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Abstract. Many-to-Many Invocation (M2MI) is a new paradigm for building 
secure collaborative systems that run in true ad hoc networks of fixed and mo-
bile computing devices. M2MI is useful for building a broad range of systems, 
including service discovery frameworks; groupware for mobile ad hoc collabo-
ration; systems involving networked devices (printers, cameras, sensors);  and 
collaborative middleware systems.  M2MI provides an object oriented method 
call abstraction based on broadcasting.  An M2MI invocation means “every ob-
ject out there that implements this interface, call this method.” M2MI is layered 
on top of a new messaging protocol, the Many-to-Many Protocol (M2MP), 
which broadcasts messages to all nearby devices using the wireless network's 
inherent broadcast nature instead of routing messages from device to device.  In 
an M2MI-based system, central servers are not required; network administra-
tion is not required; complicated, resource-consuming ad hoc routing protocols 
are not required; and system development and deployment are simplified. 
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Introduction 

This paper describes a new paradigm, Many-to-Many Invocation (M2MI), for build-
ing secure collaborative systems that run in true ad hoc networks of fixed and mobile 
computing devices. M2MI is useful for building a broad range of systems, including 
service discovery frameworks; groupware for mobile ad hoc collaboration.  

We also address encryption and decryption of M2MI method invocations and a de-
scribe a decentralized key management in ad hoc networks. 

M2MI provides an object oriented method call abstraction based on broadcasting.  
An M2MI-based application broadcasts method invocations, which are received and 
performed by many objects in many target devices simultaneously. An M2MI invoca-
tion means “Everyone out there that implements this interface, call this method.” The 
calling application does not need to know the identities of the target devices ahead of 
time, does not need to explicitly discover the target devices, and does not need to set 
up individual connections to the target devices.  The calling device simply broadcasts 
method invocations, and all objects in the proximal network that implement those 
methods will execute them. 
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As a result, M2MI offers these key advantages over existing systems: 
 

• M2MI-based systems do not require central servers; instead, applications run col-
lectively on the proximal devices themselves. 

• M2MI-based systems do not require network administration to assign addresses to 
devices, set up routing, and so on, since method invocations are broadcast to all 
nearby devices.  Consequently, 

• M2MI is well-suited for an ad hoc networking environment where central servers 
may not be available and devices may come and go unpredictably. 

• M2MI-based systems allow to decrypt an encrypt method invocations using ses-
sion keys [9]. 

• M2MI-based systems do not need complicated ad hoc routing protocols that con-
sume memory, processing, and network bandwidth resources [10]. Consequently, 

• M2MI is well-suited for small mobile devices with limited resources and battery 
life. 

• M2MI simplifies system development in several ways. By using M2MI's high-
level method call abstraction, developers avoid having to work with low-level net-
work messages.  Since M2MI does not need to discover target devices explicitly or 
set up individual connections, developers need not write the code to do all that. 

• M2MI simplifies system deployment by eliminating the need for always-on appli-
cation servers, lookup services, code-base servers, and so on; by eliminating the 
software that would otherwise have to be installed on all these servers; and by 
eliminating the need for network configuration. 
 

M2MI's key technical innovations are these: 
 

• M2MI layers an object oriented abstraction on top of broadcast messaging, letting 
the application developer work with high-level method calls instead of low-level 
network messages. 

• M2MI uses dynamic proxy synthesis to create remote method invocation proxies 
(stubs and skeletons) automatically at run time - as opposed to existing remote 
method invocation systems, which compile the proxies, offline and which must 
deploy the proxies ahead of time. 
 

This paper is organized as follows: the next chapter describes the target environment 
for M2MI based systems; the following chapter discusses the M2MI paradigm fol-
lowed by a chapter showing how M2MI can be used to develop applications and ser-
vice discovery frameworks. The last two chapters discuss a dynamic fault tolerant key 
management system. 

Target Environmnet 

M2MI's target domain is ad hoc collaborative systems: systems where multiple users 
with computing devices, as well as multiple standalone devices like printers, cameras, 
and sensors, all participate simultaneously (collaborative); and systems where the 
various devices come and go and so are not configured to know about each other 
ahead of time (ad hoc).  Examples of ad hoc collaborative systems include: 
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• Applications that discover and use nearby networked services: a document printing 
application that finds printers wherever the user happens to be, or a surveillance 
application that displays images from nearby video cameras.  

• Collaborative middleware systems like shared tuple spaces [1]. 
• Groupware applications: a chat session, a shared whiteboard, a group appointment 

scheduler, a file  sharing application, or a multiplayer game. 
 

In many such collaborative systems, every device needs to talk to every other device.  
Every person's chat messages are displayed on every person's device; every person's 
calendar on every person's device is queried and updated with the next meeting time.  
In contrast to applications like email or web browsing (one-to-one communication) or 
web-casting (one-to-many communication), the collaborative systems envisioned here 
exhibit many-to-many communication patterns. M2MI is designed especially to sup-
port applications with many-to-many communication patterns, although it also sup-
ports other communication patterns.  

Devices come and go as the system is running, the devices do not know each 
other’s identities beforehand; instead, the devices form ad hoc networks among them-
selves. 

M2MI is intended for running collaborative systems without central servers.  In a 
wireless ad hoc network of devices, relying on servers in a wired network is unattrac-
tive because the devices are not necessarily always in range of a wireless access point.  
Furthermore, relying on any one wireless device to act as a server is unattractive be-
cause devices may come and go without prior notification.  Instead, all the devices - 
whichever ones happen to be present in the changing set of proximal devices - act in 
concert to run the system. 

The M2MI Paradigm 

Remote method invocation (RMI) [7] can be viewed as an object oriented abstraction 
of point-to-point communication: what looks like a method call is in fact a message 
sent and a response sent back.  In the same way, M2MI can be viewed as an object 
oriented abstraction of broadcast communication.  This section describes the M2MI 
paradigm at a conceptual level. 

Handles 

M2MI lets an application invoke a method declared in an interface.  To do so, the 
application needs some kind of “reference” upon which to perform the invocation.  In 
M2MI, a reference is called a handle, and there are three varieties, omnihandles, uni-
handles, and multihandles. 

Omnihandles 

An omnihandle for an interface stands for “every object out there that implements this 
interface.” An application can ask the M2MI layer to create an omnihandle for a cer-
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tain interface X, called the omnihandle's target interface. (A handle can implement 
more than one target interface if desired. An omnihandle for interface Foo; the omni-
handle is named allFoos is created by code like this: 

 
Foo allFoos = M2MI.getOmnihandle(Foo.class); 
 

Once an omnihandle is created, calling method doSomething on the omnihandle 
for interface AnInterface means, “Every object out there that implements inter-
face AnInterface, perform method doSomething.” The method is actually 
performed by whichever objects implementing interface AnInterface exist at the time 
the method is invoked on the omnihandle.  Thus, different objects could respond to an 
omnihandle invocationat different times. Three objects implementing interface Foo, 
objects A, B, and D, happen to be in existence at that time; so all three objects per-
form method y. Note that even though object D did not exist when the omnihandle 
allFoos was created, the method is nonetheless invoked on object D. 

The target objects invoked by an M2MI method call need not reside in the same 
process as the calling object. The target objects can reside in other processes or other 
devices.  As long as the target objects are in range to receive a broadcast from the 
calling object over the network, the M2MI layer will find the target objects and per-
form a remote method invocation on each one. 

Exporting Objects 

To receive invocations on a certain interface X, an application creates an object that 
implements interface X and exports the object to the M2MI layer.  Thereafter, the 
M2MI layer will invoke that object's method Y whenever anyone calls method Y on 
an omnihandle for interface X.  An object is exported with code like this: 

M2MI.export(b, Foo.class); 

Foo.class is the class of the target interface through which M2MI invocations will 
come to the object.  We say the object is “exported as type Foo.” M2MI also lets an 
object be exported as more than one target interface.  Once exported, an object stays 
exported until explicitly unexported: 

 
M2MI.unexport(b); 
 

In other words, M2MI does not do distributed garbage collection (DGC).  In many 
distributed collaborative applications, DGC is unwanted; an object that is exported by 
one device as part of a distributed application should remain exported even if there 
are no other devices invoking the object yet. In cases where DGC is needed, it can be 
provided by a leasing mechanism explicit in the interface. 

Unihandles 

A unihandle for an interface stands for “one particular object out there that imple-
ments this interface.” An application can export an object and have the M2MI layer 
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return a unihandle for that object.  Unlike an omnihandle, a unihandle is bound to one 
particular object at the time the unihandle is created.  A unihandle is created by code 
like this: 

 
Foo b_Foo = M2MI.getUnihandle(b,Foo.class); 

 
Once a unihandle is created, calling method Y on the unihandle means, “The particu-
lar object out there associated with this unihandle, perform method Y.” When the 
statement b_Foo.y(); is executed, only object B performs the method. As with an 
omnihandle, the target object for a unihandle invocation need not reside in the same 
process or device as the calling object. 

A unihandle can be detached from its object, after which the object can no longer 
be invoked via the unihandle: 

 
b_Foo.detach(); 

Multihandles 

A multihandle for an interface stands for “one particular set of objects out there that 
implement this interface.” Unlike a unihandle which only refers to one object, a mul-
tihandle can refer to zero or more objects.  But unlike an omnihandle which automati-
cally refers to all objects that implement a certain target interface, a multihandle only 
refers to those objects that have been explicitly attached to the multihandle. 

The multihandle is named someFoos, and it is attached to two objects, A and D. 
The multihandle is created and attached to the objects by code like this: 

 
Foo someFoos = M2MI.getMultihandle(Foo.class); 
someFoos.attach(a); someFoos.attach(d); 

 
Once a multihandle is created, calling method Y on the multihandle means, “The 
particular object or objects out there associated with this multihandle, perform method 
Y.” When the statement someFoos.y(); is executed, objects A and D perform the 
method, but not objects B or C.  As with an omnihandle or unihandle, the target ob-
jects for a multihandle invocation need not reside in the same process or device as the 
calling object or each other.A multihandle can be created in one process and sent to 
another process, and the destination process can then attach its own objects to the 
multihandle. 

An object can also be detached from a multihandle: 
 
someFoos.detach(a); 

M2MI-Based Systems 

This section gives one examples showing how M2MI can be used to design a chat 
application and a print service discovery system. These examples show the elegance 
of ad hoc  collaborative systems based on M2MI. Further examples can be found at 
[4]. 
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Service Discovery – Printing 

As an example of an M2MI-based system involving stand-alone devices providing 
services, consider printing. To print a document from a mobile device, the user must 
discover the nearby printers and print the document on one selected printer.  Printer 
discovery is a two-step process: the user broadcasts a printer discovery request via an 
omnihandle invocation; then each printer sends its own unihandle back to the user via 
a unihandle invocation on the user.  To print the document, the user does an invoca-
tion on the selected printer's unihandle. 

Specifically, each printer has a print service object that implements this interface: 
 
public interface PrintService { 
    public void print(Document doc); 
} 
 

The printer exports its print service object to the M2MI layer and obtains a unihandle 
attached to the object. The printer is now prepared to process document printing 
requests.  To discover printers, there are two print discovery interfaces: 

 
public interface PrintDiscovery { 
   public void request(PrintClient client); 
} 

  public interface PrintClient { 
   public void report(PrintService printer, 

String name); 
} 

 
The client printing application exports a print client object implementing interface 
PrintClient to the M2MI layer and obtains a unihandle attached to the object.  
The application also obtains from the M2MI layer an omnihandle for interface 
PrintDiscovery.  The application is now prepared to make print discovery re-
quests and process print discovery reports. 

Each printer exports a print discovery object implementing interface PrintDis-
covery to the M2MI layer.  The printer is now prepared to process print discovery 
requests and generate print discovery reports 

The application first calls 

printDiscovery.request(theClient); 

on an omnihandle for interface PrintDiscovery, passing in the unihandle to its 
own print client object.  Since it is invoked on an omnihandle, this call goes to all the 
printers.  The application now waits for print discovery reports.  
Each printer's request method calls 

 
theClient.report(thePrinter, 
       "Printer Name"); 

 
The method is invoked on the print client unihandle passed in as an argument.  The 
method call arguments are   the unihandle to the printer's print service object and the 
name of the printer.  Since it is invoked on a unihandle, this call goes just to the re-
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questing client printing application, not to any other print clients that may be present. 
After executing all the report invocations, the printing application knows the name of 
each available printer and has a unihandle for submitting jobs to each printer.  

Finally, after asking the user to select one of the printers, the application calls: 
 
c_Printer.print(theDocument); 
 

where c_Printer is the selected printer's unihandle as previously passed to the 
report method.  Since it is invoked on a unihandle, this call goes just to the selected 
printer, not the other printers.  The printer proceeds to print the document passed to 
the print method. 

Clearly, this invocation pattern of broadcast discovery request - discovery re-
sponses - service usage can apply to any service, not just printing.  It is even possible 
to define a generic service discovery interface that can be used to find objects that 
implement any interface, the desired interface being specified as a parameter of the 
discovery method invocation. 

M2MI Architecture 

Our initial work with M2MI has focused on networked collaborative systems.  In this 
environment of ad hoc networks of proximal mobile wireless devices, M2MI is lay-
ered on top of a new network protocol, M2MP.  We have implemented initial versions  
of M2MP and M2MI in Java. Are detailed description of the design and architecture 
can be found at [4]. 

M2MI Security 

Providing security within M2MI-based systems is an area of current development.  
We have identified these general security requirements: 

 
• Confidentiality - Intruders who are not part of a collaborative system must not be 

able to understand the contents of the M2MI invocations. 
• Participant authentication - Intruders who are not authorized to participate in a 

collaborative system must not be able to perform M2MI invocations in that sys-
tem. 

• Service authentication - Intruders must not be able to masquerade as legitimate 
participants in a collaborative system and accept M2MI invocations.  For example, 
a client must be assured that a service claiming to be a certain printer really is the 
printer that is going to print the client's job and not some intruder. 
 

While existing techniques for achieving confidentiality and authentication work well 
in an environment of fixed hosts, wired networks, these techniques will not work well 
in an environment of mobile devices, wireless networks, and no central servers. 

A decentralized key management is necessary n order to achieve the security re-
quirements. 
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Decentralized Keymanagement in Ad Hoc Networkd 

State of the Art 
Key management has been the thrust of several research initiatives in the  ad hoc 
networking domain (e.g., [1, 6]  et al).  Each of these approaches seeks to establish a 
public key infrastructure within the constraints of  ad hoc networks; each approach is 
discussed below. 

“Securing Ad Hoc Networks” [10] was one of the first notable  publications to pro-
pose a public key management service for ad hoc networks.  The service itself encap-
sulates a public/private key pair K/k.  The private key, k, is used to sign other nodes' 
public keys; the public key, K, is used to verify the signature.  The service employs a 
(n, t+1) threshold scheme to distribute the private key and the digital signing process 
among n nodes.  Each of the n nodes is denoted as a server node, as it has a special 
role in the signing service.  Combiner nodes - which may be a subset of the server 
nodes or altogether different nodes - are also required to combine each server's partial 
signature.  For example, to sign a certificate, each of the n server nodes must generate 
a partial signature using its share of the private (k1, k2, … kn) to compute a partial 
signature of the certificate.  Once generated, each server node sends its partial signa-
ture to the combiner; the combiner then computes the entire signature.  To its credit 
[10]   was quite progressive at its inception, as its design is largely proactive and 
capable of handling a dynamic network state.  Nonetheless, the service has remnants 
of its wired predecessor, namely, a trusted authority, and specialized server and com-
biner nodes.  Although the threshold scheme employed allows t < n servers to be 
compromised without sacrificing the service, its largely centralized approach 
encapsulates relatively few points of failure and attack. 

“Providing Robust and Ubiquitous Security Support for Ad Hoc Networks [6] pre-
sents a natural extension to [1], wherein the signing service is distributed to any node 
n the network.  For example, if a network member requires a certificate, it need only 
be in the proximity of any t+1 nodes.  The service  is otherwise similar to [6].  De-
spite the improved distribution, [6] still requires a trusted party at initialization.  Fur-
ther, because any node in the network may participate in the sharing, a malicious node 
may masquerade as t+1 bogus nodes and reconstruct the private key. 

More recently, Hubaux et al have proposed a self organizing public key infrastruc-
ture in [1].  Unlike the previous two publications, [1] does not require a trusted au-
thority or any specialized nodes; instead, each node issues its own certificates to other 
nodes.  Each node maintains a limited repository of other nodes' certificates.  When a 
node wishes to validate a certificate of another node, the nodes combine their certifi-
cate repositories; the validating node then examines the merged certificate repository 
for falsified certificates.  If none are found, the certificate is accepted; otherwise it is 
rejected.  The primary drawback of [1] is its initialization time.  In long-lived ad hoc 
networks, such overhead may be admissable; it is likely to be prohibitive in more 
transient settings. 

Although each of the above paradigms is effective in its own right, they are all 
based on a common assumption, namely, point-to-point communication.  Public key 
infrastructures enable nodes with authentic public encryption keys that they may use 
to establish secure communication with one another. However, many ad hoc networks 
are collaborative, many-to-many environments. In these settings, public key cryptog-
raphy is computationally intensive, as each group message must be encrypted n-1 
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times.  Group key management paradigms which provide a shared symmetric key that 
is shared among all group members, have been used throughout the wired networking 
domain to secure broadcast and many-to-many communication environments; how-
ever, very few attempts have been made to adapt group key management infrastruc-
tures to an ad hoc setting. 

Dominant group key management paradigms include the well-known CLIQUES 
project [8], Kim et al [5], and several others.  Each of  these  protocols is based on the 
generalized Diffie-Hellman problem, which requires every network member to con-
tribute to the generation of the shared  group key.  Because they were developed for 
wired environments, many of these approaches require point-to-point and broadcast 
mediums, synchronous messaging, and static network topologies.  Unfortunately, the 
wireless, amorphous, transient, many-to-many nature of ad hoc networks precludes 
many of the assumptions on which the above protocols were developed.  We, there-
fore, introduce a new approach to key management that can effectively function 
within the constraints of an ad hoc network environment.   

Looking Forward 
The ad hoc network environment we envision is transient, dynamic in structure and 
membership, proximal, and broadcast-based.  We also assume that network nodes 
wish to collaborate, that is, our primary goal is to ensure secure  many-to-many com-
munication.  As a result, our paradigm is fully decentralized  (i.e., it lacks server or 
otherwise specialized nodes), lightweight, and  best-suited for small, spontaneous 
networks.  The first protocol we present is not authenticated; the second is an exten-
sion of the first that includes authentication mechanisms. 

The nucleus of our first protocol is a tuple-like entity, inspired by Gelerntner's tu-
ples in [2],  that is effectively a hash table shared among all members of the group. 
Each member of the group has an entry in the hash table, which includes that mem-
ber's contribution to the group key.   

The following atomic operations may be performed on the tuple: 
• take() - removes the tuple from the space, such that no other group member may 

modify its contents. 
• read() - reads the current contents of the tuple  
• write() - writes the tuple into the space, overwriting the previous tuple 
 
Although the tuple spaces are often implemented as a centrally-based service, the 
tuples used in this context are fully distributed: each member hosts its own entry in 
the tuple. Nodes may host more than one entry if replication is desired in the interest 
of availability. 

Group Genesis 
Group genesis requires two or more parties to be present.  

 
1. Group members agree on a cyclic group,  G, of order q, and a generator, α in G; 

each member then chooses a secret share, Ni  ∈ G.   
2. The first member, M1, instantiates a Tuple Space and places a new tuple in the 

space.  The tuple initially contains Mi's contribution and the current cardinal value.  
Mi then sends a broadcast message to the group stating that tuple has been created. 
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3. Upon receipt of the broadcast message, each member attempts to remove the tuple 
from the space in order to add its contribution. Because take() request will with-
draw the tuple from the space; the other take() will block until the tuple is returned 
to the space.  The member who receives the tuple then adds an entry in the tuple 
for itself and updates all existing intermediate values and the cardinal value.  This 
step is repeated until M2 … Mn-1 have written their contributions into the tuple. 

4. The last member of the group has special role in the key generation process.  The 
last member is not pre-determined; it is simply the last member to send a take() re-
quest. Mn first performs a take() operation on the tuple.  It then exponentiates each 
intermediate value in the tuple with its secret exponent, Sn, and adds in an inter-
mediate value for itself.  Unlike its predecessors, Mn does not update the cardinal 
value, as the final cardinal value is the group key.  Instead, it writes the tuple back 
into the space with the previous cardinal value and the updated intermediate val-
ues. Mn then sends a broadcast message to the group, which informs them of the 
termination of the key generation phase.   

 
Upon receipt of the broadcast message, each member read()s its intermediate value 
and uses it to compute the group key. 

Member Addition – join() 
A join() operation denotes the addition of a single group member. Semantics for join() 
entail a modification of the group key, such that the new member's share is included 
in the group key.  The steps required for join() follow. 
1. Mn+1 take()s the tuple out of the space, adds its intermediate value, updates each 

existing intermediate values, and write()s the tuple back into the space. 
2. MGC performs a take() on the tuple, updates the cardinal value, write()s the tuple 

back into the space, and notifies all group members that the key generation is com-
plete. 

 
Following a join() operation, the new member becomes new group controller (i.e., 
Mn+1 = MGC). 

By default, join does not ensure forward or backward secrecy.  In many scenarios, 
this may be admissable; however, a simple extension to the join operation can ensure 
forward and backward secrecy.  The revised protocol requires the existing group con-
troller, Mn, factor its secret, Sn out of the existing cardinal and intermediate values, 
choose a new secret,  Sn, and exponentiate each intermediate value with it.   

Member Removal - leave() 
Leave entails the removal of a group member's contribution to the group key, thereby 
prohibiting it from decrypting subsequent group messages.  The following protocol 
assumes that the departure is voluntary. If the departure is not voluntary, the first step 
is clearly omitted, however, the excluded member is still unable to derive the group 
key. 

 
1. The departing member, Mp, factors its contribution out of  each entry in the tuple. 
2. The group controller, MGC, chooses a new secret SGC and exponentiates each entry 

in the tuple with it. 
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Conclusion 
We present a dynamic, fault--tolerant symmetric key management system.  Unlike 
other key management paradigms, our approach does not require a specific order in 
which contributions are collected, nor does it rely on a trusted or centralized entity to 
combine the partial keys.  
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