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Abstract. A huge number of protein sequences have been generated and 
collected. However, the functions of most of them are still unknown. Protein 
subcellular localization is important to elucidate protein function. It would be 
worthwhile to develop a method to predict the subcellular location for a given 
protein when only the amino acid sequence of the protein is known. Although 
many efforts have been done to accomplish such a task, there is the need for 
further research to improve the accuracy of prediction. In this paper, with K-
local Hyperplane Distance Nearest Neighbor algorithm (HKNN) as base 
classifier, an ensemble classifier is proposed to predict the subcellular locations 
of proteins in eukaryotic cells. Each basic HKNN classifiers are constructed 
from a separated feature set, and finally combined with majority voting scheme. 
Results obtained through 5-fold cross-validation test on the same protein dataset 
showed an improvement in pre-diction accuracy over existing algorithms.   
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1   Introduction 

As a result of the Human Genome Project and related efforts, protein sequence data 
accumulate at an accelerating rate. This raises the challenge of understanding the 
functions of proteins from high throughput sequencing projects. Protein subcellular 
localization is a key functional characteristic of proteins [1] and correct prediction of 
protein subcellular localization will greatly help in understanding its functions. 
However, experimental determination of subcellular location is time-consuming and 
costly. Therefore, a reliable and efficient computational method is highly required to 
construct prediction systems to predict the subcellular location for a given protein 
when only the amino acid sequence of the protein is known. 

Several machine learning techniques have been applied to construct such 
prediction systems, for example, Support Vector Machines (SVM) [2-4], Neural 
Network [5,6], Naïve Bayesian [7] and Fuzzy KNN [8], using different sets of 
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features extracted from amino acid composition [2,3,6,9], amino acid pair 
composition[9], gapped amino acid composition [2], pseudo amino acid composition 
[10], evolutionary and structural information [11] and motif information [12]. While 
SVM, Neural Network, Naïve Bayesian need a separate training procedure, Fuzzy 
KNN not. Given the various sets of features, one approach to make use of them is 
combining (or ensembling) different classifiers constructed from different set of 
features. By this means, reduction in variance caused by the peculiarity of a single 
feature set and consequently more reliable and stable prediction system could be 
obtained. 

In this paper, we present a new method based on an ensemble of K-local Hyper-
plane Distance Nearest Neighbor algorithm (HKNN) [13] for the prediction of protein 
subcellular locations. Experimental results obtained through 5-fold cross-validation 
tests on the same protein dataset showed an improvement in prediction accuracy over 
existing algorithms.  

The rest of this paper is organized as follows. Section 2 presents the methods pro-
posed. Experimental results and comparison with existing methods are presented in 
Section 3. Conclusion is given in Section 4 

2   Methods 

2.1   Feature Presentation  

Protein sequences are composed of amino acids, which are denoted by letters from the 
alphabet {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, W, V, Y}. In order to be 
able to perform computation on these sequences, non-numerical amino acids should 
be represented by numerical values. 

From amino acid composition, we extracted the first set of features. In detail, for 
each protein sequence, the occurrence frequency of each amino acid (letter) was 
calculated and normalized (i.e. divided by the length of the sequence minus one). 
Each of the number obtained corresponds to an element of a 20-dimension vector (see 
Fig. 1). That is, a protein sequence was mapped as a point in a feature space with 
dimension 20. 

Prediction based on only amino acid composition features would lose sequence 
order information. Thus, to capture this kind of information, amino acid pair 
composition and gapped amino acid composition [2] were considered. While the 
former corresponds to two adjacent amino acids, the latter corresponds to two amino 
acids separated by one or more intervening residue positions. In fact, amino acid pair 
composition can be seen as a special case of gapped amino acid composition with 
zero gaps. For four different gap values (i.e. 0, 1, 2, 3), we extracted four different set 
of features separately. In detail, since there are 20 different amino acids, we 
considered 20 20 400× =  amino acid pairs for each gap value. For each protein 
sequence, the occurrence frequency of each gapped pair was calculated and 
normalized (i.e. divided by the length of the sequence minus 3). Thus, a protein 
sequence was converted to other four different 400-dimension vectors one for each 
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gap value (see Fig. 1) or, in other words, was mapped as a point in other four different 
feature spaces with dimension 400. 

Since amino acids have different biochemical and physical properties that 
influence their relative replace-ability in evolution, we re-substituted the 20-letter 
amino acids by 9-letter amino acids according to their physicochemical properties, as 
illustrated in Table 1[14]. Based on this new encoding scheme, each protein sequence 
was converted to other five different vectors using the similar process as in 20-letter 
encoding scheme case (see Fig. 1).  

So far, for each protein sequence, we got ten feature vectors. In other words, each 
protein sequence was mapped as a point in ten different feature spaces. 

Table 1. The 9-letter encoding scheme for the 20 amino acids based on their physical-chemical 
proper-ties  

Group Residues Description 
1 C Highly conserved 
2 M Hydrophobic 
3 N, Q Amides, polar 
4 D, E  Acids, positive, polar 
5 S, T  Alcohols 
6 P, A, G  Aliphatic, small 
7 I, V, L  Aliphatic 
8 F, Y, W  Aromatic 
9 H, K, R  Bases, charged 

2.2   K-Local Hyperplane Distance Nearest Neighbor Algorithm (HKNN) 

HKNN is a modified k-nearest neighbor algorithm (KNN). By building a (non-linear) 
decision surface, separating different classes of the data, directly in the original 
feature space, it is intended to improve the classification performance of the 
conventional KNN to a level of SVM.  

Suppose the number of different classes in the training set is c, HKNN computes 
distances of a test point x to c local hyperplanes, where each hyperplane is composed 
of k nearest neighbors of x, belonging to the same class, in the training set. Then the 
test point x is assigned to the class whose hyperplane is closest to x (see [13] for 
details). 

HKNN has two parameters, k and λ, a penalty term introduced to find the 
hyperplane. 

2.3   Voting Scheme 

In each of the ten feature space described above, a HKNN classifier was constructed. 
To combine the prediction results of all the ten classifiers, majority voting scheme 
[15] was used, in which the final prediction class was the most voting one. Ties were 
randomly resolved. 
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Fig. 1. Framework of the method used in this paper  

3   Experimental Results and Discussion 

3.1   Protein Dataset 

For comparison, the protein dataset (downloadable at “http://web.kuicr.kyoto-
u.ac.jp/~park/Seqdata/”) studied in previous investigations [2] were used in this study. 
In this dataset, all protein sequences were collected from the SWISS-PROT database 
release 39.0. Totally 7579 protein sequences of eukaryotic cells for 12 subcellular 
locations were contained in this dataset. The number of protein sequences in each 
location is shown in Table 2. 

3.2   Performance Measurement 

The prediction performance was evaluated by 5-fold cross-validation test. In detail, 
proteins in the dataset were separated into five balanced sets. Each of these sets 
contained almost the same number of proteins. In each round of cross-validation, four 
sets were used to construct the ensemble of HKNNs while one set was set aside for 
evaluating the method. This procedure was repeated five times, once for each set. In 
order to evaluate the prediction performance of our method, two measures were used. 
The first measure, total accuracy (TA), is defined as               

1

c

ii
T

TA
N

== ∑  (1) 

The second measure, local accuracy (LA),  is defined as  

1

c

ii
P

LA
c
== ∑  (2) 

In Equation (1) and (2), c is the number of subcellular locations, N is the total number 
of proteins in the dataset, Ti is the number of proteins correctly predicted in location i, 
and Pi=Ti/ni, where ni is the number of proteins in location i. These two measures 
were also used in [2].  
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Table 2. The 9-letter encoding scheme for the 20 amino acids based on their physical-chemical 
proper-ties  

Subcellular Location Number of protein sequences 
Chloroplast  671 
Cytoplasmic  1241 
Cytoskeleton  40 
Endoplasmic reticulum  114 
Extracellular  861 
Golgi apparatus  47 
Lysosomal  93 
Mitochondrial  727 
Nuclear  1932 
Peroxisomal  125 
Plasma membrane  1674 
Vacuolar 54 

Total 7579 

Table 3. Prediction performance for the 12 subcellular locations 

Subcellular Location Accuracy (%) 
Chloroplast  78.1 
Cytoplasmic  73.2 
Cytoskeleton  67.5 
Endoplasmic reticulum  71.9 
Extracellular  76.1 
Golgi apparatus  42.6 
Lysosomal  71.0 
Mitochondrial  55.7 
Nuclear  92.2 
Peroxisomal  44.0 
Plasma membrane  94.5 
Vacuolar 46.3 

LA 
TA 

67.8 
80.9 

3.3   Results 

In this paper, ten HKNNs with parameters k=4 and λ=0.8 were ensembled and test on 
the dataset. The total accuracy (TA) and location accuracy (LA) were calculated by 5-
fold cross-validation. The prediction accuracy for each subcellular location is shown 
in Table 3. 

3.4   Comparison with Previous Methods 

In order to examine the performance of our method, we made comparison with 
previous methods, especially the methods by Park and Kanehisa[2] who had used the 
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same dataset and 5-fold cross-validation test. The comparison results are shown in 
Table 4. Our method improved the LA significantly, from 57.9% to 67.8%, together 
with a small increase in the TA, from 78.2% to 80.9%. Our method is more balanced 
than their method, that is, our method performs better than theirs for all small groups, 
such as Cytoskeleton (58.5% vs. 67.5%), Endoplasmic reticulum (46.5% vs. 71.9%), 
Golgi apparatus (14.6% vs. 42.6%), Lysosomal (61.8% vs. 71.0%), Peroxisomal 
(25.2% vs. 44.0%) and Vacuolar (25.0% vs. 46.3%).  

Table 4. Comparison our method with a previous method 

Subcellular Location Park and Kanehisa[2] Our Method 
Chloroplast  72.3 78.1 
Cytoplasmic  72.2 73.2 
Cytoskeleton  58.5 67.5 
Endoplasmic reticulum  46.5 71.9 
Extracellular  78.0 76.1 
Golgi apparatus  14.6 42.6 
Lysosomal  61.8 71.0 
Mitochondrial  57.4 55.7 
Nuclear  89.6 92.2 
Peroxisomal  25.2 44.0 
Plasma membrane  92.2 94.5 
Vacuolar 25.0 46.3 

LA 
TA 

57.9 
78.2 

67.8 
80.9 

4   Conclusion and Future Work 

In this paper, a new method based on an ensemble of K-local Hyperplane Distance 
Nearest Neighbor algorithm is proposed to predict protein subcellular locations of 
eukaryotic cells. The experimental results on the same dataset showed an 
improvement in prediction accuracy over existing algorithms. Other advantages of our 
method include: (1) it has relatively fewer adjustable parameters compared with SVM 
and Neural Network and (2) like KNN, it does not need a training process. 

In the future, we will develop the ensembling classifier as a web service for public 
usage. 
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