
A Lightweight XML Constraint Check
and Update Framework

Hong Su, Bintou Kane, Victor Chen, Cuong Diep, De Ming Guan,
Jennifer Look, and Elke A. Rundensteiner

Department of Computer Science
Worcester Polytechnic Institute

100 Institute Road, Worcester, MA 01609-2280
{suhong,bkane,vchen,cdiep,deguan,jlook,rundenst}@cs.wpi.edu

Abstract. Support for updating XML documents has recently attracted
interest. When an XML document is to conform to a given schema, the
problem of structural consistency arises during updating, i.e., how to in-
crementally guarantee that the modified XML document continues to
conform to the given XML Schema. To achieve this following the tra-
ditional database approach, the XML Schema would first have to be
analyzed to construct a structured repository and the XML documents
would have to be loaded into this repository before any update could be
checked for possible schema constraint violation. Due to the very nature
of XML being lightweight and freely shared over the Web, we instead
propose a novel approach towards incremental constraint checking that
follows the loosely-coupled web paradigm. Namely, we propose to rewrite
an XML update query into a safe XML update query by extending the
original query with appropriate constraint checking subqueries. This en-
hanced XML update query can then safely be executed using any existing
XQuery engine that supports updates. In order to verify the feasibility
of our approach, we have implemented a prototype, SAXE, that imple-
ments the above techniques by extending the Kweelt XML query engine
by University of Pennsylvania with both XML update support as well as
incremental constraint support.

Keywords: XML Update, XQuery, XML Schema, Structural
Consistency.

1 Introduction

1.1 Motivation

Change is a fundamental aspect of persistent information and data-centric sys-
tems. Information over a period of time often needs to be modified to reflect
perhaps a change in the real world, a change in the user’s requirements, mis-
takes in the initial design or to allow for incremental maintenance.

However, change support for XML in current XML data management sys-
tems is only in its infancy. First of all, practically all change support is tightly
tied to the underlying storage system of the XML data. For example, both in
IBM DB2 XML Extender [IBM00b] and Oracle 9i XSU [Ora02] who support

A. Olivé et al. (Eds.): ER 2002 Ws, LNCS 2784, pp. 39–50, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

40 Hong Su et al.

decomposition of XML data into relational storage or object-relational storage
respectively, the user would then need to work with the relational data represent-
ing the original XML document as with any other relational data. In particular,
any update on the XML data has to be specified using SQL and then will be
executed on the underlying relational data. This requires users to be aware of
not only the underlying storage system but also the particular mapping chosen
between the XML model and the storage model. In other words, there is a lack
of abstraction for specifying native updates to XML data independent of the
different underlying storage models.

As the first step for native XML update support, a native language for up-
dating XML must be proposed. In this paper, since no World Wide Web Consor-
tium proposal on XML updating has emerged to date, we utilize an extension of
XQuery [W3C01b] to support powerful XML updates [TIHW01]. We will further
discuss choice of XML update language in Section 2.

An indispensable next step towards supporting updates is to provide a mech-
anism for maintaining the structural consistency of the XML documents with all
associated XML schemata (if any) during the course of the update. Structural
consistency is a desired property in database systems since they require that the
data must always conform to its schema. An update is considered to be safe only
if it will not result in any data violating the associated schema. For example, in
a relational database, if an attribute is defined as NOT NULL in the schema,
an insertion of a tuple with a NULL value for this attribute will be regarded
as an unsafe operation and thus would be refused by the system. Though it is
not required that XML documents must always have associated schemata due
to their “self-describing” nature, many application domains tend to use some
schema specification in either DTD [W3C98] or XML Schema [W3C01a] format
to enforce the structure of the XML documents. Whenever XML schemata are
associated with the XML data, then structural consistency should also be taken
care of during update processing. No work has been done to date to address this
issue for native XML.

1.2 Illustrating Example

For example, Figures 1 and 2 show an XML schema juicers.xsd and an XML
document juicers.xml conforming to the schema respectively. Suppose the user
specifies to remove the cost of the juicer with name “Champion Juicer” (the
first juicer in juicers.xml). This operation will render the Champion juicer to no
longer have a cost subelement. Such an updated XML document is inconsistent
with the schema juicers.xsd since a juicer element is required to have at least
one cost subelement, indicated as <xsd: element ref = cost minOccurs = 1
maxOccurs = unbounded/> in juicer.xsd. This update would however have been
allowed for the second juicer (i.e., Omega Juicer). Some mechanisms must be
developed to prevent such violation of structural consistency.

A Lightweight XML Constraint Check and Update Framework 41

<xsd: schema xmlns: xsd = http://www.w3.org/2001/XMLSchema>
<xsd: element name = “juciers”>

<xsd: complexType>
<xsd: sequence>

<xsd: element ref = “juicer” minOccurs = “0” maxOccus = “unbounded”/>
</xsd: sequence>

</xsd: element>
<xsd: element name = “juicer”>

<xsd: complexType>
<xsd: sequence>

<xsd: element ref = “name”/>
<xsd: element ref = “image” minOccurs = “unbounded”>
<xsd: element ref = “cost” minOccurs = “0” maxOccurs = “unbounded” />

</xsd: sequence>
<xsd: attribute ref = “quality” use = “optional”/>

</xsd: complexType>
</xsd: element>
<xsd: element name = “name” type = “xsd: string”/>
<xsd: element name = “cost” type = “xsd: string”/>
<xsd: element name = “image” type = “xsd: string”/>
<xsd: attribute name = “quality” type = “xsd:string”/>

</xsd: schema>

Fig. 1. Sample XML Schema: juicers.xsd

<juicers>

<juicer>

<name> Champion Juicer </name>



<cost> 239.00 </cost>

</juicer>

<juicer>

<name> Omega Juicer </name>



<cost> 234.00 </cost>

<cost> 359.50 </cost>

</juicer>

</juicers>

Fig. 2. Sample XML Docu-
ment: juicers.xml

1.3 Desiderata of Preserving Structural Consistency

In our current work, we assume the schema is the first-class citizen. In this sense,
an update to an XML document is only allowed when the update is safe, i.e., the
updated data would still conform to the given XML schemata. In this section,
we discuss the desiderata of the mechanism for checking the safety of XML data
updates.

Native XML Support. There have been some techniques proposed for trans-
lating constraints in XML to constraints in other data models, say the relational
model [KKRSR00] or the object model [BGH00]. Once the mapping is set up,
XML constraint checking would be achieved by the constraint enforcement mech-
anism supported in the other underlying models. However we prefer a native
XML support for several reasons. Primarily, we want to avoid the overhead of a
load into a database management system (DBMS) as well as the dependency of
XML updates on some specific alternate representation.

Loosely-Coupled Constraint Checking Support. Following the traditional
database approach shown in Figure 3, the XML Schema would first be analyzed
to construct a fixed structure and XML documents could then be loaded into
a repository in order to allow updates on the document to be checked. It is
preferable to have the validity checking a lightweight standing-alone module
rather than being tightly coupled to an XML DBMS. Ideally the constraint
checking tool should be a middleware service so that it is general and portable
over all XML data management systems.

42 Hong Su et al.

Incremental Constraint Checking. A naive approach to ensuring the safety
of data updates is to do a validation from scratch (shown in Figure 4), namely,
to first execute the updates, then run a validating parser1 on the updated XML
document, and lastly decide whether to roll back to the original XML document
based on the validation result. Such an approach is inefficient since it involves
redundant checking on those unchanged XML fragments. It is preferable to have
an incremental checking mechanism where only the modified XML fragments
rather than the complete XML document are checked. Moreover when the vali-
dating parser is run on an XML document modified by a batch of updates and
any inconsistency is detected, the parser is unable to tell which updates have
caused the inconsistency. Hence, this would make a roll back of only the unsafe
updates (but not the changes made by safe updates) impossible.

Data

Update

Engine

XML Data

Schema

Builder

Data

Loader

XML

Schema
Update

XQuery

Schema

Fig. 3. Tightly-Coupled Approach

Yes

XML Doc
Update Engine

Or

Editor

Updated-

XML Doc
Validator

No

XML

Schema
Update

XQuery

Fig. 4. From Scratch Validation
Approach

1.4 Our Approach and Contributions

In this paper we introduce a native, incremental and lightweight framework for
checking the validity of data updates specified in an XQuery update language
Update-XQuery [TIHW01]. The key concept we exploit is the capacity of the
XQuery query language to not only query XML data but also XML Schema.
This allows us to rewrite Update-XQuery statements by extending them with
appropriate XML constraint checking sub-queries.

In summary, we make the following contributions in this work:
1. We identify the issue of preserving structural consistency during the update
of XML documents in a loosely-coupled native XML context.

2. We propose a general constraint checking framework that provides native,
incremental and lightweight XML constraint checking support.

3. We describe the prototype system SAXE we have implemented. We veri-
fied the feasibility of this proposed approach by comparing its performance
against that of current state-of-the-art solutions.

2 Related Work

Several XML update languages have been proposed [IBM00b] [Obj99] [SKC+00]
[TIHW01]. The expressive power of the language concerns two capabilities: i.e.,

1 Most XML document parsers [IBM00a] support validating the XML document
against the given DTD or XML Schema.

A Lightweight XML Constraint Check and Update Framework 43

the power to specify (1) what nodes to update (i.e., querying over the data to
select target nodes) and (2) what actions to take on the selected nodes.

[IBM00b] provide their own language for native XML update support in DB2
XML Extender. The expressive power of the update language is limited. XML
Extender allows to specify target nodes in the XML document using XPath ex-
pressions [W3C99]. XPath is a subset of XQuery, e.g., in particular, XPath does
not support variable bindings. Moreover Extender only allows in-place content
update on the selected nodes without other basic support such as inserting new
nodes or removing existing nodes. Excelon [Obj99] offers an update language.
The disadvantage of this language is that it uses its own proprietary query speci-
fication which detracts from its compatibility with the standard XML query lan-
guage. An XML working group XML:DB [XML02] proposes XUpdate [XUp02]
which also has the expressive power limitation in that it uses XPath as the query
specification. [TIHW01] stands out among the XML update languages in terms
of its expressive power and compatibility with XQuery. It is a natural extension
of XQuery that supports the application of a set of update operations including
insertion of new data, removal or in-place modification of existing data on bound
variables.

None of the above work deals with the problem of incremental validation after
the updates. To the best of our knowledge, our earlier work on XEM [SKC+00]
is one of the first efforts addressing this problem. XEM proposes a set of update
primitives each of which is associated with semantics ensuring the safety of the
operation. In XEM, a data update primitive on the other hand is only executed
when it passes the validity check. The main limitations of XEM are: (1) the data
update primitives in XEM can be only performed on one single element selected
by an XPath expressions; (2) XEM is a tightly-couple approach, namely, we
implemented an engine on top of PSE (a lightweight object database), mapped
the DTD to a fixed schema and loaded the data into object instances. Such a
paradigm requires schema evolution support from PSE and specialized constraint
enforcement has to be hardcoded into the PSE system.

3 XML Query and Update Language

3.1 XML Query Language: XQuery

XQuery [W3C01b] is an XML query language proposed by W3C. An XQuery
statement is composed of several expressions. An important expression in XQuery
is the FLWR expression constructed from FOR, LET, WHERE and RETURN clauses.

1. FOR and LET clauses bind values or expressions to one or more variables.
2. WHERE clause (optional) filters the bindings generated by FOR and LET clauses
by any specified predicates.

3. RETURN clause constructs an output XML document.

We give an example XQuery over the XML document in Figure 2:
For $p in document(‘‘juicers.xml’’)/juicer, $c in $p/cost[1]
Return $c.
The variable $p is bound to iterate over each element node satisfying the

expression document(‘‘juicers.xml’’)/juicer. For each identified binding of
$p, $c is bound to the first cost child node of $p and returned.

44 Hong Su et al.

3.2 XML Update Language: Update-XQuery

[TIHW01] proposes a set of update operations and embeds them into the XQuery
language syntax. Each update operation is performed on a target object indi-
cated as target. Table 1 gives the set of update operations and their semantics.

Table 1. Taxonomy of Update Operations

Update Operation Description
Delete child Remove child from children list of target
Rename child To n Rename child to name n
Insert new attr(n, v) Insert new attribute with name n and value v to target
Insert c Before/After child Insert XML fragment with content of c directly

before/after child
Replace child With new attr(n, v) Replace child with attribute with name n and value v
Replace child With c Replace child with XML fragment with content c

[TIHW01] extends XQuery’s original FLWR expressions to accommodate the
update operations by introducing FOR... LET... WHERE... UPDATE..., i.e., FLWU
expressions. We will refer to this extension of XQuery now as Update-XQuery.
The BNF of FLWU expression syntax is shown in Figure 3.2 while the BNF for
the UPDATE clause (subOp in Figure 3.2) in particular is shown in Figure 6.

FOR $binding1 IN XPath-expr, ...

LET $binding := XPath-expr, ...

WHERE predicate1, ...

UPDATE $binding {subOp{, subOp}*}

Fig. 5. Syntax of Update-XQuery

DELETE $child |
RENAME $child TO name |
INSERT (new attr(name, value) |

content [BEFORE | AFTER $child] |
$copyTarget [BEFORE | AFTER $child]) |

REPLACE $child WITH (new attr(name, value) |
content |
$copyTarget) |

FOR $binding IN XPath-expr, ...

WHERE predicate1, ...

UPDATE $binding {subOp {, subOp}*}

Fig. 6. BNF of subOp

The semantics of FOR, LET and WHERE clauses are exactly the same as that
in a FLWR expression as briefly described in Section 3.1. The UPDATE clause
specifies the target node to be updated and a sequence of update operations or
FLWU expressions to be applied on the target node.

Figure 2 shows a sample Update-XQuery on the XML document in Figure 2.
The variable $p is bound to iterate over each element node satisfying the expres-
sion document(‘‘juicers.xml’’)/juicer (line 1). For each identified binding
of $p, $c is bound to the first cost child nodes of $p (line 2) and $p is updated
by deleting its child node, i.e., the binding of $c (line 4).

A Lightweight XML Constraint Check and Update Framework 45

4 XML Framework For Safe Updates

Our Overall Approach. In order to allow only consistent updates to be pro-
cessed on XML documents, we aim to develop a loosely-coupled update strategy
that supports incremental schema constraint checking that accesses only updated
parts of the XML document. The key idea is to first generate a safe Update-
XQuery statement from a given input Update-XQuery statement. This generated
safe Update-XQuery statement, still conforming to the standard Update-XQuery
BNF, can then be safely executed on any XQuery update engine. This way we
succeed in separating the concern of constraint check verification from that of
developing the XML query and update engine.

For this safe query generation, we design appropriate constraint checking
subqueries. The constraint checking subqueries take input parameters from the
update operation and determine whether the update operation is valid or not.
For this, we exploit the capacity of the XQuery query language to not only be
able to query XML data but also XML Schema. This allows us to rewrite Update-
XQuery statements by extending them with appropriate XML constraint check
sub-queries for each update operation as in Table 1. The execution of an update
operation is conditional on passing the constraint checking.
Illustrating Example. For example, Figure 2 shows the rewritten Update-
XQuery from the Update-XQuery in Figure 2. There is one update operation in
the query, i.e., DELETE $c in line 4. We can see that lines 3, 5 and 62 in Figure
2 have been inserted into this update operation so that this update is only
executed when delElePassed(...) (line 5) returns true. delElePassed(...)
is a constraint check function which determines the validity of the update DELETE
$c. The subquery schemaChkDelEle(...) in line 3 is a function that provides
information that is needed by delElePassed(...) to make the determination.
We will further discuss the details of these two functions in Section 5.3.

1 FOR $p in document(“juicers.xml”)/juicer,

2 $c in $p/cost[1]

3 UPDATE $p {
4 DELETE $c

5 }

Fig. 7. Sample Update-XQuery

1 FOR $p in document(“juicers.xml”)/juicer,

2 $c in $p/cost[1]

3 LET $constraint =

schemaChkDelEle(“juicers.xsd”,“juicer”,“cost”)

4 UPDATE $p {
5 WHERE delElePassed($c,$p/cost,$constraint)

6 UPDATE $p {
7 DELETE $c

8 }
9 }

Fig. 8. Sample Safe Update-XQuery

SAXE Architecture. Figure 9 shows the architecture of SAXE3, the frame-
work for generating a safe Update-XQuery statement given an input Update-

2 Line 6 is added only to meet the syntax requirement.
3 SAfe Xml Evolution.

46 Hong Su et al.

XQuery. The safe Update-XQuery generator SAXE is composed of the five com-
ponents described below:

Safe

Update-XQuery

Analyzer

Update-XQuery

Rewriter

Constraint Checking

Template Library

Update-XQuery

Parser

Template functions

Update-XQuery

Dumper

Input Textual

Update-XQuery
Parse Tree

Enhanced

Parse Tree

Parse Tree for

Safe

Update-XQuery

Output Textual

Update-XQuery

Fig. 9.An Incremental Yet Loosely-Coupled Update Processing Framework Sup-
porting XML Updates with Schema Constraint Validation

1. Update-XQuery Parser. The parser takes an Update-XQuery statement and
constructs a parse tree representation [ASU86] from it.

2. Update-XQuery Analyzer. Given a parse tree, the analyzer identifies more
detailed information about types of update operations in the parse tree and
derives an enhanced parse tree (refer to Section 5.2).

3. Constraint Checking Template Library.We generalize the constraint checking
procedures by defining named parameterized XQuery functions called con-
straint checking templates. Each constraint checking template is in charge of
checking constraints for one update type.

4. Update-XQuery Rewriter. The rewriter handles the actual generation of a
safe Update-XQuery. It determines how to rewrite the original Update-
XQuery statement by plugging in the appropriate constraint checking func-
tions from the template library and correspondingly modifying the enhanced
parse tree.

5. Update-XQuery Dumper. The dumper constructs a textual format of the
modified Update-XQuery statement from the enhanced parse tree, which
now is in the standard Update-XQuery syntax.

5 Components of Constraint Checking Framework

We now describe the main components of the framework shown in Figure 9.

5.1 Update-XQuery Parser

Given an Update-XQuery statement, the Update-XQuery parser constructs a
parse tree which is composed of objects of classes that were designed to store
the parsed query. For example, a class Update is defined to store update clauses.
Subclasses of class Update are defined for four types of update operations, i.e.,
Delete, Rename, Insert and Replace, respectively.

A Lightweight XML Constraint Check and Update Framework 47

5.2 Safe Update-XQuery Analyzer

Given an internal representation of an Update-XQuery, the analyzer will deter-
mine a more specific sub-type of an update operation. For example, the analyzer
would examine the content of an object of class Delete to classify the update as
either deleting an element or deleting an attribute. The detailed information of
update types would then be embedded into the original parse tree. We call the
new parse tree an enhanced parse tree.

5.3 Constraint Checking Template Library

The library stores templates that account for every type of update possible
using our Update-XQuery language (See BNF in Figure 3.2). A constraint check
is composed of three steps which are:

1. Query the XML schema to identify any constraints that may be violated by
the specified update.

2. Query the XML document to gather information pertaining to the target
elements or attributes.

3. Compare the information retrieved from the two previous steps and thus
identify whether the constraints would be violated by the update.

We illustrate how this constraint check is done for a delete-element operation.
The constraint checking functions schemaChkDelEle and delElePassed shown
in Figures 5.3 and 5.3 jointly achieve the three steps mentioned above.

Function integer schemaChkDelEle($xsdName, $parentEleName, $childEleName) Return Integer

1 {
2 For $pDef In document($xsdName)/xsd:element[@name = $parentEleName],

3 $cRef In $pDef//xsd:element[@ref = $childEleName]

4 Let $cRefMinOccurs:= $cRef/minOccurs

5 Return $childRefMinOccurs }

Fig. 10. Constraint Checking Function schemaChkDelEle

Function delElePassed($childBinding, $childBindingPath, $childMinOccurs) Return Boolean

1 {
2 LET $childInstCount := count($childBindingPath)

3 Return

4 If ($childMinOccurs <= $childInstCount - 1

5 Then TRUE

6 Else FALSE

7 }

Fig. 11. Constraint Checking FunctiondelElePassed

48 Hong Su et al.

The Constraint Checking Function. schemaChkDelEle queries over the schema
(i.e., step 1) for the information related to the constraints that may be vio-
lated when deleting an element. Deleting an element e of element type t can
only violate the constraint of a required minimum occurrence of the elements
of type t in the content model of e’s parent. schemaChkDelEle is to retrieve
the minimum occurrence of elements of type $childEleName in the parent type
parentEleName. In particular, line 2 queries the XML schema file, specified by
the file name $xsdName, to find the element definition $pDef for type $parentE-
leName. The element definition of parentEleName’s subelement referring to type
childEleName is stored in $childRef in line 3. Line 4 then retrieves the minimum
occurrence of element type childEleName in parentEleName.

Constraint Checking Function. delElePassed checks whether the data update is
safe based on the schema constraint information collected by schemaChkDelEle.
delElePassed is composed of two parts:
1. Query over Data (i.e., step 2). Line 2 begins querying over the XML
document to find the actual count of instances of type childEleName that
are subelements of the target object. These instances can be retrieved by the
XPath expression $childBinding. Function count on the retrieved instances
returns the count of these instances. Thus there would be only childInstCount
- 1 instances of type childEleName if the update is allowed to occur.

2. Integration of Query Result over Schema and Data (i.e., step 3). Line
4 compares the information from the XML schema and data. It compares
the minimum occurrence requirement (i.e., childRefMin) and the actual oc-
currence if the update were indeed to proceed. In this example, this would
be childInstCount - 1. If actual occurrence after the update had occurred
were larger than the minimum occurrence requirement, this check is passed
and the update operation is regarded as valid.

5.4 Safe Update-XQuery Rewriter

The Safe XQuery Rewriter traverses the enhanced parse tree. For each update
operation, based on the update type, the Rewriter determines which template
function should be used for checking the constraints of the update. Since the
template is parameterized, the Rewriter also instantiates the parameters. Values
for these parameters can be identified through the analysis of different parts of
the parsed XQuery.

This can be seen in Figure 2. The delElePassed template function takes in
three parameters to execute its query. For this particular example,“juicer.xsd”
(the file name of the XML Schema), “juicer” (the type name of the parent
element of the to-be-deleted element) and “cost” (the type name of the to-be-
deleted element) are the three instantiated parameters respectively.

Once all parameters have been assigned values, the Rewriter needs to in-
sert the instantiated template function into the original query. The Rewriter
modifies the parse tree by inserting the constraint checking function for exam-
ple via a where clause after the associated update clause (line 5 in Figure 2).
After all modifications have been done to the original update XQuery, the safe
Update-XQuery generation is complete. Finally, a resulting safe Update-XQuery
statement is produced by the query rewriter module.

A Lightweight XML Constraint Check and Update Framework 49

6 The SAXE System

We have designed and implemented the above proposed query rewriting tech-
niques as a prototype system, called SAXE. Our system is based on Kweelt
[SD02], a query engine for the Quilt XML query language [CRF02], a precursor
of the XQuery standard, developed by the University of Pennsylvania. Kweelt
is composed of two parts, i.e., the language parser and language evaluator. The
parser takes a Quilt statement and constructs a parse tree. The evaluator then
executes the query against the data. First, we extended the Java Compiler Com-
piler file (JavaCC) which is a Java parser generator in Kweelt so that the Update
clauses are accepted by the language parser. Second, we have extended the eval-
uator so that an Update-XQuery statement can be executed.

We compare SAXE against the from-scratch validation solution, which means
we first perform the given update using the extended Kweelt update engine and
then we run the modified XML document through an XML-Schema Validator
[Tom02] to check for conformance with the given XML schemata. We added
the time for regular XQuery execution to the time needed to run the update
document through the validator. Generating a typical safe Update-XQuery takes
about 400 - 500 milliseconds. For some cases, the safe Update-XQuery execution
takes slightly longer than the from-scratch validation solution. However, this
does not mean that a safe Update-XQuery is less efficient than using validators
after updates are executed. The argument is that the safe Update-XQuery is a
one step process where updates are only performed once the updates are deemed
safe so that all the attempts for invalid updates will be prevented. On the other
hand for the execution of non-safe Update-XQuery, as mentioned in Section 1.3,
the system may need to iterate several times between attempting updates and
then verifying if the updates leave the XML document in a consistent state.

7 Conclusion

In this paper, we propose a lightweight approach to ensure the structural con-
sistency of XML documents after updates. More precisely, we propose that an
Update-XQuery statement can be rewritten into a safe Update-XQuery state-
ment by embedding constraint checking operations into the query. This approach
is lightweight in the sense that it can be implemented as a middleware indepen-
dent of any underlying system for XML data management. To ensure the struc-
tural consistency, any Update-XQuery statement is first fed to our safe Update-
XQuery generator, SAXE, while the returned safe Update-XQuery statement
can then be executed by any system supporting Update-XQuery.

Currently, our safety checking semantics is at the atomic level, i.e., each
atomic update on a single object is allowed if this update leads to a valid XML
document. As a next step, we want to explore the concept of transactional up-
date, i.e., a batch of updates are only allowed to be executed if the overall effect
of executing them leads to a valid document.

50 Hong Su et al.

References

ASU86. V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and
Tools . Addison-Wesley, 1986.

BGH00. L. Bird, A. Goodchild, and T. A. Halpin. Object role modelling and xml-
schema. In International Conference on Conceptual Modeling / the Entity
Relationship Approach, pages 309–322, 2000.

CRF02. Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt, 2002.
IBM00a. IBM. XML Parser for Java, 2000.

http://www.alphaworks.ibm.com/tech/xml4j.
IBM00b. IBM Software: Database and Data Management. DB2 XML Extender.

http://www-4.ibm.com, 2000.
KKRSR00. G. Kappel, E. Kapsammer, S. Rausch-Schott, and W. Retschitzegger. X-

ray - Towards integrating XML and relational database systems. In In-
ternational Conference on Conceptual Modeling / the Entity Relationship
Approach, pages 339–353, 2000.

Obj99. Object Design. Excelon Data Integration Server.
http://www.odi.com/excelon, 1999.

Ora02. Oracle. Oracle9i application developer’s guilde - xml release 1 (9.0.1):
Database support for xml. http://download-east.oracle.com/otndoc/

oracle9i/901 doc/appdev.901/a88894/adx05xml.htm, 2002.
SD02. A. Sahuguet and L. Dupont. Querying xml in the new millennium, 2002.
SKC+00. H. Su, D. Kramer, K. Claypool, L. Chen, and E.A. Rundensteiner. XEM:

Managing the Evolution of XML Documents. In International Workshop
on Research Issues in Data Engineering, pages 103 – 110, 2000.

TIHW01. I. Tatarinov, Z. Ives, A.Y. Halevy, and D.S. Weld. Updating XML. In
SIGMOD, pages 413 – 424, 2001.

Tom02. Henry Tompson. xsv: schema validator, 2002.
W3C98. W3C. Guide to the W3C XML Specification (”XMLspec”) DTD, Version

2.1.
http://www.w3.org/XML/1998/06/xmlspec-report-v21.htm, 1998.

W3C99. W3C. XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath, 1999.

W3C01a. W3C. XML Schema . http://www.w3.org/XML/Schema, 2001.
W3C01b. W3C. XQuery 1.0: An XML Query Language.

http://www.w3.org/TR/xquery/, 2001.
XML02. XML:DB. http://www.xmldb.org/, 2002.
XUp02. XUpdate. XML:DB. http://www.xmldb.org/xupdate/xupdate-wd.html ,

2002.

http://www.alphaworks.ibm.com/tech/xml4j
http://www-4.ibm.com
http://www.odi.com/excelon
http://download-east.oracle.com/otndoc/
http://www.w3.org/XML/1998/06/xmlspec-report-v21.htm
http://www.w3.org/TR/xpath
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xquery/
http://www.xmldb.org/
http://www.xmldb.org/xupdate/xupdate-wd.html

	Introduction
	Motivation
	Illustrating Example
	Desiderata of Preserving Structural Consistency
	Our Approach and Contributions

	Related Work
	XML Query and Update Language
	XML Query Language: XQuery
	XML Update Language: Update-XQuery

	XML Framework For Safe Updates
	Components of Constraint Checking Framework
	Update-XQuery Parser
	Safe Update-XQuery Analyzer
	Constraint Checking Template Library
	Safe Update-XQuery Rewriter

	The {em SAXE} System
	Conclusion

