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Editorial: Computational Methods in Economic
Dynamics

Herbert Dawid and Willi Semmler

This book contains selected papers presented at the 14th International conference
on Computing in Economics and Finance (CEF 2008), organized by the Society
of Computational Economics as well as some additional invited papers. A main
topic in this volume is the issue of market design and resulting market dynamics.
The economic crisis of 2007–2009 has once again highlighted the importance of a
proper design of market protocols and institutional details for economic dynamics
and macroeconomics. In particular, it became clear that the failure of many tradi-
tional models to capture behavioral details of agents’ decision making, contagion
effects, spillovers between markets and effects to the macroeconomy made it diffi-
cult to understand the mechanisms driving the economic meltdown. Also apart from
the treatment of economic crises it has been recognized in several important areas of
economic policy, like regulation of energy markets, that a proper study of implica-
tions of different institutional setups is crucial for an understanding of the evolution
of markets as well as policy effects.

Most of the articles in this volume build on the representation of the hetero-
geneity of economic agents with respect to behavior and expectations and stress the
interconnectedness of the decisions and actions of the different agents in the market.
Furthermore, explicit representation of interaction protocols plays an important role.
As is demonstrated in several papers of this volume the interplay of agents’ behavior
and interaction protocols gives rise to emergent properties on the market level that
often would not be anticipated based on the consideration of the single parts of the
model. Agent-based simulation techniques have become an important tool to pro-
vide insights into such kind of emergent properties. On the one hand, computational
methods are used to replicate and understand market dynamics emerging from inter-
action of heterogeneous agents, on the other hand, computational intelligence pro-
vides useful tools to develop models that have predictive power for complex market
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2 H. Dawid and W. Semmler

dynamics. Whereas the papers by LiCalzi et al., Oh & Mount, He & Shi, Li et al. and
van der Hoog and Deissenberg in this volume belong to the first of these categories,
the papers by Miles & Smith and Pena et al. contribute to the second stream of liter-
ature. Also in the framework of intertemporally optimizing, rather than boundedly
rational, individuals the explicit consideration of agents’ heterogeneity is impor-
tant for the evaluation of dynamic effects of policy measures. Again, computational
techniques are demonstrated to be crucial to expand the tractability and applicability
of such models. The papers by Marchiori et al. and Hungerländer & Neck provide
examples in this respect by considering overlapping generations models and differ-
ential games with heterogeneous actors.

Overall, the work in this volume gives strong evidence of the advancement of
research in the area of computational economics and highlights the potential of this
approach for a proper understanding of economic dynamics and related policy is-
sues.



Part I
Market Dynamics with Heterogeneous

Agents





Allocative Efficiency and Traders’ Protection
Under Zero Intelligence Behavior

Marco LiCalzi, Lucia Milone, and Paolo Pellizzari

Abstract This paper studies the continuous double auction from the point of view
of market engineering: we tweak a resampling rule often used for this exchange
protocol and search for an improved design. We assume zero intelligence trading
as a lower bound for more robust behavioral rules and look at allocative efficiency,
as well as three subordinate performance criteria: mean spread, cancellation rate,
and traders’ protection. This latter notion measures the ability of a protocol to help
traders capture their share of the competitive equilibrium profits.

We consider two families of resampling rules and obtain the following results.
Full resampling is not necessary to attain high allocative efficiency, but fine-tuning
the resampling rate is important. The best allocative performances are similar across
the two families. However, if the market designer adds any of the other three criteria
as a subordinate goal, then a resampling rule based on a price band around the best
quotes is superior.

1 Introduction

In a seminal paper, Gode and Sunder (1993a) define a zero intelligence (ZI) trader
as an agent that “has no intelligence, does not seek or maximize profits, and does
not observe, remember or learn.” (p. 121) Such zero intelligence assumption is not
meant to provide a descriptive model of individual behavior: on the contrary, it is
used to instantiate severe cognitive limitations that should impede the overall per-
formance of the market.

A ZI agent is usually modeled as a robot player that submits random offers in
an exchange market, under a minimal assumption of individual rationality: he never
takes actions that can lead him to trade at prices below his cost or above his valua-
tion. To the best of our knowledge, the first (unnamed) use of individually rational
zero intelligence behavior in economic theory goes back to the B-process studied
in Hurwicz et al. (1975); they prove that, if the market protocol allows unlimited
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6 M. LiCalzi et al.

retrading, an economy without externalities must converge to a Pareto optimal al-
location. Throughout this paper, we take the postulate of individual rationality for
granted and speak simply of zero intelligence behavior.

By simulating the actions of (individually rational) ZI traders in a continuous
double auction, Gode and Sunder (1993a) achieved levels of allocative efficiency
similar to the outcomes generated by human subjects in laboratory experiments.
This was used to argue that the main feature leading to a high allocative efficiency is
the market protocol rather than the trading strategies used by the agents. More boldly
put, the market can substitute for the cognitive limitations of the individuals. This
conclusion has spawned a large literature venturing in different directions, including
experimental economics and computer science; see Duffy (2006) for a thorough
survey.

In general, it is widely acknowledged that the interpretation of Gode and Sun-
der’s results is controversial. Gjerstad and Shachat (2007) emphasize the role of
individual rationality as the key crucial assumption for allocative efficiency. A re-
current theme is the robustness of Gode and Sunder’s conclusion: it is not difficult
to produce environments where the allocative efficiency reached by ZI agents badly
underperforms humans’ results; see e.g. Brewer et al. (2002). On the other hand,
the literature has shown that even minor improvements to the basic ZI trading rules
suffice to achieve convergence to the competitive equilibrium; see Cliff and Bruten
(1997) or Crockett et al. (2008).

Clearly, humans’ cognitive abilities provide more leverage than zero intelligence.
Therefore, we do not expect that the performance of a market protocol in an envi-
ronment populated with ZI agents would be the same as with human traders. On
the other hand, it is not unreasonable to postulate that the performance of a mar-
ket protocol under a ZI behavioral assumption provides a plausible benchmark for
its evaluation in view of use by human subjects. In his recent discussion of the
“market-centered theory of computational economics”, Mirowski (2007) attributes
to the zero intelligence literature the computational insight that human cognitive
abilities can be ignored under controlled circumstances to focus on the causal ca-
pacities of the market protocols. In a similar vein, Sunder (2004, p. 521) states that
“[w]hen seen as human artifacts, a science of markets need not be built from the
science of individual behavior.” The implicit claim is that we may learn about the
properties of markets regardless of the agents operating in them.

Our viewpoint is the following. Market protocols are complex artifacts; see Sub-
rahmanian and Talukdar (2004). Their design requires a special attention to details
and minutiæ that partakes of the engineering attitude advocated in Roth (2002): we
need to complement theory with experiments and computational simulations. In or-
der to make fine-grained comparisons among different protocols, it is necessary to
pin down agents’ behavior to a simple standard. The ZI assumption provides a rough
simplification under which it is possible to evaluate markets protocols in silico in or-
der to select more promising designs.

The purpose of this paper is to exemplify this approach with regard to the contin-
uous double auction. We replicate the results produced in Gode and Sunder (1993a)
and show that they depend crucially on a subtle assumption about the market pro-
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tocol that has gone unnoticed in the literature. They write: “There are several varia-
tions of the double auction. We made three choices to simplify our implementation
of the double auction. Each bid, ask, and transaction was valid for a single unit.
A transaction canceled any unaccepted bids and offers. Finally, when a bid and
a ask crossed, the transaction price was equal to the earlier of the two.” (p. 122,
emphasis added). As discussed below, the second emphasized assumption forces a
frequent resampling of agents’ quotes that is crucial (under zero intelligence) for
allocative efficiency. We call this assumption full resampling: speaking figuratively,
it mandates to toss away the book after each transaction. This seems both unrealistic
and unpalatable for practical market design.

We are thus left to ask whether Gode and Sunder’s implementation of the con-
tinuous double auction is a promising design. Taking the viewpoint of a market
designer who is interested in allocative efficiency, we evaluate alternative market
protocols that enforce different degrees of resampling. As it turns out, the assump-
tion of full resampling is not necessary to achieve very high allocative efficiency un-
der zero intelligence. There is a continuum of protocols, ordered by the strength of
their resampling properties, that attain comparable levels of efficiency. This makes
it possible to search for more effective protocols than Gode and Sunder’s (1993a)
without renouncing the objective of allocative efficiency.

To refine our selection, we introduce a subordinate criterion. While allocative
efficiency is desirable from an aggregate point of view, a single trader in an exchange
market is likely to be more interested in getting a fair deal. Let the competitive
share of a trader be the profit he would make by transacting at the (competitive)
equilibrium price. A market protocol that is more effective in helping traders realize
their competitive share offers a superior traders’ protection. Therefore, we study
the traders’ protection offered by comparably efficient market protocols to devise a
practical and simple implementation of the continuous double auction.

We study two families of resampling rules and identify a design that delivers a
significant improvement over Gode and Sunder’s (1993a). However, barring an ex-
perimental validation with human subjects, we can only claim that the lower bounds
on its performance with regard to both allocative efficiency and traders’ protection
are higher under zero intelligence.

The organization of the paper is the following. Section 2 describes the model
used in our computational experiments and clarifies some technical details in the
implementation of Gode and Sunder’s (1993a) continuous double auction. The zero
intelligence assumption is maintained throughout the paper. Section 3 proves that
some (possibly not full) resampling is a necessary condition for allocative efficiency
in the continuous double auction; see also LiCalzi and Pellizzari (2008). Section 4
shows that partial resampling may be sufficient for allocative efficiency. Based on
this result, we study a family of resampling rules for the implementation of the
continuous double auction protocol that modulates the probability of clearing the
book after a transaction. Several rules within this family attain comparable levels of
allocative efficiencies. Section 5 introduces an alternative way to effect resampling
that is based on the use of a price band. Section 6 compares the alternatives and
argues that the second method delivers a better protocol. Section 7 recapitulates our
conclusions.
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2 The Model

We use a setup very similar1 to Gode and Sunder (1993a), who consider a simple
exchange economy. Following Smith (1982), we identify three distinct components
for our (simulated) exchange markets. The environment in Sect. 2.1 describes the
general characteristics of our simulated economy, including agents’ preferences and
endowments. Section 2.2 specifies how agents make decisions and take actions un-
der the zero intelligence assumption. This behavioral rule is kept fixed throughout
this paper to let us concentrate on the effects of tweaking the market design. Finally,
Sect. 2.3 gives a detailed description of the institutional details that form the proto-
col of a continuous double auction (and its variants) which regulate the exchange.

2.1 The Environment

There is an economy with a number n of traders, who can exchange single units
of a generic good. (We set n = 40,200,1000 to look at size effects.) Each agent is
initialized to be a seller or a buyer with equal probability. Each seller i is endowed
with one unit of the good for which he has a private cost ci that is independently
drawn from the uniform distribution on [0,1]. Each buyer j holds no units and has
a private valuation vj for one unit of the good that is independently drawn from the
uniform distribution on [0,1]. Without loss of generality, prices are assumed to lie
in [0,1].

2.2 Zero Intelligence Behavior

Zero intelligence reduces behavior to a very simple rule: when requested a quote
for an order, a trader draws a price from a random distribution (usually taken to be
uniform). We assume that traders’ behavior abides by individual rationality: each
seller i is willing to sell his unit at a price p ≥ ci and each buyer j is willing to buy
one unit at a price p ≤ vj . Therefore, throughout this paper, the zero intelligence
assumption pins down behavior as follows: when requested a quote for an order,
a seller i provides an ask price that is an independent draw from the uniform distri-
bution on [ci,1]; similarly, a buyer j makes a bid that is an independent draw from
the uniform distribution on [0, vj ]. This behavioral rule is called ZI-C in Gode and
Sunder (1993a).

Note that the only action requested by an agent is to issue a quote: it is left
to the market to process traders’ quotes and execute transactions on their behalf.

1There are negligible differences. We consider n agents who can trade at most one unit, while
they have 12 traders who can exchange several units but must trade them one by one. Our setup is
simpler to describe because it associates with each trader a single unit and a one-dimensional type
(his cost/valuation).
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This is consistent with an approach of market engineering: we are not interested in
the performance of more sophisticated behavioral rules, but rather in the design of
protocols that take decent care even of simple-minded agents.

In particular, this paper studies protocols that implement variants of the con-
tinuous double auction, where agents sequentially place quotes on the selling and
buying books. Orders are immediately executed at the outstanding price if they are
marketable; otherwise, they are recorded on the books with the usual price-time pri-
ority and remain valid unless a cancellation occurs. When a transaction takes place,
the orders are removed from the market and the traders leave the market and become
inactive.

The zero intelligence assumption places a second restriction on agents’ behavior.
In a sequential protocol like the continuous double auction, an agent can choose
both his action and the time at which to take it; see Gul and Lundholm (1995). Zero
intelligence robs agents of the opportunity to make decisions about the timing at
which to issue a quote. Agents are exogenously arranged in a queue and reach the
market one at a time, until the queue is exhausted or some exogenous event triggers
the formation of a new queue.

The standard implementation is the following. At the beginning of a simulation,
all agents are active and placed in the queue. If an agent reaches the market and
trades his unit, he becomes inactive for the rest of the simulation. Otherwise, he is
in one of two states: either he has an order on the book (because he is active and
the queue has already reached him), or he is still queueing for a chance to act. An
important detail in the design of an experiment is the set of events that triggers the
formation of a new queue, reshuffling the state of active agents. For instance, the
full resampling assumption in Gode and Sunder (1993a) makes each transaction a
trigger event that sends all traders with an order on the book back to the end of the
queue.

2.3 The Protocol

The implementation of the continuous double auction in Gode and Sunder (1993a)
is based on several rules. Some of them are not stated explicitly in the paper, but
may be gathered by a joint reading of other related papers; see in particular Gode
and Sunder (1993b, 2004). For completeness and ease of reference, we collect here
all the ingredients we found necessary to replicate their results.

The first three rules correspond to the assumptions cited above. We begin with
the first and the third. The single unit rule states that all quotes and prices refer to
one unit of the good. A standard rule of precedence decides the transaction price:
when two quotes cross, the price is set by the earlier quote. We maintain both the
single unit and the precedence rules, because they entail no loss of generality.

The second of the three assumptions put forth in Gode and Sunder (1993a) as
“simplifications” states that the book is cleared after each transaction. By itself, this
rule is surprising because tossing away the book at any opportunity seems to run
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contrary to the obvious purpose of storing past orders and make them available to
future traders. In Gode and Sunder’s design, moreover, this rule triggers a refreshing
of the queue: after each transaction, all recorded orders are deleted and their owners
are given a new chance to act. When a ZI agent goes back to the queue and comes
up again, he randomly issues a new quote. Hence, the real consequence of tossing
away the book is to free up the agents’ past quotes and force them to issue novel
ones. That is, after each trade, all active agents who have placed an order since the
former transaction are resampled. This is the reason for calling their assumption full
resampling. Section 3 shows that full resampling is crucial for Gode and Sunder’s
results and hence cannot be dismissed as a mere “simplification”. In fact, one of the
motivations for this paper is to study the import of this neglected assumption.

There are other rules that need to be made explicit. No retrading states that buy-
ers and sellers can never exchange roles: a buyer (seller) who acquires (transfers)
a unit is not allowed to sell (buy) it later to other traders. The intuition that, given
sufficient retrading, a market populated with ZI agents should reach full allocative
efficiency is proven in Hurwicz et al. (1975). Therefore, no retrading is necessary
to avoid trivialities. Gode and Sunder (2004) provide further comments on the role
and plausibility of this assumption.

The uniform sequencing of agents within a simulation arranges them in a queue
according to an exogenously given order, which is independently drawn from the
uniform distribution over all permutations of agents. As explained in Gode and
Sunder (2004), in their simulations the queue of traders is sampled without replace-
ment. That is, when the execution of a transaction triggers a refreshing of the queue,
the agents who have a quote stored on the book re-enter it behind the traders still
waiting in the original queue. The no replacement assumption is a sensible simpli-
fication that allows for faster and more efficient coding. However, since this rule
violates anonymity, its practical implementation requires either additional informa-
tion processing (when control is centralized) or some traders’ coordination (under
decentralization). Therefore, in the interest of simplicity and realism, we maintain
the uniform sequencing rule but we switch to sampling with replacement: when an
event triggers the formation of a queue, we simply apply uniform sequencing over
all active agents.

Finally, the halting rule mandates when a trading session is over. In Gode and
Sunder (1993a) a trading session is a period of fixed duration that lasts 30 sec-
onds for each computational simulation. Traders are put in a queue and asked to
provide a quote. If all the queued agents have issued a quote and no transaction
has occurred, the books are cleared and a new queue is started until time is over.
Given that robot players are remarkably fast, this implies that an agent is likely to be
asked to issue a quote several times. (We have been unable to determine how often
queues are restarted in Gode and Sunder (1993a) only because the time limit has not
been reached.) Unfortunately, given that hardware (and software) vary in processing
power (and efficiency), a halting rule based on a fixed duration is not sufficient to
ensure comparable results when simulations are run on different machines. There-
fore, we choose a different halting rule that allows for full comparability: a trading
session is over when the queue of traders waiting to place an order is exhausted.
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An additional advantage of this assumption is that it biases our simulations in the
proper direction: ceteris paribus, we resample traders less often because our halting
rule is more stringent. This makes allocative efficiency harder to attain.

For the reader’s convenience, we recap here the rules of the continuous double
auction protocol used in all the simulations discussed in this paper. We use single
unit trading, set the transaction price by precedence, exclude retrading, and apply
uniform sequencing. Differently from Gode and Sunder (1993a), we put traders back
in the queue with replacement and use a more restrictive halting rule.

3 The Resampling Assumption

We test the import of the resampling assumption for the allocative efficiency of
the continuous double auction (as implemented by our protocol). As usual, we de-
fine allocative efficiency as the ratio between the realized gains from the trade and
the maximum feasible gains from trade, which can be formally defined as done in
Zhan et al. (2002, p. 678). This measure is adimensional, facilitating comparisons
throughout the paper.

3.1 Resampling Is Necessary for Allocative Efficiency

We contrast full resampling against no resampling under zero intelligence trading.
Full resampling mandates that after each transaction the book is cleared and active
traders with an order on the book are sent back to the waiting queue. No resampling
postulates that submitted orders stay on the book until the end of the trading session
(unless they are used up for a transaction); e.g. see Maslov (2000).

The difference between full and no resampling is stark. A ZI agent acts only
when its turn in the waiting queue comes up. Under no resampling, each agent
is given only one chance to act by sending a random quote to the book. Under
full resampling, on the other hand, until an agent completes a trade and becomes
inactive, any refresh of the waiting queue following a transaction may give him
a new chance to act and generate another random quote. Therefore, the number
of opportunities for actions is much greater under full resampling, and this should
increase allocative efficiency.

The datapoints on the left-hand side of Fig. 1 represent the allocative efficiencies
under full resampling for 500 different runs with n = 200 agents. The data match
Gode and Sunder’s (1993a) results, confirming that the impact of our (more strin-
gent) halting rule on allocative efficiency is negligible. The right-hand side provides
analogous information for the case of no resampling. The y-axes use the same scale,
so that a direct comparison by visual inspection is immediate: the higher the level,
the higher the allocative efficiency.

The difference in performance under full or no resampling is remarkably sub-
stantial. The mean (median) allocative efficiency is 0.910 (0.916) with full resam-
pling and 0.497 (0.498) with no resampling. (All statistics reported in this paper
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Fig. 1 Allocative efficiency under full (left) or no resampling (right)

are rounded to the closest third decimal digit.) The min–max range (standard de-
viation) for the allocative efficiency is [0.759,0.978] (0.036) with full resampling
and [0.246,0.684] (0.070) with no resampling. Within our sample, the worst alloca-
tive efficiency with n = 200 agents under full resampling (0.759) is much higher
than the best allocative efficiency under no resampling (0.684). Visual inspection
strongly suggests that the distribution of the allocative efficiency under full resam-
pling stochastically dominates the distribution under no resampling.2 More mod-
estly, we claim that the expected value of the allocative efficiency under full resam-
pling is higher. In fact, the Wilcoxon signed-rank test rejects the hypothesis that the
means are equal at a level of significance of 10−3. (Throughout the rest of the paper,
unless otherwise noted, we use the Wilcoxon signed-rank test to compare means
and we require a p-value lower than 10−3 to claim statistical significance.)

Similar effects occur for different values of n, but a larger number of agents tends
to improve allocative efficiency. Thus, when comparing data for a different number
of agents, we should take into account a fixed size effect. We believe that n = 200
is a representative case, but for comparability Table 1 lists the main statistics for
n = 200/5 = 40 and n = 200 × 5 = 1000.

Based on the relative size of the agents’ pool, we say that the market is thin
(n = 40), thick (n = 200), or crowded (n = 1000). Each column summarizes 500
distinct simulation rounds.

It is apparent that no resampling may be calamitous in a thin market, because
an agent who happens to issue a “wrong” quote is given no later chance to remedy.
Analogously, a few “lucky” trades may shoot allocative efficiency up. Hence, the
dispersion of the allocative efficiency is much higher in a thin market. Such effects
are washed out in a crowded market. Overall, an increase in n has a positive effect
on allocative efficiency under either resampling assumption. But the effect is sharper
under full resampling, because this rule gives traders more chances to trade.

2LiCalzi and Pellizzari (2008) document a similar effect over four different trading protocols.
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Table 1 Summary statistics for the allocative efficiency

Full resampling No resampling

n = 40 n = 200 n = 1000 n = 40 n = 200 n = 1000

Mean 0.735 0.910 0.949 0.441 0.497 0.517

Median 0.765 0.916 0.951 0.456 0.498 0.518

Minimum 0.053 0.759 0.911 0.000 0.246 0.405

Maximum 1.000 0.978 0.971 0.933 0.684 0.609

Std. dev. 0.169 0.036 0.009 0.157 0.070 0.032

Our experiment shows that, ceteris paribus, full resampling yields a much
higher allocative efficiency than no resampling. Speaking figuratively, no resam-
pling switches off the ability of a protocol to help ZI agents capture most of the
available gains from trade. We conclude that (at least some) resampling is a neces-
sary condition for allocative efficiency. This reduces the scope of Gode and Sunder’s
(1993a) results about the ability of a market to substitute for agents’ lack of ratio-
nality: an effective protocol for ZI agents must include rules that ensure an adequate
amount of resampling.

On the other hand, our results do not invalidate their claim that it is possible to
design markets that may overcome agents’ cognitive limitations. To the contrary,
they suggest that the use of a (partial) resampling rule may be a particularly clever
design choice for fostering allocative efficiency in exchange markets. Section 4 sets
out to examine a continuum of alternative rules that enforce different degrees of
resampling in this respect. We find that less than full resampling is sufficient to
reach high levels of efficiency.

3.2 Efficiency and Full Resampling

Before moving to issues of market engineering, there are two hanging questions to
address. First: why does full resampling lead to higher allocative efficiency than no
resampling? Second: where does the efficiency loss go?

We begin with the second question, whose answer leads naturally to the first one.
Gode and Sunder (1997, p. 605) point out that in general there are “three causes of
inefficiency: (1) traders participate in unprofitable trades; (2) traders fail to negoti-
ate profitable trades’ and (3) extramarginal traders displace intramarginal traders.”
Since individual rationality rules out the first source of inefficiency, we need be-
ing concerned only with the other two. They can be measured; e.g., see Zhan and
Friedman (2007) who also provide formal definitions.

Let p∗ be the market-clearing price. (There may be an interval of market-clearing
prices. We assume that p∗ is the midpoint.) Individually rational traders who would
transact at p∗ are called intramarginal; all other traders are extramarginal. If at the
end of a trading session an intramarginal trader i has failed to trade, this creates a
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Table 2 A breakdown of the efficiency loss

Full resampling No resampling

n = 40 n = 200 n = 1000 n = 40 n = 200 n = 1000

AE 0.735 0.910 0.950 0.441 0.497 0.517

MT 0.241 0.055 0.012 0.548 0.495 0.477

EM 0.025 0.035 0.037 0.011 0.008 0.006

loss of total surplus equal to vi − p∗ if he is a buyer and p∗ − ci if he is a seller.
The sum of these losses corresponds to (2) above: we call it MT , as a mnemonic
for the inefficiency caused by missed trades. The third case comes about when a
transaction involves an extramarginal trader, causing a loss equal to his profit at p∗.
The sum of such losses corresponds to (3) above: we call it EM, as a mnemonic for
the inefficiency due to extramarginal trades. As discussed in Zhan and Friedman
(2007), the allocative efficiency decomposes as AE = 1 − MT − EM; or, equiva-
lently, MT + EM = 1 − AE measures the allocative inefficiency. Table 2 provides a
breakdown of the efficiency loss for thin, thick and crowded markets by listing mean
values over 500 distinct simulation rounds. Values may not add up to 1 because of
rounding effects.

There are two observations to be made. The first one is that the efficiency loss
(MT) attributable to missed trades is decreasing in the thickness of the market, be-
cause thicker markets facilitate the search for a matching quote. Moreover, trading
under no resampling terminates too soon: most of the efficiency loss comes from
missed trades. (The difference between the mean values for MT under full or no
resampling is statistically significant.) The reason for a high allocative efficiency
under full resampling is elementary: this rule is of course more effective in prolong-
ing the trading session, and hence gives traders enough chances to find their right
match. This suggests that an effective market protocol should offer agents an ade-
quate number of matching opportunities to keep the MT component of the efficiency
loss under control.

The second observation points out a shortcoming of full resampling. The aver-
age value of EM is higher under such rule. (The difference between the means is
once again statistically significant.) This is not difficult to explain: by the prece-
dence rule, the best outstanding bid and ask in the book bound the price of the
next transaction. The narrower the spread, the more difficult is to steal a deal for
an extramarginal trader. Storing earlier quotes in the book provides (intramarginal)
traders with some price protection and makes them less exploitable by extramarginal
agents. As the full resampling rule tosses away the book after each transaction, it re-
nounces such protection all too frequently (compared to no resampling). This is ap-
parent by a straightforward comparison: the average spread (sampled before a trader
places an order) is 0.152 with no resampling and 0.327 with full resampling when
n = 200. (Corresponding values are 0.267 and 0.398 for n = 40; 0.113 and 0.268
for n = 1000.) The differences between the mean values are statistically significant.
Since the zero intelligence assumption prevents traders from adjusting their quotes
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Fig. 2 Allocative efficiency under π -resampling

based on the state of the book, full resampling is a rule more favorable to extra-
marginal traders than no resampling. This suggests that an effective market protocol
should incorporate some form of price protection to keep the EM component of the
efficiency loss under control.

4 Randomized Resampling

Section 3.1 established that the resampling rule is crucial to reach allocative effi-
ciency under zero intelligence. To evaluate its impact, this section begins by looking
at a continuum of resampling rules that generalize the simple dichotomy between no
and full resampling. We emphasize that these rules are chosen to compare and under-
stand how resampling affects the trading protocol. Like engineers, we are searching
for improvements and tweaks over a basic design.

4.1 Full Resampling Is Not Necessary for Allocative Efficiency

A simple way to conceptualize the distinction between no and full resampling is
to note that these two rules react differently to the same event; namely, the occur-
rence of a transaction. When two orders cross, full resampling clears the book with
probability one whereas no resampling does so with probability zero. This naturally
suggests to consider a family of randomized resampling rules that clear the book
with probability π in [0,1] whenever there is a transaction. This set embeds full
resampling for π = 1 and no resampling for π = 0.

The right-hand side of Fig. 2 shows the allocative efficiency under π -resampling
with n = 200 agents. The graph is obtained as follows. We choose the 21 equis-
paced points {0,0.05,0.10, . . . ,0.90,0.95,1} in the [0,1] interval. For each of these
π -values, we run 500 distinct simulations. The allocative efficiencies obtained over
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these 21 × 500 = 10500 simulations are plotted as datapoints on the left-hand side
of Fig. 2. We summarize these data by the mean allocative efficiency for each π .
(The difference between a mean and the corresponding median is never greater than
0.022.) The 21 sample averages are joined using segments to obtain the thicker
central piecewise linear representation.3 The two external thin graphs are similarly
obtained by joining respectively the minimum and maximum values obtained for
the allocative efficiency at a given value of the resampling probability π . We em-
phasize that the resulting band is not a confidence interval but the actual range of
efficiencies obtained under our simulations: its main purpose is to provide a simple
visual diagnostic for the dispersion of the data around their central tendency. We
adopt the usual [0,1]-scale for the y-axis.

The graph on the right of Fig. 2 is easily interpreted. As expected, allocative
efficiency is on average increasing in the probability π that a transaction triggers a
clearing of the book. Under zero intelligence, the frequency with which resampling
takes place has a direct effect on the ability of the protocol to reap high levels of
efficiency. On the other hand, the graph shows also that full resampling (π = 1) is
not necessary: the (average) allocative efficiency in our simulations is more than
90% for π ≥ 0.7 with a (statistically insignificant) peak of 91.08% at π = 0.95;
the standard deviations are never greater than 0.132. There is an upper bound on
the allocative efficiency that can be attained but a sufficiently large π is enough to
approach it.

Similar results hold for thin and crowded markets: when n = 40, AE ≥ 67% for
π ≥ 0.7 with a peak of 73.48% at π = 1 and standard deviations never greater than
0.209; when n = 1000, AE ≥ 93% for π ≥ 0.2 with a (statistically insignificant)
peak of 95.12% at π = 0.85 and standard deviations never greater than 0.080. The
thickness of the market affects the upper bound on the allocative efficiency but, in
general, there is a whole range of resampling probabilities that achieve comparably
high levels of allocative efficiency under zero intelligence.

Our conclusion is that full resampling is not necessary for allocative efficiency.
Full resampling sets π = 1 and tosses the book away after each transaction: this
yields a high allocative efficiency under zero intelligence, but it is also an extreme
assumption that is likely to be unpalatable for human traders in real markets. As it
turns out, we can temper the strength of full resampling at the mere cost of a tiny
reduction (if any) in allocative efficiency.

This leads naturally to frame the choice of a resampling rule as a tradeoff be-
tween its allocative benefits and its implementation costs. On the part of the market
designer, there are obvious costs to continuously monitor and update the state of the
book. Similarly, traders who are forced to check whether their past orders have been
voided are likely to resist frequent cancellations. Intuitively, when the costs of full
resampling are not trivial, we expect partial resampling (0 < π < 1) to be prefer-
able. The rest of this section fleshes up this argument. Section 5 takes up a related

3We consistently apply this approach to construct the graphs for this paper: a broken line joins
21 points, each of which represents a statistic over 500 distinct simulations for a fixed value of a
parameter such as π .
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question and examines a different family of resampling rules to find out whether
they perform better than π -resampling.

4.2 Where Is the Best π?

Let us take stock of the starting point we have reached so far. First, given the thick-
ness of the market, there is an upper bound on the (mean) allocative efficiency that
can be attained using π -resampling. Second, the set of π -values for which the pro-
tocol reaches comparably high levels of efficiency is an interval. Thus, we need to
look at additional performance criteria in order to pinpoint a smaller interval for the
choice for π .

We do not claim that it is possible to find the best π and reduce such interval
to a singleton, because the zero intelligence assumption provides at best a lower
bound for the evaluation of a protocol. More modestly, we can define plausible per-
formance criteria and measure them for different values of π under zero intelligence
trading. Clearly, this procedure cannot provide a final verdict for the performance
of the protocol with human subjects. Hence, the aim of this section is to carry out
an engineering exercise and derive a robust choice: what is the range of π for which
performance under zero intelligence is better, and why?

We consider two simple criteria. (Others are of course possible, and we take up a
third major one in Sect. 4.3.) The first criterion deals with the basic requirement that
an effective market protocol should offer some guidance to traders’ choice in the
form of a price signal. The closer the outstanding bid and ask straddle the (compet-
itive) equilibrium price, the stronger the information that they provide. It is obvious
that zero intelligence makes no use of this information: therefore, the object of our
investigation is the ability of the protocol to provide an effective price signal inde-
pendently of traders’ behavior.

We measure it by the (mean) spread on the market: the closer the spread, the
stronger the signal. The average is taken by sampling data when a trader arrives
and places an order (as opposed to just before a transaction occurs), because we are
interested in the state of the book found by a generic agent reaching the market. As
it turns out, our environment is sufficiently regular that the best bid and the best ask
are (on average) symmetric around the equilibrium price p∗. Hence, the outstanding
spread is a sufficient statistic for such purpose. The left-hand side of Fig. 3 shows
the (mean) outstanding bid and ask under π -resampling. The y-axis is truncated to
[0.3,0.7] to enhance readability.

Unsurprisingly, the spread is on average increasing in π . When resampling is
more frequent, the book is cleared more often and hence is more likely to have
both fewer quotes and a larger spread. For n = 200, the average (median) spread
in our simulations increases monotonically from 0.152 (0.124) at π = 0 to a peak
of 0.327 (0.232) at π = 1; the standard deviations are never greater than 0.033.
Qualitatively similar results hold for n = 40 and n = 1000, and spreads are smaller
in thicker markets. This leads to the following general piece of advice. Suppose
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Fig. 3 Mean spreads and cancellation rates under π -resampling

that, conditional on achieving comparable levels of allocative efficiency, a market
designer prefers narrower spreads. Then he should aim towards choosing a level of
π that is bounded away from zero (to achieve efficiency) as well as from one (to
obtain smaller spreads). The thicker the market, the weaker the need to stay away
from one.

A second simple criterion has to do with the number of cancellations imposed on
traders. (Recall that traders cannot cancel their orders.) The benefit of a cancellation
is to offer a new chance for action to the trader. On the other hand, in general there
are costs associated with the inconvenience of monitoring the state of an order or
placing a new one. Therefore, when the allocative efficiency of two protocols are
similar, it is reasonable to expect that the one leading to fewer cancellations should
be preferred. We measure the cancellation rate as the average of the ratio between
the number of orders canceled over the number of transactions completed over each
of our 500 simulated trading sessions. Clearly, allocative efficiency is strongly cor-
related with volume; hence, the higher the ratio, the higher the cost of redundant
cancellations. The right-hand side of Fig. 3 depicts the (mean) cancellation ratio
with n = 200 agents. As usual, we report the mean values as a thick black line
surrounded by thinner red lines that correspond to the minima and maxima.

Similarly to the spread, the cancellation rate is on average increasing in π be-
cause the amount of resampling directly correlates with the number of canceled
orders. For n = 200, the mean (and standard deviation) of the cancellation rate go
up4 from 2.643 (2.498) at π = 0.05 to a peak of 18.22 (3.002) at π = 1; the stan-
dard deviations are never greater than 3.124. Similar results hold for n = 40 and
n = 1000, and mean cancellation rates are higher in thicker markets. The conclu-
sion we draw is similar to the earlier one. Suppose that, conditional on achieving
comparable levels of allocative efficiency, a market designer prefers a lower cancel-
lation rate. Then an optimal π should be bounded away from zero (for efficiency)

4We start from π = 0.05 because the cancellation rate at π = 0 is zero by assumption.
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as well as from one (for a lower rate). The thicker the market, the stronger the need
to stay away from one.

4.3 Traders’ Protection

The last performance criterion that we consider in this paper is directly inspired by
Stigler (1964), who pioneered the use of simulations to address issues of market
engineering. He put down a clear statement: “The paramount goal of the regulations
in the security markets is to protect the innocent (but avaricious) investor” (p. 120).
While his paper is concerned with security markets, the conditions for achieving
this goal should also be investigated for exchange markets. Curiously, the literature
on zero intelligence has so far neglected this issue to the point that there is not even
an agreed convention on the exact meaning of protection.

This section provides a measurable criterion for traders’ protection in an ex-
change market, and then applies it to the evaluation of the π -resampling rule. Ide-
ally, in a competitive equilibrium, all5 the intramarginal traders exchange the good at
the same equilibrium price p∗: nobody pays (or is paid) differently from the others.
On the other hand, a continuous double auction offers neither of these guarantees:
first, an intramarginal trader may fail to close a deal; second, the price at which a
trade occurs may be different from the price agreed for another trade. Both of these
events deny the competitive outcome to the intramarginal trader. When a market
protocol hold such events under control, it manages to offer traders’ protection.

Clearly, allocative efficiency does not measure traders’ protection: since it fo-
cuses on the gains from trade that are realized, it fails to register at what terms these
gains materialize. We need a more sophisticated measure that takes into account the
price at which a transaction is carried out, and hence touches on the distribution of
gains. To this purpose, we define the competitive share of a trader as the (positive
part of the) profit he would make by transacting at the competitive equilibrium price.
Given an equilibrium price p∗, the competitive share of a buyer with valuation v is
(v−p∗)+ and that of a seller with cost c is (p∗ −c)+. Clearly, the competitive share
of any extramarginal trader is zero.

The realized competitive share is the portion of his competitive share realized
by an agent. (Extramarginal traders are entitled to no competitive share.) If an agent
fails to trade, this portion is zero. If a trade occurs at price p, the realized competitive
share is v − max{p,p∗} for an (intramarginal) buyer and min{p,p∗} − c for an
(intramarginal) seller.

The realized competitive share is concerned only with measuring whether a
trader gets its due, and ignores any additional gains that he may be able to reap. The
profit realized by an intramarginal trader may be greater than his realized competi-
tive share if he manages to secure terms of trade more favorable than p∗; similarly,

5When the number of intramarginal traders is odd, one of them will not trade for lack of a partner.
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Fig. 4 Traders’ protection (left), superimposed to allocative efficiency (right)

any extramarginal agent who completes a trade makes positive profits by individual
rationality, but his realized competitive share remains zero.

Note that the sum of all the competitive shares equals the maximum feasible
gains from trade. In analogy with allocative efficiency (AE), we define the traders’
protection (for short, TP) offered by a market protocol as the ratio of the realized
competitive shares and the sum of all the competitive shares. This measure is adi-
mensional and takes values in [0,1].

The left-hand side of Fig. 4 shows the traders’ protection under π -resampling
with n = 200 agents. As usual, we report the mean values surrounded by minima
and maxima. The right-hand side superimposes AE and TP to allow for a direct
comparison: the black line corresponding to TP is the same visible on the left, while
the red line depicting AE corresponds to the inner black line from the right-hand
side of Fig. 2.

In general, traders’ protection is not increasing in π . For n = 200, the mean
protection starts at 0.431 in π = 0, peaks at 0.718 in π = 0.7 and then declines to
0.709 in π = 1 (with two local maxima of 0.711 at π = 0.4 and 0.715 at π = 0.9);
the standard deviations are never greater than 0.111. Qualitatively similar results
hold for crowded and thin markets. When n = 1000, TP is 0.461 in π = 0, peaks at
0.791 in π = 0.2 and then declines to 0.744 in π = 1 with no other local maxima
and standard deviations never greater than 0.070. For n = 40, TP is 0.355 in π = 0
and peaks at 0.563 in π = 1, with four more local maxima in between and standard
deviations never greater than 0.172.

Here, the thickness of the market has a very strong effect on the range of the
best value for π : the more crowded the market, the smaller the resampling rate that
provides the best protection. The overall conclusion is similar to the above, with a
strong word of caution as regards the thickness of the market. Suppose that, con-
ditional on achieving comparable levels of allocative efficiency, a market designer
prefers to offer a higher traders’ protection. Then an optimal π should be bounded
away from zero (for efficiency) as well as from one (for protection). When the mar-
ket gets thicker, however, the need to stay away from one is remarkably higher.
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To sum it up, we have considered three criteria based respectively on spread,
cancellation rate, and traders’ protection. To a different extent, they all support a
choice of π from the interior of the interval [0,1]: at the cost of a nominal reduction
in allocative efficiency, it is possible to have lower spreads, fewer cancellations,
and higher traders’ protection. It is clear that both the relative importance of these
criteria to the market designer as well as the thickness of the market matter for
the exact choice of π . However, generally speaking, all of our performance criteria
strongly suggest that full resampling is unlikely to be a defensible choice.

5 Resampling Outside of a Price Band

Section 4 has studied randomized resampling, but it is obvious that there exist many
other rules. It may be impossible to pick a best one, but we can compare the per-
formance of different resampling techniques. This section considers a different rule
that shares a few basic properties with π -resampling. First, it depends on a single pa-
rameter γ in [0,1]. Second, it implies an average resampling rate that is increasing
in the parameter. Third, it embeds the two extreme cases of full and no resampling
for γ = 1 and γ = 0. Fourth, it requires minimal information and thus imposes very
little burden on the market protocol or the cognitive abilities of the traders.

The γ -resampling rule is the following. After a trade carries out at price p, the
protocol cancels all outstanding orders that fall outside the price band [γp,γp +
(1 − γ )]; moreover, in the special case γ = 1, we require the protocol to erase even
the outstanding orders at price p so that it clears the book entirely. (This specifica-
tion is necessary to embed full resampling, because the book might contain orders
with price p but lower time priority.) It is useful to keep in mind that π is the prob-
ability with which the book is cleared after a transaction, while (1 − γ ) is the width
of the price band within which orders are not deleted after a transaction.

Like π -resampling, the γ -resampling rule is triggered whenever a transaction oc-
curs. Differently from it, its application implies that traders whose orders are deleted
may infer a one-sided bound for the last transaction price. For instance, given γ ,
when a buyer sees that his past order at price p has been canceled, he can deduce
that the last transaction price must have been strictly greater than p/γ . We do not
view this a significant limitation, since it is seems highly plausible that all agents
would be given public access to such information. On the other hand, since it makes
no use of the best outstanding bid and ask, the γ -resampling rule does not require
to divulge this kind of information. This may be an additional advantage in view of
the results in Arifovic and Ledyard (2007), who consider a sequence of call markets
and show that the closed book design6 brings about a higher allocative efficiency
than an open book in environments populated with human subjects or (non ZI) sim-
ulated agents. If similar results should suggest adopting a closed book design for

6In a closed book, traders learn only the clearing price after each call; in an open book, they are
also told the quotes processed in that call.
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Fig. 5 Allocative efficiency under π - and γ -resampling

the continuous double auction, both π - and γ -resampling are compatible. For the
current study, it suffices to say that the ZI assumption precludes a direct comparison
between closed and open book design, because it prevents agents from making use
of any disclosed information.

The γ -resampling rule may be easily adapted in other dimensions. For instance,
our definition embeds a symmetry assumption that may be removed. We choose
the endpoints of the price band at the same distance from the extremes of the price
range: the left endpoint is a convex combination between the last transaction price p

and the minimum possible price, while the right endpoint is a convex combination
between p and the maximum possible price. Clearly, this choice requires the implicit
assumption that we know that p lies in the interval [0,1]. More generally, when no
bounds for the price are known, it suffices to set the price band to be the interval
[γp, (1/γ )p] for γ in [0,1] or other analogous formulations.

Figure 5 shows the allocative efficiency under π -resampling (on the left) and
γ -resampling (on the right) with n = 200 agents.

The graph on the left is the same as in Fig. 2. The graph on the right is the
analog for γ -resampling: a thick inner black line joins the mean values, and two
thin outer red lines join the corresponding minima and maxima. The directionality
of the graphs is aligned because they depict two resampling rules that coincide for
π = γ = 0 and π = γ = 1.

Both resampling rules are on average increasing in the corresponding parameter.
However, the qualitative behavior is different. Under π -resampling, allocative effi-
ciency picks up fast and rapidly settles on a plateau: for n = 200, the sample average
is greater than 0.90 for π ≥ 0.7. As already discussed, even moderate levels of π

suffice to attain an adequate level of efficiency. On the other hand, efficiency under
γ -resampling grows up more slowly and, quite interestingly, peaks at γ < 1: for
n = 200, the sample average is greater than 0.90 for π ≥ 0.75 and peaks at 0.923
for γ = 0.85; the standard deviations are never greater than 0.073.

Similar results hold for the case of thin and crowded markets. For n = 40, the
sample average is greater than 0.67 for γ ≥ 0.65 and peaks at 0.743 for γ = 0.9,
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Table 3 Maximum allocative efficiency under π - and γ -resampling

π-resampling γ -resampling

n = 40 n = 200 n = 1000 n = 40 n = 200 n = 1000

Maximum AE 0.735 0.911 0.951 0.743 0.923 0.960

Maximizer (π, γ ) 1.000 0.950 0.850 0.900 0.850 0.800

with standard deviations never greater than 0.197; for n = 1000, the sample aver-
age is greater than 0.94 for γ ≥ 0.7 and peaks at 0.96 for γ = 0.8 with standard
deviations never greater than 0.033. Thicker markets exhibit a superior allocative
performance for lower values of γ but the overall conclusion is the same: a narrow
(but not empty) price band is a necessary condition to attain sufficiently high levels
of efficiency.

6 A Comparison of Alternative Rules

This section compares the performance of the protocol when adopting π -resampling
versus γ -resampling over four different criteria: allocative efficiency (AE), mean
spread, cancellation rate, and traders’ protection (TP).

Table 3 compares the allocative efficiency under π - and γ -resampling for thin,
thick, and crowded markets.

For each combination of n and resampling rule, we list the highest mean values
obtained. These are slightly higher under γ -resampling, but we would not stake big
claims over tiny differences that are subject to sampling errors. (However, they are
statistically significant for n = 200 and n = 1000.) We prefer to conclude that there
is no clear winner over AE: both resampling rules can be tuned to attain comparably
high levels of allocative efficiency .

The second performance criterion is the mean spread. Figure 6 shows the best
bid and ask under both π -resampling (on the left) and γ -resampling (on the right)
with n = 200 agents. The y-axes are truncated to [0.3,0.7] to enhance readability.

Predictably, as a mere visual inspection confirms, the clear winner is the γ -
resampling rule that is based on an explicit form of price control. Table 4 vali-
dates this conjecture by listing the lowest mean spread obtained under π - and γ -
resampling for thin, thick, and crowded markets. The difference between the mean
values is statistically significant for each choice of n.

Conditional on choosing the right parameter, the mean spread with γ -resampling
is remarkably smaller. However, note that the best performances of both π - and γ -
resampling with regard to the mean spread require a choice of parameters that are
far from being optimal for allocative efficiency. This is easily seen by comparing
the second rows from Tables 3 and 4. Therefore, while it is clear that γ -resampling
yields a lower mean spread than π -resampling under ideal conditions, we need a
further test to find out whether it is still superior once we take into account both
efficiency and mean spread.
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Fig. 6 Mean spread under π - and γ -resampling

Table 4 Mean spread under π - and γ -resampling

π-resampling γ -resampling

n = 40 n = 200 n = 1000 n = 40 n = 200 n = 1000

Minimum (mean) spread 0.267 0.152 0.113 0.228 0.118 0.086

Minimizer (π, γ ) 0.000 0.000 0.000 0.450 0.500 0.600

This test is provided on the left-hand side of Fig. 7, where we plot the average
outstanding bid and ask under both π -resampling (in red) and γ -resampling (in
black) with n = 200 agents. This graph combines information about the two resam-
pling rules. For each level of the (mean) allocative efficiency attained under either
rule, we plot the corresponding average values of the best bid and ask and then
join the datapoints using broken lines. Since the two rules attain different (mean)
efficiencies, the datapoints are not vertically aligned. The left-hand picture shows
clearly that, for comparable levels of allocative efficiency, γ -resampling leads to
smaller (mean) spreads that π -resampling. In other words, a resampling rule based
on a price band tends to produce a smaller spread than a rule based on a full clearing
of the book, without sacrificing allocative efficiency.

Our third performance criterion is the cancellation rate. As is the case for π -
resampling, this rate in on average increasing in γ because the width of the price
band inversely correlates with the number of canceled orders. For n = 200, the mean
(and standard deviation) of the cancellation rate go up from 1.868 (0.561) at γ =
0.05 (it is zero for γ = 0) to 18.16 (3.211) at γ = 1; the standard deviations are
never greater than 3.212. A direct comparison shows that the range of attainable
values for the cancellation rate is virtually identical under π - and γ -resampling.
Similar results hold for n = 40 and n = 1000. Taken by itself, therefore, a criterion
based on the cancellation rate is not conclusive.

As for the mean spread, however, we can compare the combined performance
of either resampling rule with respect to allocative efficiency and cancellation rates.
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Fig. 7 Bid-ask spreads and cancellation rates versus allocative efficiency

Table 5 Maximum traders’ protection under π - and γ -resampling

π-resampling γ -resampling

n = 40 n = 200 n = 1000 n = 40 n = 200 n = 1000

Maximum TP 0.563 0.718 0.791 0.589 0.774 0.833

Maximizer (π, γ ) 1.000 0.700 0.200 0.800 0.750 0.700

The right-hand side of Fig. 7 plots the (average) cancellation rates for each level
of the (mean) allocative efficiency attained under either rule. For a large range of
(lower) allocative efficiencies, π -resampling has a substantially lower cancellation
rate; for high values, γ -resampling comes out better by a thin margin. (We do not
report the graphs for different values of n, but increasing n makes this conclusion
sharper.) Hence, whenever the market designer views the cancellation rate as ancil-
lary to the allocative performance, he should prefer a resampling rule based on the
price band.

The last (and in our opinion, more important) criterion is traders’ protection. Ta-
ble 5 compares the performance of π - and γ -resampling in thin, thick, and crowded
markets. Similarly to Table 3, we list the highest mean values obtained for each
combination of n and resampling rule. For n = 200 or n = 1000, the differences
between the mean values are statistically significant. (For n = 40, this holds at the
1% significance level.) Conditional on choosing the right parameter, traders’ pro-
tection is higher using γ -resampling. Note also that the optimal values of π and γ

are decreasing in the thickness of the market, but this effect is much stronger for π -
resampling. Therefore, when the exact size of the market is not known, the choice
of the parameter under γ -resampling is more robust.

This superiority carries over when traders’ protection is ancillary to allocative
efficiency. The left-hand side of Fig. 8 superimposes the usual graphs of the mean
values for AE and TP under γ -resampling for n = 200. The equivalent representa-
tion for π -resampling is on the right-hand side of Fig. 4. In general, γ -resampling
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Fig. 8 Traders’ protection and allocative efficiency for π - and γ -resampling

delivers a higher traders’ protection than π -resampling for any given level of al-
locative efficiency. This is shown on the right-hand side of Fig. 8, where we report
the (mean) traders’ protection offered by the two resampling rules with respect to
their (mean) allocative efficiency. The γ -resampling frontier on the AE–TP plane
dominates the π -resampling frontier.

7 Conclusions

We have studied the continuous double auction from the point of view of market
engineering, tweaking the trading protocol in search of improved designs. Our start-
ing point has been the rules for exchange adopted by Gode and Sunder (1993a)
for experiments with human agents and simulations with robot traders. We have
disassembled their trading protocol into several component rules, and focused at-
tention on resampling. We have assumed zero intelligence trading as a lower bound
for more robust behavioral rules in order to elucidate the consequences of different
resampling techniques.

Like Gode and Sunder (1993a) and most of the subsequent literature, we look
first at allocative efficiency. Their trading protocol makes an extreme assumption
that we call full resampling. We show that full resampling is especially favorable
to allocative efficiency, biasing Gode and Sunder’s results about the ability of the
market to substitute for the lack of traders’ intelligence. (A second negligible bias
may come from their halting rule.) On the other hand, we demonstrate that partial
resampling may be sufficient for the purpose of attaining a high allocative efficiency.

Based on this, we have devised a family of rules that includes as extreme cases
both Gode and Sunder’s full resampling and the opposite assumption of no resam-
pling. This class of rules is parameterized by the probability π of clearing the book
after a transaction occurs. We find that there is a large range of values for which
π -resampling can attain a high allocative efficiency. In order to discriminate among
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such π ’s, we introduce three subordinate performance criteria: spread, cancellation
rate, and traders’ protection. The spread criterion measures the capacity of the proto-
col to provide a useful price signal. The cancellation rate looks at the inconvenience
created by over-resampling. Finally, traders’ protection measures the ability of a
protocol to help agents capture their share of the competitive equilibrium profits.
This latter criterion, patterned after the usual measure of allocative efficiency, is (to
the best of our knowledge) new to the literature: we argue that ignoring it neglects
one of the paramount goals of designing a market protocol.

We then introduce a different family of rules, based on the idea to delete only
those quotes that fall outside of a price band parameterized by γ . We find that from
the point of view of allocative efficiency, the optimized versions of either resampling
rule are virtually indistinguishable. However, several differences emerge when we
study their performance with respect to the other three criteria. In particular, when
we consider a pair of criteria where the first one is allocative efficiency and the
second one is any of the other three, we find that it is always the case that (at least
for high efficiencies) γ -resampling dominates π -resampling. We then conclude that
a resampling rule based on the price band is superior.
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Using Software Agents to Supplement Tests
Conducted by Human Subjects

Hyungna Oh and Timothy D. Mount

Abstract The objective of this paper is to test whether or not software agents can
match the observed behavior of human subjects in laboratory tests of markets. For
this purpose, one set of tests uses four software agents and two human subjects to
represent six suppliers in three different market situations: no forward contracts,
fixed price forward contracts, and renewable forward contracts. An identical set of
tests is conducted using software agents to represent all of the suppliers. The results
show that software agents were able to replicate the behavior of human subjects
effectively in the experiments, and have the potential to be used effectively in test-
ing electricity auctions, doing additional sensitivity tests, and supplementing results
obtained using human subjects.

1 Introduction

Restructured electricity markets have exhibited unsatisfactory results, most notably
in California. Since electricity is a central component of modern economies, mar-
ket operators and regulatory agencies continually introduce new types of market
structures to obtain a more reliable electricity market. Recent introductions include
a micro-grid, a capacity market, long-term contracts, demand-side participation, fi-
nancial transmission rights, and customers’ choice of retail services. More recently,
smart electricity meters and real-time pricing have also been considered to improve
efficiency and mitigate wholesalers’ market power. Furthermore, deregulation and
the unbundling of generation, transmission, and distribution functions provide many
choices for a supplier, such as vertical integration, merging with other firms, enter-
ing into the new market, or divesting from the market. This variety of choices for
generating firms, customers, and market operators implies that electricity markets
are not fixed, but continue to change.

This type of evolving market requires suitable modeling tools that can be used
to test new market structures and new market rules before they are applied to real
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markets. Experimental economics has been used to test how wholesalers and con-
sumers change their behavior when market conditions and rules are changed, and
how spot prices are affected. However, there are some important restrictions on the
design of an experiment. Viable results must be obtained using a relatively small
number of suppliers and a relatively small number of trading periods. For exam-
ple, the standard market test using PowerWeb (an interactive, distributed, Internet-
based simulation platform developed by PSERC researchers at Cornell University)1

at Cornell involves only six firms, and tests with more than 50 trading periods are
rare. Agent-based simulation can be an alternative to laboratory tests using people.
In an agent-based simulation, the role of human subjects in an experiment is taken
on by software agents. One advantage of using software agents, rather than peo-
ple, to test markets is that this makes running a much more extensive range of tests
practical.

A software agent with computational intelligence is a computer program repre-
senting an economic decision, and it performs its assigned task in a virtual envi-
ronment. In order to perform the task efficiently, an agent has at least a perception
function and a decision function. The former receives new pieces of information
and rearranges them to extract useful information, while the latter selects the best
action to maximize its satisfaction. In this process, the algorithms rely on heuristic
arguments and similarities to nature (Dawid 1999).

Agent-based Computational Economics (hereafter, ACE2) is a branch of eco-
nomics utilizing artificial intelligence techniques in economic research. Advantages
of these ACE approaches to electricity market research include the following: (1) an
agent may generate different behaviors in the spot market even when market condi-
tions are exactly the same as before. This time-variant strategy is the result of either
learning effects or changes in market conditions; (2) the dynamic relation of suppli-
ers’ behavior to market price can be explained, since a software agent interacts with
other agents, determines the market price and then reacts to the market price; (3) if
new rules or market structures are specified, an ACE system can test how these alter
the market price and the supplier’s behavior; and (4) it can closely simulate real mar-
ket conditions using diversified agents, with business goals, production conditions,
risk attitudes and preferences, and accessibility to information different by agent.

There are various software agents designed for restructured electricity markets
in the U.S. For example, the EMCAS (Electricity Market Complex Adaptive Sys-
tem) has been developed by Argonne National Laboratory and analyzes the tech-
nological and economical aspects of electrical power systems (see Argonne Na-
tional Laboratory 2008). The learning used in EMCAS software agents is called
“exploration-based learning.” GenCo, a supplier agent in EMCAS, uses this learn-
ing and pursues its given goals (such as maximizing profits, maintaining the min-
imum market share, and avoiding regulatory intervention). Tesfatsion and her col-
leagues at ISU developed AMES (Agent-based Modeling of Electricity Systems),

1http://www.pserc.cornell.edu/powerweb.
2According to Tesfatsion’s definition (2001), ACE is the computational study of economies mod-
eled as evolving systems of autonomous interacting agents with learning capacities.
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and tested the market power, efficiency and reliability issues in wholesale electric-
ity markets (2007). Talukdar et al. at CMU simulated price spikes resulting from
bidders’ withholding behavior (2004) and showed how a cascading failure can oc-
cur, using autonomous adaptive software agents (2005). Finally, Cornell University
combined autonomous software agents with human subjects in analyzing various
market options and detecting market power (Oh and Thomas 2006; Oh et al. 2005;
Mount and Oh 2004).

In the UK, Bower and Bunn (2000) applied agent-based techniques to the new
two-settlement market (a Power Exchange and a Balancing Market), which included
a discriminatory auction for the balancing market. The software agent in their sim-
ulation was designed to maximize profit conditional on maintaining a minimum
market share. As Bunn and Oliveira (2001) recognized, they did not incorporate any
learning effects. Bunn and Oliveira (2001) extended Bower and Bunn (2000) with
reinforcement learning. Recently, Bunn and Day (2009) demonstrated that an ACE
approach can be a very useful tool to explain continuously evolved strategies on a
large scale and in a complex market.

The objective of this paper is to demonstrate that software agents can match the
observed behavior of human subjects in laboratory tests of markets. For this pur-
pose, one set of tests uses students to represent suppliers in an electricity auction
with (1) no forward contracts (all dispatched capacity is paid at the spot price),
(2) permanent forward contracts (i.e. two suppliers hold a permanent forward con-
tract, the same contract is held for all trading periods, and the price of this contract
is independent of the spot prices), and (3) renewable forward contracts (i.e. a for-
ward contract is renewed periodically and spot prices influence the forward price).
An identical set of tests is also conducted using software agents (i.e. artificial intel-
ligence) to represent all of the suppliers.

The analysis is based on simulations of a wholesale market for electricity run by
an Independent System Operator (ISO). Suppliers submit offers to a central auction,
and the ISO determines the optimum pattern of dispatch to minimize the cost of
meeting load. A uniform price auction is used to determine the market price.

Our software agents (see Mount and Oh 2004) have a backward looking function
to learn about the current market from previous market outcomes. This adaptation
involves updating an estimate of the residual demand curve faced by each firm, and
this curve is used by the firm to determine the optimum set of offers to maximize
expected profits in the next round of the auction. A noticeable result from our ear-
lier work (Mount and Oh 2004) is that under the load uncertainty, agents replicate
supply curves that are sharply kinked, like hockey sticks, for the last few units of
the capacity offered. As Fig. 1 shows, this is exactly the type of behavior observed
in deregulated electricity markets.

The results using software agents were encouraging. In the first set of tests, two
students competed in each market with four software agents. By adjusting parame-
ter values in the residual demand function, these four agents were designed as price-
takers at the beginning. However, they can learn during the experiment, and evolve a
Cournot strategy, a Bertrand strategy, or both. In almost all cases, the average earn-
ings of the software agents were higher than the average earnings of the students. In
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Fig. 1 Offer curves observed in the PJM wholesale market for electricity

the tests with all software agents, two software agents replaced the students. These
two software agents were designed to test whether the electricity market can be
imperfectly competitive. They were created by setting parameter values of their ini-
tial residual demand functions to give their shape a curvature. Average spot prices
and earnings with all software agents corresponded closely to the highest values
obtained by the students. Our outcomes demonstrate that software agents can be
used effectively to test electricity auctions, conduct additional sensitivity tests, and
supplement results obtained using humans.

The rest of this paper is organized as follows. Section 2 explains the experimental
framework and design of software agents. Section 3 compares the performance of
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human subjects and software agents, and tests whether or not software agents can
be used to replicate the behavior of actual suppliers and people in laboratory tests.
In Sect. 4, we conclude the paper.

2 The Experimental Framework

2.1 An Experimental Design

All of the experiments are conducted using PowerWeb to test different electricity
markets using human decision makers and/or computer agents. An Independent
System Operator (ISO) determines the optimum dispatch of generators and the spot
(nodal) prices paid to suppliers. The PowerWeb environment is designed to run unit
commitment and optimal power flow routines to minimize the cost of meeting load
subject to the physical constraints of an AC network. However, for our experiments,
network constraints are not binding, and, in each trading period, the same spot price
is paid to all suppliers, using a uniform price auction (last accepted offer).

After each trading period, the ISO announces a forecast of the load in the next
trading period. Load is completely price inelastic but does vary from period to pe-
riod. The forecasted load is generated randomly using a uniform distribution from
430 MW to 550 MW. The actual load is also generated randomly using a uniform
distribution (Forecast ±20 MW). The average load is 82% of the total installed ca-
pacity, which corresponds to realistic conditions in the summer when the load is
relatively high.

For each trading period, each supplier submits offers to sell (or withhold) five
blocks of capacity into the auction. A price cap (maximum offer allowed) of
$100/MWh is enforced by the ISO (to keep the payments to participants in the test
reasonably low). If the total capacity offered into the auction is less than the actual
load, the ISO covers the shortfall by purchasing expensive imports from another
market. However, when a shortfall occurs, the spot price is set by the highest offer
and not by the price of imports.

Each supplier owns five blocks of generating capacity with capacities 50, 20, 10,
10, 10 (MW) and production costs 20, 40, 48, 50, 52 ($/MWh generated), respec-
tively. In addition, there is a fixed standby cost of $5/MW to cover the opportunity
cost of availability when a block is offered into the market. Withholding a block
from the auction is the only way to avoid the standby cost for that block. There is
also a fixed cost charged each period to cover capital costs ($1200/period, to make
earnings roughly equal to profits in excess of competitive levels). These capacity
and cost structures are the same for all six suppliers and remain the same in all
markets tested.

As shown in Table 1, three different markets, (1) no forward contract (Test 1),
(2) a permanent forward contract (Test 2), and (3) a renewable forward contract
(Test 3), were tested during Fall semester, 2003 using 20 students majoring in ap-
plied economics or electrical engineering (the tests were part of a course on elec-
tricity markets). Each student represents a supplier in the market. In addition, some
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Table 1 Experiment settings

Categories Forward contracts Number of
students

Number of software
agents

VIF IPT LS

I Test 1 No forward contracts 2 2 2 0

Test 2 Contract on first 50 MW at $60/MW
(permanent)

2a 2 2 0

Test 3 Contract on first 50 MW, updated
every 10 periods (renewable)

2a 2 2 0

II Test 1 No forward contracts 0 2 2 2

Test 2 Contract on first 50 MW at $60/MW
(permanent)

0 2 2 2a

Test 3 Contract on first 50 MW, updated
every 10 periods (renewable)

0 2 2 2a

Note: Category I—the first set of experiments with 4 agents and 2 students and Category II—the
second set of experiment with all agents
aIndicates the holder of the forward contract

suppliers are represented by computer agents. In Test 1, none of the six suppliers
holds a forward contract, but the two vertically integrated firms (agents) must meet
one sixth of the load at a predetermined price. In Test 2, regulations require that each
student must hold a forward contract for half of her capacity, and has already signed
a contract for 50 MW (the first block of capacity) at a fixed price of $60/MWh.
These contracts are in place for all periods. Hence, the objective is to maximize
profits from selling the remaining four blocks of capacity (the first block is submit-
ted automatically). In all other respects, conditions are the same as in Test 1.

In Test 3, each student has to renew a 10-period forward contract for 50 MW
every 10th period. The forward price is given in (2) with λ = 0.25 and a random
residual added. The value of λ is not a priori information for the suppliers. The
computer agents are designed to estimate λ based on the previous spot and forward
prices. Simulation results show that the agents’ estimates of λ are accurate after
3 periods. In Tests 2 and 3, the students are paid for the forward contracts as well as
for earnings in the spot market. In Test 3, the first contract price is set at $60/MWh
for periods 1 to 10, and this contract is renewed in periods 10 and 20. The students’
earnings are computed to reflect the forward prices in the two new contracts but not
the initial contract (the actual revenue from the first two contracts is augmented by
50 · 10 · (P F

20 − 60)). The reason for doing this is to provide the students with the
same incentive to increase the forward price of a new contract throughout the test.

For each test, there are 10 sessions with six suppliers in each: two students, two
vertically integrated firm agents (hereafter, VIF) and two initial price taking agents
(hereafter, IPT) (believing that price spikes cannot occur). The lowest profit session
in each test is excluded so that results correspond more closely to the behavior of
professional traders in real markets.
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The students in the tests represented experienced traders, and receive an initial
briefing on how suppliers behave in the PJM market3 (Instructions used for students
are attached in Appendix). Hence, the students understand the rationale for specu-
lating, and why offer curves shaped like hockey sticks cause price spikes. Test 1 (no
contract) consists of 25 trading periods, and the next two tests, conducted a week
later, consist of 20 trading periods each. Each student is paid in direct proportion to
her cumulative earnings and told that the objective of the tests is to earn as much
money as possible. Initial trading periods are treated as learning periods for devel-
oping an offer strategy, and the average results from the last 10 periods in each test
are used in the analysis.

In the first set of experiments, two students compete with four agents. Two of
these agents represent VIF that have to meet a fixed proportion of load and are
paid a regulated price (=$60/MWh) for this load. These firms have less incentive
to speculate than the others. The other two agents are IPT. However, IPTs can learn
to speculate if high prices do occur, and, in this sense, these two agents reinforce
the behavior of the students. If the students do not speculate, none of the computer
agents speculate, but if the students speculate, the agents learn to speculate and make
the market easier to exploit.

An identical set of tests was also conducted using computer agents to represent
all six suppliers, by replacing the students with two “latent speculators” (hereafter,
LS) (believing price spikes can occur). These agents are more likely to speculate
than initial price takers, and initial price takers evolve into latent speculators if there
are high prices. The primary objective of the tests with all agents was to determine
how well the computer agents can replicate the typical offer behavior of the students.

2.2 Design of Software Agents

In our experiment, the task of each software agent is to compete with other software
agents and human subjects and maximize its own profit. Like human subjects, each
software agent owns five generating blocks, submits offers to the uniform price auc-
tion, and observes market outcomes when the market is cleared. All software agents
determine their offers synchronously and independently. This reflects market rules
that prevent one firm from communicating with another on offer strategies. We as-
sume that each software agent considers that the electricity auction is continuously
operated in this way in order to exclude the possibility of atypical offers (i.e., termi-
nal offers) that a software agent may make at the end of the simulation period.

Software agents in this study anticipate forthcoming market conditions using the
residual demand function. In an earlier study (Oh 2003), we showed that an inverse

3PJM Interconnection LLC (PJM) is a regional transmission organization (RTO) which coordinates
the flow of electricity from power plants to distribution companies over a network of transmission
lines owned by its members in all or parts of Delaware, Illinois, Indiana, Kentucky, Maryland,
Michigan, New Jersey, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia, and the District of
Columbia.
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function (1) fits the total supply curve, shaped like a hockey stick, reasonably well.
Hence we specify the residual demand function of individual firms based upon the
following total supply curve.

Pt = 1/(at + bt (TCt − Q̂t )) (1)

where

Pt is the market price at time t ($/MWh)
Q̂t is the forecasted system load (MW/h), and
TCt is the total offered capacity

From (1), we specify a residual demand curve as an inverse function of the “excess”
capacity offered into the auction (i.e. the available capacity that is offered but is not
dispatched) as follows:

Pt = 1/(at + bt (OCt + qt − Q̂t )) = 1/(at + btOCt − bt (Q̂t − qt ))

= 1/(αt − βt(Q̂t − qt )/IC) (2)

where

OCt is the offered capacity from other firms,
IC is the installed capacity of other firms,
qt < qmax is the own capacity dispatched, and
at > 0 and bt > 0 are the subjective parameter values of the firm.

The re-parameterization to αt = at + btOCt is convenient because OCt is un-
observed, and this avoids the computational problems of getting at < 0 when up-
dating (bt is also used in the updating process, but βt is specified here because the
values are easier to interpret). P L

t = 1/αt corresponds to the low market price if
the firm could undercut the offers of all other firms and cover all of the load (i.e.
qt = Q̂t ). Clearly, the firm’s own installed capacity, qmax, is the maximum that can
actually be offered in the auction by a firm. For the other parameter (βt = bt IC),
P H

t = 1/(αt − βt ) corresponds to the highest possible price in the market when
qt = Q̂t − IC (i.e. the price for the first unit of capacity dispatched in the market).

This form of residual demand allows for a wide range of market behavior from
competitive to the type of speculation implied by “hockey stick” supply curves (see
Oh 2003). In a truly competitive market, PL

t = P H
t and βt = 0. When 0 < βt < αt ,

P H
t > P L

t and the firm believes that it has some market power. As βt → αt , P H
t

increases, and values greater than the price cap in the market can be interpreted as
other firms withholding capacity from the auction. This type of withholding can be
sufficiently large to make the firm “pivotal” (i.e. essential for meeting the load when
OCt < Q̂t ). The restriction 0 < βtQ̂t /IC < αt ensures that prices are positive and
finite for 0 ≤ qt ≤ qmax, which is the relevant range of quantity offers for the firm
(βtQ̂t /IC > αt makes the firm pivotal).

This linkage between parameter values and suppliers’ behavior provides infor-
mation on the design of software agents. For example, we set initial values of
α0 and β0 so that IPT agents’ residual demand curve is almost flat and their ex-
pected market price is close to the competitive price for a given load: β0 = 0 and
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1/α0 = [P C
0 |load]. For LS agents, the initial value of α0 is the same as IPT agent’s

but the initial value of β0 is set to match 1/(α0 − β0) = [PH
0 |load], where PH

0 is an
IPT agent’s expected market price for a given load. We can compute cost-based
prices and determine the range of P C

0 ∈ [45,55]. The range of P H
0 is selected,

P H
0 ∈ [65,100], to cover 30 percent or above (up to price cap) mark-up pricing

behavior. Then, a set of randomly drawn values is assigned for each software agent,
and set initial values of α0 and β0 are used.

The parameter vector, δt = [αt , βt ], in the residual demand function defined in
(2) is time-varying and revised with Kalman adaptive learning whenever new infor-
mation is available. New information is embodied in the price prediction error. In
each round, software agents adjust their price prediction in the previous round by
applying the actual load in (2), computing the price prediction error (ηt |t−1). This er-
ror contains new information about δt beyond that contained in δt |t−1. The updating
equation, δt |t = δt |t−1 + Kt · ηt |t−1, forms the new parameter vector as a weighted
average of δt |t−1 and new information contained in the predictor error, ηt |t−1. The
Kalman gain (Kt ) determines the weight assigned to new information included in
the price prediction error. By applying load forecast for the current round and the
new parameter vector δt |t , software agents update the new residual demand function.
Based on the estimated residual demand function, they evaluate market conditions
and investigate whether or not they can be better off using non-competitive strate-
gies. This learning process can be termed a Kalman adaptive algorithm.

The main advantage of our approach is that the behavior of each firm agent can
be evaluated directly using conventional economic criteria such as a supply func-
tion equilibrium (Klemperer and Meyer 1989). However, unlike human subjects,
our software agents are incapable of learning about the structure of the market by
employing complex counterfactual scenarios or deep introspection, and rely on sim-
ple adaptive learning using a Kalman filter.

Once the residual demand function is updated, the software agent determines the
optimal offer for each block of capacity to maximize expected profits. A numerical
search is used to determine the set of optimal offers. A numerical search consists
of 6 steps: (1) generating a series of random numbers distributed around the load
forecast, (2) drawing a level of load (Lj ) from the distribution, and computing the
residual demand function with it, (3) for a set of possible offer pricesPi ∈ [0,100],
computing profits from the first block (base block) to the block currently considered
for Lj , (4) considering load uncertainty, computing the expected profits for each
offer price, (5) determining the optimal offer for each block to maximize expected
profit, and (6) if the expected profit of the optimum offer cannot increase total ex-
pected profit, withholding the block from the market to avoid paying stand-by costs.

In our earlier study (Mount and Oh 2004), we demonstrated that, in the presence
of load forecasting errors, our design of software agents can replicate observed sup-
ply curves, which are shaped like hockey sticks. Figure 2 shows the simulated offer
curve with a price cap of $1,000/MWh in PJM. This is exactly the type of behavior
observed in deregulated electricity markets, and also shown in Fig. 1.
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Fig. 2 The effect of different
load forecasting errors (0%
and 5%) on the optimum
offers (OPT) of a firm (MC is
the marginal cost) (Mount
and Oh 2004)

3 Performance of Computer Agents

In the first part of this section, we will demonstrate that software agents can replicate
the observed offer behavior of human subjects (students) and actual generating firms
in the market. In the second part, the performance of the computer agents in the
experiments is evaluated and compared to the performance of the two IPT agents
and the two students, using average earnings in the three tests. Then, in the third
part of this section, we will compare the results of experiments using all agents with
those of experiments using four agents and two human subjects.

3.1 Replication of the Observed Behavior of Actual Suppliers and
Human Subjects in Laboratory Tests

Figure 3 gives one example of how students and software agents behave in the auc-
tion. This example uses the session with the highest earnings for Test 1 (session 6).
The 9th (top) and 24th (bottom) periods are selected to show the learning effects
in offer behavior of software agents. Note that forecasted load and actual load are
similar in these two periods. In earlier periods (including the 2nd and 3rd), students
submitted the maximum offers ($100 MWh) for their 4th and 5th blocks and, as a
result, students and software agents experienced very high market clearing prices
($100 MWh). In the 9th period, IPT agents submitted 80 percent of their installed
capacity, similar to the proportion of forecasted load to the total installed capacity
in the market (600 MWh), and their offer prices were above marginal costs. These
offer behaviors were less competitive than their initial behaviors, but still more com-
petitive than those of the students. However, as the auction was repeated, IPT agents
evolved offer behaviors similar to students’. In the 24th period, IPT agents submit-
ted the maximum offer prices ($100 MWh) and generated a supply curve shaped
like a hockey stick, as the students did. This example demonstrates how IPT agents
learned from market outcomes, developed their strategies and, finally, demonstrated
offer behavior similar to that of students in the laboratory tests, and actual suppliers
in the market.
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Fig. 3 Learning effects: offers submitted in the auction in periods of 4 and 24 (faded areas repre-
sent capacity blocks withheld from the market)
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Table 2 Average earnings
($ in periods 11 to 20)

Note: The standard deviation
is given in parentheses

Tests Students VIF-agents IPT-agents

Test 1 13,019 10,845 13,170

(3,234) (633) (2,701)

Test 2 10,230 11,295 17,031

(2,703) (894) (4,713)

Test 3 18,625 12,210 21,494

(3,532) (866) (4,130)

Fig. 4 Comparison of average earnings

3.2 Human Subjects (Students) Versus IPT Agents

Table 2 summarizes the main results of the first set of experiments in compact form.
The average earnings of the IPT agents in different sessions were higher than the
earnings of the students in all three tests, and significantly higher in Tests 2 and 3.
The results for individual sessions are also depicted in Fig. 4. A circle above the 45
degree line implies that the two IPT agents in a specific session earned more than the
two students. This was true for most sessions in all three tests. For the nine sessions
in a test, earnings of the IPT agents were lower in 3 sessions for Test 1, but higher
in every session for Tests 2 and 3.

The results for Test 1 are particularly important. In contrast to those in Tests 2
and 3, the earnings of the students and the IPT agents were similar in Test 1. Note
that these were average earnings during 16–25 periods of Test 1, after a learning
period of 15 periods. When the average earnings during the first 15 periods of Test 1
were compared, the IPT agents earned more than the students in 8 of the 9 sessions.
Considering that all firms had the same cost structure for their generators, and that
the students and IPT agents faced identical market conditions, the IPT agents did
very well compared to the students.

In Test 2, the IPT agents had a distinct advantage because the students held a con-
tract for 50 MW at a predetermined price. The objectives for the IPT agents and the
students in Test 3 were different, but there was no clear advantage for the IPT agents.
The results demonstrate that the IPT agents are (i) just as effective as the students
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in a simple market (Test 1), and (ii) are able to exploit market conditions effectively
(Test 2 and Test 3) when given the opportunity. This provides some preliminary evi-
dence that computer agents can be used effectively to test the performance of simple
electricity markets.

It is also clear from Fig. 4 that the earnings of students and IPT agents are posi-
tively correlated. When one pair of students is successful in raising the market price,
the IPT agents learn to speculate and reinforce the students’ behavior. As a result,
all firms obtain higher earnings. The IPT agents can also exploit unusual situations
effectively. For example, in Session 2_9 of Test 2, one student sold only the con-
tracted 50 MW and withheld everything else from the auction, and the other student
submitted three of the four non-contracted blocks (40 MW in addition to the 50 MW
contracted) at very high offer prices. As a result, the spot prices were high. These
high prices persisted because the two students did not change their behavior. Un-
der these circumstances, the IPT agents earned more than 2.5 times as much as the
students. The IPT agents withheld less capacity than the first student and submitted
lower price offers than the second student. It was not necessary for the IPT agents to
speculate, because the students were speculating so aggressively. This is exactly the
type of strategy that was followed by Eastern in the UK market during the 1990’s,
when high market prices were set on a predictable basis by two other firms.

Meanwhile, the earnings of the VIF agents were lower than those of the students
in Tests 1 and 3, but not in Test 2, when the students had permanent contracts. This
is expected, since a significant proportion of VIF agents’ capacity is committed to
be sold at a fixed price ($60/MWh), which is a lot lower than market clearing prices
($75/MWh or above).

3.3 Experiment with Human Subjects Versus Experiment with All
Software Agents

When the three tests were repeated using computer agents to replace the two stu-
dents, average earnings of firms and average market prices were higher than the
corresponding values in all cases. For these tests, the students’ firms were repre-
sented by Latent Speculators (LS). LS agents are more likely to speculate than IPT
agents, but, when high prices occur, IPT agents adapt to the new market conditions
and evolve into LS agents.

The average earnings by type of firm are summarized for the all-agent tests in Ta-
ble 3. Percentage changes from the corresponding values in Table 2 are also shown,
and, in eight out of the nine cases, these changes are positive. The small negative
change for the VIF agents in Test 2 is the only exception. Positive changes for Test
1 (no contract) and Test 3 (renewable contract) are very large (ranging from 13% to
70%). It is only when the LS agents have a permanent contract in Test 2 that changes
are relatively small (ranging from −1% to 21%). A comparison of the average earn-
ings of the LS agents in Table 3 to corresponding session values for the students
in Table 2 shows that the values for the LS agents fall in the ranges observed for
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Table 3 Average earnings
($/MWh)a for all-agent tests

aPercentage change from the
corresponding value in
Table 2 is given in
parentheses

Variable LS-agents VIF-agents IPT-agents

Test 1 18,154 12,297 20,892

(+39%) (+13%) (+59%)

Test 2 12,375 11,200 18,235

(+21%) (−1%) (+7%)

Test 3 26,257 16,080 36,512

(+41%) (+32%) (+70%)

the students. For Tests 1 and 3, earnings of the LS agents are similar to the highest
earnings of the students, but, for Test 2, they are only slightly above median value.
The general conclusion is that the LS agents were able to exploit market power
effectively when the opportunity arose in Tests 1 and 3. However, more students
were able to get higher earnings than the LS agents in Test 2, when it was relatively
difficult to exploit market power.

Using a Chow Type II test, it is possible to test whether or not the 18 new observa-
tions obtained from the all-agent tests deviated from the sample of 162 observations
using students. A regression model is specified to make it easy to test the hypothesis
as follows:

yijk = μ +
3∑

i=2

αiMi +
3∑

i=1

3∑

j=2

βijFij +
3∑

i=1

K−1∑

k=1

γikSik + eijk (3)

where yijk = log earnings for periods 11 to 20 for firm type j in session k of mar-
ket i.

Mi = 1 for Test i, 0 otherwise
Fij = 1 for Test i and Firm j,0 otherwise
j = 1 for a student, 2 for a VIF agent and 3 for IPT agent
Sik = 1 for Test i and Session k, −1 for Test i and the last session of each test,
0 otherwise

The parameters in model (3) were estimated using the pooled data set of 180
observations. Estimation outcomes from the first sample of 162 observations and
the second sample of 180 observations are summarized in Appendix, Table 4.

The first null hypothesis assumed that the earnings of the all-agent firms were
equal to the average earnings of the students (i.e. by setting the session effects for
the all-agent tests to zero). The computed F statistic (3.82) is large and the null
hypothesis is rejected (the critical value for an F(18,130) is 1.70 at the 5% level of
significance). This implies that the earnings of the all-agent firms were statistically
different from the average earnings in the tests using students.

The second null hypothesis assumed that the earnings of the all-agent firms were
equal to the sessions with the highest earnings obtained by the students (i.e. by
selecting the sessions with the largest positive session-coefficients for each market
in Appendix, Table 4 (Sessions 6, 9 and 2 for Markets 1, 2 and 3, respectively)). In
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this case, the computed F statistic (0.95) is small and supports the null hypothesis
(note that the critical value of 1.70 is still valid). In other words, the earnings for the
all-agent firms were statistically equivalent to the sessions with the highest earnings
obtained by the students.

Overall, the results from the all-agent tests are encouraging, and show that com-
puter agents do provide a valid means of evaluating the performance of electricity
markets. The computer agents were able to match the earnings of the best students.
It will be interesting to find out in the future whether this also proves true for more
complicated market structures, such as joint markets for energy and ancillary ser-
vices.

4 Summary and Conclusions

The primary objective of this paper is to investigate how well computer agents can
replicate the behavior of human subjects in tests of electricity auctions. Using Pow-
erWeb to simulate the operation of a uniform price auction run by an ISO, four
computer agents and two human subjects (graduate students) represent six supply
firms in three different market situations. In each case, the patterns of load are ex-
ogenous and there are 20 trading periods (25 for Test 1). Three market structures
are tested: (1) no forward contract (all dispatched capacity is paid the spot price),
(2)‘the two students hold a permanent forward contract (the contract price is fixed),
and (3) the two students hold a renewable forward contract (the current spot price
influences the forward price used to renew the contract). In a second experiment, the
three tests are repeated with two additional computer agents replacing the students.

Results for the computer agents are reassuring. Using the maximization of ex-
pected profits as the objective criterion for submitting offers by an agent, it is pos-
sible to modify the general form of a computer agent to represent different types of
firm, such as a vertically integrated firm, and to deal with different tests of forward
contracts. In Test 1, with two students and four computer agents, the IPT agents and
the students faced identical cost conditions. In 6 out of the 9 sessions in Test 1, the
IPT agents had higher average earnings than the students. In the all-agent tests, earn-
ings of the LS agents that replaced the students were higher than the corresponding
average earnings of the students in all three tests. In Tests 1 and 3, earnings of the
LS agents were similar to the highest earnings obtained by the students.

Our conclusion regarding the objective of the paper is that computer agents can
replicate the behavior of students in an electricity auction effectively. In fact, the
agents were also able to exploit unusual situations by, for example, behaving as free
riders when the students in a session speculated aggressively. These results suggest
that it is appropriate to do additional sensitivity tests using all computer agents. This
is a promising line of research that is essential for developing realistic simulation
models of deregulated electricity markets. Relying exclusively on human subjects
to test different market structures will, due to the practical difficulty of recruiting
enough people, limit the scope of the tests. Computer agents that can replicate real-
istic behavior can be used to extend the range and number of tests conducted with
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human subjects. This capability has tremendous potential for identifying potential
flaws in market designs and finding effective ways to improve the performance of
electricity markets before a specific market design is imposed on the public.
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Appendix: General Instructions for Testing an Electricity
Market Using Powerweb

A.1 Introduction

PowerWeb is a computer program that allows you to use your skills in economic
decision-making to test an electricity market. You will have the opportunity to earn
money through your actions in this test. Any money that you earn will be yours to
keep, and you should try to make as much money as possible. Other people in the
test will be competing directly against you in the market. Please do not communicate
with any of the other participants. It is important to us that you understand these
instructions. If you do, it will improve your chances of earning more money in the
test and will improve the quality of the data we gather. If you have questions at
any time, please raise your hand and an instructor will answer your question. When
testing a market, it is essential that we have your full attention. Do NOT open other
windows or check your email.

A.2 The Objective

For a standard test of an electricity market, you will be one of six different suppliers.
(You do not need any prior knowledge of this type of market to participate in the
test.) In each market, there is a single buyer of electricity who has the obligation to
meet demand (load) at the least cost. As a supplier, you can generate a maximum
of 100 megawatts (MW) of electricity, and this production capacity is divided into
five blocks (generators) with different operating costs. The size and operating cost
of each of your generators will be revealed to you at the start of the test. The cost
structures of all suppliers are very similar to each other.

Each test will last for a specified number of trading periods. In each period, your
goal is to maximize your own earnings. The amount of money you keep at the end
of the test will be proportional to your total earnings over all periods. In each period
of the test, you will participate in an auction and submit offers to sell each of your
generators. An offer represents the minimum price at which you are willing to sell
each MW from that generator.
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Table 4 Estimation results of (3): dependent variable = average earnings

Variable
(Parameter)

Model 1 Model 2 (agents’
earnings = average)

Model 3 (agents’
earnings = the highest)

Est. t-value Pr > |t | Est. t-value Pr > |t | Est. t-value Pr > |t |

Intercept (μ) 9.441 252.33 <0.0001 9.477 230.57 <0.0001 9.451 265.12 <0.0001

Market2 (α2) −0.242 −4.57 <0.0001 −0.256 −4.40 <0.0001 −0.247 −4.90 <0.0001

Market3 (α3) 0.374 7.07 <0.0001 0.373 6.42 <0.0001 0.370 7.34 <0.0001

Market1VIF (β12) −0.151 −2.85 0.0051 −0.175 −3.01 0.0031 −0.175 −3.49 0.0006

Market1IPT(β13) 0.024 0.46 0.6445 0.036 0.62 0.5357 0.036 0.72 0.4717

Market2VIF (β22) 0.130 2.46 0.0151 0.107 1.85 0.0670 0.107 2.15 0.0336

Market2IPT (β23) 0.510 9.64 <0.0001 0.498 8.56 <0.0001 0.498 9.96 <0.0001

Market3VIF (β32) −0.407 −7.69 <0.0001 −0.415 −7.15 <0.0001 −0.415 −8.31 <0.0001

Market3IPT (β33) 0.141 2.66 0.0088 0.160 2.75 0.0068 0.160 3.19 0.0017

Session1_2 (γ1,2) 0.013 0.22 0.8289 0.013 0.19 0.8520 0.007 0.11 0.9136

Session1_3 (γ1,3) 0.086 1.41 0.1597 0.086 1.22 0.2240 0.080 1.32 0.1905

Session1_4 (γ1,4) 0.094 1.54 0.1253 0.094 1.33 0.1848 0.088 1.44 0.1506

Session1_5 (γ1,5) −0.096 −1.57 0.1183 −0.096 −1.36 0.1766 −0.103 −1.69 0.0925

Session1_6 (γ1,6)a 0.206 3.36 0.0010 0.206 2.90 0.0042 0.259 5.70 <0.0001

Session1_7 (γ1,7) −0.050 −0.82 0.4149 −0.050 −0.71 0.4811 −0.057 −0.93 0.3521

Session1_8 (γ1,8) 0.138 2.26 0.0256 0.138 1.95 0.0530 0.131 2.17 0.0319

Session1_9 (γ1,9) −0.130 −2.12 0.0358 −0.130 −1.83 0.0690 −0.136 −2.25 0.0262

Session2_2 (γ2,2) 0.099 1.62 0.1068 0.099 1.40 0.1628 0.106 1.74 0.0838

Session2_3 (γ2,3) −0.232 −3.80 0.0002 −0.232 −3.28 0.0013 −0.226 −3.73 0.0003

Session2_4 (γ2,4) 0.056 0.92 0.3596 0.056 0.79 0.4285 0.063 1.03 0.3044

Session2_5 (γ2,5) −0.034 −0.56 0.5798 −0.034 −0.48 0.6324 −0.028 −0.45 0.6501

Session2_6 (γ2,6) 0.032 0.52 0.6069 0.032 0.45 0.6567 0.038 0.62 0.5335

Session2_7 (γ2,7) −0.064 −1.05 0.2964 −0.064 −0.91 0.3668 −0.058 −0.95 0.3429

Session2_8 (γ2,8) −0.077 −1.26 0.2086 −0.077 −1.09 0.2770 −0.071 −1.17 0.2445

Session2_9 (γ2,9)a 0.221 3.62 0.0004 0.221 3.13 0.0021 0.170 3.76 0.0002

Session3_2 (γ3,2)a 0.208 3.40 0.0009 0.207 2.93 0.0039 0.291 6.42 <0.0001

Session3_3 (γ3,3) 0.055 0.91 0.3659 0.055 0.78 0.4346 0.045 0.74 0.4599

Session3_4 (γ3,4) −0.342 −5.59 <0.0001 −0.342 −4.83 <0.0001 −0.352 −5.80 <0.0001

Session3_5 (γ3,5) −0.023 −0.37 0.7091 −0.023 −0.32 0.7472 −0.033 −0.55 0.5834

Session3_6 (γ3,6) −0.105 −1.71 0.0891 −0.105 −1.48 0.1413 −0.115 −1.90 0.0596

Session3_7 (γ3,7) 0.098 1.61 0.1098 0.098 1.39 0.1666 0.088 1.45 0.1495

Session3_8 (γ3,8) −0.012 −0.19 0.8492 −0.012 −0.16 0.8695 −0.022 −0.36 0.7157

Session3_9 (γ3,9) 0.119 1.95 0.0537 0.119 1.68 0.0949 0.108 1.79 0.0758

Nobs 162 (=1st set of samples) 180 (=two sets of samples) 180(=two sets of samples)

Sum of Squ. Errors 3.2503 4.9673 3.6759

aSessions with the highest earnings obtained by the students for each market
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A.3 How the Auction Works

After all the offers have been collected from the suppliers, the buyer will rank them
from the least expensive to the most expensive. The buyer will then accept offers
in order from the lowest to highest offer price until sufficient capacity is purchased
to meet the load. The buyer will pay all purchased generators the same price, and
this price is equal to the offer for the most expensive generator purchased. This
auction is called a Uniform Price Auction paying the Last Accepted Offer. (In
some tests, a different auction rule may be used. However, additional information
will be provided and you will always be told about the changes first.)

A.4 The Rules of the Market

(1) You may submit an offer for each of your five blocks of capacity in every period
up to the maximum of 100 MW. If you choose to submit an offer on a block of
capacity, you will have to pay a fixed Standby Cost of $5/MWh regardless of
whether you actually sell any of that block. (The standby cost is a simple way
to represent the opportunity cost of being available in the market. These costs
could include postponing maintenance activities, not selling energy in another
market and paying wages to part of the workforce.)

(2) You may choose not to sell a block of capacity by clicking the shutdown check-
box, and in this case, the standby cost is automatically set to zero.

(3) The maximum price (the price cap) that the buyer is willing to pay for electric-
ity is $100/MWh. If you offer a block of capacity above $100/MWh, the buyer
will disregard your offer. You will receive an error message, and this will allow
you to resubmit your offers.

(4) You will never receive less than your offer price for the capacity you sell. As a
rule of thumb, if your offer price is less than the final clearing price then you
will sell that block of capacity. If your offer is greater than the clearing price,
you will not sell that block of capacity.

(5) There is a fixed cost of $1200/period that must be paid in every trading period
to cover the finance cost of capital investments.

(6) At the start of each trading period, the buyer will post the forecasted load, but
the actual load need not be the same as the forecasted level. You will be told the
range of possible values for the actual load.

(7) Since there are incentives for suppliers to withhold some capacity from the auc-
tion, it is possible that the total capacity submitted into the auction is insufficient
to meet the actual load. Hence, some scheme for dealing with capacity shortfalls
is required. In this market, the following procedure is used:

The market price is set to the highest offer submitted into the auction. The buyer meets
the shortfall of capacity by contracting with suppliers in another power pool. The actual
load reported does not include these imports, and consequently, it may be substantially
below the forecasted load (i.e. outside the normal range of forecasting errors).
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A.5 Submitting an Offer to the Auction

Each period of the auction begins with an Offer Submission Page. The screen shot
for Seller 1 in Period 1 will help you understand the information presented and show
you how to enter your offers into the auction. The parameters in this example are
not necessarily the same as in the actual test. In this example, the seller has chosen
to submit the first four blocks of capacity (Gen 1–4) and to withhold the last block
(Gen 5). Every block submitted to the auction pays a standby cost of $5/MW, but
the variable costs will only be paid on blocks that are purchased by the buyer.

The upper table of the Offer Submission Page gives the following information
about the SYSTEM DATA:

(1) The forecasted load in MW will typically vary from period to period (the yel-
low background indicates that the forecasts may change).

(2) The installed capacity in MW gives the total of the maximum generating ca-
pacity of all suppliers in the market.

(3) The price cap in $/MWh is the maximum price paid in the auction, and offers
above this price will not be accepted by the buyer.

The columns in the lower table on the Offer Submission Page correspond to the
five different generators (Gen 1–5) that you control as a supplier. For each generator,
the rows for the GENERATOR DATA are:

(1) The minimum generation in MW for the generator to operate.
(2) The maximum capacity in MW of output from the generator.
(3) The variable cost in $/MWh (for fuel etc.) of generating electricity.
(4) The standby cost in $/MW (the opportunity cost of being available for all ca-

pacity submitted to the auction).
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(5) The fixed cost in $/trading period (the cost of financing capital investments,
such as interest payments on bonds).

The corresponding rows for MY OFFERS are:

(1) A check box for shutdown? (i.e. withholding a generator from the auction), and
if a generator is withheld, the offered price in the next row is disabled and the
standby costs are set to zero.

(2) The energy offer in $/MW that you must specify for each generator that is not
withheld (your offer is the minimum price that you are willing to accept for
generating electricity).

(3) The actual standby costs in $/trading period that are paid whenever a generator
is submitted into the auction (these cost are computed automatically and cannot
be edited).

The submit offer button is used to submit a set of offers to the auction after you have
specified an offer for (or decided to withhold) each of your five generators. NOTE:
submitting a blank offer for a generator that is not explicitly withheld corresponds
to submitting a zero offer—be careful.

A.6 Auction Results

After you have submitted your offers, PowerWeb will inform you to wait until all
of the other suppliers have finished submitting their offers. The auction results will
then be calculated by PowerWeb and presented to you in an Auction Results Page.
The number of the trading period for these results is shown at the far right of the
banner at the top of the screen. The top table gives information about the SYSTEM
DATA. The first row repeats the forecasted load in MW from the Offer Submission
Page, and the second row gives the actual load in MW.

The top section of the middle table under GENERATOR DATA repeats the
variable cost in $/MW and the standby cost in $/MW for each one of your gen-
erators from the Offer Submission Page. The middle section under MY OFFERS
summarizes the outcome of the auction for each one of your generators. The first
pair of rows for energy capacity show the offered quantities in MW submitted to
the auction, and the corresponding quantities sold in MW are shown underneath.
The second pair of rows for energy price show the offered prices in $/MW for
each generator, and the corresponding market prices paid in $/MW are shown un-
derneath (market prices are also shown for generators that were withheld). If a gen-
erator was withheld, the capacity values and the offered price are blank and colored
gray. A green background implies your offer was accepted (market price > the of-
fer), a red background implies your offer was rejected (market price < the offer),
and a yellow background implies your offer set the market price (market price = the
offer). The last column of the table summarizes the total quantities and the average
price paid for all five generators.

The bottom section of the middle table under EARNINGS summarizes the revenues
and the costs for each generator. The five rows represent:
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(1) The revenue from energy sales in $/period is equal to the capacity sold times
the market price paid.

(2) The variable costs in $/period are equal to the capacity sold times the variable
cost/MW.

(3) The standby costs in $/period are equal to the capacity submitted into the auc-
tion times the standby cost/MW.

(4) The fixed costs in $/period are the same in every period and are not affected by
the outcome of the auction.

(5) The total earnings in $/period are the difference between the revenue in row 1
and the sum of the costs in rows 2–4 (any value colored RED in parentheses is
a LOSS).

The last column of the middle table under EARNINGS summarizes the revenues,
costs and earnings for all five of your generators (if the value of total earnings is
colored RED in parentheses, you lost money in this trading period). Clicking on
Continue > > will send you to the Offer Submission Page for the next trading
period.

The bottom table on the Auction Results Page gives a MARKET HISTORY of
the previous auctions for up to five trading periods (in reverse order, with the results
from the last trading period in the first row). There is also a link to the complete
auction history. The columns display the following information:
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(1) The number of the period.
(2) The forecasted load in MW.
(3) The actual load in MW.
(4) The amount of your capacity sold in MW (my sales).
(5) Your percentage market share (100xMy Sales/Actual Load).
(6) The capacity in MW offered (top row—In) and sold (bottom row—Out) for

each one of your generators.
(7) The price in $/MW offered (top row—In) and paid (bottom row—Out) for each

one of your generators (including generators that were withheld).
(8) The average price in $/MWh paid for your capacity (mine) and paid for all

capacity purchased in the auction (market).
(9) The total earnings in $ for the trading period.

At the bottom of the MARKET HISTORY, the cumulative earnings over all trad-
ing periods are shown. The cumulative earnings are in “PowerWeb dollars”, and
these earnings are converted to real dollars using an explicit exchange rate. Once
again, RED values of real dollars in parentheses mean that you are losing money
and not earning enough to cover your fixed costs.

A.7 Test 1-A

A.7.1 Uniform Price Auction with Stochastic Load (No Price Response)

You are one of six suppliers in an electricity market. Each supplier owns 100 MW
of capacity, divided into five blocks. Offers to sell these blocks are submitted into
an auction. An ISO selects the least expensive combination of offers to meet the
system load and determines the market clearing price (last accepted offer) paid to
all successful offers. For each period, you will be given a forecast of the system
load. The actual load is uncertain but it falls into the range of Forecast ± 20 MW.
Market price does not affect actual load in any way. When actual load is above 500
MW, some of your capacity is essential to meet load. There is an equal chance that
actual load is above or below the forecast.

There are two types of operating costs. The first is the operating cost/MWh for
capacity that is dispatched. The second is a fixed standby cost of $5/MWh for sub-
mitting an offer. Hence, standby costs are paid when a block is offered into the
market even if it is not dispatched. Withholding blocks from the auction is the only
way to avoid standby costs for those blocks (the offer submission page for Power-
Web has check boxes for withholding blocks). There is also a fixed cost charged
each period to cover capital costs. If the total capacity offered into the auction is
less than the actual load, the ISO covers the shortfall by purchasing imports from
outside of the market. Only the portion of the load served by suppliers in the market
is reported as actual load. The portion served by imports is not included.
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Your objective is to maximize your earnings over a series of 25 periods.

Summary

Auction: Uniform–Last Accepted Offer
Number of Suppliers: 6
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Periods: 25
Load: Forecast = 490 MW ± 60 MW, Actual = Forecast ± 20 MW
Price Response: Load is price inelastic
Standby Costs: $5/MWh for each block
Shortfall Mechanism: Unlimited imports available
Fixed Cost: $1200/period
Price Cap: $100/MWh
Exchange Rate: 1/4000

A.8 Test 1-B

A.8.1 Uniform Price Auction with Stochastic Load (No Price Response)
(Suppliers Hold Forward Contracts for 50 MW of Capacity)

Regulators are frustrated by the number of price spikes in electricity markets, which they
attribute to unjustified speculation by suppliers. Consequently, regulations now require that
all suppliers must hold forward contracts for selling some of their capacity each period. In
this test, each supplier has already signed a contract for 50 MW (the first block of capacity)
at a fixed price of $60/MWh, and this contract will be in place for all periods. Hence, your
objective is to maximize the profits from selling the remaining four blocks of capacity (the
first block will be submitted automatically). You will always be paid $60×50 MW = $3000
each period for the first block regardless of whether the market clearing price is above or
below $60/MWh. In all other respects, the rules of the auction are the same as TEST 1-A.

You are one of six suppliers in an electricity market. Each supplier owns 100
MW of capacity, divided into five blocks. Offers to sell these blocks are submitted
into an auction. An ISO selects the least expensive combination of offers to meet the
system load and determines the market clearing price (last accepted offer) paid to all
successful offers. For each period, you will be given a forecast of the system load.
The actual load is uncertain but it falls into the range of Forecast±20 MW. Market
price does not affect actual load in any way. When actual load is above 500 MW,
some of your capacity is essential to meet load. There is an equal chance that actual
load is above or below the forecast.

There are two types of operating costs. The first is the operating cost/MWh for
capacity that is dispatched. The second is a fixed standby cost of $5/MWh for sub-
mitting an offer. Hence, standby costs are paid when a block is offered into the
market even if it is not dispatched. Withholding blocks from the auction is the only
way to avoid standby costs for those blocks (the offer submission page for Power-
Web has check boxes for withholding blocks). There is also a fixed cost charged
each period to cover capital costs. If the total capacity offered into the auction is
less than the actual load, the ISO covers the shortfall by purchasing imports from
outside of the market. Only the portion of the load served by suppliers in the market
is reported as actual load. The portion served by imports is not included.
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Your objective is to maximize your earnings over a series of 20 periods.

Summary

Auction: Uniform–Last Accepted Offer
Number of Suppliers: 6
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Periods: 20
Load: Forecast = 490 MW ± 60 MW, Actual = Forecast ± 20 MW
Price Response: Load is price inelastic
Standby Costs: $5/MWh for each block
Shortfall Mechanism: Unlimited imports available
Fixed Cost: $1200/period
Price Cap: $100/MWh
Exchange Rate: 1/4000

A.9 Test 1-C

A.9.1 Uniform Price Auction with Stochastic Load (No Price Response)
(Suppliers Renew Forward Contracts for 50 MW of Capacity)

This test is similar to Test 1-B with one modification. You will now have to renew the
forward contract for the first block of 50 MW every 10th period during the test. (The first
contract for periods 1 to 10 is set at $60/MWh.) You will be paid for the forward contracts
as well as for the earnings on the other four blocks of capacity. A forward price will be
reported with the auction results after each period, and it represents the current price of
a new 10-period contract. This forward price is influenced by the market (spot) price in
the auction. If your market prices are consistently above (below) the current forward price,
then the forward price will gradually increase (decrease). The forward price in period 10
will determine the price for the new contract in periods 11–20. You will also be paid for
renewing the contract in period 20 in the following way: [10 × 50 MW (forward price in
period 20–$60)]. (This is equivalent to replacing the first contract with the final contract.)

You are one of six suppliers in an electricity market. Each supplier owns 100
MW of capacity, divided into five blocks. Offers to sell these blocks are submitted
into an auction. An ISO selects the least expensive combination of offers to meet the
system load and determines the market clearing price (last accepted offer) paid to all
successful offers. For each period, you will be given a forecast of the system load.
The actual load is uncertain but it falls into the range of Forecast± 20 MW. Market
price does not affect actual load in any way. When actual load is above 500 MW,
some of your capacity is essential to meet load. There is an equal chance that actual
load is above or below the forecast.

There are two types of operating costs. The first is the operating cost/MWh for
capacity that is dispatched. The second is a fixed standby cost of $5/MWh for sub-
mitting an offer. Hence, standby costs are paid when a block is offered into the
market even if it is not dispatched. Withholding blocks from the auction is the only
way to avoid standby costs for those blocks (the offer submission page for Power-
Web has check boxes for withholding blocks). There is also a fixed cost charged
each period to cover capital costs. If the total capacity offered into the auction is
less than the actual load, the ISO covers the shortfall by purchasing imports from
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outside of the market. Only the portion of the load served by suppliers in the market
is reported as actual load. The portion served by imports is not included.

Your objective is to maximize your earnings over a series of 20 periods.

Summary

Auction: Uniform–Last Accepted Offer
Number of Suppliers: 6
Periods: 20
Load: Forecast = 490 MW ± 60 MW, Actual = Forecast ± 20 MW
Price Response: Load is price inelastic
Standby Costs: $5/MWh for each block
Shortfall Mechanism: Unlimited imports available
Fixed Cost: $1200/period
Price Cap: $100/MWh
Exchange Rate: 1/4000
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Diversification Effect of Heterogeneous Beliefs

Xue-Zhong He and Lei Shi

Abstract Through a mean-variance (MV) heterogeneous agent models with many
risky assets, this paper examines the impact of behavioral heterogeneity on the mar-
ket equilibrium and MV efficiency. We show that in market equilibrium, though the
optimal portfolios of investors under their subjective beliefs are not MV efficient,
they can be very close to the MV efficient frontier under the consensus belief. By
imposing a mean-preserved spread distribution on the heterogeneous beliefs and
conducting a statistical analysis based on Monte Carlo simulations, we show that
diversity in the heterogeneous beliefs among investors can improve the Sharpe and
Treynor ratios of the market portfolio and the optimal portfolios of investors, leading
to a diversification effect of the heterogeneous beliefs.

1 Introduction

The Capital Asset Pricing Model (CAPM) developed by Sharpe (1964), Lintner
(1965) and Mossin (1966) is perhaps the most influential equilibrium model in mod-
ern finance. It provides a theoretical foundation for relating risks linearly with ex-
pected return of assets. However, from a theoretical perspective, this paradigm has
been criticized on a number of grounds, in particular concerning its extreme assump-
tions of homogeneous beliefs and the rational representative economic agent. Also,
from a practical perspective this paradigm has faced difficulties in explaining many
market anomalies, stylized facts, and market inefficiency in financial markets (see,
for instance, Pagan 1996). As a result, heterogeneity and bounded rationality have
been used as an alternative paradigm for asset price dynamics and this paradigm has
been widely recognized in both academic and financial market practitioners. We re-
fer to Hommes (2006), LeBaron (2006), Chiarella et al. (2009a) and Wenzelburger
(2009) for surveys of recent literature on heterogeneous agent models (HAMs).

Literatures have made a significant contribution to the understanding of the
impact of heterogeneous beliefs amongst investors on market equilibrium. Some
have considered the problem in discrete time (for example, see Lintner 1969;
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Rubinstein 1974 and Sharpe 2007) and others in continuous time (for exam-
ple, see Williams 1977; Detemple and Murthy 1994 and Zapatero 1998). Equi-
librium models have been developed to consider the impact of heterogeneity
under either mean-variance (MV) framework (see Lintner 1969 and Williams
1977) or in the Arrow-Debreu contingent claims economy (see Rubinstein 1976;
Abel 2002). Heterogeneity may reflect differences either in information or in opin-
ion. In the first case, investors may update their beliefs as new information become
available, Bayesian updating rule is often used (see, for example, Williams 1977
and Zapatero 1998). In the second case, investor may revise their portfolio strate-
gies as their views of the market change over time (see, for example Lintner 1969
and Rubinstein 1975).

Different from the above literature, the HAMs have been developed to charac-
terize the dynamics of financial asset prices resulting from the interaction of het-
erogeneous agents with different attitudes towards risk and different expectations
about the future evolution of asset prices. One of the key aspects of these mod-
els which distinguishes them from the previous literature is the expectations feed-
back mechanism—agents’ decisions are based upon predictions of endogenous vari-
ables whose actual values are determined in equilibrium, see Brock and Hommes
(1997, 1998). It is also interesting to find that adaptation, evolution, heterogeneity,
and even learning can be incorporated into the Brock and Hommes type of frame-
work, see, Gaunersdorfer (2000), Hommes (2001), Chiarella and He (2002, 2003)
and Chiarella et al. (2002, 2006b). This broadened framework has successfully ex-
plained various market behaviour, such as the long-term swing of market prices
from the fundamental price, asset bubbles and market crashes. It also shows a po-
tential to characterize and explain the stylized facts (for example, Gaunersdorfer
and Hommes 2007; LeBaron 2006) and various power law behavior (for instance
Alfarano et al. 2005 and He and Li 2007) observed in financial markets.

Most of the HAMs analyzed in the literature involve financial market with only
one risky asset. The main obstacle in dealing with heterogeneity is the complex
and heavy notations involved when the number of assets and the dimension of
heterogeneity (the so-called wilderness of heterogeneity) increase. Within the MV
framework with one risk-free asset and many risky assets, Lintner (1969) is the
first to consider the problem of market equilibrium by allowing for heterogene-
ity not only in the risky preferences and means of the risky assets but also in the
variances/covariances of the risky assets across agents. Recent studies with many
risky assets include Wenzelburger (2004), Westerhoff (2004), Böhm and Chiarella
(2005), Böhm and Wenzelburger (2005), Chiarella et al. (2005, 2007), Westerhoff
and Dieci (2006) and Horst and Wenzelburger (2008), showing that complex price
dynamics may also result within a multi-asset market framework with heteroge-
neous beliefs. In a dynamic CAPM with heterogeneous expectations, Wenzelburger
(2004) introduces a reference portfolio, which is MV efficient, to generalize the
market portfolio. A simulation study in Böhm and Wenzelburger (2005) shows that
the returns realized with an efficient portfolio does not necessarily outperform those
non-efficient portfolios. By allowing social interaction among consumers, Horst and
Wenzelburger (2008) show that asset price may behave in a non-ergodic manner.
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By introducing a concept of consensus belief, Chiarella et al. (2006a, 2009b) show
that the market equilibrium under heterogeneous beliefs can be characterized by the
consensus belief, which can be constructed explicitly as a weighted average of the
heterogeneous beliefs. They provide a simple explanation for Miller’s hypothesis
(Miller 1977) and the observed empirical relation between cross-sectional volatil-
ity and expected returns studied in Bart and Masse (1981), Diether et al. (2002),
Johnson (2004) and Ang et al. (2006).

The above literature shows that in market equilibrium with boundedly rational
heterogeneous investors, the optimal portfolios of investors under their subjective
beliefs are MV inefficient in general. The question is how inefficient they can be.
In general, what is the impact of heterogeneity on the market equilibrium, market
MV frontier and the optimal portfolios of heterogeneous agents? Do the market and
investors benefit from the diversity in beliefs? Within the framework of Chiarella et
al. (2009b) on MV analysis under heterogeneous beliefs in asset return, this paper
examines the above issues and questions. The heterogeneity is measured in terms
of the risk preferences (the absolute risk aversion coefficients), the expected and the
variances/covariances of the risky asset returns. We first illustrate that the subjec-
tively optimal portfolios of investors are MV inefficient in general, but they can be
located very close to the MV efficient consensus frontier and we refer this property
to quasi one fund theorem under the heterogeneity and bounded rationality. To deal
with the wilderness of heterogeneity and examine the impact of the heterogeneity
on the market, motivated by Brock et al. (2005) and Diks and van der Weide (2005),
we introduce a mean-preserved spread distribution for different aspects of hetero-
geneity. By conducting a statistical analysis based on Monte Carlo simulations, we
show that dispersed beliefs in asset returns among investors can improve the Sharpe
and Treynor ratios1 of the optimal portfolios of investors and the market portfolio,
implying that both the investors and market can benefit from the diversity in beliefs.
In the spirt of the diversification effect in Markowitz portfolio theory, we call this
phenomena as diversification effect of the heterogeneous beliefs.

The paper is structured as follows. In Sect. 2, we review the main results devel-
oped in Chiarella et al. (2009b). In Sect. 3, we examine the impact of the hetero-
geneity on the MV efficiency of the subjectively optimal portfolios. Based on Monte
Carlo simulations, Sect. 4 presents a statistic analysis on the diversification effect of
the heterogeneous beliefs. Section 5 concludes the paper.

2 Mean-Variance Asset Pricing with Heterogeneous Beliefs

In this section, we briefly review the main result in Chiarella et al. (2009b) in which
the heterogeneous beliefs are formed in terms of asset returns. The result provides a
foundation for our analysis in the following sections.

1Sharpe/Treynor ratio of a portfolio is a measure of expected excess return per unit of standard
deviation/beta.
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The set up follows the static MV analysis in Huang and Litzenberger (1988).
Consider a market with one risk-free asset and K(≥ 1) risky assets. Let rf be the
return of the riskless asset and r̃j (j = 1,2, . . . ,K) be the return of the risky asset j .
Assume asset returns of the risky assets are multivariate normally distributed. There
are I investors in the market indexed by i = 1,2, . . . , I with heterogeneous (sub-
jective) beliefs Bi = (Ei(r̃),Vi) defined with respect to the means, variances and
covariances of the returns of the risky assets

μi = Ei(r̃) = (μi,1,μi,2, . . . ,μi,K)T , Vi = (σi,kl)K×K,

where μi,k = Ei[r̃k] and σi,kl = Covi (r̃k, r̃l) for i = 1,2, . . . , I and k, l = 1,2,

. . . ,K .
Assume investor i has a concave and strictly increasing utility function ui(w)

such that θi := −Ei[u′′
i (W̃i)]/Ei[u′

i (W̃i)] is a constant defining investor i’s global

absolute risk aversion, where W̃i = Wi,o(1+rf +∑K
j=1 wij (r̃j −rf )) is the end-of-

period wealth of agent i, Wi,o is the initial wealth of agent i, and wij is the fraction
of wealth that agent i invests in the risky asset j . Let τi = 1/θi be the risk tolerance.

A belief Ba = (Ea(r̃),Va) is called a consensus belief if and only if the equilib-
rium prices under the heterogeneous beliefs B = {Bi}Ii=1 are also the equilibrium
prices under the homogeneous belief Ba . The following Proposition 2.1 obtained in
Chiarella et al. (2009b) shows that the market equilibrium returns of the risky assets
can be characterized by a CAPM-like relation under a consensus belief.

Proposition 2.1 Let τa = ∑I
i=1 τi and r̃m := rf + wT

m(r̃ − rf 1) be the return of the
market portfolio wm of the risky assets. Define a consensus belief Ba = (Ea(r̃),Va)

as follows:

Va =
(

I∑

i=1

τi

τa

V −1
i

)−1

, μa = Ea(r̃) = Va

(
I∑

i=1

τi

τa

V −1
i Ei(r̃)

)
. (1)

Then, in equilibrium, the asset return satisfies

Ea[r̃] − rf 1 = β[Ea(r̃m) − rf ] (2)

and the market risk premium is given by

Ea(̃rm) − rf = 1

τa

Wm0σ
2
a,m, (3)

where β = (β1, β2, . . . , βK)T ,βk = σa,jm/σ 2
a,m, and σ 2

a,m = wT
mVawm, Vawm =

[σa,jm].

The equilibrium relation (2) is the standard CAPM except that the mean and vari-
ance/covariance are calculated based on the consensus belief Ba . The β coefficients
of risky assets depend upon not only the covariance between the market returns and
asset returns, but also the aggregation of the heterogeneous beliefs.
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3 Mean-Variance Efficiency of the Optimal Portfolios

In the standard MV framework with homogeneous beliefs, it is well known that, in
the presence of a risk-less asset, the one fund theorem holds. This means that the
MV efficient frontier is the half line connecting the risk-free asset and the market
portfolio and the optimal portfolio of investor, which is a linear combination of
the risky market portfolio and the risk-less asset, is always located on the efficient
frontier. When beliefs are heterogeneous, it is known that the standard one fund
theorem does not hold in general, meaning that the subjectively optimal portfolios
of the heterogeneous investors are MV inefficient. In the following, through some
numerical examples, we show that, in market equilibrium, the optimal portfolios can
be very close to the MV efficient frontier, though they are not efficient. The analysis
is based on Proposition 2.1. We first examine the impact of a single source and then
multiple sources of heterogeneity.

3.1 The Impact of Heterogeneous Expected Returns

To examine the impact of heterogeneous beliefs on the expected returns on the MV
efficiency of the subjectively optimal portfolios, we consider the following example
in which two investors have different beliefs about the expected returns of three
risky assets.

Example 3.1 Consider a market with three risky assets with the expected returns
and variance/covariances of their returns given by2

μo =
⎛

⎝
0.3633
0.2686
0.7087

⎞

⎠ , Vo =
⎛

⎝
0.0269 0.0044 0.0082
0.0044 0.0142 0.0035
0.0082 0.0035 0.0653

⎞

⎠ . (4)

Let the market endowment of risky assets be zm = (1,1,1)T , risk-free rate rf = 5%
p.a. Assume that there are two investors who are homogeneous in their beliefs of
the variance/covariance matrix V2 = V1 = Vo, but heterogeneous in their beliefs
of the expected returns μ1 = μo, μ2 = μ1 + 0.2 × 1. To examine the role of the
risk aversion, we consider three combinations of the absolute risk aversion (ARA)
coefficients (θ1, θ2) = (3,3), (4,2) and (2,4). We also assume that the initial wealth
is the same for the two investors, W1,o = W2,o = $10.

In this case, we use Proposition 2.1 to construct the consensus belief, to calcu-
late the market equilibrium returns and to plot the MV efficient frontiers under the
two heterogeneous beliefs and the consensus belief, respectively. We also locate the

2The means and covariance matrix are generated from the annual payoffs of three stocks in the
Australian market.
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Fig. 1 Mean-Variance efficient frontiers, optimal portfolios and market portfolio under the het-
erogeneous and the consensus beliefs when μ1 < μ2 and V1 = V2 (left panel) and their close-ups
(right panel)

optimal portfolios of the two investors under their beliefs and under the consen-
sus belief, respectively. The results are plotted in Fig. 1 for three combinations of
(θ1, θ2) = (3,3), (4,2) and (2,4), respectively. Based on Fig. 1, we have the follow-
ing observations.
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First, in market equilibrium, the standard one fund theorem does not hold in gen-
eral and investors’ optimal portfolios are located below the efficient frontier under
the consensus belief (consensus frontier). However the optimal portfolios of both
investors are located very close to the consensus frontier. In fact, they are too close
to visualize the differences, even from the close-ups on the right panels. We refer to
this phenomena as the quasi-one fund theorem. In fact, numerically it can be ver-
ified that the optimal portfolios are below the consensus frontier and the portfolio
weights are significantly different between investors’ optimal portfolios and portfo-
lios actually located on the consensus frontier.3 Although the differences are small,
but significant enough to rule out the MV efficiency of the subjectively optimal
portfolios.

Secondly, the consensus frontier is located between the efficient frontiers un-
der investors’ subjective beliefs, with the optimistic investor’s frontier having the
highest slope. This result is very intuitive, due to the homogeneous belief of the co-
variance matrix, the expected returns under the consensus belief is a risk tolerance
weighted average of the subjective expected returns of the two investors. When in-
vestor 2 is less risk averse, the consensus frontier leans more towards the frontier of
investor 2, see Fig. 1(a2). However, when investor 1 is less risk averse, the consensus
frontier leans more towards the frontier of investor 1, see Fig. 1(a3).

Thirdly, the market portfolio is always located in the middle of the optimal port-
folios under the consensus belief. The distance between each of the optimal port-
folios from market portfolio is larger (smaller) when the optimistic (pessimistic)
investor (in terms of expected returns) is less risk averse, see Fig. 1(a2) and (a3).

3.2 The Impact of Heterogeneous Variances/Covariances

In the next example, we examine the impact of the heterogeneous beliefs in vari-
ance/covariance on the MV efficiency of the subjectively optimal portfolios.

Example 3.2 Let μ2 = μ1 = μo, the ARA coefficients and Vo be identical to their
numerical value in Example 3.1. Assume that V2 = Vo and V1 = V2 + 0.3 × 13,
where 13 is a 3 × 3 unit matrix with all elements equal to 1.

3For example, in Fig. 1(a2), the optimal portfolio of investor 1 under the consensus be-
lief has co-ordinates (σo1 ,μo1 ) = (0.0804,0.398), the portfolio on the consensus frontier
with the same standard deviation has co-ordinates (0.0804,0.402), about 40 basis points
(bp) difference in the expected return. Also, the optimal portfolio weights of investor 1 are
(0.1815,0.2764,0.2146) while weights of the consensus frontier portfolio with the same standard
deviation are (0.1935,0.3516,0.1795). Similarly, the co-ordinates of the optimal portfolio for in-
vestor 2 and the one on the consensus frontier with same standard deviation are (0.2494,1.1414)

and (0.2494,1.1427), respectively, only 13 bp in difference. Correspondingly, the optimal portfo-
lio weights are (0.6094,1.1606,0.5187), while the corresponding consensus frontier portfolio has
weights (0.6002,1.0906,0.5566).
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Fig. 2 Mean-Variance efficient frontiers, optimal portfolios and market portfolio under heteroge-
neous and consensus beliefs for μ1 = μ2 and V2 ≤ V1

For convenience, we denote V1 ≥ V2 if V1 −V2 is semi-positive definite. For any
portfolio z, the variance of the portfolio for investor i under his/her belief is defined
by σ 2

i (z) = zT Viz for i = 1,2. Therefore, σ 2
1 (z) ≥ σ 2

2 (z) for any portfolio z if and
only if V1 ≥ V2. Consequently, we say investor 1 is less confident (or more doubtful)
than investor 2.

Different from the previous case, quasi-one fund theorem holds less so when
investors have different confidence levels, since the subjectively optimal portfolios
are noticeably below the consensus frontier, especially for investor 1 who is the
less confident investor in this case. These features are illustrated in Fig. 2 for three
combinations of the risk aversion coefficients. This suggests that difference in confi-
dence levels causes investors to choose a mixture of risky assets that is significantly
different from the market portfolio of risky assets. Thus difference in confidence
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levels can have a larger impact on the MV efficiency of optimal portfolios than the
heterogeneity in expected returns. The consensus frontier is located in between the
individual frontiers and the market portfolio is located in the middle of the optimal
portfolios of the two investors. If we interpret the covariance matrix as a measure of
confidence, since μ1 = μ2 = μa , one can see from Fig. 2 that market aggregation
improves (worsens) the MV efficiency of the optimal portfolio for the less (more)
confident investor, comparing to the case under his/her subjective belief.

Overall, we see that heterogeneity in variances and covariances has a significant
impact on the consensus frontier and the MV efficiency of the optimal portfolios,
while the ARAs determine the positions of individuals’ optimal portfolios under
both their own beliefs and the consensus belief.

3.3 The Joint Impact of Heterogeneous Expected Returns
and Variances/Covariances

We now combine Examples 3.1 and 3.2 together and examine the joint impact of the
heterogeneity in the expected returns and the covariance matrices. Consider the fol-
lowing case: investor 2 is optimistic but less confident in the sense that μ2 > μ1 and
V2 > V1, Fig. 3 illustrates the situation for three combinations of (θ1, θ2) = (3,3),
(4, 2) and (2, 4). Apart from those features observed in the previous two cases, the
combined heterogeneity in both expected returns and variances/covariances have
more significant impact on the portfolio frontiers in the sense that the individual
frontiers are much more apart comparing to the previous two cases. In market equi-
librium, both investors’ MV efficiency worsens. However, when investor 1 is more
risk tolerant, his optimal portfolio is very close to the consensus frontier, indicating
that his/her portfolio choice of risky assets almost coincides with the market port-
folio. He and Shi (2009) also investigate the case where one investor is optimistic
and confident, they show that this investor will dominate the market in the sense that
his/her optimal portfolio will be much closer to the consensus frontier.

Overall, one can see that when multiple sources of heterogeneity are considered,
the effect on the market equilibrium is complex. For example, an investor’s belief
can be very different from the consensus belief, however, in some cases, he/she
makes portfolio choice of risky assets that is very similar to the market portfolio,
hence his/her subjectively optimal portfolio locates very close to the consensus fron-
tier.

3.4 Miller’s Hypothesis

According to Miller (1977), assets with higher dispersion in beliefs have higher
market price and lower expected returns comparing to otherwise similar stocks. The
justification of this hypothesis is that negative opinions are not fully reflected in the
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Fig. 3 Mean-Variance efficient frontiers, optimal portfolios and market portfolio under heteroge-
neous and consensus beliefs for μ1 < μ2,V1 < V2

asset price because of short sell constraints. For a case of two investors, by con-
sidering a mean preserving spread in the beliefs of the expected payoff, He and
Shi (2009) show that Miller’s hypothesis holds if the more optimistic investor (in-
vestor whose belief in the expected future payoff is higher) is also less risk averse
compared to the pessimistic investor. With the average belief in expected payoffs
unchanged, the investor who is optimistic and less risk averse dominates the mar-
ket, consequently, consensus belief of the expected payoff is higher, leading to a
higher equilibrium price and lower expected future return. The analysis provides a
convincing framework in supporting Miller’s hypothesis.

We show in the following that Miller’s hypothesis does not hold when the hetero-
geneous beliefs are formed in terms of future asset returns, even if more optimistic
investor is also less risk-averse. We consider an example analogous to Example 3.4
in He and Shi (2009).

Example 3.3 Assume two investors form their beliefs in terms of asset returns,
Bi := B(Vi,Ei(r̃)), i = 1,2). For ε > 0, consider two assets j and k with E2(r̃j ) <

E1(r̃j ), and E1(r̃k) = E1(r̃j )+ε and E2(r̃k) = E2(r̃j )−ε. This implies that the dis-
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persion of the belief of the expected return is greater for asset k than for asset j . Let
V1 = V2 = Vo, then

Ea(r̃j ) = τ1

τa

E1(r̃j ) + τ2

τa

E2(r̃j ), Ea(r̃k) = τ1

τa

(E1(r̃j ) + ε) + τ1

τa

(E2(r̃j ) − ε).

Hence

Ea(r̃j ) − Ea(r̃k) = ε

θ−1
1 + θ−1

2

(θ−1
2 − θ−1

1 ) (5)

showing that Ea(r̃j ) < Ea(r̃k) if and only if θ1 < θ2. Therefore, divergence of opin-
ion actually increases the expected return of asset k compared to an otherwise simi-
lar stock when the more optimistic investor 1 is also less risk averse. With everything
else equal, Ea(r̃j ) < Ea(r̃k) also implies a higher equilibrium price for asset k.

Example 3.3 illustrates that Miller’s hypothesis is conditional on the formation of
the heterogeneous beliefs. The intuition is that market tends to reflect the opinions
of the less risk averse investors who are active in the market. Therefore, if the less
risk averse investors are also relatively more optimistic about the expected future
asset returns, then the consensus belief of expected returns will also be higher.

Based on the above discussions, we can summarize the impact of the hetero-
geneity on the market as follows. If we treat investors with different beliefs as fund
managers, our analysis illustrates that, when the market consists of these investors,
their subjectively optimal portfolios are often not MV efficient when the market is
in equilibrium, unless their beliefs coincide with the consensus belief. This implies
that it is difficult for managed funds to out-perform the market systematically, as ob-
served in markets (see Sharpe 2007). In some cases, their optimal portfolios can be
very close to the consensus frontier, leading to the quasi-one fund theorem which is
a very interesting feature. On the one hand, the market is determined endogenously
by all the market investors with heterogeneous beliefs. It is the bounded rationality
and heterogeneity of the investors that makes the investors hardly achieve the same
performance as the market (measured by the MV efficiency), reflecting the market
dysfunctionality. On the other hand, in aggregation, the market always performs bet-
ter than individuals and, in some situations, individuals are able to perform almost
as good as the market, characterized by the quasi-one fund theorem. Also different
aspects of heterogeneity affect the market differently and divergence of opinion may
not necessarily lead to higher equilibrium price and lower expected return.

4 A Statistic Analysis on the Diversified Beliefs

In the previous section, investors’ beliefs are given deterministically. However,
when there is uncertainty associated with agents’ beliefs, characterization of the
heterogeneous beliefs is a difficult issue, leading to the wilderness of heterogene-
ity. To overcome this problem, we introduce a mean-preserved spread distribution
in beliefs, motivated by Brock et al. (2005) and Diks and van der Weide (2005).
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By conducting a statistical analysis based on Monte Carlo simulations, this sec-
tion examines the impact of the mean-preserved spread distribution in beliefs on
the market through the statistics of return distributions, the beta coefficients, and
two performance measures, Sharpe and Treynor ratios under the consensus belief.
The Sharpe (Treynor) ratio is defined as the marginal rate of substitution between
excess portfolio return and its standard deviation (beta), i.e. for any portfolio p, its
Sharpe Ratio equals the value of Ea(r̃p − rf )/σa(r̃p) and its Treynor ratio equals
the value of Ea(r̃p − rf )/βp . Since the CAPM relation is valid under the consensus
belief, Treynor ratio for any portfolio p is equal to the excess market return, i.e.
Ea(r̃p − rf )/βp = Ea(r̃m − rf ).

In particular, we examine the impact of the diversity in beliefs on the perfor-
mance of the market portfolio and the optimal portfolios of investors. We assume
that there are two investors, one risk-free asset and three risky assets in the market.
For the benchmark case, let θ1 = θ2 = θo = 3, the expected return μo and the return
covariance matrix Vo are as defined in Example 3.1.

4.1 Diversified Beliefs in the Expected Asset Returns

We first examine the impact of the diversified beliefs about the expected asset re-
turns. Assume the two investors are homogeneous in their characteristics except
for their beliefs in the expected returns, μ̃i = μo + δ̃i , where δ̃i = (δi1, δi2, δi3)

T

with δ̃i,j
iid∼ σδi

N (0,1) for i = 1,2, j = 1,2,3. Hence investor i is more confident
about his/her belief of the expected asset returns if σδi

is smaller. The diversity in
beliefs among the two investors are measured by (σδ1 , σδ2). We consider the fol-
lowing combinations of (σδ1 , σδ2) = (1%,1%), (1%,2%), (1%,3%), (0,2%) and
(0,3%) to conduct two types of comparison. The first type corresponds to the com-
binations of (σδ1, σδ2) = (1%,1%), (1%,2%) and (1%,3%) to examine the impact
of the diversity as σδ2 increases. The second type examines the impact of diver-
sity in (σδ1 , σδ2) in which the average of σδ1 and σδ2 is unchanged but the spreads
among them increase, as in between (1%,1%) and (0,2%), and between (1%,2%)

and (0,3%). For each given (σδ1 , σδ2), we run 10,000 simulations to obtain the
summary statistics for both returns and beta coefficients. The results, together with
detailed discussions, can be found in He and Shi (2008). Based on the summary
statistics, we observe a very interesting phenomena that both the average Sharpe
and Treyor ratios increase systematically for the market portfolio M as the diver-
sity between σδ1 and σδ2 increases and also the market portfolio M has the highest
average Sharpe ratio. This phenomena is clearly illustrated in Fig. 4(a1) and (a2)
(left panel). In fact, it follows from Proposition 2.1 that the Treynor ratios are the
same for given (σδ1 , σδ2) across all the assets and portfolios. However, the average
Treynor ratio increases when the dispersion in (σδ1, σδ2) increases. This suggests
that, in terms of average Sharpe and Treyor ratios, the market benefits from the di-
versity in the heterogeneous beliefs and higher dispersion in beliefs increases both
the average Sharpe and Treyor ratios of the market portfolio. We also observe that
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Fig. 4 Effect of belief dispersion on the average Sharpe, Treynor ratios and unsystematic risk
when (i) investor 1 has a constant dispersion in expected returns (σδ1 = 1%) and investor 2’s dis-
persion σδ2 ∈ [1%,3%] (left panel), (ii) investor 1 has a constant dispersion in variance of asset
returns (σε1 = 1%) and investor 2’s dispersion σε2 ∈ [1%,3%] (right panel)

the Sharpe ratios of the optimal portfolios of the two investors are very close to that
of the market portfolio. In regards to the beta coefficients, first two risky assets have
betas less than 1 while the third risky asset has beta coefficient larger than 1. The
mean values for the beta coefficients of all three assets and portfolios decrease sys-
tematically as the dispersion of beliefs increases, leading to a lower systematic risk.
On the other hand, Fig. 4(a3) (left panel) clearly indicates that there is an insignifi-
cant increase in the unsystematic risks of the optimal portfolios as the dispersion in
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beliefs increases, while the unsystematic risk of the market portfolio is always zero.
This result illustrates that the quasi-one fund theorem holds statistically.

We now provide an explanation for the above results. Since the expected re-
turn is the only source of heterogeneity, the covariance between asset return
and the aggregate market return under the consensus belief is given by Vowm =

1
θoWm0

1
2

∑2
i Ei(r̃ − rf 1), see Chiarella et al. (2009b). On average both investors’

beliefs of the expected returns equal to Eo(r̃). Thus, regardless of the dispersion in
the beliefs, the average of the covariances between assets and the aggregate market is
given by Vowm = 1

θoWm0
Eo(r̃ − rf 1). On the other hand, the market variance under

the consensus belief σ 2
a,m = wT

mVowm is a quadratic function of Ei(r̃j − rf ) which
is the risk premium of asset j perceived by investor i. Consequently, we expect σ 2

a,m

to increase as the uncertainty in the belief of expected asset returns increases, lead-
ing to higher average Sharpe and Treynor ratios for the market portfolio according
to (3), illustrated in Fig. 4(a1) and (a2) (left panel), respectively. This explains the
under-performance of investors’ optimal portfolios comparing to the market port-
folio. Also, illustrated by Fig. 4(a3) (left panel), the systematic risk of the risky
assets and portfolios decrease while the unsystematic risks of the optimal portfo-
lios increase, though insignificantly. The economic intuition is that, comparing to
the benchmark case, there is a greater risk associated with the future return of the
market when there is large dispersion in investors’ beliefs, therefore a higher risk
premium is required as a compensation. The diversity in the expected asset returns
provides a potential explanation to the Risk Premium Puzzle since we have demon-
strated that a higher dispersion of beliefs can lead to a higher market risk premium.

4.2 Diversified Belief in Variances/Covariances of Asset Returns

We now assume that the investors are homogeneous except in their beliefs of
covariance matrices of asset returns. Let θ1 = θ2 = θo = 3 and μ1 = μ2 = μo.
Assume the beliefs of the correlation structure of the asset returns are also ho-
mogeneous, however the beliefs of the volatilities of asset returns are indepen-
dently normally distributed. More precisely, let Vo = DoCDo and Ṽi = D̃iCD̃i ,
where Do = diag(σo1, σo2, σo3), C is the correlation matrix, D̃i = Do + εiI, and

εi
iid∼ N (0, σ 2

εi
). That is the volatility of asset j ’s return under investor i’s belief fol-

lows the distribution σ̃ij ∼ N (σoj , σ
2
εi
), which is independent for each investor i.

A summary on the resulting statistics from Monte Carlo simulations and related dis-
cussions can be found in He and Shi (2008). Different from the previous case for the
dispersion of beliefs in expected asset returns, both the average Sharpe and Treynor
ratios increase systematically for all assets and portfolios, not only the market port-
folio, when the dispersion of beliefs in asset volatilities increases. This is clearly
illustrated by Fig. 4(a1) (right panel) and (a2) (right panel). Similar to the previous
case, the unsystematic risks of the optimal portfolios increase, but not significantly,
as the dispersion of beliefs in variances of asset returns increases, demonstrated by
Fig. 4(a3) (right panel).
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We now provide some justifications to the above observations. Since θi = θo and
Ei(r̃) = Eo(r̃) for i = 1,2, the covariance between assets’ return and the aggregate
market return under the consensus belief is given by

Vawm = Eo(r̃ − rf 1)

θoWm0/I
, (6)

which is actually a constant. On the other hand, the variance of the market portfolio
is given by

wT
mVawm = 1

(θoWm0/I)2 Eo(r̃ − rf 1)T

(
1

2

2∑

i

V −1
i

)
Eo(r̃ − rf 1)

with Vi = Di Co Di = (Do + εiI)Co(Do + εiI). Obviously, increasing dispersion
in beliefs implies that there are more chances for the beliefs in asset volatility be-
ing very close to zero, which will lead to an increase in the market variance, thus a
dramatic increase in Treynor ratio, see Fig. 4(a2) (right panel). Essentially, the co-
variance between asset returns and the market returns under the consensus belief is
a constant, while the variance of the market portfolio increases when the dispersion
increases, leading to higher market risk premium and higher average Sharpe and
Treynor ratios. The increase in the risk premia as the dispersion of beliefs increases
is clearly higher than the previous case, hence the market requires a higher compen-
sation in terms of expected returns for uncertainty given that variances/covariances
are believed to be more predictable than expected returns.

4.3 Diversified Risk Aversions

In the homogeneous case when Vi = Vo and μi = μo for all i, it is clear from Propo-
sition 2.1 that any changes in the ARA coefficients will not affect the consensus
belief Ba and the standard CAPM holds. However, this is no longer the case when
either the beliefs in the expected returns or variance/covariance of returns are het-
erogeneous. To understand the joint impact of the heterogeneities on the market, we
consider heterogeneous ARA coefficients in three cases: (i) μ1 �= μ2, Vo = V1 = V2;
(ii) μo = μ1 = μ2, V1 �= V2; and (iii) μ1 �= μ2, V1 �= V2. A summary on the result-
ing statistics from Monte Carlo simulations and related discussions can be found in
He and Shi (2008). In all three cases, we find that the dispersion in ARA coefficients
affect the skewness and kurtosis for the expected returns of the optimal portfolios
in different ways, but the average Treynor ratios, rather than the average Sharpe ra-
tios, increase systematically as the dispersions of the beliefs in ARA coefficients
increase. This is probably due to the fact that higher dispersion in risk aversion re-
duces the aggregate market risk aversion, which in turn offsets the increase in the
market volatility.

Based on the above analysis, we obtain the following overall features on the
impact of the diversified beliefs. (i) Measured by the average Sharpe and Treynor
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ratios, dispersion of beliefs improves the performance of the market portfolio, lead-
ing to higher market risk premium for bearing the diversity in investors’ beliefs. The
“cost” of uncertainty on beliefs in the variances/covariances of asset return is higher
than that in expected returns. (ii) Diversified risk aversion does not have any impact
on the market when beliefs are homogeneous. However, when combined with di-
versified beliefs in the expected returns and variances, it can improve the average
Treynor ratio when dispersions increase. In addition, the resulting statistics from
Monte Carlo simulations in He and Shi (2008) (not reported here) also show that
the diversified beliefs have greater impact on the distribution of the expected returns
for the optimal portfolios than for the individual risky assets. In addition, market
aggregation of heterogeneous beliefs can lead to non-normal return distributions for
the market portfolio as well as the individual optimal portfolios.

5 Conclusion

Within the framework of Chiarella et al. (2009b) on MV analysis, this paper exam-
ines the impact of the heterogeneity and bounded rationality on the market equi-
librium and MV efficiency of the optimal portfolios. The heterogeneity is charac-
terized by the heterogeneous beliefs about the returns of the risky assets, while the
bounded rationality corresponds to the MV optimization of investors based on their
beliefs. Through numerical examples and statistical analysis based on Monte Carlo
simulations, we examine the MV efficiency of the optimal portfolios of investors
and diversification effect of the heterogeneous beliefs. We provide some evidence
on the mean variance inefficiency of the optimal portfolios of the heterogeneous
investors. However, the optimal portfolios of investors can be very close to the con-
sensus frontier in some cases. This implies that, in some situations, investors’ selec-
tions of the optimal portfolio under their subjective beliefs can be almost perfectly
rational under the market aggregation. This may help us to understand the empir-
ical finding that the managed funds tend to under-perform the market portfolio on
average, though some managed funds can perform as close as the market. In gen-
eral, the consensus frontier is located in between the investors’ frontiers under their
subjective beliefs, while different aspect of heterogeneity plays different roles. The
heterogeneity in the covariance matrices plays the most important role in determin-
ing the relative positions of the individual frontiers and the consensus frontier, while
the heterogeneity in expected returns plays the second important role, which is con-
trolling how far apart are the individual frontiers from the consensus frontier. The
risk aversion coefficients determine the relative positions of the individual optimal
portfolios to the market portfolio. Most interestingly, we found that an increase in
the dispersion of beliefs in the expected returns and/or variances can improve the
performance of the market portfolio measured by the average Sharpe and Treynor
ratios, leading to higher market risk premium. This indicates a diversification effect
of the diversified beliefs. In He and Shi (2008), a similar analysis is also conducted
when the heterogeneous beliefs are formed in the asset payoffs and we found that
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both setups share many similar features, though the diversification effect is more
significant for the return setup.

It would be interesting to extend the analysis of this paper to an intertempo-
ral model by following the HAMs literature to incorporate expectations feedback
mechanism into the beliefs. By allowing investors to switch among different expec-
tations based on certain performance measure, it is not clear how the MV efficiency
of the optimal portfolios is improved or whether the diversification effect of the
heterogeneous beliefs still holds. We leave those tasks for future research.
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Can Investors Benefit from Using Trading Rules
Evolved by Genetic Programming? A Test
of the Adaptive Efficiency of U.S. Stock Markets
with Margin Trading Allowed

Stan Miles and Barry Smith

Abstract This paper employs genetic programming to develop trading rules, then
uses these rules to test the efficient markets hypothesis. Unlike most similar re-
search, the study both incorporates margin trading and returns trading rules that are
more than simple buy-sell signals. Consistent with the standard portfolio model,
a trading rule is defined here as the proportion of an investor’s total wealth that is
held in the form of stocks; because margin trading is allowed, the proportion can be
greater than 1. The results show that the 24 individual stock markets studied were
adaptively efficient between 1985 and 2005.

1 Introduction

A number of studies (e.g., Allen and Karjalainen 1999; Gençay 1998, 1999;
and Sullivan et al. 1999, 2001, 2003) have tested the efficient market hypothe-
sis (EMH) by examining the out-of-sample performance of technical trading rules.
High risk-adjusted out-of-sample performance of these rules is interpreted as evi-
dence against EMH, because if EMH is true, investors cannot benefit from using
publicly available in-sample information to derive profitable trading rules out-of-
sample. Adaptive efficiency, a weaker version of EMH, was developed by Daniel
and Titman (1999). A market is said to be adaptively efficient if profit opportunities
disappear soon after they become apparent.

In this study, we test the adaptive efficiency of U.S. stock markets by examining
the out-of-sample returns of technical trading rules constructed by genetic program-
ming (GP). Many of the previous studies that tested EMH were limited to trading
rules that returned simple buy-sell signals; such rules switch between investing all
wealth in a single risky asset and investing all wealth in a single riskless asset. In
contrast, the rules in our study are defined as setting the proportion of wealth to be
held in the form of stocks; any wealth not held in the form of stocks is invested
in a riskless asset. If adhering to a trading rule requires that stock holdings exceed
wealth, the trader takes out a margin loan.
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Past studies that tested EMH usually adjusted the out-of-sample trading rule re-
turns for risk, in a variety of manners. We adopt a fitness criterion that is based on
the investor’s expected utility and incorporates risk aversion; hence, our adjustment
of the out-of-sample trading rule returns is consistent with the standard portfolio
model. In summary, our model fits within the existing literature but is more realistic
than most previous models because it allows for margin trading, and it is a stricter
test of adaptive efficiency because it allows for trading rules that are more complex
than the simple buy-sell signals generated by the rules in most previous research.

1.1 Background

Koza (1992) introduced GP as a modification of genetic algorithms. GP employs
a computerized version of the working of principles of natural selection to search
for candidate solutions to problems, in a nonlinear fashion. The methodology is de-
signed for particular problems: the set of possible solutions consists of computer
programs or analytical expressions that can be expressed as decision trees. GP uses
tree-like structures that are hierarchical compositions of functions to represent solu-
tion candidates. GP does not specify a priori the structure of the solution candidates.
The process, which is described in detail in Sect. 3.1, operates to “evolve” decision
trees that become increasingly more adept at solving the problem of interest.

Compared to the classic optimization methods, evolutionary algorithms (of
which GP is a subset) offer several advantages. Gauss–Newton and other gradient-
type methods cannot be applied to problems with a discontinuous objective func-
tion, but GP can handle such problems. Whereas gradient-like methods encounter
difficulties on problems with objective functions that have multiple local optima,
because they converge to local maxima, GP can be applied successfully. GP and
other evolutionary algorithms also are said to often be successful in cases when
other optimization methods fail due to the large size of the search space.

Some qualifications concerning use of GP and other evolutionary algorithms are
as follows: GP is not guaranteed to find the global maximum. Special-purpose al-
gorithms in well-understood domains usually have better performance than GP and
other evolutionary algorithms that encapsulate little problem-specific knowledge.
Because GP requires constantly populating a pool of solution candidates, the objec-
tive function must be evaluated multiple times; as a result, the required computation
time can be large.

Researchers have applied GP to diverse problems in econometrics, economics,
and finance, as well as to numerous problems in other fields that are beyond the
scope of this paper. Chen and Yeh (2002) applied GP to evolve populations of traders
who learn over time as a means of demonstrating how emergent properties can be
shown in an agent-based artificial stock market. Chen and Yeh (1997) also formal-
ized the notion of unpredictability in the efficient market hypothesis through use
of GP. Álvarez-Díaz and Álvarez (2005) combined forecasts generated by GP and
neural networks to forecast exchange rates. Lensberg (1999) investigated the use-
fulness of GP for solving highly irregular optimization problems and for generating
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hypotheses about rational behavior in situations where explicit maximization is not
well defined. Lensberg et al. (2006) and McKee and Lensberg (2002) used GP to
construct an effective bankruptcy prediction model.

One interesting application of GP is in the area of financial asset trading strate-
gies. These strategies can be used to test weak-form financial market efficiency.
GP has been applied widely in related applications in the S&P 500 market, includ-
ing studies by Allen and Karjalainen (1999); Fyfe et al. (2005); Neely (2003); Ready
(2002); and Wang (2000). One of the first studies of the out-of-sample returns of ex
ante optimal trading rules evolved by GP is by Allen and Karjalainen. They con-
cluded that, after figuring in transaction costs associated with the trading suggested
by their rules, the rules generated in their study did not outperform the simple buy-
and-hold strategy. Fyfe et al. (2005) and Neely (2003) extended the experiments
presented by Allen and Karjalainen by using a more complex fitness criterion, one
that adjusts trading rule returns for risk, so as to evolve ex ante optimal trading rules.
Both studies found that when the out-of-sample returns of trading rules are adjusted
for risk, the rules cannot beat the buy-and-hold strategy. Allen and Karjalainen’s
study was further extended by Ready, who tested the performance of GP rules under
conditions of higher transaction costs and potential price slippage between the time
when the trading signals are generated and the time when the corresponding trades
can be completed. Once again, trading rules could not outperform the buy-and-hold
strategy. Wang used GP to generate trading and hedging rules in S&P 500 spot and
futures markets. This study found the S&P 500 spot market to be efficient, as most
GP rules that evolved simply duplicated the buy-and-hold strategy.

Researchers also have employed GP to study the properties of prices in individ-
ual stock markets. Kaboudan (2000) used GP to produce one-day-ahead stock price
forecasts for six individual stocks, then evaluated trading strategies based on these
forecasts; these strategies yielded higher returns than that of the buy-and-hold strat-
egy. Fyfe et al. (1999) employed GP to evolve trading rules for one UK stock and
found that risk-adjusted returns are inferior to that of the buy-and-hold rule. Potvin
et al. (2004) applied GP to evolve trading strategies for stocks in 14 Canadian com-
panies. Rules evolved by GP were found to outperform the buy-and-hold strategy
when the market was falling or when it was stable, but these rules were dominated
by the buy-and-hold approach during times when the market was rising. Though the
out-of-sample returns were positive for 9 out of 14 stocks, the average out-of-sample
return for the 14 stocks in this study, applying the GP rules, was −3.59%.

One category of trading rules is “bang-bang” strategies, simplistic rules accord-
ing to which investors switch back and forth between investing all of their wealth
in a risky asset and investing it all in the riskless asset. Academics and practitioners
who have studied technical trading rules have defined their rules as bang-bang strate-
gies so often that Skouras (2001) defined technical analysis as a bang-bang strategy.
Samuelson (1997) proved that the expected utility of the investor who employs a
constant diversification trading rule is necessarily higher than the expected utility
of the investor who uses a bang-bang strategy. Gollier (1997) proved that the bang-
bang strategy consisting of investing in one asset in the first period and in another
asset in the second period is second-order stochastically dominated by the strategy
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of splitting one’s wealth evenly between the two assets during the two periods. These
two results illustrate that bang-bang strategies are dominated by strategies that are
allowed to diversify between the risky and the riskless assets at every point in time.
Studies that test EMH by evaluating the performance of bang-bang trading rules
therefore are biased toward accepting EMH. A proper test of EMH would involve
examining the performance of technical trading rules that have proved to be more
efficient than the simplest bang-bang strategies, which allow no diversification at a
given point in time.

Unlike studies that use GP to find trading rules for stock indices and individual
stocks as a means of studying the performance of GP rules themselves, Allen and
Karjalainen (1999) arrived at their conclusions regarding market efficiency by ex-
amining both the performance of single GP rules themselves and the performance
of portfolios of GP trading rules. For the latter, Allen and Karjalainen used GP to
evolve and save 100 rules for the S&P 500 index, using daily data. They then ex-
amined the out-of-sample returns of a portfolio that assigned an equal weight in the
portfolio to each rule that had satisfied the selection criteria used in the study. The
portfolio thus invested in the risky asset a proportion of funds set by the proportion
of rules that returned a signal to invest all of the funds in the risky asset. In this two-
step approach, the ability of GP to find good portfolio rules could be diminished
because the objective (high out-of-sample returns from a portfolio of trading rules)
is different from the actual fitness function that GP uses as it evolves individual
bang-bang rules.

Most studies that tested EMH by evaluating the returns generated by technical
analysis rules employed simple rules that returned 0–1 signals, or bang-bang strate-
gies. Studies such as those by Fyfe et al. (2005) and Potvin et al. (2004) used GP
to search within the space of such trading rules. Samuelson’s (1997) results indi-
cate that the out-of-sample performance of the rules could be improved by relaxing
the bang-bang restriction to allow rules that return a proportion of wealth (not re-
stricted to 0% or 100%) to be invested into the risky asset, and we employ that in
our experiments. Our experiments add realism to the trading simulations of those
studies by allowing margin trading such that the investor can set the proportion of
wealth allocated to the risky asset to be any number between 0% and 200% (under
the assumption of a maximum loan of 50% of a portfolio’s value; in other words, an
investor can use 100% of wealth as collateral for a margin loan of the same amount).

This article is organized as follows: Section 2 presents background information
on the environment in which stock trading takes place, and Sect. 3 describes the
methodology employed. The empirical results and their implications for market ef-
ficiency of 24 U.S. stock markets are detailed in Sect. 4. Finally, some concluding
remarks are presented in Sect. 5.

2 The Trading Environment

The opportunities to trade on margin are subject to regulatory oversight. In the
United States, the margin requirement for stocks is set by the Federal Reserve



Can Investors Benefit from Using Trading Rules Evolved by Genetic Programming? 81

Board (FRB) under Regulation T. In general, an initial margin requirement is that
collateral must be deposited on the day the stock transaction is opened, and a main-
tenance margin requirement must be maintained every day thereafter. The mainte-
nance margin is a fraction of the initial margin. Because the stock margin require-
ments are set with respect to the “loan value” of the position, the initial margin
requirement for stocks is expressed in terms of a percentage of the current stock
price.

Since 1974, the Board of Governors of the Federal Reserve System has set the
initial margin requirement for stocks at 50%. This means that investors must have
equity in their accounts equal to or greater than 50% of the value of securities held.
At the New York Stock Exchange (NYSE), the broker-dealers at member firms are
obligated to insist that their customers have a maintenance margin equal to at least
25% (30%) for long (short) stock positions. Broker-dealers may set house margin
requirements for selected volatile stocks and for concentrated accounts (nondiversi-
fied portfolios containing a small number of stocks) above the mandatory exchange
margins.

Security price declines set off maintenance margin calls. An investor who re-
ceives a margin call must either (a) deposit new collateral in the form of cash or
another security with enough margin value or (b) close part of his or her open stock
positions. Investors who fail to meet a margin call on time may have their stock
holdings liquidated at the market price. When traders choose to meet the margin
call by selling part of their securities, they must sell at least the number of stock
shares that would bring the ratio of investor equity to the value of the stock position
back to the maintenance margin amount.

3 Methodology

Our methodology will generate trading rules for margin trading for each of 24 stocks
and then study the out-of-sample performance of these rules. We use GP to evolve
the trading rules, which determine the proportion of wealth to be allocated for in-
vestment in a risky asset (i.e., one of the 24 stocks in this study), with the remaining
wealth in the “portfolio” for each individual stock being invested into a riskless as-
set (or, in the case of a margin loan, borrowed). This is in contrast to simple binary
bang-bang rules evolved in earlier studies (e.g., Dempster and Jones 2001; Fyfe et
al. 2005; and Potvin et al. 2004).

Within the literature, the approach most similar to our evolution of the proportion
of wealth to be allocated to a risky asset, with the possibility of using wealth as
margin collateral, is Wang’s (2000) use of GP to generate trading and hedging rules
in the S&P 500 spot and futures markets. Wang limited GP futures trading rules to
five trading signals (similar to our proportions of wealth to be held in the risky asset,
but limited to only a few discrete choices): two contracts held long, one contract held
long, no position, one contract held short, and two contracts held short.

Bessembinder and Chan (1998) studied markets using a narrower range of al-
ternatives, examining the returns of a “double-or-out” strategy. For this strategy,



82 S. Miles and B. Smith

a trader holds the Dow Jones portfolio when the technical trading rule does not re-
turn a trading signal, switches to holding T-bills when the rule returns a sell signal,
and borrows (at the T-bill rate) to double the equity position when the rule returns
a buy signal. Bessembinder and Chan examined the out-of-sample performance of
known technical analysis rules. In this study the “break-even” trading costs com-
puted (which would exactly cancel out increases in portfolio returns from using
technical rules) are lower than the estimates of actual trading costs, which implies
that the study confirmed EMH. In the present paper, rather than studying known
rules, we study the out-of-sample performance of the technical rules evolved by GP.

3.1 Genetic Programming Setup

The GP method begins by generating a population of random candidate solutions to
the given problem, referred to as the initial generation. The only requirements for
candidate solutions is that they be well defined and produce output appropriate to the
problem of interest. Most of these random solutions will be quite poor at solving the
problem; some obviously will be better than the rest, and some, purely by chance,
will be moderately good or even quite good. From that initial population, the next
generation of solution candidates is created, in a process described below. The set of
solutions is then allowed to “evolve,” using crossover and mutation operators, with
the “fittest” members of each generation being assigned higher levels of probability
of “mating” to create members of the subsequent generation from their component
parts and from random elements.

The crossover operator uses two parent solution candidates to build offspring
solution candidates in the next generation by replacing a randomly selected subtree
in one of the parent solution candidates with a subtree from another parent solution
candidate. The mutation operator is used in addition to the crossover operator to
create offspring solution candidates. The mutation operator (employed with a small
probability) ensures that genetic diversity is not reduced, by inserting a randomly
generated subtree into the offspring.

Through this process of using relatively more “fit” candidate solutions to produce
each successive generation of candidate solutions, the decision trees in each succes-
sive generation tend to become more adept at solving the problem. GP continues to
produce populations this way until a termination criterion is satisfied.

In our experiments, GP constructs trading rules by assembling Boolean, prob-
ability, and real-valued functions as the building blocks in a tree structure. Each
function takes its inputs from the functions below it in the tree. The building blocks
used in all of the experiments consist of numerical constants, arithmetic and logi-
cal operators, and simple functions of past price data. Table 1 lists these building
blocks and other particulars of the experiments we conducted. To guarantee that a
trading rule is well defined, the root node (the “top of the tree”) of each GP deci-
sion tree must be constrained to be a function that has an output of the probability
type; that is, it returns a number (a proportion) between 0 and 1, inclusive, at the
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beginning of every trading day. To this end, all root nodes are constrained to be one
of the functions in the set {And, AND, GT, If–Then, If–Then–Else, IF–THEN, IF–
THEN–ELSE, Not, NOT, LT, Or, OR, SRatio, pconstant}. (See Table 1 for details
of the workings of the functions that constitute the function set.)

Our experiments take the probability returned by each GP solution candidate de-
cision tree and convert it to a rule stating the fraction of wealth that the investor will
allocate to be held as shares of stock. If this number is 1, for example, it indicates
that the investor should hold as many shares of stock as possible. If the initial margin
is constrained to be 50% of the value of shares of stock in the investor’s portfolio,
the investor would buy shares of stock valued at 200% of his or her wealth, using
all wealth as collateral and borrowing an equal amount from his or her stock broker
as a margin loan.

At the bottom of the tree are functions from the terminal set (functions requiring
no inputs). Their output type, like that of all functions below the top of the tree,
matches the input type of the function above. The terminal set consists of numerical
constants and of variables in the set {stock price, stock return, Days-remaining}.
The function set contains real-valued functions, Boolean functions, and probability
functions that are constrained to return a number between 0 and 1. It is important
to realize that not all logical functions return a Boolean output. Functions in the
set {and, or, not, if–then, if–then–else} have Boolean inputs and outputs. Functions
in the set {And, Or, Not, If–Then, If–Then–Else} convert Boolean arguments into
a probability output of 1 or 0. Functions in the set {AND, OR, NOT, IF–THEN,
IF–THEN–ELSE} take probability inputs and compute probability outputs. Lastly,
functions in the set {>, <} convert real numbers into Boolean values, and functions
in the set {GT, LT} convert real numbers into probabilities.

The real-valued functions in the function set include arithmetic and mathemat-
ical operators in the set {+, −, /, ∗, absolute value, ln, Power}. Also included are
functions for maximum and minimum, a lag function that returns the value of the
variable argument as it was n days ago (n is the second, integer-valued, argument),
and a function that returns a moving average of the variable argument (Moving__Av)
in a window defined by the second, integer-valued, argument.

The function and terminal sets identified in Table 1 enable GP to search for
trading strategies in the space of complex and nonlinear decision trees. This setup
allows GP to potentially identify factors that are important for successful trading
strategies, as well as to put these factors together in ways that form decision rules
that correspond to profitable trading strategies.

3.2 Data

In our experiments, we employ GP using the most recent 5 years of data to evolve
trading rules, which are then applied in the following year. We divide the data
into subperiods of 1 year each and sub-subperiods of 3 months each, the assumed
length of the investor’s trading horizon. Throughout the experiments, these data
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Table 1 Genetic programming building blocks

Building block Input data
type

Input Output
data type

Output

+ Real a, b Real a + b

− Real a, b Real a − b

∗ Real a, b Real a × b

/ Real a, b Real If |b| > 0, output a/b;
else, output 1

Absolute
value

Real a Real |a|

Lag Variable (a),
Integer (n)

a,n Real Value of the variable a,
n days ago

ln Real a Real If a > 0, output ln(a);
else, output 0

Maximum Real a, b Real Max(a, b)

Minimum Real a, b Real Min(a, b)

Moving__Av Variable (a),
Integer (n)

a,n Real Average of the last n

observations of the variable a

Power Real a, b Real ab

Return Variable a Real ln(at /at−1)

> Real a, b Boolean If a > b, output true;
else, output false

< Real a, b Boolean If a < b, output true;
else, output false

And Boolean a, b Boolean If a is true and b is true,
output true;
else, output false

If–then Boolean a, b Boolean If a is true, output b;
else, output false

If–then–else Boolean a, b, c Boolean If a is true, output b;
else, output c

Not Boolean a Boolean If a is true, output false;
else, output true

Or Boolean a, b Boolean If a is true or b is true, output
true;
else, output false

And Boolean a, b Probability If a is true and b is true, output 1;
else, output 0

AND Probability a, b Probability a × b

GT Real a, b Probability If a > b, output 1; else,
output 0

If–Then Boolean (a),
Probability (b)

a, b Probability If a is true, output b;
else, output 0
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Table 1 (Continued)

Building block Input data
type

Input Output
data type

Output

IF–THEN Probability a, b Probability If a = 1, output b;
else, output 0

If–Then–
Else

Boolean (a),
Probability (b, c)

a, b, c Probability If a is true, output b;
else, output c

Not Boolean a Probability If a is true, output 1;
else, output 0

IF–THEN–
ELSE

Probability a, b, c Probability If a = 1, output b;
else, output c

LT Real a, b Probability If a < b, output 1;
else, output 0

NOT Probability a Probability 1 − a

Or Boolean a, b Probability If a is true or b is true, output 1;
else, output 0

OR Probability a, b Probability (a + b) − (a × b)

SRatio Real a, b Probability If b = 0, or if a and b are of
opposite sign, output 0.
Otherwise, output 1 if |a| ≥ |b|;
else, output a/b

Pconstant None Probability Real number between −1 and 1

Days-
remaining

None Variable Number of days remaining until
end of sub-subperiod

Pt None Variable Current value of asset price

R None Variable Current value of riskless rate

Wt None Variable Current value of investor’s
wealth

sub-subperiods are used to train the GP methodology (training periods), select the
fittest candidate to be applied out-of-sample (selection periods), and evaluate the
fitness of the GP rules using out-of-sample data (from a testing period). To evaluate
the “fitness” of candidate solutions in a given time period, we use a criterion that
involves averaging utilities of the wealth accumulated, through use of the trading
rules generated by GP, at the ends of sub-subperiods that constitute the appropriate
time period. The trading horizon of 3 months was chosen arbitrarily. The choice of
a longer trading horizon (i.e., longer sub-subperiods) would result in fewer terms
being averaged, so that each term would carry more weight. On the positive side,
each term would carry more information because it includes more trading days; on
the negative side, an “outlier” term could more seriously bias the results. Currently
we are conducting research to examine the sensitivity of results to changes in the
trading horizon and to changes in the number of training and selection subperiods.

For each of the 24 stocks used in this study, the data set spans the years 1980–
2005. Thus, allowing for training and selection periods during which trading rules
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are evolved, we have 21 testing subperiods and 84 testing sub-subperiods (as there
are 4 sub-subperiods of 3 months each per subperiod of 1 year) with which to work.
The training and selection periods each consist of 2.5 subperiods, and each testing
period is composed of 1 subperiod. The selection period follows the training period,
and the testing period follows the selection period.

As a specific example, an investor at the beginning of 1985 has access to 5 years
of historical data (1980–1984). The investor assigns the first half of this data set to
the training period and the remainder to the selection period. Ten GP trials (to be
discussed in Sect. 3.3) are run on this subset of the data, using the periods specified
this way. If threshold criteria, defined in Sect. 3.6, are satisfied for any of the rules
generated in these 10 trials, one rule (which best meets the fitness criterion, as dis-
cussed in Sect. 3.4) is selected to be applied out-of-sample. The investor then uses
this rule to trade in 1985, the testing period. That completes one round of rule evolu-
tion and testing. At the beginning of 1986, all periods are reassigned by being rolled
forward one year: The testing period is now 1986, and the years 1981–1985 are now
referred to as training and selection periods. Once again, 10 GP trials are run, in the
manner described above, and one rule is selected to be applied out-of-sample (again,
if threshold criteria are satisfied for any of the rules generated in these 10 trials); that
rule is applied to trades in the testing period, which is now 1986. We continue rolling
our window forward in this manner until we use the last year in our data set, 2005,
as the testing period. In summary, we use 5 years of data to evolve a trading rule to
be applied 1 year ahead, doing this 21 times for every stock (the data set contains
26 years, 1980–2005 inclusive; the first testing period is 1985, and the last is 2005,
for a total of 21 testing periods).

During each experiment, each sub-subperiod is split evenly into an observation
phase and a trading phase (operationally defined below). The observation phase ends
when the trading phase begins. On the first day of the trading phase, the GP algo-
rithm has access to all of the stock prices during the observation phase that has just
ended. From then on, every day GP can use all of that stock price information, as
well as all stock price information from the current trading phase, up to and includ-
ing data from the previous day, to make its recommendation for wealth allocation.
Each observation phase and each trading phase is 60 trading days (approximately
3 calendar months) in length; therefore, each sub-subperiod (consisting of an ob-
servation phase followed by a trading phase) is approximately 6 calendar months
long.

For these experiments, we chose 24 companies traded on the NYSE. We chose
well-known companies operating in a variety of industries. To ensure that the com-
panies came from a variety of industries, we picked two stocks each from the
12 industries in Fama and French’s industry classification scheme.1 Specifically,
two companies were selected from each of the following industries: Consumer
Durables, Consumer Non-Durables, Manufacturing, Energy, Chemicals, Business
Equipment, Telephone and Television, Utilities, Shops, Healthcare, Finance, and

1Refer to http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_12_ind_port.
html.
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Table 2 Individual stocks
used for the GP experiments Industry Company Symbol

Consumer non-durables Altria group MO

Consumer non-durables Pepsico PEP

Consumer durables General motors GM

Consumer durables Whirlpool WHR

Manufacturing Eastman kodak EK

Manufacturing Goodyear tire & rubber GT

Energy Exxon mobil XOM

Energy Halliburton HAL

Chemicals Dow chemical DOW

Chemicals DuPont DD

Business equipment IBM IBM

Business equipment Xerox XRX

Telephone and television AT&T Inc. T

Telephone and television Sprint S

Utilities American electric AEP

Utilities Duke energy DUK

Shops Target TGT

Shops Wal-mart stores WMT

Healthcare Johnson and Johnson JNJ

Healthcare Pfizer PFE

Finance Bank of America BAC

Finance Merrill Lynch MER

Other Disney DIS

Other Hilton hotels HLN

Other. We chose from among the companies that were active in the market for the
entire period between the start of 1980 and the end of 2005. For each stock, our data
set comprises daily prices for the time period 1980–2005. Table 2 lists the compa-
nies used in this study, along with their corresponding industries. These data, along
with 3-month T-bill rates, were taken from Datastream.

The stock prices in these data sets are not adjusted for dividends. Bessembinder
and Chan (1998) estimated the dividend yield to be 0.016% per day for the Dow
Jones Industrial Average (DJIA). When the trading rules evolved by GP result in
not being fully invested in the stock, the decision not to include the dividends in the
data set has the effect of underestimating returns to a greater extent for the buy-and-
hold trading rule than for the rules evolved by GP. Conversely, when the GP rules
call for obtaining a margin loan, not including the dividends in the data set has the
opposite effect: Returns are underestimated to a greater extent for the GP rules than
for the buy-and-hold rule. Because both of these scenarios can occur, it is difficult
to determine the overall influence of exclusion of dividends from the data set on the
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results of our study in regard to the GP rules versus the buy-and-hold rule. The effect
is ambiguous even for a given rule, which might return a signal less than 0.5 (in
which case the investor’s portfolio is not fully invested in the stock) on one trading
day and a signal greater than 0.5 (in which case the investor obtains a margin loan
to buy stocks) on a different day. Not including dividends in the data set always has
the effect of underestimating returns for the buy-on-margin-and-hold rule (defined
in Sect. 3.4) to a greater extent than for the GP rules.

3.3 Operationalization of Genetic Programming Method

Every GP experiment conducted as part of this study involves 10 trials, and each
trial consists of 50 generations. Every generation uses a population size of 50,000
trading rules. The tree depth of the solution candidate decision trees was limited to
25 levels. To create rules for each generation, we use the crossover operator and the
mutation operator.

A set of 10 GP trials comprises the following steps:

Step 1 Generate 50,000 random rules, evaluate their fitness in the training and se-
lection periods, and identify and save all of the rules that satisfy the first six
threshold criteria (described in Sect. 3.6 and in Table 3). If more than 50
rules satisfy the criteria, save only the 50 rules that have the highest fitness
in the selection period.

Step 2 Attach to each rule a probability of being chosen to be used to create “off-
spring” rules in the next generation, with the probability correlating with the
rule’s fitness during training and selection periods. Choose rules from the
current generation randomly, using the attached probabilities, and apply to
these rules either the crossover operator (with probability 95%) or the mu-
tation operator (with probability 5%), so as to generate 50,000 rules for the
next generation. As above, evaluate the fitness of the rules in this population
in the training and selection periods, then save all of the rules that satisfy the
first six threshold criteria (up to a maximum of 50).

Step 3 If this is not Generation 50, go back to Step 2 to create the population of
trading rules in the next generation. If this is Generation 50, begin the next
trial by going back to Step 1, unless this is Trial 10.

Step 4 If this is Generation 50 of Trial 10, take the rules that were saved during the
10 trials and discard all of the rules that do not satisfy the last two threshold
criteria. If any rules remain, select the rule that achieves the highest fitness in
the selection period. Study the performance of this rule in the testing period.

Use of “data mining” techniques such as the ones we employ raises potential
difficulties, in that the rules chosen may work very well for the data on which they
were developed and would be expected to provide high rates of return on that data
set. That is, the data might not be representative, and the solutions found may apply
well only to those nonrepresentative data. Studies by Neely et al. (1997) and Neely
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and Weller (1999, 2003) used one training, one selection, and one testing period.
Because these studies used limited data sets, they are subject to the criticisms as-
sociated with data mining. We adopt an approach similar to that of Allen and Kar-
jalainen (1999) to address these potential difficulties in the choice of time periods.
They used 10 sets of successive training, selection, and testing periods. We exam-
ine multiple training, selection, and testing periods for each market studied, and we
conduct experiments for multiple stock markets.

3.4 Criterion of Fitness

We assume that the investor’s preferences are characterized by the logarithmic utility
of terminal wealth (WT ) on the day that trading ends. We assume a simple utility
function given by

U(WT ) = ln(WT ). (1)

The goal of our experiments is to investigate whether we can find a way for in-
vestors to increase their utility over the span of their trading horizon by switching
from trading in accordance with simple buy-and-hold rules to trading in accordance
with a rule evolved by GP. In these experiments, GP provides trading signals to re-
balance the trading portfolio between the risky stock asset and the riskless 3-month
T-bill asset at the end of every trading day, throughout the investment horizon. Our
investment model examines traders whose preferences are characterized by (1) and
whose trading horizon is 3 months. We evaluate a rule’s fitness in a certain training
(or selection or testing) period by averaging the utilities of terminal wealth attained
at the ends of sub-subperiods of 3 months that make up that training (or selection or
testing) period. This type of fitness criterion takes risk into account by making an
adjustment to the raw returns corresponding to the trading rules.

We use two simple buy-and-hold rules as benchmarks in this study: a buy-and-
hold rule by which the investor holds all of his or her wealth in the stock, without
taking out a margin loan, and a buy-on-margin-and-hold rule by which the investor
uses all of his or her wealth as margin collateral, and as a result obtains maximum
leverage allowed by the margin regulations.

In studies that evaluate the out-of-sample performance of trading rules evolved
by GP as a means to test EMH, various criteria for trading rule performance have
been used. We present several of these performance criteria, from some representa-
tive studies, to provide a sense of the types of criteria that have been used in previous
studies. Allen and Karjalainen (1999) and Potvin et al. (2004) used as a fitness cri-
terion the excess return of trading by the rule versus trading using the buy-and-hold
strategy. The measure of performance that adjusted trading returns for risk employed
by Fyfe et al. (2005) was the Sharpe ratio (Sharpe 1966), and the measure employed
by Dempster and Jones (2001) was a modified Stirling ratio, which is a function
of the ratio of return to maximum drawdown. Relevant to this discussion, Neely
(2003) used GP to generate three sets of rules that maximize three corresponding
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fitness criteria that adjust for risk: the Sharpe ratio, the X∗ statistic (Sweeney and
Lee 1990), and the Xeff criterion (Dacorogna et al. 2001).

The risk-adjustment criterion introduced by Dacorogna et al. (2001), the Xeff cri-
terion, is related to the criterion of fitness employed in our study. The Xeff criterion
measures the utility derived from a trading strategy by an investor (whose prefer-
ences are characterized by constant absolute risk aversion) over a weighted average
of return horizons. Criterion Xeff originates from utility theory, except for its re-
liance on a weighting function that assigns relevant importance to different return
horizons. This weighting function is chosen somewhat arbitrarily, may be arbitrarily
changed for trading models with different trading frequencies, and does not origi-
nate in the standard portfolio model. In the present study, we do not consider mul-
tiple trading horizons; hence, we choose to use a fitness criterion that is related to
expected utility maximization in a more straightforward fashion.

3.5 Mechanics of the Trading Process

We simulate the trading process in our experiments in the following manner: The
trading setup described is used to evaluate the fitness of one candidate trading strat-
egy solution in one sub-subperiod, be it a training, a selection, or a testing sub-
subperiod. On the first day of the trading phase, the value of the investor’s cash
account is set to W0. For each of our stock experiments, W0 is set to $100,000.
We make an important assumption that the activities of our simulated trader have
negligible influence on the stock price.

We define the investor’s wealth at the end of day t , Wt , as the value of the shares
of stock in the portfolio at the end of day t plus the value of the cash account (the
cash account is negative if the investor has outstanding margin debt). Suppose that
on trading day t , the investor’s wealth is Wt and the stock’s price is Pt . The initial
margin regulations (which require margin collateral in the investor’s account to be
at least 50% of the value of all shares of stock held on margin) imply that the in-
vestor can have at most int(Wt/(0.5Pt )) shares of stock on trading day t in his or
her portfolio. (The “int” function truncates its input, to give the largest integer not
exceeded by the input.)

The portfolio trading rule generated by GP determines the proportion of wealth
that the investor will allocate to stock holdings. The rule output for day t is com-
puted using information from the start of the observation phase and up to day t − 1,
inclusive of both the start and end dates. If, on day t , the rule output is αt , the
investor is guided to have Nt shares of stock in his or her portfolio; that is,

Nt = int((αtWt )/(0.5Pt )). (2)

If the current number of shares of stock in the portfolio is different from this amount,
the portfolio is rebalanced accordingly, at the end of day t , at the closing price of
day t .
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After the investor allocates the amount [Pt × int((αtWt )/(0.5Pt ))] to buy stocks,
the remainder of Wt is held in the cash account. The higher this remaining amount,
the lower the probability that the investor will receive a margin call. From (2) it
can be seen that as long as αt is below 0.5, the investor’s wealth, Wt , is sufficient
to obviate the need for the investor to make a margin loan. If αt < 0.5, we assume
that the investor receives daily interest payments on the amount remaining in the
cash account. If αt > 0.5, the investor makes a margin loan, and we assume that the
interest on this margin debt is deducted from the cash account every day.

For simplicity, it is assumed that traders can lend and borrow at the same inter-
est rate, equal to the 3-month T-bill rate. We recognize that this assumption contra-
dicts an economic model of what determines margin loan rates, presented in Fortune
(2000) and described further below, as well as being contrary to Fortune’s empir-
ical data on interest rates. The simplifying assumption also contradicts empirical
findings reported by Kubler and Willen (2006) and Ayres and Nalebuff (2008). All
three of these studies noted that the investors with the brokerage houses in the stud-
ies faced different interest rates when lending and when borrowing funds to be used
as margin to buy equity from their broker.

Kubler and Willen (2006) mention margin loan characteristics, and specifically
interest rates on margin loans, at various brokerage houses. They note considerable
diversity in the difference between interest rates on collateralized debt and rates on
the riskless asset, both across different brokerage houses and by the size of the loan.
They point out that this difference is especially significant for small investors. Ayres
and Nalebuff (2008) report data that reiterate and provide support for the findings of
Kubler and Willen, but they compare the rates that brokers charge on margin loans
to the brokers’ “call money” rates, rather than to the rate on a risk-free asset.

Fortune (2000, p. 31) points out that “The premium over the lender’s cost of
money, however defined, covers the broker’s cost of recording, monitoring, and
managing the loan, as well as a risk premium for the possibility that the customer’s
assets might become insufficient to repay the margin loan.” The model presented in
Fortune (2000) demonstrates that the act of a broker providing a margin loan can be
interpreted to be equivalent to the broker giving an investor an implicit put option
on the account. Under this setup, following the decrease of the value of an investor’s
account, the investor can allow forced sales of securities or can abandon the account.
This implies that the margin loan rate should include a premium that corresponds
to the credit risk corresponding to the margin debt. The author goes on to evaluate
the impact of this implicit put option on the margin loan rates charged by broker-
age houses. The author shows that this rate is related to the value of the put option,
which in turn depends on the volatility of the return on underlying securities and
on the account’s leverage, which is measured by the size of the margin loan relative
to the value of securities. In other words, according to this model, brokers should
offer margin loans at different rates that reflect the differing volatility and leverage
of individual accounts. After examining the rules at various brokerage houses, For-
tune presents a “margin loan mystery”: In spite of concerns that appear important
in theory, brokers’ primary consideration in setting margin loan rates seems to be
the absolute loan size, rather than market conditions or the level of leverage in an
investor’s account.
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Although it would be useful, and empirically more accurate, in future studies
to relax this assumption of equal borrowing and lending rates, the assumption of
unlimited borrowing and lending at the risk-free interest rate underlies security val-
uation and option pricing models, and it is established in the literature. Furthermore,
we do not expect the assumption to make any significant difference in the results of
the study. It should bias the results toward trading rules that involve more borrowing
on margin (because there is no premium charged on borrowing money, as opposed
to lending), but by and large, we believe that rules that are profitable will tend to be
profitable at different but realistic assumed rates of interest.

In addition to interest rates on the risk-free asset and on margin loans, transaction
costs also must be considered. When the investor buys shares of stock, both the cost
of the shares and the transaction costs are subtracted from the cash account. Neely et
al. (1997) have pointed out that adopting higher transaction costs in the training and
selection periods would decrease the proportion of retained rules that trade heav-
ily. Rules that trade heavily are more likely than those that trade less heavily to be
overfitting the data. Following Neely, Weller, and Ditmar, we adopt unrealistically
high transaction costs in the training and selection periods, as a means of avoid-
ing retaining rules that overfit the data, then use realistic transaction costs in the
testing period, so that the rules are tested in a realistic setting. For training and se-
lection periods, we use the following (deliberately unrealistically high) transaction
cost structure: a one-way transaction cost of 0.5% of the value of the transaction
plus a two-way flat rate of $5 per share of stock. In the testing period, we choose to
use the same transaction cost structure used by Allen and Karjalainen (1999) to sim-
ulate trading in the S&P 500 index: a one-way transaction cost of 0.25%. Allen and
Karjalainen’s transaction cost structure, in turn, was motivated by Sweeney (1988),
who found that one-way transaction costs for institutional traders were in the range
0.1–0.2%. Allen and Karjalainen argued that a one-way transaction cost of 0.25%
incorporates all costs at realistic levels, including the cost of the market impact.
Wang (2000) stated that the transaction cost structure for his S&P 500 index trading
simulations corresponds to a one-way transaction cost of 0.12%, and that this is a
realistic assumption for institutional investors.

We assume that the following activities take place on trading day t : First, the
interest payment is added into the cash account (or, in the case of a margin loan,
deducted from it). This interest payment is a function of the balance in the cash ac-
count (or the total amount of the margin loan, in the latter case) on day t − 1 and the
3-month T-bill rate. Second, the trading signal, αt , is generated. Third, the portfolio
is rebalanced at the close of day t . Fourth, the day’s trading costs are deducted from
the cash account, and the cash account is credited (debited) accordingly when stock
is sold (bought).

On the last day of the trading phase of each sub-subperiod, the investor sells
the stock in the portfolio, and we compute the terminal wealth, WT , and the in-
vestor’s utility of terminal wealth, U(WT ) = ln(WT ). To evaluate a rule’s fitness in
the training (selection) period, we average the utilities of terminal wealth attained
at the end of sub-subperiods that make up the training (selection) period for this
stock. To evaluate the out-of-sample fitness of a specific rule evolved by GP to be
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applied in a certain testing subperiod, we average the utilities of terminal wealth for
the sub-subperiods that constitute the testing subperiod.

According to the methodology followed in these experiments, a rule’s perfor-
mance in the selection period sub-subperiods determines whether or not that rule
gets saved to be applied out-of-sample. Section 3.6 clarifies the process by which a
rule’s performance in-sample is used to select the rules to be applied out-of-sample
in the testing period.

3.6 Rule Selection Process and Thresholds for Saving Rules

In our experiments, we are testing whether GP can use past price data to evolve
trading rules that work well out-of-sample. In accordance with Daniel and Titman’s
(1999) definition of adaptive efficiency, we are testing whether rules that attain high
fitness in-sample continue to have high fitness out-of-sample. The studies conducted
by Neely et al. (1997), Allen and Karjalainen (1999), and Neely and Weller (1999)
adopted an approach of saving one rule (the one with the highest fitness in the se-
lection period) per trial and applying it out-of-sample if it outperforms a benchmark
in the selection period. The benchmark was the buy-and-hold rule in the case of the
Allen and Karjalainen study, which applied GP to the S&P 500 index. In contrast,
the benchmark in the studies by Neely et al. (1997) and Neely and Weller (1999)
was the strategy of not trading and earning the riskless interest rate. These studies
apply GP to foreign exchange markets. These authors appear to be using a simple
threshold criterion for determining which rule, if any, is selected to be tested out-
of-sample. Their threshold criterion, however, doesn’t seem to be the most intuitive
one to follow. Few risk-averse real-world investors would be willing to switch from
investing in accordance with the buy-and-hold rule to investing in accordance with
a rule evolved by GP that marginally outperforms the buy-and-hold rule in-sample.
Consequently, in this paper we use more sophisticated threshold criteria that must
be satisfied in-sample to select the rules to be applied to the out-of-sample period.

The goal is to find rules with the same performance (or better) in-sample as the
performance the investor would like to see out-of-sample (that is, performance that
is better than a chosen benchmark, as measured by one or more criteria). In addition
to looking for the rule that produces a high (on average) utility of terminal wealth
at the end of the trading horizon of 3 months, the investor might want to search for
a rule that satisfies certain money management criteria (e.g., the rule is profitable
a certain minimum fraction of the time; when a loss occurs, it doesn’t exceed a
certain maximum allowed amount; or the rule gains a certain minimum return at
longer horizons). The underlying goal is assumed to be to find a trading strategy
that consistently produces high returns without the risk of extreme losses. Each of
the four threshold criteria above (high average utility and the three criteria related
to money management) is a different way of specifying this goal.

Table 3 formally presents the set of threshold criteria, to be satisfied in-sample
(four criteria each in both the training and the selection periods, for a total of eight
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Table 3 Parameter settings for the thresholdsa

Threshold Threshold value

Minimum average utility at the end of a subperiod for training
period

11.537618 = ln(102,500)

Minimum average utility at the end of a subperiod for selection
period

11.537618

Minimum fraction of profitable training subperiods 90%

Minimum fraction of profitable selection subperiods 90%

Minimum wealth observed during the training period $90,000

Minimum wealth observed during the selection period $90,000

Minimum wealth at the end of the training period $125,000

Minimum wealth at the end of the selection period $125,000

aThe thresholds in this table had to be satisfied in the training and selection periods, as indicated,
while the following (deliberately unrealistically high) transaction cost structure was used: a one-
way transaction cost of 0.5% of the value of the transaction plus a two-way flat rate of $5 per share
of stock

criteria), that we use in the 24 experiments with individual stocks. We use these
threshold criteria to home in on the rules to be tested out-of-sample. The actual
threshold values were chosen arbitrarily. A sensitivity study of how the out-of-
sample fitness of the rules being saved is influenced by the threshold values is be-
yond the scope of the present study. We select a single rule for each stock (if at
least one rule meets the threshold criteria), and the rules could be different for all 24
stocks. The procedure is explained in detail in the paragraphs that follow.

As described above, for each stock, corresponding to each testing period, we con-
duct one GP run comprising 10 trials, with each trial consisting of 50 generations.
For every generation, we evaluate the fitness of all of the rules, then discard all the
rules that do not satisfy the following six threshold criteria (two sets of three each
for the training and selection periods; see Table 3): (a) the average utility attained at
the end of both the training and the selection sub-subperiods (each 3 months long)
must have a certainty equivalent of at least 102.5% of the initial wealth, (b) 90% of
training and 90% of selection sub-subperiods must be profitable, and (c) the mini-
mum wealth observed on any day during the training and the selection periods must
be greater than 90% of the initial wealth. We rank the remaining rules according to
their fitness in the selection period and save the 50 rules with the highest selection
period fitness. If fewer than 50 rules satisfy the threshold criteria of our study, we
save all of the rules. If none of the rules that make up the population in a given
generation satisfies these three criteria, we don’t save any rules. Following creation
of 50 generations in each of the 10 trials, we discard all the saved rules that do not
satisfy the fourth threshold criterion (namely, that the rule results in terminal wealth
of at least 125% of the initial wealth at the end of both the total training and selec-
tion periods). From the rules that are retained, if any, we then select, to be tested
out-of-sample, the rule with the highest selection-period fitness.
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Thus, we are searching for a trading strategy, αt , to be applied out-of-sample in
the testing period. This trading strategy must maximize the quantity

max
αt

∑n
i=1 U(Wi

T (αt ))

n
, (3)

such that the constraints listed in Table 3 are satisfied in-sample, in the training and
selection periods; n is the number of selection sub-subperiods, and U(Wi

T (αt )) is
the utility of terminal wealth (given by ln(Wi

T (αt ))) at the end of selection sub-
subperiod i.

4 Results

The goal of this study is to investigate whether investors whose trading horizon
is 3 months, and whose preferences are characterized by the logarithmic utility of
terminal wealth at the end of the trading horizon, can increase their expected util-
ity by switching from trading in accordance with the simple buy-and-hold strategy
(without using margin loans for leverage) or the buy-on-margin-and-hold strategy
(a strategy that uses the maximum leverage allowed by margin regulations) to trad-
ing in accordance with a rule evolved by GP. For each of the 24 stocks, Table 4
provides the average utility of terminal wealth at the end of each testing period for
our GP methodology.

As can be seen from Table 4, we employed 21 testing periods, corresponding to
the 21 years spanning the period 1985–2005, inclusive. The blank spaces in Table 4
indicate testing periods corresponding to training periods for which no rules satisfy-
ing the thresholds in Table 3 were evolved by GP. Use of the thresholds presented in
Table 3 to determine which rules get saved resulted in GP saving rules in 231 train-
ing periods (of the possible 504, corresponding to all 24 stocks × 21 years). Table 4
presents the utility of terminal wealth averaged over four testing sub-subperiods,
corresponding to the testing periods that in turn correspond to the training periods
in which rules were found that satisfied the thresholds presented in Table 3.

We compared the expected utility of using the GP methodology with the ex-
pected utilities of using the buy-and-hold methodology and the buy-on-margin-and-
hold methodology. For each methodology, we computed the average of 24 average
out-of-sample utilities of the terminal wealth achieved by applying each of these
two methodologies to each of the 24 stock markets examined as part of this study.
Specifically, to compute the expected utility for the buy-and-hold and the buy-on-
margin-and-hold rules, we computed the average of the utilities of terminal wealth
attained at the end of sub-subperiods that made up 21 testing periods for each stock
(i.e., we averaged 21 [testing periods per stock] × 1 [subperiod per testing period] ×
4 [sub-subperiods per subperiod] × 24 [stocks] = 2,016 utilities of terminal wealth).
We interpret these averages as the estimates of the expected utility (for an investor
whose preferences are characterized by the logarithmic utility function) of using the
buy-and-hold rule and the buy-on-margin-and-hold rule. It should be noted that this
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Table 4 Average testing sub-subperiod utility of terminal wealth for GP rules, with U(WT ) =
ln(WT ) and initial wealth = $100,000

Panel A: Consumer non-durables, consumer durables, and manufacturing

Year Altria
group
(MO)

Pepsico
(PEP)

General
motors
(GM)

Whirlpool
(WHR)

Eastman
kodak
(EK)

Goodyear
tire & rubber
(GT)

1985

1986

1987

1988

1989 11.5884

1990 11.5038 11.5358 11.5308

1991 11.5163 11.5735

1992 11.5963 11.5217 11.5041

1993 11.1760

1994 11.5392

1995 11.5259 11.4971

1996 11.5807 11.5248

1997 11.5247

1998 11.4578 11.4763 11.5360

1999 11.5937 11.5127 11.5234 11.5654

2000 11.4230 11.6014 11.5025

2001 11.6343 11.5251 11.5033

2002 11.5182 11.5180 11.4414 11.3112

2003 11.3314 11.3636 11.2022 11.5161

2004 11.4829 11.5151 11.5151

2005 11.5177 11.5062 11.5177

E(U(WT )) 11.4982 11.5151 11.4212 11.5156 11.4915 11.5041

approach of comparing expected utilities of methodologies is completely accurate
only if all three methodologies–that is, using a GP-generated rule versus applying
either the buy-and-hold strategy or the buy-on-margin-and-hold strategy–were to
produce a rule in each training period for every stock. (For some subperiods, no rule
meets all the threshold criteria presented in Table 3; therefore, in these subperiods,
no comparison can be made between the results of GP-generated rules and bench-
marks.) To get around this problem and evaluate the expected utility of using GP to
evolve trading rules to be used out-of-sample, we can compute the average (across
21 testing subperiods and across 24 stocks) out-of-sample utility of terminal wealth
using one of the three strategies below.

Strategy 1 involves using the GP rule to trade in the out-of-sample periods cor-
responding to the in-sample periods for which GP is able to find a rule that satisfies
the threshold criteria in Table 3, but investing in T-bills in out-of-sample periods
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Table 4 (Continued)

Panel B: Energy, chemicals, and business equipment

Year Exxon
mobil
(XOM)

Halliburton
(HAL)

Dow
chemical
(DOW)

DuPont
(DD)

IBM
(IBM)

Xerox
(XRX)

1985 11.5420 11.5137

1986 11.4366 11.5167

1987

1988 11.5283 11.5999 11.5282

1989 11.5319 11.5321

1990

1991

1992 11.5108 11.5217 11.5217 11.5217

1993

1994

1995

1996

1997

1998 11.4280 11.5032

1999 11.5234 11.5235 11.4336

2000 11.5743 11.5883 11.3732 11.2820

2001 11.6171 11.5251

2002 11.4260 11.5596 11.5171 11.3109 11.5427

2003 11.4653 11.5233 11.5161 11.4703 11.5161

2004 11.5151 11.4636 11.5151 11.5151

2005 11.5170 11.5140 11.5177 11.5177 11.5177

E(U(WT )) 11.5197 11.5245 11.5182 11.4636 11.4842 11.4790

corresponding to in-sample periods for which GP does not find a satisfactory rule.
Strategy 2 is similar, but it uses the buy-and-hold strategy in out-of-sample periods
corresponding to in-sample periods for which GP does not find a satisfactory rule,
rather than using a default of investing in T-bills. Strategy 3 is similar to Strategy 2,
the difference being that the buy-on-margin-and-hold strategy is used as the default.
Note that in order to ensure that path dependency is not a factor, these trading simu-
lations assume that on the first day of the trading phase of every sub-subperiod, the
value of the investor’s cash account, W0, is reset to $100,000.

For each of the 24 stocks chosen for this study, Table 5 provides expected util-
ities of using Strategy 1, Strategy 2, Strategy 3, the buy-and-hold strategy, and the
buy-on-margin-and-hold strategy to trade out-of-sample. The 24 expected utilities
corresponding to each stock and to each methodology can be averaged to obtain the
expected utility of using a particular methodology to trade out-of-sample, for a port-
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Table 4 (Continued)

Panel C: telephone and television, utilities, and shops

Year AT&T
Inc.
(T)

Sprint
(S)

American
electric
(AEP)

Duke
energy
(DUK)

Target
(TGT)

Wal-mart
stores
(WMT)

1985 11.5304 11.5304 11.5736

1986 11.5270 11.5043 11.5463

1987 11.5265 11.4068

1988 11.5283 11.5282

1989 11.5640 11.5932

1990 11.4920

1991 11.5418 11.7275

1992 11.5217 11.5461

1993 11.5199 11.5644

1994 11.5216 11.5425 11.4662

1995 11.5262 11.5139

1996 11.5249

1997 11.7266 11.5804

1998 11.5248 11.6072 11.4655

1999 11.6177 11.5451

2000 11.4771 11.4349 11.5577

2001 11.4708 11.4688 11.4886

2002 11.5182 11.5182 11.6651 11.5505

2003 11.4540 11.5646 11.5284

2004 11.4414 11.4636 11.5151 11.4968

2005 11.5177 11.5177 11.5177 11.5191

E(U(WT )) 11.4983 11.5180 11.4636 11.5458 11.5362

folio consisting of 24 trading funds, each one devoted to a single stock. These aver-
age utilities are presented in Table 6. The average utility corresponding to the risk-
less strategy of holding T-bills in every testing subperiod is invariant across stocks;
it is reported in Table 6 for comparison purposes.

The results presented in Tables 5 and 6 show that the markets for the 24 stocks
in our study were characterized by adaptive efficiency between 1985 and 2005. Ac-
cording to our trading simulations, stock investors could not benefit from identifying
trading strategies (based on past prices) that worked in-sample, and then investing
according to these strategies out-of-sample. According to Table 6, the buy-and-
hold strategy achieves the highest expected utility (11.5306, certainty equivalent
$101,783.17) of all six strategies presented. The riskless strategy of investing all of
one’s wealth in T-bills (expected utility 11.5247, certainty equivalent $101,184.41)
proved to be superior to Strategy 1 (expected utility 11.5209, certainty equivalent
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Table 4 (Continued)

Panel D: Healthcare, finance, and other

Year Johnson
and
Johnson
(JNJ)

Pfizer
(PFE)

Bank of
America
(BAC)

Merrill
Lynch
(MER)

Disney
(DIS)

Hilton
hotels
(HLN)

1985 11.5304 11.5304 11.5304 11.5302

1986 11.5269 11.5251 11.5592 11.6479

1987 11.5265 11.5265

1988 11.4860 11.6180 11.5283 11.5283

1989 11.5426 11.5136 11.5319

1990 11.5306 11.5459 11.5045

1991 11.5479 11.5344 11.5746

1992 11.5126 11.4991 11.5217 11.5768 11.5217

1993 11.5316 11.5165 11.5005 11.5199

1994 11.5216 11.5581 11.5216 11.3610 11.5216

1995 11.5629 11.6196 11.5259

1996 11.6881 11.5012 11.5248

1997 11.5537 11.5680 11.5255 11.5247 11.5068 11.5247

1998 11.6263 11.7972 11.5248 11.6064 11.5250 11.5248

1999 11.5703 11.4378 11.2897 11.1600 11.4884

2000 11.4598 11.5951 11.5254 11.4920 11.4527

2001 11.5500 11.5250 11.6201 11.3597 11.3306

2002 11.5163 11.5182 11.4680 11.3390 11.5182 11.5182

2003 11.4391 11.5161 11.5721 11.6244

2004 11.5151 11.5587 11.5151 11.5001 11.5151 11.5151

2005 11.5177 11.4704 11.5245 11.5177 11.5177 11.5177

E(U(WT )) 11.5408 11.5415 11.5031 11.4716 11.5289 11.5203

$100,800.64). Continuing the pairwise comparison of matching strategies, the ex-
pected utility of Strategy 2 (11.5246, certainty equivalent $101,174.29) is lower
than the expected utility of the buy-and-hold strategy (11.5306, certainty equivalent
$101,783.17), whereas the expected utility of Strategy 3 (11.5145, certainty equiva-
lent $100,157.58) is higher than the expected utility of the buy-on-margin-and-hold
strategy, but lower than the expected utility of the riskless strategy.

According to Table 5, using GP to identify trading rules to be used to trade out-of-
sample and then using either Strategy 1, Strategy 2, or Strategy 3 does not generally
outperform the simple benchmark strategies for the majority of the 24 individual
stocks. The following are the exceptions: For the stock with the ticker symbol TGT,
employing Strategy 1 achieves a higher expected utility than investing all of one’s
wealth into T-bills, trading in accordance with the buy-and-hold strategy, or trading
in accordance with the buy-on-margin-and-hold rule. Using Strategy 2 while trad-
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Table 5 Average sub-subperiod utility of terminal wealth using gp strategies and simple trading
rules, with U(WT ) = ln(WT ), initial wealth = $100,000, and utility of the riskless strategya =
11.5247b

Panel A: Consumer non-durables, consumer durables, and manufacturing

Company Buy-and-hold
strategy (no
leverage)c

Buy-on-margin-
and-hold strategy
(maximum
leverage)d

Strategy 1e Strategy 2f Strategy 3g

Altria group
(MO)

11.5457 11.5414 11.5050 11.5141 11.5180

Pepsico
(PEP)

11.5500 11.5536 11.5190 11.5354 11.5439

General
motors (GM)

11.5085 11.4633 11.5055 11.5022 11.4793

Whirlpool
(WHR)

11.5187 11.4849 11.5241 11.5202 11.4909

Eastman
kodak (EK)

11.5063 11.4614 11.5146 11.5119 11.4921

Goodyear
tire & rubber
(GT)

11.5120 11.4607 11.5232 11.5083 11.4555

aInvesting the entire wealth into T-bills
bThe utility from always investing in T-bills, averaged across all subperiods
cInvesting the entire wealth into the given stock, then holding these shares until the end of the
trading horizon (with no margin trading)
dBuying as many shares of the corresponding stock as the margin regulations allow (which, by
definition, involves margin trading)
eInvesting one’s initial wealth, during the testing period, in accordance with a GP rule when a
GP rule is found during the training period, and investing one’s initial wealth into T-bills otherwise
fInvesting one’s initial wealth, during the testing period, in accordance with a GP rule when a
GP rule is found during the training period, and investing one’s initial wealth in accordance with a
simple buy-and-hold rule (with no margin trading) otherwise
gInvesting one’s initial wealth, during the testing period, in accordance with a GP rule when a
GP rule is found during the training period, and investing one’s initial wealth in accordance with a
buy-on-margin-and-hold rule (that involves margin trading, and buying as many shares of the stock
as the margin regulations allow) otherwise

ing the stocks with the ticker symbols DD, S, HAL, HLN and TGT leads to higher
expected utility than using the three benchmark strategies. For the stocks with the
ticker symbols DD, TGT and XOM, employing Strategy 3 achieves a higher ex-
pected utility than do the three benchmark strategies. The stock with the ticker sym-
bol TGT appears in all three lists presented in this paragraph. For this stock, using
Strategy 3 led to the highest expected utility. It should be noted that the buy-on-
margin-and-hold rule had the lowest expected utility for most stocks, followed by
Strategy 3.
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Table 5 (Continued)

Panel B: Energy, chemicals, and business equipment

Company Buy-and-hold
strategy (no
leverage)

Buy-on-margin-
and-hold strategy
(maximum leverage)

Strategy 1 Strategy 2 Strategy 3

Exxon mobil
(XOM)

11.5370 11.5333 11.5234 11.5352 11.5382

Halliburton
(HAL)

11.5203 11.4628 11.5243 11.5306 11.5160

Dow chemical
(DOW)

11.5340 11.5202 11.5240 11.5335 11.5248

DuPont (DD) 11.5318 11.5178 11.5300 11.5412 11.5403

IBM (IBM) 11.5188 11.4878 11.5035 11.5079 11.5005

Xerox (XRX) 11.5178 11.4632 11.5084 11.5041 11.4743

Panel C: Telephone and television, utilities, and shops

Company Buy-and-hold
strategy (no
leverage)

Buy-on-margin-
and-hold strategy
(maximum leverage)

Strategy 1 Strategy 2 Strategy 3

AT&T Inc. (T) 11.5288 11.5126 11.5127 11.5212 11.5212

Sprint (S) 11.5274 11.4962 11.5241 11.5328 11.5115

American
electric (AEP)

11.5176 11.4961 11.5241 11.5176 11.4961

Duke energy
(DUK)

11.5279 11.5158 11.5216 11.5251 11.5134

Target (TGT) 11.5445 11.5315 11.5448 11.5483 11.5508

Wal-Mart stores
(WMT)

11.5526 11.5533 11.5359 11.5379 11.5385

Panel D: Healthcare, finance, and other

Company Buy-and-hold
strategy (no
leverage)

Buy-on-margin-
and-hold strategy
(maximum leverage)

Strategy 1 Strategy 2 Strategy 3

Johnson and
Johnson (JNJ)

11.5505 11.5576 11.5397 11.5385 11.5355

Pfizer (PFE) 11.5416 11.5340 11.5387 11.5413 11.5391

Bank of
America (BAC)

11.5355 11.5206 11.5155 11.5237 11.5193

Merrill Lynch
(MER)

11.5407 11.5177 11.4874 11.4968 11.4952

Disney (DIS) 11.5535 11.5364 11.5289 11.5338 11.5381

Hilton hotels
(HLN)

11.5230 11.4859 11.5228 11.5297 11.5155



102 S. Miles and B. Smith

Table 6 Overall averagea sub-subperiod utility of terminal wealth, certainty equivalent wealth,
and annualized rate of return for GP strategies and simple trading rules, with U(WT ) = ln(WT )

and initial wealth = $100,000

Strategy Overall average
sub-subperiod utility
of terminal wealth

Certainty
equivalent
wealth

Annualized rate
of return (%)

Risklessb 11.5247 101,184.41 4.82

Buy-and-hold, no leveragec 11.5306 101,783.17 7.33

Buy-and-hold, maximum leveragec 11.5087 99,578.34 −1.68

Strategy 1c 11.5209 100,800.64 3.24

Strategy 2c 11.5246 101,174.29 4.78

Strategy 3c 11.5145 100,157.58 0.63

aAveraged over 24 stocks
bAveraged over 21 sub-subperiods
cAveraged over 21 × 24 = 504 sub-subperiods

4.1 Examination of Results in Bull Versus Bear Markets

It is also of interest to study the behavior of the evolved trading rules conditional
on the market state (i.e., bull or bear) in training, selection, and testing periods. We
examine the signals returned by the rules in each set of subperiods for which rules
were found. We studied the distribution of the signals, splitting the signal into six
possible ranges: α = 0, 0 < α ≤ 0.25, 0.25 < α ≤ 0.50, 0.50 < α ≤ 0.75, 0.75 <

α < 1, and α = 1.
Recall that because margin trading is allowed, the signal α = 1 is interpreted as

using 100% leverage—buying as many shares of the stock on margin as possible.
This is achieved by borrowing an amount equal to one’s wealth, and then using
one’s wealth as well as the loan to buy shares of the stock. When the rule returns a
signal of α = 0.50, it means that the simulated trader buys as many shares of stock
as possible with his or her wealth, without buying any shares on margin. The signal
of α = 0 is interpreted as staying away from the stock and investing all wealth in the
riskless asset.

For each saved rule, for each stock, for each day in the training, selection, and
testing periods, we generate the data regarding the GP signal for the day, the re-
balancing of the portfolio that was done in response to that signal, the value of the
portfolio, the amount of the margin loan, and the interest earned or paid. To study
the distribution of rule signals conditional on market state, we use the procedure
introduced by Lunde and Timmermann (2004) to partition the price data for the
24 stocks included in the present study into mutually exclusive and exhaustive sub-
sets of “bull” and “bear” market states.

Every day is assigned to either the bull or bear market state. Every day, the price
is compared to the latest local maximum price (P max) [if the state is “bull”] or to the
latest local minimum price (P min) [if the state is “bear”]. The simulations assume



Can Investors Benefit from Using Trading Rules Evolved by Genetic Programming? 103

that the market starts in a bull state. For a positive constant λ, the “bull” state is
switched to “bear” if the price falls below the level (1 − λ)P max, and this “bear”
state is retroactively applied to all days following the day when the price was at a
local maximum. Conversely, the “bear” state is switched to “bull” if the price rises
above the level (1 + λ)P min, and this “bull” state is retroactively applied to all days
following the day on which the price was at a local minimum.

Lunde and Timmermann (2004) experiment with λ levels of 0.10, 0.15, and 0.20.
Their paper looked at much longer trading horizons than the 3 months used in
our paper. Thus, we set λ = 0.10 here. (Investigation showed that using λ = 0.05
achieved similar results.) This definition of bull and bear states partitions the data
on stock prices into mutually exclusive and exhaustive bull and bear market subsets
based on sequences of first passage time.

Each value in the bull market portion of Table 7 is obtained by dividing the
number of days when the rules in a certain period (training, selection, or testing)
[of all subperiods for which a rule had been saved, for all 24 stocks] return a signal
in a given range of α, on days when the market was classified to be in the “bull”
state, by the total number of days that are classified to be in the “bull” state in this
period. That value [(number of days in a given range of α)/(total number of “bull”

Table 7 Distribution of rule signals conditional on market statea

Alpha range Training Selection Testing

Bull market α = 0 66.77 60.96 66.87

0 < α ≤ 0.25 5.29 4.28 4.37

0.25 < α ≤ 0.50 0.47 0.51 0.59

0.50 < α ≤ 0.75 1.75 1.69 1.81

0.75 < α < 1 5.31 7.30 6.32

α = 1 20.41 25.26 20.04

Bear market α = 0 86.20 83.03 67.10

0 < α ≤ 0.25 4.45 5.41 3.89

0.25 < α ≤ 0.50 0.29 0.40 0.49

0.50 < α ≤ 0.75 0.74 0.64 2.06

0.75 < α < 1 1.26 2.18 5.66

α = 1 7.06 8.34 20.80

aFor each of the six alpha ranges, this table displays the percentage of the days (in training, se-
lection, and testing subperiods for which rules were saved) on which the trading rules constructed
by GP returned a signal in that range. Alpha is defined as follows: The extreme value of 1 corre-
sponds to full leverage (using one’s entire wealth to buy the stock and borrowing an amount equal
to wealth to buy an identical amount of the stock); a value of 0.5 corresponds to investing one’s
entire wealth in the stock while not buying any shares of the stock on margin; and the extreme
value of 0 implies that the simulated trader is not trading the stock, and instead is investing in the
riskless asset. “Bull” and “bear” market states refer to evaluations of the market state using criteria
adapted from Lunde and Timmermann (2004)
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days)] is multiplied by 100 to get a percentage, as shown in Table 7. The values in
the bear market portion of Table 7 are obtained in a similar manner.

One striking finding of this analysis is the proportion of trading days for which
the generated rules returned signals at the extreme values of the possible range, that
is, 0% and 100%. In this study, we set out to generate rules that returned signals
in the intermediate range rather than the two extreme values. In both “bull” and
“bear” market states, however, the signal returned by the rules was at one of the
extreme values more than 80% of the time. We did not determine the reason for this
unexpected behavior of the simulations. An avenue for future research is improving
our methodology to ensure that the setup is not biased to generate extreme rules
of 0% or 100%.

An implication is that in all periods (training, selection, and testing), the rules are
unlikely to return a signal of 50%. Thus the rules’ behavior is very different from
that of the buy-and-hold strategy with no leverage.

As expected, in the in-sample periods (training and selection), the rules are more
likely to recommend maximum leverage on days when the market is classified to
be in the “bull” state. For the training period, during the “bull” state 20.41% of the
rule signals indicated use of maximum leverage, and during the “bear” state only
7.06% of the rule signals indicated use of maximum leverage. The corresponding
values for the selection period were 25.26% for the “bull” state and 8.34% for the
“bear” state. For these in-sample periods, the rules were also more likely to recom-
mend staying out of the market during the “bear” market state than during the “bull”
market state. For the training (selection) period, the rules signaled not investing in
the stock on 86.20% (83.03%) of days classified to be part of the “bear” market
state, compared to 66.77% (60.96%) of days classified to be part of the “bull” state
of the market.

Table 7 also reveals that GP rules had trouble distinguishing between the “bull”
market state and the “bear” market state in the out-of-sample (testing) period. Dur-
ing the “bull” (“bear”) state of the market, the rules recommended staying out of
the market during 66.87% (66.10%) of the testing period trading days, and to em-
ploy maximum leverage during 20.04% (20.80%) of the testing period trading days.
These findings also imply that GP rules behaved like the buy-on-margin-and-hold
strategy using maximum leverage on approximately 20% of the out-of-sample trad-
ing days, independently of the state of the market.

The scope of our stock study was broad, as we looked at 504 in-sample peri-
ods (24 stocks × 21 in-sample periods per stock). Our comprehensive study leads
us to the conclusion that the 24 stock markets examined were adaptively efficient
between 1985 and 2005.

5 Conclusion

In this paper, we used GP to study adaptive efficiency of stock markets. To this end,
we applied GP to the trading of 24 stocks and examined whether the algorithm can
discover trading strategies with good out-of-sample performance. Our GP search
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was thorough: We examined the algorithm’s performance in a total of 504 testing
periods for 24 stocks, using a population size of 50,000 trading rules in each gen-
eration, substantially larger than the 500 or fewer trading rules employed in most
earlier studies.

In the trading simulations we presented, a trading strategy is assumed to be the
proportion of wealth allocated to a risky asset (a single stock). One of the contri-
butions of the present study is that it allows GP to trade stocks in a model with
realistic margin regulations, a feature not included in any of the studies examined
in the literature review. None of the literature reviewed mentioned studies that had
included this feature, so we are relatively certain that it has not been incorporated in
any major published research. As mentioned earlier, the most recent research shows
that trading strategies that diversify between the risky and the riskless assets at every
point in time are superior to bang-bang strategies. For this reason, our definition of
a trading strategy allowed us to test adaptive efficiency of the stock markets that we
examined in this study without the testing being subject to the biases encountered by
other studies (e.g., those of Dempster and Jones 2001; Fyfe et al. 2005; and Potvin
et al. 2004), which limited their GP strategies to simple buy-sell signals).

Our study complements the research done by Allen and Karjalainen (1999);
Neely et al. (1997); Neely and Weller (1999, 2003); and Neely (2003). Those stud-
ies saved a number of buy-sell rules, evolved using GP, and then considered returns
earned by portfolio rules formed using the signals derived from the saved rules, or
the in-sample return characteristics of those saved rules.

Recent studies (e.g., Fyfe et al. 2005 and Neely 2003) have used GP to evolve
trading rules using a number of fitness criteria that adjusted trading rule returns for
risk. In this study, we used GP to find trading rules using a new fitness criterion that
differently adjusted trading rule returns for risk: We maximized the average utility
of terminal wealth. This criterion is closest to, but distinct from, one of the risk
adjustment measures used by Neely, namely, the Xeff measure.

Another contribution of the present paper is that, in our experiments, we extended
the simple threshold criterion of earlier studies (e.g., save a rule only if it outper-
forms the buy-and-hold rule in the selection period) to more complex threshold
criteria. Our study looked for opportunities to trade profitably in an out-of-sample
period, based on using trading rules with an unusually high return for a given level
of risk in an in-sample period. The current study extends past research because we
went beyond simply saving rules that outperform the buy-and-hold rule (as done in
earlier studies such as those of Allen and Karjalainen 1999; Fyfe et al. 2005; Neely
and Weller 1999; Neely et al. 1997; and Ready 2002). We saved rules that satisfy
various money management criteria, in addition to choosing rules with the highest
expected utility.

According to our results, the stock markets studied can, in general, be character-
ized by adaptive efficiency. An investor who buys and holds stocks usually achieves
a higher expected utility than an investor who uses a rule saved by a GP algorithm in
accordance with our methodology. This result is not unexpected: Fyfe et al. (2005)
and Neely (2003) found that when the trading rule returns of the rules generated
by GP are adjusted for risk, the results are consistent with market efficiency. It is im-
portant to note, however, the possibility that the results might change with changes
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in GP parameters (e.g., number of generations, population size, the values of the
threshold criteria) or GP settings (e.g., the number of building blocks GP is allowed
to use to create trading rules).

One of the more interesting extensions of this research would use a variety of
other relevant time series as building blocks when applying GP to evolve trading
strategies for individual stocks. For example, it seems possible that the price of gold
may be an important factor determining investment in the stock of a gold mining
company. Applying GP methodology to other financial markets (e.g., option markets
or stock markets in developing countries that previous research has demonstrated to
be less efficient than U.S. stock markets) also seems to offer potential for useful
research.

To eliminate the possibility that we would obtain results that are simply artifacts
of the periods chosen, we adopted a “sliding window” approach that allowed us to
run our GP experiments for many combinations of training, selection, and testing
periods for a given data set. In the research presented here, we used 5 years as
training and selection periods and 1 year as a testing period. We looked only at
trading horizons of 3 months. Extensions of the current study, some of which are
being conducted by the authors, could examine how the results change when the
trading horizon is changed or when lengths of the various (training, selection, and
testing) periods are changed.
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Bankruptcy Prediction: A Comparison of Some
Statistical and Machine Learning Techniques

Tonatiuh Peña, Serafín Martínez, and Bolanle Abudu

Abstract We are interested in forecasting bankruptcies in a probabilistic way.
Specifically, we compare the classification performance of several statistical and
machine-learning techniques, namely discriminant analysis (Altman’s Z-score), lo-
gistic regression, least-squares support vector machines and different instances of
Gaussian processes (GP’s)—that is GP classifiers, Bayesian Fisher discriminant and
Warped GPs. Our contribution to the field of computational finance is to introduce
GPs as a competitive probabilistic framework for bankruptcy prediction. Data from
the repository of information of the US Federal Deposit Insurance Corporation is
used to test the predictions.

1 Introduction

Corporate bankruptcy is an active area of financial research because an event of this
nature will always provoke adverse effects on the economy and pose a credibility
challenge to financial authorities. In fact, the forecast of bankruptcies is a subject of
paramount importance for different types of governmental and commercial organi-
sations because a failed corporation can cause contagious failures to the rest of the
financial system and thus lead to a systemic crisis. Such importance has been fur-
ther increased by regulations such as the Basel capital accord (or Basel II) of 1994,
which suggests financial institutions to build their credit portfolios based on the de-
fault assessment of their clients. As a consequence, the development of analytical
tools to determine which financial information is more relevant to predict financial
distress has gained popularity along with the design of early warning systems that
predict bankruptcy.

Along the years two main methodologies have been developed to assist in the
process of estimating financial distress (i.e. predicting bankruptcies): the first one
uses accounting information while the second one, market information. Among the
former, financial ratio analysis is a technique that studies relations of the type X/Y
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where X,Y ∈ R are variables selected from an enterprise’s financial statement. Al-
though there is no consensus for defining or calculating financial ratios we can still
divide them into four categories: efficiency, profitability, short term and long term
solvency ratios. The seminal work on prediction of corporate failure through finan-
cial ratio analysis was proposed by Beaver (1966) and it can be thought of as a uni-
variate classification technique to estimate the probability of failure. Subsequently
Altman (1968) worked on a generalisation through the estimation of a multivariate
statistic known as Z-score.

While these two methods have proved useful for the last forty years, the advent
of new regulations such as Basel II justifies the use of more sophisticated tech-
niques to predict financial distress. Among such novel methodologies a group with
an important computational component has been recently developed. For example
the problems of asset valuation, portfolio allocation and bankruptcy prediction have
been approached from different perspectives, like genetic algorithms (GA’s), artifi-
cial neural networks (ANN’s), decision trees, among others. We will use the term
computational finance (Tsang and Martinez-Jaramillo 2004; Chen 2002) to refer to
the development and application of these type of techniques to solve financial prob-
lems and some literature on the topic can be found at (Serrano-Cinca et al. 1993;
Back et al. 1996; Joos et al. 1998; Varetto 1998; Atiya 2001; Shin and Lee 2002;
Park and Han 2002; Yip 2003; Quintana et al. 2007).

Up to our knowledge, this is the first work to apply the Gaussian process for-
malism for data inference to estimate bankruptcy probabilities. From a Bayesian
perspective, GP’s provide a natural way for learning a regression or classification
function in terms of functional priors and some very good monographies on the
topic have been written in recent years with (Rasmussen and Williams 2006) as an
example. Our work makes a contribution to the field of computational finance by
presenting a comparison of classical statistical techniques for classification against
some recently developed machine learning algorithms. More specifically, we intro-
duce GP’s as a powerful and competitive probabilistic framework for bankruptcy
prediction. As an added bonus of working within the realm of GP’s, we come up
with a feature that allows to determine the relevance of the different financial ratios
in an automatic way, something known as automatic relevance determination (ARD)
in the neural networks literature.

Although the methods herein presented are applicable to any type of company
that handles financial ratios, data availability made us focus on the banking sector.1

Analysing bankruptcies in the banking sector implies taking into account that this
type of institutions must satisfy very specific legal and accounting requirements
imposed to them by financial authorities, central banks, supervisory institutions,
etc.; so it is adequate to take them as a special case within the universe of corporate
bankruptcy. In fact generalising this task to the banking sector of different countries
is made even more difficult when we consider that some of their own regulations do
not contemplate the existence of bankruptcies.

1The work by Estrella et al. (2000) has a similar scope to ours.
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The rest of the paper is organised as follows: Sect. 2 introduces bankrupcty pre-
diction as a statistical classification problem. Sections 3 and 4 are devoted to the
description of some well-known statistical techniques used for bankruptcy predic-
tion, namely discriminant analysis and logistic regression. Section 5 describes the
technical details of how a family of stochastic processes, i.e. Gaussian ones, might
be used to classify data and therefore applied to our problem domain. Section 6 de-
scribes experiments carried out on a set of data from the Federal Deposit Insurance
Corporation in order to assess how Gaussian processes fare with respect to the other
type of classifiers. Section 7 is a discussion about how GP’s could be integrated into
commercially available credit risk models. Finally, Sect. 8 draws some conclusions
about the proposed methods.

2 Bankruptcy Prediction as a Classification Problem

We are interested in forecasting the failure of banks and also on assigning a prob-
ability value to quantify our degree of belief that this event will happen. In order
to do so, we approach the bankruptcy prediction problem as a binary classification
one, whereby each instance of a set of observed data belongs to a group of prede-
fined classes (bankrupt or non-bankrupt) and the objective is to separate one class
from the other with the minimum amount of error. Thus we aim to have a system
that predicts whether an institution will go bankrupt or not according to some type
of financial information, for example through the institution’s financial ratios. This
type of task is known as supervised learning within the machine learning commu-
nity. In the following sections we review some of the most widespread methods to
classify data, Fisher’s discriminant analysis along with logistic regression. In the
subsequent, we will assume the following: (i) a classification task whereby a new
observation O� needs to be allocated to one of k available classes—that are known
a priori; (ii) that such classes are mutually exclusive; (iii) that for some reason the
allocation procedure depends on the application of an indirect method. By indirect
we mean that a vector of features x� is used instead of O�. We will assume the
availability of correctly labelled training data and consequently that an exact way
to classify the observations exists, but that for some reason is not feasible to ap-
ply. Indeed, medical diagnosis2 and prognosis3 are typical examples where direct
classification is not feasible, as mentioned by MacLachlan (1991). Another suitable
case for indirect classification is the determination of the level of financial stress of
a corporation because a straightforward assessment is almost impossible to produce.
Instead it is more suitable to resort to some indirect means, like the corporation’s
financial ratios to determine whether the corporation will go bankrupt or not.

2Identifying a disease.
3Estimating the prospect of recovery.
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3 Fisher’s Discriminant Analysis

Discriminant analysis is a classification technique originally devised by Fisher
(1936) with the aim of solving a bone classification problem that he was requested
to address.4 This technique is concerned with the relationship between a set of data
and their corresponding label values (MacLachlan 1991) and its goal is to specify
such relationship in terms of a function that ideally separates each instance of the
training data according to their label. In the remainder of the paper we will refer to
discriminant analysis as FDA. In this section we briefly review FDA for the specific
case of binary classification and in such a way that lays the ground for the introduc-
tion of logistic regression and Gaussian processes for classification. We concentrate
on discriminant analysis because it forms the basis of Altman’s Z-score, which is
one of the best well-known techniques to assess financial distress.

3.1 Problem Setup

Consider a set of training data D = (X,y) = {(x(n), y(n))}Nn=1 and denote by
x(n) ∈ X a single observation in a d-dimensional space and by y(n) ∈ {1,0}, the
categorical variable or label assigned to the observation. An observation x(n) con-
sists of the set of financial ratios recorded at a fixed point in time for a given bank
n, which was at that time either bankrupt or not, i.e. y(n). Mathematically, discrim-
inant analysis aims to assign a new observation O� into one of the k = 2 available
classes and the discriminant will do so by finding a vector of parameters w that will
be optimal in some sense. In fact, the space R

d will be divided into k − 1 regions by
hyperplanes in R

d−1 to do the separation.
The process is best explained in a pictorial way. Figure 1 shows a dataset com-

posed of two classes being separated by a discriminant function D(w) perpendicular
to w. Each data point x(n) is projected over w, such that the distance between the
projected means d = (μ0 − μ1) is as wide as possible while the scatter around the
projections (σ 2

0 + σ 2
1 ) is as small as possible as well. The projection is achieved by

taking the dot product f (n) = wT x(n) (∀n), thus the quality of the solution depends
on the tilt of the vector w. Observe that a classifier might be obtained by verifying
the sign of the projected points with respect to D(w), i.e. assign every instance on
D(w) ≥ 0 to class 1 and to class 0 otherwise. Posterior class probabilities p(C1|x)

and p(C0|x) = 1 − p(C1|x), may also be derived by assuming the projections come
from Gaussian densities.

Under this setting, Fisher (1936) was the first to conclude that the vector w is
given by maximising the ratio of between to within-class variances,

J = (μ1 − μ0)
2

σ 2
1 + σ 2

0

. (1)

4Some human remains discovered in a burial site in Egypt were required to be sexed, i.e. deter-
mined whether they belonged to female or male specimens (Fisher 1936).
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Fig. 1 Fisher discriminant
analysis example. Two
clusters of data being
projected onto the direction
of discrimination w.
Members of each class are
represented as ‘pluses’ or
‘dots’. The quality of the
discriminant depends on the
separation between the
projected class means μ0 and
μ1 and the scatter of the
projected classes σ 2

0 and σ 2
1 .

In the plot, the projection of
x(n) over w is referred as f (n)

Given that μq = ∑
n∈q

1
Nq

wT x(n)
q and σ 2

q = ∑
n∈q

1
Nq

(wT x(n)
q − μq)2, for q =

{1,0}, coefficient J can be expressed in terms of w and with some straightforward
manipulation we arrive to

J (w) = wT �Bw
wT �ww

, (2)

where the matrices �B = (m1 − m0)(m1 − m0)
T and �w = ∑

q∈{0,1}
∑Nq

n=1

(x(n)
q − mq)(x(n)

q − mq)T are known as between and within-class covariance ma-
trices, respectively. A solution to the discriminant problem consists of taking the
derivative of (2) w.r.t. w and solving. Zeroing the gradient and through some re-
arrangement we get

ŵ ∝ �−1
w (m0 − m1) , (3)

which is the expression we are looking for.
Therefore class predictions for new observations x� are readily available by pro-

jecting the data point over the estimated direction of discrimination ŵ and verifying
the sign of the projection, i.e. f � = ŵT x� ≥ D(ŵ). Note that FDA does not yield
a direct estimate of class probabilities and in this sense it is a non-probabilistic
method.

4 Discriminative Models for Classification

We now focus our attention on probabilistic methods for classification. That is, we
want predictons on data to take directly the form of class probabilities and not of
values that need a post processing stage to be interpreted as such, as it happens with
FDA. We first observe that classification problems might be addressed in similar
terms to those of standard regression, that is by explicitly specifying a likelihood
function (or cost function) that models the data generation process of the obser-
vations one can proceed with parameter estimation through the application of tech-
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niques such as maximum likelihood. In this section we introduce logistic regression,
which is probably one of the most popular probabilistic methods for classification.

4.1 Logistic Regression

Going back to the allocation problem of Sect. 2, we still want to make a class as-
signment for observation O and the most natural approach is to consider x and y

as random variables and work with the joint density p(x, y) that arises from them.5

Applying the rules of probability, the joint can be factorised as p(x|y)p(y) or as
p(y|x)p(x) and from these representations stem the two different approaches for
probabilistic data classification. The first approach is usually referred to as genera-
tive because it models the data generating process in terms of the class conditional
density p(x|y), which combined with the class prior p(y) allows to obtain the pos-
terior

p(y|x) = p(x|y)p(y)

p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)
.

The second approach is called discriminative because it focuses on modelling
p(y|x) directly and will be the one we will concentrate on in this paper. Never-
theless it is worth noting that in both the generative and discriminative approaches
it is necessary to make modelling assumptions, for example deciding what type of
density to use for representing p(x|y) or p(y|x).

A straightforward way to obtain a discriminative classifier is to convert the out-
put of a regression function into the class probability being sought, for example by
applying a response function.6 That is consider a regression function f (·) whose do-
main is (−∞,∞) then by ‘squashing’ it into the range [0,1] we will have obtained
the desired classifier. An example is the logistic regression model

p(y = 1|x) = g(wT φ(x)), (4)

whose response function is

g(z) = 1

1 + exp(−z)
. (5)

Note that (4) is a combination of a linear model, parameterised by w, a basis func-
tion φ(·) and the logistic response function g. An alternative function is the cumula-
tive Gaussian �(z) = ∫ ∞

−∞ N (x|0,1)dx which produces what is known as a probit
model.

5We recall that x is a vector of observed features obtained through indirect means whereas y is a
canonical variable representing the class.
6The response function is the inverse of the link function used in statistics.
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Given a training set D = (X,y), with y(n) ∈ {1,0}, we can use the problem setup
of Sect. 3 to interpret how logistic regression works. We can think back again that
the goal is to find a vector of weights, such that projections of data over it will be
separated maximally according to a specified criterion. However, the criterion will
not be Rayleigh’s quotient (1) anymore but rather the maximum likelihood function
and therefore a new optimisation problem will arise,

ŵ = −arg min
w

lnp(y|X,w)

= − arg min
w

N∑

n=1

{
yn lnσ(an) + (1 − yn) ln(1 − σ(an))

}
, (6)

where an = wT x(n).
Notice there is no closed-form solution for problem (6) but nevertheless an esti-

mate ŵ may be obtained through numeric methods (Bishop 2006). In contrast with
FDA, predictions are available by feeding the estimate ŵ and the test point x� into
the logistic function (5) and this time a probability of class-membership will be
automatically produced. Supposing the basis φ(·) is the identity, the probability be-
comes p(y� = 1|x�) = g(ŵT x�).

5 Gaussian Processes for Regression and Classification

Gaussian processes are a generalisation of multivariate Gaussian densities to infi-
nite continuous function sets (Rasmussen 2004) and have been used for data infer-
ence tasks for at least one hundred years; for example Thiele (1931) was one of the
earliest proponents. However modern applications of GP’s began with the work of
mining engineer Krige (1996) and later with that of Kimeldorf and Wahba (1970),
O’Hagan (1978) and Wahba (1990). The term process is used to refer to a collec-
tion of indexed random variables [f (1), . . . , f (N)] that (i) can be defined through
a common probability density—in this case a Gaussian—and (ii) that satisfy some
consistency and permutation properties (Grimmett and Stirzaker 2004).

Gaussian processes keep close connections with ANN’s whenever the two of
them are treated from a Bayesian viewpoint (Neal 1996). However, in contrast with
ANN’s, Gaussian processes offer the advantage of flexible modelling without the
overhead of having to adapt a large number of parameters, something that has com-
monly hindered the application of ANN’s in many problem domains. Some work
of computational finance that specifically addresses bankruptcy prediction is Atiya
(2001).

In this section we discuss linear regression and its complementary approach, GP
regression, both from a Bayesian perspective. In fact, it can be shown that both
approaches are equivalent but that under certain circumstances it is more convenient
to apply one over the other. The ensuing discussion will enable the introduction of
some different guises of GP’s for data classification: Gaussian process classifiers,
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least-squares support vector machines, among others. The Bayesian approach to
linear regression is discussed in texts like (Box and Tiao 1973) for example, whereas
GP regression in more modern ones like (Mackay 2003; Rasmussen and Williams
2006).

5.1 Bayesian Linear Regression: The Parameter Space Approach

Let us consider what may be called generalised linear regression because we will
be using a fixed set of basis functions {φi(x)}mi=1 (Williams 1999). Suppose then a
set of training data D = {(x(n), t(n))}N

n=1, an underlying function f , which we are
interested to infer and that inputs and targets are related in a linear way through
t (n) = f (n) + ε; with f (n) = wT φ(x(n)) and ε ∼ N (0, σ 2

v ). Then an embodiment of
the information extracted from the data will be given by the posterior distribution
over the parameters w, which is expressed in terms of Bayes’ rule as

p(w|D) = p(D|w)p(w)

p(D)
; (7)

where p(D|w) is known as the likelihood function and p(w) as the prior. If
observations are i.i.d. the likelihood may very well be represented by t (n) ∼

N (wT φ(x(n)), σ 2
v ), whereas the prior as w ∼ N (0,�wt ). Under such assumptions

it is very easy to show that the posterior will take the form

p(w|D) = N (wMAP,Ar ),

where mean the vector

wMAP = βA−1
r �T t, (8)

and the covariance matrix Ar = �−1
wt + β�T �. The matrix � ∈ R

N×d is usually
termed the design matrix while β = 1/σ 2

v , as the precision.
From a data modelling perspective, the ultimate purpose is not to derive the pos-

terior distribution but rather make predictions f � for unobserved data x�, which in
the present case is done by evaluating

p(f �|D) =
∫

p(f �|D,w)p(w|D)∂w

= N (f̄ �, (σ �)2). (9)

Note the above integral is a weighted average of conditional expectations over the
posterior.7 Expressions for the mean and variance are given by

f̄ � = wT
MAPφ(x�), (10)

7We have omitted dependencies on x� to keep the notation uncluttered.
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and

σ 2
f (x�) = φ(x�)T A−1

r φ(x�), (11)

respectively. Regarding the mean result, if we consider a classification setting, it is
straightforward to show wMAP (8) is equivalent to ŵFDA (3) by simply clamping
the targets to the label values (Bishop 1995). It should be noted that in order to
obtain the predictive variance var t (x�) it is necessary to add σ 2

v to σ 2
f (x�) to account

for the additional variance due to the noise, since the two sources of variation are
uncorrelated (Williams 1999).

5.2 Gaussian Processes for Regression: The Function Space
Approach

In the previous section we saw how the uncertainty in a typical regression problem
was described in terms of a probability distribution over the parameters w. It is
also possible to deal directly with uncertainty with respect to the function values
at the points we are interested in and this is the function-space (or GP) view of
the problem, as stated by Williams (1999). The key point for departing from the
parameter-based approach for data modelling is to realise the projections f (n) can
also be treated as random variables. Specifically, by assuming a finite instantiation
f = [f (1), . . . , f (N)]T defined in a consistent way we will have a random process,
which will be a GP, if f is described by a multivariate Gaussian density (Mackay
1998).

In particular, we will assume that every f (n) depends of an input x(n) with index
n, such that f (n) = f (x(n)). Note this definition implies that parameterising the
function values with w is irrelevant for the modelling process. Nevertheless, the
justification of the GP assumption might be supported by the fact that placing a
Gaussian prior over the parameters w induces a Gaussian prior distribution over the
set of instantiations f, provided that f is a linear function of w.

Thus assuming training data D has been observed, a posterior distribution will
need to be inferred in similar tenets to those of Sect. 5.1. Regarding the specification
of a prior of the GP type, it will be defined by a mean function m(x) and a covariance
function k(x,x′). In other words p(f) = N (0,K) with matrix K ∈ R

N×N populated
with entries of the form k(xi ,xj )∀i, j . If the likelihood p(D|f) is Gaussian, that is
if D is composed of a set of noisy observations t (n) = f (n) + ε, with ε ∼ N (0, σ 2

v ),
it can be demonstrated that application of Bayes’ rule will lead to

p(f|D) ∝ p(D|f)p(f)

= N (K(σ 2
v I + K)−1t, σ 2

v (σ 2
v I + K)−1K), (12)

where we have used vectors f = [f (x(1)), . . . , f (x(N))]T and t = [t (1), . . . , t (N)]T ,
(Seeger 2004). The posterior distribution is thus influenced by the prior and this is
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ascertained in (12) by observing that posterior mean and covariance depend on the
matrix K, which is the prior covariance.

So far, the posterior over the training data p(f|D) has been inferred but the most
important task is to predict test points. This only requires that once we observe D
we determine the posterior predictive distribution for a point f � = f (x�), that is
outside the training set. This is readily done by applying

p(f �|D) =
∫

p(f �|f)p(f|D)∂f,

= N
(
k(x�)T (K + σ 2

v I)−1t, k(x�,x�) + k(x�)T (K + σ 2
v I)−1k(x�)

)
, (13)

where the vector k(x�) ∈ R
N×1 is filled with scalars of the form {k(x(n),x�)}Nn=1. We

remit the avid reader to Williams (1999) for the demonstration of the equivalence of
results (9) and (13).

Given that the weight and function space view are equivalent, it is worth asking
which one is more convenient to apply. From a computational perspective, both ap-
proaches rely on a matrix inversion, which in the weight-space approach is that of
�wt , an m × m matrix; whereas in the function space it is that of K , an N × N

matrix. In general, for many types of regression, m 	 N and the weight space ap-
proach will be preferred. However for certain types of linear prediction, m will be
infinite and the only possible approach will be the function-space view. Further in-
sights into the convenience of the function space approach to regression is contained
in Mackay (1998).

5.2.1 The Covariance Function

Most applications of GP’s assume the mean function m(x) to be centred around 0,
so the core of the formalism lies on the type of covariance function being used.
Therefore it is worth analysing some of their features. For example in this work
we only use isotropic functions of the form k(x,x′) = k(r), with r = ‖x − x′‖. In
isotropic covariances, the correlation between observations is independent of their
absolute position; only their difference measured in terms of a norm counts. For
example, by taking an Euclidean norm we ensure that points x and x′ lying close to
each other will give rise to high correlation, therefore making f (x) and f (x′) close
to each other as well. An example of an isotropic covariance we use is

k(f (xi ), f (xj )) = k(xi ,xj ) = θ1 exp

(
−θ2

2
‖xi − xj‖2

)
, (14)

also known as RBF or radial basis function covariance. The parameters �k =
{θ1, θ2} adjust the scale and the width of the radial function, which in this case
is a Gaussian. The inverse of θ2 is also known as the bandwidth parameter σ .

In order to compare how prior and posterior GP’s are affected by the choice of
covariance function, Fig. 2 shows samples from both of them; the former defined
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Fig. 2 The plot shows 3 samples taken from prior and posterior GP’s. (a) Samples from a prior
p(f) = N (0,K). (b) Given some training data D, the plot shows samples taken from the posterior
p(f �|D), (13). In both plots an RBF covariance (14) was used to compute matrix K. Note that in
(b) the functions continue to be smooth, but this time are pinned down by the observed points

as p(f) = N (0,K) and the latter as p(f �|D), specified in (13). An RBF covariance
(14) was used to take the samples. In plot (a) the functions can take up any shape,
provided they are smooth, whereas in plot (b) the functions must also be smooth but
pinned down by the observed points. In both cases, the bandwidth of the RBF was
adjusted to logσ−1 = −2.3026.

5.3 Gaussian Processes for Classification

We can think of GP regression as a generalisation of the more well-known Bayesian
linear one and in similar terms, GP classification can be thought of as a generalisa-
tion of logistic regression. Recall that in Sect. 4 the activation of the logistic function
was given by a = wT φ(x); thus following a similar rationale to that of the previous
section, a Gaussian process may allow to non-linearise a by working directly over
the space of functions. Thus by considering a collection of latent variables an for
n ∈ [1,N ], we can replace the linear models wT φ(x(n)) by a Gaussian process f.
Furthermore, given a new observation x� we are interested in determining its proba-
bility of class membership π(x�) = p(y = 1|x�) = σ(f (x�)). The inference process
is performed in an analogue way to the one previously described, thus the distribu-
tion over f � is computed as

p(f �|D) =
∫

p(f �|D, f)p(f|D)∂f, (15)

where p(f|D) ∝ p(D|f)p(f) is the posterior obtained through the application of
Bayes’ rule. However, in contrast to the regression case of Sect. 5.2, the noise model
that needs to be specified is that for classification, i.e. a Bernoulli distribution of the
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form

p(D|f) =
N∏

n=1

σ(f n)y
n[

1 − σ(f n)(1−yn)
]
. (16)

This density is equivalent to that presented as argument in the optimisation problem
of (6), but with parameterisations of the form wT φ(x) replaced by f ’s.

The posterior (15) is used subsequently to estimate a probabilistic prediction of
the class label, that is

π� = p(y� = 1|D,x�) =
∫

p(y�|f �)p(f �|D)∂f �. (17)

Both integrals (15) and (17) are not analytically tractable and thus have to be com-
puted in an approximate way. However, whereas (15) is usually computed through
stochastic methods, such as Markov Chain Monte Carlo or deterministic approaches
like Laplace approximation; (17) being one dimensional can be evaluated through
standard numeric techniques like quadrature. More references on GP classification
can be found at Williams and Barber (1998).

5.4 Some Other Types of GP’s

Perhaps the simplest approach to have an approximation of the non-tractable in-
tegrals just mentioned consists of making a quadratic expansion around the mode
of the posterior p(f|D), and this is commonly referred as Laplace approximation.
However, it has been proved by several authors (e.g. Minka 2001) that such types
of approximation many times fail to capture the true nature of the distribution, thus
producing bad predictive results. Several alternative methods exist in the literature,
with one of them approximating the Bernoulli likelihood p(D|f) with Gaussian den-
sities. This method yields a classifier with comparable properties to those of FDA
and can produce competitive results in some problem domains, as shown by Peña
Centeno and Lawrence (2006). In the subsequent we will refer to this method as
Bayesian Fisher discriminant (BFD).

Another type of GP technique is the so-called least squares support vector ma-
chine of Suykens and Vandewalle (1999), which is formulated as an optimisation
problem with equality constraints. The motivation the so-called LS-SVM is to find
a faster and simpler way to solve the QP -problem that involves solving standard
support vector machines (Cortes and Vapnik 1995). The simplification consists of
replacing the inequality constraints of a standard support vector machine with equal-
ity ones. In this way the LS-SVM is less computationally intensive to solve, at the
expense of losing sparseness.

Finally, one of the main drawbacks of applying GP regression stems from the
fact that they assume Gaussian noise and unfortunately most problem domains do
not show this characteristic. Snelson et al. (2003) generalised the GP framework
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for regression by learning a non-linear transformation of the outputs, so that non-
Gaussian noise could still be modelled with a GP. The generalisation, as Snelson
states, consists of learning a GP regressor in latent space and simultaneously a
transformation or warping space for the outputs; in this way other types of noise are
accounted for. This strategy will be termed warped Gaussian processes or WGP’s.

These three methods are just a set of algorithmic tools that have been developed
by the machine learning community to solve regression and classification problems.
In Sect. 6 we will go back to them and test their effectiveness on the problem of
classifying a real dataset.

5.5 Adaptation of Hyperparameters

In all the GP-based methods presented, it is only after a solution for the posterior
predictive distribution p(f �|D) has been obtained that the issue of setting the hy-
perparameters �k of the covariance function is addressed. Bayesian methodology
dictates these parameters should be set in a hierarchical way, however the condi-
tional parameter distributions arising from a covariance of the type in (14) are not
amenable to Gibbs sampling. Thus practitioners have looked for more straightfor-
ward methods for parameter estimation, for example Williams (1999) recommends
the use maximum likelihood or generalised cross-validation. More details about
maximum likelihood estimation are given in this section, while the application of
generalised cross-validation is described in Rasmussen and Williams (2006). In this
work, we selected hyperparameters for all the GP algorithms through maximum
likelihood.

In the simplest example of all, the regression case, given some training data D =
(X, t), a noise model of the form p(D|f) = N (f, σ 2

v I) and a prior p(f) = N (0,K),
it can be proved that the marginal likelihood is

p(D|�k) =
∫

p(D|f)p(f|�k)f

= 1

(2π)N/2|K + σ 2
v I|1/2 exp

{
−1

2
tT (K + σ 2

v I)t
}
.

Therefore, the log of p(D|�k) that will be subject to optimisation may be computed
analytically

l = logp(D|�k) = −1

2
log |K + σ 2

v I| − 1

2
tT (K + σ 2

v I)−1t − N

2
log 2π. (18)

As there is no closed form solution for the maximisation of l w.r.t. �k , one needs
to rely on numeric methods such as conjugate gradients to find a local maximum.
Indeed the gradient of (18) will be used and is written explicitly as

∂l

∂θi

= −1

2
tT (K + σ 2

v I)−1t + t(K + σ 2
v I)−1 ∂K

∂θi

(K + σ 2
v I)−1t.
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The strategy for parameter specification in the case of Gaussian process classi-
fiers and variants (i.e. WGP, BFD) follows the same lines as that of regression. In
other words, the idea is to maximise the marginal likelihood of the data, but now
with the specific noise model defined by each method. For example in the case of
GPC’s it will be (16).

5.6 Automatic Relevance Determination

Adapting the values of the hyperparameters is important if one wants to have good
generalisation results and a better understanding of the data. Indeed for some fam-
ilies of covariance functions there is a hyperparameter associated with each input
dimension, such that each one represents the characteristic length scale of the data8,
thus by applying a parameter adaptation method like maximum likelihood the rela-
tive importance of the inputs will be inferred. For instance

k
(
xi ,xj

) = θ1 exp

(
−θ2

2

(
xi − xj

)T
�ard

(
xi − xj

)) + θ3δij , (19)

is a function that weighs each component of �ard = diag(θ4, . . . , θ4+d−1)—with
d being the dimension of X —when the training is done. The parameter δij is the
Kronecker delta, which for a large enough value θ3 ensures that K is positive definite
and therefore invertible at all times.

This type of feature was proposed first in the context of neural networks by
Mackay (1995) and Neal (1996) and is usually referred to as automatic relevance
determination or ARD. If the selection of prior covariance is adequate, then ARD
may be a very useful method for ranking and selecting features as it effectively or-
ders inputs according to their importance and eliminates those that are deemed not.
Indeed this feature might be very useful in the bankruptcy prediction problem be-
cause it can be used to rank the financial ratios in order of importance, as is done
later on.

In order to understand better ARD, Fig. 3 shows samples from a covariance of
the form (19) with two dimensional inputs. Panel (a) shows a sample whereby both
inputs x1 and x2 have the same associated weights, θ4 and θ5; thus in average the
ensemble of samples will have a roughly equal degree of variation along the axes x1

and x2. Panel (b) shows a sample where the value θ4 > θ5, producing an output that
varies more on the direction x1 than on x2. Therefore, in both cases, by observing
some data D, the fitted posterior will have weights θ4 and θ5 that reflect their ‘real’
importance to the regression.

8As expressed by Rasmussen and Williams (2006), the characteristic length scales can be loosely
interpreted as the distance required to move along each axes in order to have uncorrelated inputs.
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Fig. 3 Sample functions taken from a two dimensional GP prior with ARD covariance function of
the form (19). Panel (a) shows a function with two equally important inputs x1 and x2 while in (b),
input x1 varies faster than x2. ARD may help to determine the relevance of a feature (e.g. financial
ratio) in a classification task

6 Data and Experiments

This section describes the experiments that were carried out to compare the predic-
tive performance of the proposed algorithmic approaches with respect to discrimi-
nant analysis and logistic regression. As previously mentioned, we used data from
the Federal Deposit Insurance Corporation (FDIC) and a brief analysis of the results
follows.

6.1 FDIC Data

The University of Essex (UK) kindly provided9 a data set with 243 multivariate
observations. Each observation comprises a vector of dimension 11 (the number of
financial ratios) and as a whole, the data was composed of roughly balanced classes
(bankrupt and not). The financial ratios are described in Table 1 below. The data set
was split into two parts, one for training (145 obs.) and one for testing (89 obs.). Due
to the limited amount of observations we had to rely on random splits of training and
test data in order to average our results and reduce as much as possible any variance
effects that may have affected our results. We created 100 different pairs of training
and testing sets out of the 243 observations available, keeping the same proportion
of training to testing data as the original data set. Using random splitting of the
data to reduce the variance of the estimates is not uncommon and is justified by
the work of Efron (1979) and Stone (1974) on boot-strapping and cross-validation,
respectively; (Rätsch et al. 1998) used a similar approach to ours.

9We thank the Centre for Computational Finance and Economic Agents (CCFEA).
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Table 1 Financial ratios used in the classification experiments. Data comes from the Federal De-
posit Insurance Corporation (FDIC) and was kindly provided by the Centre for Computational
Finance and Economic Agents (CCFEA), University of Essex. Each ratio is described in the
Appendix

Financial ratios

1. Net interest margin 7. Efficiency ratio

2. Non-interest income to earning assets 8. Non-current assets plus other real estate owned to
assets

3. Non-interest expense to earning assets 9. Cash plus US treasury and government obligations
to total assets

4. Net operating income to assets 10. Equity capital to assets

5. Return on assets 11. Core capital leverage ratio

6. Return on equity

6.2 Experimental Setup

We tested five different algorithms on the referred data: Fisher discriminant analy-
sis (FDA), least-squares support vector machines (LS-SVM), GP’s for classification
(GPC), Warped GP’s (WGP) and Bayesian Fisher discriminant (BFD). Every set
was normalised to have zero mean and unit standard deviation. The algorithms were
thus trained 100 times and tested 100 more and because of this, we considered most
convenient to report the average classification performance over the 100 splits in
terms of the areas under the ROC curves (AUC’s). In fact AUC’s are highly conve-
nient to measure the performance of a classifier because they condense in a single
figure both false positives and negatives.

6.3 Implementation and Results

The FDA, logit and probit classifiers were implemented with the Matlab function
classify (Statistics toolbox, version 5.0.1). Whereas for LS-SVM, we used the
LSSVMlab toolbox of Suykens et al. (2002). The default 10-fold cross-validation
parameters were used for the training. BFD was implemented with the toolbox of
Peña Centeno and Lawrence (2006). Meanwhile, the WGP implementation was that
of Snelson et al. (2003), with the parameter I set to 5 function components. As
WGP’s are designed for regression but not classification, we clamped the targets to
the label values. Finally, for GPC’s we used the code of Rasmussen and Williams
(2006). For all these methods, we generated ROC curves with the output values
they produced, i.e. in most cases posterior class probabilities, except for FDA and
WGP’s.

In Table 2 we report the averages of the AUC’s over the 100 testing instances
of the splitted FDIC data. In this comparison, LSSVM, GPC and BFD were trained
with a covariance function of the form (14). Note that in the table FDA outperforms
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Table 2 Average classification results on the Federal Insurance Deposit Corporation data. We re-
port mean, median, maximum, minimum and standard deviation of the percentage area under the
ROC curve (AUC) over all testing instances of the data. The compared algorithms are: Fisher’s dis-
criminant analysis (FDA), Logistic and Probit regressions, Least-squares support vector machines
(LS-SVM) and two instances of Gaussian processes (GP’s): Bayesian Fisher’s discriminant (BFD)
and GP classifiers (GPC’s). It can be observed that FDA outperforms the rest of the algorithms

FDA Logistic Probit LSSVM (rbf) BFD (rbf) GPC (rbf)

Mean 0.866 0.839 0.825 0.823 0.817 0.815

Median 0.877 0.841 0.838 0.818 0.816 0.815

Max 0.962 0.949 0.940 0.956 0.950 0.949

Min 0.672 0.679 0.678 0.687 0.681 0.676

STD 0.051 0.056 0.055 0.055 0.051 0.050

Table 3 Average classification results on the Federal Insurance Deposit Corporation data, with
algorithms that have ARD priors (Sect. 5.6). We report mean, median, maximum, minimum and
standard deviation of the percentage AUC over all testing instances. The compared methods are:
Bayesian least-squared support vector machine (LS-SVM), Bayesian Fisher’s discriminant (BFD)
and Warped Gaussian processes (WGP’s). Compare these results with those of Table 2

BayLSSM BFD (linard) GPC (linard)

Mean 0.839 0.832 0.869

Median 0.853 0.831 0.873

Max 0.952 0.964 0.982

Min 0.627 0.720 0.578

STD 0.061 0.048 0.051

all the other methods. A statistical F test carried out over all the reported parameters
indicated FDA to have significantly better results than the rest of methods.

From these results, we had the ‘hint’ the FDIC dataset could be better separated
by a linear trend rather than by a non-linear one, thus instead decided to use a linear
covariance of the form k(x,x′) = xT �ardx′, with �ard = {θ1, . . . , θd } for the re-
ported experiments of Table 3. This type of covariance is known as ARD (Sect. 5.6)
because it assigns a hyperparameter θi to each dimension i of X .

In the second experiment (Table 3) we observe much better results for GPC and
a moderate improvement for LSSVM (Bayesian) and BFD (linard), if compared
with the figures of Table 2. In this case GPC performs slightly better than FDA. The
figures corresponding to GPC’s are statistically better at the 1% level of significance
than the results reported for the methods of Tables 2 and 3; except FDA.

As a final experiment we decided to prove the WGP algorithm of Snelson et al.
(2003), because in some domains it may have more expressive power than the other
methods. Results of AUC’s are shown in Table 4 below. It can be seen that WGP
has a better predictive performance than the rest of the compared models, including
FDA and GPC (Tables 2 and 3) and an F test of significance showed this was the
case.
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Table 4 Average classification results on the FDIC data with the warped Gaussian process algo-
rithm (WGP) of Snelson et al. (2003). The figures reported are mean, median, maximum, minimum
and standard deviation of the percentage area under the ROC curve (AUC) over all testing instances
of the data. Results for this classifier are significantly better than those for the rest of methods (Ta-
bles 2 and 3)

WGP

Mean 0.914

Median 0.978

Max 1.000

Min 0.541

STD 0.114

6.4 Analysis of Features

This section briefly describes the findings of applying ARD priors to the FDIC
dataset. The study was performed on GPC’s, LS-SVM’s, BFD and WGP’s, from
the results of the experiments reported in Tables 3 and 4. However only WGP’s are
reported because it was the method that yielded the best classification results. Due
to the random splitting of the data, a set with a hundred rankings were obtained
(each member of the set being the ordering of the 11 financial ratios). Therefore it
was considered most appropriate to summarise the number of times a feature was
alloted to a particular rank through histograms. Figure 4 shows the histograms pro-
duced from training the WGP, with the Appendix describing each of the financial
ratios of the data. It is important to consider that ARD measures the degree of vari-
ation of a feature and ranks it accordingly; it also assumes independence among
features. However this does not necessarily means a low ranked feature will neces-
sarily be irrelevant for the classification.

Figure 4 shows some regularity on the first four positions as well as on the last
three. Among the first group, features six, five, seven and four, corresponding to
return on equity (ROE), return on assets (ROA), efficiency ratio (ER) and net op-
erating income (NOI), are the most frequently ranked. ROE is a relevant financial
ratio because it measures the efficiency of a company to generate profits from ev-
ery dollar of net assets. ROA is also a plausible feature because it measures the
industry and capital requirements of insurance and banking companies and conse-
quently, might be used to make comparisons among different type of companies. As
mentioned in the Appendix, there is no consensus on how to compute the ER, how-
ever a larger value of this parameter is usually taken as a sign of corporate distress
and this characteristic makes it a good candidate to predict bankrupcty. Lastly, the
NOI is generally perceived as a reliable measure of a company’s performance and
therefore another reasonable selection.

On the opposite extreme, the group of not-so relevant features is given by the
net interest margin (NIM), the non-interest income (NII) and the capital ratio (CR),
corresponding to features number one, two and eleven. The low ranking of the NIM
seems counterintuitive because it somehow measures the financial soundness of an
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Fig. 4 Histograms of rankings (positions) produced by warped Gaussian processes (WGP) over
the FDIC dataset. The way to read the results is the following: e.g. the top-left histogram shows the
first ranked feature is number 6, return on equity (ROE), with 16 occurrences, while the top-middle
histogram shows features 5, return on assets (ROA) and 8, non current assets (NCA) almost equally
as important in the second position with 18 and 17 occurrences respectively. These results tell
features six, five, seven and four are important to the classifier. Feature definitions are included in
the Appendix

institution. Nevertheless, it is generally thought that modern banks should rely less
on this parameter due to the competitive gains achieved by the financial sector dur-
ing the last decade. Regarding NII, this ratio does not seem to have a direct rela-
tionship with the typical symptoms of financial distress a bank may have; therefore
further analysis is due. Finally, although CR is probably one of the most important
ratios to asses financial health, it was the one that occupied the lowest rankings.
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Nevertheless, this observation might be misleading if one considers that CR is also
a candidate to occupy the sixth rank and more importantly, on the fact that the fea-
ture independence assumption previously mentioned might not necessarily hold on
the dataset.

7 Credit Risk in Portfolios

We have presented a new family of algorithmic techniques unknown to the com-
putational economics community, that of Gaussian processes interpreted as a prior
distribution over functional space and how they can be applied to do bankruptcy
prediction in terms of a classification task. Some commercial products such as
CreditMetricsTM are used to quantify full credit risk, i.e. give an estimate of the
losses of a portfolio through the application of a suite of different techniques; in-
cluding FDA. Indeed, the CreditMetrics framework (1997) makes us realise that
GP’s are perfectly suitable for integration in the form of a binary classification mod-
ule. Something similar would happen with other types of products such as Moody’s
KMVTM.

8 Conclusions

This work has presented a comprehensive review of statistical methods for clas-
sification and their application to the bankruptcy prediction problem. A compari-
son with newly developed tools, such as various guises of Gaussian processes for
classification has also been included. Justification for trying new techniques lies
on the fact that standard models for estimating a classifier are based on paramet-
ric approaches. However, it was demonstrated that by taking a parametric approach
a richer and more flexible class of models was being neglected, that of the non-
parametric models to whom Gaussian processes belong.

GP’s are a generalisation of the Gaussian density to infinite dimensional function
spaces and lend themselves naturally to Bayesian inference tasks because of their
simple analytic properties and ease of use. However, these characteristics do not pre-
clude them of being applied on a set of complex problem domains, like for example
separating data between classes. In this work we used data from the Federal Deposit
Insurance Corporation to show how different instances of GP’s yielded competitive,
if not better, classification results with respect to well established techniques like
the Z-score of Altman (i.e. discriminant analysis) and logistic regression.

An interesting by-product of the Bayesian formalism is that certain priors lead
to the ranking and effective pruning of features when inference is done, and GP’s
are no exception. This by-product is known as automatic relevance determination
and is enabled whenever a prior parameter is assigned to each of the dimensions of
the data (in our case the dimensions were given by each of the financial ratios of
the analysed data). With the aim of understanding better which financial ratios were
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more important to the classification, some ARD covariance functions were tried and
the results showed the return on equity (ROE), return on assets (ROA), equity ratio
(ER) and net operating income (NOI) as the highest ranked. The capital ratio (CR)
a widely viewed relevant ratio for financial health assessment, was ranked in low
positions.

We plan to expand the present work in a three-fold way: first, by assessing the fi-
nancial health of Mexican banking institutions with some of these GP tools, as auto-
mated bankruptcy prediction is in its early stages in this country. Second, by expand-
ing our datasets to include more financial ratios, in order to increase our understand-
ing of the bankrupcty prediction task. Finally, by introducing a time-dependency
component, so that this type of methods become useful for early-warning.

Appendix

A brief description of the financial ratios that compose the FDIC data follows.
Ratio 1. Net interest margin (NIM) is the difference between the proceeds from

borrowers and the interest payed to their lenders.
Ratio 2. Non-interest income (NII) is the sum of the following types of income:

fee-based, trading, that coming from fiduciary activities and other non-interest as-
sociated one.

Ratio 3. Non-interest expense (NIX) comprises basically three types of expenses:
personnel expense, occupancy and other operating expenses.

Ratio 4. Net operating income (NOI) is related to the company’s gross income
associated with its properties less the operating expenses.

Ratio 5. Return on assets (ROA) is an indicator of how profitable a company is
relative to its total assets. ROA is calculated as the ratio between the company’s total
earnings over the year and the company’s total assets.

Ratio 6. Return on equity (ROE) is a measure of the rate of return on the share-
holders’ equity of the common stock owners. ROE is estimated as the year’s net in-
come (after preferred stock dividends but before common stock dividends) divided
by total equity (excluding preferred shares).

Ratio 7. Efficiency ratio (ER) is a ratio used to measure the efficiency of a com-
pany, although not every one of them calculates it in the same way.

Ratio 8. Non current assets (NCA) are those that cannot be easily converted into
cash, e.g. real estate, machinery, long-term investments or patents.

Ratio 9. It is the ratio of cash plus US treasury and government obligations to
total assets.

Ratio 10. Equity capital (EC) is the capital raised from owners.
Ratio 11. The capital ratio (CR) also known as the leverage ratio is calculated as

the Tier 1 capital divided by the average of the total consolidated assets.
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Part II
Dynamic Policy Perspectives





Testing Institutional Arrangements
via Agent-Based Modeling: A U.S. Electricity
Market Application

Hongyan Li, Junjie Sun, and Leigh Tesfatsion

Abstract Many critical goods and services in modern-day economies are produced
and distributed through complex institutional arrangements. Agent-based computa-
tional economics (ACE) modeling tools are capable of handling this degree of com-
plexity. In concrete support of this claim, this study presents an ACE test bed de-
signed to permit the exploratory study of restructured U.S. wholesale power markets
with transmission grid congestion managed by locational marginal prices (LMPs).
Illustrative findings are presented showing how spatial LMP cross-correlation pat-
terns vary systematically in response to changes in the price responsiveness of
wholesale power demand when wholesale power sellers have learning capabilities.
These findings highlight several distinctive features of ACE modeling: namely, an
emphasis on process rather than on equilibrium; an ability to capture complicated
structural, institutional, and behavioral real-world aspects (micro-validation); and
an ability to study the effects of changes in these aspects on spatial and temporal
outcome distributions.

1 Introduction

Modern economies depend strongly on large-scale institutions for the production
and distribution of critical goods and services, such as electric power, health care,
credit, and education. The performance of these institutions in turn depends in com-
plicated ways on the structural constraints restricting feasible activities, on the rules
governing participation, operation, and oversight, and on the behavioral disposi-
tions of human participants. To be useful and informative, institutional studies need
to take proper account of all three elements.

Agent-based computational economics (ACE) modeling is well suited for under-
taking institutional studies. ACE modeling begins with assumptions about “agents”
and their interactions and then uses computer simulation to generate histories that
reveal the dynamic consequences of these assumptions. The agents in ACE models
can range from passive structural features with no cognitive function to individual

L. Tesfatsion (�)
Economics Department, Iowa State University, Ames, IA 50011-1070, USA
e-mail: tesfatsi@iastate.edu

H. Dawid, W. Semmler (eds.), Computational Methods in Economic Dynamics,
Dynamic Modeling and Econometrics in Economics and Finance 13,
DOI 10.1007/978-3-642-16943-4_7, © Springer-Verlag Berlin Heidelberg 2011

135



136 H. Li et al.

and group decision makers with sophisticated learning and communication capabil-
ities. ACE researchers use controlled experimentation to investigate how large-scale
effects arise from the micro-level interactions of dispersed agents, starting from var-
iously specified initial conditions.

In particular, ACE researchers take a culture-dish approach to the study of in-
stitutional designs. The first step is to develop a computational world that incor-
porates the salient aspects of the institutional design, along with relevant structural
constraints, and that is populated with cognitive agents endowed with realistic be-
havioral dispositions and learning capabilities. The second step is to specify initial
conditions for the computational world. The final step is to permit the computa-
tional world to evolve over time driven solely by agent interactions, with no further
intervention from the modeler. Two basic questions are typically addressed. First,
does the institutional design promote efficient, fair, and orderly social outcomes
over time, despite possible attempts by cognitive agents to game the design for their
own advantage? Second, under what conditions might the design give rise to adverse
unintended consequences?

Introductory discussions focusing on the applicability of ACE modeling for eco-
nomic research in general can be found in Tesfatsion (2006, 2010a). Annotated
pointers to extensive ACE institutional research can be found at the ACE homepage
(Tesfation 2010b). The focus of this latter research runs the gamut from macroeco-
nomic policy rules to the microeconomic procurement processes of individual firms.

In this study we apply the ACE approach to a meso-level institutional design
problem: namely, exploration of the performance characteristics of wholesale power
markets with transmission grid congestion managed by locational marginal prices
(LMPs). Under this pricing system, electric power is priced at wholesale in accor-
dance with the location and timing of its injection into, or withdrawal from, the
transmission grid.

Our basic framework of analysis is an ACE wholesale power market test bed
(“AMES”) developed by a group of researchers at Iowa State University (AMES
2010). Illustrative findings are presented from AMES experiments showing how
spatial LMP cross-correlation patterns vary systematically in response to changes in
the price responsiveness of wholesale power demand when wholesale power sellers
have learning capabilities. For example, it is shown how the strategic supply offers
of the pivotal sellers whose supply is needed to meet total fixed (price-insensitive)
demand strongly influence the LMPs at neighboring locations as well as the LMPs
at their own locations. An important policy implication of this finding is that the
exercise of market power at any one location can have substantial adverse spill-over
effects on prices at other locations, particularly when total demand is largely fixed.

Section 2 provides a brief overview of restructuring efforts for the U.S. electric
power industry that have led to the widespread adoption of LMP pricing. Section 3
describes the key features of AMES. An experimental design is outlined in Sect. 4
for testing the spatial cross-correlation patterns arising among LMPs under sys-
tematically varied demand conditions when wholesale power sellers have learning
capabilities. Section 5 presents AMES-generated findings for this experimental de-
sign. These findings are compared with empirical LMP data for the U.S. Midwest
wholesale power market in Sect. 6. Concluding remarks are provided in Sect. 7.
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Fig. 1 U.S. energy regions that have adopted FERC’s wholesale power market design. Source:
www.ferc.gov/industries/electric/indus-act/rto/rto-map.asp

2 Study Context: U.S. Restructured Wholesale Power Markets

The U.S. electric power industry is currently undergoing substantial changes in both
its structure (ownership and technology aspects) and its architecture (operational
and oversight aspects). These changes involve attempts to move the industry away
from highly regulated markets with administered cost-based pricing and towards
competitive markets in which prices more fully reflect supply and demand forces.

The goal of these changes is to provide industry participants with better incen-
tives to control costs and introduce innovations. The process of enacting and imple-
menting policies and laws to bring about these changes has come to be known as
restructuring.

In 2003 the U.S. Federal Energy Regulatory Commission (FERC) recommended
the adoption of a common market design for U.S. wholesale power markets (FERC
2003). As indicated in Fig. 1, and elaborated in Joskow (2006), versions of this de-
sign have now been implemented in U.S. energy regions in the Midwest (MISO),
New England (ISO-NE), New York (NYISO), the Mid-Atlantic states (PJM), Cali-
fornia (CAISO), the Southwest (SPP), and Texas (ERCOT).

A core feature of FERC’s design is a reliance on locational marginal prices
(LMPs) to manage transmission grid congestion. Under this pricing system, the
price (LMP) charged to wholesale buyers and received by wholesale sellers at a
particular grid bus at a particular point in time is the least cost to the system of
providing an additional increment of power at that bus at that time.

A key fact about LMPs is that congestion arising on any transmission grid branch
necessarily results in separation between the LMPs at two or more grid buses. Pre-
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Fig. 2 Architecture of the
AMES Wholesale Power
Market Test Bed

vious studies have derived analytical expressions for LMPs at a point in time, con-
ditional on given grid, demand, and supply conditions; see, for example, Conejo et
al. (2005) and Orfanogianni and Gross (2007). These studies highlight the critical
roles played by transmission grid branch constraints and generator production ca-
pacity limits in the determination of LMPs. In addition, numerous researchers have
empirically investigated the autocorrelation patterns in LMPs as part of price fore-
casting studies; see, for example, Zhou et al. (2009). To our knowledge, however, no
previous research has focused on the spatial cross-correlation patterns deliberately
or inadvertently induced in LMPs by strategically learning power traders.

This study uses controlled experiments for a 5-bus test case to explore spatial
cross-correlation patterns induced in LMPs under systematically varied conditions
for the price-sensitivity of wholesale power demand when generation companies
have learning capabilities. All experiments were conducted using Version 2.05 of the
AMES Wholesale Power Market Test Bed (AMES 2010), a Java software package
developed by H. Li, J. Sun, and L. Tesfatsion. The key features of AMES used in
this study are explained in the following section.

3 AMES Wholesale Power Market Test Bed

AMES(V2.05) captures key features of wholesale power market operations in U.S.
energy regions operating under FERC’s wholesale power market design (FERC
2003). These key features are listed in Fig. 2 and briefly described below.1

The AMES(V2.05) wholesale power market operates over an AC transmission
grid starting with hour H00 of day 1 and continuing through hour H23 of a user-
specified maximum day. AMES includes an Independent System Operator (ISO)
and a collection of energy traders consisting of Load-Serving Entities (LSEs) j =
1, . . . , J and Generation Companies (GenCos) i = 1, . . . , I distributed across the
buses of the transmission grid.

1For a more detailed description of AMES, including pointers to tutorials, manuals, and down-
loadable code, see AMES (2010), Li and Tesfatsion (2009). AMES is an acronym for Agent-based
Modeling of Electricity Systems. Annotated pointers to other agent-based electricity research can
be accessed at Tesfatsion (2010c).
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Fig. 3 AMES LSE demand
bids consist of fixed and
price-sensitive parts

The objective of the not-for-profit ISO is the maximization of Total Net Surplus
(TNS) subject to transmission constraints and GenCo operating capacity limits. In an
attempt to attain this objective, the ISO operates a day-ahead energy market settled
by means of locational marginal prices (LMPs).

The objective of each LSE j is to secure for itself the highest possible daily
net earnings through purchases of power in the day-ahead market and resale of this
power to retail customers. During the morning of each day D, each LSE j reports a
demand bid to the ISO for the day-ahead market for day D + 1. Each demand bid
consists of two parts: fixed demand (i.e., a 24-hour load profile) that can be sold
downstream at a regulated rate to retail customers with flat-rate pricing contracts;
and 24 price-sensitive inverse demand functions, one for each hour, reflecting price-
sensitive demand (willingness to pay) by retail customers with real-time pricing
contracts. Figure 3 illustrates the form of a demand bid for a particular hour H .
LSEs have no learning capabilities; demand bids for LSEs are user-specified at the
beginning of each simulation run.

The objective of each GenCo i is to secure for itself the highest possible daily
net earnings through the sale of power in the day-ahead market. GenCos have learn-
ing capabilities.2 During the morning of each day D, each GenCo i uses its current
“action choice probabilities” to choose a supply offer from its action domain ADi

to report to the ISO for use in all 24 hours of the day-ahead market for day D + 1.
As depicted in Fig. 4, this supply offer consists of a reported marginal cost func-
tion MCR

i (pGi) = aR
i + 2bR

i pGi defined over a reported operating capacity interval
[CapL

i ,CapRU
i ]. GenCo i’s ability to vary its choice of a supply offer from ADi

permits it to adjust the ordinate aR
i , slope 2bR

i , and upper operating capacity limit
CapRU

i for its reported marginal cost function in an attempt to increase its daily net
earnings.

After receiving demand bids from LSEs and supply offers from GenCos during
the morning of day D, the ISO determines and publicly posts hourly LMP and
dispatch levels for the day-ahead market for day D + 1. These hourly outcomes
are determined via Security-Constrained Economic Dispatch (SCED) formulated as

2A detailed presentation of GenCo learning is given below in Sect. 4.2.1.
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Fig. 4 AMES GenCos with
learning capabilities report
strategic supply offers to the
ISO

Fig. 5 AMES ISO activities
during a typical day D

bid/offer-based DC optimal power flow (OPF) problems with approximated TNS
objective functions based on reported rather than true GenCo costs. Grid congestion
is managed by the inclusion of congestion cost components in LMPs. At the end
of each day D the ISO settles the day-ahead market for day D + 1 by receiving all
purchase payments from LSEs and making all sale payments to GenCos based on
the LMPs for the day-ahead market for day D + 1, collecting the difference as ISO
net surplus. The activities of the ISO on a typical day D are depicted in Fig. 5.

Each GenCo i at the end of each day D uses stochastic reinforcement learning to
update the action choice probabilities currently assigned to the supply offers in its
action domain ADi , taking into account its day-D settlement payment (“reward”).
In particular, if GenCo i’s supply offer on day D results in a relatively good reward,
GenCo i increases the probability it will choose to report this same supply offer on
day D + 1, and conversely.

There are no system disturbances (e.g., weather changes) or shocks (e.g., line
outages). Consequently, the dispatch levels determined on each day D for the day-
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Fig. 6 Transmission grid for
the benchmark dynamic 5-bus
test case

ahead market for day D + 1 are carried out as planned without need for settlement
of differences in the real-time market.

4 Experimental Design

As detailed below, our experimental design is based on a multi-period version of a
static 5-bus test case commonly used in ISO business practices manuals and train-
ing programs to illustrate market operations. Two treatment factors are selected for
the experimental design. The first treatment factor is the degree to which GenCos
can learn to exercise economic capacity withholding, i.e., the reporting of higher-
than-true marginal costs. The second treatment factor is the degree to which LSEs
report fixed versus price-sensitive demand bids, an increasingly important issue as
pressures increase for more demand response in wholesale power markets (Kiesling
2007; FERC 2008).

Three key issues are highlighted in this experimental design. First, given fixed
demands, how are bus LMPs affected by the introduction of learning capabilities
for the GenCos that permit them to strategically adjust their supply offers over time?
Second, given fixed demands, how do network effects and the strategically reported
supply offers of the learning GenCos affect the spatial cross-correlations exhibited
by bus LMPs? Third, how do the spatial cross-correlations for bus LMPs change in
response to systematic increases in demand-bid price sensitivity?

4.1 Benchmark Dynamic 5-Bus Test Case

Our experimental design is anchored by a benchmark dynamic 5-bus test case de-
scribed in full detail in Li et al. (2009). This benchmark case is characterized by the
following structural, institutional, and behavioral conditions:

• The wholesale power market operates over a 5-bus transmission grid as depicted
in Fig. 6, with branch reactances, locations of LSEs and GenCos, and initial
hour-0 LSE fixed demand levels adopted from a static 5-bus test case (Lally 2002)
developed for ISO training purposes.
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Fig. 7 GenCo true marginal
cost functions and true
capacity attributes for the
benchmark dynamic 5-bus
test case

Fig. 8 Fixed demand (load profiles) for the benchmark dynamic 5-bus test case

• True GenCo cost and capacity attributes are as depicted in Fig. 7. GenCos range
from GenCo 5, a relatively large coal-fired baseload unit with low marginal op-
erating costs, to GenCo 4, a relatively small gas-fired peaking unit with relatively
high marginal operating costs.

• Demand is 100% fixed (no price sensitivity) with LSE daily fixed-demand profiles
adopted from a case study presented in Shahidehpour et al. (2002, pp. 296–297).
As depicted in Fig. 8, hourly load varies from light (hour H04) to peak (hour
H17).

• GenCos are non-learners, meaning they report supply offers to the ISO that con-
vey their true marginal cost functions and true operating capacity limits.
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4.2 Learning Treatments

Each GenCo i has available an action domain ADi consisting of a finite number of
possible supply offers. For the study at hand, a supply offer for any GenCo i takes
the form of a reported marginal cost function MCR

i (pGi) = aR
i + 2bR

i pGi that can
be summarized by a vector sR

i = (aR
i , bR

i ) determining its ordinate aR
i and slope

2bR
i ; see Fig. 4.3

The action domain ADi is tailored to GenCo i’s own particular true cost and ca-
pacity attributes. In particular, ADi only contains reportable marginal cost functions
MCR

i (pGi ) lying on or above GenCo i’s true marginal cost function MCi (pGi) =
ai +2bipGi , and ADi always contains this true marginal cost function. However, the
action domains are constructed so as to ensure equal cardinalities and similar den-
sities across all GenCos to avoid favoring some GenCos over others purely through
action domain construction.4

In learning treatments, each GenCo makes daily use of stochastic reinforcement
learning to adjust its supply offers in pursuit of increased daily net earnings. As
detailed below in Sect. 4.2.1, GenCo learning is implemented by means of a vari-
ant of a stochastic reinforcement learning algorithm developed by Roth and Erev
(1995, 1998) based on human-subject experiments, hereafter referred to as the VRE
learning algorithm.

For experimental treatments with GenCo VRE learning, we use 30 pseudo-
random number seed values to initialize 30 distinct runs, each 1000 simulated days
in length.5 To control for random effects, outcomes are then reported as mean values
across all 30 runs.

4.2.1 VRE Learning Algorithm

This section describes how an arbitrary GenCo i goes about using the VRE learning
algorithm to select supply offers sR

i from its action domain ADi to report to the
ISO for the day-ahead market on successive days D, starting from an initial day
D = 1. As will be seen below, the only relevant attribute of ADi for implementation
of VRE learning is that it has finite cardinality. Consequently, letting Mi ≥ 1 denote
the cardinality of ADi , it suffices to index the supply offers (“actions”) in ADi by
m = 1, . . . ,Mi .

3In the present study it is assumed for simplicity that GenCos only strategically report the ordi-
nate and slope values for their marginal cost functions. They always truthfully report their upper
operating capacity limits CapU .
4A detailed explanation of this action domain construction can be found in Li et al. (2009, Ap-
pendix B).
5These 30 seed values, together with all parameter value settings used for action domain construc-
tion and implementation of the VRE learning algorithm, are provided in the input data file for the
5-bus test case included with the AMES(V2.05) download (AMES 2010).
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The initial propensity of GenCo i to choose action m ∈ ADi is given by qim(1)

for m = 1, . . . ,Mi . AMES(V2.05) permits the user to set these initial propensity lev-
els to any real numbers. However, the assumption used in this study is that GenCo i’s
initial propensity levels are all set equal to some common value qi(1), as follows:

qim(1) = qi(1) for all actions m ∈ ADi (1)

Now consider the beginning of any day D ≥ 1, and suppose the current propen-
sity of GenCo i to choose action m in ADi is given by qim(D). The choice probabil-
ities that GenCo i uses to select an action for day D are then constructed from these
propensities using the following commonly used Gibbs-Boltzmann transformation:

pim(D) = exp(qim(D)/Ti)
∑Mi

j=1 exp(qij (D)/Ti)
, m ∈ ADi (2)

In (2), Ti is a temperature parameter that affects the degree to which GenCo i

makes use of propensity values in determining its choice probabilities. As Ti → ∞,
then pim(D) → 1/Mi , so that in the limit GenCo i pays no attention to propensity
values in forming its choice probabilities. On the other hand, as Ti → 0, the choice
probabilities (2) become increasingly peaked over the particular actions m having
the highest propensity values qim(D), thereby increasing the probability that these
actions will be chosen.

At the end of day D, the current propensity qim(D) that GenCo i associates
with each action m in ADi is updated in accordance with the following rule. Let
m′ denote the action actually selected and reported into the day-ahead market by
GenCo i in day D. Also, let NEim′(D) denote the actual daily net earnings (revenues
minus avoidable costs) attained by GenCo i at the end of day D as its settlement
payment for all 24 hours of the day-ahead market for day D + 1.6

Then, for each action m in ADi ,

qim(D + 1) = [1 − ri]qim(D) + Responseim(D), (3)

where

Responseim(D) =
{ [1 − ei] · NEim′(D) if m = m′

ei · qim(D)/[Mi − 1] if m �= m′, (4)

and m �= m′ implies Mi ≥ 2. The introduction of the recency parameter ri in (3)
acts as a damper on the growth of the propensities over time. The experimentation
parameter ei in (4) permits reinforcement to spill over to some extent from a chosen
action to other actions to encourage continued experimentation with various actions
in the early stages of the learning process.

6At the beginning of any planning period, a GenCo’s avoidable costs refer to the costs it can
avoid during the period by shutting down production and possibly taking other actions (e.g., asset
re-use or re-sale). In order for production to proceed, revenues from production should at least
cover avoidable costs. In the present study the GenCos do not incur start-up/shut-down or no-load
costs, and all of their asset expenditures are assumed to be sunk costs (not recoverable by re-use
or re-sale). Consequently, the avoidable costs VCi (p

∗
Gi ) for each GenCo i associated with a real

power production level p∗
Gi in any given hour H is the integral of its true marginal cost function

MCi (pGi) = ai + 2bipGi over the interval from 0 to p∗
Gi .
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4.2.2 Calibration of VRE Learning Parameters

As a prelude to conducting experiments with GenCo VRE learning for the dy-
namic 5-bus test case, we calibrated each GenCo’s VRE learning parameter set-
tings to its particular choice environment. We first set common “sweet spot” values
(r, e) = (0.04,0.96) across the GenCos for the recency and experimentation param-
eters ri and ei in (3) and (4) based on the dynamic 5-bus test case analysis conducted
by Pentapalli (2008). Given this (r, e) setting, we then conducted intensive parame-
ter sweeps to determine individual “sweet spot” settings for each GenCo i’s initial
propensity qi (1) in (1) and temperature parameter Ti in (2).

More precisely, regarding the latter step, we defined two derived VRE learning
parameters (αi,βi ) for each GenCo i as follows. We proxied GenCo i’s daily net
earnings aspirations in normalized form at the beginning of the initial day 1 by
constructing the ratio

αi = qi(1)

MaxDNEi

(5)

of GenCo i’s initial propensity qi (1) in (1) to an approximate valuation MaxDNEi =
[24 · MCi (CapU

i ) · CapU
i ] for GenCo i’s maximum possible daily net earnings. We

also defined the ratio

βi = qi(1)

Ti

(6)

of qi (1) in (1) to GenCo i’s temperature parameter Ti in (2). We then conducted an
intensive set of experiments for the dynamic 5-bus test case under alternative speci-
fications for (α,β), set commonly across the GenCos, with LSE demand maintained
at 100% fixed (R = 0.0).

Figure 9 displays a 3D visualization for the mean total GenCo daily net earn-
ings on day 1000 resulting under the variously tested specifications for (α,β). Two
interesting findings are immediately evident. First, the specification for (α,β) sub-
stantially affects GenCo net earnings outcomes. Second, the highest net earnings are
associated with “sweet spot” (α,β) combinations that lie along a nonlinear ridge
line ranging from (α,β) = (1,100) in the northwest corner to (α,β) = (1/24,2) in
the south-central region.

The particular sweet-spot specification (α,β) = (1,100) is used in all of the
learning experiments reported below in Sect. 5.

4.3 Demand Treatments

The linearity of the LSEs’ price-sensitive demand bids implies that price-elasticity
of demand varies all along the plots of these functions. Hence, elasticity cannot
easily be used to parameterize their sensitivity to price.
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Fig. 9 A 3D depiction of mean outcomes for total GenCo daily net earnings on day 1000 for the
dynamic 5-bus test case with GenCo VRE learning and 100% fixed LSE demand (R = 0.0) under
alternative settings for the derived VRE learning parameters (α,β)

To investigate the effects of changes in LSE demand-bid price sensitivity both
with and without GenCo VRE learning, we first defined the R-ratio

Rj (H,D) = SLMaxj (H,D)

[pF
Lj (H,D) + SLMaxj (H,D)] (7)

The numerator of (7) denotes LSE j ’s maximum potential price-sensitive demand
SLMaxj (H,D) for hour H of the day-ahead market in day D + 1; see Fig. 3. The
denominator of (7) denotes LSE j ’s maximum potential total demand for hour H of
the day-ahead market in day D + 1, i.e., the sum of its fixed demand and maximum
potential price-sensitive demand. Figure 10 illustrates the construction of the R-ratio
(7) for the special cases R = 0.0, R = 0.5, and R = 1.0.

We next set all of the LSE fixed demands pF
Lj (H,D) to their positive benchmark-

case values BPF
Lj (H) (differing by hour but not by day) and all of the maximum po-

tential price-sensitive demands SLMaxj (H,D) to their benchmark-case value 0,
thus obtaining a common R-ratio value of R = 0.0 across all LSEs j for each
H and D. We then systematically varied the settings for pF

Lj (H,D) from their
benchmark-case values to 0, and the settings for SLMaxj (H,D) from 0 to the pos-
itive benchmark-case values BPF

Lj (H) for fixed demand, which resulted in a se-
quence of common R-ratio values for the LSEs ranging from R = 0.0 (100% fixed
demand) to R = 1.0 (100% price-sensitive demand).
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Fig. 10 Illustration of the
R-ratio construction for the
experimental control of
relative demand-bid price
sensitivity in each hour H

To prevent confounding effects arising from changes in the ordinate and slope
values of the LSE price-sensitive demand bids, these ordinate and slope values were
held fixed across all experiments. The specific settings for these fixed ordinate and
slope values (along with all benchmark-case values BPF

Lj (H) for LSE fixed de-
mands) are provided in the input data file for the 5-bus test case included with the
AMES(V2.05) download (AMES 2010).

5 Experimental Findings

As shown in Fig. 11, GenCo VRE learning and LSE demand-bid price sensitivity
critically affect mean LMP outcomes for the dynamic 5-bus test case. In particular,
relative to the benchmark (no learning) case, the mean LMP value on day 1000
increases for each given R-ratio value when GenCos are permitted to have VRE
learning capabilities. This increase is particularly dramatic for small R-ratio values
corresponding to low price-sensitivity of demand.

However, the mean LMP outcomes reported in Fig. 11 do not provide any infor-
mation regarding the potentially correlated impact of learning and demand-bid price
sensitivity on the spatial distribution of LMPs across buses. This section presents ex-
perimental findings showing how LMP spatial cross-correlation patterns are system-
atically affected by changes in GenCo learning capabilities and the price-sensitivity
of LSE demand.7

5.1 Correlation Experiment Preliminaries

Two types of experimental findings are reported below: (a) pairwise cross-
correlations between GenCo reported marginal costs and bus LMPs evaluated at

7For a fuller presentation of our correlation experiment findings, including detailed comparisons
with the no-learning benchmark case, see Li et al. (2009).
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Fig. 11 Mean outcomes for average hourly LMP values on day 1000 for the dynamic 5-bus test
case with GenCo VRE learning and LSE demand varying from R = 0.0 (100% fixed) to R = 1.0
(100% price sensitive)

dispatch operating points; and (b) pairwise cross-correlations between bus LMPs
evaluated at dispatch operating points.

In each case the cross-correlations are reported at four representative hours from
the LSE load profiles depicted in Fig. 8: the off-peak hour H04; the shoulder hour
H11; the peak-demand hour H17; and the shoulder hour H20. Moreover, for each
hour the two types of cross-correlations are reported for three different demand
scenarios as characterized by three different settings for the R-ratio. In total, then,
24 distinct cross-correlation treatments (2 × 4 × 3) are reported below.

Illustrative findings are depicted using correlation diagrams as well as tables.
Each correlation diagram uses shape, shape direction, and color to convey informa-
tion about the sign and strength of the resulting pairwise cross-correlations.

The shapes and shape directions in the correlation diagrams are rough indicators
of the patterns observed in the underlying scatter plots for the two random variables
whose cross-correlation is under examination. Color is used to reinforce shape and
shape direction information.

More precisely, if a scatter plot for two random variables X and Y roughly lies
along a straight line, this suggests that X and Y are perfectly correlated. If the line
is positively sloped, the indication is perfect positive correlation (1.0); if the line is
negatively sloped, the indication is perfect negative correlation (−1.0). The correla-
tion diagrams indicate these possible scatter-plot patterns by means of straight lines
that are either forward or backward slanted to indicate positive or negative corre-
lation respectively. Conversely, if the scatter plot for X and Y instead consists of a
roughly rectangular cloud of points, this indicates that X and Y are independent of
each other, implying zero correlation. The correlation diagrams indicate this scatter-
plot pattern by means of full circles. Intermediate to this are scatter plots for X and
Y that are roughly elliptical in shape, indicating moderate but not perfect correla-
tion between X and Y. The correlation diagrams indicate this scatter-plot pattern by
means of oval shapes that point to the right for positive correlation values and to the
left for negative correlation values.



Testing Institutional Arrangements via Agent-Based Modeling 149

Table 1 Pairwise
cross-correlations between
GenCo reported marginal
costs and bus LMPs at the
peak-demand hour H17 of
day 1000 for the dynamic
5-bus test case with
GenCo VRE learning and
100% fixed LSE demand
(R = 0.0)

LMP 1 LMP 2 LMP 3 LMP 4 LMP 5

G1 0.3136 −0.2244 −0.2143 −0.0718 0.2879

G2 0.4150 0.1344 0.1591 0.4148 0.5042

G3 −0.1164 0.5147 0.5222 0.5363 0.0163

G4 −0.2711 0.4641 0.4625 0.3811 −0.1718

G5 0.9704 −0.3125 −0.2712 0.2293 1.0000

Red-colored shapes indicate positive correlation and blue-colored shapes indicate
negative correlation. The intensity of the red (blue) color indicates the degree of the
positive (negative) correlation.

5.2 GenCo-LMP Cross-Correlations

Table 1 presents pairwise cross-correlations between GenCo reported marginal costs
and bus LMPs for the peak-demand hour H17 of day 1000 for the dynamic 5-bus
test case with GenCo VRE learning and 100% fixed LSE demand (R = 0.0). These
cross-correlations indicate positive correlation between GenCo 3 and the LMPs at
buses 2–4, negative correlation between GenCo 4 and the LMPs at buses 1 and 5,
and strong positive correlation between GenCo 5 and the LMPs at buses 1 and 5.
What explains this correlation pattern?

One important explanatory factor is branch congestion and direction of branch
power flows during hour H17. As detailed in Li et al. (2009), the branch 1–2 con-
necting bus 1 and bus 2 is typically congested in every hour under learning. Conse-
quently, buses 2–4 constitute a demand pocket for GenCo 3 located at bus 3. It is
therefore not surprising that GenCo 3’s reported marginal costs are positively cor-
related with the LMPs at these demand-pocket buses during the peak-demand hour
H17.

In addition, the persistent congestion on branch 1–2 results in a negative correla-
tion between the reported marginal cost for GenCo 4 at bus 4 and the LMPs at buses
1 and 5 during the peak-demand hour H17. This happens because the power injected
by GenCo 4 during hour H17 substitutes in part for the cheaper power of GenCos 1
and 5 in servicing demand at the demand-pocket buses 2–4. This substitution occurs
because GenCos 1 and 5 are located at buses 1 and 5 and hence are semi-islanded
behind the congested branch 1–2 during hour H17 as dictated by the directions of
branch power flows.

A second important explanatory factor is limits on generation operating capac-
ities during hour H17, which affect the marginal status of the different GenCos.8

As is well known (see Orfanogianni and Gross 2007), the LMP at each bus with a

8A GenCo is said to be marginal if its minimum and maximum operating capacity limits are not
binding at its dispatch point.
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Table 2 Frequency of
GenCo marginality across 30
runs measured at four
different hours on day 1000
for the dynamic 5-bus test
case with GenCo VRE
learning and 100% fixed LSE
demand (R = 0.0)

G1 G2 G3 G4 G5

H04 13% 37% 100% 37% 100%

H11 10% 30% 100% 20% 100%

H17 10% 23% 87% 20% 100%

H20 10% 30% 100% 13% 100%

marginal GenCo is given by the reported marginal cost of this GenCo whereas the
LMP at each bus without a marginal GenCo is given by a weighted linear combina-
tion of the reported marginal costs of the marginal GenCos.

As indicated in Table 2, GenCo 5 located at bus 5 is persistently marginal during
the peak-demand hour H17, hence the LMP at bus 5 persistently coincides with
GenCo 5’s reported marginal cost. This explains the finding in Table 1 of a perfect
positive correlation of 1.0 between GenCo 5’s reported marginal cost and the LMP
at bus 5 during hour H17.

Table 2 also indicates that no other GenCo is persistently marginal during hour
H17. For example, GenCo 3 is dispatched at maximum operating capacity in 13%
of the runs due either to a relatively low reported marginal cost by GenCo 3 or a
relatively high reported marginal cost by GenCo 4. This non-marginality of GenCo 3
restrains the positive correlation between GenCo 3’s reported marginal costs and the
LMPs at the demand-pocket buses 2–4 as well as the extent to which power supplied
by GenCo 3 can substitute for the power of GenCos 1 and 5 during H17.

The correlation diagram in Fig. 12 for the peak-demand hour H17 provides a
visualization of the GenCo-LMP cross-correlation findings in Table 1. In particular,
it helps to highlight the importance of GenCos 3 and 4 for the determination of
LMPs at the demand-pocket buses 2–4, and the importance of GenCo 5 for the
determination of LMPs at buses 1 and 5.

The remaining correlation diagrams in Fig. 12 depict the GenCo-LMP cross-
correlations that arise in the off-peak hour H04, the shoulder hour H11, and the
shoulder hour H20. Comparing these results to the results depicted in Fig. 12 for
the peak-demand hour H17, note that GenCo 3’s reported marginal cost is now per-
fectly positively correlated with the LMP at bus 3 and is strongly positively corre-
lated with the LMPs at its neighboring buses 2 and 4. These changes arise because
the substantially lower fixed demand in these three non-peak hours results in the
persistent marginality of the relatively large GenCo 3; see Table 2.

Also, in contrast to the peak-demand hour H17, GenCo 4’s reported marginal
cost is negatively correlated with the LMPs at buses 2 and 3 in the three non-peak
hours. This occurs because GenCo 4 is in direct rivalry with the marginal GenCo 3 to
supply power to buses 2 and 3 during these non-peak hours. For example, GenCo 4
is dispatched at maximum capacity when its reported marginal cost is relatively
low, which then permits GenCo 3 to service residual demand at buses 2 and 3 at a
relatively high reported marginal cost.

Figures 13 and 14 report the effects on GenCo-LMP cross-correlations when the
R-ratio for measuring relative price-sensitivity of LSE demand is systematically in-
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Fig. 12 Pairwise
cross-correlations between
GenCo reported marginal
costs and bus LMPs for hours
H04, H11, H17, and H20 on
day 1000 for the dynamic
5-bus test case with
GenCo VRE learning and
100% fixed LSE demand
(R = 0.0)

creased first to R = 0.5 (50% potential price sensitivity) and then to R = 1.0 (100%
price sensitivity). As demand becomes more price sensitive, the LSEs more strongly
contract their demand in response to price increases and branch congestion becomes
less frequent. This limits the GenCos’ ability to profitably exercise economic with-
holding, i.e., to profitably report higher-than-true marginal costs.

In particular, as R increases, the GenCos with relatively low true marginal costs
are advantaged and those with relatively high true marginal costs lose out. This
can be seen by comparing the correlation diagrams in Figs. 12 through 14. As R

increases from R = 0.0 to R = 1.0, the relatively cheap GenCo 5 gains increased
influence over each bus LMP while the relatively expensive GenCo 3 loses influence
over the demand-pocket buses 2 through 4.

5.3 LMP Cross-Correlations

Table 3 reports pairwise cross-correlations for the bus LMPs during the peak-
demand hour H17 on day 1000 for the benchmark dynamic 5-bus test case extended
to include GenCo VRE learning. Figures 15, 16, 17 depict the changes induced in
these cross-correlations when the price-sensitivity of demand is systematically in-
creased from R = 0.0 (100% fixed) to R = 1.0 (100% price sensitive).
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Fig. 13 Pairwise
cross-correlations between
GenCo reported marginal
costs and bus LMPs for hours
H04, H11, H17, and H20 on
day 1000 for the dynamic
5-bus test case with
GenCo VRE learning and
50% fixed LSE potential
demand (R = 0.5)

Table 3 Pairwise
cross-correlations between
bus LMPs at the
peak-demand hour H17 of
day 1000 for the dynamic
5-bus test case with
GenCo VRE learning and
100% fixed LSE demand
(R = 0.0)

LMP 1 LMP 2 LMP 3 LMP 4 LMP 5

LMP 1 1.0000 −0.5328 −0.4957 −0.0127 0.9704

LMP 2 1.0000 0.9991 0.8530 −0.3125

LMP 3 1.0000 0.8747 −0.2712

LMP 4 1.0000 0.2293

LMP 5 1.0000

The main regularity seen in Table 3 results is that all of the LMP cross-
correlations become increasingly positive as R increases. This is particularly true
for the non-peak hours H04, H11, and H20 with relatively lower LSE fixed de-
mands.

As R increases, a larger portion of LSE total demand is price sensitive. Con-
sequently, the LSEs are able to exercise more resistance to higher prices through
demand contraction, which in turn reduces branch congestion. In the current con-
text, bus LMPs are derived from bid/offer-based DC OPF solutions with zero losses
assumed.9 Consequently, as congestion diminishes, the LMPs exhibit less separa-
tion. In the limit, if all congestion were to disappear, the LMPs would converge to

9See Liu et al. (2009) for a rigorous presentation of this LMP derivation.
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Fig. 14 Pairwise
cross-correlations between
GenCo reported marginal
costs and bus LMPs for hours
H04, H11, H17, and H20 on
day 1000 for the dynamic
5-bus test case with
GenCo VRE learning and
100% price-sensitive LSE
demand (R = 1.0)

a single uniform price across the grid, which in turn would imply perfect positive
correlation among all bus LMPs.

For the non-peak hours H04, H11, and H20, the typical result for the limiting
case R = 1.0 is no branch congestion. Hence, the bus LMPs during these hours—
particularly hour H04—are close to being perfectly positively correlated when R =
1.0. For the peak-demand hour H17, however, the branch 1–2 is typically congested
even for R = 1.0. Consequently, LMP cross-correlations for hour H17 exhibit a
strong but not perfect positive correlation.

Another regularity seen in Table 3, and graphically visualized in Figs. 15
through 17, is that the LMP at bus 2 is always strongly positively correlated with
the LMP at bus 3. At high R levels, this reflects a lack of branch congestion and
hence a lack of LMP separation. At low R levels, however, the branch 1–2 tends
to be congested at all hours. The congestion on branch 1–2 means that the bulk of
the demand at the load-only bus 2 must be supplied along branch 3-2 by the large
and frequently marginal GenCo 3. This in turn means that the LMP at bus 2 is most
strongly influenced by the LMP at bus 3.

6 Empirical Evidence on LMP Cross-Correlations

This section presents LMP cross-correlations calculated using real-world price data.
In particular, we focus on LMP determination in a neighborhood of the MidAmeri-
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Fig. 15 Pairwise LMP
cross-correlations for hours
H04, H11, H17, and H20 on
day 1000 for the dynamic
5-bus test case with
GenCo VRE learning and
100% fixed LSE demand
(R = 0.0)

can Energy Company (MEC), the largest utility in Iowa. Through April 2009, MEC
was treated as a Balancing Authority (BA) in MISO.10 A BA is responsible for main-
taining load-interchange-generation balance and Interconnection frequency support.

From the geographical map depicted in Fig. 18, we picked four neighboring BAs
of MEC in order to study MEC’s effect on their LMPs. These BAs are Alliant En-
ergy Corporate Services, Inc. (ALTW), Muscatine Power and Water (MPW), Omaha
Public Power District (OPPD), and Nebraska Public Power District (NPPD). We
obtained 24-hour historical data from MISO for the real-time market and day-ahead
market LMPs determined for these BAs on August 1, August 3, and September 1
of 2008; see Li and Tesfatsion (2010). In particular, for ALTW we used the LMP
for the loadzone ALTW.MECB, and for the remaining four BAs we used interface
LMPs. We then used these data to calculate pairwise cross-correlations between the
LMP reported for MEC and the LMPs reported for its four neighboring BAs.

Table 4 reports our LMP cross-correlation findings. All of the LMP cross-
correlations are strongly positive. Since MEC is large, and presumably marginal,
this suggests that the supply behavior of the MEC could be spilling over to affect
the LMPs at neighboring BAs.

On the other hand, as always, care must be taken to recognize potentially con-
founding effects in real-world data. As noted above, the LMPs reported by MISO

10On May 1, 2009, MEC filed an application with the Iowa Utilities Board to become a
transmission-owning member of MISO.
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Fig. 16 Pairwise LMP
cross-correlations for hours
H04, H11, H17, and H20 on
day 1000 for the dynamic
5-bus test case with
GenCo VRE learning and
50% fixed LSE potential
demand (R = 0.5)

Table 4 Pairwise cross-correlations between real-time market (RTM) and day-ahead market
(DAM) LMPs for the MidAmerican Energy Company (MEC) and four neighboring Balancing
Authorities ALTW, MPW, OPPD, and NPPD during three days in 2008

DAM 8/1 DAM 8/3 DAM 9/1 RTM 8/1 RTM 8/3 RTM 9/1

MEC-ALTW 0.998 0.999 1.000 0.994 0.974 1.000

MEC-MPW 0.996 0.998 1.000 0.996 0.973 1.000

MEC-OPPD 1.000 0.999 1.000 0.996 0.973 1.000

MEC-NPPD 0.998 0.995 0.998 0.983 0.824 1.000

for MEC and its four neighboring BAs are load-weighted prices determined for a
loadzone and interfaces and not for a single bus. The strong positive LMP cross-
correlations in Table 4 could be a statistical artifact arising from the particular load-
weighting method employed. Alternatively, they could indicate a lack of branch
congestion during the selected days arising either through happenstance or through
deliberate ISO planning.

To differentiate between these various potential explanations for the strong pos-
itive correlations in Table 4—GenCo spillover effects, statistical artifact, and lack
of congestion—we would need to obtain data on MEC supply offers and branch
congestion at an hourly level for the selected test days, as well as data giving indi-
viduated bus LMPs. These data are not currently publicly available.
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Fig. 17 Pairwise LMP
cross-correlations for hours
H04, H11, H17, and H20 on
day 1000 for the dynamic
5-bus test case with
GenCo VRE learning and
100% price-sensitive LSE
demand (R = 1.0)

Fig. 18 MidAmerican Energy Company (MEC) Balancing Authority and four neighboring Bal-
ancing Authorities in relation to MISO

Although agent-based test beds such as AMES can be used to develop interesting
hypotheses under simulated scenarios, the real payoff to such development will only
come when these hypotheses can be tested more fully against empirical data.
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7 Concluding Remarks

In this study we have used an ACE test bed to explore the performance character-
istics of wholesale power markets operating under locational marginal pricing in
accordance with a market design proposed by the U.S. Federal Energy Regulatory
Commission (FERC 2003). In particular, we have focused on a novel issue, the ex-
tent to which economic capacity withholding by pivotal generation companies with
learning capabilities at particular bus locations under variously specified LSE de-
mand conditions has spill-over effects on the prices at neighboring bus locations.

As seen in Sect. 5, these spill-over effects can be substantial. These spill-over
effects thus have practical policy consequences. For example, they greatly compli-
cate efforts to develop and implement effective trigger rules and “reference curves”
for the mitigation of market power in wholesale power markets. As surveyed in
Isemonger (2007), many of these efforts have focused largely on local price effects.

Although our study focuses on a concrete ACE institutional design application,
it illustrates more generally some of the more distinctive capabilities of ACE mod-
eling. First, ACE modeling focuses on the playing out of processes over historical
time rather than on the existence of equilibria. Second, the flexible nature of ACE
modeling permits researchers to incorporate complicated structural, institutional,
and behavioral aspects of actual real world situations. Third, ACE modeling permits
researchers to study the effects of changes in these aspects on outcome distributions,
both spatially and temporally.

Given these distinctive capabilities, ACE modeling would certainly appear to be
a welcome addition to the economist’s toolkit, complementing standard analytical
and statistical modeling approaches.
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Energy Shocks and Macroeconomic
Stabilization Policies in an Agent-Based Macro
Model

Sander van der Hoog and Christophe Deissenberg

Abstract In this chapter we consider the effects of exogenous energy shocks on
an agent-based macroeconomic system and study the out-of-equilibrium dynam-
ics. We introduce automatic stabilizers that allow the artificial economy to absorbe
the shocks. Two types of macroeconomic stabilization policies are implemented:
a consumer subsidy scheme that compensates households for their loss in purchas-
ing power, and a tax reduction scheme that affects both households and firms to
support consumption and investments. Policy experiments are then carried out to
evaluate the effectiveness of these macroeconomic policies. Finally, we are able to
distinguish between short- and long-term effects of the policy measures.

1 Introduction

The variation of energy prices has substantial effects on the economic activity in
a region affecting real output, economic growth and employment among other key
variables. Rotemberg and Woodford (1996) for example estimate using U.S. data
that a 10% increase in oil prices leads to an output decline of 2.5% after five or
six quarters. Actual increases in energy prices, however substantially exceed such
percentages as demonstrated in Fig. 1. The figure shows the real energy price be-
havior during the 2008 energy crisis. The price of Brent crude oil went up by 390%
between 2002 and July 2008, which translates to a monthly increase of 2%. Then
it went sharply down by −76% between July 2008 and Jan 2009, which implies a
monthly decrease of −22%. When the crisis was over at the beginning of 2009 the
price was basically back at its original level of 2002.

For an economy like the EU, which to a large extend depends on the supply of
relevant factors like oil from the outside, variations in the price of energy can be
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Fig. 1 May 1987–Jan 2010
daily Brent spot prices.
Source: Energy Information
Administration. Horizontal
lines indicate the top in 2002
(36.87 USD) and the top in
July 2008 (143.95 USD)

seen as exogeneous shocks affecting the economic dynamics within the EU. An im-
portant policy question in this respect is how the implications of such energy shocks
can be alleviated by the appropriate choice of policy measures to be introduced in
response to a shock.

Using the agent-based macroeconomic model that we have developed one can
study such questions in relatively great detail. Since we have microscopic data at
the level of individual households, firms and the government, the model provides us
with a testbed, a computational laboratory, in which we can do ‘What-if’ analyses
for such a policy measure and compare the effects between different scenarios.

In our computational experiments we focus on the use of two types of stabiliza-
tion policies to mitigate the negative effects of energy shocks to the macroeconomy:
(i) a consumer subsidy that only affects households, (ii) an income tax reduction
that affects both households and firms (personal income and corporate income).

These policies are used to counteract the effects of energy shocks on the GDP
growth rate, unemployment and inflation by directly stimulating consumption, em-
ployment and investment.

A direct motivation to study the tax reduction policy is that in many developed
countries fuel taxes form a large part of the final fuel price, and the revenues from
these taxes serve to finance public infrastructure (road maintenance for example).
One measure used in the past to avoid the negative impacts of oil shocks is then to
temporarily or permanently suspend these taxes as fuel costs are rising, as occurred
in 2000, when France, Italy, and the Netherlands lowered fuel taxes in response to
protests over high diesel and gasoline prices.

The remainder of the chapter is organized as follows. In Sect. 2 we describe the
model, the agents and their behavioral repertoires. We also describe the stabiliza-
tion policies and the setup of the computational experiments. Section 3 presents the
simulation results and Sect. 4 concludes.
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2 The Model

2.1 General Features

Here we can only briefly recapitulate the main features of the underlying model that
was developed over a period of three years in the EURACE project.1 For more de-
tails on its implementation, the interested reader is referred to the following papers.

A general overview of the model and a discussion of the computational issues
can be found in Deissenberg et al. (2008). The core of the model is explained in
Dawid et al. (2008, 2009), with formal descriptions of the production decisions in
the consumption and investment goods sectors, the recruitment and wage setting
mechanism on the labour market, and households’ consumption and savings deci-
sions.

A description of the financial market where households can trade firm stocks and
government bonds is found in Raberto et al. (2008a, 2008b). Finally, the financial
management of the firm describing the financing of production and linking the real
side of the economy to the financial sphere is found in van der Hoog et al. (2008).

Putting all the pieces together, we obtain an agent-based model of a fully inte-
grated macroeconomic system, consisting of two real sectors for consumption and
investment goods and a financial sector consisting of a credit market and an asset
market. The model also contains a public sector consisting of a government, a cen-
tral bank, and a statistical office that collects microdata and generates macrodata.

The part of the model described here could be viewed as a missing link since it
describes an exogenous energy market that constitutes a proxy for the link to the
‘rest-of-the-world’ by affecting the production costs of the investment goods pro-
ducers. Using this exogeneous energy market we can study the out-of-equilibrium
dynamics that follow from energy shocks.

2.2 The Agents

The model consists of ‘active’ agents and ‘passive’ agents, who provide auxiliary
functions for information aggregation and dissemination such as data collection, in-
termediation between buyers and sellers, or they act as handles for affecting macroe-
conomic policy.

The active agents are: Households (1600), CGFirms (80 consumption goods pro-
ducers), IGFirms (1, investment goods producers), Banks (2), and Governments (1).
These agents all have a behavioral repertoire and interact, either directly or indi-
rectly, on the various markets that make up the system.

The passive agents are: Malls (1, providing a local market for consumption),
Eurostat (1, collecting data, distributing aggregate statistics), a Central Bank (1),
and a Clearinghouse (1). The passive agents do not make any decisions.

Table 1 contains information on the types and numbers of agents in the artificial
economy.

1For more information on the EURACE Project, see www.eurace.org.
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Table 1 Agent population
Agent Number

Households 1600

CGFirms 80

IGFirms 1

Banks 2

Government 1

Malls 1

Eurostat 1

Central Bank 1

Clearinghouse 1

2.2.1 Households

The main features of household behavior are summarized by these decisions:

• Employment decision: unemployed households/workers read vacancies from all
firms, taking into account the wage offer and their own reservation wage.

• Consumption/savings decision: at the beginning of each month, households al-
locate a budget for consumption and savings (further divided between a savings
account and an asset portfolio) that is modelled according to empirically-founded
rules, as in Deaton (1991, 1992). The consumer k sets its consumption budget for
the coming month by the rule:

Bcons
k,t =

{
Liqavail

k,t − κ�, � > 0,

Liqavail
k,t , otherwise,

� = (Liqavail
k,t − θ IncMean

k,t ).

(1)

Here Liqavail
k,t is the available liquidity (called cash-on-hand in Deaton (1991,

1992), consisting of all liquid or near-liquid assets) and IncMean
k,t is the mean

disposable income over the previous four months. � represents a buffer stock
of liquidity in excess of the mean income, and the propensity to save satisfies
0 < κ < 1. The parameter 0 < θ ≤ 1 is a characteristic of the household, and rep-
resents the fraction of mean income that determines the size of the buffer stock. If
the available cash-on-hand falls below the buffer stock (Liqavail

k,t < θ IncMean
k,t ), the

household will not save anything and spend all cash-on-hand on consumption. If
� is positive, there are positive savings as well.

• Selection of consumption goods: once a week a household visits a shopping mall
located in its own region, where firms offer goods at local prices. The decision
from which firm to buy (at the local mall) is based on a discrete-choice logit
model, taking into account the prices offered by all firms that sell goods at the
local mall.

• Financial decisions: households’ asset portfolio allocation decisions are based
on Prospect Theory (Kahneman and Tversky 1979), see Raberto et al. (2008a,
2008b) for further details.
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2.2.2 Investment Goods Producers

In the basic setup of the model, there is only one single investment goods producer
(IGFirm) who acts as a global supplier of investment goods (machinery). All firms
producing consumption goods purchase their capital goods from this machine man-
ufacturer. The profits of this single manufacturer are channelled back into the econ-
omy and distributed as dividends to the households. Each household is assumed to
hold equal shares in the IGfirm.

The main features of the behavior of the investment goods producer are summa-
rized by:

• Investment goods are produced on demand and without rationing and are pro-
duced using only energy as an input.

• Innovation process: Every period with probability γ inv ∈ (0,1) an innovation
leads to an increase in the quality of the capital good, and with probability
(1 − γ inv) there is no change in quality.

• Technological progress: The productivity of the investment good increases as a
function of its quality. A successful innovation leads to an increase in productivity
of newly produced capital goods by a fixed percentage �qinv .

• Pricing decision: The price of investment goods pinv increases with the same rate
as the quality level.

2.2.3 Consumption Goods Producers

The main features of the behavior of consumption goods producers are summarized
by these decisions:

• Production decision: output is planned based on the current inventory levels at the
malls, and a standard stock replenishment rule that can be found in the operations
research and management literature (see e.g. Hillier and Lieberman 1986). In
addition, there is production smoothing in order to prevent the output of the firm
to fluctuate excessively.

• Employment decision: the planned labour force is directly related to the planned
production quantity, and to the current technology of the capital stock. If addi-
tional workers are needed vacancies are opened, or workers are fired if the oppo-
site is the case. The search and matching algorithm is described in detail in Dawid
et al. (2009).

• Investment decision: The existing capital stock depreciates and needs to be up-
graded if the firm wants to benefit from the productivity increase of newly pro-
duced capital goods. Investments follow from a planned or desired capital stock
(expansion plus replacement of depreciated old stock).

• Financing decision: To finance the production plan, firms follow a hierarchical
decision-making routine. The first least risky choice is to resort to internal financ-
ing. If internal liquidity is insufficient, firms apply for external funding. They
first visit the credit market to apply for bank loans. If they experience credit con-
straints, the next step is to issue new equity (shares) on the asset market. If this
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still does not suffice then the production plan is revised, and the planned invest-
ment, planned labour force, and planned output are all scaled down until it is
possible to finance the new production plan. See van der Hoog et al. (2008) for
details.

• Pricing decision: the price of consumption goods is determined using a mark-up
pricing routine based on ‘break-even analysis’ (see Nagle 1987).

• Dividend payout decision: If the firm makes positive profits, it pays out dividends
to its shareholders. The dividend decision is to maintain a constant dividend to
earnings ratio. This choice of behavioral rule is based on survey data provided in
Allen and Michaely (2004) and Brav et al. (2005).

2.3 Time Scales and Activation Regimes

Agents’ actions are event-based or time-based, where the latter can follow either
subjective or objective time schedules. Economic activities take place on a hierar-
chy of time-scales: yearly, monthly, weekly and daily activities all take place fol-
lowing calender-time or subjective agent-time. Agents are activated asynchronously
according to their subjective time schedules that is anchored on an individual ac-
tivation day. These activation days are uniformly randomly distributed among the
agents at the start of the simulation, but may change endogenously (e.g., when a
household gets re-employed, its subjective month gets synchronized with the acti-
vation day of its employer due to wage payments). Listing 1 provides a pseudocode
of the economic activities taking place at various time-scales.

In the next section we explain how we include energy shocks into the basic
model.

2.4 Capturing an Energy Shock in the Model

We now enrich the model by including the impact of increases in the price of energy
on the production costs of the investment goods producers.

As was already briefly outlined in the introduction, the energy shocks enter the
model through a multi-stage process. Investment goods are produced using energy
as the only input. During an energy crisis the costs of energy increase, leading to
an increase in the production costs of the producers of investment goods. This in-
crease in production costs enters into the pricing of the investment goods through an
energy price mark-up, and then enters into the production costs of the producers of
consumption goods. At the final stage, the consumption goods producers incorpo-
rate the increase in their price for the consumption goods, again by using a mark-up
pricing routine, which leads to an increase in the consumer prices.

We typically assume that an energy crisis consists of a succession of consecutive,
identical (in length and intensity) energy price increases. Thus, an energy crisis is
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Listing 1 Economic activities taking place on a hierarchy of time-scales with yearly, monthly, weekly
and daily activities

On 1 s t day of c a l e n d e r y e a r :
Government :

− announce new p o l i c i e s

On 1 s t day of c a l e n d e r month :
IGFirm :

− s e t new p r i c e f o r c a p i t a l goods

On 1 s t day of s u b j e c t i v e month :
Fi rms :

− d e c i d e p r o d u c t i o n p l a n
− d e t e r m i n e i n p u t demand f o r c a p i t a l and l a b o u r
− d e t e r m i n e e x t e r n a l f i n a n c i a l needs f o r p r o d u c t i o n
− v i s i t c r e d i t marke t : a sk f o r c r e d i t l o a n s wi th banks
− v i s i t f i n a n c i a l marke t : i s s u e new s h a r e s
− i f c r e d i t r a t i o n e d : r e s c a l e p r o d u c t i o n
− v i s i t c a p i t a l goods marke t
− v i s i t l a b o u r marke t
− produce o u t p u t
− d i s t r i b u t e o u t p u t t o m a l l s

Househo lds :
− i f employed : r e c e i v e wage
− r e c e i v e s u b s i d y based on p r e v i o u s month consumpt ion
− d e t e r m i n e consumpt ion b u d g e t f o r upcoming month

On 1 s t day of s u b j e c t i v e week :
Househo lds :

− v i s i t consumpt ion goods marke t

Every day :
Fi rms :

− r e c e i v e r e v e n u e s from m a l l s
Househo lds :

− v i s i t f i n a n c i a l marke t : r e a l l o c a t e a s s e t p o r t f o l i o
− i f unemployed : v i s i t l a b o u r marke t
− r e c e i v e d i v i d e n d s

Banks :
− r e c e i v e l o a n r e q u e s t s , s u p p l y c r e d i t t o f i r m s
− r e c e i v e payment a c c o u n t u p d a t e s
− compute b a l a n c e s h e e t ( va lue −a t −r i s k , t o t a l c r e d i t s u p p l y )

Government :
− r e c e i v e t a x r e v e n u e s

On 20 t h ( l a s t ) day of s u b j e c t i v e month :
Fi rms :

− compute r evenues , income s t a t e m e n t and b a l a n c e s h e e t
− pay t a x e s , d i v i d e n d s
− send d a t a t o E u r o s t a t

Househo lds :
− pay t a x e s

On 20 t h ( l a s t ) day of c a l e n d e r month :
E u r o s t a t :

− compute monthly a g g r e g a t e mac roda t a and s t a t i s t i c s

On l a s t day of c a l e n d e r y e a r :
E u r o s t a t :

− compute y e a r l y a g g r e g a t e mac roda t a and s t a t i s t i c s
Government :

− compute b a l a n c e s h e e t
− s e t new p o l i c i e s ( t a x r a t e , s u b s i d y p c t )
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Fig. 2 The time profile of an energy shock experiment

captured by three parameters: the intensity of the single price increases (π ), their
periodicity � (the number of days between two consecutive price increases), and
the number of price increases (n). The total duration of the energy crisis (d) is then
d = �n. The price increase π is assumed to instantaneously disappear at the end of
the total duration. The time profile of a typical energy crisis is illustrated in Fig. 2.

The energy costs of the investment goods producers are incorporated into the
price of the capital good by an energy price mark-up that equals the intensity of the
price shock (π ):

pt+1 = (pt + pt,c)(1 + π), (2)

where pt is the price in period t and pt,c is the price update due to the stochastic
process of productivity increases (technological innovations).

The additional revenues stemming from the technologically motivated price in-
crease pt,c are partly paid out as taxes and partly paid out as dividends to house-
holds.

The revenues that accrue due to the energy costs mark-up (π ) are not paid out in
taxes or dividends. Instead, the money is stored in a variable that represents the total
cumulative income of the owners of the energy source (the Sheik of Qatar, Dubai,
Russian oligarchs), which does not play any role in the economic dynamics. In other
words, it leaves the economic system.

2.5 The Consumer Subsidy Policy

The consumer subsidy is meant to compensate households for their loss in purchas-
ing power. The objective is to support the demand side of the economy. Therefore
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Fig. 3 Graph of the subsidy
factor st = − tanh(Xt − b).
To obtain the actual subsidy
payment this should be
multiplied by |Xt − b| and
the household’s individual
consumption Ch

t

each household receives a subsidy that is a percentage of its total monthly consump-
tion expenditure. The subsidy percentage is determined at the end of each year. The
individual subsidies are computed at the end of each month, after the household
knows its total consumption expenditures. The Government thus acts with a yearly
frequency, while households act on a monthly basis.

2.5.1 Policy Activation

The consumer subsidy is activated as a function of the GDP growth rate Xt (annu-
alized growth, measured monthly) by using two trigger levels: an ON trigger a and
an OFF trigger b, with typically a < b. The subsidy becomes active whenever the
GDP growth rate falls below a (Xt < a), and is switched off again as soon as the
growth rate is above b (Xt > b).

The magnitude Sh
t of the subsidy given to household h is determined by:

Sh
t =

{−Ch
t |Xt − b| tanh(Xt − b), Xt < b

0, otherwise.
(3)

Figure 3 shows the graph of the subsidy factor st : (−∞, b] → [0,1), st =
− tanh(Xt − b), which should still be multiplied by |Xt − b| and the household’s
individual consumption Ch

t to obtain the total subsidy payment.
The first level a can be positive or negative. For example, an aggressive stabi-

lization policy might be to set a = 0.03 implying that the subsidy regime becomes
active if the GDP growth rate drops below +3%. If instead a = −0.01, the sub-
sidy takes effect only after the growth rate has fallen below −1%. In both cases,
as already mentioned, the subsidy is awarded until Xt increases to b. A justifica-
tion for the asymmetry between the on and off triggers is that the subsidy typically
gets activated relatively late during a downturn because of recognition, decision, and
implementation lags, but should remain active until strong growth is assured again.
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2.6 The Tax Reduction Policy

The tax reduction policy has the objective to alleviate the tax burden of the private
sector in general, so it applies to both firms and households. Therefore, in this policy
we vary endogenously the income tax rate on both personal income and corporate
income.

For the household this has the same effect as the subsidy scheme, except the
stimulus is now based in income instead of consumption.

In the case of the firm, the tax reduction scheme is meant to compensate the firm
for an increase in production costs. These costs consist of labour costs and the costs
of acquiring new capital (investments).

We implement the tax reduction scheme using a similar approach as the one
above for the consumer subsidy. We use the same on/off switches conditional on
the GDP growth rate, and the reduction in the tax rate is given by almost the same
formula (but note the reversed sign):

Tt =
{

max{0, τ + |Xt − b| tanh(Xt − b)}, Xt < b

τ, otherwise.
(4)

Here τ = 0.05 is the default tax rate on households’ personal income and firms’
corporate income.2 This results in an income tax rate Tt ∈ (τ − |Xt − b|, τ ), where
Xt is the GDP growth rate.

2.7 Experimental Design

In this subsection we describe how we set up the computational experiments. In the
model, one iteration represents one business day (1 week = 5 days, 1 month = 20
days, 1 year = 240 days). All our simulation runs have a length of 6000 iterations
(300 months), consisting of an initial transient of 1000 iterations (50 months) that
is ignored in the analysis of the experiment. Hence, all results are based on 250
months. Furthermore, all results are based on comparisons of distributional out-
comes, since single runs will not provide generic results. To obtain statistically sig-
nificant results we performed 10 batch runs for each scenario and then perform a
Monte Carlo analysis. All plots show the Monte Carlo mean and the first and third
quartile of the Monte Carlo distribution across the batch runs. Table 2 gives the
default parameter values that are used in the computational experiments.

We consider an energy shock over a pre-determined time interval [Tstart, Tend].
After the transient phase, we run the model for 12 more months before starting the
energy shock at Tstart = 12. After the energy crisis has ended, at Tend = 24, we run
the model till t = 250 months in order to analyze the legacy of the shock.

2Note that the default tax rate of 5% is relatively low compared to empirical rates, but this should
be seen in the model context where the tax rate refers to unemployment insurance contributions
only, which in Germany are currently at 2.8%.
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Table 2 Parameter values

Name Symbol Values Description

Energy crisis duration d 240 Duration of the energy crisis in days

Energy shock intensity π {0.01,0.025,0.05} Percentage energy price change for a
single shock

Periodicity of shocks � 20 Periodicity of the shock in days

Income tax rate τ 0.05 Tax rate on personal and corporate
income

Innovation probability γ inv 0.10 Probability that an innovation is
successful

Technological progress 0.025 Increase in productivity in case of a
successful innovation

Capital price mark-up pt,c 0.025 Price increase of capital goods in
case a successful innovation occurs

Energy price mark-up π {0.01,0.025,0.05} Price increase of capital goods in
case of an energy price increase

Figure 2 shows the time profile of the energy shock experiment. The choice of
the profile is motivated by the empirical evidence as shown in Fig. 1. There are
n consecutive instantaneous price increases between Tstart and Tend , at equidistant
time intervals, and an instantaneous decrease of intensity (1 + π)−n at t = Tend .
This brings the price back to its pre-shock level, if no other influences would have
affected the price in the meantime. However, over the course of the energy crisis,
the process of technological innovation continues in the background so the capital
goods price is updated as usual. Hence, the price level of the investment goods at
the end of the crisis will typically differ from the price level at the beginning of the
crisis.

3 Simulation Results

In this section we present simulation results for four scenarios:

1. Benchmark scenario: no energy shocks occur. This defines the default model
behavior.

2. Energy shock only scenario: an energy crisis occurs, without any stabilization
policy. This provides a baseline to compare the effectiveness of the stabilization
policies.

3. Consumer subsidy scenario: an energy crisis occurs, and a stabilization policy is
implemented by a consumer subsidy scheme.

4. Tax reduction scenario: an energy crisis occurs, and a stabilization policy is im-
plemented by a tax reduction scheme.

Table 3 summarizes the computational settings in each scenario.



170 S. van der Hoog and C. Deissenberg

Table 3 Overview of the
computational settings for the
scenarios

Scenario Parameter set

Benchmark π = 0, T = 0.05

Energy shock π = 0.01,0.025,0.05, T = 0.05

Consumer subsidy π = 0.025, T = 0.05, a = b = 0.03

Tax reduction π = 0.025, a = b = 0.03

3.1 Results per Scenario

Scenario 1: Simulations for the Benchmark Scenario

We recall the benchmark results in Fig. 4: GDP settles down to a stable growth path
of 2.5% p.a., which equals the rate of technological progress. Total investments
grow at the same rate. The price of capital goods shows a typical staircase pattern
due to the incremental technological progress (see Fig. 4c). The budget deficit as
a percentage of GDP is on average above the threshold of the Maastricht criterium
(−0.03).

Scenario 2: Effects of Energy Shocks Without Countermeasures

We now consider a situation in which there are energy shocks but no active policy
measures to counter the negative effects on the economy.

In Fig. 5a (column 1) we introduce a mild energy shock of 1% at t = 12. At
t = 24 months there is a downward shock of 12%. Such low intensity shocks to the
capital goods price hardly affects the economy.

A stronger energy crisis is shown in Fig. 5b (column 2), with multiple shocks
of 2.5%. This results in a more pronounced energy spike with significant effects on
key macroeconomic variables such as GDP, investments and the unemployment rate
(not shown).

The final case is the one shown in Fig. 5c with multiple shocks of 5%, one per
month. Here finally we have the signature of a true energy crisis, where at its peak
capital goods cost twice as much as they did at the start of the crisis. The down-
ward effect on GDP is considerable with a −20% decline. Investments also decline
sharply during the crisis, but then rebound to original levels as soon as the energy
prices return to normal levels.

Note that after the energy crisis there is an aftershock which is smaller than the
main event. This is due to the overshooting that follows immediately after the crisis
ends, when energy prices drop down to normal levels. This results in overconsump-
tion and overinvestment, i.e. a build up of excess production capacity. After the
secondary small correction, the economy settles down on its long-term growth path
which is determined by the rate of technological progress (2.5% by default), see
row 3.

In Tables 4 and 5 we quantify the relationship between the magnitude of the
shocks and the mean and standard deviations of the GDP growth rate and the
deficit/GDP fraction, respectively.
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Fig. 4 Benchmark scenario. All results are Monte Carlo means across 10 runs. Black line: Monte–
Carlo mean, dotted lines: 1st–3rd quartiles. (a) Monthly GDP in nominal values. (b) Total monthly
investments. (c) Capital goods price. (d) Government finances: the budget deficit as a percentage
of GDP (0.01 means 1%). The horizontal line at −0.03 is the Maastricht criterium

For increasing values of the shock intensity parameter (π = 0.01,0.025,0.05)
the short-term fluctuations of GDP growth rates increase dramatically, displaying
swings between −22% to +40% for a shock intensity of 5% (see Fig. 6). Another
effect is that the budget deficit shows more volatility, with extreme deficits of −12%
or surplusses of +25% of GDP.

Scenario 3: Energy Shock with the Consumer Subsidy

The results for the consumer subsidy scheme are shown in Fig. 7 (left panel). The
on/off triggers are set to a = b = 0.03. The subsidy percentage increases during the
energy crisis to average levels of 0.1–0.8% of the monthly consumption expendi-
ture. Note that since the government only adjusts its policy once a year, at the end of
the calendar year, the monthly data shown in the plot displays stepwise jumps with
a yearly frequency.
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Fig. 5 Results for the energy shock scenario. Vertical lines indicate the energy crisis. Parameters:
duration d = 240, periodicity � = 20, intensity π = 0.01,0.025,0.05. Row 1: Capital goods price.
Row 2: GDP nominal value. Row 3: GDP growth rate. Row 4: Total investments
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Table 4 Summary statistics
for short-term (months 0–75)
and long-term (months
225–250) GDP growth
factors

Short-term Long-term
Mean Std. Mean Std.

Benchmark −0.723 1.551 1.61 0.938
Energy shock:
π = 0.01 −0.668 1.685 1.085 0.958
π = 0.025 −1.069 3.772 1.413 0.821
π = 0.05 −0.046 10.382 1.664 1.184
Subsidy −0.646 3.718 1.17 0.976
Tax −0.847 3.26 1.874 1.068

Table 5 Summary statistics
for short-term (months 0–75)
and long-term (months
225–250) deficit/GDP
ratios (%)

Short-term Long-term
Mean Std. Mean Std.

Benchmark −0.130 1.904 −4.571 1.392
Energy shock:
π = 0.01 −1.029 1.465 −4.362 1.228
π = 0.025 −1.043 2.482 −4.582 1.024
π = 0.05 −2.017 3.54 −3.933 1.167
Subsidy −0.307 2.79 −4.064 1.743
Tax −0.899 2.673 −4.473 1.601

Fig. 6 Comparison for different values of the shock intensity: π = 0.01,0.025,0.05. (a) Left
panel: annualized GDP growth rates in months 0–75 (includes the crisis and its aftershock).
(b) Right panel: the effect on government finances due to the shock (monthly budget deficit as
% of GDP)

Scenario 4: Energy Shock with the Tax Reduction

Figure 7(right panel) shows the results for the tax reduction stabilization scheme.
The tax reduction results in a tax rate of 4.2–4.7% during the crisis, and 4.4–4.8%
immediately afterwards (months 25–85, includes the aftershock), due to the persis-
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Fig. 7 Results for the energy shock scenario with the consumer subsidy scheme (left panel) and
the tax reduction scheme (right panel). Parameters: π = 0.025, a = b = 0.03. The plot shows the
stepwise yearly adjustments of the policy parameter

tence in the policy. Similar to the subsidy scenario, the tax reduction policy also has
a yearly frequency, and there is a lag in the government response time.

3.2 Comparison Between Scenarios

In Fig. 8 we make a direct comparison between the energy shock-only scenario and
the stabilization scenarios in terms of the ratio of nominal GDP and the ratio of
total investments with respect to the energy shock-only results (all scenarios use
π = 0.025). Three main results follow from these simulations.

Result 1

We consider the GDP ratios in Fig. 8 (row 1). The mean GDP levels in the stabiliza-
tion scenarios are consistently higher than in the energy shock-only scenario (the
mean is consistently above the 1.0 ratio). This shows that the demand stimulus of
both stabilization policies results in an upward shift of the nominal value of GDP.

Result 2

We consider the investment ratios in Fig. 8 (row 2). During the energy crisis, the
mean investments in both stabilization scenarios are higher than in the shock-only
scenario. However, this is only true during the crisis, not before or after it. This
means that the stabilization policies have their intended effect to stimulate consump-
tion and investments, either directly or indirectly.

Result 3

The tax reduction policy yields slightly better results than the consumer subsidy
policy with respect to stimulating investments, since the former affects both con-
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Fig. 8 Comparison of the stabilization scenarios to the energy shock scenario. Measured are the
ratios of nominal GDP and total investments, resp. Vertical lines indicate the energy crisis. (a) Top:
GDP in the subsidy scenario divided by GDP in the energy-shock-only scenario. (a) Bottom: To-
tal investment in the subsidy scenario divided by investment in the energy-shock-only scenario.
(b) Top: GDP in the tax reduction scenario divided by GDP in the energy-shock-only scenario.
(b) Bottom: Total investment in the tax reduction scenario divided by investment in the ener-
gy-shock-only scenario

sumers and firms, while the latter only affects consumers. Thus, the tax reduction
policy is in fact the more effective policy, if only due to the choice of having it ap-
ply to both personal income and corporate income taxes. Furthermore, the consumer
subsidy only has an indirect stimulating effect on investments through the demand
channel, while the tax reduction for firms has a more direct effect on stimulating
investments.
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Fig. 9 Comparison of short- and long-run effects on GDP growth rates. Left panel: short run,
months 0–75. Right panel: long run, months 100–250, 6 years after the crisis has ended

Fig. 10 Comparison of short- and long-run effects for Government monthly budget deficit across
the four scenarios. Left panel: short run, months 0–75. Right panel: long run, months 225–250

3.3 Short-Term Versus Long-Term Effects of Energy Shocks

In this section we compare the four scenarios discussed above by analysing their
short- and long-term effects.

3.3.1 Short-Term Effects

The short-run effects are calculated across months 0–75, which includes the crisis
and its aftershock. The results are shown in the left panels of Figs. 9, 10 and Ta-
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bles 4, 5 (see Appendix) report the summary statistics for resp. the distributions of
the GDP growth rate and the Government deficit/GDP ratio, across all scenarios.

Result 4: GDP Growth

Figure 9 and Table 4(left panel) show an increase in short-run volatility of the GDP
growth rate in the energy shock scenario (σ = 3.772 vs. 1.551), which is due to the
overconsumption/overinvestment bubble in the short-run. Compared to the bench-
mark scenario the energy shock obviously causes increased fluctuations in the ab-
sence of any stabilization.

The subsidy policy however aggrevates the upswing after the crisis since the
government provides easy money that enters the economy through the consump-
tion of households and then leads to an overheating effect. Hence the higher stan-
dard deviation (σ = 3.718). The tax reduction policy results in smaller upswings
and downswings than the subsidy regime, resulting in a lower short-run volatility
(σ = 3.26).

Result 5: Deficit/GDP Ratio

In Fig. 10 and Table 5(left panel) we observe that in the energy shock-only scenario
the short-run volatility of the deficit/GDP ratio increases (σ = 2.482 vs. 1.904). The
subsidy policy raises the volatility of the budget deficit/GDP ratio somewhat more
than the energy shock itself (σ = 2.79) while the tax reduction scheme also raises it
(σ = 2.673), but somewhat less than in the subsidy scenario.

3.3.2 Long-Term Effects

The long-run effects are calculated across months 225–250, and shown in the right
panels of Figs. 9, 10, with Tables 4, 5(right panels) reporting the summary statistics.

Result 6: GDP Growth

The energy shock and subsidy scenarios have lower average long-run growth rates
than in the benchmark scenario (1.413 and 1.17 vs. 1.61), while the tax reduction
scenario has a higher growth rate than the benchmark scenario (1.874). The dif-
ference in distribution between the tax and subsidy scenarios can be shown to be
statistically significant.3 Hence, there are long lasting effects of energy shocks in
the case of a subsidy policy, but not in the case of a tax reduction policy, leading to
a permanent loss in economic value in the long run.

3Results of Wilcoxon tests are shown in the Appendix.
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Result 7: Deficit/GDP Ratio

The long-run values of the deficit-to-gdp ratio are all around μ = −4.5 ± 1.5. The
long-run volatility in the energy shock scenario is lower than in the benchmark
(σ = 1.024 vs. 1.392), while for the subsidy scenario it is slightly higher (1.743).
The tax scenario is in between these two values (1.601). The high long-run volatility
the subsidy scenario can be explained by the lower long-run average growth rates,
as shown in result 6. The Government finances deteriorate more than in the tax
reduction scenario.

3.4 Discussion

A tentative explanation for the long-term memory effect on the growth rates is that
there exists a ‘permanent loss of time’ effect. The argument can be sketched as fol-
lows. The employees’ specific skill levels increase when using a new technology. If
firms do not invest, the technological progress embodied in newly produced capital
goods does not get incorporated into their existing capital stock and workers’ spe-
cific skills do not get a chance to be augmented (there is no learning-by-doing). This
delay in augmenting the specific skills reflects a permanent “loss in time”, and has
reverbating effects on the entire future development of the economy.

In the case of the subsidy scheme, firms are only indirectly stimulated to in-
vest. Therefore, during the crisis period, firms reduce investments and despite the
overshooting and overheating of the economy, this does not compensate for the
structural loss in time. It is merely the burning of easy money provided by the gov-
ernment through the subsidy scheme to households, instead of money being used
for structural investments in both physical capital and human capital.

Immediately following the crisis there is overinvestment and a corresponding
build-up of excess production capacity, but without the employees’ specific skill
levels to work effectively with the new technology, the higher potential productiv-
ity of the physical capital cannot be turned into effective productivity due to the
complementarity between labour and capital.

In the case of the tax reduction scheme, however, firms receive a more direct
stimulus to invest. Hence, they reduce the investments in both physical and human
capital less during the crisis and the resulting “loss of time” incurred by the economy
is reduced.

A final conclusion of this argument would then be that in order to support long-
run growth, policy measures are needed that directly stimulate investments, in both
human and physical capital, instead of stimulating consumption and hoping that this
will indirectly affect investments through the demand channel.
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4 Conclusions

We have studied the out-of-equilibrium dynamic response of an artificial macroe-
conomy to external disturbances such as an energy crisis. A bubble can occur in the
real sector when at the end of the crisis prices decrease drastically leading to over-
consumption and overinvestment on the short-term. A stabilization policy can then
dampen the magnitude of such fluctuations and reduce the overshooting effect.

We have made a direct comparison between two types of macroeconomic stabi-
lization policies: a consumer subsidy that only affects households, and a tax reduc-
tion scheme that affects both households and firms.

The stabilization scenarios are compared to the baseline energy shock-only sce-
nario in terms of the ratios of nominal GDP and total investments. Three main results
follow from such a comparison.

First, over the entire length of the simulation, the mean GDP levels in the stabi-
lization scenarios are consistently higher than in the energy shock-only scenario.

Second, during the energy crisis mean investments are higher in the stabilization
scenarios than in the shock-only scenario. However, this only holds during the crisis,
not before or after it, and means that the stabilization policies have their intended
effect to stimulate consumption and investments, either directly or indirectly.

Third, the tax reduction policy yields slightly better results than the consumer
subsidy policy with respect to stimulating investments. This can be explained by
the observation that the tax reduction policy applies to both personal income and
corporate income tax rates, so it affects both consumers and firms. Furthermore, the
consumer subsidy only has an indirect stimulating effect on investments through
the demand channel, while the tax reduction for firms has a more direct effect on
investments.

Furthermore, we are able to distinguish between the short- and long-term effects
of the stabilization policies. On the short run, the subsidy scheme aggrevates the up-
swing immediately following the crisis since the government provides easy money
that enters the economy through the consumption of households and then leads to
an overheating effect. The tax reduction scheme results in smaller fluctuations than
the subsidy regime, with slightly lower variance in the short-run GDP growth rates.

On the long run, the subsidy scenario shows significantly lower average growth
rates than the tax reduction scenario, while in the latter the growth rates do not sig-
nificantly differ from those of the benchmark. Hence, there are long-lasting effects
of energy shocks in the case of a subsidy policy but not in the case of a tax reduction
policy.

A tentative explanation of this long-memory effect is that by postponing invest-
ment decisions during the crisis, firms are essentially foregoing the time to allow
their workers to learn on-the-job so that when the crisis is over they are lagging
behind in knowledge they could have potentially obtained, resulting in a lower ef-
fective productivity.

A final conclusion is that in order to support long-run growth, policy measures
are needed that stimulate investments directly, both in human and physical capital,
instead of stimulating consumption and hoping that this will indirectly affect the
investments through the demand channel.
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Appendix: Statistical Testing of the Long-Run Effects on GDP
Growth Rates

In this appendix we test the hypothesis that the long-run GDP growth rate is lower
in the energy shock and subsidy scenarios than in the benchmark scenario. More
formally, we need to test the hypothesis that the sample mean of the GDP growth
rates in one of the three alternative scenarios (energy shock only, energy shock with
subsidy, energy shock with tax reduction) is lower than the sample mean in the
benchmark scenario. We also have a fourth hypothesis which is that the mean long-
term growth rate in the tax scenario is higher than the mean growth rate in the
subsidy scenario.

More formally, we use the Wilcoxon test to test if the sample means of two
distributions are equal, with these hypotheses:

H0 x = y, or x − y = 0,
H1 x > y, or x − y > 0,

where

x sample mean of long-run growth rates in the benchmark scenario (using observa-
tions 100–250).

y sample mean of long-run growth rates in the alternative scenario (using observa-
tions 100–250).

Table 6 gives p-values for each pairwise comparison of an alternative scenario to
the benchmark scenario.4 From this table we conclude the following.

Test 1 has a p-value p = 0.2201, so we cannot reject the hypothesis that the
mean long-run growth rate in the energy shock scenario is equal to the mean long-
run growth rate in the benchmark scenario. In test 2 the p-value is p = 0.06563,
so for any significance level α > 6.6% we can reject the null, and conclude that
the mean growth rate in the subsidy scenario is lower than the mean growth rate
in the benchmark scenario. However, for α = 5% we cannot reject the null. Test 3
has a p-value p = 0.6347, so we cannot reject the hypothesis that the mean in the
tax scenario is equal to the mean in the benchmark scenario. Test 4 has a p-value
p = 0.03828, so for any significance level α > 3.9% we can reject the null, and

4For a given significance level α, the null hypothesis is rejected if p ≤ α, for p > α we do not
reject the null.
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Table 6 Overview of
Wilcoxon test results Scenario p-value

Energy shock only 0.2201

Consumer subsidy 0.06563

Tax reduction 0.6347

Tax vs. subsidy 0.03828

conclude that the mean in the tax scenario is higher than the mean in the subsidy
scenario.

The overall conclusion is thus that the mean long-run growth rate in the subsidy
scenario is significantly lower than in the benchmark and tax reduction scenarios.
All other comparisons are not statistically significant at reasonable significance lev-
els.
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The Impact of Migration on Origin Countries:
A Numerical Analysis

Luca Marchiori, Patrice Pieretti, and Benteng Zou

Abstract The focus of this article is on the impact of high-skilled emigration on
fertility and human capital of a sending country. The model shows that an increase
in the intensity of the brain drain induces parents to provide higher education to
a larger number of their children and to rear less low-skilled children. The impact
on fertility and on human capital formation, however, remains unclear. This is why
we run numerical simulations by calibrating our model to a developing country like
the Philippines. Since, within our dynamic framework, parents’ decisions depend
on the expected earnings of their children, we employ a simulation method that is
able to solve models with forward-looking variables. The calibration results show
in particular that increased brain drain lowers fertility and boosts long-run human
capital formation in the sending country.

1 Introduction

Recent empirical evidence indicates that migration becomes increasingly skill-
biased, and that South to North human flows are gaining heightened importance.
For example, the immigration rate in high income countries has tripled since 1960
and doubled since 1985 (IOM 2005; Docquier and Marfouk 2006). Remittances are
an important by-product of emigration from poor countries. According to the Hu-
man Development Report (2009), the volume of officially recorded remittances to
developing countries was in 2007 about four times the size of total official develop-
ment aid.

The impact of skilled emigration on migrants’ source countries remains an open
question. The early theoretical literature, with foremost Bhagwati and Hamada
(1974), perceived brain drain as having a negative impact on the source country’s
welfare. In recent years, economists took a new look and highlighted a range of pos-
itive side-effects of skilled emigration that may outweigh the negative ones (Mount-
ford 1997; Beine et al. 2001; Stark and Wang 2002).
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Other benefits to the origin country induced by skills’ emigration have been rec-
ognized by the recent literature. For example, brain drain may enable the transfer
at home of knowledge acquired abroad (Dustmann and Kirchkamp 2002); and, by
the creation of migrant networks, human outflows may also help to reduce informa-
tional barriers to FDIs and increase the attractiveness of the home country to foreign
investors (Kugler and Rapoport 2007).

However, most of this economic literature on the brain drain takes population as
a constant and does not analyze fertility decisions.1 The objective of this article is to
examine the implications of brain drain on fertility and human capital in migrants’
countries of origin. To do so, we develop an overlapping generations model where
parents choose to finance higher education for a certain number of their children.
High- and low-skilled children emigrate with a certain probability when they reach
adulthood and send remittances to their parents back home. We find that an increase
in the intensity of the brain drain stimulates parents to finance higher education for
a larger number of their children and to rear less low-skilled children. However, the
impact on fertility and on the human capital formation remains unclear. In order to
further investigate these issues, we calibrate our model to a developing country, the
Philippines. The numerical analysis solves the system by using a method developed
by Laffargue (1990) and Boucekkine (1995). This method is based on a Newton-
Raphson relaxation algorithm dealing with nonlinear dynamic models with perfect
foresight. As shown by Boucekkine (1995), it is no longer necessary to linearize the
dynamic system and compute the eigenvalues of the linearized system to charac-
terize the nature of the dynamics of the model. Furthermore, the originality of this
method is that it is mathematically robust and that there is no need for a grid search
procedure. This methodology is implemented with the Dynare software developed
by Juillard (1996). The simulation results show, in particular, that increased brain
drain lowers fertility and boosts long-run human capital formation in the sending
country.

2 The Economic Model

Following de la Croix and Doepke (2003), we consider an overlapping generation
economy where individuals live for three periods: childhood, adulthood and old age.
Each individual has one parent, which creates the connection between generations.
Individuals have either a low- (superscript l) or a high-educational level (superscript
h). Higher education is costly while lower education is offered for free by the so-
ciety. During their childhood, individuals who attend school do not work whether
they obtain higher education or not. Also, agents work only in their adulthood and
earn a wage that depends on their educational level. High-skilled adults earn a wage
wh, while low-skilled ones a wage wl with wh > wl .

1Exceptions are Chen (2006), Mountford and Rapoport (2009) and Beine et al. (2008).
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We consider a small open economy where capital is perfectly mobile which
implies a fixed international interest factor R∗. Also, both high and low skilled
wages are exogenous and constants. Both low- and high-skilled labor in this small
open economy can emigrate to an advanced economy and earn a higher salary, w∗i

(i = h, l), which is exogenously given with w∗i > wi . Finally, we assume that emi-
gration is not large enough to affect the economy of the destination country.

2.1 Individual Behavior

All decisions are made by the individual during her adulthood. Thus at time t , each
adult with educational level i cares about her own old age consumption Di

t+1. It is
assumed that individuals consume only when old. Thus there is no arbitrage oppor-
tunity for consumption, which is purchased through savings and remittances. The
individual also cares about the return from her “education investment,” that is, the
expected income of her children, V i

t+1, which represents the altruistic component in
the utility. Moreover, an adult chooses how many low- (ni

t ) and high-skilled children
(mi

t ) she would like to have.
At the beginning of their adulthood, individuals with educational level i can em-

igrate with a probability of pi , i = h, l to a more advanced economy. Hence, the
expected income of a child with education level i = h, l is

wi = (1 − pi)wi + piw∗i , i = h, l. (1)

The probability to emigrate pi is exogenous and will serve as a policy variable in
the comparative statics as well as in the numerical example. A rise in pi can either
be associated with a more liberal immigration policy of a destination country such
as, for example, a reduction of the entry barriers or with more liberal emigration
policies in the origin country such as larger exit quotas.

Rearing one child takes a fraction φ ∈ (0,1) of an adult’s time, and high-skilled
children induce an additional cost for their education x. Therefore, savings, Si

t+1,
result from an adult’s labor earnings minus rearing and educational costs of her
children, and parents’ old age support,

Si
t+1 = R∗[wi(1 − φ(ni

t + mi
t ) − θ i ) − xmi

t ]. (2)

It is assumed that all children care about their parents and remit a proportion θi ∈
(0,1) of their incomes to their parents. Hence, parents’ expected transfers, T i

t+1,
from her low- and high-skilled children are given by

T i
t+1 = θhwhmi

t + θ lwlni
t . (3)

Therefore, lifetime consumption writes as follows:

Di
t+1 = Si

t+1 + T i
t+1. (4)

The utility function of an individual who is an adult with education level i at time t

is then given by

U(Di
t+1,V

i
t+1) = ln(Di

t+1) + β ln(V i
t+1) (5)
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and

V i
t+1 = (ni)εwl + (mi)εwh. (6)

Apart from the fact that we explicitly introduce heterogeneity among the types of
children, the non-linear term in V i

t+1 is similar to the idea of Becker and Barro
(1988), Barro and Becker (1989), and Doepke (2005), with ε ∈ (0,1) playing the
role of the elasticity of the utility with respect to each type of children. As mentioned
by Barro and Becker (1989), this form of the altruism term means that, for a given
expected income per child wi , “parental utility U(·) increases but at a diminishing
rate with the number of children” (here ni and mi ).

Thus, combining the above information, each adult is facing the following prob-
lem:

max
ni ,mi

U i = ln(Di
t+1) + β ln(V i

t+1), i = l, h, (7)

subject to (4) with parameter β ∈ (0,1) the weight of the altruism term in the utility.

2.2 Solving the Individual Problem

It is possible to show2 that the first order condition of maximizing Ui with respect
to ni

t is

R∗φwi
t − θ lwl

Di
t+1

= βεwl(ni
t )

ε−1

V i
t+1

, (8)

which states that the net marginal cost of rearing a low-skilled child, R∗φwi
t − θ lwl

(cost minus expected transfers), in terms of consumption, should equal the marginal
utility gain from a low-skilled child’s expected income in terms of the future value
of total children V i

t+1. If this equality does not hold, rearing children is either too
costly (it is then optimal to have no children) or not costly enough (then individuals
choose to have more and more children).

Similarly, the first order condition of maximizing Ui with respect to mi
t yields

R∗(φwi + x) − θhwh

Di
t+1

= βεwh(mi
t )

ε−1

V i
t+1

, (9)

which means that the net marginal cost of educating one child in terms of consump-
tion (left hand side) should be equal to the marginal benefit from educating a child.

The second order conditions of the agents’ maximization problem are satisfied.
It follows that the solutions from (8) and (9) are optimal for the households.

It is easy to see that in (8) and (9), the right hand sides are positive, implying that
the left hand sides are positive too. In the following of this paper, we will assume
that the necessary conditions for the existence of interior solutions are granted.

2The proofs of the results presented in this section are available on request.
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Assumption 1 The following conditions are supposed to hold (for i = l, h and ∀t),

R∗φwi > θlwl, R∗(φwi + x) > θhwh.

Assumption 1 guarantees that rearing children is expensive; otherwise parents
will have as many children as they can. At the same time, educating children is also
costly; otherwise all children will get higher education.

Combining these two equations leads to explicit solutions for m and n, which are
given in the following proposition.

Proposition 1 Under Assumption 1, we obtain

mi
t = βεwhR∗wi(1 − θi)

(1 + βε)[R∗(φwi + x) − θhwh][wlσ i
n,m + wh] (10)

and

ni
t = (σ i

n,m)
1
ε mi

t (11)

where

σ i
n,m =

(
B

Ai

) ε
1−ε

, with Ai = R∗φwi − θ lwl

R∗(φwi + x) − θhwh
,B = wl

wh
. (12)

The parameter Ai represents the ratio of net costs of rearing a low-educated child
to a high-educated one (see (8) and (9)) while B is the ratio of the expected income
of a low-educated child to a high-educated one. Since ε is the elasticity of the utility
with respect to each children type, then σ i

n,m can be considered as the elasticity of
substitution between high and low educated children in each type of household.

3 Numerical Analysis

In this section, we provide a numerical illustration to analyze the effects of a
brain drain (skilled emigration) on fertility and human capital of the native coun-
try. Higher migration can be due to the fact that destination countries adopt more
liberal immigration policies. Since immigration policies tend to be more and more
skilled-biased, we focus on the effects of increased high-skilled emigration. Our
model is calibrated to the Philippine economy, since this country is experiencing an
important brain drain.

In order to run our simulation exercise, we assume that the year 2000 corresponds
to a steady state. A migration shock moves the economy away from this initial state
to a new long-run equilibrium. We, then, focus on the transitional dynamics. This
analysis is conducted under three different variants: (i) one with a higher propensity
to remit for low-skilled, which we consider as our benchmark (ii) one with equal
remittance propensities between low- and high-skilled emigrants and (iii) finally one
without remittances. In what follows, we cast a glance on the simulation method we
use before turning to the calibrations.
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3.1 Simulation Method

The dynamic model is characterized by a set of non-linear equations of the following
form:3

f (yA
t−1, y

A
t , yB

t , yB
t+1, zt ) = 0 (13)

where yi
t denotes an endogenous variable at time t. The subscript A stands for a pre-

determined variable and B for a forward-looking variable. The system also depends
on a vector of exogenous variables and parameters denoted by zt and accounts for
leads or lags of one period corresponding to the lifetime of a an individual.4 We
finally assume initial conditions on the predetermined variables, which correspond
to an initial steady state (in our case, reproducing the economic conditions of the
Philippines in the year 2000) by the following equation

yA−1, y
A
0 = yA

initial.

Concerning the terminal conditions, we assume in the baseline that exogenous
variables stay constant as in 2000. Thus, the initial and final steady states coincide
in the baseline. In our simulation, we analyze the impact of increased skilled emigra-
tion, which translates into a permanent increase in one of the exogenous variables
contained in vector z. Under such a scenario, the final steady state will obviously
differ from the initial one. After this shock, the economy should converge to a new
steady state if this latter is a saddle-point and as long as local stability is granted (if
the distant between the initial and the final steady states is not too large).

Since f is non-linear, it is not possible to obtain an analytical solution of the
model, especially when calibrating large-scale economies. The general problem
consists in solving a system of finite difference equations with initial and termi-
nal conditions. The infinite horizon of the model is approximated by a finite one,
meaning that the steady state is reached at the end of the simulation limit (T ). The
complete system has as many equations as the number of equations at each period
multiplied by the simulation horizon plus the initial and terminal conditions as the
following system shows

(�) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

yA−1, y
A
0 = yA

initial

f (yA−1, y
A
1 , yB

1 , yB
2 , zt ) = 0

...

f (yA
T −1, y

A
T , yB

T , yB
T +1, zT ) = 0

yB
T , yB

T +1 = yB
final

The simulation method solves the system (�) for yt . It builds on a Newton-
Raphson relaxation method put forward by Laffargue (1990) and Boucekkine (1995)

3A more extensive description of the simulation method can be found in de la Croix et al. (2007).
4Notice that the model would have a two-period lead or lag structure if the optimization problem
was written from a child’s perspective.
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for solving dynamic nonlinear models with perfect foresight. This routine is imple-
mented with the package Dynare of Juillard (1996).

3.2 Calibration

Our model is calibrated to depict a typical situation of South-North migration and, as
such, the parameter of our model are adjusted to match the economy of the Philip-
pines which is the migrants’ origin country. This choice seems appropriate since
emigration and large inflows of remittances have been notorious characteristics of
the Philippine economy for several decades (see the IMF study of Burgess and Hak-
sar 2005). The foreign country in the model is represented by a combination of
OECD countries—the relative importance of which is weighted by the share of Fil-
ipino emigrants they host (see below). As mentioned above, the initial steady state
is assumed to correspond to 2000 data.

3.2.1 Observed Parameters and Exogenous Variables

The values of observed parameters and exogenous variables are reported in Table 1
and chosen as follows. According to Haveman and Wolfe (1995), parents spend
around 15% of their time rearing children which enables us to set the rearing cost
parameter φ to 0.15. We further know that the wage of a high-skilled worker in the
Philippines is 2.54 times larger than the one of a low-skilled.5 Thus, if wl is set to 1,
wh equals 2.54. Since one period is considered to be 20 years, the interest factor is
set to R∗ = 1.806 which corresponds to an annual interest rate of 3%.

Then, we try to quantify the probabilities to emigrate, ph and pl since they are
not directly observable. Docquier and Marfouk (2006) indicate that 67% of the Fil-
ipinos living in OECD in 2000 are high-skilled, thus, we can set ph = 2pl . Since
one period lasts 20 years, we consider that the number of migrants in the OECD in
2000 reported by the above authors represents the number of emigrants during one
period in our model. This means that 1’678’735 Filipinos emigrated within one pe-
riod.6 If the number of migrants is written as plNl +phNh, then, taking Nl and Nh

from Docquier and Marfouk, we obtain pl = 0.043094295 and ph = 0.08618859.

5The data is originally collected by the United Nations, General Industrial Statistics and corre-
sponds to the skill premium in the manufacturing sector for the year 2000, see also Zhu (2005).
6This number is not exaggerated because, when considering also temporary residents (42%) and
irregular migrants (21%) together with permanent residents (37%), the number of Filipinos living
and working overseas was estimated to be around 7.58 million in 2002 with an increase of 1 million
since 1996. This number is equivalent to almost one quarter of the domestic labor force (Burgess
and Haksar 2005; Castro 2006).
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Table 1 Parameter values for
the Philippines φ = 0.15 wl = 1 wh = 2.54

ph = 0.086 pl = 0.043 R∗ = 1.806

3.2.2 Unobserved Parameters and Exogenous Variables

For the remaining exogenous variables, no data are available. We start by equalling
to 0.5 the parameter ε in the “altruistic” argument of the utility function.7 Remain-
ing variables are set in order to match four main characteristics of the Philippine
economy. Let us describe this procedure, which is summarized in Table 2. First,
we know from Docquier and Marfouk (2006), who themselves rely on the data
of Barro and Lee (2001), that in 2000 the ratio of the low- to high-skilled la-
bor force, 1/h (= Nl/Nh), amounts to 3.5045. This value is obtained by fixing
the educational costs of a low-skilled child to xl

t = 0.413033 and by the plausi-
ble assumption that xh = xl . Second, annual population growth rate in the Philip-
pines equals 1.98% during the period 1999–2004. If we consider one period to be
20 years, then the population growth rate in our model equals g = 0.481, imply-
ing that β = 0.664238. Moreover, we can consider the wage differential between
the Philippines and the OECD to be similar to the per capita GDP differential. Ac-
cording to the World Development Indicators (WDI 2007), average per capita GDP
between 1999–2004 was $3’991 in the Philippines and $34’268 in the OECD (PPP,
constant 2000 international $), thus 7.98 times higher in the OECD.8 If the average
domestic wage is defined as ŵ = (wh + wl/h)/(1 + 1/h) and the average foreign
wage as ŵ∗ = (w∗h +w∗l/h∗)/(1+1/h∗), the average wage difference ω = ŵ∗/ŵ
equals 7.98. Relying on the same sources as for the domestic economy and apply-
ing the same weights to the distribution of migrants among OECD countries as for
GDP per capita, the average ratio of low- to high-skilled labor force in the OECD,
1/h∗ was 1.096703272 and the skill premium w∗h/w∗l , 1.96.9 Then, to match the
aforementioned average wage difference, the variable w∗h is required to be 14.3876
and w∗l is set equal to w∗h/1.96. Finally, we need to quantify the propensities to
remit (θl and θh). While high-skilled migrants remit a larger amount than low ed-
ucated migrants, recent research claims that their propensity to remit is lower than
the one of low-skilled migrants, see Faini (2007) and Nimii et al. (2008). In our
benchmark model it is assumed that the propensity to remit of the skilled equals
50% of the low-skilled propensity and thus θh = 0.5θ l . This assumption will be

7It can be shown that our findings are qualitatively robust to alternative values of this parameter.
8According to Docquier and Marfouk, migrants from the Philippines living in the OECD in
2000 were distributed as follows: United States (69.31%), Canada (11.41%), Australia (4.65%),
Japan (4.56%), Italy (2.44%), United Kingdom (2.07%), Germany (0.75%), Korea (0.72%), Spain
(0.67%), New Zealand (0.51%), Austria (0.45%), Switzerland (0.43%), Netherlands (0.34%),
Greece (0.29%), France (0.28%), Norway (0.25%), Sweden (0.23%), Ireland (0.21%), Denmark
(0.15%), Belgium (0.13%), Iceland (0.04%), Mexico (0.04%), Finland (0.037%), Czech Republic
(0.0014%), Hungary (0.001%), Slovakia (0.0001%).
9The same data source as for the skill premium in the Philippines is used.
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Table 2 Calibration of
unobserved exogenous
variables

Nl/Nh = 3.50 ⇔ xl = 0.413033

g = 0.481 ⇔ β = 0.664238

ω = 7.98 ⇔ w∗h = 14.3876

	t/Yt = 0.094 ⇔ θl = 0.113158

subject to robustness checks (see below). Based on Fund staff estimates and on the
World Bank, Burgess and Haksar (2005) indicate that remittances in percentage of
GDP amount to 9.4%. If we define GDP, Y , by the sum of total labor income and
total capital income, then Yt = Nh

t wh
t + Nlwl

t + (R∗ − 1)(Nh
t−1s

h
t−1 + Nl

t−1s
l
t−1),

where si
t = [wi

t 1 − φ(ni
t + mi

t )−θ i) − xmi
t ]. The total amount of remittances cor-

responding to one period, 	, equals 	t = Nh
t−1T

h
t + Nl

t−1T
l
t . Then 	t/Yt = 0.094

implies that θ l = 0.113158.10

We consider the case where low-skilled migrants have a higher propensity to
remit as our benchmark model, labelled “Benchmark”. As said above, we also cal-
ibrate two alternative specifications of our model, one where high- and low-skilled
have the same propensity to remit (“Variant 1”) and one without remittances (“Vari-
ant 2”). This implies that in both of these cases the values for the exogenous vari-
ables in Table 2 differ from those in the benchmark case. Notice that the case without
remittances is extensively studied in Marchiori et al. (2010).

3.3 Results

We analyze the effects of a permanent increase of 10% in emigration flows, which
means that more people leave the Philippines at each period with respect to the base-
line. For instance, in the first period of the shock, the additional migrants amount to
164 thousand. To analyze the impact of permanent brain drain, we assume that all
the additional migrants are high-skilled, which means that ph rises from 0.086 to
0.109.

Theoretically, increased skilled emigration induces both types of parents to fi-
nance higher education for a larger number of children and to rear less low-skilled
children. This is also confirmed by our numerical findings. However the impact
of a brain drain on the total number of children is theoretically ambiguous.11 The
impact on human capital remains unclear as well. In fact, a brain drain induces a
flight-out of high-skilled workers but at the same time stimulates parents to rear
more high-skilled children. The purpose of the numerical exercise is to provide a

10According to aggregate data on remittances from the International Monetary Fund (IMF 2007),
remittances amount to $7876 million in 2003. Moreover a more recent report of the World Bank
(2006) indicates that the remittances share of GDP in the Philippines would even amount to 13.5%
(see World Bank 2006, p. 90, Fig. 4.1).
11In the variant that entails no remittances, it can be theoretically shown that a brain drain reduces
the number of children within a family, see Marchiori et al. (2010).
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Fig. 1 Support ratio and labor income tax rate in the baseline

specific answer to the consequences of skilled emigration on fertility and human
capital. Figure 1 depicts the effects of a brain drain on the number of children in
a low- and high-skilled family, on human capital and on annual population growth
under the three-model specifications.

Our findings indicate that both low- and high-skilled families choose to rear less
children following a brain drain. The effect of a brain drain on human capital H (de-
fined as the proportion of high educated workers in the total labor force) is negative
in the short run when the policy is adopted.12 The reason is that the shock is not an-
ticipated in period 0 and more high-skilled individuals leave the country in period 1.
However, in this first period parents already change their fertility decisions in favor
of more high-skilled children. When these additional high-skilled children add to
the high-skilled labor force in period 2, they will more than compensate the loss of

12Notice that the policy change arises from period 1 onwards.
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Table 3 Long-run impact of an increase in ph (5th period)

Impact on household decisions Variables Benchmark γ h = γ l 	 = 0

High-skilled children of high-skilled parents mh 4.75 5.51 4.02

High-skilled children of low-skilled parents ml 9.52 10.07 6.48

Low-skilled children of high-skilled parents nh −11.88 −11.91 −10.27

Low-skilled children of low-skilled parents nl −9.06 −9.32 −8.14

Total children of high-skilled parents mh + nh −1.84 −2.21 −3.76

Total children of low-skilled parents ml + nl −6.10 −6.17 −5.69

Human capitala H 3.98 4.12 2.88

Annual population growth ratea gannual −0.39 −0.38 −0.32

Note: Values display percentage changes compared to the baseline
aPercentage points deviations with respect to the baseline

the departing high-educated workers. A permanent 10% rise in emigration flows,
where all additional emigrants are highly educated leads, in the long run (period 5),
to a 4 percentage points increase in human capital (the proportion of high-skilled
within a generation H rises from 22.20% to 26.18%). Due to diminished fertility
choices in terms of the number of children, the annual population growth decreases
by 0.4 percentage points and passes from 1.98% to 1.59%.

How to explain the differences across the different variants? First, it should be
noted that since the baselines differ across the three specifications; any comparison
between them should be taken with caution. Nevertheless, while it can be observed
that the results are qualitatively similar across variants, differences in the response
of the main variables of interest (human capital and population growth) are apparent.
When high-skilled remit in the same propensity as low-skilled (dashed line), more
remittances are sent back and, thus, the incentives to send more children to get
education are higher (see Table 3, column “θ l = θh”). It results that the impact
on human capital is more intense than in the benchmark specification (solid line).
Furthermore, human capital augments even in the absence of remittances (line with
circles) because parents are altruistic and prefer having more high-skilled children
who are expected to earn a higher wage.

In terms of population growth, the scenario in which both high- and low-skilled
remit in the same way has a less reducing impact than in the benchmark case. The
reason is that, since high-skilled migrants remit more, the number of high-skilled
children is further stimulated and the decrease in population growth is dampened
(see Table 3). In the absence of remittances, the purpose to rear high-skilled chil-
dren to obtain additional remittances vanishes and low-skilled children are then rel-
atively more “valuable” than in the other variants. Consequently, the decline in the
number of low-skilled children is less important and the effect on population growth
is reduced.
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4 Conclusion

In this contribution, we analyze the impact of high- and low-skilled emigration on
parents’ fertility choices and on human capital formation in the country of origin.
For that purpose, we develop an endogenous fertility model with overlapping gener-
ations in which parents decide upon the number of children to provide with higher
education. This implies that families are composed of low- and high- educated chil-
dren.

Though our theoretical analysis does not give unambiguous results on the central
issues we address, it provides an interesting framework for running numerical sim-
ulations. We, therefore, decide to calibrate the model on the Philippines to provide
specific quantitative results. More precisely, we analyze the effects of a permanent
increase of 10% in emigration flows where all additional migrants are high-skilled.
In the long-run we observe increasing formation of human capital (the share of
high-skilled individuals rises from 22.20% to 26.18%). Finally, it appears that due
to diminished fertility choices, the annual population growth decreases by 0.4 per-
centage points and passes thus from 1.98% to 1.59%.
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An Algorithmic Equilibrium Solution
for n-Person Dynamic Stackelberg Difference
Games with Open-Loop Information Pattern

Philipp Hungerländer and Reinhard Neck

Abstract In this paper, extensions are presented for the open-loop Stackelberg
equilibrium solution of n-person discrete-time affine-quadratic dynamic games of
prespecified fixed duration to allow for an arbitrary number of followers and the
possibility of algorithmic implementation. First we prove a general result about the
existence of a Stackelberg equilibrium solution with one leader and arbitrarily many
followers in n-person discrete-time deterministic infinite dynamic games of prespec-
ified fixed duration with open-loop information pattern. Then this result is applied
to affine-quadratic games. Thereby we get a system of equilibrium equations that
can easily be used for an algorithmic solution of the given Stackelberg game.

1 Introduction

The goal of this paper is to present extensions for the open-loop Stackelberg equi-
librium solution of n-person discrete-time affine-quadratic dynamic games of pre-
specified fixed duration and to provide an algorithm for computing such solutions.
The results extend the results for one leader and one follower given by Başar and
Olsder (1999).

Affine-quadratic dynamic games of prespecified fixed duration belong to one
of the few classes of dynamic games that can be solved analytically. That is why
they are used in numerical algorithms to approximate general dynamic games. In
particular, time-varying linear systems and objective functions can be used to ap-
proximate nonlinear time-invariant systems and non-quadratic objective functions,
respectively; see e.g., Behrens et al. (2003).

In the Stackelberg equilibrium solution concept, the set of players is divided into
a “leader” and one or more “followers”, where the “followers” act after the “leaders”
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at each stage of the game. Under the open-loop information pattern considered here,
each player can be imagined to commit himself a priori at the start of the game to
all future actions he will take; therefore the strategies of the players depend only on
the initial state of the dynamic system.

A frequent objection against the open-loop Stackelberg equilibrium solution con-
sists in the fact that its strategies are not (not even weakly) time consistent. In fact,
the famous Kydland and Prescott (1977) result of time inconsistency of optimal
policies when private agents have forward-looking expectations is a direct appli-
cation of the discrete-time analogue of the respective results by Simaan and Cruz
(1973a, 1973b); cf. Kydland (1975). If one wants to know how time-consistent out-
comes compare to the (possibly “ideal”) outcome of an overall optimum without
the time consistency constraint, which is based on commitment or reputation of the
policy-maker, computation of the open-loop Stackelberg equilibrium solution as a
benchmark is required. Therefore, it seems desirable to have a possibility of de-
termining numerically the strategies and the resulting losses under that solution at
hand. This may serve to assess the loss occurring due to a lack of credibility on the
hand of the government in a numerical model of a dynamic game between the gov-
ernment and the private sector, for instance. The present paper is meant to provide a
step towards that aim.

The present paper is structured as follows. In Sect. 2 a general result about the
existence of a Stackelberg equilibrium solution with one leader and arbitrarily many
followers in n-person discrete-time deterministic infinite dynamic games of prespec-
ified fixed duration with open-loop information pattern is given. Then this result is
applied to affine-quadratic games in Sects. 3 and 4. Section 5 provides a sketch of
an algorithm and a result for a special case, and Sect. 6 concludes the paper.

2 Open-Loop Stackelberg Equilibrium Conditions for General
Dynamic Games

First, we consider general discrete-time dynamic systems of the form

xk = fk−1(xk−1, u
1
k, . . . , u

n
k), x0 = x0, (1)

where N := {1, . . . , n} is an index set defining the number of players, K :=
{1, . . . , T } is an index set denoting the stages of the game, where T is the maxi-
mum possible number of moves a player is allowed to make in the game, xk ∈ Rp

is the state vector at stage k, and ui
k ∈ Ui

k = Rmi is the control vector of player i at
stage k.

Each decision-maker (player) is assumed to have an objective function (a loss
function, to be minimized) of the form

J i(u1, . . . , un) =
T∑

k=1

gi
k(xk, u

1
k, . . . , u

n
k , xk−1). (2)
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This situation may describe the interaction between oligopolists in a market for a
particular good or, in macroeconomic models, between an economic policy-maker
and private-sector agents or between different policy-making institutions (e.g., the
European Central Bank and the governments of the Euro Area). For applications
of the former type, see Dockner et al. (2000), of the latter type, Holly and Hughes
Hallet (1989) or Petit (1990), among others.

The following theorem gives sufficient conditions for the existence of an open-
loop Stackelberg equilibrium solution with one leader and arbitrarily many follow-
ers and provides equations for state, control, costate and cocontrol vectors to be
satisfied on the equilibrium path.

Theorem 1 For an n-person discrete-time deterministic infinite dynamic game of
prespecified fixed duration with open-loop information pattern, let

• fk(xk−1, ·, u2
k, . . . , u

n
k) be continuously differentiable on Rm1 for k ∈ K ,

• fk(·, u1
k, ·, . . . , ·) be twice continuously differentiable on Rp × Rm2 × · · · × Rmn

for k ∈ K ,
• g1

k (·, ·, . . . , ·, ·) be continuously differentiable on Rp ×Rm1 ×· · ·×Rmn ×Rp for
k ∈ K ,

• gi
k(xk, ·, u2

k, . . . , u
n
k , xk−1) be continuously differentiable on Rm1 for k ∈ K , i ∈

{2, . . . , n},
• gi

k(·, u1
k, ·, . . . , ·, ·) be twice continuously differentiable on Rp × Rm2 × · · · ×

Rmn × Rp for k ∈ K , i ∈ {2, . . . , n},
• fk(·, ·, . . . , ·) be convex on Rp × Rm1 × · · · × Rmn for k ∈ K ,
• gi

k(·, ·, . . . , ·, ·) be strictly convex on Rp × Rm1 × · · · × Rmn × Rp for k ∈ K ,
i ∈ N ,

• the cost functionals be stage-additive.

Then the strategies {ui∗
k , i ∈ N,k ∈ K} provide a unique open-loop Stackelberg

equilibrium solution with player P1 as the leader and players P2, . . . ,Pn as follow-
ers. Furthermore, the corresponding state trajectory {x∗

k ; k ∈ K}, the m-dimensional
cocontrol vectors of the leader {νi

1, . . . , ν
i
T −1 ; i ∈ {2, . . . , n}} and the p-dimensional

costate vectors {λ1, . . . , λT ,μi
1, . . . ,μ

i
T ,pi∗

1 , . . . , pi∗
T } (defined for i ∈ {2, . . . , n})

exist such that the following relations are satisfied:

x∗
k = fk−1(x

∗
k−1, u

1∗
k , . . . , un∗

k ), x∗
0 = x0, (3)

∇u1
k
H 1

k (λk,μ
2
k−1, . . . ,μ

n
k−1, ν

2
k−1, . . . , ν

n
k−1,p

2∗
k , . . . , pn∗

k , u1∗
k , . . . , un∗

k , x∗
k−1)

= 0, (4)

∇ui
k
H 1

k (λk,μ
2
k, . . . ,μ

2
k−1, . . . ,μ

n
k−1, ν

2
k−1, . . . , ν

n
k−1,p

2∗
k , . . . , pn∗

k , u1∗
k ,

u2∗
k , . . . , un∗

k , x∗
k−1) = 0, i ∈ {2, . . . , n}, (5)

λ′
k−1 = ∂

∂xk−1
H 1

k (λk,μ
2
k−1, . . . ,μ

n
k−1, ν

2
k−1, . . . , ν

n
k−1,p

2∗
k , . . . , pn∗

k ,

u1∗
k , . . . , un∗

k , x∗
k−1), λi

T = 0, (6)
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μi′
k = ∂

∂pk

H 1
k (λk,μ

2
k−1, . . . ,μ

n
k−1, ν

2
k−1, . . . , ν

n
k−1,p

2∗
k , . . . , pn∗

k ,

u1∗
k , . . . , un∗

k , x∗
k−1), μi

0 = 0, i ∈ {2, . . . , n}, (7)

∇ui
k
H i

k(p
i∗
k , u1∗

k , . . . , un∗
k , x∗

k−1) = 0, i ∈ {2, . . . , n}, (8)

pi∗
k−1 = F i

k−1(x
∗
k−1, u

1∗
k , . . . , un∗

k ,pi
k), pi∗

T = 0, i ∈ {2, . . . , n}, (9)

where
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k, u
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=̂gi
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+ pi′
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1
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n
k ), i ∈ {2, . . . , n}. (12)

Proof Theorem 1 is a straightforward generalization of Theorem 7.1 in Başar and
Olsder (1999, pp. 368–370) using well-known nonlinear programming results. Here
we make stronger assumptions on the state and cost functions than their Theorem 7.1
to get a result about the existence of a unique open-loop Stackelberg equilibrium
solution. �
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3 Equilibrium Conditions for Affine-Quadratic Games

Definition 1 An n-person discrete-time deterministic infinite dynamic game of pre-
specified fixed duration is of affine-quadratic type if

fk−1(xk−1, u
1
k, . . . , u

n
k) = Akxk−1 +

∑

j∈N

B
j
k u

j
k + sk, (13)

gi
k(xk, u

1
k, . . . , u

n
k , xk−1)

= 1

2
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kQ

i
kxk +

∑

j∈N

u
j ′
k R

ij
k u

j
k

)
+ 1

2

(
x̃i′
k Qi

kx̃
i
k +

∑

j∈N

ũ
ij ′
k R

ij
k ũ

ij
k

)
− x̃i′

k Qi
kxk

−
∑

j∈N

ũ
ij ′
k R

ij
k u

j
k , (14)

with N = {1, . . . , n}, K = {1, . . . , T }, xk ∈ Rp , and ui
k ∈ Ui

k = Rmi . Ak,B
i
k,Q

i
k ,

R
ij
k , ũ

ij
k , x̃i

k (defined for k ∈ K , i ∈ N , j ∈ N ) are fixed sequences of matrices or

vectors of appropriate dimensions. Qi
k and R

ij
k are symmetric. An affine-quadratic

game is of the linear-quadratic type if sk ≡ 0.

The cost function of player i at stage k [gi
k(xk, u

1
k, . . . , u

n
k , xk−1)] can also be

written in the following way

1

2

(
(xi′

k − x̃i′
k )Qi

k(x
i
k − x̃i

k) +
∑

j∈N

(u
ij ′
k − ũ

ij ′
k )R

ij
k (u

ij
k − ũ

ij
k )

)
. (15)

Therefore x̃i
k and ũ

ij
k can be interpreted as desired (target) values of each player for

all variables of the game.
It is possible to apply the results of Theorem 1 directly to affine-quadratic dy-

namic games with one leader and arbitrarily many followers by generalizing Corol-
lary 7.1 in Başar and Olsder (1999, p. 371) for the more general state equation and
more general cost functions under consideration and for arbitrarily many follow-
ers. As in Başar and Olsder (1999, p. 372), in this case two induction arguments are
interwoven: The induction for μi

k , i ∈ {2, . . . , n}, the costate vectors of the leader as-
sociated with the costate vectors of the followers, runs forward in time from k = 0 to
k = T − 1, and the induction for pi

k and λk , i ∈ {2, . . . , n}, the costate vectors of the
followers and the costate vectors of the leader, runs backward in time from k = T to
k = 1. In the inductive step, the induction hypotheses of the two inductions are used
together. But this causes severe problems if we want to use the obtained equilibrium
conditions for an algorithmic solution of the game. In this case the evolution of the
system of difference equations cannot be decomposed into one subsystem with ini-
tial conditions and another one with terminal conditions. Therefore, the two-point
boundary problem cannot be solved numerically except for extremely simple special
cases; see Hungerländer and Neck (2009) for details.
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Hence, another proof is used to solve the dynamic, affine-quadratic Stackelberg
game. We show that pi

k and λk (i ∈ {2, . . . , n}) can be determined as linear functions
xk and μi

k (i ∈ {2, . . . , n}). This yields equilibrium equations that can easily be used
for an algorithm solving that game. So the results of Theorem 1 are applied to affine-
quadratic dynamic games with one leader and arbitrarily many (n − 1) followers.
Theorem 2 presents our main result.

Theorem 2 An n-person affine-quadratic dynamic game admits a unique open-loop
Stackelberg equilibrium solution with one leader and n − 1 followers if

• Qi
k ≥ 0, Rii

k > 0 for all k ∈ K , i ∈ N ,

• (I − B1
k+1W

x
k+1 − ∑

j∈{2,...,n} B
j

k+1T
jx

k+1)
−1 exist for all k ∈ K ,

• (32), (33) and (34) admit unique solutions for Nix
k , N

ijμ
k and ni

k , respectively, for
all k ∈ K , i, j ∈ {2, . . . , n}.

If these conditions are satisfied, the unique equilibrium strategies are given by

γ i∗
k+1(x0) = ui∗

k+1 = P ix
k+1x

∗
k +

∑

j∈{2,...,n}
P

ijμ

k+1μ
j
k + αi

k+1, (16)

where the associated state trajectory x∗
k+1 is given by1

x∗
k+1 = �x

kx∗
k +

∑

j∈{2,...,n}
�

jμ
k μ

j
k + φk, x∗

0 = x0, (17)

with

μi
k+1 = 	ix

k x∗
k +

∑

j∈{2,...,n}
	

ijμ
k μ

j
k + ψi

k, μi
0 = 0, i ∈ {2, . . . , n}, (18)

where

�x
k =

(
I − B1

k+1W
x
k+1 −

∑

j∈{2,...,n}
B

j

k+1T
jx
k+1

)−1

Ak+1, (19)

�
iμ
k =

(
I − B1

k+1W
x
k+1 −

∑

j∈{2,...,n}
B

j

k+1T
jx
k+1

)−1

×
(

B1
k+1W

iμ
k+1 +

∑

j∈{2,...,n}
B

j

k+1T
jiμ
k+1

)
, i ∈ {2, . . . , n}, (20)

φk =
(

I − B1
k+1W

x
k+1 −

∑

j∈{2,...,n}
B

j

k+1T
jx
k+1

)−1

1For all equations belonging to this theorem and its proof, i ∈ N and k ∈ {0, . . . , T − 1} unless
otherwise indicated.
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×
(

B1
k+1wk+1 +

∑

j∈{2,...,n}
B

j

k+1t
j

k+1 + sk+1

)
, (21)

	 ix
k = Bi

k+1N
ix
k �x

k , i ∈ {2, . . . , n}, (22)

	
iiμ
k = Ak+1 + Bi

k+1(N
ix
k �

iμ
k + N

iiμ
k ), i ∈ {2, . . . , n}, (23)

	
imμ
k = Bi

k+1(N
ix
k �

mμ
k + N

imμ
k ), i,m ∈ {2, . . . , n},m �= i, (24)

ψi
k = Bi

k+1(N
ix
k φk + ni

k), i ∈ {2, . . . , n}, (25)

Wx
k+1 = −(R11

k+1)
−1

(
B1′

k+1

(
Lx

k+1 +
∑

j∈{2,...,n}
L

jμ

k+1B
j

k+1N
jx
k

)

+
∑

j∈{2,...,n}
B1′

k+1Q
j

k+1B
j

k+1N
jx
k

)
, (26)

W
mμ
k+1 = −(R11

k+1)
−1

(
B1′

k+1

(
L

mμ
k+1Ak+1 +

∑

j∈{2,...,n}
L

jμ

k+1B
j

k+1N
jmμ
k

)

+ B1′
k+1Q

m
k+1Ak+1 +

∑

j∈{2,...,n}
B1′

k+1Q
j

k+1B
j

k+1N
jmμ
k

)
, m ∈ {2, . . . , n},

(27)

wk+1 = −(R11
k+1)

−1
(

−B1′
k+1Q

1
k+1x̃

i
k+1 + B1′

k+1

( ∑

j∈{2,...,n}
L

jμ

k+1B
j

k+1n
j
k + lk+1

)

+
∑

j∈{2,...,n}
B1′

k+1Q
j

k+1B
j

k+1n
j
k

)
+ ũ11

k+1, (28)

T ix
k+1 = −(Rii

k+1)
−1Bi′

k+1

(
M ix

k+1 +
∑

j∈{2,...,n}
M

ijμ
k+1B

j

k+1N
jx
k

)
, i ∈ {2, . . . , n},

(29)

T
imμ
k+1 = −(Rii

k+1)
−1Bi′

k+1

(
M

imμ
k+1Ak+1 +

∑

j∈{2,...,n}
M

ijμ
k+1B

j

k+1N
jmμ
k

)
,

i,m ∈ {2, . . . , n}, (30)

t ik+1 = −(Rii
k+1)

−1Bi′
k+1

( ∑

j∈{2,...,n}
M

ijμ
k+1B

j

k+1n
j
k + mi

k+1 − Qi
k+1x̃

i′
k+1

)
+ ũii

k+1,

i ∈ {2, . . . , n}, (31)
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−R1i
k+1(R

ii
k+1)

−1Bi′
k+1M

ix
k+1 + Bi′

k+1L
x
k+1 + (Bi′

k+1(Q
i
k+1 + L

iμ
k+1)B

i
k+1 + Rii

k+1

− R1i
k+1(R

ii
k+1)

−1Bi′
k+1M

iiμ
k+1B

i
k+1)N

ix
k

+
∑

j∈{2,...,n},j �=i

(Bi′
k+1(Q

j

k+1 + L
jμ

k+1)B
j

k+1 − R1i
k+1(R

ii
k+1)

−1Bi′
k+1M

ijμ
k+1B

j

k+1)

× N
jx
k = 0, i ∈ {2, . . . , n}, (32)

−R1i
k+1(R

ii
k+1)

−1Bi′
k+1M

imμ
k+1Ak+1 + Bi′

k+1L
mμ
k+1Ak+1 + Bi′

k+1Q
m
k+1Ak+1

+ (Bi′
k+1(Q

i
k+1 + L

iμ
k+1)B

i
k+1 + Rii

k+1 − R1i
k+1(R

ii
k+1)

−1Bi′
k+1M

iiμ
k+1B

i
k+1)N

imμ
k

+
∑

j∈{2,...,n},j �=i

(Bi′
k+1(Q

j

k+1 + L
jμ

k+1)B
j

k+1

− R1i
k+1(R

ii
k+1)

−1Bi′
k+1M

ijμ
k+1B

j

k+1)N
jmμ
k = 0, i,m ∈ {2, . . . , n}, (33)

−Bi′
k+1Q

1
k+1x̃

i
k+1 + R1i

k+1(−(Rii
k+1)

−1Bi′
k+1(m

i
k+1 − Qi

k+1x̃
i
k+1) + ũii

k+1 − ũ1i
k+1)

+ Bi′
k+1lk+1 + (Bi′

k+1(Q
i
k+1 + L

iμ
k+1)B

i
k+1 + Rii

k+1

− R1i
k+1(R

ii
k+1)

−1Bi′
k+1M

iiμ
k+1B

i
k+1)n

i
k+

∑

j∈{2,...,n},j �=i

(Bi′
k+1(Q

j

k+1 + L
jμ

k+1)B
j

k+1

− R1i
k+1(R

ii
k+1)

−1Bi′
k+1M

ijμ
k+1B

j

k+1)n
j
k = 0, i ∈ {2, . . . , n}, (34)

M ix
k = Qi

k + A′
k+1

[
M ix

k+1�
x
k +

∑

j∈{2,...,n}
M

ijμ
k+1	

jx
k

]
, M ix

T = Qi
T , i ∈ {2, . . . , n},

(35)

M
imμ
k = A′

k+1

[
M ix

k+1�
mμ
k +

∑

j∈{2,...,n}
M

ijμ
k+1	

jmμ
k

]
, M

imμ
T = 0,

i,m ∈ {2, . . . , n}, (36)

mi
k = A′

k+1

[
M ix

k+1φk +
∑

j∈{2,...,n}
M

ijμ
k+1ψ

j
k + mi

k+1 − Qi
k+1x̃

i
k+1

]
, mi

T = 0,

i ∈ {2, . . . , n}, (37)

Lx
k = Q1

k + A′
k+1

[
Lx

k+1�
x
k +

∑

j∈{2,...,n}
L

jμ

k+1	
jx
k +

∑

j∈{2,...,n}
Q

j

k+1B
j

k+1N
jx
k �x

k

]
,

Lx
T = Q1

T , (38)
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L
iμ
k = A′

k+1

[
Lx

k+1�
iμ
k +

∑

j∈{2,...,n}
L

jμ

k+1	
jiμ
k + Qi

k+1Ak+1

+
∑

j∈{2,...,n}
Q

j

k+1B
j

k+1(N
jx
k �

iμ
k + N

jiμ
k )

]
, L

jμ
T = 0, i ∈ {2, . . . , n}, (39)

lk = A′
k+1

[
Lx

k+1φk +
∑

j∈{2,...,n}
L

jμ

k+1ψ
j
k + lk+1 − Q1

k+1x̃
1
k+1

+
∑

j∈{2,...,n}
Q

j

k+1B
j

k+1(N
jx
k φk + n

j
k)

]
, lT = 0, (40)

P 1x
k+1 = Wx

k+1�
x
k, (41)

P
1iμ
k+1 = Wx

k+1�
iμ
k + W

iμ
k+1, i ∈ {2, . . . , n}, (42)

α1
k+1 = Wx

k+1φk + wk+1, (43)

P ix
k+1 = T ix

k+1�
x
k, i ∈ {2, . . . , n}, (44)

P
imμ
k+1 = T ix

k+1�
mμ
k + T

imμ
k+1 , i,m ∈ {2, . . . , n}, (45)

αi
k+1 = T ix

k+1φk + t ik+1, i ∈ {2, . . . , n}. (46)

4 Proof of Theorem 2

Theorem 1 can be directly applied to the given affine-quadratic game because
all conditions are satisfied for the state equation (13) and the cost functions
(14). Note in particular that gi

k is strictly convex in ui
k , since the Hamiltonian of

gi
k(xk, u

1
k, . . . , u

n
k , xk−1) over ui

k ∈ Rmi is positive definite due to the assumptions
made on Qi

k and Rii
k :

∂2

∂ui2

k

gi
k(xk, u

1
k, . . . , u

n
k , xk−1) = Bi′

k Qi
kB

i
k + Rii

k . (47)

To obtain relations which satisfy this unique solution we apply (3)–(12) to the
state equation and cost functions. This yields for the Hamiltonian of the leader

H 1
k = 1

2

(
x ′
kQ

1
kxk +

∑

j∈N

u
j ′
k R

1j
k u

j
k

)
+ 1

2

(
x̃1′
k Q1

kx̃
1
k +

∑

j∈N

ũ
1j ′
k R

1j
k ũ

1j
k

)

− x̃1′
k Q1

kxk −
∑

j∈N

ũ
1j ′
k R

1j
k u

j
k + λ′

k

(
Akxk−1 +

∑

j∈N

B
j
k u

j
k + sk

)
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+
∑

j∈{2,...,n}
μ

j ′
k−1A

′
k[pi

k + Q
j
k(xk − x̃

j
k )]

+
∑

j∈{2,...,n}
ν

j ′
k−1(B

j ′
k Q

jxk

k + R
jj
k u

j
k − B

j ′
k Q

j
k x̃

j
k − R

jj
k ũ

jj
k + B

j ′
k p

j
k ) (48)

and for the Hamiltonians of the followers

Hi
k = 1

2

(
x′
kQ

i
kxk +

∑

j∈N

u
j ′
k R

ij
k u

j
k

)

+ 1

2

(
x̃i′
k Qi

kx̃
i
k +

∑

j∈N

ũ
ij′
k R

ij
k ũ

ij
k

)
− x̃i′

k Qi
kxk −

∑

j∈N

ũ
ij′
k R

ij
k u

j
k

+ pi′
k

(
Akxk−1 +

∑

j∈N

B
j
k u

j
k + sk

)
, i ∈ {2, . . . , n}. (49)

∂

∂u1
k

H 1
k = 0 ⇒ B1′

k Q1
k(x

∗
k − x̃i

k) + R11
k (u1∗

k − ũ11
k ) + B1′

k λk

+
∑

j∈{2,...,n}
B1′

k Q
j
kAkμ

j

k−1 +
∑

j∈{2,...,n}
B1′

k Q
j
kB

j
k ν

j

k−1 = 0,

(50)

u1∗
k = −(R11

k )−1
(

B1′
k Q1

k(x
∗
k − x̃i

k) + B1′
k λk

+
∑

j∈{2,...,n}
B1′

k Q
j
kAkμ

j

k−1 +
∑

j∈{2,...,n}
B1′

k Q
j
kB

j
k ν

j

k−1

)
+ ũ11

k , (51)

∂

∂ui
k

H 1
k = 0 ⇒ Bi′

k Q1
k(x

∗
k − x̃i

k) + R1i
k (ui∗

k − ũ1i
k ) + Bi′

k λk

+
∑

j∈{2,...,n}
Bi′

k Q
j
kAkμ

j

k−1 + (Bi′
k Qi

kB
i
k + Rii

k )νi
k−1

+
∑

j∈{2,...,n},j �=i

Bi′
k Q

j
kB

j
k ν

j

k−1 = 0, i ∈ {2, . . . , n}, (52)

λk−1 = A′
kQ

1
k(x

∗
k − x̃1

k ) + A′
kλk

+
∑

j∈{2,...,n}
A′

kQ
j
kAkμ

j

k−1 +
∑

j∈{2,...,n}
A′

kQ
j
kB

j
k ν

j

k−1, λT = 0, (53)

μi
k = Akμ

i
k−1 + Bi

kν
i
k−1, μi

0 = 0, i ∈ {2, . . . , n}, (54)

ui∗
k = −(Rii

k )−1Bi′
k (Qi

k(x
∗
k − x̃i

k) + pi
k) + ũii

k , i ∈ {2, . . . , n}, (55)
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pi∗
k−1 = A′

k[pi
k + Qi

k(x
∗
k − x̃i

k)], pi
T = 0, i ∈ {2, . . . , n}, (56)

x∗
k = Akx

∗
k−1 +

∑

j∈N

B
j
k u

j∗
k + sk, x∗

0 = x0. (57)

Now we use these optimality conditions in an induction argument. We will show
that (58) and (59) are valid and the recursive relations for M ix

k , M
ijμ
k , mi

k , Lx
k , L

iμ
k

and lk (i, j ∈ {2, . . . , n}) as stated in Theorem 2 hold.

pi
k = (M ix

k − Qi
k)x

∗
k +

∑

j∈{2,...,n}
M

ijμ
k μ

j
k + mi

k, i ∈ {2, . . . , n}, (58)

λk = (Lx
k − Q1

k)x
∗
k +

∑

j∈{2,...n}
L

jμ
k μ

j
k + lk. (59)

Induction Basis:

The induction starts at k = T . By making use of the general optimality conditions
for pi

k and λk at stage T, we get the transversality conditions for M ix
k , M

ijμ
k , mi

k , Lx
k ,

L
iμ
k and lk (i, j ∈ {2, . . . , n}).

Inductive Step:

As induction hypotheses, the system of (58) and (59) are assumed to hold at stage
l + 2. Then we have to prove that these equations are fulfilled at stage l + 1 and
determine the corresponding recursive relations for M ix

l , M
ijμ
l , mi

l , Lx
l , L

iμ
l and ll

(i, j ∈ {2, . . . , n}). First the induction hypotheses are used in the optimality condi-
tions for pi

k (56) and λk (53) at stage l + 1:

pi∗
l = A′

l+1

[
M ix

l+1x
∗
l+1 +

∑

j∈{2,...,n}
M

ijμ
l+1μ

j

l+1 + mi
l+1 − Qi

l+1x̃
i
l+1

]
,

i ∈ {2, . . . , n}, (60)

λl = A′
l+1

(
Lx

l+1x
∗
l+1 +

∑

j∈{2,...,n}
L

jμ

l+1μ
j

l+1 + ll+1

)
− A′

l+1Q
1
l+1x̃

1
l+1

+
∑

j∈{2,...,n}
A′

l+1Q
j

l+1Al+1μ
j
l +

∑

j∈{2,...,n}
A′

l+1Q
j

l+1B
j

l+1ν
j
l . (61)

To complete the inductive step, we have to show that the pi
l and λl can be written

as affine functions of the variables (x∗
l ,μ2

l , . . . ,μ
n
l ). Therefore, relations between

x∗
l+1 and (x∗

l ,μ2
l , . . . ,μ

n
l ) and between μi

l+1 and (x∗
l ,μ2

l , . . . ,μ
n
l ) (i ∈ {2, . . . , n})

that do not depend on the controls of the players nor on costate (pi
l+1, λi

l+1)
or cocontrol (νi

l ) variables have to be derived. To do so, we first substitute for
u1∗

l+1, . . . , u
n∗
l+1 in the equation stated below for the evolution of the optimal state
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vector x∗
l+1 by terms that are affine in (x∗

l , x∗
l+1,μ

2
l , . . . ,μ

n
l ) and contain only M ix

l+1,

M
ijμ
l+1, mi

l+1, Lx
l+1, L

iμ
l+1, ll+1 and matrices and vectors given by the description of

the game. The optimality condition for ui∗
l+1 (i ∈ {2, . . . , n}) can be rewritten using

(58)k=l+1 and the optimality conditions for μi
l+1:

ui∗
l+1 = −(Rii

l+1)
−1Bi′

l+1

(
M ix

l+1x
∗
l+1 +

∑

j∈{2,...,n}
M

ijμ
l+1(Al+1μ

j
l + B

j

l+1ν
j
l )

+ mi
l+1 − Qi

l+1x̃
i
l+1

)
+ ũii

l+1, i ∈ {2, . . . , n}. (62)

Moreover, we have to substitute for the ν
j
l (j ∈ {2, . . . , n}). For that purpose, ν

j
l

has to be determined from (52)l+1. As a start, ui∗
l+1 is replaced by (62) and λl+1 is

substituted from (59)k=l+1. Then the μi
l+1 are replaced using (54)k=l+1 and the ν

j
l

(j ∈ {2, . . . , n}) are collected in one term:

−Bi′
l+1Q

1
l+1x̃

i
l+1 + R1i

l+1

(
−(Rii

l+1)
−1Bi′

l+1

(
M ix

l+1x
∗
l+1

+
∑

j∈{2,...,n}
M

ijμ
l+1Al+1μ

j
l + mi

l+1 − Qi
l+1x̃

i′
l+1

)
+ ũii

l+1 − ũ1i
l+1

)

+ Bi′
l+1

(
Lx

l+1x
∗
l+1 +

∑

j∈{2,...,n}
L

jμ

l+1Al+1μ
j
l + ll+1

)

+
∑

j∈{2,...,n}
Bi′

l+1Q
j

l+1Al+1μ
j
l + (Bi′

l+1(Q
i
l+1 + L

iμ
l+1)B

i
l+1 + Rii

l+1

− R1i
l+1(R

ii
l+1)

−1Bi′
l+1M

iiμ
l+1B

i
l+1)ν

i
l +

∑

j∈{2,...,n},j �=i

(Bi′
l+1(Q

j

l+1 + L
jμ

l+1)B
j

l+1

− R1i
l+1(R

ii
l+1)

−1Bi′
l+1M

ijμ
l+1B

j

l+1)ν
j
l = 0, i ∈ {2, . . . , n}. (63)

The above equations contain only constant expressions and terms linear in xl+1

or μ
j
l (j ∈ {2, . . . , n}). This fact justifies substitutions for the νi

l by N ix
l x∗

l+1 +
∑

j∈{2,...,n} N
ijμ
l μ

j
l + ni

l (i ∈ {2, . . . , n}). Then we get (32)k=l , (33)k=l and (34)k=l

by comparing coefficients. These systems of equations are assumed to admit unique
solutions N ix

l , N
imμ
l and ni

l (i,m ∈ {2, . . . , n}). Using the above relations for the ν
j
l

(j ∈ {2, . . . , n}) in (62), substituting for ui∗
l+1 by T ix

l+1x
∗
l+1 + ∑

j∈{2,...,n} T
ijμ
l+1μ

j
l +

t il+1 (i ∈ {2 . . . n}) and comparing coefficients gives (29)k=l , (30)k=l and (31)k=l .
The optimality condition for u1∗

l+1 can be rewritten with the help of (59)k=l+1 and
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(54)k=l+1:

u1∗
l+1 = −(R11

l+1)
−1

(
−B1′

l+1Q
1
l+1x̃

i
l+1 + B1′

l+1

(
Lx

l+1x
∗
l+1

+
∑

j∈{2,...,n}
L

jμ

l+1(Al+1μ
j
l + B

j

l+1ν
j
l ) + ll+1

)

+
∑

j∈{2,...,n}
B1′

l+1Q
j

l+1Al+1μ
j
l +

∑

j∈{2,...,n}
B1′

l+1Q
j

l+1B
j

l+1ν
j
l

)
+ ũ11

l+1. (64)

Now the νi
l (i ∈ {2, . . . , n}) can be replaced by N ix

l x∗
l+1 + ∑

j∈{2,...,n} N
ijμ
l μ

j
l +

ni
l using the relations derived above. Finally we substitute u1∗

l+1 by Wx
l+1x

∗
l+1 +

∑
j∈{2,...,n} W

jμ

l+1μ
j
l + wl+1 and compare coefficients to get (26)k=l , (27)k=l and

(28)k=l . At this point it is possible to replace the control variables in the optimal
state equation at stage l + 1 by terms affine in (x∗

l+1,μ
2
l , . . . ,μ

n
l ):

x∗
l+1 = Al+1x

∗
l + B1

l+1

(
Wx

l+1x
∗
l+1 +

∑

j∈{2,...,n}
W

jμ

l+1μ
j
l + wl+1

)

+
∑

j∈{2,...,n}
B

j

l+1

(
T

jx
l+1x

∗
l+1 +

∑

m∈{2,...,n}
T

jmμ

l+1 μm
l + t

j

l+1

)
+ sl+1. (65)

Replacing x∗
l+1 by �x

l x∗
l + ∑

j∈{2,...,n} �
jμ
l μ

j
l + φl and comparing coeffi-

cients gives (19)k=l , (20)k=l and (21)k=l . As a next step, affine relations between
(x∗

l ,μi
l+1,μ

2
l , . . . ,μ

n
l ) (i ∈ {2, . . . , n}) are derived. νi

l is substituted in (54)k=l+1:

μi
l+1 = Al+1μ

i
l + Bi

l+1

(
N ix

l x∗
l+1 +

∑

j∈{2,...,n}
N

ijμ
l μ

j
l + ni

l

)
, i ∈ {2, . . . , n}. (66)

Using (17)k=l , replacing μi
l+1 by 	 ix

l x∗
l + ∑

j∈{2,...,n} 	
ijμ
l μ

j
l + ψi

l (i ∈
{2, . . . , n}) and comparing coefficients yields (22)k=l , (23)k=l , (24)k=l and (25)k=l .
Now it is possible to finish the inductive step for pi

l and λl . First, (17)k=l and (18)k=l

are used to derive

pi∗
l = A′

l+1

[
M ix

l+1

(
�x

l x
∗
l +

∑

j∈{2,...,n}
�

jμ
l μ

j
l + φl

)
+

∑

j∈{2,...,n}
M

ijμ
l+1

(
	

jx
l x∗

l

+
∑

m∈{2,...,n}
	

jmμ
l μm

l + ψ
j
l

)
+ mi

l+1 − Qi
l+1x̃

i
l+1

]
, i ∈ {2, . . . , n}. (67)

Replacing pi
l by (M ix

l − Qi
l )x

∗
l + ∑

j∈{2,...,n} M
ijμ
l μ

j
l + mi

l (i ∈ {2, . . . , n}) and
comparing coefficients gives (35)k=l , (36)k=l and (37)k=l . Next, (17)k=l , (18)k=l
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and νi
l = N ix

l x∗
l+1 + ∑

j∈{2,...,n} N
ijμ
l μ

j
l + ni

l (i ∈ {2, . . . , n}) are applied to derive
λl :

λl = A′
l+1

(
Lx

l+1

(
�x

l x∗
l +

∑

j∈{2,...,n}
�

jμ
l μ

j
l + φl

)
+

∑

j∈{2,...,n}
L

jμ

l+1

(
	

jx
l x∗

l

+
∑

m∈{2,...,n}
	

jmμ
l μm

l + ψ
j
l

)
+ ll+1

)
− A′

l+1Q
1
l+1x̃

1
l+1

+
∑

j∈{2,...,n}
A′

l+1Q
j

l+1Al+1μ
j
l +

∑

j∈{2,...,n}
A′

l+1Q
j

l+1B
j

l+1

(
N

jx
l

(
�x

l x
∗
l

+
∑

m∈{2,...,n}
�

mμ
l μm

l + φl

)
+

∑

m∈{2,...,n}
N

jmμ
l μm

l + n
j
l

)
. (68)

Replacing λl by (Lx
l − Q1

l )x
∗
l + ∑

j∈{2,...,n} L
jμ
l μ

j
l + ll and comparing coeffi-

cients gives (38)k=l , (39)k=l and (40)k=l . At this point the inductive step and hence
the induction argument is completed. But we also transform u1∗

l+1, . . . , u
n∗
l+1 such

that their evolution depends affinely on (x∗
l ,μ2

l , . . . ,μ
n
l ) and therefore their algo-

rithmic computation is straightforward. Let us start with u1∗
l+1 by applying (17)k=l

to the relation u1∗
l+1 = Wx

l+1x
∗
l+1 + ∑

j∈{2,...,n} W
jμ

l+1 μ
j
l + wl+1. We get:

u1∗
l+1 = Wx

l+1

(
�x

l x∗
l +

∑

j∈{2,...,n}
�

jμ
l μ

j
l + φl

)
+

∑

j∈{2,...,n}
W

jμ

l+1μ
j
l + wl+1. (69)

Replacing u1∗
l+1 by P 1x

l+1xl + ∑
j∈{2,...,n} P

1jμ

l+1 μ
j
l + α1

l+1 and comparing coef-
ficients gives (41)k=l , (42)k=l and (43)k=l . Finally, (17)k=l is used in the above
relations ui∗

l+1 = T ix
l+1x

∗
l+1 + ∑

j∈{2,...,n} T
ijμ
l+1μ

j
l + t il+1 (i ∈ {2, . . . , n}) to give

ui∗
l+1 = T ix

l+1

(
�x

l x
∗
l +

∑

j∈{2,...,n}
�

jμ
l μ

j
l + φl

)

+
∑

j∈{2,...,n}
T

ijμ
l+1μ

j
l + t il+1, i ∈ {2, . . . , n}. (70)

Replacing ui∗
l+1 by P ix

l+1xl +∑
j∈{2,...,n} P

ijμ
l+1μ

j
l +αi

l+1 (i ∈ {2, . . . , n}) and com-
paring coefficients gives (44)k=l , (45)k=l and (46)k=l . �

5 Some Additional Results

To obtain the open-loop Stackelberg equilibrium solution of the game algorithmi-
cally, the following procedure applying the results of Theorem 2 can be carried out
(i, j ∈ {2, . . . , n}):
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1. Determine M ix
T , M

ijμ
T , mi

T from the terminal conditions in (35)–(37).

2. Determine Lx
T , L

iμ
T , lT from the terminal conditions in (38)–(40).

3. For k running backward from T − 1 to 0, determine alternating:
a. N ix

k , N
ijμ
k and ni

k using (32)–(34),

b. T ix
k+1, T

ijμ
k+1, t ik+1 using (29)–(31),

c. Wx
k+1, W

iμ
k+1, wk+1 using (26)–(28),

d. �x
k , �

iμ
k , φk using (19)–(21),

e. 	 ix
k , 	

ijμ
k , ψi

k using (22)–(25),

f. M ix
k , M

ijμ
k , mi

k using (35)–(37),

g. Lx
k , L

iμ
k , lk using (38)–(40).

4. x∗
0 (given).

5. For k running forward from 0 to T − 1, determine:
a. μi

k+1 from (18),

b. P 1x
k+1, P

1iμ
k+1, α1

k+1 from (41)–(43),

c. P ix
k+1, P

ijμ
k+1, αi

k+1 from (44)–(46),
d. u1∗

k+1, ui∗
k+1 from (16),

e. x∗
k+1 from (17).

6. Calculate J 1(x0, u
1, . . . , un), J i(x0, u

1, . . . , un) from (2), (14).

Finally we specialize the results of Theorem 2 to a linear-quadratic 2-person
game to allow for comparisons with Corollary 7.1 of Başar and Olsder (1999). This
shows that the number and length of the equations of the game grow rapidly with
the number of followers and the consideration of constant terms.

Corollary 1 A 2-person linear-quadratic dynamic game admits a unique open-loop
Stackelberg equilibrium solution with one leader and one follower if

• Qi
k ≥ 0, Rii

k > 0 for k ∈ K , i ∈ N ,

• (I − B1
k+1W

x
k+1 − B2

k+1T
x
k+1)

−1 and (B2′
k+1(Q

2
k+1 + L

μ
k+1)B

2
k+1 + I −

R12
k+1B

2′
k+1M

μ
k+1B

2
k+1)

−1 exist for k ∈ K .

If these conditions are satisfied, the unique open-loop Stackelberg equilibrium
strategies ui∗

k+1 are given by

ui∗
k+1 = P ix

k+1x
∗
k + P

iμ
k+1μk, i ∈ {1,2}, (71)

where the associated state trajectory x∗
k+1 is given by2

x∗
k+1 = �x

kx
∗
k + �

μ
k μk, x∗

0 = x0, (72)

where

fk−1(xk−1, u
1
k, u

2
k) = Akxk−1 + B1

k u1
k + B2

k u2
k, k ∈ K, (73)

2For all equations belonging to this corollary k ∈ {0, . . . , T − 1} unless otherwise stated.
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Li(x0, u
1, u2) =

T∑

k=1

gi
k(xk, u

1
k, u

2
k, xk−1), (74)

gi
k(xk, u

1
k, . . . , u

n
k , xk−1) = 1

2
(x ′

kQ
i
kxk + ui′

k ui
k + u

j ′
k R

ij
k u

j
k),

k ∈ K, i, j ∈ {1,2}, i �= j, (75)

�x
k = (I − B1

k+1W
x
k+1 − B2

k+1T
x
k+1)

−1Ak+1, (76)

�
μ
k = (I − B1

k+1W
x
k+1 − B2

k+1T
x
k+1)

−1(B1
k+1W

μ
k+1 + B2

k+1T
μ
k+1), (77)

μk+1 = 	x
k x∗

k + 	
μ
k μk, μ0 = 0, (78)

	x
k = B2

k+1N
x
k �x

k , (79)

	
μ
k = Ak+1 + B2

k+1(N
x
k �

μ
k + N

μ
k ), (80)

Wx
k+1 = −B1′

k+1L
x
k+1 − B1′

k+1L
μ
k+1N

x
k − B1′

k+1Q
2
k+1B

2
k+1N

x
k , (81)

W
μ
k+1 = −B1′

k+1L
μ
k+1(Ak+1 + B2

k+1N
μ
k ) − B1′

k+1Q
2
k+1Ak+1

− B1′
k+1Q

2
k+1B

2
k+1N

μ
k , (82)

T x
k+1 = −B2′

k+1(M
x
k+1 + M

μ
k+1B

2
k+1N

x
k ), (83)

T
μ
k+1 = −B2′

k+1M
μ
k+1(Ak+1 + B2

k+1N
μ
k ), (84)

Nx
k = −(B2′

k+1(Q
2
k+1 + L

μ
k+1)B

2
k+1 + I − R12

k+1B
2′
k+1M

μ
k+1B

2
k+1)

−1

× (B2′
k+1L

x
k+1 − R12

k+1B
2′
k+1M

x
k+1), (85)

N
μ
k = −(B2′

k+1(Q
2
k+1 + L

μ
k+1)B

2
k+1 + I − R12

k+1B
2′
k+1M

μ
k+1B

2
k+1)

−1

× (B2′
k+1(Q

2
k+1 + L

μ
k+1) − R12

k+1B
2′
k+1M

μ
k+1)Ak+1, (86)

Mx
k = Q2

k + A′
k+1[Mx

k+1�
x
k + M

μ
k+1	

x
k ], Mx

T = Q2
T , (87)

M
μ
k = A′

k+1[Mx
k+1�

μ
k + M

μ
k+1	

μ
k ], M

μ
T = 0, (88)

Lx
k = Q1

k + A′
k+1L

x
k+1	

x
k + A′

k+1L
μ
k+1	

x
k + A′

k+1Q
2
k+1B

2
k+1N

x
k 	x

k ,

Lx
T = Q1

T , (89)

L
μ
k = A′

k+1L
x
k+1	

μ
k + A′

k+1L
μ
k+1	

μ
k + A′

k+1Q
2
k+1Ak+1μk

+ A′
k+1Q

2
k+1B

2
k+1(N

x
k 	

μ
k + N

μ
k ), L

μ
T = 0, (90)

P 1x
k+1 = Wx

k+1�
x
k , (91)

P
1μ
k+1 = Wx

k+1�
μ
k + W

μ
k+1, (92)

P 2x
k+1 = T x

k+1�
x
k , (93)
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P
2μ
k+1 = T x

k+1�
μ
k + T

μ
k+1. (94)

Proof Corollary 1 is proven in the same way as Theorem 2 taking into consideration
simplifications resulting from the different number of followers and the modified
state equation and cost functions. It can also be obtained directly by specializing
Theorem 2 to n = 2. �

Note that the assumption about the existence of unique solutions of the systems
of equations (32), (33) and (34) in Theorem 2 is equivalent to assuming the existence
of (B2′

k+1(Q
2
k+1 + L

μ
k+1)B

2
k+1 + I − R12

k+1B
2′
k+1M

μ
k+1B

2
k+1)

−1 in this special case.

6 Concluding Remarks

We derived an extension for the open-loop Stackelberg equilibrium solution of n-
person discrete-time affine-quadratic dynamic games of prespecified fixed duration
to an arbitrary number of followers, more general state and cost functions and the
possibility of algorithmic implementation. Next steps for future research will consist
in extending the numerical algorithm OPTCON (Behrens et al. 2003) to include the
open-loop Stackelberg equilibrium solution derived here. Moreover, finding more
intuitive conditions for the unique existence of the Stackelberg equilibrium solution
in terms of matrices defining the affine-quadratic dynamic game is a task for future
research. Some further extensions of our approach suggest themselves; for example,
taking into account a scrap value at T can be easily implemented by modifying the
terminal conditions for the costate variables of the leader and the followers, or the
problem may be modified to a free-endpoint problem. Other extensions will be more
involved. For instance, the open-loop information pattern for both players could
be replaced by a feedback information pattern for either the leader (Cohen-Michel
solution; Cohen and Michel 1988) or the followers, resulting in an asymmetry not
only with respect to the roles of the players but also to the information on which
they base their decisions. This would imply different solution concepts, as has been
shown for the Cohen-Michel solution by Dockner and Neck (2008). Whether such
solutions can serve as more “realistic” models of actual strategic dynamics is an
open question; in any case, the solution methods used in the present paper can be
applied to their open-loop part, too.
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