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Abstract. We present a new method for the fast and robust computation of in-
formation theoretic similarity measures for alignment of multi-modality medical
images. The proposed method defines a non-uniform, adaptive sampling scheme
for estimating the entropies of the images, which is less vulnerable to local max-
ima as compared to uniform and random sampling. The sampling is defined using
an octree partition of the template image, and is preferable over other proposed
methods of non-uniform sampling since it respects the underlying data distribu-
tion. It also extends naturally to a multi-resolution registration approach, which
is commonly employed in the alignment of medical images. The effectiveness of
the proposed method is demonstrated using both simulated MR images obtained
from the BrainWeb database and clinical CT and SPECT images.

1 Introduction

Inter-modality image alignment is a fundamental step in medical image analysis. It is
required to bring image data from different modalities to a common coordinate frame
in order to accumulate information. It is usually presented as an optimization prob-
lem requiring the minimization of a certain objective function. Objective functions, or
similarity measures based on information theoretic principles have been successful in
aligning images from differing modalities. Mutual Information (MI) was proposed as
an image similarity measure by Collignon [}, Viola [2]] and Wells [3]] and is widely
used for rigid inter-modality registration. Several modifications have been proposed to
make MI more robust and increase its capture range, including Normalized Mutual In-
formation [4]. However, MI-based methods are very sensitive to the way the probability
distributions are estimated and the accuracy of the estimated probability distributions
have a great influence in the accuracy and robustness of the registration results [3].

A common assumption made in estimating the probability distribution is that each
voxel is an i.i.d. realization of a random variable. Therefore, the probability distributions
(including the joint distribution) can be computed by using all voxels in the reference
image and the corresponding voxels in the transformed subject image. In general this
can be quite expensive to compute and several multi-resolution and sampling techniques
have been proposed for faster estimation of the probability distribution. Downsampling,
both uniform and random, have been used quite commonly to speed up the estimation
of the distributions [5]]. Nonlinear sampling techniques where the local sampling rate is
proportional to the gradient magnitude have also been proposed [6].
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In general, although these methods have performed quite well for registering differ-
ent structural modalities (like CT and MR), they have been less successful in being able
to register structural modalities to functional modalities,which is important for diagno-
sis and treatment planning applications. Functional modalities do not image all tissues
and are therefore more sensitive to errors in the estimation of probability distributions.
We shall use the example of registering Single Photon Emission Computed Tomogra-
phy (SPECT) with CT images of the same patient to demonstrate this problem.

In this paper we present a new method for rigid alignment of multi-modality images
using an octree based partitioning of the reference image. Octrees allow us to parti-
tion the image into spatially adaptive regions (octants) such that homogeneous regions
produce large octants. The octree allows us to define a non-linear sampling of the im-
age that is proportional to the underlying image complexity. The samples thus obtained
are closer to the usual i.i.d. assumption in that they tend to be less statistically inter-
dependent, which in turn help us obtain more accurate estimates of entropy. The MI is
the sum of the entropy of the subject image and the entropy of subject conditional on
the target. Consequently, improved entropy estimates provide better estimates of MI.

The rest of the paper is organized as follows. In Section[2]we present a brief introduc-
tion to estimating entropy in images, and lay the foundation for our arguments in favor
of the octree-based estimation of distributions, which is described in Section[3] Section
[ discusses the incorporation of the octree-based mutual information metric into a reg-
istration framework for inter-modality alignment of images, within a multi-resolution
framework. Experimental results and comparisons with other methods are provided in
Section

2 Estimating the Entropy of Images

Shannon’s entropy [7] for a discrete random variable X with a probability distribution
p(X) = (p1, -+ ,pn), is defined as,

H(X)2 - pilogp:. (1)
=0

The definition can be extended to images by assuming the image intensities to be
samples from a high dimensional signal. A common assumption made while defining
entropy for images is that each voxel is an i.i.d. realization and that the underlying prob-
ability of pixel intensities can be estimated via the normalized histogram. The probabil-
ity of a pixel having an intensity y;, p(y;) = histy (y;)/d, where histy (y;) is the number
of voxels in image Y with intensity y; and d is the total number of voxels. Equation [I]
can be then used to estimate the entropy of the image. This however does not capture the
spatial complexity of the underlying image. For example, if we shuffle the pixels within
the image, we will lose structure and be left with an image which is spatially random.
However since the histogram is unchanged, the entropy is the same. This is demon-
strated in Figure [Tl where Figure[Ia) is highly structured and the red and blue blocks
are placed at regular intervals. It can be seen that although the image in Figure [I(b)
is produced from that in Figure [[{a) by adding random noise to the position of the
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Fig. 1. The difficulty in estimating the entropy of images. (a) An image with the corresponding
histogram and entropy estimate, (b) An image with objects moved within the image to make it
appear more random than (a). The standard estimate for the entropy does not change, since the
histogram is still the same. (¢) Octree-based entropy estimation for the image shown in (a), and
(d) octree-based entropy estimation for the image shown in (b). Note that in this case the increase
in entropy was captured by the octree.

objects in the scene, the entropy is unaffected. This happens because of our assumption
that each voxel intensity is an independent sample. This is not true since voxel inten-
sities depend on the underlying objects, and samples from the same object cannot be
assumed to be independent. Also observe that the gradient based approaches will not be
able to capture this difference either, because it is not affected by the spatial variation
between the two configurations shown in Figures[I(a) and (b).

It is widely accepted that images can be successfully modeled as Markov random
fields [819]. Now, assuming that instead of an i.i.d. assumption, the samples form a
Markov random field, then the error in the estimation of the entropy is lowered if the
samples are largely independent of each other. Sabuncu et al. 6] suggest two non-
linear sampling strategies based on the magnitude of the image gradient, in order to
make the samples more independent. These suggested sampling methods, however, are
for 2D images, expensive to compute and not easily extensible for 3D images. Algo-
rithms have been proposed to make mutual information more robust by incorporating
geometric information using gradients [10] and image salience [11]]. However, the gra-
dient captures only the local image complexity and it is not straightforward to extend
this within a scale independent framework. This suggests using an adaptive sampling
strategy, and adaptive image representations have been commonly used in non-linear
image registration for representing the transformation [12]] and for estimating local im-
age similarities. However, to the best of our knowledge, it has not been used to estimate
the global similarity of images.

3 Octrees Based Estimation of M1

If we can define a partitioning on the image that is spatially adaptive, and creates largely
independent regions, we will be able to use the partition to define a better sampling
strategy. Binary space partitions (BSP) allow us to generate such spatially adaptive
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Fig. 2. (a) An example of a quadtree generated from a 2D slice of a MR brain image demonstrat-
ing how the quadtree adapts to the underlying data, (b) an example of a quadtree generated from
a 2D slice of a thoracic CT image, and (c) the quadtree generated from a cardiac short axis MR
image

partitions of data by recursively subdividing a space into convex sets by hyperplanes.
BSP trees can be used in spaces with any number of dimensions, but quadtrees [14] and
octrees are most useful in partitioning 2D and 3D domains, respectively. Quadtrees
and octrees use axis aligned lines and planes, respectively, instead of arbitrary hyper-
planes and are efficient for the specific domains they are intended to work on.

The octree structure introduces non-stationarity in space [16]. This is important since
the resulting octree is not shift-invariant and can create block artifacts. Such artifacts
have been reported before [17/18]. Approaches like generating octrees with overlapping
leaves [[19] could possibly be applied for estimating shift-invariant octrees. Making the
samples shift-invariant is left for future work.

We use a standard top-down approach to construct the octree for a given image.
Starting with the entire domain, we test each block to see if it meets some criterion of
homogeneity. If a block meets the criterion, it is not divided any further. If it does not
meet the criterion, it is subdivided and the test criterion is applied to those blocks. This
process is repeated iteratively until each block meets the criterion. In the experiments
reported in this paper, we used a simple intensity based test criterion of homogeneity,
wherein a block is split if all the voxels within it are not within a specified threshold,
which was based on the number of bins of the histogram used to estimate the probability
distribution. An example of a quadtree constructed from a 2D slice of a MR image of
the human brain, a 2D slice of a Cardiac CT image, and a cardiac short axis MR image
are shown in Figure 2

In our sampling method, the same number of samples are used per octant. In other
words the density of octants specifies the sampling frequency. The octree-based entropy
can be computed by using the following estimate of the probability distribution in (1),

_ 24(T(2) € bin(i))
pl - Zx 1 I
where bin(-) defines the histogram binning operator and Oct(7") is the octree computed

for the template image 7. In order to understand why an octree-based sampling appears
to be better than uniform or gradient based sampling, consider the example discussed

Va € Oct(T), @)



954 H. Sundar et al.

earlier, shown in Figure [l We showed earlier that traditional sampling methods (both
uniform and gradient based) estimate the same entropy for the images shown in Figures
[[(a) and (b). However, the octree-based sampling is able to capture this difference, as
seen in Figures [(c) and (d). This is because the spatial complexity of the octree in-
creases as a result of the change in the randomness of the scene. The octree captures
the spatial complexity of the scene and consequently the entropy of a complex scene is
higher as it has a denser octree. It is important to point out that the octree is not necessar-
ily the best estimate of spatial complexity, since it is partial towards objects that are axis
aligned and will not be able to capture such variations. A better estimate of the scene
complexity would be a connectivity graph of segmented objects. This however would
increase the complexity of both computing such a graph and also in using it during
the registration. It would be difficult and computationally expensive to define transfor-
mations and interpolation functions on a connectivity graph of segmented tissues. The
octree is a compromise that provides a sufficiently accurate and robust estimate of the
entropy (see Section[3) and is also easy to compute and manipulate. Interpolation and
transformations (linear and non-linear) can be easily defined on the octree. Importantly,
octree-representations are amenable to parallel computing, which can dramatically ex-
pedite the performance of algorithms that use it. In all the experiments reported in this
paper, the octree was computed only for the template image and each octant was sam-
pled at the center of each octant in the template image. Although, it would be better to
average over the entire octant instead of sampling at the center, we opted for the latter
to improve the computational efficiency of the method.

4 Rigid Inter-modality Registration Using Adaptive MI

Given a template image, 7' : {2 — RR™ and a subject image S : {2 — RR", where
2 € RY, the goal is to determine a rigid transformation  that aligns the two images.
The similarity measure is the metric that quantifies the degree of alignment and allows
us to present the alignment problem as an optimization problem. We use the octree-
based similarity measures as described in Section[3l We formulate the determination of
the optimal transformation, y, as an optimization problem:

X = arg max I(T(x),S(x(x))), Vx € Oct(T), 3)

where, I(.;.) is the Mutual Information. Powell’s multidimensional set method is
used to iteratively search for the maxima along each parameter using Brent’s method
[20]. In order to increase the robustness and to improve speed, we use a multi-resolution

framework defined on the octree. The octree at lower (coarser) resolutions are generated
by skipping all octants at the finer levels.

5 Results

In this section we describe experiments that were carried out to test the effectiveness
of octree-based MI in the rigid registration of inter-modality images. We first describe



Robust Computation of Mutual Information Using Spatially Adaptive Meshes 955

0.9 0.9 0.9

Octree
0.8 0.8 08 Subsampling

0.4

Mutual Information
&

0.3

i

0.2

0.1 0.1 0.1

0.0 0.0 0.0
=30  -20 -10 0 10 20 30 -20  -10 0 10 20 -20  -10 0 10 20

Translation X (mm) Rotation X (deg) Rotation Y (deg)

Fig. 3. Comparison of the mutual information computed via uniform sampling (dotted lines) and
using the proposed octree-based sampling (solid lines), on BrainWeb datasets. The plots shown
are for a comparison between a T1-weighted (T1) image and a proton density (PD) image with
9% noise and 40% intensity non-uniformity.

the similarity profiles when an artificial transformation is introduced between two reg-
istered images. We compared the octree-based method with uniform sampling based
estimation of mutual information. The first experiment was performed using simulated
MR datasets obtained from the BrainWeb database [21]]. The second experiment was
performed with 13 CT datasets with corresponding SPECT images. These images were
all acquired using a Siemens Symbia™ T, a TruePoint SPECT-CT system and are as-
sumed self registered. We analyzed the mutual information profiles while varying the
transformation. The transformation parameters were varied one at a time, and the sim-
ilarity profiles were plotted. The plots for translation along the z-axis, and for rotation
about the z and y axes are shown in Figures Bland [ for T1-PD MR images and CT-
SPECT images, respectivelyﬂ. The profiles for translation and rotation along the other
axes were similar. In all cases we compare the octree-based sampling with uniform sam-
pling, where the total number of samples are similar. The octree reduced the number of
samples by a factor of 8 on an average, therefore we subsampled by a factor of 2, along
each direction, for the uniform sampling strategy, to have the same number of samples
in both cases. As can be seen from Figure[3 both methods perform equally well on the
BrainWeb datasets. Both sampling techniques have smooth curves with sharp peaks and
very good capture ranges. However, when we look at the results from the CT-SPECT
comparison, shown in Figure [l we observe that the octree-based sampling performs
much better. Although, both approaches have good profiles subject to translation, for
the profiles subject to rotation, the uniform sampling approach exhibits a weak max-
ima at the optimal value with a very small capture range. In contrast the octree-based
approach exhibits a strong maximum at the optimal value and also has a much larger
capture range. The fact that the neighboring maxima in the vicinity of the optimum are
lower further implies that it is likely that a multi-resolution approach can potentially be
used to increase the capture range. The uniform sampling approach will in most cases
converge to the wrong result since the neighboring maxima are much larger in that case.

! The profiles generated from using all the voxels in the image were almost identical to those
obtained by uniform subsampling, and are not presented here for clarity.
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Fig. 4. Comparison of the mutual information computed via uniform sampling (dotted lines)
and using the proposed octree-based sampling (solid lines), with CT-SPECT datasets. The plots
shown are for a comparison between a CT cardiac image (512 x 512 x 25) and a SPECT image
(128 x 128 x 128).

Table 1. Means and standard deviations of the registration errors for the different test cases

Uniform sampling Octree-based
Dataset Success Trans. error (mm) Rot. error (deg) Success Trans. error (mm) Rot. error (deg)
T1-T2 82.4% 0.48+0.63 0.174+0.24 86.1% 0.53+0.59 0.21 +£0.19

T1-PD 79.7%  0.57 £ 0.66 0.2+0.33 813% 0.59+0.62 0.224+0.23
CT - SPECT 31.1% 0.734+0.69 0.23£0.28 685% 0.644+0.57 0.21£0.31

Registration was performed on a number of datasets to quantitatively assess the per-
formance of the octree-based mutual information within the registration framework. We
selected a T1-weighted image with no noise and uniform intensity as the template im-
age. T2-weighted and Proton Density (PD) images with varying levels of noise (0 —9%)
and intensity non-uniformity (0 — 40%) were registered to the template image, with a
pseudo-random initial transform applied. The random transform was selected such that
the initial translation was at most half the size of the image (to ensure overlap) and the
rotational components were less than 60°. The same set of pseudo-random transfor-
mations were used for both methods. The registration was considered successful if the
final error was less than 2mm for the translational parameters and less than 2° for the
rotational parameters. Similar experiments were performed for the CT-SPECT dataset
and are summarized in Table[I] The error in the estimation of the translation and rota-
tion parameters is calculated using only the cases in which a successful registration was
performed. We can see from Table[T] that the octree-based sampling performs slightly
better than uniform sampling in case of T1-T2 and T1-PD registration. We would like to
emphasize that the success rate for the CT-SPECT registration is much better using the
octree-based sampling as compared to uniform sampling, owing mainly to the broader
capture range of the octree-based method. The average time to perform the registration
was 13 seconds using the octree-based approach, 14 seconds for uniformly sampled
approach and 85 seconds when using all voxels. All experiments were performed on an
Intel Xeon 2.8GHz with 2GB of RAM. The time for the octree-based method includes
the time to compute the octree.
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6 Conclusion

We have presented a spatially adaptive sampling method for the estimation of image
entropies and mutual information. We also demonstrate the improvements in the rigid
registration of CT and SPECT images using the new sampling method. The proposed
sampling offers flexibility between robustness and speed. When used at full resolution,
octree-based sampling provides better estimates of image entropy and mutual infor-
mation between images. In addition, it is better to use octree-based sampling in order
to speed up the estimation of the similarity measure as opposed to using uniform sam-
pling approaches. When compared with uniform sampling approaches, the octree-based
sampling was more accurate for comparable computational speeds, and appears to be a
better method for speeding up the estimation of MI.
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