
Declarative Data Mining Using SQL3

Hasan M. Jamil

Department of Computer Science and Engineering
Mississippi State University, USA

jamil@cse.msstate.edu

Abstract. Researchers convincingly argue that the ability to declar-
atively mine and analyze relational databases using SQL for decision
support is a critical requirement for the success of the acclaimed data
mining technology. Although there have been several encouraging at-
tempts at developing methods for data mining using SQL, simplicity
and efficiency still remain significant impediments for further develop-
ment. In this article, we propose a significantly new approach and show
that any object relational database can be mined for association rules
without any restructuring or preprocessing using only basic SQL3 con-
structs and functions, and hence no additional machineries are necessary.
In particular, we show that the cost of computing association rules for a
given database does not depend on support and confidence thresholds.
More precisely, the set of large items can be computed using one simple
join query and an aggregation once the set of all possible meets (least
fixpoint) of item set patterns in the input table is known. We believe that
this is an encouraging discovery especially compared to the well known
SQL based methods in the literature. Finally, we capture the function-
ality of our proposed mining method in a mine by SQL3 operator for
general use in any relational database.

1 Introduction

In recent years, mining association rules has been a popular way of discovering
hidden knowledge from large databases. Most efforts have focused on developing
novel algorithms and data structures to aid efficient computation of such rules.
Despite major efforts, the complexity of the best known methods remain high.
While several efficient algorithms have been reported [1,4,10,22,19,12,21,18,23],
overall efficiency continues to be a major issue. In particular, in paradigms other
than association rules such as ratio rules [11], chi square method [3], and so on,
efficiency remains one of the biggest challenges.

The motivation, importance, and the need for integrating data mining with
relational databases has been addressed in several articles such as [16,17]. They
convincingly argue that without such integration, data mining technology may
not find itself in a viable position in the years to come. To be a successful
and feasible tool for the analysis of business data in relational databases, such
technology must be made available as part of database engines as well as part
of its declarative query language.

R. Meo et al.(Eds.): Database Support for Data Mining Applications,LNAI 2682, pp. 52–75, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

jamil@cse.msstate.edu

Declarative Data Mining Using SQL3 53

While research into procedural computation of association rules has been
extensive, fewer attempts have been made to use relational machinery or SQL
for declarative rule discovery barring a few exceptions such as [13,25,21,8,20,14].
Most of these works follow an apriori like approach by mimicking its function-
ality and rely on generating candidate sets and consequently suffer from high
computational overhead. While it is certainly possible to adapt any of the various
procedural algorithms for rule mining as a special mining operator, the opportu-
nity for using existing technology and constructs is preferable if it proves to be
more beneficial. Some of the benefits of using existing relational machinery may
include opportunity for query optimization, declarative language support, selec-
tive mining, mining from non-transactional databases, and so on. From these
standpoints, it appears that research into data mining using SQL or SQL-like
languages bear merit and warrant attention. But before we proceed any further,
we would like to briefly summarize the concept of association rules as follows for
the readers unfamiliar with the subject.

Let I = {i1, i2, . . . , im} be a set of item identifiers. Let T be a transaction
table such that every tuple in T is a pair, called the transaction, of the form
〈tid, X〉 such that tid is a unique transaction ID and X ⊆ I is a set of item
identifiers (or items). A transaction is usually identified by its transaction ID
tid, and said to contain the item set X. An association rule is an implication
of the form X → Y , where X, Y ⊆ I, and X ∩ Y = ∅. Association rules are
assigned a support (written as δ) and confidence (written as η) measure, and
denoted X → Y 〈δ, η〉. The rule X → Y has a support δ, denoted sup(X → Y),
in the transaction table T if δ% of the transactions in T contain X ∪Y . In other
words, sup(X → Y) ≡ sup(X ∪ Y) = δ = |{t|t∈T ∧X∪Y ⊆t[I]}|

|T | , where I ⊆ I is a
set of items. On the other hand, the rule X → Y is said to have a confidence
η, denoted con(X → Y), in the transaction table T if η% of the transactions
in T that contain X also contains Y . So, the confidence of a rule is given by
con(X → Y) = η = sup(X∪Y)

sup(X) .
Given a transaction table T , the problem of mining association rules is to

generate a set of quadruples R (a table) of the form 〈X, Y, δ, η〉 such that X, Y ⊆
I, X ∩Y = ∅, δ ≥ δm, and η ≥ ηm, where δm and ηm are user supplied minimum
support and confidence thresholds, respectively. The clarity of the definitions and
the simplicity of the problem is actually deceptive. As mentioned before, to be
able to compute the rules R, we must first compute the frequent item sets. A
set of items X is called a frequent item set if its support δ is greater than the
minimum support δm.

1.1 Related Research

Declarative computation of association rules were investigated in works such as
[13,25,9,21,8,20,14,7,5].Meo et al. [14] proposes an SQL like declarative query
language for association rule mining. The language proposed appears to be too
oriented towards transaction databases, and may not be suitable for general
association rule mining. It is worth mentioning that association rules may be

54 H.M. Jamil

computed for virtually any type of database, transaction or not. In their ex-
tended language, they blend a rule mine operator with SQL and other additional
features. The series of research reported in [25,21,20] led by IBM researchers,
mostly addressed the mining issue itself. They attempted to compute the large
item sets by generating candidate sets testing for their admissibility based on
their MC model, combination, and GatherJoin operators. Essentially, these works
proposed a method for implementing apriori using SQL. In our opinion, by try-
ing to faithfully copy a procedural concept into a declarative representation they
retain the drawbacks and inefficiencies of apriori in the model.

The mine rule operator proposed in [13] is perhaps the closest idea to ours. The
operator has significant strengths in terms of expressive power. But it also re-
quires a whole suit of new algebraic operators. These operators basically simulate
the counting process using a set of predefined functions such as CountAllGroups,
MakeClusterPairs, ExtractBodies, and ExtractRules. These functions use a fairly
good number of new operators proposed by the authors, some of which use loop-
ing constructs. Unfortunately, no optimization techniques for these operators are
available, resulting in doubts, in our opinion, about the computational viability
of this approach.

In this article, we will demonstrate that there is a simpler SQL3 expression
for association rule mining that does not require candidate generation such as in
[25,21,20] or any implementation of new specialized operators such as in [13,14].
We also show that we can simply add an operator similar to cube by operator
proposed for data warehousing applications with an optional having clause to
facilitate filtering of unwanted derivations. The striking feature of our proposal is
that we can exploit the vast array of optimization techniques that already exists
and possibly develop newer ones for better performance. These are some of the
advantages of our proposal over previous research in addition to its simplicity
and intuitive appeal.

1.2 Contributions of this Article and Plan for the Presentation

We summarize the contributions of this article as follows to give the reader
an idea in advance. We present a different view of transaction databases and
identify several properties that they satisfy in general in section 2. We exploit
these properties to develop a purely SQL3 based solution for association rule
mining that uses the idea of least fix point computation. We rely on SQL3
standard as it supports complex structures such as sets and complex operations
such as nesting and unnesting. We also anticipate the availability of several set
processing functions such as intersect (∩) and setminus (\), set relational
operators such as subset (⊂) and superset (⊃), nested relational operations
such as nest by, etc. Finally, we also exploit SQL3’s create view recursive and with
constructs to implement our least fixpoint operator for association rule mining.

We follow the tradition of separating the large item set counting from actual
mining and propose two operators – one to compute the large item sets from
a source table, another one to compute the rules from the large item sets. We
provide optional mechanisms to specify support and confidence thresholds and a

Declarative Data Mining Using SQL3 55

few additional constraints that the user may wish the mining process to satisfy.
We also define a single operator version of mine by operator to demonstrate that
it is possible to do so even within our current framework, even though we prefer
the two stage approach.

The other implicit contribution of our proposal is that it opens up the op-
portunity for query optimization, something that was not practically possible
until now in mining applications. Finally, it is now possible to use any relational
database for mining in which one need not satisfy input restrictions similar to
the ones that various mining algorithms require. Consequently, the developments
in this article eliminates the need for any traditional preprocessing of input data.

In section 3, we present a discussion on a set theoretic perspective of data
mining problem. This discussion builds upon the general properties of trans-
action tables presented in section 2. In this section, we demonstrate through
illustrative examples that we can solve the mining problem just using set, lattice
and aggregate operations if we adopt the idea of the so called non-redundant
large item sets. Once the problem is understood on intuitive grounds, the rest of
the development follows in fairly straightforward ways. In section 4 we present
a series of SQL3 expressions that capture the spirit of the procedure presented
in section 3. One can also verify that these expressions really produce the so-
lution we develop in the illustrative example in this section. We then discuss
the key idea we have exploited in developing the solution in section 5. The min-
ing operator is presented in section 6 that is an abstraction of the series of
SQL3 expressions in section 4. Several optimization opportunities and related
details are discussed in section 7. Before we conclude in section 9, we present
a comparative analysis of our method with other representative proposals in
section 8.

2 Properties of Transaction Tables

In this section, we identify some of the basic properties shared by all transac-
tion tables. We explain these properties using a synthetic transaction table in
relational data model [24]. In the next section, we will introduce the relational
solution to the association rule mining problem.

Let I be a set of items, P(I) be all possible item sets, T be a set of identifiers,
and δm be a threshold. Then an item set table S with scheme {Tid, Items} is
given by

S ⊆ T × P(I)

such that m = |S|. An item set table S is admissible if for every tuple t ∈ S,
and for every subset s ∈ P(t[Items]), there exists a tuple t′ ∈ S such that
s = t′[Items]. In other words, every possible subset of items in a tuple is also
a member of S. The frequency table of an admissible item set table S can be
obtained as

F =Items Gcount(∗)(TidG(S))

56 H.M. Jamil

which has the scheme {Items, Count}. A frequent item set table Ff is a set of
tuples that satisfies the count threshold property as follows.

Ff = σCount/m≥δm
(F)

Ff satisfies some additional interesting properties. Suppose I = t[Items] is
an item set for any tuple t ∈ Ff . Then, for any X, Y ⊂ I, there exists t1 and t2 in
Ff such that t1[Items] = X, t2[Items] = Y , t1[Count] ≥ t[Count], t2[Count] ≥
t[Count], and t[Count] ≤ min(t1[Count], t2[Count]). The converse, however, is
not true. That is, for any two tuples t1 and t2 in Ff , it is not necessarily true
that there exists a tuple t ∈ Ff such that t[Items] = t1[Items]∪t2[Items]. But if
such a t exists then the relation t[Count] ≤ min(t1[Count], t2[Count]) is always
true. Such a relationship is called anti-transitive.

The goal of the first stage of apriori like algorithms has been to generate the
frequent item set table described above from a transaction table T . Note that
a transaction table, as defined above, is, in reality, not admissible. But the first
stage of apriori mimics admissibility by constructing the k item sets at every
kth iteration step.

Once the frequent item set table is available, the association rule table R can
be computed as1

R = Π
Ff1 .Items,Ff2 .Items\Ff1 .Items,

Ff1
.Count

m ,
Ff2

.Count

Ff1
.Count

×(σFf1 .Items⊂Ff2 .Items(Ff1 × Ff2))

This expression, however, produces all possible rules, some of which are even
redundant. For example, let a → b〈 sab

m , sab

sa
〉 and ab → c〈 sabc

m , sabc

sab
〉 be two rules

discovered from Ff , where sX and m represent respectively the frequency of an
item set X in the item set table (i.e., t ∈ Ff , and t[Count] = sX

m), and number
of transactions in the item set table S. Then it is also the case that R contains
another rule (transitive implication) a → bc〈 sabc

m , sabc

sa
〉. Notice that this last

rule is a logical consequence of the first two rules that can be derived using the
following inference rule, where X, Y, Z ⊂ I are item sets.

X → Y 〈 sX∪Y

m , sX∪Y

sX
〉 X ∪ Y → Z〈 sX∪Y ∪Z

m , sX∪Y ∪Z

sX∪Y
〉

X → Y ∪ Z〈 sX∪Y ∪Z

m , sX∪Y ∪Z

sX
〉

Written differently, using only symbols for support (δ) and confidence (η),
the inference rule reads as follows.

X → Y 〈δ1, η1〉 X ∪ Y → Z〈δ2, η2〉
X → Y ∪ Z〈δ2, η1 ∗ η2〉

Formally, if X, Y, Z ⊆ I be sets of items, and X → Y 〈δ1, η1〉, X ∪ Y →
Z〈δ2, η2〉 and X → Y ∪ Z〈δ3, η3〉 hold, then we say that X → Y ∪ Z〈δ3, η3〉
is an anti-transitive rule. Also, if r = X → Y 〈δ, η〉 be a rule, and δm and ηm

respectively be the minimum support and confidence requirements, then r is
redundant if it is derivable from other rules, or if δ < δm or η < ηm.

1 Assuming that two copies of Ff are available as Ff1 and Ff2 .

Declarative Data Mining Using SQL3 57

It is possible to show that for any minimum support and confidence thresholds
δm and ηm respectively, if the rules X → Y 〈δ1, η1〉, and X ∪Y → Z〈δ2, η2〉 hold,
then the rule X → Y ∪ Z〈δ3, η3〉 also holds such that δ3 = δ2 ≥ δm, and
η3 = η1 ∗ η2 ≤ min(η2, η1). Notice that η3 = η1 ∗ η2 could be less then the
confidence threshold ηm, even though η1 ≥ ηm and η2 ≥ ηm. In other words,
η1 ≥ ηm ∧ η2 ≥ ηm �⇒ η1 ∗ η2 ≥ ηm. Furthermore, we can show that any rule
r = X → Y 〈δ, η〉 is redundant if it is anti-transitive. It is interesting to observe
that the redundancy of rules is a side effect of redundancy of large item sets.
Intuitively, for any given pair of large item sets l1 and l2, l1 is redundant if
l1 ⊆ l2, and the support sl1 of l1 is equal to the support sl2 of l2. Otherwise,
it is non-redundant. Intuitively, l1 is redundant because its support sl1 can be
computed from sl2 just by copying. A more formal treatment of the concept of
large itemsets and redundant large itemsets may be found in section 5.1.

Since in the frequent item set table, every item set is a member of a chain that
differs by only one element, the following modification for R will compute the
rules that satisfies given support and confidence thresholds and avoids generating
all such redundant rules2.

R = σConf≥ηm(ρr(Ant,Cons,Sup,Conf)

×(Π
Ff1 .Items,Ff2 .Items\Ff1 .Items,

Ff1
.Count

m ,
Ff2

.Count

Ff1
.Count

×(σFf1 .Items⊂Ff2 .Items∧(|Ff2 .Items|−|Ff1 .Items|=1)(Ff1 × Ff2))))

2.1 The Challenge

The preceding discussion was aimed to demonstrate that a relational computa-
tion of association rules is possible. However, we used an explicit generation of
the power set of the items in I to be able to compute the frequent item set table
Ff from the item set table S. This is a huge space overhead, and consequently,
imposes a substantial computational burden on the method. Furthermore, we
required that the item set table S be admissible, another significant restriction
on the input transaction table. These are just some of the difficulties faced when
a set theoretic or relational characterization of data mining is considered. The
procedurality involved acts as a major bottleneck. So, the challenge we undertake
is to admit any arbitrary transaction table, yet be able to compute the associa-
tion rules “without” explicit generation of candidate item sets from a relational
database, and compute the relation R as introduced before using existing SQL3
constructs and machineries.

3 A Set Theoretic Perspective of Data Mining

In this section, we present our idea of a SQL mine operator on intuitive grounds
using a detailed example. The expectation here is that once we intuitively under-
stand the issues related to the operator, it should be relatively easier to follow

2 ρ is a relation renaming operator defined in [24].

58 H.M. Jamil

the technical developments in the later sections. Also, this simple explanation
will serve as the basis for a more general relational mining operator we plan to
present at the end of this article.

Consider a database, called the transaction table, T as shown in figure 1.
Following the traditional understanding of association rule mining, and also from
the discussion in section 2, from the source table T we expect to obtain the large
item set table (l table) and the rules table (r table) shown in figure 1 below once
we set the support threshold at 25%. The reasoning process of reaching to the
large item set and rules tables can be explained as follows.

t table
Tranid Items

t1 a
t1 b
t1 c
t2 b
t2 c
t2 f
t3 b
t3 f
t4 a
t4 b
t4 c
t5 b
t5 e
t6 d
t6 f
t7 d

transaction table

l table
Items Support

{a, b, c} .29
{b, f} .29
{b, c} .38

{f} .43
{d} .29
{b} .71

large item set table

r table
Ant Cons Support Conf
{b} {c} 0.38 0.60
{f} {b} 0.29 0.66
{b} {f} 0.29 0.40

{b,c} {a} 0.29 0.66
association rules table

Fig. 1. Source transaction database T is shown as t table, large item set table
as l table, and finally the association rules as r table

We can think of T as the set of complex tuples shown in nested table (n table)
in figure 2 once we nest the items on transaction numbers. If we use a group by
on the Items column and count the transactions, we will compute the frequency
table (f table) in figure 2 that will show how many times a single item set pattern
appears in the transaction table (t table) in figure 1. Then, let us assume that
we took a cross product of the frequency table with itself, and selected the rows
for which

• the Items column in the first table is a proper subset of the Items column
in the second table, and finally projected out the Items column of the first
table and Support column of the second table3, or

• the Items columns are not subset of one another, and we took the intersection
of the Items of both the tables, created a new relation (int table, called the

3 This will give us < {b, f}, 1 > and < {d}, 1 >.

Declarative Data Mining Using SQL3 59

n table
Tranid Items

t1 {a,b,c}
t2 {b,c,f}
t3 {b,f}
t4 {a,b,c}
t5 {b,e}
t6 {d,f}
t7 {d}

nested table

f table
Items Support

{a, b, c} 2
{b,c,f} 1
{b, e} 1
{b, f} 1
{d} 1
{d,f} 1

frequency table

i table
Items Support
{b,c} 3
{b,f} 1
{b} 5
{f} 3
{d} 1

inheritance table

c table
Items Support

{a, b, c} 2
{b,c,f} 1
{b,c} 3
{b, f} 2
{b, e} 1
{d, f} 1
{b} 5
{f} 3
{d} 2
count table

Fig. 2. n table: t table after nesting on Tranid, f table: n table after grouping
on Items and counting, i table: generated from f table, and c table: grouping on
Items and sum on Support on the union of i table and f table

intersection table) with distinct tuples of such Items with Support 0, and
then finally computed the support counts as explained in step 1 now with
the frequency table and intersection table4.

This will give us the inheritance table (i table) as shown in figure 2. Finally,
if we took a union of the frequency table and the inheritance table, and then do
a group by on the Items column and sum the Support column, we would obtain
the count table (c table) of figure 2.

The entire process of large item set and association rule generation can be
conveniently explained using the so called item set lattice found in the litera-
ture once we enhance it with some additional information. Intuitively, consider
placing the transactions with item set u appearing in the frequency table with
their support count t as a node in the lattice L as shown in figure 3. Notice that
in the lattice, each node is represented as ut

c, where it denotes the fact that u
appears in exactly t transactions in the source table, and that u also appears as
a subset of other transactions n number of times such that c = n + t. t is called

4 The result of this will be tuple < {b, c}, 3 >, < {b}, 5 >, and < {f}, 3 > in this
example. Note that the intersection table will contain the tuples < {b, c}, 0 >, <
{b}, 0 >, and < {f}, 0 >, and that these patterns are not part of the frequency table
in figure 2. The union of step 1, and step 2 processed with the intersection table will
now produce the inheritance table in figure 2.

60 H.M. Jamil

ab ac bc0 0 0
2 2 3 bf 1

2

bcf 1
1abc 2

2

0
1 df 1

1 1be 1cf

b ca 0 0 0 1
2 5 3 2d e 0

1 f 0
3

null
7
0

level 2

level 1

level 3

level 0
l-envelope

z-envelope

Fig. 3. Lattice representation of item set database T

the transaction count, or frequency count, and c is called the total count of item
set u. The elements or nodes in L also satisfy additional interesting properties.
A node v at level l differs from its child u at level l − 1 by exactly 1 element,
and that u ⊂ v. For any two children u and w of a node v, v = u ∪ w. For any
two nodes5 utu

cu
and vtv

cc
at any level l, their join is defined as (u ∩ v)tj

cj , and the
meet as (u ∪ v)tm

cm
, such that cj ≤ min(cu, cv) and cm ≥ max(cu, cv).

Note that in figure 3, the nodes marked with a solid rectangle are the nodes
(or the item sets) in T, nodes identified with dotted rectangles are the intersec-
tion6 nodes or the virtual7 nodes, and the nodes marked with ellipses (dotted or
solid) are redundant. The nodes below the dotted line, called the large item set
envelope, or l-envelope, are the large item sets. Notice that the node bc is a large
item set but is not a member of T, while bcf , df and be are in T, yet they are
not included in the set of large item sets of T. We are assuming here a support
threshold of 25%. So, basically, we would like to compute only the nodes abc,
bc, bf , b, d and f from T. This set is identified by the sandwich formed by the
l-envelope and the zero-envelope, or the z-envelope, that marks the lowest level
nodes in the lattice. If we remove the non-essential, or redundant, nodes from
the lattice in figure 3, we are left with the lattice shown in figure 4. It is possible
to show that the lattice shown in figure 4 is the set of non-redundant large item
sets of T at a support threshold 25%. The issue now is how to read this lattice.
In other words, can we infer all the large item sets that an apriori like algorithm
will yield on T? The answer is yes, but in a somewhat different manner. This is
demonstrated in the following way.

Notice that there are five large 1-items – namely a, b, c, d and f . But only
three, b, d and f , are listed in the lattice. The reason for not listing the other
large 1-items is that they are implied by one of the nodes in the lattice. For

5 For any node u, the notations tu and cu mean respectively the transaction count
and total count of u.

6 Nodes that share items in multiple upper level nodes and have a total count higher
than any of the upper level nodes.

7 Nodes with itemsets that do not appear in T, and also have total count equal to all
the nodes above them.

Declarative Data Mining Using SQL3 61

bc 0
3 bf 1

2

b 0 1
5 2d f 0

3

7
0null

abc 2
2

Fig. 4. Non-redundant large item sets of T when δm = 0.25

example, c is implied by bc for which the count is 3. The nodes b and bc should
be read as follows – b alone appears in T 5 times, whereas bc appears 3 times.
Since c appears a maximum of 3 times with b (2 times in abc and 1 time in bcf
actually), its total count can be derived from bc’s count. Similarly, a’s count can
be derived from abc – 2. Hence, the lattice in figure 4 does not include them and
considers them as redundant information. This view point has another impor-
tant implication. We are now able to remove (or prune) redundant association
rules too. We will list b → c〈.38, .60〉 and bc → a〈.29, .66〉, among several oth-
ers, as two association rules that satisfy the 25% support and 40% confidence
thresholds. Notice that we do not derive the rule b → ac〈.29, .40〉 in particu-
lar. The reason is simple – it is redundant for it can be derived from the rules
b → c〈.38, .60〉 and bc → a〈.29, .66〉 using the following inference rule. Notice
that if we accept the concept of redundancy we propose for rules, computing
b → ac〈.29, .40〉 does not strengthen the information content of the discovery in
any way.

X → Y 〈δ1, η1〉 X ∪ Y → Z〈δ2, η2〉
X → Y ∪ Z〈δ2, η1 ∗ η2〉

=
b → c〈.38, .60〉 bc → a〈.29, .66〉

b → ac〈.29, .40〉

Finally, we would like to point to an important observation. Take the case
of the rules b → f〈.29, .40〉 and f → b〈.29, .66〉. These two rules serve as an im-
portant reminder that X → Y 〈s1, c1〉, and Y → X〈s2, c2〉 �⇒ c1 = c2, and that
X → Y 〈s1, c1〉, and Y → X〈s2, c2〉 ⇒ s1 = s2. But in systems such as apriori,
where all the large item sets are generated without considering redundancy, it
would be difficult to prune rules based on this observation as we do not know
which one to prune. For example, for the set of large item sets {bc3, b3, c3},
we must derive rules b → c〈 3

m , 1〉 and c → b〈 3
m , 1〉8 and cannot prune them

without any additional processing. Instead, we just do not generate them at
all.

8 Assuming there are m number of transactions.

62 H.M. Jamil

4 Computing Item Set Lattice Using SQL3

Now that we have explained what non-redundant large item sets and associa-
tion rules mean in our framework, we are ready to discuss computing them using
SQL. The reader may recall from our discussion in the previous section that we
have already given this problem a relational face by presenting them in terms
of (nested) tables. We will now present a set of SQL3 sentences to compute the
tables we have discussed earlier. We must mention here that it is possible to eval-
uate the final table in figure 1 by mimicking the process using a lesser number of
expressions than what we present below. But we prefer to include them all sepa-
rately for the sake of clarity. In a later section, we will discuss how these series of
SQL sentences can be replaced by an operator, the actual subject of this article.

For the purpose of this discussion, we will assume that several functions that
we are going to use in our expressions are available in some SQL3 implementa-
tion, such as Oracle, DB2 or Informix. Recall that SQL3 standard requires or
implies that, in some form or other, these functions are supported9. In partic-
ular, we have used a nest by clause that functions like a group by on the listed
attributes, but returns a nested relation as opposed to a first normal form rela-
tion returned by group by. We have also assumed that SQL3 can perform group
by on nested columns (columns with set values). Finally, we have also used set
comparators in where clause, and set functions such as intersect and setmi-
nus in the select clause, which we think are natural additions to SQL3 once
nested tuples are supported. As we have mentioned before, we have, for now,
used user defined functions (UDFs) by treating set of items as a string of labels
to implement these features in Oracle.

The following two view definitions prepare any first normal form transaction
table for the mining process. Note that these view definitions act as idempotent
functions on their source. So, redoing them does not harm the process if the
source table is already in one of these forms. These two views compute the
n table and the f table of figure 2.

create view n table as
(select Tranid, Items
from t table
nest by Tranid)

create view f table as
(select Items, count(*) as Support
from n table
group by Items)

Before we can compute the i table, we need to know what nodes in the
imaginary lattice will inherit transaction counts from some of the transaction

9 Although some of these functions are not supported right now, once they are, we
will be in a better shape. Until then, we can use PL/SQL codes to realize these
functions.

Declarative Data Mining Using SQL3 63

nodes in the lattice – Support value of Items in the f table. Recall that nodes
that are subset of another node in the lattice, inherit the transaction count of
the superset node towards its total count. We also know that only those (non-
redundant) nodes which appear in the f table, or are in the least fixpoint of the
nodes in f table will inherit them. So, we compute first the set of intersection
nodes implied by f table using the newly proposed SQL3 create view recursive
statement as follows.

create view recursive int table as
((select distinct intersect(t.Items, p.Items), 0
from f table as t, f table as p
where t.Items �⊂ p.Items and p.Items �⊂ t.Items

and not exists
(select *
from f table as f
where f.Items = intersect(t.Items, p.Items)))

union
(select distinct intersect(t.Items, p.Items), 0
from int table as t, int table as p
where t.Items �⊂ p.Items and p.Items �⊂ t.Items

and not exists
(select *
from f table as f
where f.Items = intersect(t.Items, p.Items))))

We would like to mention here again that we have implemented this feature
using PL/SQL in Oracle. Notice that we did not list the int table we create
below in figure 1 or 2 because it is regarded as a transient table needed for the
computation of i table.

It is really important that we create only distinct set of intersection items and
only those ones that do not appear in the f table for the purpose of accuracy
in support counting. Take for example three transactions in a new frequency
table, f′ table, represented as {abc1

0, bcd
1
0, bcf

1
0 , bc1

0}. Assume that we compute
the set of intersections of the entries in this table. If we do not guard against the
cautions we have mentioned, we will produce the set {bc0

0, bc
0
0, bc

0
0} using the view

expression for int table – which is not desirable. Because, these three will inherit
Support from {abc1

0, bcd
1
0, bcf

1
0 } giving a total count of 10, i.e., bc1

10. The correct
total count should have been bc1

4. If we just ensure the uniqueness of a newly
generated item set (but not its absence in the f table) through meet computation,
we still derive {bc0

0} instead of an empty set, which is also incorrect. This means
that not including the following condition in the above SQL expression will be
a serious mistake.

not exists (select *
from f table as f
where f.Items = intersect(t.Items, p.Items)

64 H.M. Jamil

Once we have computed the int table, the rest of the task is pretty simple.
The i table view is computed by copying the Support of a tuple in f table for any
tuple in the collection of f table and int table which is a subset of the tuple in
the f table. Intuitively, these are the nodes that need to inherit the transaction
counts of their ancestors (in f table).

create view i table as
(select t.Items, p.Support
from f table as p,

((select *
from f table)
union
(select *
from int table)) as t,

where t.Items ⊂ p.Items)

From the i table, a simple grouping and sum operation as shown below will
give us the count table, or the c table, of figure 2.

create view c table as
(select t.Items, sum(t.Support) as Support
from ((select *

from f table)
union
(select *
from i table)) as t

group by t.Items)

The large item sets of l table in figure 1 can now be generated by just selecting
on the c table tuples as shown next. Notice that we could have combined this
step with the c table expression above with the help of a having clause.

create view l table as
(select Items, Support
from c table
where Support ≥ δm)

Finally, the (non-redundant) association rules of figure 1 are computed us-
ing the r table view below. The functionality of this view can be explained
as follows. Two item sets u[Items] and v[Items] in a pair of tuple u and v
in the l table implies an association rule of the form u[Items] → v[Items] \
u[Items]〈v[Support], v[Support]

u[Support] 〉 only if u[Items] ⊂ v[Items] and there does not
exist any intervening item set x in the l table such that x is a superset of u[Items]
and is a subset of v[Items] as well. In other words, in the lattice, v[Items] is
one of the immediate ancestors of u[Items]. In addition, the ratio of the Sup-
ports, for example, v[Support]

u[Support] must be at least equal to the minimum confidence
threshold ηm.

Declarative Data Mining Using SQL3 65

create view r table as
(select a.Items, c.Items\a.Items, c.Support, c.Support/a.Support
from l table as a, l table as c
where a.Items ⊂ c.Items and c.Items/a.Items ≥ ηm and not exists

(select Items
from l table as i
where a.Items ⊂ i.Items and i.Items ⊂ c.Items))

The readers may verify that these are the only “generic” SQL3 expressions
(or their equivalent) that are needed to mine any relational database (assuming
proper name adaptations for tables and columns). The essence of this relational
interpretation of the problem of mining, as demonstrated by the SQL3 expres-
sions above, is that we do not need to think in terms of iterations, candidate
generation, space time overhead, and so on. Instead, we can now express our
mining problems on any relational database in declarative ways, and leave the
optimization issues with the system and let the system process the query us-
ing the best available method to it, recognizing the fact that depending on the
instance of the database, the choice of best methods may now vary widely.

5 An Enabling Observation

Level wise algorithms such as apriori essentially have three distinct steps at each
pass k: (i) scan the database and count length k candidate item sets against the
database, (ii) test and discard the ones that are not large item sets, and (iii)
generate candidate item sets of length k + 1 from the length k large items sets
just generated and continue to next iteration level. The purpose of the second
step is to prune potential candidates that are not going to generate any large
item sets. This heuristic is called the anti-monotonicity property of large item
sets. While this heuristic saves an enormous amount of space and time in large
item set computation and virtually makes association rule mining feasible, fur-
ther improvements are possible. We make an observation that apriori fails to
remove redundant large item sets that really do not contribute anything new,
and not generating the redundant large item sets do not cause any adverse effect
on the discovery of the set of association rules implied by the database. In other
words, apriori fails to potentially recognize another very important optimization
opportunity. Perhaps the most significant and striking contribution of this new
optimization opportunity is its side effect on the declarative computation of as-
sociation rules using languages such as SQL which is the subject of this article.
This observation of optimization opportunity helps us avoid thinking level wise
and allows us to break free from the expensive idea of candidate generation and
testing even in SQL like set up such as in [25,21,20]. As mentioned earlier, meth-
ods such as [4,27] have already achieved significant performance improvements
over apriori by not requiring to generate candidate item sets.

To explain the idea we have on intuitive grounds, let us consider the
simple transaction table t table in figure 1. Apriori will produce the database in

66 H.M. Jamil

figure 5(a) in three iterations when the given support threshold is ≈ 25%, or 2
out of 7 transactions.

Items Support
a 2
b 5
c 3
d 2
f 3

a, b 2
a, c 2
b, c 3
b, f 2

a, b, c 2
(a)

Candidates
a
b
c
d
e
f

(b)

Candidates
a, b
a, c
a, d
a, f
b, c
b, d
b, f
c, d
c, f
d, f
(c)

Candidates
a, b, c
a, b, f
b, c, f
(d)

Items Support
a 2
c 3

a, b 2
a, c 2

(e)

Fig. 5. (a) Frequent item set table generated by apriori and other major algo-
rithms such as FP-tree. Candidate sets generated by a very smart apriori at
iterations (b) k = 1, (c) k = 2, and at (d) k = 3

Although apriori generates the table in figure 5(a), it needs to generate the
candidate sets in figure 5(b) through 5(d) to test. Notice that although the can-
didates {a, d}, {a, f}, {b, d}, {c, d}, {c, f}, {d, f}, {a, b, f} and {b, c, f} were gen-
erated (figures 5(c) and 5(d)), they did not meet the minimum support threshold
and were never included in the frequent item set table in figure 5(a). Also no-
tice that these are the candidate item sets generated by a very smart apriori
algorithm that scans the large items sets generated at pass k in order to guess
the possible set of large item sets it could find in pass k + 1, and selects the
guessed sets as the candidate item sets. A naive algorithm on the other hand
would generate all the candidate sets from the large item sets generated at pass k
exhaustively by assuming that they are all possible. Depending on the instances,
they both have advantages and disadvantages. But no matter which technique
is used, apriori must generate a set of candidates, store them in some structures
to be able to access them conveniently and check them against the transaction
table to see if they become large item sets at the next iteration step. Even by
conservatively generating a set of candidate item sets as shown in figures 5(b)
through 5(d) for the database in figure 1(t table), it wastes (for the candidate
sets that never made it to the large item sets) time and space for some of the
candidate sets. Depending on the transaction databases, the wastage could be
significant. The question now is, could we generate candidate sets that will have
a better chance to become a large item set? In other words, could we generate
the absolute minimum set of candidates that are surely a large item set? In some
way, we think the answer is in the positive as we explain in the next section.

5.1 Implications

We take the position and claim that the table l table shown in figure 1 is
an information equivalent table of figure 5(a) which essentially means that

Declarative Data Mining Using SQL3 67

these tables faithfully imply one another (assuming identical support thresholds,
≈ 25%). Let us now examine what this means in the context of association rule
mining on intuitive grounds.

First of all, notice that the tuples (i.e., large item sets) missing in table of
figure 1 are listed in table of figure 5(e), i.e., the union of these two tables gives
us the table in figure 5(a). Now the question is why do we separate them and
why do we deem the tuples in figure 5(e) redundant? Before we present the
reasoning, we would like to define the notion of redundancy of large item sets in
order to keep our discussion in perspective.

Definition 5.1. Let T be a transaction table over item sets I, I ⊆ I be an item
set, and n be a positive integer. Also let n represent the frequency of the item set
I with which it appears in T . Then the pair 〈I, n〉 is called a frequent item set,
and the pair is called a large item set if n ≥ δm, where δm is the minimum
support threshold.

We define redundancy of large item sets as follows. If for any large item
set I, its frequency n can be determined from other large item sets, then I is
redundant. Formally,

Definition 5.2 (Redundancy of Large Item Sets). Let L be a set of large
item sets of tuples of the form 〈Iu, nu〉 such that ∀x, y(x = 〈Ix, nx〉, y = 〈Iy, ny〉 ∈
L∧Ix = Iy ⇒ nx = ny), and let u = 〈Iu, nu〉 be such a tuple. Then u is redundant
in L if ∃v(v ∈ L, v = 〈Iv, nv〉, Iu ⊆ Iv ⇒ nu = nv).

The importance of the definition 5.1 may be highlighted as follows. For any
given set of large item sets L, and an element l = 〈Il, nl〉 ∈ L, Il is unique in L.
The implication of anti-monotonicity is that for any other v = 〈Iv, nv〉 ∈ L such
that Il ⊂ Iv holds, nv ≤ nl because an item set cannot appear in a transaction
database less number of times than any of its supersets. But the important case
is when nv = nl yet Il ⊂ Iv. This implies that Il never appears in a transaction
alone, i.e., it always appeared with other items. It also implies for all large item
sets s = 〈Is, ns〉 ∈ L of Iv such that Is ⊃ Iv, if it exists, nv = ns too. As if not,
nl should be different than nv, which it is not, according to our assumption. It
also implies that Il is not involved in any other sub-superset relationship chains
other that Iv. There are several other formal and interesting properties that the
large item sets satisfy some of which we will present in a later section.

The importance of the equality of frequency counts of large item sets that
are related via sub-superset relationships is significant. This observation offers
us another opportunity to optimize the computation process of large item sets.
It tells us that there is no need to compute the large item sets for which there
exists another large item set which is a superset and has identical frequency
count. For example, for an item set S = {a, b, c, d, e, f, g, h}, apriori will iterate
eight times if S is a large item set and generate |P(S)| subsets of S with identical
frequency counts when, say, S is the only distinct item set in a transaction table.
A hypothetical smart algorithm armed with definition 5.1 will only iterate once
and stop. Now, if needed, the other large item sets computed by apriori can be

68 H.M. Jamil

computed from S just by generating all possible subsets of S and copying the
frequency count of S. If S is not a large item set, so cannot be any subset of S.
Apriori will discover it during the first iteration and stop, only if S is not a large
item set, and so will the smart algorithm.

Going back to our example table in figure 5(a), and its equivalent table l table
in figure 1, using definition 5.1 we can easily conclude that the set of large item
sets in table 5(e) are redundant. For example, the item set {a} is a subset of
{a, b, c} and both have frequency or support count 2. This implies that there
exists no other transactions that contribute to the count of a. And hence, it
is redundant. On the other hand, {b} is not redundant because conditions of
definition 5.1 does not apply. And indeed we can see that {b} is a required and
non-redundant large item set because if we delete it, we cannot hope to infer
its frequency count from any other large item sets in table l table of figure 1.
Similar arguments hold for other tuples in l table of figure 1.

The non-redundant large item set table in figure 1 unearth two striking
and significant facts. All the item sets that are found to be large either ap-
pear as a transaction in the t table in figure 1, e.g., {b, f} and {a, b, c}, or are
intersections of two or more item sets of the source table not related via sub-
superset relationships, e.g., {b}, which is an intersection of {b, e} and {b, c, f},
and {b, e} �⊂ {b, c, f} and {b, e} �⊃ {b, c, f}.

We would like to point out here that depending on the database instances it is
possible that apriori will generate an optimal set of candidate sets and no amount
of optimization is possible. Because in that situation, all the candidate sets that
were generated would contribute towards other large item sets and hence, were
required. This implies that the candidate sets were themselves large item sets
by way of anti-monotonicity property of large item sets. This will happen if
there are no redundant large item sets. But the issue here is that when there
are redundant large item sets, apriori will fail to recognize that. In fact, FP-tree
[4] and CHARM [27] gains performance advantage over apriori when there are
long chains and low support threshold due to this fact. Apriori must generate
the redundant set of large item sets to actually compute the non-redundant ones
while the others don’t.

This observation is important because it sends the following messages:

• Only the item sets that appear in a source table can be a large item set, or
their meets with any other item set in the source table can be a large item
set, if ever.

• There is no need to consider any other item set that is not in the source table
or can be generated from the source table by computing the least fixpoint
of the meets of the source item sets, as the others are invariably redundant,
even if they are large item sets.

• The support count for any large item set can be obtained by adding the
frequency counts of its ancestors (superset item sets) in the source table
with its own frequency count.

• No item set in the item set lattice will ever contribute to the support count
of any item set other than the source item sets (transaction nodes/records).

Declarative Data Mining Using SQL3 69

These observations readily suggest the approach we adopted here in devel-
oping a relational solution to the mining problem. All we needed was to apply a
least fixpoint computation of the source items sets to find their meets. Then we
applied the idea of inheritance of frequency counts of ancestors (source item sets)
to other source item sets as well as to the newly generated meet item sets. It is ev-
ident that the least fixpoint of the meets we need to compute is only for the set of
items that are not related by a subset superset relationship in the item set lattice.

6 An SQL3 Mining Operator

We are now ready to discuss our proposal for a mining operator for SQL3. We
already know that the (non-redundant) large item sets and the (non-redundant)
rules can be computed using SQL3 for which we have discussed a series of ex-
amples and expressions. We also know from our previous discussion that the
method we have adopted is sound. We further know that the set of rules com-
puted by our method is identical to the set computed by non-redundant apriori,
or are equivalent to rules computed by naive apriori. So, it is perfectly all right
to abstract the idea into an operator for generic use.

The mine by operator shown below will generate the l table in figure 1. Basi-
cally, its semantics translates to the set of view definitions (or their equivalents)
for n table, f table, int table, i table, c table and l table. However, only l table
view is returned to the user as a response of the mining query, and all the other
tables remain hidden (used by the system and discarded). Notice that we have
supplied two column names to the mine by operator – Tranid and Items. The
Tranid column name instructs the system that the nesting should be done on
this column and thus the support count comes from the count of Tranids for any
given set of Items. The Items column name suggests that the equivalent of the
l table shown in figure 1 should be constructed for the Items column. Essentially,
this mine by expression will produce the l table of figure 1 once we set δm = 0.25.

select Items, sup(Tranid) as Support
from t table
mine by Tranid for Items
having sup(Tranid) ≥ δm

We have also used a having clause for the mine by operator in a way similar to
the having clause in SQL group by operator. It uses a function called sup. This
function, for every tuple in the c table, generates the ratio of the Support to the
total number of distinct transactions in the t table. Consequently, the having
option with the condition as shown filters unwanted tuples (large item sets).
The select clause allows only a subset of the column names listed in the mine by
clause along with any aggregate/mine operations on them. In this case, we are
computing support for every item set using the sup function just discussed.

For the purpose of generating the association rules, we propose the so called
extract rules using operator. This operator requires a list of column names, for
example Items, using which it derives the rules. Basically the expression below

70 H.M. Jamil

produces the r table of figure 1 for ηm = 0.40. Notice that we have used a having
clause and a mine function called conf that computes the confidence of the rule.
Recall that the confidence of a rule can be computed from the support values in
the l table – it is the (appropriately taken) ratio of the two supports.

select ant(t.Items) as Ant, cons(t.Items) as Conseq, t.Support, conf(t.Support)
from (select Items, sup(Tranid) as Support

from t table
mine by Tranid for Items
having sup(Tranid) ≥ δm) as t

extract rules using t.Items on t.Support
having conf(t.Support) ≥ ηm

Notice that this query is equivalent to the view definition for r table in section
4. Consequently here is what this syntax entails. The extract rules using clause
forces a Cartesian product of the relation (or the list of relations) named in the
from clause. Naturally, the two attribute names mentioned in the extract rules
using clause will have two copies in two columns. As explained as part of the
r table view discussion in section 4, from these four attributes all the necessary
attributes of r table can be computed even though we mention only two of the
four attributes without any confusion (see r table view definition). All this clause
needs to know is which two attributes it must use from the relation in the from
clause, and among them which one has the support values. The rest is trivial.

The mine functions ant and cons generates the antecedent and consequent
of a rule from the source column included as the argument. Recall that rule
extraction is done on a source relation by pairing its tuples (Cartesian product)
and checking for conditions of a valid rule. It must be mentioned here that the
ant and cons functions can also be used in the having clause. For example if
we were interested in finding all the rules for which ab is in the consequent, we
would then rewrite the above rule as follows:

select ant(t.Items) as Ant, cons(t.Items) as Conseq, t.Support, conf(t.Support)
from (select Items, sup(Tranid) as Support

from t table
mine by Tranid for Items
having sup(Tranid) ≥ δm) as t

extract rules using t.Items on t.Support
having conf(t.Support) ≥ ηm and cons(t.Items) = {a, b}
It is however possible to adopt a single semantics for mine by operator. To this

end we propose a variant of the mine by operator to make a syntactic distinction
between the the two, called the mine with operator, as follows. In this approach,
the mine with operator computes the rules directly and does not produce the
intermediate large item set table l table. In this case, however, we need to change
the syntax a bit as shown below. Notice the change is essentially in the argument
of conf function. Previously we have used the Support column of the l table, but
now we use the Tranid column instead. The reason for this choice makes sense
since support is computed from this column and that support column is still

Declarative Data Mining Using SQL3 71

hidden inside the process and is not known yet, which was not the case for
the extract rules using operator. In that case we knew which column to use as
an argument for conf function. But more so, the Tranid column was not even
available in the l table as it was not needed.

select ant(Items) as Ant, cons(Items) as Conseq,
sup(Tranid) as Support, conf(Support) as Confidence

from t table
mine with Tranid for Items
having sup(Tranid) ≥ δm and conf(Tranid) ≥ ηm

Here too, one can think of appropriately using any of the mine functions
in the having clause to filter unwanted derivations. We believe, this modular
syntax and customizable semantics brings in strength and agility in our system.

We would like to point out here that while both the approaches are appealing,
depending on the situations, we prefer the first approach – breaking the process
in two steps. The first approach may make it possible to use large item sets for
other kind of computations that were not identified yet. Conversely speaking,
the single semantics approach makes it difficult to construct the large item sets
for any sort of analysis which we believe has applications in other system of rule
mining.

7 Optimization Issues

While it was intellectually challenging and satisfying to develop a declarative
expression for association rule mining from relational databases using only ex-
isting (or standard) object relational machinery, we did not address the issue
related to query optimization in this article. We address this issue in a separate
article [6] for the want of space and also because it falls outside the scope of
the current article. We would like to point out here that several non-trivial opti-
mization opportunities exist for our mining operator and set value based queries
we have exploited. Fortunately though, there has been a vast body of research
in optimizing relational databases, and hence, the new questions and research
challenges that this proposal raises for declarative mining may exploit some of
these advances.

There are several open issues with some hopes for resolution. In the worst
case, the least fixpoint needs to generate n2 tuples in the first pass alone when
the database size is n - which is quite high. Theoretically, this can happen only
when each transaction in the database produces an intersection node, and when
they are not related by subset-superset relationship. In the second pass, we need
to do n4 computations, and so on. The question now is, can we avoid generating,
and perhaps scanning, some of these combinations as they will not lead to useful
intersections? For example, the node c0

3 in figure 3 is redundant. In other words,
can we only generate the nodes within the sandwich and never generate any node
that we would not need? A significant difference with apriori like systems is that
our system generates all the item sets top down (in the lattice) without taking

72 H.M. Jamil

their candidacy as a large item set into consideration. Apriori, on the other hand,
does not generate any node if their subsets are not large item sets themselves, and
thereby prunes a large set of nodes. Optimization techniques that exploit this so
called “anti-monotonicity” property of item set lattices similar to apriori could
make all the difference in our setup. The key issue would be how we push the
selection threshold (minimum support) inside the top down computation of the
nodes in the lattice in our method. Technically, we should be able to combine
view int table with i table, c table and l table and somehow not generate a
virtual node that is outside the sandwich (below the z-envelope in figure 3).
This will require pushing selection condition inside aggregate operations where
the condition involves the aggregate operation itself.

For the present, and for the sake of this discussion, let us consider a higher
support threshold of 45% (3 out of 7 transactions) for the database T of fig-
ure 1. Now the l-envelope will be moving even closer to the z-envelop and the
nodes bf2

1 and d1
2 will be outside this sandwich. This raises the question, is it

possible to utilize the support and confidence thresholds provided in the query
and prune candidates for intersection any further? Ideas similar to magic sets
transformation [2,26] and relational magic sets [15] may be borrowed to address
this issue. The only problem is that pruning of any node depends on its support
count which may come at a later stage. By then all nodes may already have
been computed. Specifically, pushing selection conditions inside aggregate oper-
ator may become challenging. Special data structures and indexes may perhaps
aid in developing faster methods to compute efficient intersection joins that we
have utilized in this article. We leave these questions as open issues that should
be taken up in the future.

Needless to emphasize, a declarative method, preferably a formal one, is de-
sirable because once we understand the functioning of the system, we will then
be able to select appropriate procedures depending on the database instances
to compute the relational queries involving mining operators which we know
is intended once we establish the equivalence of declarative and procedural se-
mantics of the system. Fortunately, we have numerous procedural methods for
computing association rules which complement each other in terms of speed and
database instances. In fact, that is what declarative systems (or declarativity)
buy us – a choice for the most efficient and accurate processing possible.

8 Comparison with Related Research

We would like to end our discussion by highlighting some of the contrasts between
our proposal and the proposals in [25,21,13,14]. It is possible to compute the rules
using the mine rule operator of [13,14] as follows.

mine rule simpleassociation as
select distinct 1..n Items as body, 1..n Items as head, support, confidence
from t table
group by Tranid
extracting rules with support: δm, confidence: ηm

Declarative Data Mining Using SQL3 73

As we mentioned before, this expression is fine, but may be considered rigid
and does not offer the flexibilities offered by our syntax. But the main difference
is in its implementation which we have already highlighted in section 1.1.

It is relatively difficult to compare our work with the set of works in [25,21,20]
as the focus there is somewhat different, we believe. Our goal has been to define a
relational operator for rule mining and develop the formal basis of the operator.
Theirs, we believe, was to develop implementation strategies of apriori in SQL
and present some performance metrics. As long as the process is carried out
by a system, it is not too difficult to develop a front end operator that can be
implemented using their technique. Even then, the only comparison point with
our method would be the execution efficiency. In fact, it might become possible
to implement our operator using their technique.

9 Conclusions

It was our goal to demonstrate that association rules can be computed using ex-
isting SQL3 machineries, which we believe we have done successfully. We have, of
course, used some built-in functions for set operations that current SQL systems
do not possibly support, but we believe that future enhancements of SQL will.
These functions can be easily implemented using SQL’s create function state-
ments as we have done. We have utilized SQL’s create view recursive clause to
generate the intersection nodes which was implemented in PL/SQL.

If one compares the SQL3 expressions presented in this article with the series
of SQL expressions presented in any of the works in [25,21,13,14] that involve
multiple new operators and update expressions, the simplicity and strength of
our least fixpoint based computation will be apparent. Hence, we believe that
the idea proposed in this article is novel because to our knowledge, associa-
tion rule mining using standard SQL/SQL3 is unprecedented. By that, we mean
SQL without any extended set of operators such as combination and GatherJoin
[25,21], or the CountAllGroups, MakeClusterPairs, ExtractBodies, and Extrac-
tRules operators in [13,14].

Our mine by operator should not be confused with the set of operators in
[25,21] and [13,14]. These operators are essential for their framework to function
whereas the mine by operator in our framework is not necessary for our mining
queries to be functional. It is merely an abstraction (and a convenience) of the
series of views we need to compute for association rule mining. The method
proposed is soundly grounded on formal treatment of the concepts, and its cor-
rectness may be established easily. We did not attempt to prove the correctness
for the sake of conciseness and for want of space, but we hope that readers may
have already observed that these are just a matter of details, and are somewhat
intuitive too.

The mine by operator proposed here is simple and modular. The flexibilities
offered by it can potentially be exploited in real applications in many ways. The
operators proposed can be immediately implemented using the existing object

74 H.M. Jamil

relational technology and exploit existing optimization techniques by simply
mapping the queries containing the operators to equivalent view definitions as
discussed in section 4. These are significant in terms of viability of our proposed
framework.

As a future extension of the current research, we are developing an efficient
algorithm for top-down procedural computation of the non-redundant large item
sets and an improved SQL3 expression for computing such a set. We believe that
a new technique for computing item set join (join based on subset condition as
shown in the view definition for int table) based on set indexing would be useful
and efficient. In this connection, we are also looking into query optimization
issues in our framework.

References

1. Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In VLDB, pages 487–499, 1994.

2. C. Beeri and R. Ramakrishnan. On the power of magic. In ACM PODS, pages
269–283, 1987.

3. Sergey Brin, Rajeev Motwani, and Craig Silverstein. Beyond market baskets: Gen-
eralizing association rules to correlations. In Proc. ACM SIGMOD, pages 265–276,
1997.

4. Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate
generation. In Proc. ACM SIGMOD, pages 1–12, 2000.

5. H. M. Jamil. Mining first-order knowledge bases for association rules. In Proceed-
ings of the 13th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI), pages 218–227, Dallas, Texas, 2001. IEEE Press.

6. H. M. Jamil. A new indexing scheme for set-valued keys. Technical report, De-
partment of Computer Science, MSU, USA, June 2001.

7. Hasan M. Jamil. Ad hoc association rule mining as SQL3 queries. In Proceedings
of the IEEE International Conference on Data Mining, pages 609–612, San Jose,
California, 2001. IEEE Press.

8. Hasan M. Jamil. On the equivalence of top-down and bottom-up data mining in
relational databases. In Proc. of the 3rd International Conference on Data Ware-
housing and Knowledge Discovery (DaWaK 01), pages 41–50, Munich, Germany,
2001.

9. Hasan M. Jamil. Bottom-up association rule mining in relational databases. Jour-
nal of Intelligent Information Systems, 19(2):191–206, 2002.

10. Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivonen, and Inkeri
Verkamo. Finding interesting rules from large sets of discovered association rules.
In CIKM, pages 401–407, 1994.

11. Flip Korn, Alexandros Labrinidis, Yannis Kotidis, and Christos Faloutsos. Ratio
rules: A new paradigm for fast, quantifiable data mining. In Proc of 24th VLDB,
pages 582–593, 1998.

12. Brian Lent, Arun N. Swami, and Jennifer Widom. Clustering association rules. In
Proc of the 3th ICDE, pages 220–231, 1997.

13. Rosa Meo, Giuseppe Psaila, and Stefano Ceri. A new SQL-like operator for mining
association rules. In Proc of 22nd VLDB, pages 122–133, 1996.

Declarative Data Mining Using SQL3 75

14. Rosa Meo, Giuseppe Psaila, and Stefano Ceri. An extension to SQL for mining
association rules. DMKD, 2(2):195–224, 1998.

15. Inderpal Singh Mumick and Hamid Pirahesh. Implementation of magic-sets in a
relational database system. In ACM SIGMOD, pages 103–114, 1994.

16. Amir Netz, Surajit Chaudhuri, Jeff Bernhardt, and Usama M. Fayyad. Integration
of data mining with database technology. In Proceedings of 26th VLDB, pages
719–722, 2000.

17. Amir Netz, Surajit Chaudhuri, Usama M. Fayyad, and Jeff Bernhardt. Integrating
data mining with SQL databases. In IEEE ICDE, 2001.

18. Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang. Exploratory
mining and pruning optimizations of constrained association rules. In Proc. ACM
SIGMOD, pages 13–24, 1998.

19. Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An effective hash based al-
gorithm for mining association rules. In Proc. ACM SIGMOD, pages 175–186,
1995.

20. Karthick Rajamani, Alan Cox, Bala Iyer, and Atul Chadha. Efficient mining for
association rules with relational database systems. In IDEAS, pages 148–155, 1999.

21. Sunita Sarawagi, Shiby Thomas, and Rakesh Agrawal. Integrating mining with re-
lational database systems: Alternatives and implications. In Proc. ACM SIGMOD,
pages 343–354, 1998.

22. Ashoka Savasere, Edward Omiecinski, and Shamkant B. Navathe. An efficient
algorithm for mining association rules in large databases. In Proc of 21th VLDB,
pages 432–444, 1995.

23. Pradeep Shenoy, Jayant R. Haritsa, S. Sudarshan, Gaurav Bhalotia, Mayank Bawa,
and Devavrat Shah. Turbo-charging vertical mining of large databases. In ACM
SIGMOD, pages 22–33, 2000.

24. Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Con-
cepts. McGraw-Hill, third edition, 1996.

25. Shiby Thomas and Sunita Sarawagi. Mining generalized association rules and
sequential patterns using SQL queries. In KDD, pages 344–348, 1998.

26. J. D. Ullman. Principles of Database and Knowledge-base Systems, Part I & II.
Computer Science Press, 1988.

27. Mohammed J. Zaki. Generating non-redundant association rules. In Proc. of the
6th ACM SIGKDD Intl. Conf., Boston, MA, August 2000.

	Introduction
	Related Research
	Contributions of this Article and Plan for the Presentation

	Properties of Transaction Tables
	The Challenge

	A Set Theoretic Perspective of Data Mining
	Computing Item Set Lattice Using SQL3
	An Enabling Observation
	Implications

	An SQL3 Mining Operator
	Optimization Issues
	Comparison with Related Research
	Conclusions

