Partitioned Approach to Association Rule Mining
over Multiple Databases”

Himavalli Kona and Sharma Chakravarthy

CSE Department, The University of Texas at Arlington
{hima, sharma}@cse.uta.edu

Abstract. Database mining is the process of extracting interesting and previ-
ously unknown patterns and correlations from data stored in Data Base Man-
agement Systems (DBMSs). Association rule mining is the process of discover-
ing items, which tend to occur together in transactions. If the data to be mined
were stored as relations in multiple databases, instead of moving data from one
database to another, a partitioned approach would be appropriate. This paper
addresses the partitioned approach to association rule mining for data stored in
multiple Relational DBMSs. This paper proposes an approach that is very effec-
tive for partitioned databases as compared to the main memory partitioned ap-
proach. Our approach uses SQL-based K-way join algorithm and its optimiza-
tions. A second alternative that trades accuracy for performance is also
presented. Our results indicate that beyond a certain size of data sets, the accu-
racy is preserved in addition to improving performance. Extensive experiments
have been performed and results are presented for the two partitioned ap-
proaches using IBM DB2/UDB and Oracle 8i.

1 Introduction

Association rule mining [3, 4, 5] makes correlation between items that are grouped
into transactions deducing rules that define relationships between itemsets. Here an
attempt is made to identify if customer who buys item ‘A’ also buys item ‘B’. Asso-
ciation rules are of the form A => B where A is the antecedent and B is the conse-
quent. Several association rule algorithms have been proposed that work on data in a
file [5, 6, 7]. Data base approach to association rules using SQL have been explored
aswell [8,9, 11, 13, 14].

Parallel mining algorithms have been developed to overcome the limitations of
main memory approaches by using the aggregate power and memory of many proces-
sors. A multi-database system [1, 2] is a federation of autonomous and heterogeneous
database systems. Data is distributed over multiple databases (typically 2 or 3) in
many organizations. Each of the databases may get updated frequently and independ-
ently. Most of the organizations today have multiple data sources distributed at differ-
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ent locations, which need to be analyzed to generate interesting patterns and rules. An
effective way to deal with multiple data sources (where data to be mined is distributed
among several relations on different DBMSs) is to mine the association rules at dif-
ferent sources and forward the rules to other systems rather than sending the data to
be mined which is likely to be very large. Interactive mining has been proposed as a
way to bring decision makers into the loop to enhance the utility of mining and to
support goal oriented mining. Partitioned and incremental approaches can be applied
to each of the data sources independently, which would require the transmission of
intermediate results between the databases.

If the raw data from each of the local databases were sent to a common database
for mining and generation of rules, certain useful rules, which would aid in making
decisions about local datasets, would be lost. For example a rule such as “50% of the
branches in the north saw a 10% increase in the purchase of printers when digital
cameras and memory cards were purchased together” would not be generated if the
raw data was transferred and processed as a whole. In such a case the organization
may miss out certain rules that were prominent in certain branches and were not
found in the other branches as in the above example. Generating such rules would aid
in making decisions at each branch independently.

This paper addresses the problem of directly mining data stored in multiple rela-
tions or multiple databases. The main memory approaches are not applicable here
unless data is siphoned out of each relation/database which is what we are trying to
avoid in the first place. The cost models for data transfer in our case are very different
from that of partitioned main memory algorithms. Furthermore, the utility of mining
each data set independently as well as together is important for many applications. In
this paper, we address the partitioned approaches to discover association rules on data
residing in multiple databases. Although incremental approaches have been devel-
oped, we will not discuss them for lack of space. Please refer to [17] for details.

The rest of the paper is organized as follows: In Section 2 discusses some of the re-
lated work in this area. Section 3 discusses the inefficiency of the main memory parti-
tioned approach when directly used for multiple databases. Section 4 presents our
approaches and their performance evaluation. Section 5 has conclusions.

2 Related Work

The partition algorithm for association rules presented in [7] makes at most two
passes over the input database to generate the rules. In the first phase of the algorithm
the database is divided into non-overlapping partitions and each of the partitions are
mined individually to generate the local frequent itemsets. At the end of the first
phase the local frequent itemsets are merged to generate the global candidate itemsets.
In the second phase of the algorithm a TIDLIST is created and used to calculate the
support of all the itemsets in the global candidate itemset to generate the global fre-
quent itemsets. The algorithm could be executed in parallel to utilize the capacity of
many processors with each processor generating the rules.

SQL-Based approaches map transactions into relations with (TID, Item) attribute
format [3, 13]. The (TID, Itemlist) format was not chosen because the number of
items for a particular transaction may exceed the number of attributes a DBMS can
support. SQL-92 and SQL-OR approaches [13, 14, 16] were introduced for mining
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data in relational DBMSs. The SQL-92 based approaches correspond to k-way join
and its optimizations such as the Second Pass Optimization (SPO), Reuse of Item
Combinations (RIC) and Prune the input table (PI). It has been shown [11, 16] that, of
all the SQL-based approaches, K-way join and its optimizations have the best per-
formance (as compared to query-sub query and group by approaches).

Most of the times data is already stored as relations in different databases belong-
ing to the same organization. If one were to mine the data present in multiple data-
bases, there are two options. [2] presents a weighted model for synthesizing high-
frequency association rules from different sources. A high-frequency rule is the one
that is supported by most of the data sources. The proposed model assigns a high-
weight to a data source that supports/votes more high-frequency rules and a lower
weight to a data source that supports/votes less high-frequency rules. [1] discusses a
new multi-database mining process. The patterns in multi-databases are divided into
the three classes as Local patterns, high-vote patterns and Exceptional patterns. The
mining strategy identifies two types of patterns, high-vote patterns and exceptional
patterns. The discovery of these patterns can capture certain distributions of local
patterns and assist global decision-making within a large company.

3 Performance of the Partitioned Approach

The partition algorithm [7] is an efficient main memory algorithm for mining associa-
tion rules in large data sets that could be partitioned as needed. This approach when
used for multiple databases results in poor performance as will be shown in the paper.
For its implementation, relational operations (using SQL) were used. There was no
change in Phase I of the algorithm. Each database was considered an individual parti-
tion and the frequent itemsets were generated for each of the databases. In Phase II of
the algorithm the frequent itemsets from each of the partitions were merged to form
two sets of itemsets. The first set is the global frequent itemsets, which correspond to
itemsets that are large in all the partitions (databases). The second set is the set of
global candidate itemsets, which is the union of all the frequent itemsets from each of
the partitions (not included in the global frequent itemsets). A TIDLIST is created for
the entire database. As the data is assumed to be distributed over different databases,
each partition needs to be shipped to a single database to create the TIDLIST. The
TIDLIST was used for counting the support of the itemsets in the global candidate
itemsets and the itemsets satisfying the user specified support were added to the set of
global frequent itemsets.

3.1 Methodology for Experiments

The performance results presented in this paper are based on datasets generated syn-
thetically using IBM’s data-generator. The nomenclature of these datasets is of the
form “TxxlyyDzzzK”, where “xx” denotes the average number of items present per
transaction, "yy" denotes the average support of each item in the dataset and "zzzK"
denotes the total number of transactions in “K”(1000s). The experiments have been
performed on Oracle 8i and IBM DB2 / UDB V7.2 (installed on a machine running
Microsoft Windows 2000 Server with 512MB of RAM). Each experiment has been
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performed 4 times. The values from the first run are ignored so as to avoid the effect
of the previous experiments and other database setups. The average of the next 3 runs
was used for analysis to avoid any false reporting of time due to system overload or
other factors. For the purpose of reporting experimental results in this paper, due to
space constraints, we have shown the results only for three datasets — TSI2D100K,
T512D500K, and T512D1000K.

Figure 1. shows the performance of the TIDLIST approach for a T512D1000K
dataset. The dataset is divided into two equal partitions each of size S00K. The analy-
sis of the time taken for the different phases shows that the Phase II is the most time
consuming. In Phase II, the TIDLIST is created for the whole dataset. The TIDLIST
creation time increases exponentially as the size of the dataset increases. The parti-
tioned approach although seems to work well for main memory databases, its per-
formance for partitioned databases is not acceptable. The creation of the TIDLIST and
the shipping of the partitions to a single database need to be avoided.

DATASET T5I2D1000K (2 PARTITIONS OF SIZE 500K)
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Fig. 1. Performance Of TIDLIST Approach On TSI12D1000K Dataset

4 Proposed Algorithms for Multiple Databases

This section discusses two partitioned approaches — DB-Partition I (or approach I in
figures) and DB-partition II (or approach II in figures) — that have been developed and
tested for multiple databases. Notations used in the remainder of this paper are shown
in Table 1.

Table 1. Notation used for the Partitioned Approach

Notation Meaning
CPK Set of local candidate k-itemsets in partition P.
FPK Set of local frequent k-itemsets in partition P.
CGK Set of global candidate k-itemsets.
FGK Set of global frequent k-itemsets.
NBd(FPK) Set of local non-frequent k-itemsets in partition P.
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The negative border of frequent k-itemsets corresponds to those itemsets that did
not satisfy the support in pass k. That is, NBd(F') = CP - FP. Given a collection F

c P(R) of sets, closed with respect to set inclusion relation, the NBd(F) of F consists
of the minimal itemsets X < R notin F.

4.1 DB-Partition I

In the TIDLIST approach, the TIDLIST was created as a CLOB. In DB-partition I,
the TIDLIST is not at all created and the k-way join approach is used instead. Some
of the k-way join optimizations reported in [14, 16] have been used. The two k-way
join optimizations used are: Second-pass Optimization (SPO) and Reuse of Item
Combinations (RIC). In a multiple database scenario, each of the individual databases
is considered as a partition and the merging is done by choosing one of the databases.
The changes made to the partition algorithm are described below.

Phase I: In this phase the frequent itemsets F are generated for each of the parti-

tions. Along with the frequent itemsets in each of the partitions, the negative border of
the frequent 2-itemsets NBd(FPZ) is also retained. These itemsets are used for count-

ing the support in the Phase II of the algorithm. Only the negative border of the 2-
itemsets is retained because when the second pass optimization is used, the generation
of the 2-itemsets is the first step in each partition. Since the 2-itmeset generation is the
first pass, there is no loss of information and the negative border of the 2-itemsets will
have all possible 2-itemsets, which did not satisfy the support.

After the frequent itemsets from all the partitions (databases) are generated, the
frequent itemsets and the negative border of the frequent 2-itemsets from all the parti-
tions are shipped to one of the databases to do the remaining computation. This step is
shown as an edge with label “1” in Figure 2. Merging the frequent itemsets from all
the partitions generates the global candidate itemsets CY,, CY,, ..., CS.

F!, and NBd(F?,) F%, and NBd(F%,)

3. UK:StoN CGK

— DATABASE 1 > DATABASE2 <

2. FSand Up_ 5.y C%

1. F!, and NBd(F',)

Fig. 2. Data Transfer Using DB-partition I

Phase II: In this phase, the global frequent itemsets — itemsets that are large in all the
partitions — are generated. Merging the count obtained from the negative border and
the frequent 2-itemsets from all the partitions generates the count for the remaining 2-
itemsets in CY,. The itemsets satisfying the support are added to FS,. FS, and
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U 1.3 0 nC% are shipped to all the databases to generate the counts of the remaining

candidate itemsets. This is shown as an edge with label “2” in Figure 2.

Each of the databases generates a materialized table from the global frequent 2-
itemsets using the Reuse of item combination optimization. The materialized table is
used in the successive passes to generate the counts of the itemsets in the global can-
didate itemsets. Once the counts are generated in all the partitions they are shipped
back to one database to do the final counting. This is shown as an edge with label “3”
in Figure 2.

Figure 2 shows the data transferred in each of the steps. Database 1 and Database 2
are considered the 2 partitions. Database 2 is chosen for merging the frequent itemsets
from all the partitions to global candidate itemset and for generating the final cumula-
tive count of all frequent itemsets obtained from all the partitions in step “3”.

Performance Analysis: Performance experiments were done on datasets of different
sizes. Each data set divided into 2 or 3 non-overlapping partitions. Figure 3. shows the
performance of a TSI2D1000K dataset divided into 2 equal sized partitions each of
size S00K. It can be seen from the graph that the improvement in performance in DB-
partition I compared to TID LIST approaches 58% for a support values of 0.20% and
the improvement increases to about 78% for a support value of 0.10%. As the support
value decreases the percentage improvement in the performance increases.
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Fig. 3. Performance Comparison Of TIDLIST And DB-partition I

Figure 4. shows the data transfer when there are 3 partitions. At the end of each
phase the intermediate results are transferred to one of the partitions to do the remain-
ing computations.

The performance for TSI2D500K is shown in Figure 5. The dataset is divided into
3 partitions of size 200K, 200K and 100K. The performance is shown for Oracle and
DB2. For DB2 the percentage improvement in performance decreases from 80% to
53% as the support value decreases from 0.30% to 0.20%. The performance in Oracle
shows an increase from 18% to 75% as the support value decreases from 0.20% to
0.10%.
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Fig. 4. Data Transfer Using DB-partition I For 3 Partitions

DATASET TS5I12D5S00K, DIVIDED INTO 3 PARTITIONS OF SIZE 200K, 200K, 100K
ON DB2
16000
14000 —
4 12000
5 10000 OFrequent
3 oPartiiton 3
80007 mPartition 2
g 60004 i: @ Partition 1
£ 4000 .
2000
: = =
TID ‘ Approach | TID ‘ Approach | TID ‘ Approach |
0.30% 0.25% 0.20%
Support values

DATASET T5I12D500K, 3 PARTITIONS OF SIZE 200K, 200K AND 100K
ON ORACLE

9000
8000
7000
6000 O Frequent
5000 O Partiiton 3
4000 m Partition 2
3000 | | @ Partition 1
2000 | I —
me = = = o= =
o
TID ‘ Approch | TID ‘ Approch | TID ‘ Approch I

0.20% 0.15% 0.10%

Support values

Time in seconds

Fig. 5. Performance Comparison Of T512D500K For TIDLIST And DB-partition I

Data Transfer: Table 2 shows the number of records transferred between the data-
bases in each step. The input data denotes the transactional data. It is assumed that the
dataset is divided into 2 equal sized partitions. The numbers in the Table 2 indicate
the number of records transferred. For example, for the T5I2D10K dataset the input
data has 27000 records and the total records transferred using DB-partition I between
the two databases is 51845. It is observed that transferring the intermediate results is
better for the datasets, which have more than 100K transactions (which is typically
the case).

In DB-partition I only the negative border of the frequent 2-itemsets was retained
in all the partitions. In phase II, a materialized table was created to do the support
counting. The time taken to create a materialized table increases as the size of the
dataset increases. In this approach the data is transferred 3 times between the parti-
tions. DB-partition II alternative was proposed to overcome the above drawbacks.
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Table 2. Data Transferred Using DB_partition I

Dataset Step 1 Step 2 Step 3 Total
[F' + NBd (F')]| [F%, +U,_5,,nC%l | Ug_5on C®k | records
T512D10K 50360 1393 92 51845
T512D100K 199455 678 101 200234
T512D500K 319677 638 76 320391
T512D1000K 356696 632 75 357403

4.2 DB-Partition II

During the Phase I of this approach, the negative border of all the frequent itemsets in
each of the partitions are retained as compared to the previous approach where only
the negative border of the frequent 2-itemsets were retained. When the frequent item-
sets are generated the data is transferred to one of the partitions (or databases) to form
the global candidate itemsets and the global frequent itemsets. The global frequent k-
itemsets are generated by merging the counts of the frequent k-itemsets and the nega-
tive border of the frequent k-itemsets. Figure 6 shows the data transfer in DB-
partition II.

DB-partition II is different from DB-partition I with regard to the number of times
data is transferred between the databases and the itemsets that are retained. In DB-
partition I, only the negative border of the frequent 2-itemsets is retained. Since re-
taining the negative border does not require any additional computation, in DB-
partition II, the negative border of all the frequent itemsets are retained for all the
databases. In Phase II of DB-partition I, the global frequent 2-itemsets are generated
using the local frequent 2-itemsets and their negative border from all the databases.
The results have to be transferred to the individual databases to generate the remain-
ing (3 to k) — itemsets, which requires the scanning the input data in each of the data-
bases to generate the counts. But in DB-partition II, all the global frequent itemsets
are generated using the local frequent itemsets and their negative border from all the
databases. An additional scan of the database is not required and the intermediate
results are transferred only once as compared to 3 times in DB-partitition I.

F1, and NBd(Flg) F2, and NBd(F2)

DATABASE 1 DATABASE 2

1. F!, and NBd(Fly)

Fig. 6. Data Transfer In DB-partition II
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Fig. 7. Performance Comparison Of All The Approaches With 2 Partitions
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Fig. 8. Performance Comparison Of All The Approaches With 3 Partitions

Figure 7 shows the performance comparison of the TIDLIST, DB-partition I and
DB-partition II. A T5SI2D1000K dataset was divided into 2 partitions of size 500K
each. From the graph it is noted that the performance of DB-partition II improved
from 16% to 18% as the support value decreased from 0.20% to 0.10%. Figure 8
shows a similar performance graph for 3 partitions.

We compared the data transfer between DB-partition I and DB-partition II (Table
3) and they were not much different as the size of the data is large for the second pass
(2-itemsets). It was noted that DB-partition II performed better than TIDLIST and
DB-partition I for almost all the cases. This was because the creation of materialized
table was eliminated and retaining the negative border does not require any additional
computation. However there is a tradeoff associated with the DB-partition II. This
approach may miss out the count of itemsets, which are globally large but locally
small in a few partitions. The count of some k-itemsets whose subset did not appear
either in the frequent itemsets or its negative border in the earlier passes may be
missed. Our intuition was that this was the case only for small data sizes that too
when the support is extremely low.

In order to verify this, we conducted experiments using DB-partition II for differ-
ent data sizes. Figure 9 shows the error observed in the frequent itemsets generated.
The frequent itemsets generated using the TIDLIST approach and DB-partition I was
compared with the itemsets generated in DB-partition II. This approach showed some
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error in the number of frequent itemsets generated in each pass. However, it was seen
that there was some error only for the smaller datasets with lower support values. No
error was noted beyond datasets of size TSI2D100K and above.

Table 3. Data Transfer For DB-partition 11

Dataset Input data Step 1 DB-partition Il
Records [F1 K + NBd (F1 K]
records
T512D10K 27000 50481 50481
T512D100K 273000 199521 199521
T5I12D500K 1368500 319740 319740
T512D1000K 2736000 356761 356761
Percentage Error in Frequent Itemsets
generated
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Fig. 9. Error Analysis

5 Conclusions

In this paper, we have focused on the partitioned approach to association rule mining
that can be used for multiple databases. The partitioned approach to association rule
mining is appropriate for mining data stored in multiple DBMSs. The partition algo-
rithm proposed in this paper provides an efficient way of discovering association
rules in large multi-database. This paper presented two approaches — DB-partition I
and DB-partition II using the negative border concept which possesses slightly differ-
ent performance characteristics. Extensive experiments have been performed for the
partitioned approach on Oracle 8i and IBM DB2.
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