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Abstract. In this paper, we develop a theory that studies words with
nested data values with the help of shuffle expressions. We study two
cases, which we call “ordered” and “unordered”. In the unordered case,
we show that emptiness (of the two related problems) is decidable. In the
ordered case, we prove undecidability. As a proof vehicle for the latter,
we introduce the notion of higher-order multicounter automata.

1 Introduction

A data word is a word where each position, in addition to its finite alphabet label,
carries a data value from an infinite domain. Recent times have seen a flurry of
research on data languages, motivated chiefly by applications in XML databases
and parameterized verification; see, e.g., [7,9,2,4,11,3,1]. One of the main results
is that satisfiability for first-order logic with two variables is decidable over data
words, as long as the only operation allowed on the data values is equality
testing [2]. The same paper also demonstrates a close connection between data
languages, shuffle expressions, and multicounter automata:

1. Multicounter automata. These are nondeterministic automata with many
counters, which can be incremented and decremented, but zero tests are
only allowed at the end of the word.

2. Shuffle expressions. These are regular expressions extended with intersection
and the shuffle operation.

3. Two-variable data languages. These are properties of data words that can
be expressed in certain two-variable logics.

The connection between multicounter automata (or Petri nets) and shuffle ex-
pressions was discovered in [5], while the connection between the first two and
data languages was discovered in [2].

In this paper, we develop and investigate extensions of the above. We focus on
nested data values and shuffle expressions. There are two principal motivations.

– When data values are only used to induce an equivalence relation on the
positions, such as in the logics mentioned above, one of the chief applications
is parameterized verification. A number of processes run in parallel, and in
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the resulting sequence of actions, the individual actions are annotated by
the unique id of the process that performed them. This data word can be
used to check global properties (by looking at the whole string) and local
properties (by considering the sequence of actions of a single process).

To model a system where processes can have subprocesses, and so on, we
would want a data word with nested data values: each action carries the id
of the subprocess which performed it as well as the id of the process that
spawned the subprocess, and so on.

– In [5], nesting of the shuffle operation was not considered. This runs con-
trary to the unrestricted nesting of other operations in regular expressions,
and begs the question what happens when unrestricted nesting of shuffles
is allowed. We discover that the resulting languages are actually intimately
related to languages with nested data. We also discover that this leads to
undecidability; and decidability can be recovered only after adding a form
of commutativity to the shuffle operation.

We note that our notion of shuffle expressions is different than the one used in
some of the literature–see, e.g.,[6]–since we consider four different shuffle opera-
tors and allow intersection with regular languages.

Our main topic is logics over words with nested data. We study two two-
variable fragments of first order, one with order and one without. The first
one is shown to be undecidable, while the second is decidable. Nested shuffle
expressions are the main proof vehicle, and an object of independent study. For
instance, the expressions we consider capture the language:

an1# · · · #ank#bm1# · · · #bmk# : n1, . . . , nk is a permutation of m1, . . . , mk

It is our opinion that the two concepts—logic with nested data and shuffle
expressions—shed light on each other in a useful cross-fertilization.

Due to space restrictions, most proofs have been omitted, and will appear in
the full version of the paper.

2 A Logic for Words with Nested Data

Let A be a finite alphabet and Δ an infinite set, whose elements will be called
data values. For k ∈ N, a word with k layers of data is a word where every
position, apart from a label in A, has k labels d1, . . . , dk ∈ Δ. The label di is
called the i-th data value of the position. Therefore, such a word is an element
w ∈ (A × Δk)∗. In w, the data values can be seen as inducing k equivalence
relations ∼1, . . . , ∼k on the positions of w. That is, two positions are related by
∼i if they agree on the i-th data value.

We are interested in the data values only insofar as equality is concerned.
Therefore, the relations ∼1, . . . , ∼k supply all the information required about a
word; and could be used as an alternative definition. Adding more structure—
such as a linear order—to the data values leads very quickly to undecidable
decision problems, already with one layer, and even for very weak formalisms.
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A word with k layers of data is said to have nested data if for each i = 2, . . . , k
the relation ∼i is a refinement of ∼i−1. In other words, if two positions agree on
value i, then they also agree on value i − 1. For the rest of this section, we fix k
and only talk about words and languages with k layers of nested data. Instead of
”word with k nested layers of data”, we will just write ”word with nested data”.

In the spirit of Büchi’s sequential calculus, we will use logic to express proper-
ties of words with nested data. In this setting, a word with nested data is treated
as a model for logic, with the logical quantifiers ranging over word positions. The
data values are accessed via the relations ∼i. For instance, the formula

∀x∀y (x ∼2 y ⇒ x ∼1 y) ∧ · · · ∧ (x ∼k y ⇒ x ∼k−1 y)

states that the data values are nested. (This formula is a tautology in our setting,
where only models representing words with nested data values are considered.)
Each label a from the finite label set A can be accessed by a unary relation; for
instance ∀x a(x) is true in words where all positions have label a. The linear
order on word positions can be accessed via the relation <. For instance,

∀x (∀y y ≤ x) ⇒ (∀y < x y �∼1 x)

says that the last position has a different first (and consequently, all others as
well) data value than than the other positions. We also use the successor relation
x = y + 1. Although it can be defined in terms of the order, a third variable z
is required, which is too much for the two-variable fragments we considered. We
mainly consider satisfiability: given a formula, determine if there is a nested data
word that satisfies it. This problem is undecidable in general, but by restricting
the formulas, we can obtain decidable fragments.

Satisfiability is undecidable already for the following fragments, see [2]:

– There is only one layer of data. The formulas can use three variables; but
the order on word positions can be accessed only via x = y + 1 and not <.

– There are two layers of data, but these are not necessarily nested. The for-
mulas can use only two variables, x = y + 1, x = y + 2 and not <.

The largest known decidable fragment was presented in [2]:

– There is only one layer of data. The formulas can use only two variables,
and the positions can be accessed by both x = y + 1 and <.

We want to generalize the above result to words with multiple layers of nested
data. The result from [2] fails already for two layers:

Theorem 2.1. With two layers of nested data, satisfiability is undecidable for
two-variable first-order logic with the relations x = y + 1 and x < y.

Proof (Sketch). We encode computations of a two-counter machine with zero
tests. Consider words with two layers of nested data, where the labels are
A = {start, end, inc, dec} and the positions are labeled according to the regular
language (start(inc+dec)∗end)∗. This is easy to express in our two-variable logic.
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Next, we express that each block of the form start(inc + dec)∗end corresponds
to a single data value on layer 1:

∀x start(x) ⇒ ∀y < x x �∼1 y ∀x end(x) ⇒ ∀y > x x �∼1 y
∀x∃y ≥ x x ∼1 y ∧ end(y) ∀x∃y ≤ x x ∼1 y ∧ start(y) (1)

Finally, the we can use equivalence classes (sets of positions with the same data
value) on layer two to ensure that the operations inc and dec are balanced.

Consider a word with nested data that satisfies the above properties. This
word can be seen as a computation of a one counter machine without states,
where inc corresponds to a counter increment, dec corresponds to a counter
decrement, while start, end correspond to zero tests.

To get two counters instead of one, we expand the label alphabet from A to
{1, 2} × A. The regular language we use is now

start1start2(inc1 + inc2 + dec1 + dec2 + end1start1 + end2start2)∗end2end1.

The rest of the construction also generalizes, by duplicating each formula, once
for each counters, and adding consistency constraints.

Even with the above result, however, not all hope is lost. Satisfiability is decidable
if we lose the order <, even with arbitrarily many layers of data.

Definition 1. FO2(+1, ∼1, . . . , ∼k) is the fragment of first-order logic that uses
only the two variables x and y and the following predicates.

a(x) x has label a, where a is a label from A
y = x + 1 y is the position directly to the right of x
x ∼i y x and y have the same layer i data value, with i ∈ {1, . . . , k}

Theorem 2.2. Over words with nested data, satisfiability is decidable for
FO2(+1, ∼1, . . . , ∼k).

The above result is a consequence of Theorem 3.4, which says that formulas of
the logic can be compiled into a type of shuffle expression, and Theorem 5.2,
which says that emptiness is decidable for these shuffle expressions.

3 Shuffle Expressions

Recall that a word w ∈ A∗ is called a shuffle of words w1, · · · , wm ∈ A∗ if the
positions of w can be colored using m colors so that the positions with color
i ∈ {1, . . . , m}, when read from left to right, form the word wi. If K ⊆ A∗ is a
(possibly infinite) set of words, then shuffle(K) ⊆ A∗ is defined as

{w : w is a shuffle of some w1, . . . , wm ∈ K, for some m ∈ N}.

Note that the words w1, . . . , wm above may include repetitions. For instance,
shuffle({a}) contains all words a∗. Just as finite automata are connected to
regular expressions, multicounter automata are connected to shuffle expressions.
This is witnessed by the following result, essentially due to [5]:
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Theorem 3.1. The following language classes are equal, modulo morphisms:

1. Languages recognized by multicounter automata;
2. Languages of the form L ∩ shuffle(K), where L, K are regular.

The qualification “modulo morphisms” means that any language from class 1
is a morphic image of a language in class 2. (Class 2 is simply contained in
class 1, without need for morphisms.) The point of the morphism is to erase
bookkeeping, such as annotations with accepting runs.

We can now ask what we get if we add intersection and shuffle to regular
expressions. The answer is that we get more than we want:

Theorem 3.2. If regular expressions are extended with shuffle and intersection,
all recursively enumerable languages can be defined modulo morphisms.

In particular, emptiness is undecidable for such extended regular expressions.
Disallowing intersection trivializes the emptiness problem — which is the prob-
lem we are most interested in here — since shuffle(K) is nonempty if and only
if K is. Theorem 3.2 follows directly from Theorems 4.1 and 4.2 below.

In this paper, however, we are most interested in decidability results, especially
for logics with data values. It turns out that decidability can be recovered, if we
consider a weaker form of shuffling, which is partly commutative.

3.1 Cutting and Combining

To express our modification of the shuffle operation, it is most convenient to
decompose shuffle(L) into two operations:

shuffle(L) = combine(cut(L)) . (2)

The first cut operation sends a set of words L ⊆ A∗ to the set of traces obtained
by cutting a word from L into pieces:

cut(L) = {w1| · · · |wk : w1 · · · wk ∈ L} ⊆ (A∗)∗.

In the above a trace is a sequence of finite words, which is written as w1| · · · |wk,
with | separating consecutive words, called segments. Traces are denoted by
θ or σ, and will be heavily used later on.

The second operation is called combine, and it sends a set of traces L ⊆ (A∗)∗

to the set of words that can be combined from these traces:

combine(L) = {w : w is a combination of θ1, . . . , θm ∈ L } ⊆ A∗.

By saying that w is a combination of traces θ1, . . . , θm we mean that positions
of w can be colored with m colors, so that for each color i = 1, . . . , m, the
positions with color i give the trace θi. In the trace θi = w1| · · · |wn, the seg-
ments w1, . . . , wn correspond to maximal subwords of w that are assigned color
i. Consider the following example.

a b c c c b a c
1 1 2 1 3 1 2 2

θ1 = ab|c|b
θ2 = c|ac
θ3 = c
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By the maximality requirement, the trace θ2 cannot be replaced by c|a|c Given
the above definitions of cut and combine, it should be fairly clear that equa-
tion (2) holds. However, by tweaking the definitions of cut and combine, we will
arrive at variants of the shuffle operation that are decidable and, more impor-
tantly, relevant to our investigation of nested data values.

The first modification gives us more control on the way words from L ⊆ A∗

are cut into traces. Let K ⊆ A∗ be a language. We define

cutK(L) = {w1| · · · |wk : w1 · · · wk ∈ L, w1, . . . , wk ∈ K} ⊆ (A∗)∗.

In other words, words from L are cut into traces where each segment belongs
to K. Setting K = A∗ allows us to recover the standard cut operation, so cutK

is a generalization of cut . We only consider the case when K is regular.
The second modification concerns the operation combine. An unordered trace

is a multiset of words, i.e. a trace where the order of segments is not impor-
tant (however, the ordering of letters inside the segments is). The operation
ucombine(L) treats the set of traces L as unordered traces:

ucombine(L) = {w : w is an unordered combination of θ1, . . . , θm ∈ L } ⊆ A∗.

In the above, w is an unordered combination of θ1, . . . , θm if w is a combination
of traces σ1, . . . , σm, such that σi is obtained from θi by rearranging the order of
segments. Thus abc is an unordered combination of traces θ1 = c|a and θ2 = b.

3.2 Four Kinds of Shuffle Expressions

From the above, we obtain four variants of the shuffle operation:

– Shuffle: shuffle(L) = combine(cut(L)).
– Controlled shuffle: cshuffleK(L) = combine(cutK(L)).
– Unordered shuffle: ushuffle(L) = ucombine(cut(L)).
– Unordered controlled shuffle: ucshuffleK(L) = ucombine(cutK(L)).

Each such operation gives rise to its own flavor of extended regular expressions.
We will investigate and compare these flavors with respect to decidability and
expressive power.

Definition 3.3. Controlled shuffle expressions (CSE) denote languages obtained
by nesting the following operations:

– Standard regular expression operations: single letters a ∈ A, the empty word
ε, concatenation, union and Kleene star.

– Intersection with regular languages.
– Controlled shuffle cshuffleK(L), where L is defined by a CSE, but K is a

regular word language.
– Images under morphisms f : A∗ → B∗.

Shuffle expressions (SE), unordered shuffle expressions (USE) and unordered
controlled shuffle expressions (UCSE) are defined analogously, by replacing the
type of shuffle operation allowed. All types of operations can be freely nested.
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The point of adding morphic images is to have a form of nondeterministic guess-
ing in the expressions (and therefore more power). This will be illustrated in the
following example. Note also that morphic images are necessary due to adding
the intersection and shuffle operations; in standard regular expressions the pro-
jection operation does not add any power and can be eliminated.

Example 1. In the shuffle operation shuffle(L), we have no control over the num-
ber of times the language L is used. In this example we show that we can enforce
that it is used an even number of times. Let then L ⊆ A∗ be defined by an SE.
The idea is to expand the alphabet A with a new symbol start; each word from
L will be prefixed by this symbol. Consider then the expression:

K = start · L .

If we now take the expression shuffle(K), we can use the marker start to see how
many times K was used. By intersecting with the regular language “even number
of occurrences of start”, we can make sure that it was used an even number of
times. Finally, the markers can be removed using the erasing morphism f :
(A ∪ {start})∗ → A∗ defined by f(start) = ε and f(a) = a for a ∈ A.

Example 2. Unordered shuffling is enough to express some counting properties:
ushuffle(ab) describes words in (a + b)∗ with the same number of a’s and b’s.
Using intersection with the regular language a∗b∗, we get the language {anbn}.

Example 3. Using the same idea as in the previous example, we can also get the
language L = {an#bn#}. Consider now the following expression:

(a∗#)∗(b∗#)∗ ∩ ucshuffleK(L) where K = a∗# + b∗#

This expression defines the set of words

an1# · · · #ank#bm1# · · ·#bmk#,

such that n1, . . . , nk is a permutation of m1, . . . , mk.

3.3 From Logic to Shuffle Expressions

In this section we state the reduction of satisfiability for FO2(+1, ∼1, . . . , ∼k)
to the emptiness problem for unordered controlled shuffle expressions.

Theorem 3.4. For every FO2(+1, ∼1, . . . , ∼k)-formula φ, a UCSE r can be
effectively computed such that the language of r is non-empty if and only if φ is
satisfiable.

Proof (Sketch). We can assume that φ is in data normal form; a normal form very
similar to the one used in [2]. This means that φ is a set of conjuncts, where each
conjunct is fairly simple. The conjuncts express properties of classes by referring
to types. When talking of types, these conjuncts only use the expressions ”at
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least one node”, ”has a node”, and ”at most one node”. Thus, the only relevant
information about a class string (where the class can be w.r.t. any of the k
equivalence relations), is the number of times each type appears. Furthermore,
if a type appears at least twice, the exact number of times is irrelevant.

If we have a footprint mapping f : T → {0, 1, 2}, where T is the set of types
appearing in φ, that tells us if a type appears 0, 1, or 2 or more times, we know
everything we need about the class string. We can easily compute the set F of
those footprints that are allowed by the conjuncts from φ. If we construct, for
each f ∈ F , a shuffle expression that accepts exactly those strings that have
footprint f , we can combine these expressions (using the + operator) into one
that accepts all correct class strings. Using the shuffle operator on this expression
gives an expression whose language is such that every word can be extended with
(level k) data values in such a fashion that the conjuncts of φ that use ∼k are
satisfied.

The idea is to use this construction inductively, starting with level k, until,
after using k shuffle operations, all conjuncts of φ are taken care of.

The corresondence between r and φ is actually stronger: r contains words ob-
tained from models of φ by erasing data values. We do not know if the converse
translation—from expressions to logic—can be done; possibly the expressions
are strictly stronger than the logic. A similar reduction, from logic with order
to CSE is possible, but the proof is omitted.

4 Ordered Shuffle Expressions

The following theorem relates CSE, SE and higher-order multicounter automata.
The latter, to our best knowledge, are a new model.

Theorem 4.1. The following language classes are equal:

1. Languages defined by controlled shuffle expressions (CSE);
2. Languages defined by shuffle expressions (SE);
3. Languages defined by higher-order multicounter automata;
4. Recursively enumerable languages.

We define higher-order multicounter automata in Section 4.1, and prove their
Turing completeness. The rest of the proof of Theorem 4.1 is omitted.

4.1 Higher-Order Multicounter Automata

A multiset over A is a function m : A → N. We only consider finite multisets
here, where all but a finite number of elements in A are assigned 0. We also
consider higher-level multisets (which are also multisets). A level 1 multiset over
A is a finite multiset over A. A level k + 1 multiset over A is a finite multiset of
level k multisets over A.

A level k multicounter automaton is defined as follows. It has a state space
Q, an input alphabet Σ, and a multiset alphabet A. All of these are finite. The
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automaton reads an input word w ∈ Σ∗ from left to right. At each moment,
its memory is a tuple (q, m1, m2, . . . , mk), where q is one of the states in Q,
and each mi is a level i multiset over A, possibly undefined ⊥. (We distinguish
an empty multiset ∅ from an undefined one ⊥.) The initial configuration is
(qI , ⊥, ⊥, . . . , ⊥), where qI is some designated initial state.

There is a finite set of transition rules, which say how the machine can modify
its memory upon reading an input symbol (or doing an ε-transition). Each such
transition rule is of the form: when in state q and upon reading the label a ∈
Σ ∪{ε}, assume state p and do counter operation x. The counter operations are:

new i: Change mi from ⊥ to ∅.
inca: Add a ∈ A to the level 1 multiset m1.
deca: Remove a ∈ A from the level 1 multiset m1.

storei: Add mi to the level i + 1 multiset mi+1; then set mi to ⊥.
load i: Remove nondeterministically some element m from mi+1 and store it in

mi. This transition is enabled only when m1, . . . , mi are all ⊥.

We use Counteropsk to denote the possible counter operations in a level k au-
tomaton. Note here that the automaton knows which mi are undefined, since this
is controlled by transitions new i and storei. On the other hand, the automaton
does not know if a defined multiset mi is empty, or not.

What is the accepting condition? We say a level k multiset is hereditarily
empty if it is empty, or it consists only of hereditarily empty level k−1 multisets.
The automaton accepts if m1, . . . , mk are all hereditarily empty multisets in all
memory cells; and the control state belongs to a designated accepting set.

The above definition is similar, but not identical, to the notion of nested Petri
nets from, e.g., [8].

Here we show that the machines are Turing complete, already on level 2.

Theorem 4.2. Level 2 multicounter automata recognize all recursively enumer-
able languages.

Proof
We show that a level 2 multicounter automaton can simulate a two-counter
machine with zero tests. Since the latter type of machine is capable of recognizing
all recursively enumerable languages, the statement follows.

A configuration of the two-counter machine, where counter 1 has value i and
counter 2 has value j, will be represented by the following level 2 multiset:

{{x, . . . , x
︸ ︷︷ ︸

i times

, a}, {x, . . . , x
︸ ︷︷ ︸

j times

, b}, ∅, . . . , ∅
︸ ︷︷ ︸

k times

} . (3)

The occurrences ∅ are used for bookkeeping; the number k will correspond to the
number of zero-tests that have been carried out in the run leading to this config-
uration. A configuration as above is called proper. Our automaton will have the
property that improper configurations always lead to improper configurations;
furthermore, a failed zero-test will lead to an improper configuration.
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We now show how to represent the operations of the simulated machine:

– Zero test on counter 1. We do the following sequence of operations:

load1 deca store1 new1 inca store1 .

If the configuration was improper, it will remain so. If it was proper, the
level 2 from (3) multiset will become:

{{a}, {x, . . . , x
︸ ︷︷ ︸

j times

, b}, ∅, . . . , ∅
︸ ︷︷ ︸

k times

, {x, . . . , x
︸ ︷︷ ︸

i times

}} .

If i was not 0, the above configuration will be improper.
– Increment on counter 1. We do the following sequence of operations:

load1 deca incx inca store1 .

A decrement is done the same way.
– The operations on counter 2 are as above, except b is used instead of a.

One can easily see that the automaton can reach a proper configuration as in (3)
if and only if the simulated two-counter machine could have counter values (i, j).
Furthermore, the simulating machine can test (once, at the end of its run), if it
has reached a proper configuration of the form:

{{a}, {b}, ∅, . . . , ∅
︸ ︷︷ ︸

k times

} .

This is done by load1 deca store1 load1 decb store1 and testing if all
memory cells are hereditarily empty. �

5 Unordered Shuffle Expressions

In this section, we state the decidability of the emptiness problems for un-
ordered shuffle expressions, controlled (UCSE) or not (USE). Since ushuffle(L) =
ucshuffleA∗(L) if A is the alphabet of L, it is clear that USE is a special case of
UCSE. Nevertheless, we chose to state the following independently:

Theorem 5.1. Emptiness for unordered shuffle expressions is decidable.

The reason is that the proof is considerably less involved than for the controlled
case. It uses a reduction to finite word automata equipped with a Presburger
counting condition.

As stated in the introduction, the main goal of this paper is to show de-
cidability of satisfiability for the 2-variable logic from Definition 1 over words
with nested data. Theorem 3.4 shows that this problem reduces to emptiness for
UCSE. We are now ready to complete the proof of Theorem 2.2, by stating the
main combinatorial result of the paper:

Theorem 5.2. Emptiness for unordered controlled shuffle expressions is
decidable.
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The proof is rather involved, and is based on a study of the Parikh images [10] of
languages defined by UCSE. Due to space limitiations, we can can only present
here a very brief outline of the key ideas.

The main technical result is the following Parikh-type theorem:

Theorem 5.3. The Parikh image of a language defined by a UCSE is
semilinear.

Furthermore, since the semilinear set is effectively obtained, it can be tested for
emptiness in a decision procedure for emptiness of UCSE, hence Theorem 5.2
follows. The proof of Theorem 5.3 is by induction, and only one step is nontrivial:
when the expression is of the form

ucshuffleM (L) ∩ K, (4)

where L is defined by a UCSE and K, M are regular languages.
What follows is a very informal description of some of the ideas used in show-

ing that the Parikh image of the language above is semilinear. We first remind
the reader how the language (4) is defined. We begin with traces θ1, . . . , θn that
are obtained from cutting words from L into segments from M . In other words,
each trace θi ∈ (A∗)∗ must belong to cutM (L). Then, the segments of these
traces are rearranged and combined to get a word in the regular language K.

The basic idea for computing the Parikh image of (4) is as follows. To θ
we assign two vectors: its Parikh image π(θ) ∈ N

A; and another vector ρ(θ) ∈
N

B, called the footprint of θ. The idea behind the footprint is that it contains
information on the way θ can be combined with other traces to get a word in K.
By using the induction assumption of Theorem 5.3, we can show that these two
vectors are related in a semilinear way, i.e. the following vector set is semilinear:

Y = {(π(θ), ρ(θ)) : θ ∈ cutM (L)} ⊆ N
A∪B.

Using the mappings π and ρ, the job of calculating the Parikh image of (4) can
be split into two phases. In the first phase, the question whether or not traces
θ1, . . . , θn can be combined into a word from K is rephrased as a condition (*)
on the footprints ρ(θ1), . . . , ρ(θn). In the second phase, the semilinear set Y is
used to go from the from the footprints to the Parikh images. More precisely,
we show that the following set is semilinear:

{π(θ1) + · · · + π(θn) : θ1, . . . , θn are traces such that
ρ(θ1), . . . , ρ(θn) satisfy condition (*)}

This concludes, since the above set is the Parikh image of (4). Note that in the
above, we do not need to quantify over the traces θi, since it is enough to verify
that two vectors π(θi) and ρ(θi) satisfy the semilinear property Y .

We conclude by summarizing the expressive power of the expressions:

USE � UCSE � SE = CSE.

The strictness of the first inequality is not shown due to lack of space. The second
inequality follows by undecidability of SE, while the equality was mentioned in
Theorem 4.1.
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