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Abstract. This paper introduces quantum “multiple-Merlin”-Arthur
proof systems in which Arthur uses multiple quantum proofs unentan-
gled with each other for his verification. Although classical multi-proof
systems are obviously equivalent to classical single-proof systems, it is un-
clear whether quantum multi-proof systems collapse to quantum single-
proof systems. This paper presents a necessary and sufficient condition
under which the number of quantum proofs is reducible to two. It is also
proved that using multiple quantum proofs does not increase the power
of quantum Merlin-Arthur proof systems in the case of perfect soundness,
and that there is a relativized world in which co-NP (actually co-UP)
does not have quantum Merlin-Arthur proof systems even with multiple
quantum proofs.

1 Introduction

Babai [3] introduced Merlin-Arthur proof systems in which powerful Merlin,
a prover, presents a proof and Arthur, a verifier, probabilistically verifies its
correctness with high success probability. The resulting complexity class MA
has played important roles in computational complexity theory [3,5,4].

A quantum analogue of MA was first discussed by Knill [15] and studied in-
tensively by Kitaev [12], Watrous [17], and several very recent works such as [11,
2]. In the most commonly-used version of quantum Merlin-Arthur proof systems,
a proof presented by Merlin is a pure quantum state called a quantum proof and
Arthur’s verification process is a polynomial-time quantum computation. How-
ever, all the previous works only consider the model in which Arthur receives a
single quantum proof, and no discussions are done so far on the model in which
Arthur receives multiple quantum proofs unentangled with each other.
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Classically, multiple proofs can be concatenated into a long single proof, and
thus there is no advantage to use multiple proofs. However, it is unclear whether
using multiple quantum proofs is computationally equivalent to using a single
quantum proof, because knowing that a given proof is a tensor product of some
pure states might be advantageous to Arthur. For example, in the case of two
quantum proofs versus one, consider the following most straightforward Arthur’s
simulation of two quantum proofs by a single quantum proof: given a single quan-
tum proof that is expected to be a tensor product of two pure states, Arthur
first runs some pre-processing to rule out any quantum proof far from states of a
tensor product of two pure states, and then performs the verification procedure
for two-proof systems. It turns out that this straightforward method does not
work well, since there is no positive operator-valued measurement (POVM) that
determines whether a given unknown state is in a tensor product form or even
maximally entangled, as is shown in Section 6. Other fact is that the unpublished
proof by Kitaev and Watrous for the upper bound PP of the class QMA of lan-
guages having single-proof quantum Merlin-Arthur proof systems (and even the
proof of QMA ⊆ PSPACE [12,13]) no longer works well for the multi-proof cases
with a straightforward modification. Also, the existing proofs for the property
that parallel repetition of a single-proof protocol reduces the error probability
to be arbitrarily small [14,17,13] cannot be applied to the multi-proof cases.

For these reasons, this paper introduces the multi-proof model of quantum
Merlin-Arthur proof systems. Formally, we say that a language L has a (k, a, b)-
quantum Merlin-Arthur proof system if there exists a polynomial-time quantum
verifier V such that, for every input x of length n, (i) if x ∈ L, there exists a set
of k quantum proofs that makes V accept x with probability at least a(n), and
(ii) if x �∈ L, for any set of k quantum proofs, V accepts x with probability at
most b(n). The resulting complexity class is denoted by QMA(k, a, b). We often
abbreviate QMA(k, 2/3, 1/3) as QMA(k) throughout this paper.

This paper presents a necessary and sufficient condition under which the
number of quantum proofs is reducible to two. Our condition is related to the
possibility of amplifying success probabilities without increasing the number
of quantum proofs. More formally, QMA(k, a, b) = QMA(2, 2/3, 1/3) for every
constant k ≥ 2 and any two-sided bounded error probability (a, b) if and only
if QMA(k, a, b) = QMA(k, 2/3, 1/3) for every constant k ≥ 2 and any two-sided
bounded error probability (a, b).

Our proof for this also implies an interesting consequence for the
case of perfect completeness. Namely, QMA(k, 1, b) = QMA(1, 1, 1/2) for ev-
ery constant k ≥ 2 and any bounded error probability b if and only if
QMA(2, 1, b) = QMA(1, 1, 1/2) for any bounded error probability b.

It is also proved for the case of perfect soundness that, for every k and
any error probability a, QMA(k, a, 0) = QMA(1, a, 0). With further analyses, the
class NQP, which derives from another concept of “quantum nondeterminism”
introduced by Adleman, DeMarrais, and Huang [1], is characterized by the union
of QMA(1, a, 0) for all error probability functions a. This bridges between two
existing concepts of “quantum nondeterminism”.

Finally, to see a limitation of QMA(k), this paper exhibits a relativized world
in which QMA(k) does not contain co-NP (actually co-UP) for every k. As an
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immediate consequence, we have that, for every k, there exists a relativized world
in which none of BQP, QMA(k), and co-QMA(k) coincides with each other.

Familiarity with the basics of quantum computation and information the-
ory is assumed throughout this paper. The reader may refer to [10,16,13], for
instance.

2 Quantum Merlin-Arthur Proof Systems

Here we formally define the multi-proof quantum Merlin-Arthur proof systems.
One can define quantum Merlin-Arthur proof systems both in terms of quantum
Turing machines and in terms of quantum circuits. From the computational
equivalence of polynomial-time quantum Turing machines and polynomial-time
uniform quantum circuits, these two models of quantum Merlin-Arthur proof
systems are clearly equivalent in view of computational power. Here we formalize
both of these two types of models. In the subsequent sections we will choose a
suitable model from them depending on the situations. Throughout this paper
all input strings are over the alphabet Σ = {0, 1}, and N and Z

+ denote the sets
of natural numbers and nonnegative integers, respectively.

A quantum proof of size s is a pure quantum state of s qubits. Given polyno-
mially bounded functions qV , qM : Z

+ → N, a (qV , qM)-restricted quantum ver-
ifier V for k-proof quantum Merlin-Arthur proof systems is a polynomial-time
computable mapping of the form V : Σ∗ → Σ∗. For every input x of length n,
V (x) is a description of a polynomial-time uniformly generated quantum circuit
acting on qV(n) + kqM(n) qubits. V receives k quantum proofs |φ1〉, . . . , |φk〉,
each of size qM(n), and uses at most qV(n) qubits for his private computation.
The probability that V accepts x is defined to be the probability that an ob-
servation of the output qubit (in the {|0〉, |1〉} basis) yields |1〉, after the circuit
V (x) is applied to the state |0qV(n)〉 ⊗ |φ1〉 ⊗ · · · ⊗ |φk〉. Or in terms of quantum
Turing machines, a (qV , qM)-restricted quantum verifier V for k-proof quantum
Merlin-Arthur proof systems is a multi-tape polynomial-time well-formed quan-
tum Turing machine with two special tapes for an input and proofs other than
the work tape. V receives k quantum proofs of size qM(n) in the proof tape and
uses at most qV(n) cells in the work tape. The probability that V accepts the
input is defined to be the probability that an observation of the output qubit
(in the {|0〉, |1〉} basis) yields |1〉, after V halts. More generally, the number
of quantum proofs may not necessarily be a constant, and may be a function
k : Z

+ → N of the input length n, but must be bounded polynomial in n.
Strictly speaking, the circuit-based (qV , qM)-restricted quantum verifier and

the Turing-machine-based one may have different computational power for each
fixed functions qV and qM. They are, however, “polynomially equivalent” and
make no difference in the definition of the class QMA(k, a, b) below.

Definition 1. Given a polynomially bounded function k : Z
+ → N and functions

a, b : Z
+ → [0, 1], a language L is in QMA(k, a, b) if there exist polynomially

bounded functions qV , qM : Z
+ → N and a (qV , qM)-restricted quantum verifier

V for k-proof quantum Merlin-Arthur proof systems such that, for every x of
length n,
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(i) if x ∈ L, there exists a set of quantum proofs |φ1〉, . . . , |φk(n)〉 of size qM(n)
that makes V accept x with probability at least a(n),

(ii) if x �∈ L, for any set of quantum proofs |φ1〉, . . . , |φk(n)〉 of size qM(n), V
accepts x with probability at most b(n).

We say that a language L has a (k, a, b)-quantum Merlin-Arthur proof system
if and only if L is in QMA(k, a, b). For simplicity, we abbreviate QMA(k, 2/3, 1/3)
as QMA(k) for each k.

3 Condition under Which QMA(k) = QMA(2)

Besides our central question whether quantum multi-proof Merlin-Arthur proof
systems collapse to quantum single-proof systems, it is also unclear whether there
are k1 and k2 with k1 �= k2 such that QMA(k1) = QMA(k2). Towards settling
these questions, here we give a condition under which QMA(k) = QMA(2) for
every constant k ≥ 2.

Formally, we consider the following condition on the possibility of amplifying
success probabilities without increasing the number of quantum proofs:

(∗) For every constant k ≥ 2 and any two-sided bounded error probability (a, b),
QMA(k, a, b) coincides with QMA(k, 2/3, 1/3).

Then we have the following theorem.
Theorem 2. QMA(k, a, b) = QMA(2, 2/3, 1/3) for every constant k ≥ 2 and
any two-sided bounded error probability (a, b) if and only if the condition (∗)
is satisfied.

The proof of Theorem 2 uses the following key lemma, which is proved later.

Lemma 3. For every l ∈ N, every r ∈ {0, 1, 2}, and any two-sided bounded
error probability (a, b) satisfying a > 1 − (1 − b)2/10 ≥ b, QMA(3l + r, a, b) ⊆
QMA

(
2l + r, a, 1 − (1 − b)2/10

)
.

Proof of Theorem 2. The “only if” part is obvious. We only show the “if” part.
Suppose that the condition (∗) holds. Then we have QMA(3l + r, a, b)

= QMA (3l + r, 99/100, 1/100) for every l ∈ N, r ∈ {0, 1, 2}, and any
two-sided bounded error probability (a, b). Now from Lemma 3, we have
QMA(3l + r, 99/100, 1/100) ⊆ QMA(2l + r, 99/100, 90199/100000), which im-
plies that these two classes coincide with each other. Furthermore, (∗) en-
sures that QMA(2l + r, 99/100, 90199/100000) = QMA(2l + r, 99/100, 1/100).
Thus, we have QMA(3l + r, 99/100, 1/100) = QMA(2l + r, 99/100, 1/100). We
repeat this c times for some constant c of O(log3/2 k), and finally we
obtain that QMA(3l + r, a, b) = QMA(2, 99/100, 1/100). Again from (∗),
QMA(2, 99/100, 1/100) = QMA(2, a, b) for any two-sided bounded error prob-
ability (a, b). Therefore we have QMA(k, a, b) = QMA(2, 2/3, 1/3) for every con-
stant k ≥ 2 and any two-sided bounded error probability (a, b). 	


Now we give a proof of Lemma 3. The proof uses a special operator called
controlled-swap that exchanges the contents of two registers S1 and S2 if con-
trol register B contains 1, and does nothing otherwise. Consider the C-SWAP
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algorithm described below. A similar idea was used in [9] for the fingerprinting
scheme. Given a pair of mixed states ρ and σ of n qubits of the form ρ⊗ σ,
prepare quantum registers B, R1, and R2. The register B consists of only one
qubit that is initially set to the |0〉-state, while the registers R1 and R2 consist
of n qubits and ρ and σ are initially set in R1 and R2, respectively.

C-SWAP Algorithm
1. Apply the Hadamard transformation H to B.
2. Apply the controlled-swap operator on R1 and R2 using B as a control

qubit. That is, swap the contents of R1 and R2 if B contains 1, and do
nothing if B contains 0.

3. Apply H to B. Accept if B contains 0, and otherwise reject.
We state the following without a proof, which is useful in proving Lemma 3.

Proposition 4. The probability that the input pair of mixed states ρ and σ is
accepted in the C-SWAP algorithm is exactly 1/2 + tr(ρσ)/2.

Proof of Lemma 3. The essence of the proof is the basis case where k = 1 and
r = 0. We give the proof only for this particular case and leave the general case
to the reader, since it is straightforward to modify our proof to the general case.

Let L be a language in QMA(3, a, b). Given a (3, a, b)-quantum Merlin-Arthur
proof system for L, we construct a

(
2, a, 1 − (1 − b)2/10

)
-quantum Merlin-

Arthur proof system for L in the following way.
Let V be the quantum verifier of the original (3, a, b)-quantum Merlin-Arthur

proof system. For every input x of length n, suppose that each of quantum proofs
V receives consists of qM(n) qubits and the number of private qubit of V is qV(n).
Let V (x) be the unitary transformation which the original quantum verifier
V applies. Our new quantum verifier W of the

(
2, a, 1 − (1 − b)2/10

)
-quantum

Merlin-Arthur proof system prepares quantum registers R1, R2, S1, and S2
for quantum proofs and quantum registers V and B for private computation.
Each of Ri and Si consists of qM(n) qubits, V consists of qV(n) qubits, and
B consists of a single qubit. W receives two quantum proofs |D1〉 and |D2〉 of
2qM(n) qubits, which are expected to be of the form |D1〉 = |C1〉 ⊗ |C3〉 and
|D2〉 = |C2〉 ⊗ |C3〉, where each |Ci〉 is the ith quantum proof which the original
quantum verifier V receives. Of course, each |Di〉 may not be of the form above
and the first and the second qM(n) qubits of |Di〉 may be entangled. Let V,
B, each Ri, and each Si be the Hilbert spaces corresponding to the quantum
registers V, B, Ri, and Si, respectively. W runs the following protocol:
1. Receive |D1〉 in registers (R1,S1) and |D2〉 in (R2,S2).
2. Do one of the following two tests uniformly at random.

2.1 Separability test:
Apply the C-SWAP algorithm over B ⊗ S1 ⊗ S2, using B, S1, and S2.
Accept if B contains 0, and otherwise reject.

2.2 Consistency test:
Apply V (x) over V ⊗ R1 ⊗ R2 ⊗ S1, using V, R1, R2, and S1.
Accept iff the result corresponds to the acceptance computation of the
original quantum verifier.

The completeness of this protocol is immediate.
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For the soundness property with the input x �∈ L of length n, con-
sider any pair of quantum proofs |D′

1〉 and |D′
2〉, which are set in the

pairs of the quantum registers (R1,S1) and (R2,S2), respectively. Let
ρ = trR1 |D′

1〉〈D′
1| and σ = trR2 |D′

2〉〈D′
2|. We abbreviate b(n) as b, and let

δ = (−1 + 2b+ 4
√

1 + b− b2)/5.
If tr(ρσ) ≤ δ, the probability α that the input x is accepted in the Separa-

bility test is at most

α ≤ (1 + δ)/2 = (2 + b+ 2
√

1 + b− b2)/5 ≤ (4 + 2b− b2)/5 = 1 − (1 − b)2/5.

Hence W accepts x with probability at most (1 + α)/2 ≤ 1 − (1 − b)2/10.
On the other hand, if tr(ρσ) > δ, the maximum eigenvalue λ of ρ sat-

isfies λ > δ. Thus there exist pure states |C ′
1〉 ∈ R1 and |C ′

3〉 ∈ S1 such
that F (|C ′

1〉〈C ′
1| ⊗ |C ′

3〉〈C ′
3|, |D′

1〉〈D′
1|) >

√
δ, since ρ = trR1 |D′

1〉〈D′
1|. Similarly,

the maximum eigenvalue of σ is more than δ and there exist pure states
|C ′

2〉 ∈ R2 and |C ′
4〉 ∈ S2 such that F (|C ′

2〉〈C ′
2| ⊗ |C ′

4〉〈C ′
4|, |D′

2〉〈D′
2|) >

√
δ.

Thus, letting |φ〉 = |C ′
1〉 ⊗ |C ′

3〉 ⊗ |C ′
2〉 ⊗ |C ′

4〉 and |ψ〉 = |D′
1〉 ⊗ |D′

2〉, we have
F (|φ〉〈φ|, |ψ〉〈ψ|) > δ. Therefore,

‖|φ〉〈φ| − |ψ〉〈ψ|‖tr ≤
√

1 − (F (|φ〉〈φ|, |ψ〉〈ψ|))2 <
√

1 − δ2.

This implies that the input x is accepted in the Consistency test with
probability at most β < b+

√
1 − δ2, since given any quantum proofs |C ′

1〉,
|C ′

2〉, and |C ′
3〉 the original quantum verifier V accepts the input x with prob-

ability at most b. Noticing that δ satisfies (1 + δ)/2 = b+
√

1 − δ2, one can
see that β < 1 − (1 − b)2/5. Hence W accepts x with probability at most
(1 + β)/2 < 1 − (1 − b)2/10. 	


4 One-Sided Bounded Error Cases

First we focus on the cases with perfect completeness. Together with the fact
that parallel repetition works well for single-proof quantum Merlin-Arthur proof
systems, Lemma 3 implies the following. The proof is easy and thus omitted.

Theorem 5. QMA(k, 1, b) = QMA(1, 1, 1/2) for every constant k ≥ 2 and any
bounded error probability b if and only if QMA(2, 1, b) = QMA(1, 1, 1/2) for any
bounded error probability b.

Now we turn to the cases with perfect soundness. For such cases, multiple
quantum proofs do not increase the computational power.

Theorem 6. For any polynomially bounded function k : Z
+ → N and any func-

tion a : Z
+ → (0, 1], QMA(k, a, 0) = QMA(1, a, 0).

Proof. For a language L in QMA(k, a, 0), we show that L is also in QMA(1, a, 0).
Let V be a quantum verifier of a (k, a, 0)-quantum Merlin-Arthur proof sys-

tem for L. For every input x of length n, assume that V receives k(n) quantum



Quantum Merlin-Arthur Proof Systems 195

proofs of size q(n). We define a new (1, a, 0)-quantum Merlin-Arthur proof sys-
tem as follows: on input x of length n, the verifier W receives one quantum proof
of size k(n)q(n) and simulates V with this quantum proof.

The completeness property is clearly satisfied.
For the soundness property, assume that the input x of length n is not in L.

Let |D〉 be any quantum proof of size k(n)q(n). Let ei be the lexicographically ith
string in {0, 1}k(n)q(n). Note that, for each i, 1 ≤ i ≤ 2k(n)q(n), V never accepts
x when given k(n) quantum proofs that form |ei〉. Since any |D〉 is expressed as
a linear combination of all |ei〉, 1 ≤ i ≤ 2k(n)q(n), W rejects x with certainty. 	


Let EQMA(k) = QMA(k, 1, 0) and RQMA(k) = QMA(k, 1/2, 0) for every k.
Theorem 6 implies that EQMA(k) = EQMA(1) and RQMA(k) = RQMA(1).
Furthermore, one can consider the complexity class NQMA(k) that combines
two existing concepts of “quantum nondeterminism”, QMA(k) and NQP.

Definition 7. A language L is in NQMA(k) if there exists a function
a : Z

+ → (0, 1] such that L is in QMA(k, a, 0).

NQMA(k) = NQMA(1) is also immediate from Theorem 6. Actually, the follow-
ing can be proved. This also gives a characterization of NQP by the union of
QMA(1, a, 0) over all error probability functions a. The proof is omitted due to
limitation of space.

Theorem 8. EQMA(1) ⊆ RQMA(1) ⊆ NQMA(1) = NQP.

5 Relativized Separation of QMA(k)

To see a limitation of QMA(k), here we show a relativized world in which
QMA(k) does not contain co-UP.

Theorem 9. For any polynomially bounded function k : Z
+ → N, there exists

an oracle A relative to which co-UPA � QMA(k)A.

The following is an immediate corollary of Theorem 9.

Corollary 10. For any polynomially bounded function k : Z
+ → N, there exists

an oracle A relative to which none of BQP, QMA(k), and co-QMA(k) coincides
with each other.

Proof. By Theorem 9, we have an oracle A such that co-NPA � QMA(k)A.
Since co-NPA ⊆ co-QMA(k)A, it follows that co-QMA(k)A � QMA(k)A,
and thus QMA(k)A �= co-QMA(k)A. That BQPA �= QMA(k)A follows from
QMA(k)A �= co-QMA(k)A. 	


In what follows, we give the proof of Theorem 9. We use a so-called
block sensitivity argument, whose quantum version was developed in [6]. Let
f : Σ∗ → [0, 1] be any relativizable function. If A is an oracle and S ⊆ Σ∗
be a subset of strings, then A(S) is the oracle satisfying that, for every y,
A(y) = A(S)(y) if and only if y �∈ S. For ε > 0 and an oracle A from an ora-
cle collection A, let the lower (resp. upper) ε-block sensitivity bsA

ε−(f,A, |φ〉)
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(resp. bsA
ε+(f,A, |φ〉)) of f with an oracle A on an input |φ〉 be the maximal in-

teger l satisfying that there are l nonempty, disjoint sets {Si}li=1 such that,
for every i, 1 ≤ i ≤ l, (i) A(Si) ∈ A, and (ii) fA

(Si)(|φ〉) ≤ fA(|φ〉) − ε (resp.
fA(|φ〉) ≤ fA

(Si)(|φ〉) + ε).
First, we give an upper bound for each of bsA

ε−(f,A, |φ〉) and bsA
ε+(f,A, |φ〉).

The notation ηAM (|φ〉) denotes the acceptance probability of M with an oracle A
on an input |φ〉. The proof is omitted due to limitation of space.

Proposition 11. Let A be any set of oracles and let M be any well-formed
oracle QTM whose running time T (n) does not depend on the choice of oracles.
Let q : Z

+ → N be a polynomially bounded function. For every x of length n,
define fA(x) = max{ηAM (|x〉 ⊗ |φ〉)} and gA(x) = min{ηAM (|x〉 ⊗ |φ〉)}, where the
maximum and minimum are taken over all pure states |φ〉 of q(n) qubits. Then,
for every oracle A ∈ A, every input x of length n, and any constant ε > 0, both
of bsA

ε−(f,A, x) and bsA
ε+(g,A, x) are at most 4T (n)2/ε2.

Now we give a proof of Theorem 9.

Proof of Theorem 9. Let LA = {0j | |A ∩ {0, 1}j | = ∅} for each A ⊆ {0, 1}∗. Let
A = {A | ∀j[|A ∩ {0, 1}j | ≤ 1]}. Obviously, LA ∈ co-UPA for any set A in A, and
thus LA ∈ ΠP

1 (A). We then show that LA �∈ QMA(k)A for a certain set A in A.
Let {Mi}i∈Z+ be an effective enumeration of all QTMs running in polynomial

time. The construction of A is done by stages. For the base case, let A0 = ∅. In
the jth stage for j > 0, Aj ⊆ {0, 1}j is to be defined. Our desired A is defined
as A =

⋃
iAi.

Now consider the jth QTMMj . Let B = ∪i<jAi. Note that 0j ∈ LB . For sim-
plicity, define fB(x) = max{PrMj [Mj(|x〉 ⊗ |φ1〉 ⊗ · · · ⊗ |φk(n)〉) = 1]} for every
x of length n, where each |φi〉, 1 ≤ i ≤ k(n), runs over all pure states of q(n)
qubits for some polynomially bounded function q : Z

+ → N.
Suppose that fB(0j) < 2/3. Then we set Aj to be B and go to the next stage.
Now suppose that fB(0j) ≥ 2/3. Let Bi = B ∪ {sji}, where sji is the ith

element in {0, 1}j . Clearly, 0j �∈ LBi for all i’s. We show that there exists a
number i such that fBi(0j) > 1/3. If so, force Aj to be such Bi. Towards a
contradiction, we assume that, for all i, fBi(0j) ≤ 1/3. By our assumption,

fB(0j) − fBi(0j) ≥ 1/3 for all i, 1 ≤ i ≤ 2j . It follows that bs2
Σ∗

1
3 − (f,B, 0j) ≥ 2j ,

since {Bi}2j

i=1 is mutually disjoint. This contradicts Proposition 11. 	


6 Discussions

Here we show that there is no positive operator-valued measurement (POVM)
that determines whether a given unknown state is in a tensor product form or
even maximally entangled. Recall that the state ρ = |Ψ〉〈Ψ | is maximally en-
tangled if |Ψ〉 can be written by |Ψ〉 =

∑d
i=1 αi|ei〉 ⊗ |fi〉, |αi|2 = 1/d, where

d = 2n is the dimension of H and each {|e1〉, . . . , |ed〉} and {|f1〉, . . . , |fd〉} is an
orthonormal basis of H [7]. Among all states, maximally entangled states are
farthest away from states in tensor product form, and
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min
|Ψ〉∈H⊗2

max
|φ〉,|ψ〉∈H

F (|Ψ〉〈Ψ |, |φ〉〈φ| ⊗ |ψ〉〈ψ|) = 1/
√
d = 2−n/2

is achieved by maximally entangled states. Thus Arthur cannot rule out quantum
proofs that are far from states of a tensor product of pure states.

Theorem 12. Suppose one of the following two is true for a given proof
|Ψ〉 ∈ H⊗2 of 2n qubits:

(a) |Ψ〉〈Ψ | is in H0 = {|Ψ0〉〈Ψ0| | |Ψ0〉 ∈ H⊗2, ∃|ψ〉, |φ〉 ∈ H, |Ψ0〉 = |ψ〉 ⊗ |φ〉},
(b) |Ψ〉〈Ψ | is in H1 = {|Ψ1〉〈Ψ1| | |Ψ1〉 ∈ H⊗2 is maximally entangled}.
Then, in determining which of (a) and (b) is true, no POVM is better than the
trivial strategy in which one guesses at random without any operation at all.

Proof. Let M = {M0,M1} be a POVM on a given |Ψ〉〈Ψ |. With M we conclude
|Ψ〉〈Ψ | ∈ Hi if M results in i, i = 0, 1. Let PM

i→j(|Ψ〉〈Ψ |) denote the probability
that |Ψ〉〈Ψ | ∈ Hj is concluded by M while |Ψ〉〈Ψ | ∈ Hi is true. We want to find
the measurement that minimizes PM

0→1(|Ψ〉〈Ψ |) keeping the other side of error
small enough. More precisely, we consider E defined and bounded as follows.

E def= min
M

{
max
ρ∈H0

PM
0→1(ρ)

∣
∣
∣
∣ max
ρ∈H1

PM
1→0(ρ) ≤ δ

}

≥ min
M

{∫

ρ∈H0

PM
0→1(ρ)µ0(dρ)

∣
∣
∣
∣

∫

ρ∈H1

PM
1→0(ρ)µ1(dρ) ≤ δ

}

= min
M

{
PM

0→1

(∫

ρ∈H0

ρµ0(dρ)
) ∣

∣
∣
∣ PM

1→0

(∫

ρ∈H1

ρµ1(dρ)
)

≤ δ

}
,

where each µi is an arbitrary probability measure in Hi. It follows that E is larger
than the error probability in distinguishing

∫
ρ∈H0

ρµ0(dρ) from
∫
ρ∈H1

ρµ1(dρ).
Take µ0 such that µ0(|ei〉〈ei| ⊗ |ej〉〈ej |) = 1/d2 for each i and j,

where {|e1〉, . . . , |ed〉} is an orthonormal basis of H, and µ1 such that
µ1(|gm,n〉〈gm,n|) = 1/d2 for each m and n, where

|gm,n〉 =
1
d

d∑

j=1

(
e2π

√−1jm/d|ej〉 ⊗ |e(j+n)modd〉
)
.

This {|g1,1〉, . . . , |gd,d〉} is an orthonormal basis of H⊗2 [8], and thus∫
ρ∈H0

ρµ0(dρ) =
∫
ρ∈H1

ρµ1(dρ) = IH⊗2/d2. Hence we have the assertion. 	


7 Conclusions

This paper pointed out that it is unclear whether the multi-proof model of
quantum Merlin-Arthur proof systems collapses to the single-proof model and
proved several basic properties such as a necessary and sufficient condition under
which the number of quantum proofs is reducible to two. However, the central
question whether multiple quantum proofs are really more helpful to Arthur still
remains open. The authors hope that this paper sheds light on new features of
quantum Merlin-Arthur proof systems and quantum complexity theory.
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