
Scalable Design Framework for JPEG2000
System Architecture

Hiroshi Tsutsui1, Takahiko Masuzaki1, Yoshiteru Hayashi1, Yoshitaka Taki1,
Tomonori Izumi1, Takao Onoye2, and Yukihiro Nakamura1

1 Department of Communications and Computer Engineering, Kyoto University
Yoshida-hon-machi, Sakyo, Kyoto, 606-8501 Japan

{tsutsui, masuz, teru, taki}@easter.kuee.kyoto-u.ac.jp,
{izumi, nakamura}@kuee.kyoto-u.ac.jp

2 Department of Information Systems Engineering, Osaka University
2-1 Yamada-Oka, Suita, Osaka, 565-0871 Japan

onoye@ist.osaka-u.ac.jp

Abstract. For the exploration of system architecture dedicated to
JPEG2000 coding, decoding and codec, a novel design framework is con-
structed. In order to utilize the scalability of JPEG2000 algorithm ag-
gressively in system implementation, three types of modules are prepared
for JPEG2000 coding/decoding/codec procedures, i.e. software, soft-
ware accelerated with user-defined instructions, and dedicated hardware.
Specifically, dedicated hardware modules for forward and inverse discrete
wavelet transformation (shortly DWT), entropy coder, entropy decoder,
and entropy codec as well as software acceleration of DWT procedure
are devised to be used in the framework. Furthermore, a JPEG2000 en-
coder LSI, which consists of a configurable processor Xtensa, the DWT
module, and the entropy coder, is fabricated to exemplify the system
implementation designed through the use of proposed framework.

1 Introduction

The increasing use of multimedia information requires image coding system to
compress different types of still images with different characteristics by a single
processing flow besides attaining high coding efficiency. To fulfill this require-
ment, JPEG2000 is currently being developed by ISO/ IEC JTC1/SC29 WG1
(commonly known as the JPEG), and JPEG2000 Part I[1] was standardized
in January, 2001. Distinctively, in JPEG2000, discrete wavelet transformation
(shortly DWT) is adopted to decorrelate images spatially to improve compres-
sion efficiency. With the use of this transformation, so-called embedded stream
can be generated, in which code for low quality/bitrate image is included in that
for high quality/bitrate image. Therefore, JPEG2000 can be regarded as the
viable image coding scheme in the coming network era to be used in a variety
of terminals for different application fields. However, this fact also implies that
performance requirement for terminals and applications varies widely. Thus any
of single software or hardware implementation can hardly fulfill performance

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 296–308, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Scalable Design Framework for JPEG2000 System Architecture 297

requirements for all range of terminals and applications. On the other hand, it
is also impossible to arrange a full set of customized implementations for all of
terminals or applications in terms of man-power resources.

Motivated by this tendency, we propose a novel framework of JPEG2000
system architecture, providing the distinctive ability of architectural exploration
in accordance with the specification of each terminal. Through the use of this
framework, an efficient JPEG2000 system organization is obtained by referring
to performance requirements and limitations for implementation. The proposed
framework is based on Tensilica’s configurable processor Xtensa[2], which has
an ability to be customized for a specific application by equipping user-defined
instructions described in Tensilica Instruction Extension (TIE) language[3]. En-
hancing this distinctive feature to such an extent to equip specific hardware
modules prepared for procedures in JPEG2000, our framework provides scalable
solution for JPEG2000 system architecture.

For each procedure of JPEG2000 coding and/or decoding, either of software
implementation, software implementation accelerated by user-defined instruc-
tions, or hardware implementation is selectively employed. The implementation
scheme for all procedures are decided by referring to performance requirements
and/or limitations to design. In case extremely high processing performance is
needed far more than that of hardware implementation, it is possible to equip
two or more modules at the same time.

2 JPEG2000 Processing Flow

Fig. 1 depicts the procedures of JPEG2000 encoding scheme. First, a target im-
age is divided into square regions, called tiles. Tiles of each color component are
called tile components. Then 2-D forward DWT decomposes a tile component
into LL, HL, LH, and HH subbands by applying 1-D forward DWT to a tile
component vertically and horizontally. The low resolution version of the original
tile component, i.e. LL subband, is to be decomposed into four subbands recur-
sively. A subband is divided into code-blocks, each of which is coded individually
by entropy coder. The entropy coder adopted in JPEG2000 is context-based
adaptive binary arithmetic coder which consists of coefficient bit modeling pro-
cess to generate contexts and arithmetic coding process, known as MQ-coder, to
compress a binary sequence based on the context of each bit.

Decoding scheme of JPEG2000 is the reverse process of the encoding. During
this process, 2-D backward DWT is realized by applying a series of 1-D backward
DWTs (horizontal 1-D DWT and vertical 1-D DWT) to a tile component also
in the reverse order of 2-D forward DWT. The set of filter coefficients used in
1-D backward DWT is the same as that in the forward DWT. Fig. 2 depicts the
entropy coding and decoding procedure. Coefficient bit modeling is a common
process to encoding and decoding. MQ-decoder extracts binary sequences from
compressed data referring to contexts generated by the coefficient bit modeling
process, while MQ-coder generates compressed data from contexts and binary
sequences.

298 H. Tsutsui et al.

DWT Quantization

Coefficient bit modeling

MQ-coder

Data ordering

Input Image Data

JPEG2000 Codestream Packet generation

Entropy coding

Fig. 1. Block diagram of JPEG2000 encoding

Entropy coding

Compressed data

MQ-coder

�

Context Binary
Coefficient bit modeling

� �

�

Code-block

Entropy decoding

Compressed data
�

MQ-decoder
�Context Binary�

Coefficient bit modeling
�

Code-block

Fig. 2. Entropy coding and decoding

3 JPEG2000 System Framework

Our proposed framework is distinctive in that an efficient JPEG2000 encoding
and decoding system architecture can be explored by selecting implementation
scheme for each procedure considering performance requirements such as im-
age resolution or processing throughput and limitations to design such as power
consumption, process technology rule, or chip size. Three types of implemen-
tation schemes are prepared in our framework; software implementation, soft-
ware implementation accelerated by user-defined instructions added to Xtensa,
and dedicated hardware implementation. As for hardware implementation, mul-
tiple modules can be used at the same time if necessary. To embody such a
Plug-and-Play like feature, each hardware module is designed to have a generic
SRAM-based interface which can support various bus architectures by only de-
signing interface converters. Therefore, our framework makes it much easier to
design a JPEG2000 encoding and decoding system than conventional tedious
manual design tasks of each procedure, which would be implemented as soft-
ware or hardware. For forward/backward DWT and entropy coding/decoding,
common hardware components are prepared. These procedures handle relatively
large square regions of an image, called tile and code-block, respectively. Such
a procedure is inherently suitable as a component, and the overhead of data
transfer between the hardware component and memory can be concealed when
direct memory access (DMA) is applied effectively. In addition to these common
hardware components, an software module accelerated by user-defined instruc-
tions is prepared for DWT. Since the dominant operation in DWT procedure is
filter operation, a set of instructions for filter operation is added to the Xtensa’s

Scalable Design Framework for JPEG2000 System Architecture 299

DWT

EC CTRL

EC

(a)

EC EC

DWT

EC

DWT

EC

EC CTRL

EC

EC

constraints

requirements
common modules

Exploration of
System

Implementation
MEM

MEM MEM MEM MEM MEM

(b) (c) (d) (e)

TIE

CPU CPU CPU CPU CPU

CPU

TIE

........

........

Fig. 3. Basic structure of the proposed framework

original instruction set so that considerable performance improvement can be
achieved without any additional hardware component.

Moreover, to organize JPEG2000 codecs, an entropy codec hardware compo-
nent is prepared. This component is smaller than the simple combination of the
entropy coder and decoder in terms of the number of gates. As for DWT, the
differences between encoding and decoding are ordering of two 1-D DWTs ap-
plied in series, ordering of filter coefficients, and signs of several filter coefficients.
The first one seems to affect largely the DWT architecture. However, in the case
of lossy compression, the error introduced by employing same DWT ordering
for both forward and backward DWTs is quite slight. Therefore we employ the
same ordering of DWTs to make it easy to design forward and/or backward 2-D
DWT. As for other differences, we simply introduce multiplexers to select the
signs of filter coefficients, etc.

Fig. 3 illustrates the basic structure of the proposed framework. Each system
implementation exemplified in Fig. 3 is briefed below. Though only the case
for JPEG2000 encoders is explained, JPEG2000 decoders and codecs can be
implemented by the same way of the encoders.

Fig. 3(a) is a system implementation example where all modules are imple-
mented as software so that the system is composed only of a CPU and a main
memory. This solution is used when it is impossible to employ hardware modules
to the system due to die size limitation, the processing speed is not the key point
aimed at, or the CPU provides sufficient performance for application.

Fig. 3(b) is a system implementation example where only the entropy coding
(shortly EC in the figure) procedure is implemented by a hardware module.
The hardware implementation of the entropy coding makes a large contribution
to improvement of the speed, since this procedure is the most computationally
intensive one among all the procedures as its detailed discussion is given in the
next section.

Fig. 3(c) is a system implementation example where the entropy coder is
implemented by hardware module, and instructions for DWT’s filter operations
are added to Xtensa. Since DWT procedure handles a whole tile, the number of
cycles needed to execute the procedure in DWT, except for filter operations, such

300 H. Tsutsui et al.

as address calculation, memory accessing, and so forth, is still large. Performance
improvement in comparison with Fig. 3(b), however, can be achieved without
any additional hardware module.

Fig. 3(d) is a system implementation example where both the entropy coder
and DWT are implemented as hardware modules. In addition to the performance
improvement as the benefit of these modules, memory accessing bandwidth is
reduced.

Fig. 3(e) is a system implementation example where DWT is implemented by
hardware module, and the entropy coding procedure is implemented by multiple
hardware modules. This solution is the fastest among Fig. 3(a) through (e), and
attains very high throughput. In this case, an additional controller is needed to
manage these modules.

In this manner, our framework successfully provides scalable solution for
JPEG2000 system architecture with the use of common modules.

4 Analysis of JPEG2000 Encoding

To construct the framework, first we implemented software JPEG2000 encoder
and decoder, and analyzed computational costs of all procedures. Since DWT is
to be executed in fixed point arithmetic in our software, even embedded CPUs
which has no floating-point unit (FPU) can execute this software without any ad-
ditional cycles needed for floating arithmetic emulation. The main specifications
of our software are summarized in Table 1, and the result of profiling encoding
process by the instruction set simulator (shortly ISS) of the target CPU Xtensa
using a test image LENA is summarized in Table 2. The function encode is to en-
code whole image and does not include the routines for input/output from/to a
file. In the function entropy coding, the entropy coding including coefficient bit
modeling and arithmetic coding by MQ-coder is executed. The function FDWT 97

Table 1. Main specification of the JPEG2000 software

tile size 128 × 128
DWT 9/7 irreversible filter

DWT decomposition level 3
code-block size 32 × 32

Table 2. Result of profiling encoding process

% function name self cycle child cycle total cycle call
99.5 main 0.13 1371191.89 1371192.02 1
96.3 encode 540.26 1326074.65 1326614.91 1
64.4 entropy coding 84.50 887680.17 887764.67 304
20.2 FDWT 97 29298.20 249056.71 278354.91 16
14.0 FILTD 97 191668.46 771.41 192439.87 7168

unit of number of cycles is Kcycle

Scalable Design Framework for JPEG2000 System Architecture 301

is to execute DWT on a tile component and includes FILTD 97 for 1-D DWT on
an array.

According to this table, it can be said that the coefficient bit modeling and
arithmetic coding procedures occupy 64.4% of total encoding cycles, DWT pro-
cedure occupies 20.2% of total encoding cycles, and FILTD_97 function occupies
69.1% of DWT processing cycles.

5 JPEG2000 Processing Modules

5.1 DWT Module

DWT hardware. When implementing DWT as dedicated hardware, the essen-
tial factor to be considered is memory organization for storing intermediate data
during recursive filter processing. There are two methods to store intermediate
data for DWT. One is to store the data to the main memory or a tile buffer
which is placed in a DWT hardware module. In this case, whenever vertical and
horizontal DWT is attempted, the data is read from the memory/buffer and the
transformed coefficients are written back to it. The other is the so-called line-
based method[4] which is to store the data to a line buffer containing several
lines in a tile. In this case, vertical and horizontal DWT can be done at the same
time by utilizing the line buffer, so that this method requests less amount of
data transfer over a bus than that using the main memory. Thus, we adopted
line-based method to implement DWT hardware module.

To implement DWT filters, we adopted straightforward finite impulse re-
sponse (FIR) filter, where, for calculating each transformed coefficient, weighted
addition of a coefficient sequence with the filter length is executed. Assuming
that the depth of input image is 8-bit, this module can implement one level 2-D
DWT over a tile whose width is 128 or less. The tile size of 128×128 is reason-
able since it is adopted in JPEG2000 Profile 0[5], which is intended mainly for
hardware implementation.

The architecture of our DWT hardware module is shown in Fig. 4, which
consists of a core module, a line buffer, and an IO controller. This core mod-
ule comprises the following sub-modules; an extension module which extends a
sequence of coefficients at the edges by the so-called periodic symmetric exten-
sion procedure, low-pass FIR filters whose filter length is 9, high-pass FIR filters
whose filter length is 7, and a pair of shift registers which receive output data
from vertical DWT and store vertically low-passed and high-passed 9 coefficients
to be fed to horizontal DWT.

The line buffer consists of 13 line memories each of which is a 15-bit 128-word
memory. The number of the additional 7 bits for the input bit depth, 8 bits, is
large enough to realize as high precision as floating point operations. Totally 9
coefficients, all of which belong to the identical column of an image, are loaded
to the core module from 9 lines of the line buffer every clock. Other 2 lines of the
line buffer are used for receiving transformed coefficients from the core modules
every clock. The other 2 lines of the line buffer are used for IO access between
the DWT and CPU.

302 H. Tsutsui et al.

IO controler

core

ex
te

ns
io

n

high-pass
FIR

shift register

line buffer

input data

output data

control

low-pass
FIR

high-pass
FIR

low-pass
FIR

shift register

ex
te

ns
io

n

Vertical DWT Horizontal DWT

bank 0

bank 12

...
...

...

Fig. 4. Architecture of our DWT module

This core module works as follows. The 9 coefficients from the line buffer are
transformed by the vertical DWT module and the results, i.e. low-passed and
high-passed coefficients, are stored into the shift registers. At the same time,
horizontal DWTs of vertically high-passed and low-passed sequences stored in
shift registers are executed alternately, so that LL, HL, HH, and HH coefficients
are output from the core module every 2 cycles.

As mentioned before, we employ the same 1-D DWT ordering for both for-
ward and backward 2-D DWT, so as to make the architecture of forward and
backward DWT almost identical. The proposed architecture of forward DWT
module is designed through the use of Verilog-HDL. When this hardware mod-
ule is used, the number of cycles needed for DWT with a test image LENA is
0.215 Mcycles, which is only 0.077 % of 278 Mcycles needed for software DWT.
The DWT module is synthesized into 17,650 gates by using Synopsys’s Design
Compiler with 0.18 µm CMOS technology, with its critical path delay of 12 nsec.

Accelerated DWT software. According to the result of profiling, multiplica-
tions of fixed point variables and filter coefficients of Table 3; α, β, γ, δ, K, and
1/K; need 6961.86 Kcycles, 7787.56 Kcycles, 7502.93 Kcycles, 6930.11 Kcycles,
6775.10 Kcycles, and 6971.17 Kcycles, respectively through entire image. Total
of these values occupy 22.3% of execution cycles needed for function FILTD 97.
Thus we implement these multiplications by user-defined instructions described
in TIE. The circuits of the instructions consist of shifters and adders.

Custom instructions MUL A, MUL B, MUL C, MUL D, MUL K, and MUL R are to
multiply positive input by lifting constants; α, β, γ, δ, K, and 1/K, respectively.
SMUL A, SMUL B, SMUL C and SMUL D are extended version of MUL A, MUL B, MUL C
and MUL D, which can multiply negative input as well as positive input by lifting
constants. At the final stage of lifting, target values must be shifted in right and
rounded. These operations are also implemented as custom instructions. SMUL K
and SMUL R are extended version of MUL K and MUL R. Same as SMUL [A-D], these

Scalable Design Framework for JPEG2000 System Architecture 303

Table 3. Filter coefficiets

α -1.586 134 342 059 924
β -0.052 980 118 572 961
γ 0.882 911 075 530 934
δ 0.443 506 852 043 971
K 1.230 174 104 914 001

Table 4. The number of gates of user-defined instructions

instruction #gate
MUL A 551.75
MUL B 401.00
MUL C 510.25
MUL D 489.50
MUL K 570.50
MUL R 367.00
other 254.25
total 3144.25

Table 5. The number of gates of user-defined instructions

instruction #gate
SMUL A 1085.25
SMUL B 739.25
SMUL C 947.00
SMUL D 1009.25
SMUL K 1698.25
SMUL R 1039.00
other 439.75
total 6957.75

instructions can handle negative values with equipping a right shifter and a
rounding circuit.

The result of simulation by ISS using a test image LENA shows that when
MUL A, MUL B, MUL C, MUL D, MUL K, and MUL R are equipped, the number of cycles
to call FILTD 97 function is reduced to 175.564 Mcycles (88.6%) from 192.440
Mcycles, and that when SMUL A, SMUL B, SMUL C, SMUL D, SMUL K, and SMUL R
are implemented, the number of cycles to call FILTD 97 function can be reduced
to 133.461 Mcycles (69.4%) from 192.440 Mcycles.

According to the synthesis results attained by the same manner as the hard-
ware DWT module, the critical path delay of MUL A, MUL B, MUL C, MUL D, MUL K
and MUL R is 6.2 nsec, ant that of SMUL A, SMUL B, SMUL C, SMUL D, SMUL K and
SMUL R is 9.5 nsec, The numbers of gates of custom instructions are summarized
in Table 4 and 5.

304 H. Tsutsui et al.

5.2 Entropy Coder, Decoder, and Codec

There are two reasons why the entropy coding of JPEG2000 incurs such a high
computational cost. One is that a context of a coefficient on a bit plane depends
on sign bits, significant states, and some reference states of the eight nearest-
neighbor coefficients. Therefore, there are many conditional branches and many
operations which crop variables into a bit. The other is that MQ-coder updates
its internal state after compression of every one binary symbol. When JPEG2000
entropy coder is implemented as hardware, MQ-coder may become the perfor-
mance bottle-neck of the total system since the MQ-coder requires at least 1
cycle to process 1 binary symbol. Needless to say, considering hardware uti-
lization efficiency coefficient bit modeling must be implemented with the same
throughput as the MQ-coder. In our hardware entropy coder, pixel skipping
scheme[6] is used to attain almost ideal performance.

Entropy Coder. Fig. 5 depicts the block diagram of our entropy coder, which
consists of a coefficient bit modeling module, an MQ-coder, an IO controller, a
plane controller, an FIFO, and a set of buffer memories. As buffer memories, the
entropy coder has a code-block buffer to store code-block data, plane buffers to
store bit plane as well as reference data needed to generate contexts, and stream
buffer to store encoded data called stream. The FIFO is used to suppress the
difference of the throughputs of the modeling module and the MQ-coder.

The above mentioned entropy coder is designed by Verilog-HDL. The result
of logic simulation using sample image LENA indicates that when this hardware
entropy coder is employed, the number of cycles needed for entropy coding of
whole image is about 3.20 Mcycles, i.e. only 0.360 % of 887.76 Mcycles needed
for software entropy coding.

The critical path delay is 7.0 nsec which is concluded by synthesis the entropy
coder with 0.18 µm CMOS technology. The gate counts for this module is 7,901.

Next, let us discuss the size of memory for the entropy coder. The coder
requests 12 bit × (32 × 32) = 12,288 bit as the code-block buffer, 4 × (32 × 32)
= 4,096 bit as 4 plane buffers, and 2 × (32 × 32) = 2,048 bit as the double-
buffered bit plane buffer. Here, the code-block buffer must have 12 bit depth
in the case that the bit depth of input image is 8, and the number of guard
bits is 2, which is enough to avoid the overflow of the result of DWT. As for
the stream buffer for output, 8,192 bit is large enough when quantizer’s step
size equals 1, according to the software simulation. Consequently, 26,624 bit of
memory elements are needed in total. It must be noticed that the size of stream
buffer can be reduced when implementing it as an FIFO.

Entropy Decoder. Fig. 6 depicts the block diagram of our entropy decoder,
which is similarly organized as the entropy coder. The differences are that the
decoder does not equip FIFO, whereas controllers, MQ-decoder, and coefficient
bit modeling module of the decoder are customized for decoding. Our MQ-
decoder returns a binary to coefficient bit modeling module in 1cycle.

Scalable Design Framework for JPEG2000 System Architecture 305

Plane buffers

MQ-coder

Stream buffer

Code-block buffer

IO controller

FIFO

Coefficient bit
modeling

Plane controller

Context Binary

Code-block

Stream

Control

Context Binary

Fig. 5. Architecture of our entropy coder

Plane buffers

MQ-decoder

Stream buffer

Code-block buffer

IO controller

Coefficient bit
modeling

Plane controller

Code-block

Stream

Control

Context Binary

Fig. 6. Architecture of our entropy decoder

The entropy decoder is designed through the use of Verilog-HDL. The result
of logic simulation using sample image LENA indicates that when this hardware
entropy decoder is employed, the number of cycles needed for entropy coding of
whole image is about 5.03 Mcycles, i.e. only 0.283 % of 1776 Mcycles needed for
software entropy decoding.

The critical path delay is 7.0 nsec which is concluded by synthesis the entropy
decoder with 0.18 µm CMOS technology. The gate counts for this module is
7,901.

Entropy Codec. In our framework, an entropy codec is also prepared in addi-
tion of the above mentioned entropy coder and decoder. By sharing some part of
circuits between MQ-coder and MQ-decoder and the circuits to generate contexts
of coefficient bit modeling for coding and decoding, we can successfully reduce

306 H. Tsutsui et al.

Table 6. Comparison of the number of gates between entropy coder, decoder and codec

Submodule #gate total
Entropy MQ-coder 2,983
coder Coefficient bit modeling 2,675 5,658

Entropy MQ-decoder 3,881
decoder Coefficient bit modeling 2,645 6,454
Entropy MQ-codec 6,048
codec Coefficient bit modeling 3,665 9,713

Table 7. Main features of the LSI

Technology Hitachi 0.18µm CMOS
Interconnect 5 metal layers, PolySi
Power supply 1.8V

Chip area 5.9 × 5.9 mm2

Design method Standard-cell-based
Package 256pin BGA

Table 8. The numbers of gates and memory bits

#gate of Xtensa 44,000
#gate of DWT 17,650

#gate of Entropy coder 10,207
#bit of FF in DWT module 24,960
#bit of FF in Entropy coder 6,144

#bit of RAM of Entropy coder 65,536
#gate dose not include the gates of FF used as memory.

Table 9. The number of cycles

function name total cycle by software total cycle by using this LSI
encode 1326.6 (100%) 163.8 (12%)

entropy coding 887.8 (67%) 3.20 (0.36%)
FDWT 97 278.4 (21%) 0.215 (0.08%)

Unit of number of cycles is Mcycle.
% of total cycle by software means the ratio to cycle of encode.

% of total cycle by using this LSI means the ratio to cycle by software.

the number of gates of the entropy codec with maintaining its performance. The
comparison of the numbers of gates required for the dominant parts, which are
MQ-coder/decoder and coefficient bit modeling, among entropy coder, decoder
and codec is summarized in Table 6. The number of gates for MQ-codec is 88%
of that for the combination of MQ-coder and MQ-decoder, and the number of
gates of coefficient bit modeling for codec is 69% of that for the combination of
those for encoding and decoding.

Scalable Design Framework for JPEG2000 System Architecture 307

Fig. 7. Layout patterns for the LSI

Fig. 8. Photograph of the LSI

6 LSI Implementation Result

In order to demonstrate the practicability of the proposed framework, we fabri-
cated an JPEG2000 encoder LSI, which consists of our DWT hardware module,
hardware entropy coder module, and Xtensa. A photograph of the LSI and layout
patterns attained for the LSI are shown in Figs. 8 and 7, respectively.

Table 7 summarizes the specifications of the fabricated LSI. The LSI is with
1-Kword × 32-bit single port RAM as the code-block buffer and stream buffer
of the entropy coder. The line buffer of DWT module and the plane buffers of
entropy coding module are implemented by flip-flop (FF) arrays. The numbers
of gates and memory bits are summarized in Table 8. The critical path delay of
this LSI is 18 nsec, which assures 55.5 MHz operation.

308 H. Tsutsui et al.

The comparison between the number of cycles needed to encode the test
image LENA by software and that by using this LSI is summarized in Table 9.

7 Conclusion

In this paper, a novel design framework to realize an efficient implementation of
JPEG2000 encoder, decoder, and codec in accordance with the requirements and
constraints of each terminals and applications has been proposed. This frame-
work is distinctive in that for each procedure of JPEG2000 coding system, im-
plementation scheme can be selected among software implementation, software
implementation accelerated with user-defined instructions, and dedicated hard-
ware implementation, so as to optimize the system organization. To demonstrate
the practicability of the framework, we fabricated an LSI to exemplify a gener-
ated system implementation, in which our DWT hardware module and hardware
entropy coder module were implemented with configurable processor Xtensa.

Acknowledgement. The VLSI chip in this study has been fabricated in the
chip fabrication program of VLSI Design and Education Center (VDEC), the
University of Tokyo with the collaboration by Hitachi Ltd. and Dai Nippon
Printing Corporation.

References

1. ISO/IEC JTC1/SC29/WG1, “Information technology – JPEG2000 image coding
system: Core coding system,” Oct. 2002.

2. Tensilica, Inc., Xtensa Application Specific Microprocessor Solutions — Overview
Handbook, Sept. 2000.

3. Tensilica, Inc., Tensilica Instruction Extension (TIE) Language — User’s Guide,
Sept. 2000.

4. ISO/IEC JTC1/SC29/WG1, “JPEG2000 verification model 9.1 (technical descrip-
tion),” June 2001.

5. ISO/IEC JTC1/SC29/WG1, “Draft of FPDRAM-1 to 15444-1,” Dec. 2000.
6. Kuan-Fu Chen, Chung-Jr Lian, Hong-Hui Chen, and Liang-Gee Chen, “Analysis

and architecture design of EBCOT for JPEG-2000,” in Proc. of the 2001 IEEE
International Symposium on Circuits and Systems (ISCAS 2001), Vol. 2, pp. 765–
768, Mar. 2001.

	Introduction
	JPEG2000 Processing Flow
	JPEG2000 System Framework
	Analysis of JPEG2000 Encoding
	JPEG2000 Processing Modules
	DWT Module
	Entropy Coder, Decoder, and Codec

	LSI Implementation Result
	Conclusion

