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Abstract. We present a new method which combines a hierarchical
stochastic latent variable model and a selective sampling strategy, for
learning from co-occurrence events, i.e. a fundamental issue in intelli-
gent data analysis. The hierarchical stochastic latent variable model we
employ enables us to use existing background knowledge of observable
co-occurrence events as a latent variable. The selective sampling strat-
egy we use iterates selecting plausible non-noise examples from a given
data set and running the learning of a component stochastic model al-
ternately and then improves the predictive performance of a component
model. Combining the model and the strategy is expected to be effective
for enhancing the performance of learning from real-world co-occurrence
events. We have empirically tested the performance of our method us-
ing a real data set of protein-protein interactions, a typical data set
of co-occurrence events. The experimental results have shown that the
presented methodology significantly outperformed an existing approach
and other machine learning methods compared, and that the presented
method is highly effective for unsupervised learning from co-occurrence
events.

1 Introduction

In this paper, we focus on two-mode and co-occurrence events, such as product
pairs in purchasing records and co-occurred words in texts. A data set of such
co-occurrence events is one of the most frequently seen types of data sets in real
world, and learning from co-occurrence events is a fundamental issue in intelli-
gent data analysis. One of the most important property of co-occurrence events
is that they are only positive examples, i.e. unsupervised examples in nature. An
effective existing approach for learning from co-occurrence events is then based
on model-based clustering [I]. In general, model-based clustering has a latent
variable corresponding to a latent cluster and obtains one or more clusters of co-
occurrence events by clustering co-occurrence events through estimating model
parameters. Then, when two events are newly given, we can assign a latent clus-
ter to the events with a likelihood, which can be computed by the estimated
model parameters.
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We present a new methodology to improve the predictive ability of the exist-
ing model-based clustering approach for co-occurrence events. Our method com-
bines a hierarchical latent variable model and a selective sampling strategy for
unsupervised learning. The hierarchical latent variable model for co-occurrence
events was presented in [2] and has two types of latent variables hierarchically.
In general, an event has its own existing background knowledge, and in most
cases, the background knowledge can be given as a set of classes, to one or
more of which an event belongs. With the background knowledge, we can build
a hierarchical latent variable model, in which one of the two types of latent
variables and the other latent variable correspond to an existing class of events
and a latent cluster of the classes, respectively. Estimating the parameters of
the latent variable model results in performing clustering class pairs, instead of
clustering event pairs, and we can obtain co-occurrence classes after estimating
the parameters. Using the estimated model, arbitrary two events are predicted
to be co-occurrence events if the two events belong to one or more pairs of
two co-occurrence classes. The space complexity of the model is only roughly
linear in the number of given events, and the parameters can be estimated by
time-efficient EM (Expectation-Maximization) algorithm. We expect that the
hierarchical model improves the predictive performance of existing approaches
for co-occurrence events, since the model enables us to use existing classes of
co-occurrence events.

We further focus on a selective sampling strategy for unsupervised learning
and combine the hierarchical latent variable model and the strategy by employing
the learning algorithm of the hierarchical model as the component subroutine
of the strategy. The selective sampling was originally proposed for unsupervised
noisy data in [3] and has been empirically shown that it is effective to improve
the predictive performance of its component subroutine for noisy data. It repeats
selecting plausible non-noise candidates by using previously obtained component
models and running a component subroutine on the selected set of examples
to obtain a new component model alternately. The final hypothesis is given by
combining all obtained stochastic models, and the final likelihood for an example
is obtained by averaging the likelihoods computed by all stochastic models. We
can expect that the selective sampling also improves the predictive performance
of existing approaches for real-world co-occurrence events, which is inevitably
noisy.

The purpose of this paper is to empirically evaluate the effectiveness of the
presented methodology using real data of co-occurrence events, comparing with
an existing approach and other machine learning techniques, including a vari-
ety of simpler probabilistic models and support vector machines (SVMs). In our
experiments, we focus on a real protein-protein interaction data set, a typical
co-occurrence data set. We note that predicting unknown protein-protein inter-
actions is an important and challenging problem in current molecular biology. We
used the data set to perform five-fold cross-validation and generated synthetic
negative examples for each of the five runs in the cross-validation to evaluate
the ability of our method for discriminating positive from negative examples as
the prediction accuracy of our method.
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Fig. 1. Graphical models of (a) AM and (b) HAM, and (c) an example of co-occurrence
events and their classes

Experimental results have shown that the presented method drastically im-
proved the performance obtained by an existing approach and other meth-
ods tested. The component hierarchical model significantly outperformed other
methods compared, and the selective sampling strategy further improved the
prediction accuracy obtained by the component stochastic model. Over all, we
have empirically shown that our method is highly effective for learning from
real-world co-occurrence events, and we expect that our method is useful for
predicting other numerous co-occurrence events found in a variety of application
domains.

2 Methods

In this paper, we use the following notation. We denote a variable by a capitalized
letter, e.g. X, and the value of a corresponding variable by that same letter in
lower case, e.g. . Now let X and Y be observable random variables taking
on values x1,...,xy and yi, ..., yp, respectively, each of which corresponds to a
discrete value (i.e. event). More concretely,  and y correspond to the first and the
second event of an example of co-occurrence events. Let N be the total number of
given examples (co-occurrence events). Let S and T be latent random variables
taking on values s1, ..., sy and tq, ..., ty, respectively, each of which corresponds
to an existing latent class (background knowledge) of observable events. More
concretely, for given co-occurrence events, s corresponds to a class taken by the
first event and t corresponds to that by the second event. Let Z be a discrete-
valued latent variable taking on values z1, ..., 2k, each of which corresponds to a
latent cluster. Let n(z,y) be a binary value defined as follows: If 2 and y co-occur
in a given data set then n(z,y) is 1, otherwise it is 0. Let v, (s,t) be also a
binary value defined as follows: If z and y belong to classes s and ¢ respectively
in given data then v, 4(s,t) is 1, otherwise it is 0.

In our experiments, we used protein-protein interactions as co-occurrence
events. In this case, a protein corresponds to an event z (and y), and a protein
class corresponds to an event class s (and t).
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2.1 Hierarchical Latent Variable Model for Co-occurrence Events

Hierarchical Aspect Model (HAM). We first explain an existing model-
based clustering approach for modeling co-occurrence events. The approach,
which is called aspect model (AM for short), has been applied to some fields,
including collaborative filtering recommender systems and semantic analysis in
natural language processing [I]. An AM for X and Y with K clusters has the
following form:

K

p(x,y;0) = > p(al2k; 0)p(ylze; 0)p(24; 0)-
k

The graphical model of AM is shown in Figure [ (a).
In order to use existing classes of co-occurrence events, we extend the model
to a hierarchical latent variable model for X and Y with S, T" and K as follows:

UV,K

playi0) = > pllsi; 0)pyltm: O)p(silzi: O)p(tm|2k; 0)p(21: 0).
l,m,k

We call the model HAM, standing for hierarchical aspect model [2], and a graph-
ical model of HAM is shown in Figure I (b).

Figure [ (c¢) shows an example of co-occurrence events and their classes,
which is derived from the real data of protein-protein interactions used in our
experiments. In the figure, each of two events, i.e. proteins named as SSA1
and CLN3, belongs to a different set of four classes. We note that estimating
the parameters of HAM results in clustering class pairs to obtain co-occurrence
classes, instead of clustering event pairs as done in AM. Thus newly given two
events will be predicted as co-occurrence events if the two events belong to co-
occurrence classes. In addition, the larger the number of co-occurrence classes
to which the two events belong, the more confidently the two events will be
predicted as co-occurrence events. In the example shown in Figure[T] (c), we can
consider 16 (= 4 x4) possible combinations of class pairs, and the proteins, SSA1
and CLN3, are predicted as co-occurrence events more strongly if a larger number
of class pairs are co-occurrence classes. We emphasize that this model naturally
combines co-occurrence events and their existing classes and is applicable to any
co-occurrence events found in a variety of real-world applications.

Estimating Model Parameters. When the number of clusters K and train-
ing data D are given, a possible criterion for estimating probability parameters
of HAM is the maximum likelihood (ML): 6M% = argmaxg log p(D;#), where
logp(D;0) =32, >, n(xi, y;) log p(w4, Y53 0).

We use a time-efficient general scheme, EM (Expectation-Maximization) al-
gorithm [4], to obtain the ML estimators of HAM. The algorithm starts with
initial parameter values and iterates both an expectation step (E-step) and a
maximization step (M-step) alternately until a certain convergence criterion is
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satisfied. The following equations derived by us are consistent with those of a
hierarchical mixture model shown in [5].

In E-step, we calculate the latent class conditional probability, namely the
probability that a given example (z,y) is generated by a cluster z and latent
classes s and t given parameters 6:

p(ilsi; 0)p(Yiltm; 0)p(silza; O)p(tm|2x; 0)p(21; 0)
>kt P(@ils13 )y [tm; O)p(sil 2i; 0)p(tm |23 0)p(2k3 0)

w(2k, 51, tm| 24, Y53 0) =

In M-step, we take a corresponding summation over w(z, s, tm |2, y;; ) with
n(x;, y;):

Ez|8l & Z 371,?/3 Um,yj(Slatm) w<2k,5l7tm|$i7yj§eold)-
7,k,m

eyj‘tm & Zn(xiayj) Vzi,y; (Sl’tm) w(zkaslvtm|xi7yj;eold)-
i,k,l
sl\zk & Z xzyyj Vz;,y; (Slytm) w(zkaslvtm|xi7yj§eold)-

4,J,m

9tm|2k & Zn(xhyj) Vzi,y; (s1,tm) w(zkaslvtm|$i7yj§eold)-
4,5,
9zk & Z xz;ZJ] U;c,i,yj(sl;tm) w(slvtm|xi7yj§oold)-

7,l,m

The required memory size of the EM procedure depends only on the param-
eters of the model, i.e. p(x|s), p(y|t), p(s|z), p(t|z) and p(z). Note that K, i.e. the
size of latent clusters, can be given as a certain constant, and the size of p(s|z)
and p(t|z) is linear in the number of given events. Note further that the size
of p(z|s) and p(y|t) is also practically linear in the number of events, since the
number of classes to which an event belongs is limited to a certain small number.
Overall, the total space complexity of HAM is roughly linear in the number of
given events. In this sense, the HAM is a space-efficient model.

2.2 Selective Sampling with Hierarchical Aspect Models (SsHAM)

In order to further improve the predictive accuracy of HAM, we employ a se-
lective sampling strategy for unsupervised learning [3]. It has been shown that
the performance advantage of the selective sampling has more pronounced for
noisier data sets.

The selective sampling uses a learning algorithm of an arbitrary stochastic
model as a component subroutine, assuming that given an input z, the subrou-
tine returns its likelihood L(x). It further assumes that given a set of examples
including x, = is regarded as an outlier (i.e. a noise) if L(z) is the lowest among
the likelihoods given to the example set. Under these assumptions, it repeats
selecting plausible non-noise examples from a given whole set of examples and
running a component learning algorithm on the selected examples alternately. In



Selective Sampling with a Hierarchical Latent Variable Model 357

Input: A set of given examples: F
Learning algorithm of hierarchical aspect model: A
Number of iterations: I
Number of examples selected at each iteration: Ny
Number of noise candidates to be removed at each iteration: N,
Initialization: 0. Randomly choose N, examples as Fy from E
Fort=0,..,1 -1
1. Run A on E; with random initial parameter values and obtain a trained model.
2. For each (z,y) € E, compute its likelihood L¢(z,y) using the trained model.
3. For each (x,y) € E, compute average L(z,y) by w
4. Select {(z},y5), ..., (TN, s YN, )), whose L(z3,y7), ..., L(zx, , vk, ) are the smallest,
and remove them from F as Ei,; = remove(E, ((z1,y7), ..., (TN, , Un,)))-
5. Randomly choose N, examples from E; +1 a8 By,
Output: Output all obtained component stochastic models.

Fig. 2. Algorithm: Selective sampling with hierarchical aspect models (SSHAM).

the example selection, the strategy first removes examples whose likelihoods are
the lowest as noises (i.e. outliers) from all examples and then selects examples
from the remaining examples randomly as a new set of training examples. The
likelihood for a newly given test example is computed by averaging over the like-
lihoods computed by all models obtained as the final output. We combine the
strategy and HAM by using the learning algorithm of HAM as a subroutine of
the selective sampling strategy, and we call this combination ‘SSHAM’, standing
for selective sampling for hierarchical aspect models. The pseudocode of SSHAM
is shown in Figure 2

2.3 Methods Compared in Our Experiments

In order to compare our method with other methods in our experiments, we
generate a training data set using the data of co-occurrence events and a set
of classes to which an event belongs. The data set is a table, in which each
record corresponds to an example of co-occurrence events, i.e. a pair (z,y) that
satisfies n(z,y) = 1, each attribute corresponds to a class pair and attribute
values are all binary and represented by v, ,(s,t). The data set used in our
experiments is a one-class data set, and we can run any unsupervised learning
method on this set. We note that the complexity of the attribute size of the
data set is quadratic in the size of event classes. Thus we cannot run a learning
method whose computational complexity rises drastically with increasing the
size of attributes. For example, learning Baysian belief networks in general falls
into this type of unsupervised learning methods.

Simple Probabilistic Models. We first tested a simple method, which com-
putes the probability that arbitrary two classes appear in given data. We consider
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three variations in using the probabilities: summing over them (SSum), averag-
ing over them (SAve) and selecting the maximum (SMax). The procedure of the
method can be summarized as follows:

1. For all s and ¢, p(s,t) is computed as follows:
q(s,t)
p(s, t) = )
Derd(s,t)

where ¢(s,t) = Zu n(Ti, i) Vayy, (S51).
2. For any new events x and y, p(z,y), i.e. the probability that they are co-
occurrence events, is calculated as follows:

SSum:  plzy) = > p(s,t).

rESs,yet
p(s,t
SAve:  plx,y) = Laesyet P51
Zmes,yeﬁ 1
SMax:  p(z,y) = max p(s,?).

One-Class Support Vector Machine. We then tested ‘one-class support
vector machine (one-class SVM, hereafter OC.SVM)’ proposed by [6]. Learning
OC.SVM is unsupervised learning, and thus it is trained by positive examples
only. In our experiments, we used LIBSVM ver.2.36, which has an option to
run the OC.SVM and can be downloaded from http://www.csie.ntu.edu.tw/~
cjlin/libsvm/. In prediction, for each example, LIBSVM gives a binary output,
indicating whether the example belongs to the class of training data or not.

Support Vector Classifier. We finally tested a support vector classifier (here-
after, SVC), a supervised learning approach with significant success in numerous
real-world applications. When we use the SVC in our experiments, we randomly
generated negative training examples, which has the same size as that of posi-
tive training examples, not to overlap with any positive training examples and
test examples. We then run both SV M9 [7] and the LIBSVM, and the two
softwares outputted approximately the same performance results for all cases in
our experiments.

For both OC.SVM and SVC, we used linear kernels in our experiments. We
tested other types of kernels, such as a polynomial kernel, within the limits of
main memory, but no significant improvements were obtained.

3 Experimental Results

3.1 Data

In our experiments, we focus on the data set of protein-protein interactions as
a typical co-occurrence data set. We focus on yeast proteins, by which high-
throughput bio-chemical experiments have been actively done these few years,
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and used the MIPS [§] comprehensive yeast genome database, which contains
the recent results of the experiments. From the MIPS data base, we obtained
3,918 proteins and 8,651 physical protein-protein interactions, each protein of
which is one of the 3,918 proteins.

We further used the MIPS database to obtain a set of protein classes. We
focus on the functional classification catalogue of the MIPS database. The infor-
mation of the catalogue takes a tree structure, in which each node corresponds
to a protein class and a protein falls into one or more nodes. To obtain a set
of classes of proteins from the tree, the problem is how we cut the tree, using
given training data. We employ the idea by [9] which cuts a thesaurus based
on the MDL (Minimum Description Length) principle [I0] to cut the tree for
classifying proteins. By adjusting a parameter in the MDL, we obtained some
sets of protein classes which range from 30 to 400 in their size. The 30 classes
correspond to the nodes which have a root as their parent, and the set of 400
classes is the largest set under the condition that each class has one or more
proteins.

3.2 Five-Fold Cross Validation

The evaluation was done by five-fold cross validation. That is, we split the data
set into five blocks of roughly equal size, and in each trial four out of these five
blocks were used as training data, and the last block was reserved for test data.
The results were then averaged over the five runs.

To evaluate the predictive ability of each of the methods, we used a general
manner for supervised learning. That is, for each test data set, we generated
negative examples, the number of which is the same as that of positive examples,
and examined whether each method can discriminate positive from negative
examples. In this 50:50 setting, a prediction accuracy obtained by a random
guessing (and a predictor, which outputs only one label) is maximally 50%,
and we can check the performance of each of the methods by how it is better
than 50%. We used two types of negative examples, both of which are randomly
generated not to overlap with any positive example. The first type of examples
are randomly generated from the 3,918 proteins. The second type of examples are
randomly generated from a set of proteins, which are used in positive examples,
i.e. the proteins contained in the 8,651 protein-protein interactions. Hereafter
we call the two test data sets containing the first and second type of negative
examples as Datal and Data2, respectively.

In our experiments, we tested eight methods, i.e. SSHAM, HAM, SVC,
OC.SVM, SSum, SAve, SMax and AM (aspect model), with varying the size
of protein classes from 30 to 400, for Datal and Data2. Throughout the exper-
iments, we fixed K = 100 for AM and K = 100, I = 10, N = N,, + N, and
% = 0.1 for SSHAM (and HAM). All our experiments were run on a Linux
workstation with Intel Xeon 2.4GHz processor and 4G bytes of main memory.
The actual computation time of HAM was within two minutes for all cases. Thus
the computational burden of HAM is extremely small.
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Table 1. Average prediction accuracies and t-values for Datal.

#classes| SSHAM | HAM SVC |OC.SVM| SSum | SAve | SMax AM
30 79.5 79.0 64.2 57.9 57.9 56.9 56.7
(1.76) | (24.7) | (29.5) | (24.6) | (26.8) | (28.8)
100 79.1 78.3 67.0 59.3 59.8 58.4 58.1
(6.72) | (23.1) | (26.8) | (22.0) | (29.8) | (24.9)
200 78.5 77.6 68.1 58.8 58.9 58.9 58.7 47.6
(5.39) | (19.0) | (21.6) | (18.8) | (21.5) | (18.8) | (41.0)
300 77.8 76.6 68.7 61.3 63.2 64.6 64.2
(10.8) | (20.7) | (22.9) | (16.8) | (22.0) | (14.0)
400 77.5 76.2 68.6 61.6 62.7 64.8 64.3
(8.20) | (19.1) | (25.7) | (18.2) | (25.9) | (15.3)

Table 2. Average prediction accuracies and t-values for Data2.

#classes| SSHAM | HAM SVC |0C.SVM| SSum | SAve | SMax AM

30 67.0 67.2 59.7 52.6 53.2 53.0 52.7
(1.71) | (23.7) | (47.0) | (39.2) | (68.5) | (85.5)
100 67.4 67.5 61.3 53.2 53.5 53.8 52.5
(0.14) | (15.4) | (31.5) | (41.4) | (38.9) | (54.9)
200 68.0 67.6 62.6 52.8 53.3 55.2 53.1 494
(1.64) | (14.8) | (32.2) | (28.8) | (29.2) | (36.3) | (63.0)
300 66.6 66.4 62.9 55.4 56.3 60.0 58.4
(0.84) | (11.2) | (53.3) | (43.3) | (20.0) | (34.5)
400 66.1 65.8 62.6 55.3 55.4 59.1 58.4
(0.45) | (11.6) | (34.3) | (45.4) | (19.3) | (24.2)

3.3 Average Prediction Accuracies

We first evaluated our method with other methods by average prediction accu-
racies obtained for Datal and Data2. All of the methods except for SVC are
trained by positive examples only, and predictions of all of methods are done
for each of both positive and negative examples as a likelihood or a score. The
prediction accuracy is obtained by first sorting examples according to their pre-
dicted likelihoods (or scores) and then computing an accuracy at a threshold
which maximally discriminates positive from negative examples. The average
prediction accuracy is obtained by averaging the accuracy over five runs in cross-
validation.

We further used the ‘¢’ values of the (pairwise) mean difference significance

test for statistically comparing the accuracy of SSHAM with that of another
lave(D)|

[var(D)’

where we let D denote the difference between the accuracies of the two methods
for each data set in our five trials, ave(W) the average of W, var(W) the variance

method. The ¢ values are calculated using the following formula: ¢ =
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of W, and n the number of data sets (five in our case). For n = 5, if ¢ is greater
than 4.604 then it is more than 99% statistically significant that SSHAM achieves
a higher accuracy than the other.

Tables[] and Plshow the average prediction accuracies and ¢-values (in paren-
theses) for SSHAM, HAM, SVC, OC.SVM, SSum, SAve, SMax and AM. As
shown in the tablesEl, SsHAM greatly outperformed the other methods, being
statistically significant for all cases in both Datal and Data2. For Datal, the
maximum average prediction accuracy of SSHAM achieved roughly 80%, whereas
that of other methods except HAM was less than 70%. We emphasize that the
performance of SSHAM should be compared with other unsupervised learning
approaches, because the accuracy of SVC may be improved as increasing the
size of negative examples or changing the types of negative examples. Surpris-
ingly, for Datal, the maximum average prediction accuracy of other unsuper-
vised learning methods except HAM was lower than 65%, and for each case, the
performance difference between SSHAM and one of other unsupervised learning
approaches except HAM and AM reached approximately 15 to 20%. Moreover,
the performance advantage of SSHAM over AM, an existing model-based clus-
tering method, was roughly 30%. These results indicate that our methodology
is highly effective for learning from co-occurrence events, unsupervised data in
nature. This performance advantage of SSHAM over other methods was further
confirmed for Data2. In particular, for Data2, the prediction accuracies obtained
by other unsupervised methods except HAM was less than 60% except for one
case, but the highest prediction accuracy of SSHAM reached 68%. This result
also shows that our method is especially effective for learning from co-occurrence
events.

We next check the predictive performance of HAM and the sampling strategy
separately. For the two data sets, HAM significantly outperformed other methods
compared, and SSHAM improved the performance of HAM in eight out of all ten
cases, being statistically significant in four out of the eight cases. More exactly,
SsHAM significantly outperformed HAM in four out of five cases for Datal, but
for Data2, SSHAM outperformed HAM in only three cases and the performance
difference between them was statistically insignificant in all cases. From this
result, we can say that the advantage of the selective sampling strategy varies,
depending on a given data set. Another possible explanation for this result is
that the training data set used this time (particularly Data2) may not contain
so many noises (outliers), because it has been shown that the selective sampling
strategy is especially effective for noisy data.

3.4 ROC Curves

We then examined ROC (Receiver Operating Characteristic) curves obtained by
each of the methods. An ROC curve is drawn by plotting ‘sensitivity’ against ‘1
- specificity’. The sensitivity is defined as the proportion of correctly predicted

1 Approximate class sizes are shown. Exact sizes are 30, 88, 202, 297 and 398.
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examples out of positive examples, and the specificity is defined as the proportion
of correctly predicted examples out of negative examples.

Figure [3] shows the ROC curves obtained by all of methods tested for Datal
and Data2, for 30, 100, 200 and 400 protein classes (The sizes are shown in
the parentheses.). The experimental findings obtained by the average prediction
accuracies are confirmed from these curves.

4 Concluding Remarks

We have presented a new methodology which combines a selective sampling strat-
egy and a hierarchical latent variable model, for the problem of modeling and
predicting co-occurrence events. We have empirically shown that the presented
method is highly effective for learning from co-occurrence events, using real data
sets of protein-protein interactions, i.e. typical and real-world co-occurrence data
sets. We believe that the presented method is successfully applicable to other
numerous co-occurrence events in a variety of real-world applications as well as
the protein-protein interactions used in our experiments.
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