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Abstract. Matsui's linear cryptanalysis for iterated block ciphers is
generalized by replacing his linear expressions with 1/O sums. For a
single round, an I/O sum is the XOR of a balanced binary-valued func-
tion of the round input and a balanced binary-valued function of the
round output. The basic attack is described and conditions for it to be
successful are given. A procedure for finding effective I/0O sums, i.e., I/O
sums yielding successful attacks, is given. A cipher contrived to be se-
cure against linear cryptanalysis but vulnerable to this generalization of
linear cryptanalysis is given. Finally, it is argued that the ciphers IDEA
and SAFER K-64 are secure against this generalization.
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1 Introduction

Linear cryptanalysis, which was introduced by Matsui in [5] to attack DES, is
an attack that applies to any iterated block cipher. In this paper, we develop
a generalized version of linear cryptanalysis that widens somewhat the class
of ciphers for which the attack will be successful and that provides additional
insight into Matsui’s attack.

In Section 2, we define an I/O sum for one round as the XOR of a balanced
binary-valued function of the round input and a balanced binary-valued function
of the round output. This generalizes Matsui’s “linear expressions”. We also
introduce key-dependent imbalance and average-key imbalance as measures for
the usefulness of an I/O sum.

In Section 3, we adapt Matsui’s linear cryptanalysis to the use of I/O sums.
We describe a basic attack that exploits a multi-round I/O sum for the entire
cipher excluding the last round and tries to find the last-round key. In Section 4,
we formulate the hypothesis of wrong-key randomization, which states that using
a wrong key in the last round to estimate an I/O sum decreases its key-dependent
imbalance. The generalized attack succeeds if it is based on an I/O sum satisfying
this hypothesis and if enough plaintext/ciphertext pairs are available.

Section 5 treats the case where the average-key imbalance of an I/O sum is
unknown. To handle this case, we introduce a threefold sum as an I/O sum XOR-
ed with a binary-valued function of the key and show that the imbalance of the
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threefold sum is a lower bound on the average-key imbalance of the parent I/O
sum. In practice, finding effective I/O sums is done by finding effective threefold
sums whose imbalance is much easier to compute.

In Section 6, we develop a procedure for finding effective “homomorphic”
threefold sums. This procedure relies on Matsui’s piling-up lemma and applies
to ciphers whose round function is a cascade of a keyed group operation and a
possibly-keyed bijective function. We argue that ciphers that insert keys by cer-
tain modulo operations, such as IDEA and SAFER K-64, are generally resistant
to this procedure, and we show that, after a slight modification, the procedure
can be applied to DES-like ciphers too.

Section 7 defines QRweak, a mini-cipher vulnerable to the generalization
of linear cryptanalysis, but secure against differential and linear cryptanalysis.
We also argue that the cipher IDEA is secure against the generalization of lin-
ear cryptanalysis by showing that the presented procedure for finding effective
homomorphic threefold sums finds no effective threefold sum for one round of
either IDEA(8) or IDEA(16). We also show that SAFER K-64 has this desirable
property.

Section 8 summarizes the main results.

2 Preliminaries

An r-round iterated block cipher of block-size n (Fig. 1) consists of r successive
applications of a keyed round function, with a different key in each round. The
full key is K7 o= (KW K™)) where K is the round key applied in
the i-th round for i = 1,2, ..., r. The round keys take on values in a set K, the
round key space. The plaintext X and ciphertext Y take values in X, the set of
binary n-tuples. For each round key k, the keyed round function F} is a bijection
on X. Let Y denote the output n-tuple of the i-th round so that ¥ = Y“‘),
and let Y(©) .= X.

Throughout this paper, capital letters such as X, ¥, YV, y-1 g1
etc. will denote random variables and the corresponding lowercase letters will
denote specific values of these random variables, e.g., fixed keys. A superscript
will specify the round(s) to which a variable is associated, e.g., Y™~V is the
output of the (r — 1)-th round, K7~ is the tuple of round keys from the first
to the (r — 1)-th round, etc.

We always assume that the plaintext and all keys used within the cipher are
independent and uniformly random over the appropriate spaces, except when we
ezplicitly fix the keys by specifying, e.g., K1-") = k(1-7) This assumption defines
the random experiment on which linear cryptanalysis is formalized and for which
all probabilities are calculated. A binary-valued function is balanced if it takes on
the value 0 for exactly half of its possible arguments and the value 1 otherwise.

In [5], Matsui exploits a cipher’s weakness that he expresses in terms of
“linear expressions”. In Matsui’s terminology, a linear expression for one round
is an “equation” for a certain modulo-two sum of round input bits and round
output bits as a sum of round key bits. The expression should be satisfied with
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Fig. 1. Structure and notation for an iterated block cipher (left) and notation used in
the attack (right).

probability much more (or much less) than 0.5 to be nseful. Our generalization of
linear cryptanalysis resides in replacing Matsui’s linear expressions by the more
general notion of I/0 sums.

Definition1. An 1/0 sum S for the 4-th round is a modulo-two sum of a
balanced binary-valued function f; of the round input Y=1 and a balanced
binary-valued function g; of the round output Y ), that is,

S = (YD) e (v ) (1)
where @ denotes modulo-two addition, i.c., the XOR operation.

The functions f; and g; will be called the input function and the output
function, respectively, of the I/O sum S,

I/O sums for successive rounds arc linked if the output function of each
round before the last coincides with the input function of the following round
(ie., fi = gi—1). When p successive S(*) are linked, their sum,

14
g(lp) . @S(i) _ go(Y(O)) @gp(Y(p)) (2)

i=1
will be called a multi-round 1/0 sum.

As a measure for the “effectiveness” of a lincar expression in an attack,
Matsui uses the magnitude of the difference between % and the probability that
the expression is satisfied. We will instead use “imbalances”, which are similarly
defined but with an extra factor of two so that the imbalance will lie between 0
and 1 inclusive.

Definition 2. The imbalance I(V) of a binary-valued random variable V (whose
values are the real numbers 0 and 1) is the non-negative real number 2PV =
0] — 1] or, equivalently, | E[2V — 1]|, where P[V = 0] is the probability that V
takes on the value 0 and E[.] denotes expectation.
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The key-dependent imbalance I(SU-+#) | k12 of the I/O sum S+ is the im-
balance of this sum conditioned on the event that K1--#) = k(1-#) The average-
key imbalance of the /O sum S(#) is the expectation of these key-dependent
imbalances and will be denoted as 7(SU+*)). An 1/O sum is effective if it has a
large average-key imbalance, and is guaranteed if its average-key imbalance is 1,
the maximum possible.

As an example, suppose that S = f(X) © g(Y V) = h{(K™")) where h is a
balanced function. Then S() has imbalance 1(S™M) = I(h(K (")) = 0. However,
because SV = h(kV), a constant, when KV = k(1) the key-dependent imbal-
ance of S(1) is 1 for all keys k(1) and hence the average-key imbalance is also 1.
Thus S is a guaranteed I/ sum.

3 Attacks by the Generalization of Linear Cryptanalysis

The basic attack by the generalization of linear cryptanalysis exploits an etfec-
tive I/O sum S0 = go(X) @ g, (Y1) for the first » — 1 rounds with the
intention of finding the last-round key. It is assumed that the attacker has ac-
cess to N plaintext/ciphertext pairs (hereafter called p/c-pairs) with uniformly
randomly chosen plaintexts [although experience suggests that any N different
p/c-pairs will do just as well]. The basic attack proceeds as follows (Fig. 1).

0. Set up a counter c¢[k] for each possible last-round key k and initialize all
counters to 0.

1. Choose a p/c-pair (z,y).

2. For each possible k, evaluate ("1 := F{l(y) and, if go(z) ® gr—1 (1) =

0, increment c[k} by 1.

. Repeat Step 1 and 2 for all N available p/c-pairs.

4. Output all keys k that maximize |c[k] — 4| as candidates for the key actually
used in the last round.

(V]

The quantity c[k] is proportional to an obvious estimate of the key-dependent
imbalance of the I/O sum under the assumption that k is the right key. Under
suitable statistical assumptions, Step 4 implements the maximum-likelihood de-
cision rule for the last-round key when the counts are considered to be the
observation [8].

The basic attack must in practice be speeded up by exploiting “key equiva-
lence”. Two keys k, k' € K are equivalent if g, 1(F.,' () = gr—1(F; () @ c
for some ¢ and for all y € A. The basic attack can never distinguish between
equivalent keys. Therefore, we consider in Step 2 only one representative of each
key (equivalence) class. Just as differential and conventional linear cryptanalysis
determine only some portion of the last-round key, the generalization of linear
cryptanalysis determines only the (equivalence) class in which the true key lies.
The key class containing the actual key used in the last round is the right class
and its representative is the right key. The other key classes are wrong classes
and their representatives are wrong keys. In practice, the number of key classes
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must be reasonably small, since the computation in the attack is proportional
to that number.

The success probability pgrc of the attack is the probability of the event that
the output list contains only the right class. The conditional success probability
PgLc|k(-~ 1s the probability of this event when the key K17 = k(1) Matsui
considers in [6] an improvement of linear cryptanalysis similar to “list decoding”
of error-detecting codes [3]. Applied to our generalization, this improvement
consists of trying out all keys in all equivalence classes in order of decreasing
apparent imbalance |c[I::] — % until the true key is found. The basic attack can
also be speeded up (as was done in [6]) by first classifying all p/c-pairs in Step 2
into text classes — each consisting of p/c-pairs that cause the same set of counters
to be incremented — and then incrementing the counters once for each text class.
Matsui also improved his attack by determining the key to the first and the last
round simultaneously [6]. We can use an (r — 2)-round I/O sum §(?"—1) instead
of 8U0-7=1) for a similar improvement of our basic attack.

4 Success of the Generalization of Linear Cryptanalysis

Theorem 3 below states that using cnough p/c-pairs in the basic generalization
of linear cryptanalysis reveals information on the last-round key provided that
the following hypothesis holds.

Hypothesis of wrong-key randomization for an (r-1)-round I/O sum.
Let SE-=1 = go(X) @ g,—1 (YD) be an effective I/O sum for the cipher in
Fig. 1. Then, for virtually all possible full keys k") and for all wrong keys k for
the last round, the key-dependent imbalance 1(SU-7=1 | k(1-m=1) i5 substantially
reduced if the output of the (r —1)-th round is replaced by the estimate Y~V
computed from the ciphertext Y and a wrong key k for the last round. That is,
for all wrong keys k,

I'(g(l..r—l) | k(17)l:7)

[(S(l..r—l) | k(l..r—l))

where SU7=1D = go(X) @ g, (YD) and V-1 = F){l(Y).

<<1 (3)

S®-7=1) can be considered as a kind of (r4+1)-round I/O sum where the
(r+1)-th round has round function F~! and fixed round key k (Fig. 1, right),
but it coincides with either S('"=1) or its complement if £ is a representative of
the right key class (as this implies g, (Y "~"V) = g, ,(Y"~1)g¢). For a good
cipher, the key-dependent imbalance of multi-round I/O sums can be expected
to decrease with an increasing number of rounds.

Theorem 3. Suppose that S 71 s an effective (r — 1)-round 1/0 sum for
which the hypothesis of wrong-key randomization in the basic attack holds. Then,
for virtually all keys, the generalization of linear cryptanalysis with I/0 sum
S§@-r=1) finds the key class in which the true key of the last round lies as reli-
ably as desired provided that sufficiently many (randomly chosen) p/c-pairs are
available.

Copyright (c) 1998, Springer-Verlag



29

By using similar arguments, Matsui showed that, for a fixed key k(1" the
success probability of linear cryptanalysis is approximately proportional (in our
notation) to (I(SU-m=1 | k(1-7))2 where S(-7=1) is the considered I/O sum
[6, 5]. The crucial point is that the success probability is an increasing function
of the key-dependent imbalance of the considered I/O sum, which suggests that
this imbalance is a robust measure for the usefulness of such a sum.

5 Random Keys and Threefold Sums

The success probability pgrc of an attack exploiting the I/O sum §r=1) e
pends on the average-key imbalance T(S*"~1)) in approximately the same man-
ner as pgrc|x0.-~ depends on I(S1-r=1) | k(17 This approximation is virtu-
ally exact when the key-dependent imbalances for all keys are virtually equal.
We state this as a hypothesis, which is analogous to the hypothesis of stochastic
equivalence for differential cryptanalysis [2].

Hypothesis of fixed-key equivalence for an I/O sum. The key-dependent
imbalance of an effective I/0 sum SU-7=Y is virtually independent of the key
E-m=1 " more precisely,

I( S(l”r—l) | k(l..r—l)) ~ T(S(l..r—l)) (4)

is satisfied for virtually all keys k1"~ that can result from the cipher’s key
scheduling algorithm.

In fact, the average-key imbalance gives us valuable information even without
the hypothesis of fixed key equivalence. For example, if T(S(-7=1)) = 27100 we
know that at most a fraction 2740 of the keys will give a key-dependent imbalance
greater than 2790, Such an argument allows one to bound the number of “weak
keys” for a cipher and suggests that average-key imbalance is a robustly good
measure for the usefulness of an I/0O sum.

The cryptanalyst needs to find I/O sums that are effective for many (or
virtually all) keys. One possibility is to assume that the given hypothesis holds
for any I/O sum, fix the key, calculate the key-dependent imbalance by Monte
Carlo methods for virtually all possible I/O sums, and then select the most
effective ones. We describe below an alternative procedure that requires far less
computation. To formulate this procedure requires us to introduce the notion of
threefold sums.

Definition4. A threefold sum T for the i-th round is a modulo-two sum of
three terms: the first, a balanced binary-valued function f; of the round input
Y=1: the second, a balanced binary-valued function g; of the round output
Y @) and the third, some binary-valued function h; of the round key K®; i.e.,

T = f;(YEN) @ (YD) @ hi(K9) (5)
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The function h; is the key function of the threefold sum. Note that the first
part of the expression for T is the I/0 sum S (cf. (1)). We will call S the
parent 1/O sum for TV, The imbalance of a threefold sum is calculated under
our universal assumption that the arguments of the input function and of the
key function are independent and uniformly distributed.

We now analyze the relation between threefold sums and their parent 1/0
sums. We begin by lower bounding the average-key imbalance of the parent 1/0
sum S5(1#) by the imbalance of the threefold sum 717 — g(1.-0) © h(K(1-P)
in the manner

I(8%) = B[ [2Pst —0 | KU-2] - 1]
= B [|2prt- <o | K] - 1]
szﬂmeq:I@@m% (6)

where we have used Jensen’s inequality and the convexity of the absolute-value
function. Furthermore, equality holds if and only if 2P[T1r) = | K1) =
£E(-#)] — 1 has the same sign for all k("»). When equality holds, we will call
the key function h a mazimizing key function of T(?). We thus have proved
the following proposition.

Proposition 5. [Threefold sums with maximizing key function] Let S(1--?)
be a multi-round 1/0 sum. Then the Junction hmax on K? defined as

B (k09) = {0 it P[SU-r) = 0| K0p) = f(1-0))] > 1 )

1 otherwise
is a function h which mazimizes the imbalance of the multi-round threefold sums
SO @ h(KWL-P)Y e which upper bounds the imbalance of any other threefold
sum with the same parent. Furthermore, this mazimum imbalance is the average-
key imbalance of the parent I/O sum, i.e.,

I(SUN) = (S @ Ry (K9 (8)

The example below indicates that the (r — 1)-round threefold sums used in
Matsui’s linear cryptanalysis of DES are not likely to have a maximizing key
function - thus their imbalances provide only a lower bound on the average-key
imbalance of the parent 1/0 sum. Matsui’s approximated success probability is
then a pessimistic estimate of the true success probability. In fact, Matsui has
noted that his attacks perform better than predicted.

We show in Section 6 how to find the imbalance of threefold sums S @®h(K) for
a particular family H of key functions k. Obviously 7(S) > maxpes I(SHh(K)),
but the right side is often a good approximation to 1(S). As it is generally
infeasible to compute I(S) exactly, one has to rely on such an approximation
when trying to find effective threefold sums. Section 6 describes such families of
key functions for which we are able to compute this approximate imbalance.
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Ezample 1. This example illustrates that if a threefold sum is the sum of three-
fold sums that are linked, in the sense that their parent I/Q sums are linked,
and that have maximizing key functions, then this threefold sum can still have
a key function that is not maximizing. Consider the cipher in Fig. 2 consisting
of a cascade of an MA-box for four input bits (¥ = {0,1}%) as defined for the
cipher IDEA [2], an XOR operation with a four-bit key, and another MA-box.

3k
|

Threefold sum and parent /O sum imbalance
10

T
=
=2
*32)

Vv
-
Eseé.gé__ KF(S) 0 2 a é 5:5 10
Y

Approximate imbalance !
j=) (= [ %] w (= w (2% ~3 oo
% :

X

*

X

Average-key imbalance (*32)

Fig. 2. Cipher using the MA-structure of IDEA(8).

Consider the threefold sum
T‘%b,ii = ((L i X) D (C i Y) @ (hmax,a,h(K’(l)) ] (b A K(Z)) & hmax,b,c(}((g)))

where hnax a6 aNd Amaxpc are the maximizing key functions of

T,E]QLM =(ae X)® (boU)® hmaxan(KD) and

I:Eiazi)x,lj,(: = (b hd V) SH (C L] Y) e8] hmax,b,c(K(S)) ,

respectively, where o denotes the bitwise scalar product, and where a,b,c € X.
Let T2, = (beU) O (be V)& (be K?), so that Ty, = T a7 @

max,a,b max,b,b
Téfgx’bvc. We show in the next section that I(Thp.) = I(Trglla)x’a’h) 'I(Txgx’b‘c) as
2
I(TIEla?X,IJ,I)) =1L

In Fig. 2, we compare the approximate imbalance maxpex I(To ) and the
average-key imbalance of the parent I/O sum S, := (a e X) @ (ceY). For cach
of the 225 pairs (a, ¢) for which a # 0 and ¢ # 0, we plot one star, which may
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overlap with other stars. To compute the average-key imbalances of the 1/0 sum,
we have to find the cipher output for each key and input combination. For such
a small cipher, this is still feasible.

We observe that the average-key imbalances of the I/O sum may be strictly
larger than the approximate imbalances, even for a pair yielding the great-
est approximate imbalance. It follows that the sum of threefold sums each
with maximizing key function does not always have a maximizing key func-
tion, even if the imbalance of this sum is the largest possible. There are eight
threefold sums with the greatest average-key imbalance 9/32, e.g., the one with
(a,c) = (2,10).! If one of these threefold sums is used in an attack, the estima-
tion of the success probability based on the approximate imbalance 8/32 will be
pessimistic. Nonetheless, the highest approximate imbalance is quite close to the
true average-key imbalance.

Finally, we analyze one of the most effective I/O sums, namely the one with
(a,c) = (2, 10), more closely. The key-dependent imbalances vary between

I(Sa,10(k™2 =(5,2,1))) = 0 and I(S;10(k™"? =(5,0,))) = 0.5

for t € {0,1}*. This means that the hypothesis of fixed-key equivalence is not
valid.

6 Finding Effective Threefold Sums

6.1 Applicability of Matsui’s “Piling-Up Lemma”

In the language of threefold sums, Matsui’s piling-up lemma becomes the state-
ment that the imbalance of a sum of threefold sums is the product of their

imbalances, i.e.,
P 14
' (GBT(”) =Ly ©)
i=1 =1

provided that these threefold sums are independent.

Ezample 2. Consider a cascade of two “two-bit”-adders — Y1) = K(WEHX and
Y® = K@Y ™ where [ denotes addition modulo 2* = 4 — and the linked
threefold sums

TW = MSB(X) ® MSB(Y ) @ MSB(K (V) |
T = MSB(Y V) @ MSB(Y @) @ MSB(K'?) |

where the function MSB gives the most significant bit of its argument. It is easy
to check that I(T() = I[(T?) = 3 (the threefold sums are equal to 0 if there is

no carry bit, i.e., with probability ) and yet I(TW@T®) = ¢ # [(TW)-I(T™®).
! In this paper, the usual radix two representation of integers as n-tuples of X is

considered, except sometimes when we consider multiplication, where the all zcro
n-tuple denotes the integer 27.

Copyright (c) 1998, Springer-Verlag



33

Thus, the piling-up formula does not hold and hence we can conclude that 79
and T® are not independent. We also note that T(!) & T does not have a
maximizing key function and that the average-key imbalance of the parent I/0O
sum is 3, which also does not satisfy the piling-up formula.

The reason that Matsui’s piling-up lemma is of interest is that, in actual ci-
phers, it is infeasible to evaluate a multi-round imbalance directly, as this would
involve evaluating the multi-round output for all input and key combinations.
One is forced to find imbalances of one-round threefold sums and then use Mat-
sui’s piling-up lemma to find the imbalance of their sum. If these one-round
threefold sums are linked, we thus get the multi-round threefold sum imbalance,
which gives a lower bound on the average-key imbalance of the parent I/O sum.
The above example indicates the desirability of conditions guaranteeing the inde-
pendence of one-round threefold sums, since the piling-up formula (9) applied to
dependent threefold sums can suggest misleading results. The following lemma
specifies such a condition.

Lemma 6. For an iterated cipher as in Fig. 1 with independent round keys,
let TY) be a threefold sum for the i-th round. If for each i = 2, ..., p, T® is
independent of the round input Y=Y, then the threefold sums TO, ..., T(»)
are independent.

6.2 A Procedure for Finding Effective “Homomorphic” Threefold
Sums

The independence of a one-round threefold sum and its input can be assured
when a group operation occurs at the beginning of each round. This fact is
fundamental for Theorem 8. Hereafter, we denote the left and the right part of
akey K by K 8) and Kg) , respectively.

Definition 7. AnI/O sum is homomorphic if the input and the output functions
are homomorphisms for some considered group operation(s). A threefold sum is
homomorphic if the parent I/O sum is homomorphic.

For example, a one-round homomorphic threefold sum, independent of its input,

for a cipher that inserts the key Kl(f) with the group operation “x;” at the entry
of the i-th round, is

7O = (YN e g(Y D) & (fi(E) & h(KY)) | (10)

where f; and g; are homomorphic binary functions for #; and *;1, respectively,

iLe,forallU,V € X, fi(UxV) = fi(U)@ fi(V) and gi(U*i11V) = g:(U) B gi(V).

Theorem 8. Consider a cascade of p rounds with keyed round functions F(U ...
F) | for which

YO = A, (r60) = g(Y 00w K K )
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where “;” denotes a group operation in X, ¢;(., A )) 18 a bijection on X for all

k(l , T®) is a homomorphic threefold sum for the i-th round, and TV, ..., T
are lmked Then the imbalance of the p-round threefold sum T(--P) .= @2):1 T®
is given by Matsui’s piling-up formula (9). This means that for the parent 1/0

sums,
14 14 )
§t-ely H )= 1) . (12)

It follows that one can find an effective p-round threefold sum for a cipher whose
round functions have a group operation at the entry (cf. 11) as follows:

1. Fori=1,..., p+1, find the set H; of all binary functions on X that are
homomorphisms for “x,”.
2. Fori=1, ..., p, find the imbalance of all i-th-round homomorphic threefold

sums with input function g;_; € H; and output function g; € H; .
Discard the threefold sums with small imbalance.

3. Consider each possible list of p linked threefold sums containing one threefold
sum found in Step 2 for each round.
Use Theorem 8 to find the imbalance of the p-round threefold sum that can
be written as the sum of all threefold sums in the same list.
Find the p-round threefold sum with the largest imbalance.

6.3 Discussion of the Given Procedure

The complexity of the above procedure depends mainly on the number of homo-
morphisms onto ({0, 1}, &) for the group operations. If “x;” is the bitwise XOR
operation in A, the only such homomorphisms are the linear functions defined
by la(z) = a e for all z € X, where a is a non-zero n-tuple. An I/O sum (or
a threefold sum) whose input and output functions are I, and I, respectively, is
called linear with linear-mask (a,b). If all group operations “x;” are the XOR.
operation, the given procedure considers only threefold sums whose component
functions are linear. Thus for DES and other ciphers using XOR, the given pro-
cedure leads to no improvement of Matsui’s method for finding effective linear
expressions and to no real gencralization of his linear cryptanalysis.

For the two groups ({0, 1}", ®) (multiplication modulo 2"* +1 with n = 2,4, 8
or 16, and O representing 2") and ({0,1}", #H) (addition modulo 27) of order
2" used in IDEA {1, 2], there exists only one homomorphism, viz. the quadratic
residue function QR for @ and the parity function (i.e., the least significant bit
function LSB) for @. For ciphers using these operations, there are only very
few possible linked threefold-sums, so that there is little chance that one of the
corresponding threefold sums is effective. Thus the procedure for finding effective
homomorphic threefold sums and the generalization of linear cryptanalysis is not
very powerful against most ciphers using such operations to insert the key.
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It is generally infeasible to analyze the imbalances of all possible threefold
sums and even infeasible to find the imbalance of a single (r — 1)-round threefold
sum if one cannot deduce it from the imbalances of smaller sections such as
rounds or S-boxes by using Matsui’s piling-up lemma. The only threefold sums
we know to which Matsui’s piling-up lemma applies are homomorphic. We are
aware of no practical alternative for finding imbalances. The procedure given
in this section considers promising candidates for the most effective threefold
sum, but it never guarantees that the threefold sum found is the most effective
possible.

Example 3. To show that such a guarantee does not exist, we consider the 3-bit
round function F' defined by Y = Fg(X) = ¢(XHK) where the function table
of pis ¢ :=(0,1,3,5,2,4,7,6). The only homomorphic function I for [ is given
by I = (0,1,0,1,0,1,0,1). Since I({(X) @ [(Y)) = 0, but I(f(X) & (Y)) = 1
for f:=(1,1,1,1,0,0,0,0), the threefold sum with input function f has higher

imbalance than the only homomorphic threefold sum.

6.4 Application to DES

A procedure for finding effective homomorphic threefold sums for DES has been
implemented in [7]. It is similar to our procedure, but it requires more ingenuity
to link threefold sums efficiently as there exist many guaranteed one-round three-
fold sums. The following example illustrates how one-round threefold sums that
are independent of their input are constructed. By Lemma 6, this guarantees
that Matsui’s piling-up lemma is applicable when we cascade them.

Ezample 4. Let U; denotes the i-th bit of a random variable U, where we number
the bits from left to right starting with 1. This differs from Matsui’s numbering
(right to left starting with 0). For example, what we call the 2nd input bit to an
S-box, Matsui calls the 4-th input bit; our 3rd plaintext bit X3 is his bit Py[29]
and Yg4 corresponds in his notation to Cr,[0].

Let U denote the 6-bit input to the fifth S-box S5, and V := S5(U) the 4-bit
output. The threefold sum Uz &V; &V, B Vi@V, has imbalance %. By considering
the permutation and the expansion in DES, one can find relations that enable
us to transform the threefold sum for S5 into the threefold sum

0= xPexPexyexexPowevy ey e vy e Ky,

which has the same imbalance —g and is independent of the input X V). Similarly,

10 = (xPexPexFoxP)e P o ord ovP e v oKy .

Since the I/O sum S™ linked to both 7Y and T®) is guaranteed, T3 (with
T = S@) has imbalance I(TM) . [(T®)) = 2 which is quite effective.
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7 Some Examples

7.1 The QRweak Cipher

We now contrive a cipher, QRweak, to be weak against our generalization of
linear cryptanalysis, but secure against linear and differential cryptanalysis. QR-
weak is a four round iterated block cipher of block-size cight (Fig. 1 with r = 4,
n = 8) whose round function is defined as Fy(z) = ¢(z ® k), where ® denotes
multiplication modulo 257 and where the function ¢ changes the bit order of the
argument in the manner £1totatststetsts — tetatststitstats and then XORs the
result with the integer 34. The function ¢ of the last round can be omitted. Qur
aim is to find the key of the last round, given that all p/c-pairs are known. The
only homomorphic one-round threefold sum that is independent of the input
is QR(X) & QR(Y) & QR(K) and has imbalance I = %411’ where QR is the
quadratic residues modulo 2% + 1 function. The parent I/O sum of the “two and
a half”-round threefold sum

QR(X) ® QR(Y? 0 K®) @ QR(KY) © QR(K?) & QR(K®)

with imbalance ()2 = 10.77% is used in our attack. The success probability

is parc =~ 5.5%, whereas linear and differential cryptanalysis as well as random
key guessing yield a success probability of only about 0.39%.

7.2 Cryptanalysis of IDEA

We now apply the procedure for finding effective homomorphic threefold sums to
the cipher IDEA [1], earlier called IPES [2]. The round function is a function on
64-bit words, consisting of a group operation denoted by ®, a keyed involution
In and a permutation P;. Each 64-bit word X can be considered as a concate-
nation of four 16-bit words X1, X2, X3, X4 and denoted as a 4-tuple. The group
operation is defined as X ® K := (X1 ® K1, X2[HK?2, X3HK3, X406 K4),
where © denotes multiplication modulo 26 + 1 with 0 representing 26, and [
addition modulo 2'®. As there exists only one non-constant homomorphism for
(2 and only one for ®, there exist 2* — 1 homomorphisms for ®, namely the
functions

filX) = (i1-QR(X1)) @ (12 - LSB(X2)) @ (i3 - LSB(X3)) & (¢4 - QR(X4)) (13)

for all binary four-tuples i = i1i243i4 different from 0000, where QR is the
quadratic-residue modulo 2! + 1 function.

A homomorphic I/O sum for IDEA can be characterized by the IDEA-mask
(a,b) where the non-zero 4-tuple a is the mask of the input function and the
non-zero 4-tuple b the mask of the output function.

We try to find effective homomorphic one-round 1/0O sums. For some of the
225 IDEA-masks, e.g., (1110,0100), we can show that the average-key imbalance,
and thus all key-dependent imbalances, are zero. For other IDEA-masks, it is
computationally infeasible to evaluate the key-dependent imbalances exactly. For
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the mini-cipher IDEA(8), the average-key imbalance of all one-round homomor-
phic I/O sums are zero. For IDEA(16), the one-round I/O sums with IDEA-
masks (1111,1011), (1101,1111), (1011,1001), and (1001,1101) have average-
key imbalance 0.002441, the four with (1111,1001), (1001,1111), (1101,1101),
and (1011,1011) have average-key imbalance 0.00122, and all other I/O sum
average-key imbalances are zero. Moreover, the number of p/c-pairs that must
be analyzed in the generalization of linear cryptanalysis is about the square
of the key-dependent imbalance and is here far larger than the total number
of p/c-pairs. We conclude that the procedure for finding effective homomor-
phic threefold sums does not find any effective threefold sum for IDEA(8) and
IDEA(16). Furthermore, the maximum key-dependent homomorphic I/0 sum
imbalance is only 0.00586. As this is only slightly larger than the maximum I/0O
sum average-key imbalance, there are no weak keys for the MA-box with respect
to our attack. These conclusions doubtlessly hold true for (full-sized) IDEA as
well. Thus IDEA seems secure against the generalization of linear cryptanalysis.

7.3 Cryptanalysis of SAFER K-64

SAFER K-64 is an iterated block-cipher, presented by Massey in [4]. The round
function of SAFER K-64 consists of two half-rounds, each consisting of a keyed
group operation and an unkeyed bijection either consisting of exponential and
logarithm functions modulo 257 or a “Pseudo-Hadamard Transform”. We have
been able to prove that the procedure for finding effective homomorphic threefold
sums for “one and a half” or more rounds of SAFER K-64 does not find a
homomorphic threefold sum with non-zero imbalance. We conclude that SAFER
K-64 is secure against the procedure for finding effective homomorphic threefold
sums.

8 Conclusion

‘We have defined a generalization of linear cryptanalysis of iterated block ciphers
and focused on its basic attack, which exploits an effective (r — 1)-round I/O
sum to find information about the key of the last round. We have given suffi-
cient conditions for a successful basic attack. These results can be extended to
non-basic attacks in a manner similar to Matsui’s improvements on basic linear
cryptanalysis [6].

We have given a careful analysis of the applicability of Matsui’s piling-up
lemma. For the family of ciphers that insert keys by group operations, we have
developed a procedure for finding some (arguably the best, but not necessarily
all) effective multi-round threefold sums. This procedure requires finding ho-
momorphisms for the used group operations. For ciphers using XOR (such as
DES), the procedure finds only linear threefold sums, which are the same as
Matsui’s linear expressions. For ciphers using modular addition and multipli-
cation with large moduli (such as IDEA), the choice of homomorphic sums is
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severely limited so that such ciphers tend to be immune to our generalization of
linear cryptanalysis.

Finally, we argued that IDEA is secure against the generalization of linear
cryptanalysis by showing that the presented procedure for finding effective ho-
momorphic threefold sums finds no effective threefold sum for IDEA(S8) or for
IDEA(16). Similarly, the procedure for finding effective homomorphic threefold
sums finds no effective threefold sum for “onc and a half” (or more) rounds of
SAFER K-64.
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