
S. Henninger and F. Maurer (Eds.): LSO 2002, LNCS 2640, pp. 60–80, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Knowledge Management Support
for Distributed Agile Software Processes

Harald Holz1 and Frank Maurer2

1 University of Kaiserslautern, Department of Computer Science,
D-67653 Kaiserslautern, Germany
holz@informatik.uni-kl.de

2 University of Calgary, Department of Computer Science,
Calgary, Alberta, Canada, T2N 1N4
maurer@cpsc.ucalgary.ca

Abstract. Agile Software Development has put a new focus on the question of
how to share knowledge among members of software development teams. In
contrast to heavy-weight, document-centric approaches, agile approaches rely
on face-to-face communication for knowledge transfer. Pure face-to-face com-
munication is not feasible when applying agile processes in a virtual team set-
ting. In this paper, we argue that the right approach for virtual software devel-
opment teams using agile methods lies between a radical "none but source
code" standpoint, and the multitude of documents proposed by heavy-weight
development standards. This paper introduces work on developing a system for
the task-based capture and pro-active distribution of recurrent information
needs that typically arise for developers, as well as potential ways to satisfy
these information needs. Our approach facilitates an incremental organizational
learning process to capture and maintain knowledge on what documenta-
tion/information is actually needed, such that documentation is created on an
"as needed" basis.

Keywords: task-oriented knowledge management support, virtual agile teams

1 Introduction

At first sight, Agile Software Development and Knowledge Management (KM) do
not seem to fit well together. As pointed out by Cockburn [5], one of the main charac-
teristics of agile methodologies is their attempt to shift the company’s organizational
and project memory from external to tacit knowledge, i.e. written documentation is
replaced by informal communication among team members. While this might relieve
team members from time-consuming documentation activities that are not directly
relevant to their current development tasks, the absence of explicit documentation
leads to a number of problems:

• Subject matter experts in larger teams find themselves spending much time in
repeatedly answering the same questions.

• Team members find themselves in situations where they know that they have had a
certain problem before, but cannot remember its solution.

Knowledge Management Support for Distributed Agile Software Processes 61

• There is no direct knowledge exchange between members of different teams if they
do not belong to the same community.

• Important knowledge is lost as soon as experienced developers leave the project or
company.

Although the last point is partially mitigated by the strong focus on pair programming
and shared code ownership as advocated by Extreme Programming [4] and other agile
methods, the other issues still remain. Thus, the advantages of following agile, light-
weight methodologies have to be balanced against the disadvantages of the absence of
documentation and the lack of knowledge management.

Knowledge sharing is particularly difficult in case of virtual agile teams where
team members are not co-located and have less or no opportunity for face-to-face
communication. On the other hand, virtual teams often use information technology,
e.g. e-mail, newsgroups, on-line chat rooms or Wiki webs, to exchange information.
This provides opportunity for knowledge management tools to capture the knowledge
that is shared.

One of the main reasons why agile methodologies reduce the emphasis on docu-
ments other than source code is that the cost of creating and, in particular, keeping
them up-to-date with the continuously changing requirements and source code (or
project state/environment) do not pay off. This maintenance problem of keeping ex-
ternalized knowledge bases up-to-date was also the reason why many knowledge
management approaches failed in the end

1
.

However, for any software development project there are a number of information
sources that contain useful knowledge and need not be actively maintained by the
development team; typical examples are e-mail/newsgroup postings discussing tech-
nical issues, lessons-learned stories maintained by a central process group, or web
sites maintained either within or outside the company containing material about tech-
nologies that are used by the project. Thus, even during development activities that
occur within software projects that follow a light-weight process, information is often
available that could help team members to successfully perform their tasks.

Since studies have shown that people often are not aware of information that might
be relevant to them

2
 [8] we are investigating ways to pro-actively provide developers

with access to information specific to their current tasks and preferences. In the fol-
lowing, we present a systematic, bottom-up approach on capturing recurrent informa-
tion needs (including potential ways to satisfy those needs) that typically arise for
team members as they are performing software development tasks. Depending on a
characterization of their current situation (i.e. current activities, individual preferences
and skills etc.), developers are provided with those modeled information needs that
are triggered by the characterization; in particular, corresponding information items
are retrieved for each of these information needs, which are assumed to satisfy the
information needs in required detail.

In order to illustrate this approach, we have constructed a system, called the Proc-
ess-oriented Information resource Management Environment (PRIME). PRIME pro-

1 In fact, the knowledge base maintenance problem was never solved in the 1980’ies for expert

system approaches, and prevented them from wide-spread adaptation in industry.
2 While pair programming might increase the chances that at least one of the two developers is

aware of relevant information, it does not solve the problem in principle.

62 Harald Holz and Frank Maurer

vides a technical infrastructure for the task-specific capture of information needs and
their distribution to developers, as well as feedback communication.

The remainder of this paper is structured as follows: In Section 2, we discuss exist-
ing approaches that help in knowledge sharing in distributed agile teams. Section 3
gives an overview on the functionality provided by PRIME, and presents the concepts
underlying our approach. Related work on process-oriented knowledge management
is discussed and compared with PRIME in the last two sections.

2 Communities of Practice

Agile methods value people and communication over tools and documentation. In its
last consequence, using agile methods implies that knowledge management initiatives
need to focus on establishing and supporting Communities of Practice [17]. In a soft-
ware development environment, communities of practice can loosely be defined as
groups of people who work on similar topics, use similar approaches & technologies
and have similar information needs. As we concentrate in the paper on the knowledge
management aspect of agile teams, the last issue is of most interest to us. Thus, the
questions to answer are:

• How can we identify communities of practice?
• What kind of support can we provide to them?
• How can we reduce the knowledge maintenance problem?

In this paper, we address these issues from the specific perspective of virtual agile
teams (VAT). An agile team is a software development team whose work practices
are inspired by agile methods like Extreme Programming, Scrum, Feature-Driven
Development, Adaptive Software Development, Agile Software Development and
others. A virtual team consists of geographically dispersed members working on a
common goal. Team members either belong to the same company, to a virtual enter-
prise or to volunteer efforts (e.g. open-source projects). A VAT combines these two
aspects. In the following, we deal with the question of how knowledge sharing can be
supported in VATs.

2.1 Identifying Communities of Practice

We see several ways how a community of practice can be identified in a VAT setting.
First, a team working on the same project implicitly is a community of practice. Team
members share several information needs, e.g. what is the state of the work, where
can I find information about technologies used in the project etc. Second, technolo-
gies and tools used implicitly define a community of practice, e.g. people developing
EJB-based applications can share their insights with each other. A similar argument
holds for tools used by a group of people. A third category is based on the type of task
that a group of people is performing, e.g. software testers from various projects may
be able to share knowledge.

Communities of practice based on technology or tool use are orthogonal to project-
oriented or task-type-oriented communities. This is immediately visible by looking on
various technology or tool oriented newsgroups or web sites where people from dif-
ferent organizations share their questions and answers.

Knowledge Management Support for Distributed Agile Software Processes 63

2.2 Supporting Communities of Practice in Virtual Teams

Communities of practice often rely on face-to-face meetings where colleagues ex-
change knowledge via informal communication. This is exemplified by special inter-
est groups of organizations like IEEE or ACM, IT conferences or quality circles in
companies. While agile methods are creating project-oriented communities of practice
by stressing pair programming and (often) shared ownership, they are not explicitly
tapping into communities based on technologies, tools and task types.

In a virtual environment, communities of practice are based on web sites and/or
newsgroups. They can either be centered on technologies
(e.g. http://www.theserverside.com/home/index.jsp centers around J2EE develop-
ment), tools (e.g. http://www.jboss.org/ focuses on the JBoss server), or task types
(http://www.testing.com is a web site focusing on software testing). Project-oriented
portals are addressing knowledge management issues for distributed teams (e.g.
http://sourceforge.net/ host more than 46000 open-source projects).
The following technologies seem to be useful for knowledge management in virtual
teams:

• Expert directories: Listings of people and their skill sets that allow finding
experts in specific technologies, tools or processes. This can be combined with
some kind of evaluation mechanism and subcontracting mechanisms (e.g.
http://www.elance.com/ is a marketplace for finding free lance contractors). Within
companies, especially consultancy companies, expert directories are often com-
bined with retrieval mechanisms for finding people that worked on specific pro-
jects.

• Web sites: Lots of knowledge is freely available on web sites. Web sites often
maintain FAQs and cross-list other sources of information for a given topic.

• Newsgroups and mailing lists: While web sites often serve as information provid-
ers, they often do not support interactive questioning. Newsgroups, on the other
hand, allow a user to ask questions. Often, somebody else from somewhere in the
world will post the answer quickly. Newsgroups and mailing lists provide a similar
functionality: broadcasting information to many recipients. Newsgroups are fol-
lowing a pull approach: a user has to actively read a newsgroup to find if she can
help somebody else. Mailing lists, on the other hand, push questions into the in-
boxes of all subscribes and bring questions to their attention.

• Information retrieval on the Web: The problem with the Web is to find the gems of
relevant knowledge in the vast amount of information available. Search engines
and web directories can be of help in that. Search engines use information retrieval
algorithms to get high precision and recall on searches. Their limitations stem from
the syntactical nature of these algorithms. The semantic web initiative tries to
overcome this by using ontologies, inference engines and human modeling effort.

• Collaborative filtering: Communities of practice can be used to determine rele-
vance of information for others. The underlying assumption here is that if two peo-
ple belong to the same community, they are interested in the same information.
Amazon.com, for example, is using this approach for sales support: people brows-
ing to one specific book are shown similar books. Sharing a bookmark list within a
community of practice (e.g. a project team) reaches a similar effect.

64 Harald Holz and Frank Maurer

2.3 Reducing the Knowledge Maintenance Problem

Maintaining knowledge sources in areas were knowledge is changing quickly is a
costly undertaking. On the other hand, we argue that there is a vast amount of knowl-
edge freely available and already maintained by some group with an interest in it.
Hence, the knowledge maintenance problem can be reduced for a VAT by maintain-
ing the information needs that it has instead of maintaining resources that fulfill these
needs. Thus, our approach models the information needs of a VAT and uses existing
resources for fulfilling these needs. The reduction in knowledge maintenance effort is
based on the assumption that it is much less costly for a VAT to maintain a list of
questions than to maintain a list of questions and their answers.

The questions that the VAT maintains can be parameterized. The parameters can
be bound before the question is send to a knowledge source with context-specific
values. E.g. a question can be: “Give me information about EJB technology provided
that the EJB-Skill-Level is ?x and the EJB-Server is ?y”. Before the question is send
to a knowledge source, the skill level can be bound to “low” and the EJB-Server can
be bound to “JBoss”. These two pieces of information can be extracted from the cur-
rent task of the project. Obviously, this requires a model of tasks and task-specific
information needs; such a model is described in the remainder of this paper.

3 PRIME

Our approach is based on the assumption that developers are willing to maintain their
individual lists of current development tasks (called to-do lists) in an application pro-
vided by their company. Tools like our MILOS-ASE3 support this functionality for
virtual agile teams. Tasks are represented by a short textual description, together with
some (optional) scheduling information (e.g. a due date). They are assigned to itera-
tions of the agile process.

While developer is working on one of his tasks, certain information needs arise for
him that need to be satisfied in order to successfully perform the activity4. These
information needs range from simple questions (e.g. “How do I launch VisualAge in
this company?”) to more questions that usually are more complicated to answer (e.g.
“What issues need to be addressed when using Serialization together with EJB?”).

Even in software organizations that follow a light-weight process, typically there
are several information sources available which potentially contain information that
can be used to satisfy the employees’ information needs. These information sources
can be either human subject-matter experts (e.g. experienced colleagues) that employ-
ees can contact, or any electronic information system that is accessible by employees.
Furthermore, information sources might either be maintained outside the company
(e.g. newsgroups, mailing list archives, tool vendor websites, etc.), or they might be
internally maintained within the organization (e.g. the company’s document manage-
ment system (DMS), bug tracking systems, lessons learned systems, etc.). For soft-
ware organizations, the existence of external information sources is an important
factor, as a considerable amount of relevant up-to-date technical knowledge (in the

3 http://sern.ucalgary.ca/~milos
4 In the following, we use the terms ‘task’ and ‘activity’ synonymously.

Knowledge Management Support for Distributed Agile Software Processes 65

form of documents, newsgroup postings, etc.) is created and made available outside
the organization via Internet technology.

Rather than trying to capture or maintain this knowledge for use within the (vir-
tual) software organization, our approach focuses on connecting developers with
knowledge sources that are recommended by those communities of practice addressed
by the developer’s current task. This functionality has been realized in PRIME, a
system to capture, distribute and satisfy task-specific information needs. PRIME has
been linked with the project support system MILOS [20], the predecessor of the web-
based MILOS-ASE system which has been tailored to support distributed agile soft-
ware projects.

As a basic functionality, MILOS allows each developer to maintain a basic to-do
list (see Fig. 1). In addition, each developer is provided with the PRIME Information
Assistant component that enables him to access preferred information items, as well
as to initiate an automatic retrieval of information items in order to satisfy an actual
information need that was expected to arise for him during his current task. In corre-
spondence to these two concepts, the Information Assistant window is divided into
two panes, which are explained in the following two sections.

3.1 Personal Task-Specific Information Needs

The pane labeled ‘Private InfoNeeds’ allows the developer to associate information
items (in the form of bookmarks/favorites) with each task on his to-do list that he
considers as useful for this task (see Fig. 1). Furthermore, the PRIME Information
Assistant allows users to post task-specific questions or information requests to a
forum that is used by all members of the virtual team as a means to support each other
by posting answers to a colleague’s questions (Fig. 2 & 3). Supporting each other is
expected by all members of an agile team and helps building a community spirit. The
system creates a link to the corresponding question/answer thread and maintains this
link as another task-specific information item, providing the user with immediate
access to his postings.

The system stores all tasks together with their associated information items; during
future tasks, users can search the set of former tasks and associated links via keyword
search on their textual descriptions, in order to make use of formerly found informa-
tion items during later tasks.

3.2 Recurrent Information Needs

The Information Assistant pane labeled ‘Global InfoNeeds’ allows the developer to
browse the set of recurrent information needs that have been modeled in anticipation
of likely information needs that might arise for him during the selected task. In par-
ticular, the developer can initiate predefined queries that can be performed on avail-
able information sources which are supposed to satisfy one selected information need
(cf. Fig. 1).

The set of retrieved information needs depends on the characterization the devel-
oper has given for his task so far. In PRIME, a characterization consists of

66 Harald Holz and Frank Maurer

Fig. 1. Snapshot from a to-do list (a), the Information Assistant (b) launched for a selected task
(1), and a query execution for an information need to find an EJB tutorial (c): the developer has
selected the question "Where can I find a tutorial on EJB?" in the Information Assistant. Issuing
the "Show" command on a corresponding IS usage recommendation (2), a browser opens and
presents her a list of links which have been retrieved from the Javasoft homepage to the topic
"EJB Tutorial". The developer can now refer to the hyperlinks to access the information items.

(i) a classification of the task (i.e. selecting a task type that fits the current task, e.g.
“black-box testing”), and

(ii) choosing values for attributes that can be used to further describe the task (e.g.
tools or technologies that will be used for executing the task, software compo-
nents handled during the task, or other key topics that the developer would like to
obtain information about).

Figure 4 shows the characterization editor provided by PRIME, which allows de-
velopers to characterize their tasks as well as other task-related entities. Task charac-
terizations can be based on entities specified in an organization-specific ontology that
is created and maintained by members of different communities that have emerged
over time within the virtual organization. Typical entities listed in such an ontology
are different task types and tools/technologies, in correspondence to the kinds of
communities of practice identified in Section 2.1.

The main purpose of this ontology is to provide each community of practice with
the means to systematically define and organize sets of recommended information

Knowledge Management Support for Distributed Agile Software Processes 67

resources concerning the entities defined in the ontology. Fig. 5 depicts a simplified
excerpt from a task-type hierarchy with associated recurrent information needs.

In the following section, we describe the structure of recurrent information needs in
more detail.

Fig. 2. Snapshot from an agent’s Information Assistant (a) that allows agents to post their re-
quest (b) directly to a forum (c). For each task, a message forum is provided that maintains the
agents’ information requests and the replies posted by colleagues. The agents’ requests are
posted to the corresponding forum by the Information Assistant, after having been extended by
a link to the activity during which the information need occurred.

3.3 Representing Recurrent Information Needs

We assume that information is represented as knowledge items (or information items).
A knowledge item is any document (e.g. a MS-Word document, a web page, or an
email) that is available to an agent (developer). We say that information is provided to
an agent if a set of knowledge items is presented to him.

Knowledge items can be obtained by accessing/querying information sources that
are available to the organization; typical examples of information sources are data-
bases, Document Management Systems (DMS), Web search engines (e.g. Google,
AltaVista, etc) or even experienced colleagues. It should be noted that a knowledge
item retrieved from an information source can reference another knowledge item or
even another information source. An example of such a knowledge item would be an
e-mail of a colleague, in which he recommends to consult a particular database.

In the following, we introduce a number of concepts to represent knowledge about
available information items that might be useful for agents during activities of a cer-
tain class.

68 Harald Holz and Frank Maurer

Fig. 3. Snapshot from the Information Assistant for a selected task (a) and thread stored within
the task-specific information request forum (b). The Information Assistant maintains a link to
the request posted by the agent in the context of a particular task (cf. Fig. 2). Thus, the agent is
provided with direct access to the communication thread, i.e. to answers posted by colleagues.

An information source (IS) is represented by the following aspects:

• name: the name by which the information source is commonly referred to within
the organization

• contents description: a short text that explains what information is stored here,
and how the information source can be used

• access: specifies where the information source can be found or accessed (e.g. a
URL in case of an online resource, or contact information about a col-
league/expert)

• query interface: specifies the information source’s interface for automated re-
trieval, if available (e.g. a CGI script to retrieve items from the information
source). This interface will be used to execute queries that have been specified
within information needs (see below)

• quality/cost aspects: a set of aspects describing quality and cost aspects of the
information source (e.g. access cost in case of commercial information services)

Knowledge Management Support for Distributed Agile Software Processes 69

Fig. 4. Snapshot from the characterization editor that allows users to set/change attribute values
for a selected task. Here, the user has specified ‘VisualAge for Java’ as one of the tools that is
used during this task, ’Serialization’ and ’RMI’ as the tasks’s key topics, and ‘Java 1.2’ as the
programming language used for coding.

Table 1. Example for an information source representing a Java JDK1.2 language specification
document that can be browsed by humans or searched automatically.

IS aspect Value
name Java JDK1.2 language specification
contents description Official language specification for Java JDK 1.2
access http://java.sun.com/products/jdk/1.2/docs/api/
query interface http://search.java.sun.com/search/java/
quality/cost aspects high reliability, freely available

Table 1 shows an example for the representation of an information source.

It should be noted that an individual document can also be represented as a special
case of an information source (i.e. an information source that contains only one
document).

70 Harald Holz and Frank Maurer

Fig. 5. Excerpt from a task-type specialization hierarchy (depicted as a UML class diagram).
Information needs associated with a task type are supposed to be inherited by its sub-types.

Which information sources contain useful information for an agent during his work
typically will depend on certain activity and agent characteristics. Furthermore, soft-
ware engineering activities often undergo changes during their enactment (e.g. sched-
ule changes, product feature changes etc.). As a consequence, the set of information
sources that contain useful information changes during an activity’s enactment, in
correspondence to the activity’s changing characteristics.

Consequently, a static list of information sources as a means to provide agents with
useful knowledge items is often inadequate for software engineering activities. This
leads to the concept of situation-specific information source recommendations in
order to capture (meta-)knowledge that a certain information source might be useful
to agents during activities of a certain type. An IS recommendation is represented by
the following aspects:

• information source: the information source being recommended
• task type: the class of activities for which the information source might contain

useful information
• activity constraints: specifies conditions on activity characteristics. The informa-

tion source is only recommended if the conditions hold
• role constraints: restrict the recommendation to those agents performing a certain

role in the activity
• skill constraints: specify conditions concerning the agent’s skill profile that must

hold in order for the information source to be recommended.

Table 2 shows an example of an information source recommendation.

So far, information source recommendations only describe which information
sources are generally considered to be useful during an activity; they do not describe
explicitly for what purpose they are considered to be useful, i.e. what information
needs might be satisfied by their contents. In order to capture this knowledge, we
introduce the concept of information needs.

Knowledge Management Support for Distributed Agile Software Processes 71

Table 2. The information source "Java DK1.2 language specification" (see Table 1) is consid-
ered useful for all agents taking part in an implementation activity in the role of a "program-
mer", but only if the implementation language is Java 1.2 and the agent is not already known to
be a Java 1.2 expert.

IS recommendation aspect Value
information source Java JDK1.2 language specification
task type Implementation Process
activity constraints programming language is Java 1.2
role constraints useful for role ’programmer’
skill constraints programmer is not a Java 1.2 expert

An information need (IN) encompasses a situation where an agent requires certain

information in order to successfully carry out a given activity. We assume that infor-
mation needs are being expressed in form of a question (e.g. "Where can I find a tuto-
rial on EJB?"). These questions are supposed to be of the kind "Where can I find
pieces of information on ..., because it might help me to solve problem x?", rather than
"What is the solution to problem x?". In that way, information needs describe goals
that, when achieved, enable agents to successfully perform their activities, which in
turn are intended to achieve a certain project objectives.

Whether a certain information need arises for an agent will depend on certain
activity and agent characteristics (e.g. the technologies that have to be used, the
agents experience, skills etc.). Hence, a captured, expected information need should
include a specification of the situations in which they typically occur, as introduced
for the capture of information source recommendation.

Information needs potentially can be satisfied by accessing one or more informa-
tion sources via their interface (e.g. send e-mail to a colleague, launch a tool to open a
document, or query an information system). As a result, the information source re-
turns one or more information items (e.g. a human answers by e-mail or the Docu-
ment Management System returns a set of documents). The interpretation of these
information items is supposed to either satisfy the information need directly, or help
to satisfy it by referring to another information source that might contain the informa-
tion required to satisfy the information need.

In order to provide a template for the description of a way to access an information
source to potentially satisfy an information need under certain conditions, we intro-
duce the concept of an information source usage recommendation (IS usage recom-
mendation). IS usage recommendations are represented by the following aspects:

• information source recommendation: specifies the information source that
• potentially contains information to satisfy an information need, as well as the con-

ditions (in terms of activity, skill and role constraints) when the information source
is recommended to be accessed to satisfy the information need.

• usage direction: either is a short text explaining in natural language where to find
the desired information, or it is a query specification. In the latter case, the query is
specified by the following aspects:
• comment: is a short text explaining the query’s semantics to the human reader.
• queryCommand: contains a query expression that can be sent to the informa-

tion source via its query interface (see above).

72 Harald Holz and Frank Maurer

Building on the concepts introduced so far, a recurrent information need is repre-
sented by the following aspects:
• question: a textual representation that describes the information need.
• information source usage recommendations: a list of information source usage
• recommendations, describing alternative ways to potentially satisfy the information
• need under certain conditions.
• task type: the class of activities during which the information need is expected to

arise.
• activity constraints: specifies conditions on activity characteristics. The informa-

tion need is only expected to arise if the conditions hold
• role constraints: describes for which roles the information need is expected to

arise.
• skill constraints: specifies conditions concerning the skill profile of an agent par-

ticipating in the activity. The information need is only expected to arise if the con-
ditions hold.

• sub-information needs: references a set of sub-information needs; satisfying these
information needs is assumed to provide information that helps in satisfying the
referencing "parent" information need.

Figure 6 shows a screenshot from the Information Need Manager interface to define
information needs.

We assume that the definition of recurrent information needs will be triggered by
either of the following situations:

1. A subject-matter expert posted an answer to an information need, but still finds
himself being repeatedly asked to answer this question again by different col-
leagues. Consequently, he would like to have users being automatically referred to
the already documented question/answer thread.

2. Instead of searching the set of former tasks in order to find useful information
items for his current task, users might request to have certain information items of-
fered to them on a regular basis (e.g. “Offer me the Java Language Spec. whenever
I perform an implementation task that includes coding in Java”).

Figure 7 summarizes the relationships between the different constructs introduced
above.

Information source recommendations and information needs are used to differenti-
ate conceptually between two strategies:
• providing access to an information item or source, without stating explicitly what

information need(s) it is intended to satisfy
• presenting explicitly formulated information needs in form of a question, together

with information items that potentially provide answers to the question. Thus, the
question denotes the purpose for offering the information items.

In summary, information source recommendations are used whenever
(i) it is obvious what the corresponding information source is used for (e.g., a language

specification will always be used for reference), or
(ii) there are so many different ways of usage that it would be too cumbersome to explic-

itly list all of them.

Knowledge Management Support for Distributed Agile Software Processes 73

Fig. 6. Snapshot from the Information Need Manager interface: from the tree in the upper-left
part of the window, the user has selected the entity ‘EJB’ from the domain ontology. The tree in
the upper-right part displays the information needs associated with that entity, grouped under
appropriate categories (rendered as folders). The attribute values of the selected information
need are shown in the lower part of the window. For example, the skill constraint is shown,
formalizing that the selected information need should only be offered to developers whose skill
level concerning ‘EJB’ technology the less than or equal 3.

Fig. 7. UML class diagram depicting the relations between the concepts introduced to represent
recurrent information needs.

74 Harald Holz and Frank Maurer

In contrast, the representation of information needs allows capturing in more detail
• what information might be useful (expressed as a question)
• where and how this information can be found (i.e. a list of information sources that

potentially contain the information, together with direction on how to access them)
• when it might be useful (i.e. constraints on certain activity characteristics available

at enactment time)when it might be useful (i.e. constraints on certain activity char-
acteristics available at enactment time)

• to whom it might be useful (i.e. constraints on performers’ roles and skills).

4 Related Work

Most work on integrating Knowledge Management and process support has been
done in the field of business processes (see [3] for a recent overview). In the follow-
ing, we discuss and compare PRIME to related state-of-the-art approaches.

TIDE [18] is a web-based system that facilitates task-based retrieval of documents.
A task in TIDE describes a yes/no question that a user is trying to answer; it is repre-
sented by a set of weighted slot/value pairs that characterize the question, where all
values are terms (words or word stems). The weight of an attribute "loosely ... repre-
sents the importance or frequency of the value of that slot in relevant documents."
[18]. Furthermore, a task (question) references a set of sub-questions that provide
evidence towards answering the parent. This task hierarchy "corresponds to a Bayes-
ian Network, which encodes the probabilistic relationships between questions" [18].
The weights and the task hierarchy are maintained in a task model that users instanti-
ate for their concrete tasks.

The task representation is used to retrieve task-specific relevant documents via the
vector space model [12]. Each document is characterized by a vector of weighted
terms. A weighted keyword query is derived from a user’s task representation by
recursively collecting the terms from the question’s sub-questions and computing
weights for these terms according to the sub-questions’ importance to the parent ques-
tion. TIDE’s method of query derivation allows the relevance criterion to be adapted
to reflect changes in the users’ opinion on relevance by weight modifications.

Compared to PRIME, two main differences can be identified: first, TIDE restricts
the notion of a user’s task to answering yes/no questions, whereas activities in PRIME
reflect arbitrary tasks. Second, the determination of relevance in TIDE is computed by
a weighted term query approach; in PRIME, relevance computation is two-step proc-
ess: (i) determination of relevant information needs based on a symbolic acti-
vate/trigger model5 using boolean expressions, and (ii) launching a well-formed query
command to an appropriate information source as defined by the information needs.
Thus, in TIDE relevance can only be expressed heuristically in terms of a probabilis-
tic model; in PRIME, relevance can be formulated as a logical fact, which allows it to
enforce that certain important documents are always retrieved in specific situations.
Also, TIDE’s weight-based relevance model will be difficult to maintain, as it is not
trivial to identify which weights have to be changed in what way for an intended up-

5 Information resources are activated by entities present in the activity representation; activated

information resource trigger if their constraints are satisfied. Only triggered resources are pre-
sented to the agent performing the activity.

Knowledge Management Support for Distributed Agile Software Processes 75

date of the relevance criterion. However, the TIDE system might be an interesting
extension to PRIME, as TIDE’s notion of a task actually corresponds more closely to
PRIME’s notion of an information need (formulated as a yes/no question): by map-
ping TIDE’s tasks to PRIME’s information needs, the information need’s query
command could be used to trigger TIDE’s retrieval mechanism.

EULE [9] is a system that provides computer-based guidance for office workers at
Swiss Life. It introduces a formal knowledge representation language that covers data
and process aspects, as well as legislation and company regulations relevant for office
tasks dealing with life insurance. Users are guided through a sequence of activities to
perform their tasks and are being provided with access to relevant documents (con-
tracts, letters, client data etc.); for each activity, users are requested to enter taskspeci-
fic data into forms that are presented to them by EULE. Depending on the data en-
tered, new activities might be triggered because of certain laws or regulations. EULE
uses deduction to create appropriate instances of rights and obligations, which are
represented as concepts; its inference engine couples description logic and deductive
database technology.

For each activity, EULE can present an explanation to the user why the activity has
to be performed. Furthermore, letters that have to be created during certain activities
can be generated automatically from the user’s data (in combination with the com-
pany’s databases). The system was introduced at Swiss Life in mid-1999, and is re-
ported to be highly accepted by employees. Perhaps most interestingly for the ap-
proach presented in this thesis, a field study with EULE has been conducted at Swiss
Life with positive results: team heads "noticed a considerable relief from the support
they usually need to give their team members whenever they encounter a situation
they do not know how to deal with" [9].

Because of its inflexible workflow enactment model (build/compile/execute lifecy-
cle), EULE is inadequate to support software development processes6. Furthermore,
EULE is not designed to provide users with information from external information
sources. In addition to the documents related to an activity (contracts, letters, etc.),
users are given access to textual representations of laws and regulations that are rele-
vant to the user’s current activity. In particular, relevance of information is deter-
mined strictly deductively in EULE. In PRIME, relevance can also be computed de-
ductively (by means of information need preconditions formalized in F-Logic); but
additionally, information can be retrieved via soft-matching mechanisms (e.g. stan-
dard information retrieval approaches [12], similarity measures [11] etc.). Depending
on the query command specified within an information need and the retrieval mecha-
nisms supported by available information sources, soft-matching can be used to find
relevant information whenever this seems appropriate.

Schnurr et. al. describe an approach based on OntoBroker7 for Reactive Agent Sup-
port [13, 14]. OntoBroker is used to define a domain ontology and to manage an ar-
chive of ontology-annotated documents. In addition, OntoBroker scans the documents
for facts, stores them in a database, and infers facts from the database using a built-in
inference engine.

In OntoBroker, business processes are defined as SGML nets (a special kind of
Petri nets). Processes are represented by transitions; predicates based on document
contents define when a transition may be executed. Queries (called context-based

6 In fact, EULE is a single-user system and does not support workflows performed by project teams.
7 OntoBroker is a commercially available F-Logic interpreter (www.ontoprise.com).

76 Harald Holz and Frank Maurer

views) to the database can be associated to transitions and places. The approach fo-
cuses on strongly-structured processes, as the planning of activities and remodelling
of SGML nets is not supported. Furthermore, the approach is restricted to F-Logic-
based queries to one central repository of annotated documents. For PRIME, F-Logic-
based queries to an OntoBroker repository only form one of many possibilities to
retrieve information; alternatively, it can provide information retrieved from standard
information retrieval systems, relational databases, or case-based reasoning systems.
Especially the latter are considered to be of prime importance for experience man-
agement within software organizations [15].

Furthermore, the proposed SGML net-based approach does not facilitate an ex-
plicit representation of activities. Rather, the activity states are implicitly defined by
the state of document attributes. As a consequence, queries can only reference attrib-
utes of the document currently being modified by an activity (i.e. transition).

In [16], Wargitsch et. al. present the OM-based flexible WFMS WorkBrain that
provides integrated access to different information and communication services.
These include a CBR system (storing former workflow cases), a workflow issuebased
information system (WIBIS), a mechanical design database, an electronic product
catalogue, a know-how database for engineering solutions as well as a traditional
DMS.

WorkBrain supports both structural planning and enactment tasks: e.g. workflow
construction is supported by retrieving similar former workflow cases, whereas en-
actment tasks are supported by retrieving documents created in former workflows.
However, only the WIBIS system is process-oriented in the sense that processes are
used to organize issue threads. Access to the other information systems can not be
tailored to specific tasks; in particular, generic queries that are instantiated for con-
crete tasks cannot be modeled. While the OM is comprised of different information
sources that have been made available, no process-specific usage is supported and no
automatic query execution takes place, i.e. the OMIS is passive.

The KnowMore framework [2] outlines a three-step deployment process for their
workflow-enabled information delivery system. First, a commercial business process
modeling tool is used to define a process representation that can be enacted by a
workflow engine. Second, knowledge-intensive tasks (KIT) within this process model
are identified; these are enriched with KIT variables and with conditional, generic
queries. KIT variables represent slots that have to be filled during process enactment,
whereas queries represent potential information needs.

During workflow enactment, the generic queries are instantiated with workflow pa-
rameters in the context of concrete tasks. After instantiation, the queries are executed
by computer agents which encapsulate knowledge on how to retrieve information
from a particular information source. The results can automatically be integrated into
document templates that specify the input fields that have be filled with retrieved
information. In addition, KnowMore users can be presented with explanatory infor-
mation on the values chosen/retrieved for the template’s input fields. The retrieval
results are updated whenever the context in which they have been retrieved changes.

Like OntoBroker/SGML, the KnowMore approach focuses on strongly-structured
processes and the automated integration of retrieved information, both of which are
inadequate for software development processes. With KnowMore, only the enactors
(but not the planners) of workflows are supported by the automated information re-
trieval, and the set of information needs is defined statically in the process model.

Knowledge Management Support for Distributed Agile Software Processes 77

KnowMore and PRIME also differ in their main strategy for knowledge delivery.
The KnowMore system always automatically executes the whole set of information
needs currently regarded as relevant, and then post-processes the results. In PRIME,
the agent is given the possibility to choose from a set of offered information needs the
one that she considers as relevant in her current situation. The approach implemented
in KnowMore is indented to support (automatically) filling in the structured document
template, whereas PRIME is intended to support creative processes handling infor-
mally specified documents. In particular, the objective of information needs in
PRIME is not to fill in the slots (i.e. attributes) of a document’s characterization ob-
ject. On the contrary, the attributed are used to retrieve information items that help a
human agent to successfully perform a creative activity.

DECOR8 [1] builds upon the KnowMore framework, but addresses weaklystruc-
tured, knowledge-intensive processes which can not be planned fully in advance.
Similar to PRIME, an Information Assistant is proposed that observes the workflow
and interprets modelled information needs specified in the process model in order to
offer relevant information. The main focus of the DECOR project is to provide a
practice-driven, "total solution" for the integration of information retrieval into work-
flow-embedded, knowledge-intensive tasks. To this end, the project utilizes available,
consolidated modeling methods and information technology in combination with
research results from the KnowMore approach. However, continuous information
need evolution as facilitated with PRIME is not reported to be addressed by DECOR.

Another system that shares some similarities with PRIME is Answer Garden 2
(AG2) [19], which supports astrophysicists in data analysis tasks. AG2 provides an
integrated interface that allows users to locate and use about one thousand software
components, their associated documentation, tutorials, frequently asked questions,
data analysis recipes, or to ask a specific scientific community for help. It relieves
users of the burden to remember the different data analysis tools, data formats, inter-
faces, and help systems, and provides shared recipes on how to use them. In particu-
lar, AG2 facilitates the collection and dissemination of organizational knowledge by
building a database of commonly asked questions that ‘grows “organically” as new
questions arise and are answered’ [19]. However, AG2 does not allow for different
types of tasks, explicit task characterizations, or proactive, situation-specific distribu-
tion of those commonly asked questions.

5 Conclusion

Whereas face-to-face communication between team members might have the highest
bandwidth for knowledge exchange, there are circumstances when this is either not
feasible (as e.g. for VATs) or not always desirable (e.g. because of a communication
overload for experts). In addition, a considerable amount of explicit knowledge is
available on the Internet in the form of newsgroup postings, technology reports, web
sites dedicated to certain tools/technologies, etc. Hence, additional support should be
made available to team members to promote the use of information sources that are
readily available.

A similar situation appears in open source projects, where newcomers face the
problem of catching up with the knowledge of experienced project members, part of

8 Delivery of context-sensitive organizational knowledge.

78 Harald Holz and Frank Maurer

which is reflected in mailing list archives. We believe that capturing and distributing
proactively typical information needs of newcomers with regard to certain system
components, technology used, etc. will greatly relieve experienced group members
from having to answer the same standard questions repeatedly; at the same time, new-
comers are relieved from sifting through large FAQ and mailing lists.

In this paper, we presented a system to capture and distribute task-specific knowl-
edge about available information resources in the form of explicitly represented recur-
rent information needs. Depending on the characterization of a currently selected task,
a set of information needs is retrieved and presented to the user in the form of a list of
corresponding textual questions. From this list, the team member is assumed to
choose one that corresponds best to his current information need. For this chosen
information need, the predefined information source usage recommendations are
executed (i.e. the specified query commands are instantiated and sent to appropriate
information systems, or contact information for human subject-matter experts is dis-
played) to provide the user with information items that potentially satisfy his informa-
tion need.

In particular, PRIME allows a smooth introduction of Knowledge Management
services into the every-day work practice of members of a VAT. To begin with, the
system can be used by team members to maintain task-specific bookmarks (i.e. URL
links to favourite documents), providing users with a task-oriented way to organize
and quickly access their documents. As valuable information is already available on
the Internet or in the organization’s document repository, we argue that our approach
ameliorates the knowledge acquisition bottleneck problem that let many KM initia-
tives fail in the beginning. In addition, PRIME’s forum component9 serves as platform
for task-specific communication with the experienced colleagues. That way, addi-
tional task-specific information items can be captured on the fly.

Up to this stage, no modelling of a domain ontology is required. Furthermore, ini-
tial modelling of recurrent information need can start from basic task characteriza-
tions that consist of keyword lists to name any tools and technologies handled during
the task; corresponding query commands can then search the available information
sources for appropriate keyword (combinations). Only when

• users start to express an interest in being provided with certain bookmarks on a
systematic basis during a certain class of activities, or

• subject-matter experts (or community-of-practice members) decide because of
repeatedly asked questions that users should be provided with certain information
during a class of activities, or whenever they are handling a certain tool/technol-
ogy,

the need arises to capture and formalize these requests in the form of a corresponding
entity in the domain ontology together with a set of explicit information resources,
and to provide access to the requested information from appropriate information
sources. Because of the personal gain achievable by explicitly modelled and auto-
matically retrieved information needs, we argue that people will be willing to invest
some time in modelling efforts (or posting modelling requests). Essentially, the ex-
plicitly represented information sources proposed in this work can be seen as a special
kind of “markers and props” described in Cockburn’s Manifesto For Software Devel-
opment [6], which people use to “inform, remind and inspire themselves and each

9 Based on Jive (www.jivesoftware.com)

Knowledge Management Support for Distributed Agile Software Processes 79

other in getting the next move on the game”, and which serve to "inform and assist
the players of the next game".

Currently, the implementation of PRIME has reached a stage where students have
started to use it during their implementation activities on MILOS. From our experi-
ence gained so far, future extensions of the work presented here will need to address
the effort required for information needs modelling. As an alternative to the explicit
representation of logical preconditions, we intend to adapt and integrate techniques
known from Collaborative Filtering (see e.g. [7]) or Case-Based Reasoning (see e.g.
[11, 10]) with our mechanism for situation-specific information need retrieval. Usage
of this technology could provide team members with information items that col-
leagues found useful who had ’similar’ information needs, or with former information
needs that (other) team members had during ’similar’ situations. It is to be hoped that
such extensions could narrow the current gap between the low effort required to main-
tain the users’ personally preferred information resources during their activities, and
the relatively high effort required to model fully specified, generic information needs.
One of the graduate students in Calgary is currently working on a comparison be-
tween text retrieval approaches and the ontology-based approach presented here.

Acknowledgements

The work on MILOS was supported by the DFG (as part of SFB 501: “Development
of large systems with generic methods”), NSERC, and The University of Calgary,
with several research grants. We would like to thank Empolis knowledge manage-
ment division10 for providing us with their CBR middleware ‘Orenge’.

References

1. A. Abecker, A. Bernardi, S. Ntioudis, G. Mentzas, R. Herterich, C. Houy, S. Müller and M.
Legal. The DECOR Toolbox for Workflow-Embedded Organizational Memory Access, In:
Proc. of the 3rd Int. Conf. on Enterprise Information Systems (ICEIS 2001), Portugal, July
7-10 2001, Vol. 1, 2001.

2. A. Abecker, A. Bernardi and M. Sintek. Enterprise Information Infrastructures For Active,
Context-Specific Knowledge Delivery. ECIS’99 - The 7th European Conference on Infor-
mation Systems, Copenhagen, Denmark, June 1999.

3. A. Abecker, K. Hinkelmann, H. Maus and H.-J. Müller (Hrsg.). Geschäftsprozessorientier-
tes Wissensmanagement, Springer, 2002.

4. Beck, K.: Extreme Programming Explained: Embrace Exchange. Addison-Wesley, 1999.
5. Cockburn, A.: Agile Software Development Joins the “Would-Be” Crowd. Cutter IT Jour-

nal, Vol. 15, No. 1 (2002) 6-12.
6. Cockburn, A.: Human’s and Technology Manifesto For Software Development.

http://member.aol.com/acockburn/manifesto.html.
7. H. Liebermann. Letizia: An Agent that assists web browsing. In Proc. of the 13th Int. Joint

Conference on Artificial Intelligence, San Francisco, CA, Morgan Kaufmann, 1995.
8. Mahe, S., Rieu, C.: Towards a Pull-Approach of KM for Improving Enterprise Flexibility

Responsiveness: A Necessary First Step for Introducing Knowledge Management in Small
and Medium Enterprises. In: Proceedings of the International Symposium on Management
of Industrial and Corporate Knowledge (ISMICK ‘97), Compiegne, 1997.

10 www.empolis.com

80 Harald Holz and Frank Maurer

9. U. Reimer, A. Margelisch and M. Staudt. A Knowledge-Based Approach to Support Busi-
ness Processes, AAAI Workshop on Bringing Knowledge to Business Processes, 20-22
March, 2000.

10. M. M. Richter. CBR: Past and Future - A Personal View. Invited Talk, International Con-
ference on Case-Based Reasoning (ICCBR-2001), Vancouver, British Columbia, Canada,
30 July - 2 August 2001. http://wwwagr.informatik.uni-kl.de/~richter/

11. M. M. Richter and K.-D. Althoff. Similarity and Utility in Non-Numerical Domains, Ma-
thematische Methoden der Wirtschaftswissenschaften, Physika-Verlag, pp. 403–413, 2001

12. G. Salton and M. McGill. Introduction to Modern Information Retrieval, McGray-Hill,
1983.

13. H.-P. Schnurr, S. Staab and R. Studer. Ontology-based Process Support. Workshop on Ex-
ploring Synergies of Knowledge Management and Case-Based Reasoning (AAAI-99).
Technical Report, Menlo Park: AAAI.

14. S. Staab and H.-P. Schnurr. Smart Task Support through Proactive Access to Organiza-
tional Memory. Journal of Knowledge-based Systems 13(5). Elsevier, 2000.

15. C. Tautz. Customizing Software Engineering Experience Management Systems to Organ-
izational Needs, Ph.D. thesis, Universität Kaiserslautern, 2000.

16. C. Wargitsch, T. Wewers and F. Theisinger. An Organizational-Memory-Based Approach
for an Evolutionary Workflow Management System - Concepts and Implementation, Pro-
ceedings of the 31st Annual Hawaii International Conference on System Sciences, 1998,
p174-183.

17. Wenger, E., Snyder., W.M.: Communities of Practice: The Organizational Frontier. Har-
vard Business Review , Jan-Feb (2000) 139-145.

18. M. Wolverton. Task-Based Information Management, ACM Computing Surveys, Vol. 31,
Number 2es, 1999.

19. Ackerman, M.S., McDonald, D.W., "Answer Garden 2: Merging Organizational Memory
with Collaborative Help." Computer Supported Cooperative Work (CSCW 96), (Boston,
MA, 1996), 1996, pp. 97-105.

20. Maurer, F., Dellen, B, Bendeck, F., Goldmann, S., Holz, H., Kötting, B., Schaaf, M.: Merg-
ing Project Planning and Web-Enabled Dynamic Workflow Technologies. IEEE Internet
Computing May/June 2000, pp. 65-74.

	1 Introduction
	2 Communities of Practice
	2.1 Identifying Communities of Practice
	2.2 Supporting Communities of Practice in Virtual Teams
	2.3 Reducing the Knowledge Maintenance Problem

	3 PRIME
	3.1 Personal Task-Specific Information Needs
	3.2 Recurrent Information Needs
	3.3 Representing Recurrent Information Needs

	4 Related Work
	5 Conclusion
	References

