Towards a Metrics-Based Framework for Assessing
Comprehension of Software Visualization Systems

Harkirat Kaur Padda, Ahmed Seffah, and Sudhir Mudur

Department of Computer Science & Software Engineering, Concordia University,
Montreal, Canada
{padda, seffah,mudur}@encs.concordia.ca

Abstract. Despite the burgeoning interest shown in visualizations by diverse
disciplines, there yet remains the unresolved question concerning comprehension.
Is the concept that is being communicated through the visual easily grasped and
clearly interpreted? Given the vast variety of users and their visualization goals, it
is difficult for one to decide on the effectiveness of different visualization tools/
techniques in a context independent fashion. To capture the true gains of
visualizations, we need a systematic framework that can effectively tell us about
actual quantifiable benefits of these visual representations to the intended
audience. In this paper, we present our research methodology to establish a
metrics-based framework for comprehension measurement in the domain of
software visualization systems. We also propose an innovative way of evaluating
a visualization technique by encapsulating it in a visualization pattern where it is
seen as a solution to the visualization problem in a specific context.

Keywords: Software visualizations, comprehension, measurement, metrics,
cognition, perception, GUI, patterns etc.

1 Introduction

There are many visualization tools/techniques available today, and many more continue
to be introduced as computer-based information processing pervades different domains.
Visualization is often seen as a way to help people gain insight about large, related and
complex information or artifacts. Despite this apparent proliferation, various researchers
have seen many shortcomings in existing visualizations tools which tend to considerably
reduce their overall value to users. A detailed study of existing literature shows that
possible shortcomings include: ‘navigational problems’, ‘improper context’, ‘lack of
evaluation’, ‘ineffective imagery’, cognitive overload’, and interaction difficulty’. With
these drawbacks, the utility of the visualization systems is questionable and this is the
point where we need to seek measurement. The success of any visualization system relies
on its support for providing ‘user insights’ to understand underlying artifact represented
through the visual. If the visualization system does not achieve this objective, it is of little
use and suffers from poor quality. Clearly, comprehension is the most important aspect
that determines the quality of any visualization system. For visualization systems, we
define comprehension as the degree to which information represented through visuals
can be grasped and interpreted correctly in a specified context.

M.J. Smith, G. Salvendy (Eds.): Human Interface, Part I, HCII 2007, LNCS 4557, pp. 335 2007.
© Springer-Verlag Berlin Heidelberg 2007

336 H.K. Padda, A. Seffah, and S. Mudur

Existing visualization systems, with sheer volume of information, place high
cognitive load on the users. They provide little help to interpret the meanings of
different visualizations being displayed. Gleaning from the literature, one can see that
no matter how efficient a visualization tool/technique may be, or how well motivated
from theory it is, if it does not convey information effectively then its’ usefulness is
questionable. We need to study and answer research questions like- how well the
visualization system’s intent is met through visuals and interaction techniques; how
well the user’s intent is met by the visualization system; whether these representations
are really effective in terms of achieving their major goal of providing ‘user insights’
for which they were developed and how can we measure whether the visualization has
been appropriately comprehended by intended users. Clearly, what is needed is a
framework which enables us to systematically carry out studies for measuring the
comprehension aspects of visualization tools/ techniques.

To empirically assess the value of visualizations in a practical sense, we need to
study their usefulness in a particular field of their usage; which in our case is software
visualizations. In the domain of software visualizations, visualization technologies
provide graphical abstractions of the huge source code and assert to ease in perception
of this invisible entity by giving it altogether a different aspect than that of a source
code. In addition, given the vast variety of users (software engineers in our case) and
their distinct visualization goals, it is difficult for one to decide on the effectiveness of
different software visualization tools/techniques in a context independent fashion.
This notion of ‘context of use’ has become a pandemic in almost all measures of HCI
field; usability itself is not independent of this criteria. We plan to deal logically with
this influential factor of any evaluation mechanism by conducting an empirical study
with five comparable software visualization tools. Ensuring the effectiveness of a
software visualization tool/technique involves understanding of how users use it. This
is being simulated in our research by using controlled experiment approach with the
help of typical users of these tools. Unlike other researchers who have conducted
empirical studies to informally judge the strengths and weaknesses of their tools, our
goal is to objectively quantify the overall effectiveness in terms of supported user’s
comprehension. The software visualization tools (i.e. SA4J [3], SHriMP [10],
Structure 101[14], Surveyor [15], and VizzAnalyzer [16]), which we are exploring are
the static software visualization tools. These are mainly used in academia and industry
during software maintenance purposes to extract the structure of any software system.
We investigate the issue of evaluating a visualization tool/ technique by encapsulating
it in a pattern format describing the applicable ‘context of use’ that is appropriate for
it. The context of use is defined in detail by studying the actual needs, characteristics
of software maintainers and matching their needs with the capabilities of different
visualization tools/techniques.

Our proposed metrics-based framework will integrate both quantitative and
qualitative measures of users’ comprehension which are derived from human’s
cognitive and perceptual capabilities along with the interface features of any
visualization system. Our evaluation criterion is based on three well-defined
principles for effective visual communication in HCI — principle of organization,
principle of economize and principle of communication proposed by Marcus [5] along
with Norman’s Cognitive Principles [7]. Like other standard software engineering
models (i.e. McCall, Boehm, GQM etc.), the proposed framework incorporates a

Towards a Metrics-Based Framework for Assessing Comprehension 337

hierarchical decomposition of users’ comprehension factors, their associated criteria,
metrics along with their interpretation, as well as overall evaluation context for
comprehension assessment in the form of visualization patterns.
The rest of this paper is organized in various sections as follows:

Section 2 describes the general background and related research in the domain of
software visualizations, section 3 along with subsections is a detailed explanation of
our research methodology towards the establishment of the metrics-based framework,
and finally in section 4, we conclude by enumerating the benefits of our approach and
the current stage in the development of this framework.

2 Background and Related Work

The two main facets of software visualizations (SV), static and dynamic, are intended
to support many different software development activities; and the developers of these
tools claim that their usage improves the productivity of their users especially the
software maintainers. Without measurement or evaluation in some form, it is very
difficult to realize the true value of such visualization tools to the software
community. There is still little progress in the evaluation of software visualizations,
as most research effort is being spent on the development of yet more novel
visualization techniques, ideas and technological innovations rather than judging the
effectiveness/usefulness of the currently available SV tools/techniques. In short, the
field of empirical investigation of software visualization tools/ techniques is rather
immature and only a few researchers have worked informally to characterize and
assess the usefulness of these SV tools/techniques. In the following paragraphs, we
briefly summarize various related studies conducted by other researchers in the
domain of software visualizations.

Bassil and Keller [1] conducted an online survey of software visualization tools
using a questionnaire approach. The questionnaire was designed using existing
taxonomies to extract a list of properties of software visualization tools. The objective
of the study was twofold - to assess the functional, practical and cognitive aspects of
visualization tools that users’ desire, and to evaluate support of code analysis in
various existing tools that users’ use in their environment. The authors recognized a
total of 34 functional aspects along with 13 different practical properties of software
visualization tools. They also summarized the cognitive aspects of visualization tools
in terms of various usability elements like ‘ease of use’, ‘effectiveness’, and ‘degree
of satisfaction’ etc.

Knight and Munro [4] briefly discuss two main perspectives that should be taken
into account when deciding whether or not visualization is effective. These are - the
suitability for the tasks that the visualization is intended to support, and the suitability
of representation, metaphor and mapping based on the underlying data. They also
highlight that domain and data structures have a considerable affect on the
effectiveness of any visualization.

Marcus et al. [6] conducted a usability study to assess the effectiveness of a
software visualization tool named sv3D. The aim of the study was to determine the
usefulness and improvement of sv3D as a new technology to support program

338 H.K. Padda, A. Seffah, and S. Mudur

comprehension. The source program was a documentation software application which
was rendered using 3D metaphor of poly cylinders and containers. A total of 35
participants participated in usability study. The participants were divided into two
groups: one group answered the questions using sv3D tool and other group responded
the questions using tabular data with metrics and source code utilizing the search
features in Visual Studio.NET. The answers were analyzed and compared to judge the
effectiveness of sv3D tool.

Pacione et al. [8] conducted an empirical evaluation of five dynamic visualization
tools. The aim of their study was to compare the performance of these tools in general
software comprehension and specific reverse engineering tasks. The performance of
the tools was judged by conducting a case study with a drawing editor. The evaluation
was carried out by a single user who had the knowledge of the drawing editor and
dynamic visualization tools. The tools were compared based on four categories —
extraction technique, analysis technique, presentation technique, and abstraction level.
The questionnaire was divided into two sections- large scale questions expressing the
course of a software comprehension effort, and small-scale questions resembling the
course of a specific reverse engineering effort.

Storey et al. have performed a number of experiments with software visualization
tools [11, 12, and 13]. In these studies, their primary objectives were to: compare the
effectiveness of their tool on five usability dimensions, observe different strategies
used by participants while comprehending program under study; how the tools were
supporting these set of preferred strategies; devise a framework for describing,
comparing and understanding visualization tools that provide awareness of human
activities in software development and provide feedback for tool developers and
researchers. Their framework has five key dimensions: Intent (to capture the general
purpose and motivation that led to the design of visualization), Information (data
sources that a tool uses to extract relevant information), Presentation (how the tool
presents the extracted and derived information to users), Interaction (refers to
interactivity of the tools), Effectiveness (determines if the proposed approach is
feasible and if the tool has been evaluated, deployed).

3 Research Methodology Towards Establishing a Framework

As we have seen in the previous section, many researchers have applied different
strategies for empirical investigation of SV tools, but without a unified measurement
framework. Our goal is to provide a measurement framework that can objectively
quantify the overall effectiveness in terms of supported user’s comprehension. To
achieve this objective, we are proposing a hierarchical framework to properly investigate
the issue of comprehension evaluation as shown in Fig. 1. The three bottom layers are
similar to the other well-known software engineering models for measuring the software
quality. However, the top three layers are the fundamental layers that are needed before
conducting any empirical investigation of the SV tools with their users.

Our research methodology is a step by step refinement of these layers, and is
described in the following sections.

Towards a Metrics-Based Framework for Assessing Comprehension 339

Describing the
evaluation environment
| in terms of -

Identifying 'Context of Use' User Characteristics
Task Characteristics

Environment
y Characteristics

| Defining visualization

Defining Visualization Pattern technique in a pattern
format

$ Principles for visual

effectiveness and
s 2 : Cognitive principles
Es\tabllshmg Evajluatlon Qasls acting as

i kY ™ predetermined
evaluation basis

I

Factors derived for

\ different aspects of
comprehension with
guidance from

evaluation basis

Refining high-level
factors to low-level
measurable criteria

efining metrics to

- |
Metrics ™ & 4 sl
measure criteria

I

Fig. 1. Research Framework

3.1 Identifying Context of Use

To conduct an evaluation of any SV tool, the foremost step is to identify the ‘context
of use’ that captures the boundaries of evaluation. This is done so that the elements
which may influence the evaluation are appropriately summed up. The context of an
experiment can be described on three basic dimensions - user characteristics, task
characteristics and environment characteristics as briefly described below:

User characteristics - In our research with static software visualization tools, our
users are software engineers. So, the characteristics that have significant impact on
their performance are - age, gender, spatial-ability, education, experience
(application domain knowledge, programming language expertise, visualization
tools expertise) etc.

Task characteristics - Tasks selected for an evaluation should be representative of
what the users (software engineers) do with the static software visualization
systems and must be manageable, suitable for a laboratory evaluation. Based on a
thorough literature survey, we have identified the needs for software maintenance
and have compared the maintenance needs with the tasks supported by current
software visualization tools. This is done because the users’ tasks that these SV
tools support are linked to or are derivable from the typical and elementary
information needs of software maintainers. We have developed a catalogue of
software maintenance tasks that should be supported by any static software
visualization tool. The other characteristics of tasks, like- task type, task size and
complexity, task time and cost constraints are also summed up appropriately.
Environment characteristics - The environment for the experiment is described in
detail by determining the appropriate software/ hardware, social components for it.

340 H.K. Padda, A. Seffah, and S. Mudur

In our framework, we describe in detail the software part of environment by
enumerating different software characteristics like application domain,
programming domain, program size, complexity, code quality, availability etc.
Hardware characteristics and social characteristics are also studied in detail for
experimental purposes.

This ‘context of use’ is further fed into the next layer of our framework to describe
the visualization patterns for visualization techniques used in an experiment.

3.2 Defining Visualization Pattern

The true quality of visualization can only be measured in the context of a particular
purpose, as the same image generated from the same data may not be appropriate for
another purpose [9]. This means we cannot evaluate a visualization technique in
isolation without considering the applicable ‘context of use’. A technique can be good
in one context and bad in another. Wilkins [17] coined the idea of formalizing
visualization techniques into patterns by stating that a number of techniques are being
reused to solve recurring visualization problems in different domains. That is, we
have to evaluate their effectiveness in an abstract manner; by encapsulating the
visualization tool/technique in a visualization pattern. We define a visualization
pattern as a visualization problem that occurs in a certain context and for which
visualization technique can be a solution.

A visualization problem could be solved by a number of different techniques.
Consequently, there are many different patterns that could be derived for the same
problem. For the tools under our investigation, we are proposing a number of different
visualization patterns that have common visualization problem and context as shown in
Fig. 2 and Fig. 3. All these visualization patterns are to solve a common visualization

Tifie Radial Tree

Corifexf The display consists of a munber of software objects

i(packages classes and interfaces) and their inter-relationships

or structural dependenciesin the sowce code

Froblem How to digplay large hierarchical tree structires showding

dependencies among softuware objects?

Forces = Towvisualize and navigate large trees it a radial space

= Focus + cotitext Wewing allowing etormous trees to fit
within fixed space of a com puter screen

= Foom it o oa part cualar item while keeping in wiew of the
el ghiborhiood context

Shlufion U se a Radial Tree representation [3]

—

splay the detailed pictwre of relationships between
application objects atd detailed map of dependenwcies and
dependents of ewvery package. class or dnterface i an
applicationn The idea is to display different software objects
atud their relationships in a radial fashion, where the object
fnodes are placed rowd the circle and their relationships are
show aith directed lines emanating from the source to
destination node.

Examples Suntbuarst, RadWiz

Related PyramidiSkeleton Wiew, Treeddraph, Cone Tree, Treellap,
Pedfern Explorer etc.

Fig. 2. Radial Tree Pattern

Towards a Metrics-Based Framework for Assessing Comprehension 341

Tifle Pyramid oxr Skeleton View

Copafex s The display consiste of a mumber of software objects

[packages classes and interfaces) and their irder relationships

or strucharal dependencies in the source code

FProblem How to display large hierarchical tree stractares showing

dependencies am oz softurare obyj ects?

= To wisualize and navigate large softarare stractares within
fixed space of a Complitsr soreen

= O werview of entire structure of software system in the form
of pryramid of small sgquares

= Dietails on demand by providing a ‘data tip” to ascess the
detailed information about any object twader selection

= Wiew relationships amongitems Users can select an item
atud then dghili ght the dependernt items

Solition T se a Skeeton View [3]

Forces

The basic idea here isto represent the softe are as a pyramid of
dependencies the entities with only outgoing dependencies o
the hottom, those with only incoming dependencies on the top.
Each sguare corresponds to either one olbject (clasa’ intesfaces
package) or one tangle. This layered wew of the system is
constructed by putting objects (clasa’ interfaces package that
do not depend on anything at the bottom of the “Asualization.
The objects that are dependent on the lowest layer appear in
the layer abowe, and so o, In this vWew, a stable system should
hawe a normal pyramid shape An unstable system may look
like an upside down pyramid shape. T angles, dependents of an
entity etc. can be specifically colored.

Framples | Tcicle plot

Related Fadial Tree, Tree/Graph, Cone Tree, TreelIap, Explorer eteo.
Bcdfern

Fig. 3. Pyramid/Skeleton View Pattern

problem of displaying large hierarchical tree structures of dependencies among
different software objects. The contributing forces may vary in each pattern; however,
to distinguish pattern from one another solution is entirely different in each pattern.

3.3 Defining the Evaluation Basis

Our evaluation criterion is based on the work of two eminent researchers (Aaron
Marcus and Donald A. Norman) in HCI community who have their expertise in the
field of visual communication and human cognition. We believe that the basic
principles proposed by them in their respective areas are the fundamental evaluation
objectives that contribute to the overall comprehension of any visualization system
regardless of its domain. The three principles proposed by Marcus [5] on visual
communication i.e. ‘Principle of Organization’, ‘Principle of Economize’ and
‘Principle of Communication’ along with the criteria proposed by Norman cognitive
principles [7] on ‘Affordances’, ‘Mapping’, ‘Constraints’ etc. are the building blocks
of our evaluation basis. These guiding principles and criteria are studied further in
detail in order to determine their affect on human comprehension. The next layer in
our hierarchical framework is actually derived from this evaluation basis.

3.4 Determining the Comprehension Factors and Criteria

For any visualization system, data rendered in visual form is perceived or interacted
upon by the user of that system as shown in Fig. 4.

342 H.K. Padda, A. Seffah, and S. Mudur

Nw‘x
y‘

(}
&

@ .Rmmng Data/lnformahcn

Fig. 4. Aspects of Comprehension

The issue of comprehension evaluation is difficult especially with visualization
systems where many different aspects like human cognition, perception, information
structure and visualization interface play different roles and affect one another. Brief
explanations of each of these aspects are as under:

= Information structure: The information structure has a profound affect on user
comprehension. Sometimes the data that is rendered is not perfect by itself due to
many causes like: corruption of data, incompleteness, inconsistency, information
complexity, uncertainty, imperfect presentation etc. [2]. The net affect is that the
visual, which is used to represent it, is not easy to comprehend.

= Visualization interface: Naturally, the interface is a crucial part of any visualization
system, as it essentially forms the link between the user and the visualization itself.
An easily understandable UI helps the user to interpret the visualization and
perform the correct operations. Based on the Marcus’s [5] principle of organization
and principle of economize, we have derived a set of factors/ criteria for
visualization interface comprehension like consistency, navigability, screen layout,
simplicity, clarity/intuitiveness, distinctiveness, emphasis etc.

= Perception: Perception is an integral part of any visualization and perceptual
features of visualizations like color, orientation, contrast, position, size etc. along
with the criteria proposed by Norman [7] like affordances, metaphors/ symbolism,
familiarity can interfere with successful comprehension.

= Cognition: In order to judge the degree of comprehension, it is also necessary to
study the human information processing or the cognition of information in human
mind. The visualization tool/technique should provide an ergonomic design that
matches the cognitive capabilities of the user. To ensure that, Marcus’ third
principle of communication and Norman’s Cognitive Principles guide us to have a
number of factors/criteria like legibility, readability, multiple views, naturalness of
interaction/mapping etc.

Currently, all the factors in these four aspects of comprehension excluding
“information structure” are being studied further in detail to determine their
appropriateness to the SV tools. If needed, they can be further decomposed into
measurable criteria.

3.5 Determining the Metrics

The lowest level of our framework is a collection of metrics and measures to quantify
the related criteria and is currently under implementation. We will be adopting the
metrics proposed by various researchers and will define new metrics. We are devising

Towards a Metrics-Based Framework for Assessing Comprehension 343

a set of questions to be asked in a controlled experiment. The questionnaire will
incorporate qualitative and quantitative aspects of visualizations which will feed the
data for our subjective and objective metrics respectively. Metrics interpretation will
be an integrated part of our evaluation framework.

4 Conclusion

In addition to the general measurement benefits, our framework will be a reusable
solution that could be applied to other domains in real-world settings to measure
comprehension/effectiveness of any visualization system. Specifically, we expect the
following benefits:

1. Prior attention to the most important visual design principles for understanding
what factors of the visualization system can influence users’ comprehension.

2. Provide a flexible hierarchy of the factors and criteria, so that evaluators could
select those that are most appropriate according to their evaluation objectives.

3. Appropriate documentation of the test environment, in terms of the ‘context of use’
and encapsulation template for visualization techniques in terms of the patterns, for
better analysis.

4. Data collection efforts will be concentrated, since the required data elements will
be already defined.

5. Data interpretation will be more efficient and effectively tied to selected objectives.

Currently, we are refining our repository of factors/criteria and are working on a
set of metrics that can be applied for the controlled experiment. We hope that our
framework will help and guide other researchers in different domains as well.

References

1. Bassil, S., Keller, R.K.: Software Visualization Tools: Survey and Analysis. In: Proc. of
9th Intl. Workshop on Program Comprehension. Toronto, Canada, pp. 7-17 (2001)

2. Gershon, N.: Visualization of an Imperfect World. IEEE Computer Graphics and
Applications 18(4), 43—45 (1998)

3. Iskold, A., Kogan, D., Begic, G.: Structural Analysis for Java (SA4J). An alphaworks Java
technology from IBM, (2004), [Accessed October 28, 2006], Available from: < http:/
www.alphaworks.ibm.com/tech/sa4j >

4. Knight, C., Munro, M.: Visualisations; Functionality and Interaction. In: Alexandrov,
V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) Computational Science -
ICCS 2001. LNCS, vol. 2074, pp. 470-475. Springer, Heidelberg (2001)

5. Marcus, A.: Principles of Effective Visual Communication for Graphical User Interface
Design. In: Human Computer Interaction —Towards the year 2000, 2nd edn., pp. 425-441.
Morgan Kaufmann, San Francisco California (1995)

6. Marcus, A., Comorski, D., Sergeyev, A.: Supporting the Evolution of a Software
Visualization Tool through Usability Studies. In: Proc. of 13th Intl Workshop on Program
Comprehension (2005)

7. Norman, D.A.: The Design of Everyday Things. Doubleday, New York (1990)

8. Pacione, M.J., Roper, M., Wood, M.: A Comparative Evaluation of Dynamic Visualisation
Tools. In: Proc. of 10th Working Conf. on Reverse Engg., pp. 1095-1350 (2003)

344

9.

10.

11.

13.

14.

15.

17.

H.K. Padda, A. Seffah, and S. Mudur

Rushmeier, H., Botts, M., Uselton, S., Walton, J., Watkins, H., Watson, D.: Panel: Metrics
and Benchmarks for Visualization. In: Proc. of 6th IEEE Visualization Conference, 422
(1995)

SHriMP. The CHISEL Group. University of Victoria, BC, Canada. [Accessed November
2007,2006] Available from: <http://www.thechiselgroup.org/shrimp/manual>

Storey, M.A.D., Wong, K., Fong, P., Hooper, D., Hopkins, K., Miiller, H.A.: On
Designing an Experiment to Evaluate a Reverse Engineering Tool. In: IEEE Proc. of 3rd
Working Conf. on Reverse Engg., pp. 3140, Los Alamitos, CA (1996)

. Storey, M.A.D., Wong, K., Miiller, H.A.: How Do Program Understanding Tools Affect

How Programmers Understand Programs? In: Proc. of 4th Working Conf. on Reverse
Engg., Amsterdam, Holland, pp. 12-21 (1997)

Storey, M.A.D., Cubrani¢, D., German, D.M.: On the Use of Visualization to Support
Awareness of Human Activities in Software Development: A Survey and a Framework.
In: Proc. of ACM symposium on Software visualization, St. Louis, Missouri, pp. 193-202
(2005)

Structure101. Headway Software Technologies. [Accessed November 08, 2006],
Available from: < http://www.headwaysoft.com/index.php >

Surveyor, Lexient Corporation. [Accessed November 2006], Available from: < http://
www.lexientcorp.com/codeanalyzer/products.htm >

. VizzAnalyzer, ARiSA Group, Vixjo University, Sweden. [Accessed October 28, 2006],

Available from: < http://www.arisa.se/index_projects.html >
Wilkins, B.M.: A Pattern Supported Methodology for Visualisation Design. Doctoral
dissertation, University of Birmingham, UK (2003)

	Introduction
	Background and Related Work
	Research Methodology Towards Establishing a Framework
	Identifying Context of Use
	Defining Visualization Pattern
	Defining the Evaluation Basis
	Determining the Comprehension Factors and Criteria
	Determining the Metrics

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

