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Abstract. This paper introduces quantum analogues of non-interactive
perfect and statistical zero-knowledge proof systems. Similar to the clas-
sical cases, it is shown that sharing randomness or entanglement is nec-
essary for non-trivial protocols of non-interactive quantum perfect and
statistical zero-knowledge. It is also shown that, with sharing EPR pairs
a priori, the complexity class resulting from non-interactive quantum
perfect zero-knowledge proof systems of perfect completeness has a nat-
ural complete promise problem. Using our complete promise problem, the
Graph Non-Automorphism problem is shown to have a non-interactive
quantum perfect zero-knowledge proof system.

1 Introduction

Zero-knowledge proof systems were introduced by Goldwasser, Micali, and Rack-
off [10] and have been studied extensively from both complexity theoretical and
cryptographic viewpoints. Because of their wide applicability in the domain
of classical communication and cryptography, the quantum analogue of zero-
knowledge proof systems is expected to play very important roles in the domain
of quantum communication and cryptography.

Very recently Watrous [21] proposed a formal model of quantum statistical
zero-knowledge proof systems. To our knowledge, his model is the only one for
a formal model of quantum zero-knowledge proofs, although he considered only
the case with an honest verifier . The reason why he put such a restriction seems
to be that even his model may not give a cryptographically satisfying definition
for quantum statistical zero-knowledge when the honest verifier assumption is
absent. Indeed, generally speaking, difficulties arise when we try to define the
notion of quantum zero-knowledge against dishonest verifiers by extending clas-
sical definitions of zero-knowledge in the most straightforward ways. See [11] for
a discussion of such difficulties in security of quantum protocols. Nevertheless,
the model of quantum statistical zero-knowledge proofs by Watrous is natural
and reasonable at least in some restricted situations. One of such situations is the
case with an honest verifier, which was discussed by Watrous himself. Another
situation is the case of non-interactive protocols, which this paper treats.
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Non-interactive Quantum Perfect and Statistical Zero-Knowledge 179

Classical version of non-interactive zero-knowledge proof systems was intro-
duced by Blum, Feldman, and Micali [2], and was later studied by a number
of works [4,5,1,7,14,3,9,19]. Such non-interactive proof systems put an assump-
tion that a verifier and a prover share some random string, and this shared
randomness is necessary for non-trivial protocols (i.e., protocols for problems
beyond BPP) of non-interactive quantum zero-knowledge proofs [7]. As for non-
interactive statistical zero-knowledge proof systems, De Santis, Di Crescenzo,
Persiano, and Yung [3] showed that the resulting complexity class NISZK has
a complete promise problem, namely the Image Density (ID) problem. Goldre-
ich, Sahai, and Vadhan [9] showed another two complete promise problems for
NISZK, the Entropy Approximation (EA) problem and the Statistical Difference
from Uniform (SDU) problem, from which they derived a number of properties
of NISZK such as evidence of non-triviality of the class NISZK.

This paper focuses on quantum analogues of non-interactive perfect and sta-
tistical zero-knowledge proof systems. The notion of quantum zero-knowledge
used in this paper is along the lines defined by Watrous [21]. Similar to the clas-
sical cases, it is shown that shared randomness or entanglement is necessary for
non-trivial protocols (i.e., protocols for problems beyond BQP) of non-interactive
quantum perfect and statistical zero-knowledge. It is proved that, with sharing
EPR pairs a priori, the complexity class resulting from non-interactive quantum
perfect zero-knowledge proof systems of perfect completeness has a natural com-
plete promise problem, which we call the Quantum State Closeness to Maximally
Mixed (QSCMM) problem, informally described as follows: given a description
of a quantum circuit Q, is the output quantum state of Q close to the maximally
mixed state or is it far from that? Note that our QSCMM problem may be viewed
as a quantum variant of the SDU problem, which was shown NISZK-complete
by Goldreich, Sahai, and Vadhan [9]. However, our proof for the completeness of
the QSCMM problem is quite different from their proof for the classical case at
least in the following two senses: (i) the completeness of the QSCMM problem
is shown in a direct manner, while that of the classical SDU problem was shown
by using other complete problems such as the ID problem and the EA problem,
and (ii) our proof is rather quantum information theoretical. Using our com-
plete problem, it is straightforward to show that the Graph Non-Automorphism
(GNA) problem (or sometimes called the Rigid Graphs problem), which is not
known in BQP, has a non-interactive quantum perfect zero-knowledge proof sys-
tem of perfect completeness. Classically, the GNA problem can be reduced to
the EA problem [19], and thus it is in NISZK. However, the protocol for the EA
problem [9] makes use of hash functions, and is quite complicated. In contrast,
both our reduction from a GNA instance to a QSCMM instance and our protocol
for the QSCMM problem are remarkably simple.

One of the merits of considering non-interactive models is that the zero-
knowledge property in such protocols does not depend on whether the verifier
in the protocol is honest or not. Thus, our results may be the first non-trivial
quantum zero-knowledge proofs secure even against dishonest quantum verifiers.



180 H. Kobayashi

Familiarity with the basics of quantum computation and information theory
is assumed throughout this paper. See [12,16,15], for instance.

2 Definitions

We start with a notion of polynomial-time preparable sets of quantum states
introduced by Watrous [21]. Throughout this paper we assume that all input
strings are over the alphabet Σ = {0, 1}, and N and Z

+ denote the sets of natural
numbers and nonnegative integers, respectively. We also use the notation D(H)
for the set of mixed states in H.

A collection {ρx} of mixed states is polynomial-time preparable if there exists
a polynomial-time uniformly generated family {Qx} of quantum circuits such
that, for every x of length n, (i) Qx is a quantum circuit over q(n) qubits for
some polynomially bounded function q : Z

+ → N, and (ii) for the pure state
Qx|0q(n)〉, the first qout(n) qubits of it is in the mixed state ρx when tracing out
the rest q(n) − qout(n) qubits, where qout : Z

+ → N is a polynomially bounded
function satisfying qout ≤ q. In this context, the collection of the first qout(n)
qubits may be regarded as an output, and thus we also say that such a family
{Qx} of quantum circuits is q-in qout-out .

Now we give a definition of non-interactive quantum perfect and statistical
zero-knowledge proof systems in terms of quantum circuits.

For each input x of length n, the entire system of our quantum circuit consists
of q(n) = qV(n) + qM(n) + qP(n) qubits, where qV(n) is the number of qubits
that are private to a verifier V , qP(n) is the number of qubits that are private
to a prover P , and qM(n) is the number of message qubits sent from P to V .
Furthermore, it is assumed that the verifier V and the prover P share EPR pairs
a priori among their private qubits. Let qS(n) be the number of the EPR pairs
shared by V and P . It is also assumed that qV , qM, and qS are polynomially
bounded functions. Let qVS = qV − qS and qPS = qP − qS .

A (qV , qM)-restricted quantum verifier V is a polynomial-time computable
mapping of the form V : Σ∗ → Σ∗. V receives a message of at most qM(n) qubits
from the prover, and uses at most qV(n) qubits for his private space, including
qubits of shared EPR pairs. For every x, V (x) is interpreted as a description of a
polynomial-time uniformly generated quantum circuit acting on qV(n) + qM(n)
qubits. One of the private qubits of V is designated as the output qubit.

A (qM, qP)-restricted quantum prover P is a mapping of the form
P : Σ∗ → Σ∗. P uses at most qP(n) qubits for his private space, including qubits
of shared EPR pairs, and sends a message of at most qM(n) qubits to the veri-
fier. For every x, P (x) is interpreted as a description of a quantum circuit acting
on qM(n) + qP(n) qubits. No restrictions are placed on the complexity of the
mapping P (i.e., P (x) can be an arbitrary unitary transformation).

A (qV , qM, qP)-restricted non-interactive quantum proof system consists of a
(qV , qM)-restricted quantum verifier V and a (qM, qP)-restricted quantum prover
P . Let V = l2(ΣqV ), M = l2(ΣqM), and P = l2(ΣqP ) denote the Hilbert spaces
corresponding to the private qubits of the verifier, the message qubits between
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the verifier and the prover, and the private qubits of the prover, respectively.
A (qV , qM, qP)-restricted non-interactive quantum proof system is qS-shared-
EPR-pairs if, for every x of length n, there are qS(n) copies of the EPR pair
(|00〉 + |11〉)/√2 that are initially shared by the verifier and the prover. Let
VS = l2(ΣqS ) and PS = l2(ΣqS ) denote the Hilbert spaces corresponding to the
verifier and the prover parts of these shared EPR pairs, respectively, and write
V = VS ⊗ VS and P = PS ⊗ PS . It is assumed that all the qubits in VS , M, and
PS are initialized to the |0〉-state.

Given a verifier V , a prover P , and an input x of length n, define a circuit
(P (x), V (x)) acting on q(n) qubits to be the one applying P (x) to M ⊗ P and
V (x) to V ⊗ M in sequence. The probability that (P, V ) accepts x is defined
to be the probability that an observation of the output qubit in the basis of
{|0〉, |1〉} yields |1〉, after the circuit (P (x), V (x)) is applied to the initial state.

In what follows, the circuits P (x) and V (x) may be simply denoted by P and
V , respectively, if it is not confusing. Furthermore it is assumed that operators
acting on subsystems of a given system are extended to the entire system by
tensoring with the identity, when it is clear from context upon what part of a
system a given operator acts.

The classes NIQPZK(a, b) and NIQSZK(a, b) of languages having non-
interactive quantum perfect and statistical zero-knowledge proof systems with
error probabilities a and b in completeness and soundness sides, respectively, are
defined as follows.

Definition 1. Given functions a, b : Z
+ → [0, 1], a language L is in

NIQPZK(a, b) (resp. NIQSZK(a, b)) if there exist polynomially bounded
functions qV , qM, qS : Z

+ → N and a (qV , qM)-restricted quantum verifier V
such that, for every input x of length n,

(i) Completeness:
if x ∈ L, there exist a function qP : Z

+ → N and a (qM, qP)-restricted quan-
tum prover P , where P and V share qS(n) EPR-pairs a priori, such that
(P, V ) accepts x with probability at least a(n),

(ii) Soundness:
if x �∈ L, for any function qP′ : Z

+ → N and any (qM, qP′)-restricted quan-
tum prover P ′, where P ′ and V share qS(n) EPR-pairs a priori, (P ′, V )
accepts x with probability at most b(n),

(iii) Zero-Knowledge:
there exists a polynomial-time preparable set {σx} of mixed states of
qV(n) + qM(n) qubits such that, if x ∈ L, σx = trP(P |ψinit〉〈ψinit|P †) (resp.
‖σx − trP(P |ψinit〉〈ψinit|P †)‖tr is negligible in n) for the honest prover P ,
where |ψinit〉 is the initial state in which all the qubits except for the qS(n)
shared EPR-pairs are in the |0〉-state.

A few notes are in order regarding our definitions of non-interactive
quantum perfect and statistical zero-knowledge. First, note that the state
trP(P |ψinit〉〈ψinit|P †) in Definition 1 corresponds to the “verifier’s view”. Sec-
ond, Definition 1 requires the set {σx} to be prepared in worst-case polynomial
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time without fail . This is in contrast to the common definitions of various classi-
cal zero-knowledge proofs in which the simulator is an expected polynomial-time
machine or a worst-case polynomial-time machine that may fail . Third, similar
to the QMA case [20,15], parallel repetition of non-interactive quantum per-
fect and statistical zero-knowledge proof systems can reduce completeness and
soundness errors to be exponentially small while preserving the zero-knowledge
property. Fourth, the classes NIQSZK and NIQPZK above, which are defined
in terms of languages, can be naturally rephrased to those in terms of promise
problems. Throughout this paper, we allow a little abuse of complexity classes
and common complexity classes such as BPP and BQP are also considered to
be those naturally rephrased in terms of promise problems. See [6] for detailed
description on promise problems.

Finally, similar to the classical cases [7], shared randomness or entanglement
is necessary for non-trivial protocols of non-interactive quantum perfect or sta-
tistical zero-knowledge. The proof is straightforward and thus omitted.

Theorem 2. Without shared randomness or shared entanglement, any problem
having non-interactive quantum perfect or statistical zero-knowledge proofs is
necessarily in BQP.

3 Complete Promise Problem for NIQPZK(1, 1/2)

This paper considers the promise problem called (α, β)-Quantum State Closeness
to Maximally Mixed ((α, β)-QSCMM) problem, which is parameterized by con-
stants α and β satisfying 0 ≤ α < β ≤ 1. Our promise problem is a variant of the
(α, β)-Quantum State Distinguishability ((α, β)-QSD) problem and its comple-
ment, the (α, β)-Quantum State Closeness ((α, β)-QSC) problem, both of which
were introduced and shown to be HVQSZK-complete (for any 0 ≤ α < β2 ≤ 1)
by Watrous [21]. As the (α, β)-QSD problem is a quantum analogue of the Sta-
tistical Difference (SD) problem [17], which is HVSZK-complete (and thus SZK-
complete from the consecutive result HVSZK = SZK [8]), so the (α, β)-QSCMM
problem is a quantum analogue of the Statistical Difference from Uniform Dis-
tribution (SDU) problem [9], which is NISZK-complete.

(α, β)-Quantum State Closeness to Maximally Mixed ((α, β)-QSCMM)

Input: A description of a quantum circuit Q acting over the Hilbert space
Hin = Hout ⊗ Hout, where Hin consists of qin qubits and Hout consists
of qout ≤ qin qubits.

Promise: For ρ = trHout
(Q|0qin〉〈0qin |Q†), we have either ‖ρ− I/2qout‖tr ≤ α or

‖ρ− I/2qout‖tr ≥ β.
Output: Accept if ‖ρ− I/2qout‖tr ≤ α, and reject if ‖ρ− I/2qout‖tr ≥ β.

Now we show that the (0, β)-QSCMM problem is NIQPZK(1, 1/2)-complete
for any 0 < β < 1. Since parallel repetition works well for non-interactive quan-
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tum perfect zero-knowledge proofs, this implies the NIQPZK(1, b)-completeness
for any bounded error probability b.

First we show that (0, β)-QSCMM is in NIQPZK(1, 1/2). The proof uses the
following well-known property in quantum information theory.

Theorem 3 ([18,13]). For any pure states |φ〉, |ψ〉 ∈ H ⊗ K satisfying
trK|φ〉〈φ| = trK|ψ〉〈ψ|, there exists a unitary transformation U over K such that
(IH ⊗ U)|φ〉 = |ψ〉, where IH is the identity operator over H.

Lemma 4. (0, β)-QSCMM is in NIQPZK(1, 1/2) for any 0 < β < 1.

Proof. Let Q be a quantum circuit of the (0, β)-QSCMM, which is q-in qout-
out. Running O(n) copies of Q in parallel for n exceeding the length of the
input Q constructs a quantum circuit R of q′-in q′

out-out that outputs the as-
sociated mixed state ξ of q′

out qubits such that ξ either is I/2q′
out or satisfies

‖ξ − I/2q′
out‖tr > 1 − 2−n.

We construct a (q′
out, q

′ − q′
out)-restricted quantum verifier V of a non-

interactive quantum perfect zero-knowledge proof system of q′
out-shared-EPR-

pairs (i.e., all the private qubits of V are particles of the shared EPR-pairs). Let
the quantum registers M and S consist of the message qubits and the qubits in
the verifier part of the shared EPR pairs, respectively. The verification procedure
of V is as follows:

1. Receive a message in M from the prover.
2. Apply R† on the pair of quantum registers (M,S).
3. Accept if (M,S) contains 0q′

, and reject otherwise.

Hereafter, it is assumed that the output qubits of R and R† correspond to
the qubits in S in the applications of R and R†.

For the completeness, suppose that ξ = I/2q′
out . Let qP = q′

out be the num-
ber of private qubits of an honest prover (i.e., all the private qubits of the
honest prover are particles of the shared EPR-pairs). Note that the pure state
|φ〉 = (R|0q′〉) ⊗ |0qP 〉 of q′ + qP qubits is a purification of ξ. Since the initial
state |ψinit〉 ∈ V ⊗ M ⊗ P of q′ + qP qubits is a purification of I/2q′

out and
ξ = I/2q′

out , from Theorem 3, there exists a unitary transformation P over
M ⊗ P such that (IV ⊗ P )|ψinit〉 = |φ〉, where IV is the identity operator over
V. Therefore,

(R† ⊗ IP)(IV ⊗ P )|ψinit〉 = |0q′+qP 〉,

where IP is the identity operator over P. Thus V accepts the input with certainty.
For the soundness, suppose that ‖ξ − I/2q′

out‖tr > 1 − 2−n. Then, for arbi-
trarily large private space P ′ of a prover and any unitary transformation P ′ over
M ⊗ P ′, letting |ψ〉 = (IV ⊗ P ′)|ψ′

init〉 for the initial state |ψ′
init〉 ∈ V ⊗ M ⊗ P ′,

we have

‖R|0q′〉〈0q′ |R† − trP′ |ψ〉〈ψ|‖tr > 1 − 2−n,
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since trM(R|0q′〉〈0q′ |R†) = ξ and trM(trP′ |ψ〉〈ψ|) = I/2q′
out . Therefore we have

‖|0q′〉〈0q′ | −R†(trP′ |ψ〉〈ψ|)R‖tr > 1 − 2−n.

Thus, using the relation between the trace norm and fidelity, it follows that the
probability that V accepts the input is negligible.

Finally, the fact that R|0q′〉〈0q′ |R† = trP((IV ⊗ P )|ψinit〉〈ψinit|(IV ⊗ P †)) is
polynomial-time preparable ensures the perfect zero-knowledge property. ��

Next we show the NIQPZK(1, 1/2)-hardness of (0, β)-QSCMM. For this, we
state one fundamental property on trace norms without a proof.

Theorem 5. For a constant α, 0 ≤ α < 1, let ρ be a mixed state of n qubits
satisfying ‖ρ− I/2n‖tr ≥ α. Then for any mixed state σ of n qubits and any
constant β satisfying 0 ≤ β ≤ α, ‖(1 − β)ρ+ βσ − I/2n‖tr ≥ α− β.

Lemma 6. For any problem A in NIQPZK(1, 1/2), there is a deterministic
polynomial-time procedure that reduces A to the (0, β)-QSCMM problem for
0 < β < 1.

Proof. Let A = {Ayes, Ano} be in NIQPZK(1, 1/2). Then from the fact that par-
allel repetition works well for non-interactive quantum perfect zero-knowledge
proof systems, there exist polynomially bounded functions qV , qM, qS : Z

+ → N

and a (qV , qM)-restricted quantum verifier V such that, for every input x of
length n, (i) if x ∈ Ayes, there exist a function qP : Z

+ → N and a (qM, qP)-
restricted quantum prover P , who shares qS(n) EPR-pairs with V a priori,
such that (P, V ) accepts x with certainty, and (ii) if x ∈ Ano, for any function
qP′ : Z

+ → N and any (qM, qP′)-restricted quantum prover P ′, who shares qS(n)
EPR-pairs with V a priori, (P ′, V ) accepts x with probability smaller than 2−n.
Without loss of generality, we assume that qS(n) ≥ n.

Let V (x) and P (x) be the unitary transformations of the honest verifier
V and the honest prover P , respectively, on a given input x. Let {σx} be a
polynomial-time preparable set such that, if the input x of length n is in Ayes,

σx = trP(P (x)|ψinit〉〈ψinit|P (x)†)

for the honest prover P . The existence of such a polynomial-time preparable set
is ensured by the perfect zero-knowledge property. For convenience, we assume
that, for every x of length n, the first qM(n) qubits of σx correspond to the
message qubits, the last qVS (n) = qV(n) − qS(n) qubits of σx correspond to the
private qubits of the verifier (not including the prior-entangled part), and the last
qubit corresponds to the output qubit, of the original proof system, respectively.

Let M, S, and V be quantum registers, each of which consists of qM(n),
qS(n), and qVS (n) qubits, respectively. For every x, we construct a quantum
circuit Qx that corresponds to the following algorithm:

1. Prepare σx in the triplet (M,S,V) of the quantum registers.
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2. If one of qubits in the quantum register V contains 1, output |0qS(n)〉〈0qS(n)|.
3. Do one of the following two uniformly at random.

3.1 Output the qubits in the quantum register S.
3.2 Apply V (x) on the triplet (M,S,V) of the quantum registers.

Output I/2qS(n) if the last qubit in V contains 1, and output
|0qS(n)〉〈0qS(n)| otherwise.

Suppose that x is in Ayes. Then σx = trP(P (x)|ψinit〉〈ψinit|P (x)†) is satisfied.
Note that trVS⊗M⊗P(P (x)|ψinit〉〈ψinit|P (x)†) = I/2qS(n). Furthermore, for the
state P (x)|ψinit〉〈ψinit|P (x)†, the verification procedure of V accepts x with cer-
tainty. Hence the circuit Qx constructed above outputs I/2qS(n) with certainty.

Now suppose that x is in Ano. We claim that the output ρ of Qx satisfies
‖ρ− I/2qS(n)‖tr > c for some constant 0 < c < 1.

First we assume that σx is of the form σ′
x ⊗ ∣

∣0qVS (n)〉〈0qVS (n)∣∣.
From the soundness property of the original proof system, the verifi-

cation procedure of V results in acceptance with probability smaller than
2−n, for any mixed state ξ ⊗ ∣

∣0qVS (n)〉〈0qVS (n)∣∣ in D(M ⊗ V) satisfying
trM⊗VS (ξ ⊗ ∣

∣0qVS (n)〉〈0qVS (n)∣∣) = I/2qS(n).

Therefore, if
∥
∥trM⊗VS

(

σ′
x⊗∣

∣0qVS (n)〉〈0qVS (n)∣∣
)−I/2qS(n)

∥
∥

tr< 2/3, we have
∥
∥σ′

x⊗∣
∣0qVS(n)〉〈0qVS(n)∣∣−ξ⊗∣

∣0qVS (n)〉〈0qVS (n)∣∣
∥
∥

tr < 2/3 for some mixed state

ξ ⊗ ∣
∣0qVS (n)〉〈0qVS (n)∣∣ in D(M ⊗ V) satisfying trM⊗VS

(

ξ ⊗ ∣
∣0qVS (n)〉〈0qVS (n)∣∣

)

= I/2qS(n). It follows that the step 3.2 results in rejection and
outputs |0qS(n)〉〈0qS(n)| with probability greater than 1/3 − 2−n. Since
qS(n) ≥ n, this implies that Qx outputs the mixed state ρ satisfying
‖ρ− I/2qS(n)‖tr > 1/6 − 3 · 2−(n+1).

On the other hand, if
∥
∥trM⊗VS

(

σ′
x ⊗ ∣

∣0qVS (n)〉〈0qVS (n)∣∣
) − I/2qS(n)

∥
∥

tr ≥ 2/3,
that is, if ‖trMσ′

x − I/2qS(n)‖tr ≥ 2/3, from Theorem 5, Qx outputs the mixed
state ρ satisfying ‖ρ− I/2qS(n)‖tr ≥ 1/6, since the step 3.1 outputs trMσ′

x.
Putting things together, the circuit Qx outputs the mixed state ρ satisfying

‖ρ− I/2qS(n)‖tr > 1/7 (for n ≥ 6), if σx is of the form σ′
x ⊗ ∣

∣0qVS (n)〉〈0qVS (n)∣∣.
To deal with general σx, notice that the step 2 outputs the state farthest away

from I/2qS(n) with some probability p, or otherwise reduces σx to the state of the
form σ′

x ⊗ ∣
∣0qVS (n)〉〈0qVS (n)∣∣. For the latter case, the step 3 outputs the mixed

state ρ′ satisfying ‖ρ′ − I/2qS(n)‖tr > 1/7 (for n ≥ 6) from the argument above.
Thus, if x is in Ano, from Theorem 5, the circuit Qx outputs the mixed state ρ
satisfying ‖ρ− I/2qS(n)‖tr > max{1/7 − p, p− 2−n} > 1/15 (for n ≥ 8).

Now, constructing r copies of Qx for appropriately chosen r to have a circuit
Q⊗r

x reduces A to the (0, β)-QSCMM problem for arbitrary 0 < β < 1. ��

Thus we have the following theorem.

Theorem 7. (0, β)-QSCMM is complete for NIQPZK(1, 1/2) for 0 < β < 1.
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4 Graph Non-automorphism is in NIQPZK(1, 1/2)

The Graph Non-Automorphism (GNA) problem is a variant of the graph non-
isomorphism (GNI) problem, and is not known in BQP nor in NP.

Graph Non-Automorphism (GNA)

Input: A description of a graph G of n vertices.
Output: Accept if π(G) �= G for all non-trivial permutations π over n vertices

and reject otherwise.

It is easy to show that any instance of GNA is reduced to an instance of
(0, β)-QSCMM, and thus we have the following corollary.

Corollary 8. GNA has a non-interactive quantum perfect zero-knowledge proof
system of perfect completeness.

Proof. We assume an appropriate ordering of permutations over n vertices so
that each permutation can be represented with qP(n) = 
log n!� qubits. Let πi

be the ith permutation according to this ordering for 0 ≤ i ≤ n! − 1.
Let P be a Hilbert space consisting of qP(n) qubits and G be a Hilbert space

consisting of qG(n) = O(n2) qubits. Given a graph G of n vertices, consider the
following quantum circuit QG behaving as follows.

1. Prepare the following quantum state in P ⊗ G:

1√
2qP(n)

n!−1∑

i=0

|i〉|0, πi(G)〉 +
1√

2qP(n)

2qP (n)−1∑

i=n!

|i〉|1, i〉.

2. Output the qubits in P.

If a given graph G has no non-trivial automorphism groups, every πi(G) is
different from each other, and thus the output of QG is the mixed state I/2qP(n).

On the other hand, if a given graph G has a non-trivial automorphism group,
the contents of qubits in G have at most 2qP(n) − n!/2 < 3/4 · 2qP(n) variations,
and the trace norm between I/2qP(n) and the output of QG is at least 1/4.

Thus the constructed QG is an instance of (0, 1/4)-QSCMM. ��

5 Conjectures

We conjecture the following.

Conjecture 9. There is a (deterministic) polynomial-time procedure that, on an
input 〈Q, 1n〉 where Q is a description of a quantum circuit specifying a mixed
state ρ of q1 qubits, outputs a description of a quantum circuit R (having size
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polynomial in n and the size of Q) specifying a mixed state ξ of q2 qubits such
that (for α and β satisfying an appropriate condition)

‖ρ− I/2q1‖tr < α ⇒ ‖ξ − I/2q2‖tr < 2−n,

‖ρ− I/2q1‖tr > β ⇒ ‖ξ − I/2q2‖tr > 1 − 2−n.

Classically, Goldreich, Sahai, and Vadhan [9] implicitly proved a similar prop-
erty to Conjecture 9. One of the troublesome points in applying a direct modifi-
cation of their proof to our case is that the joint von Neumann entropy S(A,B)
for a composite system with two components A and B can be smaller than S(A)
and S(B) (recall that classically the joint Shannon entropy H(X,Y ) is never
smaller than H(X) and H(Y )). Therefore, the classical technique of just dis-
carding some part to reduce the entropy of output distribution no longer works
well in the quantum case.

Under the assumption that Conjecture 9 holds, it is easy to modify the proofs
of Lemma 4 and Lemma 6 to the statistical zero-knowledge case. Thus the fol-
lowing conjecture is provable if Conjecture 9 holds.

Conjecture 10. (α, β)-QSCMM is complete for NIQSZK for any α and β satis-
fying an appropriate condition.
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