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Abstract. The general trend towards complex technical systems with embedded
software results in an increasing demand for dependable high quality software.
The UML as an advanced object-oriented technology provides in principle the
essential concepts which are required to handle the increasing complexity of these
safety-critical software systems. However, the current and forthcoming UML ver-
sions do not directly apply to the outlined problem. Available hazard analysis
techniques on the other hand do not provide the required degree of integration
with software design notations. To narrow the gap between safety-critical system
development and UML techniques, the presented approach supports the compo-
sitional hazard analysis of UML models described by restricted component and
deployment diagrams. The approach permits to systematically identify which haz-
ards and failures are most serious, which components or set of components require
a more detailed safety analysis, and which restrictions to the failure propagation
are assumed in the UML design.

1 Introduction

Today, an increasing demand for dependable high quality software can be observed due
to the fact that more ambitious and complex technical systems should be built. In [],
this trend is characterized by very complex, highly integrated systems with elements
that must have a great autonomy and, thus, are very demanding w.r.t. safety analysis.
Additionally, instead of single safety-critical systems today “systems of systems’” have to
be developed even though established techniques for their safety analysis are not in place
(cf. [2]). The New Railway Technology (RailCab) projec used later in the paper as a
motivating example is one very extreme example for such complex systems of systems
with very demanding safety requirements.

The UML as an object-oriented technology is one candidate to handle these safety-
critical systems with software and overwhelming complexity. However, the current and
forthcoming UML versions do not directly support safety-critical system development.
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Available hazard analysis techniques on the other hand have their origin in the hardware
world and do not provide the required degree of integration with software design nota-
tions. They assume a very simple hardware-oriented notion of components and therefore
do not directly support the identification of common mode faults. Some more advanced
approaches [314/5/6/7] support a compositional treatment of failures and their propaga-
tion, but still a proper integration with concepts like deployment and the more complex
software interface structure is missing.

The presented approach tries to narrow the described gap between safety-critical
system development and available UML techniques by supporting the compositional
hazard analysis of UML models. As there is little value in proposing extensions to UML
if they are not accepted by the community and tool vendors (cf. [[1]), we instead propose
to use only a properly defined subset of the UML 2.0 [8] component and deployment
diagrams. The approach builds on the foundation of failure propagation analysis [3] and
component-based software engineering [9]]. It provides a sound combination of these
two techniques for compositional hazard analysis and permits automatic quantitative
analysis at an early design stage. The failures can be modeled as detailed as required using
a hierarchical failure classification where correct refinement steps ensure the complete
coverage of all possible failures. The approach permits to systematically identify which
hazards and failures are most serious, which components or set of components require
a more detailed safety analysis, and which restrictions to the failure propagation are
assumed. We can thus systematically derive all safety requirements, which correspond
to required restrictions of the failure propagation of a single component or a set of
composed components in the UML design.

The paper is organized as follows: We first review in Section[2]the current proposals
for compositional hazard analysis and discuss their limitation when it comes to complex
software systems. The foundations of our approach and the process integration are then
outlined in Section B In Section @] the application of the approach to some fragments
of the mentioned New Railway Technology case study is presented. More advanced
concepts of our approach which enable the systematic refinement of the safety analysis
are presented in Section Bl We close the paper with a final conclusion and outlook on
future work.

2 Related Work

Component-based hazard analysis is a hot topic in safety-critical systems research [1.4}
Sl6.7]]. The basic idea is to ease the hazard analysis by reusing already available informa-
tion about failure behavior of the individual components rather than always start from
scratch when performing a hazard analysis. The current approaches for component-
based hazard analysis have in common that they describe the failure propagation of
individual components (cf. failure propagation and transfer nets [3]]). Outgoing failures
are the result of the combination of internal errors and incoming failures from other
components. The failure classification presented in [3l10] is widely employed (as in [4}
6]) to distinguish different failures.

Papadopoulos et al. [4] describe an approach for a component-based hazard analysis.
The basic idea is a Failure Modes and Effects Analysis (FMEA) for each component
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based on its interfaces (called IF-FMEA). The outgoing failures are disjunctions of a
combination of internal errors and a combination of incoming failures. They employ the
notion of block diagrams [[I1] for their components. The results of IF-FMEA are com-
bined to construct a fault tree for the complete system. A main advantage, besides reusing
already available IF-FMEA results, is an improved consistency between the structure of
the system design and the fault tree of the system. This approach has been integrated
with component concepts of the ROOM [12] methodology in [6]. A major weakness of
these approaches (as noted in [1]) is the usage of a fault tree for the combination of the
individual IF-FMEA results, since fault trees do not inherently support common mode
failures like a hardware crash failure which influences all software components executed
on that node. Additionally, the authors impose an unnecessary restriction by the defi-
nition that the internal errors are always combined by an logical or with the incoming
failures.

Kaiser et al. [5] present a component concept for fault tree analysis. They propose
to divide a fault tree into fault tree components. A fault tree component has incoming
and outgoing ports. These ports are used to connect the different components and create
the complete fault tree. The main advantage of this approach is the possibility to reuse
existing fault tree components. Thus, by building a repository of fault tree components for
often used system components, the building of fault trees becomes easier. Unfortunately,
the proposed fault tree components are not linked in any way to the system components,
whose faults they are modelling. In [[7] this approach has been integrated with ROOM
[12]. The input and output actions are used to derive all failure ports. The failure ports
which are used for the connection of the fault tree components are still not typed. In
contrast, our approach additionally supports the flexible classification of failures at a
greater level of detail. In contrast to all discussed approaches, we explicitly allow cycles
in the failure propagation models.

3 The Approach

Following the ROOM [|12] concepts in UML 2.0 [8]], a well encapsulated software com-
ponent has a number of ports. Each port is typed by provided and required interfaces.
Two ports can be connected to each other by connecting a provided and a required inter-
face. As additional elements, connectors are employed to describe these interconnections
between ports. If we want to study the safety of systems described by UML components,
we have to incorporate possible faults, errors, and failures as well as their effects into
our component model. Due to the outlined restrictions of UML components, we can
thus restrict our attention to the failure propagation taking place at specific ports. As we
only want to study the higher level failure propagation during development and post-
factum safety assessment, it is sufficient to consider the high level failure modes which
are relevant at the more abstract software architecture level rather than considering the
more detailed code level failure modes (cf. [2]10]). In addition, we will abstract from
the component states and refer to Section[3 for our treatment of states.

All software ultimately relies on hardware for execution and all hardware can suffer
from part failures, power outages, etc. Experience has shown, that random hardware
faults can in contrast to systematic faults be appropriately modeled using probabilities
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(cf. [130). Hardware failures have a direct influence on the executed software and there-
fore, due to hardware sharing, common mode failures can result. Thus, the deployment
of the software components and connectors to hardware components must be an integral
part of the safety analysis.

To describe software components and connectors as well as their deployment, we
use a generalized model of components for software as well as the hardware components
which are interconnected via ports. Special deployment ports are used to describe the
possible effect of the hardware and the deployed components. We thus assume a set C
of components ¢ € C with software ports sn € P and hardware ports hn € P with
n € IN. A system S is characterized by such a set of components and two mappings
map,. : C x P — C and map,, : C x P — P which assigns connected ports to each
other in a type correct manner.

The nature of faults, errors, and failures is that within a component a fault can
manifest itself in form of an error which then may lead to a failure to provide the service
offered by the component. Such a failure to provide a service results in faults for other
components which depend on that component (cf. chain of faults/failures [14]). For
our setting here we can restrict our attention to the failures of a component and their
propagation and thus distinguish incoming and outgoing failures for each component
port. We can further abstract from faults as long as they are dormant and can thus restrict
our attentions to relevant errors only. Basic errors which are the direct results of local
faults have to be included in form of events. Implied errors which result from incoming
failures have in contrast to be omitted as they are not probabilistically independent
and we require instead that their effects are directly propagated between incoming and
outgoing failures. In addition, local probabilistic events such as the successful or not
successful detection of two independent occurring value failures can be used to describe
the required propagation more realistically.

To formally model the hazards and the failure propagation of the components we use
Boolean logic with quantifiers (cf. [15]). We assume two disjoint Boolean variable sets
VFr and Vg for failures and probabilistic independent local events, respectively. All ele-
ments can then be described by Boolean logic expressions where the basic propositions
are built by occurrences of the failure variables (f; € VF), event variables (e, € Vi),
or one of the Boolean constants true and false. These basic propositions and Boolean
formulas might be combined using the Boolean operators A, V, =, =, < and quantifiers
v and 3[4 For a formula ¢ we use free(¢) to denote the set of free variables.

To describe hazards and the combinations of faults that can cause them we employ
standard fault tree analysis (FTA) [[16]. In a fault tree the hazardous event is shown as top
of a fault tree. This top node is caused by a combination (and, or) of its child nodes. This
continues until the leaf nodes of the tree are reached. These leaf nodes describe the basic
events which indirectly caused the hazardous event on the top. In our case, the basic
events are failures of the system components. A hazard (top event) corresponds thus to a
hazard condition ~y in form of a Boolean formula which employs only the operators for
V and A and a subset of the outgoing failure variables of the system components. Note,

% The quantifiers can be mapped to standard Boolean operators using substitution ([y/x]; replace
z by y) as follows: Vv : ¢ equals ¢[true/v] A¢[false/v] and Fv: ¢ equals P[true/v]V¢[false/v].
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that the hazard condition is thus never disabled by additionally present failures and thus
monotonic increasing w.r.t. additional failures (cf. [15]]).

Both failures, incoming and outgoing, have certain types, which are used to guide the
connection of the component failure propagation models. Following [3l10], we distin-
guish the general failure classes: (1) for service provision we have omission (so), crash
(scr), or commission (sco), (2) for service timing we have early (te) or late (il) , and (3)
for service value we have coarse incorrect (vc) or subtle incorrect (vs). In Figure [Tl we
use a UML class diagram and generalizations to specify this classification. Note that all
generalization sets are complete ones and thus describe all possible subclassifications
at once (cf. [8] p. 122]). If more specific or general failures are relevant for a specific
port, they can be easily defined by extending the set of considered failures accordingly
within the class diagram. In our case we define that protocol failures (p) are the union
of possible omission and commission service and timing failures. We can therefore in
the following restrict our considerations on the three failure types crash failure (scr),
protocol failure (p), and value failure (v) which build a complete failure classification F
(cf. SectionB). Failure and event variables are named according to the following schema:
fep,t and e, for a component with ¢ € C, port p € P, and failure type ¢t € F. Note
that in the case of events which do not relate to a specific failure type appropriate event

types are simply added.
{complete disjoint} /\
{complete, disjoint} £\

I I |

Omission (so) ‘ | Crash (scr) ‘ ’ Commission (sco)
/\

A {complete,disjoint} complete,disjoint}

| early (te) | | late (tl) ‘ | coarse (vc) | | subtle (vs)‘

{complete} {complete} {complete}

Protocol (p)

Fig. 1. Failure classification with a UML class diagram

To formally model the failure propagation of components as well as possible con-
straints, we can also use Boolean logic. For every component ¢ € C we employ a failure
propagation information which consists of the following four elements: (1) A set of
outgoing failure variables O% C V, (2) a set of incoming failure variables I, C Vi,
(3) a set of possible internal event variables V5 C Vg, and (4) a failure dependency
condition 1, which relates the variables for failures and errors to each other by a Boolean
logic formula (free(¢.) C 0% U I& U VE). We require O%. N I§, = (.

If an incoming failure represented by the variable fj can result in the outgoing
failure represented by the variable f;, the failure dependency . must include f; < f.
In general, the failure propagation for an outgoing failure f; € O% is described by the
corresponding formula ¢; in the form f; < ¢;. We use fault trees which may additionally
include negated elements for this purpose. For all outgoing failures fj, € O% their failure
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propagation formulas 15 have to be AND-combined. Thus if a specific outgoing failure
f; is not possible we simply have to add f; < false to ..

The parallel composition of the failure information of a number of components is
derived by simply renaming the failure and event variables appropriately and combining
the failure dependencies. We require that the failures are identical (fept = for pr.t)
if and only if their component ports are matched to each other (map_.(c,p) = ¢’ and
map,(c,p) = p). Additionally, the event variable sets for any two components ¢ # ¢’

have to be disjoint (V£ N Vg = (). Such a renaming of the failures and events requires
that the failure variables used by two connected components for their connected ports
must use compatible types. As ports with their protocols and interfaces are design entities
of their own, this can be achieved by determining the relevant set of failure types when
designing the port protocols and interfaces themselves.

For the AND-composition of the local failure propagation information of all compo-
nent occurrences c1, ..., ¢, With a hazard condition ~ in form of the Boolean formula
U =1, N... N, Ny satisfiability has to be checked to determine whether the haz-
ard is possible. We can further abstract from the propagated failures f1, ..., f,, using
existential quantification and check instead )3 = 3f1,..., fim : Ve, Ao A, A7.

One option to compute these checks are binary decision diagrams (BDDs) [17] which
have been successfully employed to analyze fault trees encoded as Boolean formulas
[[18]]. The possible analysis includes the qualitative analysis (feasibility) and quantitative
analysis (probability) of ¥5. The related approaches for compositional hazard analysis
discussed in Section [2] restrict the permitted propagation structures to acyclic ones to
map their results to fault trees. However, for composed failure propagation information
of multiple components cycles cannot be excluded. If such a cycle is present in the
system, the above mentioned formula degenerates and the probability computation will
return probability 1. Using the results of [15l19] and exploiting the fact that the hazard
conditions are always monotonic increasing, we can check V1, ..., f (e, Aot A
e, ) = ) to derive a formula which includes all relevant minterms of 3 B This formula
can then also be used to compute the correct probability.

Our approach consists of the following steps, which are to some extent discussed in
the following section by means of an application example:

It starts with a system-dependent part, where fault trees for all system hazards are
derived. These fault trees only refer to outgoing component failures which can con-
tribute to the hazard but do not look into the components and their interconnections (see
Section .

In the next two steps, the propagation of component failures of each component
(see Section[4.2)) as well as the related behavior of the deployment nodes and hardware
devices (see Section[4.3) have to be derived. If predefined components such as hardware
devices, deployment nodes, or software components are used, we can simply reuse their
failure propagation information. If, however, specific software has to be built, we have
to derive its failure propagation information first.

3 If instead of monotonic increasing conditions more general conditions have to be checked, no
efficient standard Boolean encoding exists to derive the related formula. However, in [15] an
efficient BDD operator to compute the related Boolean formula has been presented.
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If a failure propagation information for each employed component is available, we
can compose them as defined by the component and deployment diagrams and employ
qualitative and quantitative analysis techniques to identify problems such as a single
point of failure or very likely scenarios for hazards (see Sectiond.4).

For identified problems often a more detailed safety analysis is required. We then
have to refine the failure propagation information until all components are described at
an appropriate level of abstraction. In Section [3l the systematic support for refinement
and abstraction steps for our failure propagation models are presented.

When deriving a failure propagation model of appropriate level of abstraction, the
designer can usually identify the relevant problems and systematically derive safety
requirements of the software components and add them to the failure propagation infor-
mation. Therefore, safety requirements such as the ability of a component to compensate
or detect specific failures are systematically derived and documented.

Later in the design and implementation phase verification activities such as testing
and formal verification have to be employed to ensure that more detailed design models
and the final implementation still adhere to these identified safety requirements.

4 Application Example

The New Railway Technology project and its safety-critical software is used in the fol-
lowing as our application example. The project aims at using a passive track system with
intelligent shuttles that operate autonomously and make independent and decentralized
operational decisions. Shuttles either transport goods or up to approx. 10 passengers.

The track system, the shuttles are using, is divided into several disjoint sections each
of which is controlled by a section control. To enter a section, a shuttle has to be registered
at the corresponding section control. The shuttle sends its data, like position and speed,
to the section control. The section control in turn sends the data of all other shuttles
within the section. Thus, each shuttle knows which other shuttles are nearby. Shuttles
can communicate with each other and decide whether it is useful to build a convoy (this
reduces the air resistance and therefore saves energy) or not. If two shuttles approach at
a switch, they can bargain who has right of way. Depending on the topology, the shuttles
speed and its position an optimizer calculates the bid. A more detailed description of
this scenario can be found in [20].

In our example, represented in Figure @, two shuttle components, a switch and a
section control interact with each other. A component is depicted as rectangle labelled
with at least the component’s type (string following the colon) and possibly labelled
with the component’s name (string preceding the colon). A component represents one
instance of a given type. Consider for example the component on the left of Figure2l This
component is an instance of type Shuttle and is named sh1. The component has seven
subcomponents and two ports. In our example there is also another shuttle component
sh2. This component is of the same type as sh1, although its subcomponents are not
shown in the diagram.

Component ports are shown as small squares at the component’s border. These ports
are used for interaction with other components. In Figure 2] one port of the shuttle com-
ponent is connected with the SectionControl. In this case data is sent in both directions
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sh1:Shuttle
:SectionControl
Els1:SpeedSensorg3 Bl nit & :ShuttleData
1

g1:GPS B2

!

52
sch1:SectionControlHandle

n
sh2:Shuttle
(]

ni3

il

swh1:SwitchHandler "
:Switch $
O
53 (] :ShuttleData
o1:Optimizer

Fig. 2. Component structure with shuttles, switch, and section control

which is depicted by arrows at both ends of the connection. Some of the connectors are
labelled with nl1..4, this indicates that a network is used for the communication of the
corresponding components.

4.1 System Hazards

In a first step, those hazards are addressed that concern the system as a whole. The causes
of these hazards are decomposed until we reach outgoing failures of the main system
components.

Each shuttle exchanges periodically data with the section control and with the switch
it is approaching. Thus for protocol and crash failures we have the following cases: no
data is received (scr or so), not expected data is received (sco), or data is received too
early or too late (te resp. tl). In each of these cases the corresponding component can
switch to a fail-safe state or compensate those failures by pessimistic extrapolation of
the old data. Only incorrect data can lead to a hazard.

In our example, one serious hazard that can occur is a sideway collision of two
shuttles on a switch. Here we will mention only two of the possible failures that can lead
to this hazard. First, one shuttle component has incorrect own data. Or second, one shuttle
has incorrect data of the other shuttle. As the shuttle component’s behavior is completely
determined by its subcomponents, the main component itself cannot produce a failure
but its contained ones. The incorrect own data can be caused by the SwitchHandler and
the incorrect data of the other shuttle by the SectionControlHandler. As these failures

2 shuttles crash
sideway on a switch

fffff o
I I
shuttle’s own data is shuttle has incorrect
incorrect data of other shuttle
value failure of swh1 value failure of sch1
fswh1,s2,v fschl,s3,v

Fig. 3. Fault tree for sideway collisions of shuttles
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are related to certain components of the system the analysis on this level is stopped. The
resulting fault tree is depicted in Figure 3l

The corresponding hazard condition is: v = fscn1,53,0 V fswni,s2,0 V - .. . To keep
the example simple we will in the following focus on the case that the Switch of sh1
delivers incorrect data. Thus, we only consider the hazard condition v = foup1,52,0-

4.2 Components

In this section we will show the failure propagation models for the Optimizer, GPS and
SpeedSensor components as well as the SwitchHandler component, which are contained
within the shuttle component. These failure propagation models describe the relation
between outgoing failures, incoming failures and internal events.

value protocol
failure failure

Forss crash Foiss
failure -

ol s5ser

>1
\ T =]
algorithmi gps protocol || speed protocol
constraint failure failure -
value
gps speed gps crash | | speed crash hardware gps speed failure
value failure value failure failure failure crash failure value failure value failure ol s5,0
for,s2,0 Jors1w Jor,2,5er Sorst,ser Sorpser Jols2,0 Sorsiw
(a) Value failure (b) Crash failure (c) Protocol failure

Fig. 4. Optimizer failure propagation

Figures and show the failure propagation for value and crash failures of
the Optimizer component. As is apparent from the component diagram of Figure 2] the
Optimizer uses information provided by both the GPS and the SpeedSensor to compute
the bids for the bargaining (to keep the example simple the used Topology and ShuttleData
components are not considered). The Optimizer has the ability to detect value failures
in the data, provided by the GPS and the SpeedSensor. Due to algorithmic constraints,
the failure detection cannot detect simultaneous, similar value failures and therefore an
internal event (event type ac) is added to model this algorithmic constraint[ The second
failure propagation model specifies that the optimizer cannot tolerate a crash failure
of one sensor or the execution hardware. A protocol failure of one of the sensors or
detected value failures propagate to an outgoing protocol failure as specified in Figure
Thus, we get the following failure propagation: Y1 = (fo1,s5,0 < ((fo1,52,0 A
fol,sl,v) A eol,ac)) A (fol,s5,scr e (fol,sQ,scr A fol,sl,scr \ fo?,hl,scr)) A (fol,s5,p Aad
(fol,s2,p \ fol,sl,p V ((fol,s2,7j \ fol,sl,v) A (_'fol,sf),v))))-

Figures[5(2)|and [5(b)|show the failure propagation for value and crash failures of the
SpeedSensor component. The SpeedSensor relies on a Speedometer hardware device

* We pessimistically abstract from the deployment of the Optimizer and SwitchHandler components
w.r.t. value failures as already mentioned their crash errors simply result in a fail-safe state of
the system.
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value crash protocol

failure failure failure

St s1w Fsstser Ssisip

Speedometer crash execution protocol

value failure failure crash failure

Fsthow Fstntser Fstht,ser Ssthip
(a) Value failure (b) Crash failure (c) Protocol failure

Fig. 5. Speed failure propagation

to read its speed and it relies on a computer node for its executionﬁ Thus, both hardware
devices influence the failure behavior of the SpeedSensor. The SpeedSensor has no
internal events but its outgoing failures are influenced by incoming value resp. crash
failures. A crash failure of the execution hardware will result in an outgoing crash failure;
a value failure will result in an outgoing value failure unless the hardware has crashed.
Incoming protocol failures simply propagate to outgoing protocol failures (cf. Figure
B(c)). Thus, we have the following failure propagation: ts1 = (fs1,s1.ser < fs1,h1,ser)/\
(fsl,slﬂ) Aad (fsl,h?,v A _‘fsl,hl,scr)) A (fsl,sl,p e fsl,hl,p)' We omit the fault tree
and the failure propagation model of the GPS since the model is very similar to the
SpeedSensor’s model.

Concerning our example, the failure propagation of the SwitchHandler component
is very simple as it just propagates all failures incoming from the optimizer to its out-
gOng POI'ti 'l/]su)hl = (fsu)hl,sl,v < fswhl,s2,v) A (fswhl,sl,scr < fswhl,s2,scr) A
(fswhl,sl,p ~ fswh1,52,p)-

4.3 Deployment

To describe the connection of hardware and the deployed software components we
employ UML deployment diagrams. For presentation reasons, the UML deployment
diagrams are visually slightly extended to include the additional hardware ports. These
hardware ports are used to denote the propagation of hardware failures.

Figure [6(a)]shows the deployment specification for the two software components s1
and g1. Both software components are deployed on the same node m1. As described in
Section B, nodes and software components are connected by special deployment con-
nections and, thus, employ the same error and failure propagation concepts. Therefore,
an internal crash error in the node m1 propagates indirectly to failures in both software
components s1 and g1 as a common mode failure. In addition, both sensor software
components use special hardware devices for the actual reading of the sensor data (at
resp. p1). We omit the mapping of the network links nl1..4 of Figure [2 to a wireless
network for the sake of clearer presentation.

5 As the Speedometer hardware device is only used for simple data reads and does not have
processing capabilities, only value errors have to be considered.
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node crash antenna speedometer
failure value value
Smiptser Sathiw Sphiw

s1:SpeedSensor g1:GPS
[ — M=
7 deployes - deploys - node crash! antenna speedo-m.
[ <<depioy>> il <<deploy>> i error value value
| p1:Speedometer m1:MPC550 al:Antenna €ml,ser €alp eplu

(a) Deployment specification (b) Failure propagation model

Fig. 6. Deployment failure propagation

Finally, the failure propagation model of the hardware must be specified to map
internal errors to outgoing hardware failures. For our example the simplified failure
propagation model of the hardware node type MPC550 is shown in Figure The
figure shows that the crash error of the node manifests itself as outgoing crash failure.
The same holds for the value failures of the other hardware devices which are used by
s1 and g1.

Described in terms of the failure propagation model presented in Section B]we have
an event e,,1 s. for the node type MPC550. This internal error manifests as failure
fm1,h1,scr at the outgoing execution port of that node component. The same holds for the
sensor hardware devices a1 and p1. Therefore we have: ¥g1 = (fin1,01,5¢r < €m1,scr)s

'(/)dQ = (fal,hl,v Aad eal,v), and '(/)d3 = (fpl,hl,v Aad epl,v)~

4.4 Analysis

As presented in Section 3] all failure propagation models and the connections between
the components are combined by and operators to get the failure propagation model
for the hazard analysis of the complete system. In addition, the connections between
incoming and outgoing ports specified by the mapping map (cf. Section ) are used to
combine their associated failures (fy1 n1,ser = fs1,h1,s¢r» - - - ). After the combination of
all failure propagation information .. for ¢ € C with the hazard condition v/, we get the
following Boolean formula for the representation of the system hazard by eliminating
the failure variables via 3-clauses:

Y3 = €ol,ac \ T€m1,ser N\ €alw N Eply

This formula describes that the hazard ' occurs, if (1) both hardware sensor devices
(a1, p1) experience simultanoeus, similar value errors, (2) there is no crash error of
the computing hardware m1, and (3) the value failures cannot be detected by the o1
component due to the similarity of the value errors. The formula can then be used to
compute the likelihood of the system hazard. Assuming the probabilities p(€p1,4c) =
1077, p(emi,ser) = 1075, pleqa1.v) = p(ep1,n) = 1078, the computed likelihood of
the hazard is approximately: p(y') ~ 10723, The likelihood of the hazard is mostly
affected by the value errors of the sensors and the constraint of the value error detection
algorithm. Therefore, these components are good targets for improvement to reduce the
likelihood of the hazard (e.g. by a reliable GPS using additional integrity signals).
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S Advanced Concepts

System models like the proposed failure propagation model are always an abstraction
which thus can fail to cover all relevant system properties. In our case, the model does not
include the system state and the ordering of events. The failure propagation specified for
each component is thus assumed to be a pessimistic abstraction such that if a sequence
of system states or ordering of events exists, where a certain configuration of incoming
failures and events can result in an outgoing failure, this case has to be covered. The
considered abstraction can then only result in false negatives, but is maybe too coarse.

The outlined general failure classification (cf. Figure[ll) as well as its extension by
application specific failures results in refined directed acyclic graphs of failure types.
We require that each applied set of failure types is a complete subclassification such that
no failure type exists which is not covered by a combination of these types. Therefore, a
correct selected subset of the failure classification such as crash failure, protocol failure,
and value failure as highlighted in Figure[d] also preserves the coverage of all possible
component failures.

If we want to abstract from a too detailed failure propagation information . of
component ¢ € C, we can simply replace a set of alternative failures f1, ..., f, by
their abstraction f by adding the condition f < f; V...V f, and abstract from fi,
..., fn using existential qualification: ¢, = 3f1,..., fn : Y A (f < fL V...V fn).
For the analysis of complex systems, we can exploit the reduced complexity of such
abstractions to check the absence of hazards using reduced models first and only employ
the more detailed models when required. If we refine our behavior, the same condition
can be employed to check whether our refinement does not contradict the more abstract
specification.

Besides the failure classification also the hierarchical structuring of the components
themselves can be subject to refinement. If the internal failures and errors are not relevant
for the system hazards, appropriate abstractions can be derived using existential quantifi-
cation as outlined above. If the system has been successfully analyzed using an abstract
failure propagation information 1. of a composed component ¢ € C, we can further
decompose the safety analysis using 1. as a specification for the failure propagations
1., of the more detailed contained system of components ¢; (1 < ¢ < n) which replace
¢ in a more detailed view. Therefore, we have to check that for the internal failures f7,
covs fm bolds: (3f1, ..., fon t ey Ao Abe, ) = .. Essentially, we have to ensure
that the internal failure propagation does not exhibit any case that is not covered by the
more abstract one.

However, it may also be the case that the system safety depends on non local proper-
ties which cannot be derived simply by composing the failure propagation information
of its contained components. Therefore, we permit to add non local restrictions to the
failure propagation. This concept can be employed to integrate non local knowledge
about the system safety into our approach.

In our example, we informally argued in the beginning that protocol failures cannot
result in a hazard. A more detailed analysis would have to distinguish between safe
and unsafe protocol failures. In a safe protocol failure the receiver and sender remain
in a state such that both employ correct pessimistic extrapolations about the possible
positions of the other one. The ability of the protocol between two entities to exhibit
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no unsafe protocol state even in the presence of faults within the channel cannot simply
be derived from the composed failure propagation model without states as presented.
Therefore, the required additional non local property that a failure at one port cannot
result in an unsafe failure at the connected port at the other side of the connector (channel)
can be added but remains to be checked using other techniques.

In a similar problem of our application example, such a property has been checked
using compositional model checking for an UML-RT model where the high level coor-
dination properties which overlap multiple components have been modeled by means
of coordination patterns@ (cf. [22]]). The checked non-local safety requirement for the
component coordination ensured that the coordination between shuttles concerning the
establishment of convoys cannot result in an unsafe protocol failure.

6 Conclusion and Future Work

The outlined compositional approach can be used to address the safety during the archi-
tectural design of complex software systems described by a restricted notion of UML
component and deployment diagrams. As exemplified with the shuttle system example,
the approach helps to identify safety concerns and addresses them by adding additional
constraints on the failure propagation. Thus, the required safety requirements for the
software components can be derived using the outlined concepts for refinement, ab-
straction, and non local cross-component properties. Additionally, the identified safety
requirements have to be subject to verification in later phases of the process.

We are currently evaluating our approach using the RailCab project as well as an
industry project to obtain statistical data about the feasibility of our approach. Therefore,
we also started to realize some tool support for the outlined approach in the open source
UML CASE tool Fujabd].

In the future, we plan to further integrate the approach with the already available
state-based analysis techniques in Fujaba such as compositional model checking to
ensure consistency between the component failure propagation behavior and the full
UML model including statecharts.
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