conventional middle
agent, but an intelligent mediator who can reason and refer service providers’
relationships, and guide them into cooperation.

9 Conclusion

The proposed agent service description language gives a flexible method for
developers to plug in a suitable independent constraint language; it is more ex-
pressive for service quality and the privacy of service providers. The mediator,
TutorMediator, in the presented open multi-agent architecture serves as middle
agent that not only solves the connection problem, but also infers the coopera-
tion relationships among information agents, this will direct service providers to
forge a cooperation to answer a user’s query. In such a way, tutoring agents can
improve their capabilities, and online learning system becomes open and more
scalable. This architecture with the service description language and matching
strategies provides a solution to build open online learning system step by step.
It also enables developers to integrate new tutoring services with legacy eLearn-
ing systems, since the architecture and language are open. This is critical for
the success of online education, because both the educator and learner can take
the full advantage of the World Wide Web, which gives people the freedom to
pursue education from anywhere at anytime.

References

1. B. Chandrasekaran, John R. Josephson, and V. Richard Benjamins. What are on-
tologies, and why do we need them? IEEE Intelligent Systems, 14(1):20-26, Jan-
uary/February 1999.

2. Keith Decker, Katia Sycara, and Mike Williamson. Matchmaking and brokering.
In Proceedings of the Second International Conference on Multi-Agent Systems
(ICMAS-96), December 1996.

3. Robert B. Doorenbos, Oren Etzioni, and Daniel S. Weld. A scalable comparison-
shopping agent for the World Wide Web. In Proceedings of the First International
Conference on Autonomous Agents, 1997.

4. Michael R. Genesereth and Steven P. Ketchpel. Software agents. Communications
of the ACM, 37(7):48-53, July 1994.

5. Hongen Lu, Leon Sterling, and Alex Wyatt. Knowledge discovery in SportsFinder:
An agent to extract sports results from the Web. In Methodologies for Knowledge
Discovery and Data Mining, Third Pacific-Asia Conference (PAKDD-99) Proceed-
ings, pages 469-473. Springer, 1999.

6. Jonathan Shakes, Marc Langheinrich, and Oren Etzioni. Dynamic reference sifting;:
A case study in the homepage domain. In Proceedings of the Sizth International
World Wide Web Conference, pages 189-200, 1997.

	Introduction
	Related Works
	Ontology
	Web Service Description Languages
	WebCT

	Mediator Based Architecture
	Agent Services Ontology
	Ontology Based Agent Service Description
	Mediating Agent Services on the Web
	Multiple Strategies for Services Matching
	Type Matching
	Constraint Matching
	Exact Matching
	Partial Matching
	Privacy Matching
	Cooperative Matching

	TutorFinder: An Open Online Learning Tool
	Services Description and Matching in TutorFinder

	Conclusion

