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Abstract. In this paper we study continuous-time quantum walks on
Cayley graphs of the symmetric group, and prove various facts concern-
ing such walks that demonstrate significant differences from their clas-
sical analogues. In particular, we show that for several natural choices
for generating sets, these quantum walks do not have uniform limiting
distributions, and are effectively blind to large areas of the graphs due
to destructive interference.

1 Introduction

According to our current understanding of physics, quantum mechanics provides
sources of true randomness, and mathematically speaking much of the underly-
ing framework of quantum information and computation may be viewed as an
extension of the study of random processes. The focus in quantum information
and computation is often placed on finding information processing tasks that can
be performed with the help of quantum information (such as factoring integers
in polynomial time [20] or implementing unconditionally secure key distribu-
tion [7,21]) or on studying the distinctively non-classical aspects of quantum
information (such as entanglement; see, for instance, [12]). However, it seems
quite plausible that the study of quantum information and computation will
also lead to new methods in the study of classical computation and random
processes. Along these lines, Kerenidis and de Wolf [17] recently used quantum
arguments to prove new results on (classical) locally decodable codes.

As a step toward understanding the possible implications of quantum meth-
ods for the study of random processes, it is natural to consider the differences
between classical and quantum processes. One of the topics that has recently
received attention in the quantum computing community that highlights these
differences is the the study of quantum computational variants of random walks,
or quantum walks [1,3,5,6,8,9,11,15,18,19,23]. (A recent survey on quantum walks
by Kempe [16] is an ideal starting point for background on quantum walks.)
In this paper we consider quantum walks on Cayley graphs of the symmetric
group—a topic that has been suggested in at least two previous papers on quan-
tum walks [16,3].
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Two main variants of quantum walks have been considered: continuous-time
quantum walks and discrete-time quantum walks. We restrict our attention to
continuous-time quantum walks in this paper. Keeping in line with previous re-
sults on quantum walks, we find some significant differences between quantum
and classical random walks on Cayley graphs of the symmetric group. In partic-
ular, we find that quantum walks on Cayley graphs of the symmetric group do
not have uniform limiting distributions for several natural choices for the gener-
ators. This answers a question recently suggested by Ahmadi, Belk, Tamon, and
Wendler [3] concerning non-uniform mixing of quantum walks.

One of the principle motivations for studying quantum walks has been that
quantum walks may potentially be useful as algorithmic tools. This potential
was recently demonstrated by Childs, Cleve, Deotto, Farhi, Gutmann and Spiel-
man [8], who prove that there exists a black-box problem for which a quantum
algorithm based on quantum walks gives an exponential speed-up over any clas-
sical randomized algorithm. The key to this algorithm is that a quantum walk
is able to permeate a particular graph while any classical random walk (or any
classical randomized algorithm, for that matter) cannot. One of the first prob-
lems that comes to mind as an obvious challenge for the quantum algorithms
community is the graph isomorphism problem, and it is natural to ask whether
quantum walks, and in particular quantum walks on Cayley graphs of the sym-
metric group, can be of any use for an algorithm for this problem. (While this was
our primary motivation for studying quantum walks on the symmetric group,
we have not found any way to apply our results to this problem.)

2 Definitions

2.1 Continuous-Time Quantum Walks on Graphs

A continuous-time quantum walk on an undirected graph Γ = (V,E) can be de-
fined in the following way. First, we let A be the |V |×|V | adjacency matrix of Γ ,
let D be the |V |×|V | diagonal matrix for which the diagonal entry corresponding
to vertex v is deg(v), and let L = D −A. The matrix L is positive semidefinite
and, under the assumption that Γ is connected, 0 is an eigenvalue with multiplic-
ity 1; the uniform vector is a corresponding eigenvector. The quantum walk on Γ
is then given by the unitary matrix U(t) = e−itL for t ∈ R. If the quantum walk
on Γ is run for time t starting at vertex u, then the amplitude associated with
each vertex v is U(t)[v, u], and thus measuring at this point (with respect to the
standard basis) results in each vertex v with probability |U(t)[v, u]|2. If instead
of starting at a particular vertex u we have some quantum state described by
ψ : V → C, and we run the quantum walk for time t, the new quantum state
is described by U(t)ψ, and measuring results in each vertex v with probability
|(U(t)ψ)[v]|2. Other types of measurements can be considered, but we will focus
just on this sort of measurement where the outcome is a vertex of the graph. To
our knowledge, continuous-time quantum walks were first considered by Farhi
and Gutmann [11].
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Continuous-time quantum walks are analogous to continuous-time random
walks on Γ , where the evolution is described by M(t) = e−tL rather than U(t)
as above. Specifically, if the continuous-time random walk is started at vertex u
and run for time t, the probability of being at vertex v is given by M(t)[v, u].
Continuous-time random walks share many properties with their discrete-time
variants [4].

This paper is concerned with quantum walks on Cayley graphs, which are
regular graphs. In the case of regular graphs there is no difference between using
the matrix L and the adjacency matrix for the definition of quantum walks,
and we find it is more convenient to use the adjacency matrix for the graphs
we are considering. (Of course one cannot replace L with the adjacency matrix
when discussing the classical case, since this would not give rise to a stochastic
process—the equivalence only holds for the quantum case.) The reasoning behind
this equivalence is as follows. Because D and A commute for regular graphs, we
see that U(t) = e−itdIeitA = e−itdeitA; the difference is a global phase factor,
which has no significance when calculating the probabilities. So, from here after
in this paper we will consider the unitary process given by U(t) = eitA rather
than e−itL.

In the case of classical random walks, there are various properties of random
walks that are of interest. One of the most basic properties of a classical random
walk is the limiting distribution (or stationary distribution). This distribution is
the uniform distribution for random walks on connected, regular graphs, and in
fact as a result of the way we have defined continuous-time random walks this
distribution is uniform for any connected, undirected graph; this is apparent by
considering the spectral decomposition of the matrix e−tL.

As quantum walks are unitary (and therefore invertible) processes, they do
not converge to any state, so one must be precise about what is meant by the
limiting distribution. Suppose we have a quantum walk on some graph Γ and
some vertex u has been designated as the starting vertex. The probability of
measuring the walk at some vertex v after time t is, as described above, given
by Pt[v] = |U(t)[v, u]|2. If t is chosen uniformly from some range [0, T ] then the
resulting distribution is

P̄T [v] =
1
T

∫ T

0

Pt[v]dt.

In the limit for large T these distributions converge to some distribution P̄ , which
is the limiting distribution of the quantum walk. This notion of the limiting
distribution for a quantum walk is discussed in [1].

2.2 Cayley Graphs and Representation Theory of the Symmetric
Group

In this section we briefly discuss necessary background information on Cayley
graphs of the symmetric group and on representation theory of the symmetric
group, which is the main tool used in this paper to analyze quantum walks on
Cayley graphs.
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Let G be a finite group and let R ⊆ G be a set of generators for G sat-
isfying g ∈ R ⇔ g−1 ∈ R for all g ∈ G. Then the Cayley graph of G with
respect to R, which we denote by Γ (G,R) in this paper, is an undirected graph
defined as follows. The set of vertices of Γ (G,R) coincides with G, and for any
g, h ∈ G, {g, h} is an edge in Γ (G,R) if and only if gh−1 ∈ R. Equivalently, if
R = {h1, . . . , hd} then each vertex g is adjacent to vertices h1g, . . . , hdg. Thus,
Γ (G,R) is a regular graph of degree d = |R|. We will restrict our attention to
generating sets that form conjugacy classes. (The method we use for analyzing
quantum walks on Cayley graphs is limited to such generating sets.) Recall that
for some group G, elements g and h are conjugate if there exists some a ∈ G such
that a−1ga = h. This is an equivalence relation that partitions G into conjugacy
classes. A function f : G → C is a class function if it is constant on conjugacy
classes of G.

The conjugacy classes in Sn are determined by the cycle structures of ele-
ments when they are expressed in the usual cycle notation. Recall that a partition
λ of n is a sequence (λ1, . . . , λk) where λ1 ≥ · · · ≥ λk ≥ 1 and λ1 + · · ·+λk = n.
The notation λ � n indicates that λ is a partition of n. There is one conjugacy
class for each partition λ � n in Sn, which consists of those permutations hav-
ing cycle structure described by λ. We denote by Cλ the conjugacy class of Sn

consisting of all permutations having cycle structure described by λ.
A representation of a group G is a homomorphism from G to GL(d,C) for

some positive integer d, where GL(d,C) denotes the general linear group of in-
vertible d×d complex matrices. The dimension of such a representation is d, and
we write dim(ρ) to denote the dimension of a given representation ρ. Two rep-
resentations ρ1 : G → GL(d1,C) and ρ2 : G→ GL(d2,C) are equivalent if there
exists an invertible linear mapping A : Cd1 → Cd2 such that Aρ1(g) = ρ2(g)A
for all g ∈ G, otherwise they are inequivalent. A representation ρ of dimension d
is irreducible if there are no non-trivial invariant subspaces of Cd under ρ. That
is, if W ⊆ Cd is a subspace of Cd such that ρ(g)W ⊆ W for all g ∈ G, then
W = Cd or W = {0}. A collection of inequivalent, irreducible representations
is said to be complete if every irreducible representation is equivalent to one
of the representations in this set. It holds that any complete set of irreducible
representations can be put into one-to-one correspondence with the conjugacy
classes of the group in question.

The character corresponding to a representation ρ is a mapping χρ : G→ C

obtained by taking the trace of the representation: χρ(g) = tr(ρ(g)). Using the
cyclic property of the trace it follows that the characters are constant on the
conjugacy classes of a group. If we have a complete set of inequivalent, irreducible
representations of a group, then the corresponding characters form an orthogonal
basis for the space of all class functions.

The Fourier transform f̂ of a complex-valued function f on G at a represen-
tation ρ is f̂(ρ) =

∑
g∈G f(g)ρ(g).

Fact 1 Let f be a class function on a group G and ρ be an irreducible represen-
tation of G, then f̂(ρ) = 1

dim(ρ)

(∑
g∈G f(g)χρ(g)

)
I.
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For the symmetric group on n elements there is a particular way of asso-
ciating the partitions of n (which are in one-to-one correspondence with the
conjugacy classes of Sn) with a complete set of inequivalent, irreducible repre-
sentations of Sn. These particular representations are said to be in Young normal
form. (Several text books describe the specific method for constructing these
representations—see, for instance, James and Kerber [14]. It will not be impor-
tant for this paper to discuss the actual construction of these representations.)
These representations have the special property that all matrix entries in these
representations are integers. Once we have these irreducible representations, it is
possible to associate with each one an equivalent irreducible representation that
has the property that ρ(g) is a unitary matrix for every g ∈ Sn. The irreducible,
unitary representation associated with a given partition λ � n will be denoted
ρλ, and the corresponding character will be denoted χλ. The following fact will
be a useful fact regarding these representations.

Fact 2 Let λ and µ be partitions of n and let ρλ and ρµ be the associated unitary
representations as described above. Then for all 1 ≤ i, j ≤ dim(ρλ) and 1 ≤ k, l ≤
dim(ρµ),

∑
g∈Sn

ρλ(g)[i, j]ρµ(g)[k, l] =
{ n!

dim(ρλ) if λ = µ, i = k, and j = l

0 otherwise

When λ, ν � n, we write χλ(ν) to denote the character χλ evaluated at an
arbitrary g ∈ Cν , and more generally if f is a class function we write f(ν) to
mean f(g) for any g ∈ Cν .

Fact 3 The sum of the squares of the characters of a conjugacy class over any
complete, irreducible set of representations of a group G multiplied by the order
of the class is the order of G. Thus, we have |Cλ|

∑
ν�n χν(λ)2 = n! for every

λ � n.
It will be necessary for us to be able to evaluate the characters associated

with the irreducible representations of the symmetric group in certain instances.
The Murnaghan-Nakayama rule provides a tool for doing this—information on
the Murnaghan-Nakayama rule can be found in [22].

3 Continuous-Time Quantum Walks on Γ (S�, C�)

In this section we analyze the quantum walk on Γ (Sn, Cλ) for λ � n. Our anal-
ysis implies that for some natural choices for λ the quantum walk on Γ (Sn, Cλ)
does not have a uniform limiting distribution with respect to the definition dis-
cussed in the previous section. In essence, the quantum walk has a significant
“blind spot” consisting of all n-cycles (i.e., permutations having cycle-structure
consisting of a single n-cycle).

This section is divided into three subsections. First we prove a general result
concerning the spectral decomposition of quantum walks on Sn. We then consider
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the case where the generating set consists of the set of all transposition, and
finally the case where the generating set consists of all p-cycles for any choice of
p ∈ {2, . . . , n}.

3.1 Spectral Decomposition and Periodicity

Define cλ : Sn → C to be the unit vector that is uniform on the conjugacy class
Cλ and zero everywhere else: cλ[g] = |Cλ|−1/2 if g ∈ Cλ, and cλ[g] = 0 otherwise.

The analysis of quantum walks on Γ (Sn, Cλ) is greatly simplified by the fact
that these walks are constant on conjugacy classes, in the following sense.

Proposition 4 Let αt(g) denote the amplitude associated with vertex g after
evolving the quantum walk on Γ (Sn, Cλ) for time t, assuming the walk starts on
a conjugacy class, i.e., αt(g) = (U(t)cλ) [g]. Then for all t, αt is a class function.

The following theorem will be one of the main tools used in our analysis.

Theorem 5. Assume H [g, h] = f(g−1h) for all g, h ∈ Sn, where f a class
function on Sn, and let U(t) = eitH for all t ∈ R. Then for any partitions
λ, µ � n we have

c∗λU(t)cµ =

√|Cλ|
√|Cµ|
n!

∑
ν�n

exp


 it

dim(ρν)

∑
γ�n

|Cγ |f(γ)χν(γ)


χν(λ)χν(µ).

In order to prove this theorem we will use the following lemma, by which a
complete orthogonal set of eigenvectors and eigenvalues of U(t) can be obtained.

Lemma 1. Assume H [g, h] = f(g−1h) for all g, h ∈ Sn, where f is a class
function on Sn. Define vectors ψν,i,j : Sn → C for each ν � n, 1 ≤ i, j ≤
dim(ρν) by ψν,i,j [g] = ρν(g)[i, j] for all g ∈ Sn. Then each ψν,i,j is an eigenvector
of H with associated eigenvalue 1

dim(ρν)

∑
γ�n |Cγ |f(γ)χν(γ). Moreover, these

eigenvectors are pairwise orthogonal and span the space C
Sn .

Remark. The fact described in Lemma 1 is not new—for instance, it is discussed
in Section 3E of [10] for general finite groups. A short proof of the lemma follows.

Proof of Lemma 1. For each g ∈ Sn we have

(Hψν,i,j)[g] =
∑
h∈G

f(g−1h)ρν(h)[i, j] =
∑
h∈G

f(h)ρν(gh)[i, j].

Now, since ρν is a homomorphism, we have ρν(gh) = ρν(g)ρν(h), which implies

(Hψν,i,j)[g] =
dim(ρν)∑

k=1

ρν(g)[i, k]

(∑
h∈Sn

f(h)ρν(h)

)
[k, j]

=
dim(ρν)∑

k=1

ρν(g)[i, k]f̂(ρν)[k, j].
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By Fact 1 we see that

(Hψν,i,j)[g] =
1

dim(ρν)

∑
h∈Sn

f(h)χν(h)ρν(g)[i, j]

=


 1

dim(ρν)

∑
γ�n

|Cγ |f(γ)χν(γ)


ψν,i,j [g].

This establishes that the vectors ψν,i,j are eigenvectors with associated eigenval-
ues as claimed. The fact that these eigenvectors are pairwise orthogonal follows
from Fact 2 and the fact that they span the entire space CSn follows from this
orthogonality along with Fact 3.

Proof of Theorem 5. By Lemma 1 we may write

H =
∑
ν,j,k

(
1

dim(ρν)

∑
γ

|Cγ |f(γ)χν(γ)

)
ψν,j,kψ

∗
ν,j,k

‖ψν,j,k‖2

and therefore

U(t) =
∑
ν,j,k

exp

(
it

dim(ρν)

∑
γ

|Cγ |f(γ)χν(γ)

)
ψν,j,kψ

∗
ν,j,k

‖ψν,j,k‖2

Let Xλ : Sn → C denote the characteristic function of Cλ for λ � n. Then we
have that

c∗λψν,j,k =
1√|Cλ|

X̂λ(ρν)[j, k] =

{ √
|Cλ|χν(λ)

dim(ρν ) if j = k

0 otherwise

by Fact 1. By Fact 2 we have ‖ψν,j,k‖2 = n!
dim(ρν) . So,

c∗λU(t)cµ

=
1
n!

∑
ν

exp


 it

dim(ρν)

∑
γ�n

|Cγ |f(γ)χν(γ)


 dim(ρν)

dim(ρν)∑
j,k=1

c∗λψν,j,k ψ
∗
ν,j,kcµ

=

√|Cλ|
√|Cµ|
n!

∑
ν�n

exp


 it

dim(ρν)

∑
γ�n

|Cγ |f(γ)χν(γ)


χν(λ)χν (µ),

which is what we wanted to show.

Theorem 5 implies the following interesting fact.

Proposition 6 Any continuous-time quantum walk on the Cayley graph of the
symmetric group for which the generators form conjugacy classes is periodic,
with period 2π/k for some k ∈ {1, 2, 3, . . .}.
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Proof. Using Fact 1 we see that the quantity |Cγ |χν(γ)/ dim(ρν) is a sum of
matrix elements of irreducible representations. This quantity is independent of
the particular choice of the basis for the irreducible representations, so we may
choose that basis that corresponds to Young’s natural form, in which all of the
matrix entries are integer valued, implying that the quantity itself is integer
valued. Using Fact 3 and Theorem 5 therefore have that U(2π) = U(0) = I.
Thus the period of the walk must divide 2π.

We have not discussed mixing times in this paper, but the previous propo-
sition implies that quantum walks on Cayley graphs of Sn reach their limiting
distribution quickly, and when calculating the limiting distribution it is only
necessary to average over times in the range [0, 2π]. Note that in terms of im-
plementation, this does not mean that the walk mixes in constant time; some
number of operations that is polynomial in the degree of the graph and in some
accuracy parameter is required to implement such a walk, assuming the ability
to compute the neighbors of each vertex. See [2,8] for further details.

3.2 Cayley Graphs of Sn Generated by Transpositions

For the Cayley graph of Sn generated by the transpositions, Theorem 5 has
various implications that we discuss in this section. We will require explicit
values for various characters of the symmetric group, which we now mention.
Using the Murnaghan-Nakayama rule it can be shown that

χν ((n)) =
{

(−1)n−k for ν = (k, 1, . . . , 1), k ∈ {1, . . . , n}
0 otherwise

and χ(k,1,...,1) (id) = dim(ρ(k,1,...,1)) =
(
n−1
k−1

)
. For the characters at the transpo-

sitions, it is known [13] that

χν(τ) =
dim(ρν)(

n
2

) ∑
j

((
νj

2

)
−
(
ν′j
2

))
.

Here, τ is any transposition, ν′ is the partition generated by transposing the
Young diagram of ν, while νj and ν′j are the jth components of the partitions ν
and ν′. Substituting these values into Theorem 5 gives

c∗λU(t)cµ =

√|Cλ|
√|Cµ|
n!

∑
ν�n

exp


it∑

j

((
νj

2

)
−
(
ν′j
2

))
χν(λ)χν(µ)

for the quantum walk on Γ (Sn, C(2,1,...,1)), and specifically for the case where
µ = (1, . . . , 1) and λ = (n) it follows that

c∗(n)U(t)c(1,...,1)

=
1√
n · n!

n∑
k=1

exp
(
it

((
k

2

)
−
(
n− k + 1

2

)))
(−1)n−k

(
n− 1
k − 1

)

=
(2i sin(tn/2))n−1

√
n · n!

.
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In particular,

max
t

∣∣∣c∗(n)U(t)c(1,...,1)

∣∣∣2 =
22n−2

n · n!
, (1)

where the maximum occurs for t = (2k + 1)π/n, k ∈ Z.
Eq. 1 has the following interpretation. If we start a quantum walk on

Γ (Sn, C(2,1,...,1)) at the identity element and evolve for any amount of time and
measure, the probability to measure some n-cycle is at most 22n−2

n·n! as opposed
to probability approaching 1

n for the classical case. The probability to measure
any particular n-cycle is therefore at most 22n−2

(n!)2 , as opposed to some number
approaching 1

n! classically. The probabilities in the quantum case are smaller by
a factor that is exponential in n.

As discussed in Section 2.1, we will denote by Pt the distribution on Sn

obtained by performing the quantum walk on Γ (Sn, C(2,1,...,1)) for time t starting
at the identity then measuring. The above analysis gives a lower bound for the
total variation distance of Pt from the uniform distribution:

‖Pt − uniform‖ ≥ 1
n
− 22n−2

n · n!

for all values of t. This bound follows from considering only the n-cycles, and we
believe the true bound to be much larger. Numerical simulations support this
claim, but thus far we only have exact expressions for the n-cycles.

Given that we have an exact expression for the probability Pt[g] for any n-
cycle g, it is easy to determine the probability associated with any n-cycle in the
limiting distribution. By the periodicity of our walks, we have

P̄ [g] =
1
2π

∫ 2π

0

Pt[g] dt

for each g ∈ Sn, and thus for any g ∈ C(n) we have P̄ [g] = (2n−2
n−1 )
(n!)2 . Somewhat

surprisingly, this average probability associated with reaching a given n-cycle is
not unique to the particular choice of C(2,1,...,1) as a generating set, as shown in
the next subsection.

3.3 Other Generating Sets

We have not been able to obtain tractable expressions for the amplitudes associ-
ated with quantum walks for other generating sets besides C(2,1,...,1). However,
we can prove some facts concerning the limiting distributions for such walks in
the case that the generating set consists of all p-cycles for any choice of p. (In
case p is odd, we must keep in mind that only the alternating group is being
generated.) Again we will focus on the probability of reaching n-cycles starting
from the identity.

Consider the quantum walk on Γ (Sn, Cγ), where γ is any partition. According
to Theorem 5, the probability associated with a given conjugacy class Cλ when
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starting from a uniform superposition on another class Cµ after time t is given
by |c∗λU(t)cµ|2, which may be written as

|Cλ||Cµ|
(n!)2

∑
ν,η

exp
(
it |Cγ |

(
χν(γ)

dim(ρν)
− χη(γ)

dim(ρη)

))
χν(λ)χν(µ)χη(λ)χη(µ).

As before, we let P̄ denote the limiting distribution of the walk when starting
from the identity. Since our walks are periodic with period 2π, we therefore have

P̄ [g] =
1

(n!)2

∗∑
ν,η

χν(g) dim(ρν)χη(g) dim(ρη).

Here the asterisk denotes that the sum is over all partitions ν, η subject to the
condition

χν(γ)
dim(ρν)

=
χη(γ)

dim(ρη)
. (2)

Observe that the choice of generators only affects the average distribution by
determining what values other than ν = η are included in the sum. More gener-
ally, the average probability associated with obtaining some element in Cλ when
starting the walk on the uniform superposition over Cµ is given by

|Cλ||Cµ|
(n!)2

∗∑
ν,η

χν(λ)χν(µ)χη(λ)χη(µ).

In the case that g is an n-cycle and γ = (p, 1, . . . , 1), the condition of
Eq. 2 is relatively easy to characterize for those partitions ν and η for which
χν(g)χη(g) 
= 0. Figure 1 summarizes the probability associated with each n-
cycle g in the limiting distribution for the quantum walk on Γ (Sn, Cγ). Due to
space constraints, the derivation of these probabilities has been omitted. (See
http://arxiv.org/abs/quant-ph/0305182 for a longer version of this paper con-
taining these details.)

We have the following lower bounds on the total variation distance of the lim-
iting distribution from the uniform distribution. As for the case of the quantum
walk generated by the transpositions, this bound follows just from considering
the n-cycles, and we believe the true distance from uniform to be much larger.

• Let p ∈ {2, . . . , n} be even, let γ = (p, 1, . . . , 1) � n and let P̄ denote the
limiting distribution of the quantum walk on Γ (Sn, Cγ). Then

‖P̄ − uniform(Sn)‖ ≥ 1
n
− 1
n · n!

(
2n− 2
n− 1

)
.

• Let n be odd, let p ∈ {2, . . . , n} be odd, let γ = (p, 1, . . . , 1) � n and let P̄
denote the limiting distribution of the quantum walk on Γ (Sn, Cγ). Then

‖P̄ − uniform(An)‖ ≥ 2
n
− 2
n · n!

(
2n− 2
n− 1

)
+

1
n · n!

(
n− 1
n−1

2

)2

.
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Parity of n Parity of p Range of p Probability at each n-cycle

even or odd even 2 ≤ p ≤ �n
2
� 1

(n!)2

�
2n−2
n−1

�

even even n
2

+ 1 ≤ p ≤ n − 1 2
(n!)2

�n−p
k=1

�
n−1
k−1

�2

odd even n+1
2

+ 1 ≤ p ≤ n − 1 2
(n!)2

�n−p
k=1

�
n−1
k−1

�2
+ 4

(n!)2

�
n−2
p−1

�2

even even p = n 1
(n!)2

�
2n−2
n−1

�

even odd — 0

odd odd 2 ≤ p ≤ n+1
2

2
(n!)2

�
2n−2
n−1

�− 1
(n!)2

�n−1
n−1

2

�2

odd odd n+1
2

+ 1 ≤ p ≤ n − 1 4
(n!)2

�n−p
k=1

�
n−1
k−1

�2
+ 4

(n!)2

�
n−2
p−1

�2

odd odd p = n 2
(n!)2

�
2n−2
n−1

�− 1
(n!)2

�n−1
n−1

2

�2

Fig. 1. Probabilities associated with each n-cycle in the limiting distribution for
Γ (Sn, C(p,1,...,1)).

4 Conclusion

In this paper we have studied some of the properties of continuous-time quantum
walks on Cayley graphs of the symmetric group. Many questions concerning these
walks remain unanswered. One obvious question that we have not attempted to
address in this paper is whether quantum walks on the symmetric group can
be applied in the context of quantum algorithms. In terms of specific properties
of these walks, we have focused on the limiting distribution—is the limiting
distribution bounded away from uniform by a constant? Many other properties
of these walks may be of interest as well. For instance, the effect of decoherence
on these walks is an interesting topic to consider.
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