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Abstract. We introduce the isophotic metric, a new metric on surfaces,
in which the length of a surface curve is not just dependent on the curve
itself, but also on the variation of the surface normals along it. A weak
variation of the normals brings the isophotic length of a curve close to
its Euclidean length, whereas a strong normal variation increases the
isophotic length. We actually have a whole family of metrics, with a
parameter that controls the amount by which the normals influence the
metric. We are interested here in surfaces with features such as smoothed
edges, which are characterized by a significant deviation of the two prin-
cipal curvatures. The isophotic metric is sensitive to those features: paths
along features are close to geodesics in the isophotic metric, paths across
features have high isophotic length. This shape effect makes the isophotic
metric useful for a number of applications. We address feature sensitive
image processing with mathematical morphology on surfaces, feature sen-
sitive geometric design on surfaces, and feature sensitive local neighbor-
hood definition and region growing as an aid in the segmentation process
for reverse engineering of geometric objects.

1 Introduction

The original motivation for the present investigation comes from the automatic
reconstruction of CAD models from measurement data of geometric objects.
In this area, called reverse engineering of geometric objects, a variety of shape
classification methods have been developed, which aim at a segmentation of the
measurement data into regions of the same surface type [26]. Particularly for
traditional geometric objects, where most of the surfaces on the boundary of
the object are fundamental shapes, the surfaces are often separated by edges
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or smoothed edges, so-called blending surfaces. Thus, it is natural to look at
geometric processing tools on surfaces which are sensitive to such features.

Inspired by image processing, which frequently uses mathematical morphol-
ogy for basic topological and geometric operations [9,22], we have been looking
for similar operations on surfaces. However, we found that just a few contribu-
tions [10,13,17,19,20,28] extend morphology to curved manifolds or meshes and
cell decompositions on curved manifolds; none of these papers deals with the
behavior at features. Thus, we will focus here on feature sensitive mathematical
morphology on surfaces. We implement this through the use of adaptive structur-
ing elements (SE), which change their shape and/or size based on either spatial
position [2] or image content. The latter has been used, for example, in range
image processing [27]. In these images, the pixel values represent distances to
the detector, and hence they can be used to adapt the SE size to the expected
feature size. To define appropriate SEs, we have developed an adapted metric on
a surface, which we call isophotic metric. In this metric, the length of a surface
curve depends not only on the curve, but also on the surface normal field along
it. SEs, which are geodesic discs in the isophotic metric, behave in the right way
at features that are characterized by a significant deviation of the two principal
curvatures.

The isophotic metric also simplifies the definition of local neighborhoods
for shape detection, the implementation of region growing algorithms and the
processing of the responses from local shape detection filters (images on surfaces).
For example, the neighborhoods of a point shown in Fig. 2 are not equally useful
for local shape detection: The neighborhood based on the Euclidean metric (left)
flows across the feature. However, the other neighborhoods (middle and right)
respect the feature and are more likely to belong to the same surface type in
an engineering object. Another example is depicted in Fig. 6: Region growing
based on a feature sensitive metric can easily be stopped at features. Yet another
application is design on surfaces: geodesics in a feature sensitive metric nicely
follow features (Fig. 3) and morphology in such a metric could be used for artistic
effects which are in accordance with the geometry of the surface (Fig. 7).

1.1 Previous Work

Mathematical morphology provides a rich and beautiful mathematical theory as
well as a frequently used toolbox for basic topological and geometric operations
on images [9,22]. Almost all of the work in discrete morphology is in R

n, where
the group of translations generates in a natural way the geometry of Minkowski
sums. The latter are the basic building block for further powerful morphological
operations. A few contributions go beyond this framework and in a direction
which is close to our approach. As long as we are looking just for topologi-
cal neighborhoods in meshes as discretizations of curved surfaces, we may use
morphology on graphs [10,28]. The special case of 2D triangle meshes with the
Delaunay property has been investigated by Lomenie et al. [13]. Topological
neighborhoods on triangle meshes are also employed in a paper by Rössl et al.
[20], which uses morphology for the extraction of feature lines on surfaces.
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A basic problem in the extension of morphology to surfaces is the fact that
there are no really useful translations, since parallel transport known in differ-
ential geometry is path dependent in case of non-vanishing Gaussian curvature.
This problem has been addressed [19], but to our knowledge the studies have not
been pursued towards efficient algorithms and practical applications. A simple
geometric way to overcome the lack of translations is the use of approximants
to geodesic circles as local neighborhoods (positions of the structuring element).
The continuous viewpoint leads to morphology based on the distance function.
There is beautiful work on this topic, mainly based on mathematical formula-
tions with partial differential equations (PDE); see [1,4,21] and the references
therein. The present paper is also related to geodesic active contours [3,21] in
the sense that an appropriate Riemannian metric simplifies the formulation of
the problem.

1.2 Contributions of This Paper

In our work we also use the PDE formulation; however, the metric and the
resulting distance functions are more general. The distance functions we derive
are based on the Gaussian mapping γ from a surface Φ to the unit sphere S2,
a basic concept in differential geometry [6]. The main contributions of our work
are the following:

– We define the isophotic metric, study its basic geometric properties, and
discuss its analytical treatment for relevant surface representations (Sect. 2).

– The governing equations of distance fields in the new metric are elaborated
and efficiently solved in a numerical way (Sect. 3).

– We introduce feature sensitive morphology on surfaces, which is based on the
new metric and present applications in Computer Aided Design (Sect. 4).

2 The Isophotic Metric

Let us consider a surface Φ ⊂ R
3. We assume that we have chosen, at least

locally, a continuous orientation of the unit normal vectors of Φ; n(p) denotes
the unit normal vector at the point p ∈ Φ. The Gaussian map γ : Φ → S2 from
Φ to the unit sphere S2 maps a surface point p to the point n(p) ∈ S2 (see e.g.
[6]). The preimage γ−1 of a circle c ⊂ S2 is a curve on Φ, called an isophote. The
surface normals along an isophote form a constant angle with the rotational axis
of c. These curves of equal brightness in a very simple illumination model have
been studied in classical constructive geometry; more recently they have been
used in Computer Aided Design for quality inspection of surfaces [16]. We now
define the purely isophotic metric on a surface as follows: The isophotic length
of a curve c on the surface is the Euclidean length of its Gaussian image curve
γ(c) ⊂ S2. This metric obviously has the following simple properties:

– The shortest distance between two surface points is the angle (∈ [0, π]) be-
tween their surface normals.
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Fig. 1. Isophotes on an elliptic paraboloid (left) and a hyperbolic paraboloid (right).

– Let us fix a point m ∈ Φ. A geodesic circle in the isophotic metric, i.e. the
set of all points p ∈ Φ that lie at constant isophotic distance r to m, is an
isophote cr. The Gaussian image of this isophote is a circle with center γ(m)
and spherical radius r.

– A geodesic g on Φ in the sense of the isophotic metric possesses as Gaussian
image a geodesic on the unit sphere, i.e. a great circle. Let ag denote the
rotational axis of this circle. Then, at each point p of g the surface normal
n(g) is orthogonal to ag. Considering a parallel projection in direction of
ag, the curve g is a silhouette (contour generator) on Φ. These curves have
been extensively studied in constructive geometry and in Computer Vision
(see e.g. [5]).

Example 1: Consider the paraboloid

Γ : 2z = κ1x
2 + κ2y

2. (1)

Let us compute the isophotic geodesic circles with center at the origin, i.e., the
isophotes for the direction e = (0, 0, 1). The direction of the normal at a surface
point is given by the vector (κ1x, κ2y, −1). The angle α between the normal
n(p) at an arbitrary point p ∈ Γ and e satisfies cos2 α = 1/(κ2

1x
2 + κ2

2y
2 + 1).

Thus, the isophotes to cos2 α = c2 = const are given by

κ2
1x

2 + κ2
2y

2 = K2, with K2 :=
1
c2 − 1. (2)

In the xy-plane, these curves are concentric and similar ellipses. In R
3, (2) de-

scribes elliptic cylinders which intersect the paraboloid Γ in the actual isophotes
(see Fig. 1). Note that the ratio of axis lengths of the ellipses (2) is ρ1 : ρ2, where
ρi := 1/|κi| are the principal curvature radii of Γ at the origin. We have used
this example since it reveals important information for the general case as well.
We may approximate any regular C2 surface Φ at an arbitrary point m up to
second order by a paraboloid Γ (m). In a local Cartesian frame with origin at
m and with the principal curvature directions and the surface normal as coor-
dinate axis directions this paraboloid is written in the form (1). Here, κi are the
principal curvatures of Φ and Γ at m. Our example now describes the behavior
of ‘small’ isophotes around m. Viewing the family of shrinking isophotes for
K → 0 as a curve evolution (cf. Fig. 1), we may say in usual terminology, that
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Fig. 2. Approximate geodesic circles on a triangle mesh in the Euclidean metric (left),
purely isophotic metric (middle) and isophotic metric (right).

this family shrinks to an elliptic point with axis ratio ρ1 : ρ2. If we magnify the
isophotes during the evolution so that they keep e.g. their length, the limit is
an ellipse in the tangent plane at m, whose axes agree with the principal axes
of the surface Φ and whose axis ratio is ρ1 : ρ2. The discussion of this example
shows the following two important facts, the first of which is desirable but the
second one is not:

– Isophotic geodesic discs around a center m are interesting candidates for
structuring elements in mathematical morphology on surfaces. They are
elongated in direction of large normal curvature radii and they are of smaller
width in direction of small normal curvature radii. This anisotropic behavior
is useful if we are working along surface features which are characterized
by a significant deviation between the two principal curvatures, e.g. along
smoothed edges, blends and similar curve-like features.

– At points with vanishing Gaussian curvature, K = κ1κ2 = 0, at least one
principal curvature κi vanishes and the metric degenerates. In the example
of Fig. 2, the triangle mesh is close to a developable surface and thus the
isophotes Fig. 2 (middle) are close to straight lines, namely the rulings on
the developable surface.

Keeping the first property and eliminating the second one has a simple solu-
tion: the purely isophotic metric is regularized with help of the Euclidean metric
on Φ. More precisely, we define the regularized isophotic metric, henceforth often
briefly denoted as ‘isophotic metric’, via the arc length differential

ds2
i = w ds2 + w∗(ds∗)2, (3)

where ds is the arc element on the surface and ds∗ is the arc element on its Gaus-
sian image; w > 0 and w∗ ≥ 0 are the weights of the Euclidean and isophotic
components, respectively. In the simplest form, the weights will be chosen con-
stant. They can however also be dependent on some appropriate function defined
on the surface Φ. The choice of the weights offers a further tool to design appro-
priate structuring elements for mathematical morphology on Φ.
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2.1 Computation on Parametric Surfaces

The computation of the isophotic metric uses only a few basic facts from dif-
ferential geometry. Let us consider a parameterized surface x(u, v) and a curve
c(t) on it, given by its preimage (u(t), v(t)) in the parameter plane. The first
derivative vector ċ of the curve c(t) = x(u(t), v(t)) satisfies

ċ2 = ċ · ċ = (u̇xu + v̇xv)2 = g11u̇
2 + 2g12u̇v̇ + g22v̇

2. (4)

Here xu, xv are the first order partial derivatives of x; their inner products,

g11 = x2
u, g12 = xu · xv, g22 = x2

v, (5)

form the symmetric matrix I = (gik) of the first fundamental form. It allows us
to perform metric computations in the tangent spaces of the surface directly in
the parameter domain. For example, the computation of the total arc length of a
surface curve by means of its preimage u = (u(t), v(t)) in the parameter domain
is done with

s =
∫ b

a

√
u̇t · I · u̇ dt. (6)

The same can be done with the Gaussian image of the surface. Unit normals are
computed as

n =
xu × xv

‖xu × xv‖ =
xu × xv√

g11g22 − g2
12

.

Thus, the first derivative of the image curve c∗(t) = γ(c(t)) = n(u(t), v(t)) on
the Gaussian sphere satisfies

(ċ∗)2 = (u̇nu + v̇nv)2 = l11u̇
2 + 2l12u̇v̇ + l22v̇

2. (7)

Here, the inner products of the partial derivatives of the unit normal field,

l11 = n2
u, l12 = nu · nv, l22 = n2

v, (8)

form the symmetric matrix III of the so-called third fundamental form. This
matrix, which is not regular at points with vanishing Gaussian curvature K,
defines the purely isophotic metric on the surface in exactly the same way as
the first fundamental matrix I describes the Euclidean metric on the surface.
Finally we see that the regularized isophotic metric has the fundamental matrix

M = wI + w∗III = (wgij + w∗lij). (9)

With help of M , one introduces a Riemannian metric in the parameter domain of
the surface, and one can use the familiar framework from differential geometry
to perform computations. For example, the total arc length of a curve in the
isophotic metric is given by (6) with M instead of I. Figure 3 shows several
geodesic curves we have computed on a parametric surface using I and M .
Three pairs of input points are each connected with a Euclidean geodesic and
a regularized isophotic geodesic. The latter metric forces the geodesic curves to
follow the features of the surface.
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Fig. 3. Geodesic curves on a parametric surface with features: (light colored) computed
in the Euclidean metric, i.e. w = 1 and w∗ = 0 in (9); (dark colored) computed in the
isophotic metric, for w = 1 and w∗ = 2 in (9).

Remark 1. We may associate with the surface x(u, v) the 2-dimensional surface
X(u, v) = (

√
wx(u, v),

√
w∗n(u, v)) ⊂ R

6. Then the canonical Euclidean metric
in R

6 induces on the manifold X exactly the regularized isophotic metric; its
first fundamental form agrees with (9). In this sense, the isophotic metric has
some relation to work on image manifolds, if we consider the unit normals as a
vector valued image on the surface [11].

2.2 Computation on Implicit Surfaces

In view of the increasing importance of implicit representations and the elegance
of the level set method for the solution of a variety of problems in geometric
computing [1,15,23], it is appropriate to address the computation of the isophotic
metric if we are given an implicit representation F (x) = 0 of the surface. There
is nothing to do for the Euclidean metric. We simply use the canonical Euclidean
metric in R

3, described by the identity matrix E = (δij). The restriction to any
level set surface Φc : F (x) = c = const is the metric on the surface.

We are now constructing another metric in R
3, whose restriction to F (x) = 0

is the desired isophotic metric. For any x ∈ R
3 in the domain, where F is defined,

the normalized gradient vector n(x) = ∇F/‖∇F‖, describes the unit normal of
the level set of F which passes through x. Thus, the mapping x �→ n(x) extends
the Gaussian mapping to the set of all level sets of F . The image lies on the unit
sphere. The first derivative of this extended Gaussian mapping has the (singular)
matrix J := (nx, ny, nz). Hence, the squared (purely) isophotic length ‖v‖2

∗ of
a vector v (tangent vector of R

3 at x) is

‖v‖2
∗ = (J · v)2 = vt · N · v, (10)

where the matrix N = (nij) = J t · J is the Gramian of the partial derivatives of
n. Finally, the matrix

M = wE + w∗N = (wδij + w∗nij), (11)
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describes a Riemannian metric in R
3, whose restriction to any level set surface

Φc = F−1(c) is the corresponding regularized isophotic metric on Φc.
Note that the expressions become particularly simple for a signed distance

function F , since it satisfies ‖∇F‖ = 1. Moreover, it is well-known how to
efficiently compute the signed distance function to a surface, even if it is given
just as a cloud of points [24]. Therefore, the implicit framework can be used to
perform computations basically directly on clouds of measurement points.

3 Distance Fields in the Isophotic Metric

A distance function d on a surface Φ is characterized by the Eikonal equation

‖∇Φd‖2 = 1, (12)

where ∇Φd is the surface gradient of d. ∇Φd is a tangential vector of the surface,
points in direction of the largest positive directional derivative of d, and its norm
is equal to this derivative. For a parametric representation x(u, v) of Φ with first
fundamental matrix I, we can express this equation in terms of the ordinary
gradient,

(∇d̃)t · I−1 · ∇d̃ = 1.

Here d̃ = d̃(u, v) is the representation of the distance function in the parameter
domain, so that d̃(u, v) equals the distance value d(x(u, v)) of the surface point
x(u, v). Moreover, ∇d̃ = (d̃u, d̃v) is the ordinary gradient of the bivariate function
d̃. For a distance field in the isophotic metric, we just replace the matrix I by
the matrix M from equation (9),

(∇d̃)t · M−1 · ∇d̃ = 1. (13)

This is a 2D Hamilton-Jacobi equation and therefore the numerical computation
of an isophotic distance field to some point set can be done with the fast sweeping
algorithm by Tsai et al. [25]. The examples in Fig. 4 have been computed in this
way. One can show that the computation of isophotic distance fields on implicitly
defined surfaces can proceed along the lines of [14]: With M from (11) we solve
the 3D Hamilton-Jacobi equation,

(∇d)t · M
−1 · ∇d = 1, (14)

in a small neighborhood of the surface. Here, a 3D extension [7] of the algorithm
by Tsai el al. [25] can be used.

4 Application to Feature Sensitive Morphology on
Surfaces

4.1 Continuous Morphology

Let us consider a black image on a white surface. On the surface we have intro-
duced a metric. In our case this is the isophotic metric, but it could be another
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Fig. 4. Level sets to uniformly spaced values of the distance field to a given region in
the Euclidean metric (left) and isophotic metric (right). In the isophotic metric, the
level sets accumulate at features.

one as well. Then, the distance field to the black part B possesses level sets which
are the boundaries of the dilated versions of B. Thus, dilation means growth with
help of the distance field (see Fig. 4). Likewise, erosion can be defined as dilation
of the white background, again with the distance field. Combinations of dilation
and erosion, which yield closing and opening, are straightforward. Furthermore,
extensions to labelled meshes, in which faces are assigned values from a small
set V , is relatively straightforward through the use of series closings on indexed
partitions as defined in [8]. For the use of the isophotic metric in feature sensitive
morphology, we should note the following effects:

– Applying a dilation with high isophotic part (w∗ 	 w) to a domain adjacent
to a feature will make distances across that feature very large and thus avoid
a flow across the feature (see Fig. 4, right).

– Application of a dilation with high Euclidean part (w 	 w∗) to a domain
along a feature will fill interruptions along the feature, but not significantly
enlarge the domain across that feature (Fig. 5, left).

– A closing operation of a thin domain along a feature is achieved by applying
to it first a dilation with high Euclidean component and then an erosion
with high isophotic part (Fig. 5).

4.2 Discrete Morphology

We split the discussion into two parts. At first we discuss local neighborhoods,
to be understood as positions of the structuring element. Secondly, we show
how to use the neighborhoods – independently from their creation – in the
formulation of morphological operators. In both cases we confine ourselves to
triangle meshes, but the extension to other cell arrangements, even for manifolds
of higher dimension, is rather straightforward.
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Fig. 5. Continuous morphology: Closing of a domain (black) along a feature: First, a
Euclidean dilation (distance field on left side) is applied (result of dilation white on
right side), then an erosion with high isophotic part yields the closed domain (black,
right).

Neighborhoods. The combinatorial neighborhood N1(∆i) of depth one to a
triangle ∆i consists of all triangles in ∆, which share at least one vertex with
∆i. The neighborhood Nk is defined by iterating the procedure: in step k we
add all triangles which share at least a vertex with the boundary of Nk−1. For
a nearly uniform triangulation, the neighborhoods Nk are good approximants
to geodesic circles. For a neighborhood in the isophotic metric one has to gather
triangles around ∆i, whose isophotic distance falls below a given threshold. We
have implemented the computation of these geodesic discs following an idea by
M. Reimers [18], which appears for grids already in [24]. In view of Remark 1 we
compute a Euclidean distance field to a triangle on a triangle mesh in R

6, which
represents a two-dimensional surface. The only difference to the work of [18] is
the dimension of ambient space, which is irrelevant for distance computations in
the mesh. The examples in Figs. 2, 6, 7 have been computed in this way.

Morphological Operators. Let us first describe the dilation of level k of
black elements on a white background. At each triangle ∆i of the triangulation
we compute the local neighborhood Nk(∆i) and set the color of ∆i to black if
at least one of the triangles in the neighborhood is black. If the neighborhoods
approximate geodesic discs sufficiently well in some metric (e.g. the isophotic
metric), we have the following counterpart to the planar case: performing k
times a dilation of level one is the same as performing once a dilation of level
k. If we use a structuring element (SE) based on the isophotic distance, then it
is inevitable that there will be some triangles which lie partly within and partly
outside the isophotic distance threshold. A simple solution to this problem would
be to assign the triangle to the SE if more than a specified proportion of its
surface area is inside the distance boundary. A more flexible approach would
be to make use of non-flat SEs [22, p. 441], having values influenced by the
proportion of a triangle lying within the distance threshold.
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Fig. 6. Discrete morphology: Dilation in the isophotic metric (9) with w = 0.5 and
w∗ = 0.5: Starting with the dark triangles (left) we get the result shown (right). Note
that the isophotic metric prevents a flow across features.

An erosion of level k of black parts is just a dilation of level k applied to
the white background. A morphological closing operation first applies a dilation
of level k, and then an erosion of level k. This fills holes. The opening operator
applies the erosion before the dilation, which removes thin connections between
more compact parts. The width of the bridges to be removed is related to k.

We present examples of discrete morphology on real 3D data. For this pur-
pose we scanned an engineering object (Fig. 6) and a clay model (Fig. 7) with
a Minolta VI-900 3D laser scanner, and then triangulated the obtained point
clouds to produce the meshes shown in the respective figures. The example in
Fig. 6 demonstrates that feature sensitive mathematical morphology can aid the
segmentation of an object into its fundamental surfaces; this holds with respect
to the definition of local neighborhoods for shape detection, the implementa-
tion of region growing algorithms and the processing of the responses from local
shape detection filters (images on surfaces). The example in Fig. 7 supports our
expectation that morphology in the isophotic metric could be used for artistic
effects which are in accordance with the geometry of the surface. Furthermore,
the geodesic curves shown in Fig. 3 indicate the usability of the isophotic metric
for feature sensitive curve design on surfaces, e.g. for patch layout in connection
with high quality freeform surface fitting to clouds of measurement points.

5 Conclusion and Future Research

We have introduced and studied the isophotic metric, discussed some basic com-
putational aspects, and presented examples on its application to feature sensi-
tive morphology on surfaces and geometric design on surfaces. Both the efficient
computation as well as the application to morphology require further studies.
Promising extensions of the concept are feature sensitive design of energy mini-
mizing splines in the sense of the isophotic metric, and robot path planning, both
on surfaces. Another subject of ongoing and future research is a modification of
the isophotic metric so that it serves as a tool for image processing in arbitrary
dimensions. Here, we interpret a grey value image as a hypersurface, but use – in
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Fig. 7. Dilation of the dark triangles (left) on a triangulated surface: (middle) in the
Euclidean metric, (right) in the isophotic metric (9) with w = 0.2 and w∗ = 0.8.

accordance with the work of Koenderink and van Doorn [12] – isotropic rather
than Euclidean geometry in ambient space.
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