A New Framework for Building Secure Collaborative
Systems in True Ad Hoc Network

Hans-Peter Bischof, Alan Kaminsky, and Joseph Binder

Rochester Institute of Technology, 102
Lomb Mermorial Dr, Rochester, NY 14623
{hpb, ark,jsb7834}l@cs.rit.edu

Abstract. Many-to-Many Invocation (M2MI) is a new paradigm for building
secure collaborative systems that run in true ad hoc networks of fixed and mo-
bile computing devices. M2MI is useful for building a broad range of systems,
including service discovery frameworks; groupware for mobile ad hoc collabo-
ration; systems involving networked devices (printers, cameras, sensors); and
collaborative middleware systems. M2MI provides an object oriented method
call abstraction based on broadcasting. An M2MI invocation means “every ob-
ject out there that implements this interface, call this method.” M2MI is layered
on top of a new messaging protocol, the Many-to-Many Protocol (M2MP),
which broadcasts messages to all nearby devices using the wireless network's
inherent broadcast nature instead of routing messages from device to device. In
an M2MI-based system, central servers are not required; network administra-
tion is not required; complicated, resource-consuming ad hoc routing protocols
are not required; and system development and deployment are simplified.

Keywords: Collaborative systems, peer-to-peer systems, distributed objects,
decentralized key management, ad hoc networking, server-less networking.

Introduction

This paper describes a new paradigm, Many-to-Many Invocation (M2MI), for build-
ing secure collaborative systems that run in true ad hoc networks of fixed and mobile
computing devices. M2MI is useful for building a broad range of systems, including
service discovery frameworks; groupware for mobile ad hoc collaboration.

We also address encryption and decryption of M2MI method invocations and a de-
scribe a decentralized key management in ad hoc networks.

M2MI provides an object oriented method call abstraction based on broadcasting.
An M2Ml-based application broadcasts method invocations, which are received and
performed by many objects in many target devices simultaneously. An M2MI invoca-
tion means “Everyone out there that implements this interface, call this method.” The
calling application does not need to know the identities of the target devices ahead of
time, does not need to explicitly discover the target devices, and does not need to set
up individual connections to the target devices. The calling device simply broadcasts
method invocations, and all objects in the proximal network that implement those
methods will execute them.

S. Pierre, M. Barbeau, and E. Kranakis (Eds.): ADHOC-NOW 2003, LNCS 2865, pp. 164-174, 2003.
© Springer-Verlag Berlin Heidelberg 2003



A New Framework for Building Secure Collaborative Systems 165

As a result, M2MI offers these key advantages over existing systems:

e M2MI-based systems do not require central servers; instead, applications run col-
lectively on the proximal devices themselves.

e M2MlI-based systems do not require network administration to assign addresses to
devices, set up routing, and so on, since method invocations are broadcast to all
nearby devices. Consequently,

e M2MI is well-suited for an ad hoc networking environment where central servers
may not be available and devices may come and go unpredictably.

e M2Ml-based systems allow to decrypt an encrypt method invocations using ses-
sion keys [9].

e M2MlI-based systems do not need complicated ad hoc routing protocols that con-
sume memory, processing, and network bandwidth resources [10]. Consequently,

e M2MI is well-suited for small mobile devices with limited resources and battery
life.

e M2MI simplifies system development in several ways. By using M2MI's high-
level method call abstraction, developers avoid having to work with low-level net-
work messages. Since M2MI does not need to discover target devices explicitly or
set up individual connections, developers need not write the code to do all that.

e M2MI simplifies system deployment by eliminating the need for always-on appli-
cation servers, lookup services, code-base servers, and so on; by eliminating the
software that would otherwise have to be installed on all these servers; and by
eliminating the need for network configuration.

M2MI's key technical innovations are these:

e M2MI layers an object oriented abstraction on top of broadcast messaging, letting
the application developer work with high-level method calls instead of low-level
network messages.

e M2MI uses dynamic proxy synthesis to create remote method invocation proxies
(stubs and skeletons) automatically at run time - as opposed to existing remote
method invocation systems, which compile the proxies, offline and which must
deploy the proxies ahead of time.

This paper is organized as follows: the next chapter describes the target environment
for M2MI based systems; the following chapter discusses the M2MI paradigm fol-
lowed by a chapter showing how M2MI can be used to develop applications and ser-
vice discovery frameworks. The last two chapters discuss a dynamic fault tolerant key
management system.

Target Environmnet

M2MTI's target domain is ad hoc collaborative systems: systems where multiple users
with computing devices, as well as multiple standalone devices like printers, cameras,
and sensors, all participate simultaneously (collaborative); and systems where the
various devices come and go and so are not configured to know about each other
ahead of time (ad hoc). Examples of ad hoc collaborative systems include:



166 H.-P. Bischof, A. Kaminsky, and J. Binder

e Applications that discover and use nearby networked services: a document printing
application that finds printers wherever the user happens to be, or a surveillance
application that displays images from nearby video cameras.

e Collaborative middleware systems like shared tuple spaces [1].

e Groupware applications: a chat session, a shared whiteboard, a group appointment
scheduler, a file sharing application, or a multiplayer game.

In many such collaborative systems, every device needs to talk to every other device.
Every person's chat messages are displayed on every person's device; every person's
calendar on every person's device is queried and updated with the next meeting time.
In contrast to applications like email or web browsing (one-to-one communication) or
web-casting (one-to-many communication), the collaborative systems envisioned here
exhibit many-to-many communication patterns. M2MI is designed especially to sup-
port applications with many-to-many communication patterns, although it also sup-
ports other communication patterns.

Devices come and go as the system is running, the devices do not know each
other’s identities beforehand; instead, the devices form ad hoc networks among them-
selves.

M2MI is intended for running collaborative systems without central servers. In a
wireless ad hoc network of devices, relying on servers in a wired network is unattrac-
tive because the devices are not necessarily always in range of a wireless access point.
Furthermore, relying on any one wireless device to act as a server is unattractive be-
cause devices may come and go without prior notification. Instead, all the devices -
whichever ones happen to be present in the changing set of proximal devices - act in
concert to run the system.

The M2MI Paradigm

Remote method invocation (RMI) [7] can be viewed as an object oriented abstraction
of point-to-point communication: what looks like a method call is in fact a message
sent and a response sent back. In the same way, M2MI can be viewed as an object
oriented abstraction of broadcast communication. This section describes the M2MI
paradigm at a conceptual level.

Handles

M2MI lets an application invoke a method declared in an interface. To do so, the
application needs some kind of “reference” upon which to perform the invocation. In
M2MLI, a reference is called a handle, and there are three varieties, omnihandles, uni-
handles, and multihandles.

Omnihandles

An omnihandle for an interface stands for “every object out there that implements this
interface.” An application can ask the M2MI layer to create an omnihandle for a cer-



A New Framework for Building Secure Collaborative Systems 167

tain interface X, called the omnihandle's target interface. (A handle can implement
more than one target interface if desired. An omnihandle for interface Foo; the omni-
handle is named allFoos is created by code like this:

Foo allFoos = M2MI.getOmnihandle (Foo.class) ;

Once an omnihandle is created, calling method doSomething on the omnihandle
for interface AnInterface means, “Every object out there that implements inter-
face AnInterface, perform method doSomething.” The method is actually
performed by whichever objects implementing interface Anlnterface exist at the time
the method is invoked on the omnihandle. Thus, different objects could respond to an
omnihandle invocationat different times. Three objects implementing interface Foo,
objects A, B, and D, happen to be in existence at that time; so all three objects per-
form method y. Note that even though object D did not exist when the omnihandle
allFoos was created, the method is nonetheless invoked on object D.

The target objects invoked by an M2MI method call need not reside in the same
process as the calling object. The target objects can reside in other processes or other
devices. As long as the target objects are in range to receive a broadcast from the
calling object over the network, the M2MI layer will find the target objects and per-
form a remote method invocation on each one.

Exporting Objects

To receive invocations on a certain interface X, an application creates an object that
implements interface X and exports the object to the M2MI layer. Thereafter, the
M2MI layer will invoke that object's method Y whenever anyone calls method Y on
an omnihandle for interface X. An object is exported with code like this:

M2MI.export (b, Foo.class);

Foo.class is the class of the target interface through which M2MI invocations will
come to the object. We say the object is “exported as type Foo.” M2MI also lets an
object be exported as more than one target interface. Once exported, an object stays
exported until explicitly unexported:

M2MI .unexport (b) ;

In other words, M2MI does not do distributed garbage collection (DGC). In many
distributed collaborative applications, DGC is unwanted; an object that is exported by
one device as part of a distributed application should remain exported even if there
are no other devices invoking the object yet. In cases where DGC is needed, it can be
provided by a leasing mechanism explicit in the interface.

Unihandles

A unihandle for an interface stands for “one particular object out there that imple-
ments this interface.” An application can export an object and have the M2MI layer



168 H.-P. Bischof, A. Kaminsky, and J. Binder

return a unihandle for that object. Unlike an omnihandle, a unihandle is bound to one
particular object at the time the unihandle is created. A unihandle is created by code
like this:

Foo b_Foo = M2MI.getUnihandle(b,Foo.class);

Once a unihandle is created, calling method Y on the unihandle means, “The particu-
lar object out there associated with this unihandle, perform method Y.” When the
statement b_Foo.y(); is executed, only object B performs the method. As with an
omnihandle, the target object for a unihandle invocation need not reside in the same
process or device as the calling object.

A unihandle can be detached from its object, after which the object can no longer
be invoked via the unihandle:

b_Foo.detach() ;

Multihandles

A multihandle for an interface stands for “one particular set of objects out there that
implement this interface.” Unlike a unihandle which only refers to one object, a mul-
tihandle can refer to zero or more objects. But unlike an omnihandle which automati-
cally refers to all objects that implement a certain target interface, a multihandle only
refers to those objects that have been explicitly attached to the multihandle.

The multihandle is named someFoos, and it is attached to two objects, A and D.
The multihandle is created and attached to the objects by code like this:

Foo someFoos = M2MI.getMultihandle (Foo.class);
someFoos.attach(a); someFoos.attach(d);

Once a multihandle is created, calling method Y on the multihandle means, “The
particular object or objects out there associated with this multihandle, perform method
Y.” When the statement someFoos.y () ; is executed, objects A and D perform the
method, but not objects B or C. As with an omnihandle or unihandle, the target ob-
jects for a multihandle invocation need not reside in the same process or device as the
calling object or each other.A multihandle can be created in one process and sent to
another process, and the destination process can then attach its own objects to the
multihandle.
An object can also be detached from a multihandle:

someFoos.detach (a) ;

M2MI-Based Systems

This section gives one examples showing how M2MI can be used to design a chat
application and a print service discovery system. These examples show the elegance
of ad hoc collaborative systems based on M2MI. Further examples can be found at

[4].



A New Framework for Building Secure Collaborative Systems 169

Service Discovery — Printing

As an example of an M2MI-based system involving stand-alone devices providing
services, consider printing. To print a document from a mobile device, the user must
discover the nearby printers and print the document on one selected printer. Printer
discovery is a two-step process: the user broadcasts a printer discovery request via an
omnihandle invocation; then each printer sends its own unihandle back to the user via
a unihandle invocation on the user. To print the document, the user does an invoca-
tion on the selected printer's unihandle.
Specifically, each printer has a print service object that implements this interface:

public interface PrintService {
public void print (Document doc) ;

}

The printer exports its print service object to the M2MI layer and obtains a unihandle
attached to the object. The printer is now prepared to process document printing
requests. To discover printers, there are two print discovery interfaces:

public interface PrintDiscovery {
public void request (PrintClient client) ;
}
public interface PrintClient {
public void report (PrintService printer,
String name) ;

The client printing application exports a print client object implementing interface
PrintClient to the M2MI layer and obtains a unihandle attached to the object.
The application also obtains from the M2MI layer an omnihandle for interface
PrintDiscovery. The application is now prepared to make print discovery re-
quests and process print discovery reports.

Each printer exports a print discovery object implementing interface PrintDis -
covery to the M2MI layer. The printer is now prepared to process print discovery
requests and generate print discovery reports

The application first calls

printDiscovery.request (theClient) ;

on an omnihandle for interface PrintDiscovery, passing in the unihandle to its
own print client object. Since it is invoked on an omnihandle, this call goes to all the
printers. The application now waits for print discovery reports.

Each printer's request method calls

theClient.report (thePrinter,
"Printer Name") ;

The method is invoked on the print client unihandle passed in as an argument. The
method call arguments are the unihandle to the printer's print service object and the
name of the printer. Since it is invoked on a unihandle, this call goes just to the re-



170 H.-P. Bischof, A. Kaminsky, and J. Binder

questing client printing application, not to any other print clients that may be present.
After executing all the report invocations, the printing application knows the name of
each available printer and has a unihandle for submitting jobs to each printer.

Finally, after asking the user to select one of the printers, the application calls:

c_Printer.print (theDocument) ;

where c_Printer is the selected printer's unihandle as previously passed to the
report method. Since it is invoked on a unihandle, this call goes just to the selected
printer, not the other printers. The printer proceeds to print the document passed to
the print method.

Clearly, this invocation pattern of broadcast discovery request - discovery re-
sponses - service usage can apply to any service, not just printing. It is even possible
to define a generic service discovery interface that can be used to find objects that
implement any interface, the desired interface being specified as a parameter of the
discovery method invocation.

M2MI Architecture

Our initial work with M2MI has focused on networked collaborative systems. In this
environment of ad hoc networks of proximal mobile wireless devices, M2MI is lay-
ered on top of a new network protocol, M2MP. We have implemented initial versions
of M2MP and M2MI in Java. Are detailed description of the design and architecture
can be found at [4].

M2MI Security

Providing security within M2MlI-based systems is an area of current development.
We have identified these general security requirements:

e Confidentiality - Intruders who are not part of a collaborative system must not be
able to understand the contents of the M2MI invocations.

e Participant authentication - Intruders who are not authorized to participate in a
collaborative system must not be able to perform M2MI invocations in that sys-
tem.

e Service authentication - Intruders must not be able to masquerade as legitimate
participants in a collaborative system and accept M2MI invocations. For example,
a client must be assured that a service claiming to be a certain printer really is the
printer that is going to print the client's job and not some intruder.

While existing techniques for achieving confidentiality and authentication work well
in an environment of fixed hosts, wired networks, these techniques will not work well
in an environment of mobile devices, wireless networks, and no central servers.

A decentralized key management is necessary n order to achieve the security re-
quirements.



A New Framework for Building Secure Collaborative Systems 171

Decentralized Keymanagement in Ad Hoc Networkd

State of the Art
Key management has been the thrust of several research initiatives in the ad hoc
networking domain (e.g., [1, 6] et al). Each of these approaches seeks to establish a
public key infrastructure within the constraints of ad hoc networks; each approach is
discussed below.

“Securing Ad Hoc Networks” [10] was one of the first notable publications to pro-
pose a public key management service for ad hoc networks. The service itself encap-
sulates a public/private key pair K/k. The private key, k, is used to sign other nodes'
public keys; the public key, K, is used to verify the signature. The service employs a
(n, t+1) threshold scheme to distribute the private key and the digital signing process
among n nodes. Each of the n nodes is denoted as a server node, as it has a special
role in the signing service. Combiner nodes - which may be a subset of the server
nodes or altogether different nodes - are also required to combine each server's partial
signature. For example, to sign a certificate, each of the n server nodes must generate
a partial signature using its share of the private (k, k,, ... k) to compute a partial
signature of the certificate. Once generated, each server node sends its partial signa-
ture to the combiner; the combiner then computes the entire signature. To its credit
[10] was quite progressive at its inception, as its design is largely proactive and
capable of handling a dynamic network state. Nonetheless, the service has remnants
of its wired predecessor, namely, a trusted authority, and specialized server and com-
biner nodes. Although the threshold scheme employed allows ¢ < n servers to be
compromised without sacrificing the service, its largely centralized approach
encapsulates relatively few points of failure and attack.

“Providing Robust and Ubiquitous Security Support for Ad Hoc Networks [6] pre-
sents a natural extension to [1], wherein the signing service is distributed to any node
n the network. For example, if a network member requires a certificate, it need only
be in the proximity of any t+1 nodes. The service is otherwise similar to [6]. De-
spite the improved distribution, [6] still requires a trusted party at initialization. Fur-
ther, because any node in the network may participate in the sharing, a malicious node
may masquerade as #+/ bogus nodes and reconstruct the private key.

More recently, Hubaux et al have proposed a self organizing public key infrastruc-
ture in [1]. Unlike the previous two publications, [1] does not require a trusted au-
thority or any specialized nodes; instead, each node issues its own certificates to other
nodes. Each node maintains a limited repository of other nodes' certificates. When a
node wishes to validate a certificate of another node, the nodes combine their certifi-
cate repositories; the validating node then examines the merged certificate repository
for falsified certificates. If none are found, the certificate is accepted; otherwise it is
rejected. The primary drawback of [1] is its initialization time. In long-lived ad hoc
networks, such overhead may be admissable; it is likely to be prohibitive in more
transient settings.

Although each of the above paradigms is effective in its own right, they are all
based on a common assumption, namely, point-to-point communication. Public key
infrastructures enable nodes with authentic public encryption keys that they may use
to establish secure communication with one another. However, many ad hoc networks
are collaborative, many-to-many environments. In these settings, public key cryptog-
raphy is computationally intensive, as each group message must be encrypted n-1/



172 H.-P. Bischof, A. Kaminsky, and J. Binder

times. Group key management paradigms which provide a shared symmetric key that
is shared among all group members, have been used throughout the wired networking
domain to secure broadcast and many-to-many communication environments; how-
ever, very few attempts have been made to adapt group key management infrastruc-
tures to an ad hoc setting.

Dominant group key management paradigms include the well-known CLIQUES
project [8], Kim et al [5], and several others. Each of these protocols is based on the
generalized Diffie-Hellman problem, which requires every network member to con-
tribute to the generation of the shared group key. Because they were developed for
wired environments, many of these approaches require point-to-point and broadcast
mediums, synchronous messaging, and static network topologies. Unfortunately, the
wireless, amorphous, transient, many-to-many nature of ad hoc networks precludes
many of the assumptions on which the above protocols were developed. We, there-
fore, introduce a new approach to key management that can effectively function
within the constraints of an ad hoc network environment.

Looking Forward

The ad hoc network environment we envision is transient, dynamic in structure and
membership, proximal, and broadcast-based. We also assume that network nodes
wish to collaborate, that is, our primary goal is to ensure secure many-to-many com-
munication. As a result, our paradigm is fully decentralized (i.e., it lacks server or
otherwise specialized nodes), lightweight, and best-suited for small, spontaneous
networks. The first protocol we present is not authenticated; the second is an exten-
sion of the first that includes authentication mechanisms.

The nucleus of our first protocol is a tuple-like entity, inspired by Gelerntner's tu-
ples in [2], that is effectively a hash table shared among all members of the group.
Each member of the group has an entry in the hash table, which includes that mem-
ber's contribution to the group key.

The following atomic operations may be performed on the tuple:

e take() - removes the tuple from the space, such that no other group member may
modify its contents.

e read() - reads the current contents of the tuple

e write() - writes the tuple into the space, overwriting the previous tuple

Although the tuple spaces are often implemented as a centrally-based service, the
tuples used in this context are fully distributed: each member hosts its own entry in
the tuple. Nodes may host more than one entry if replication is desired in the interest
of availability.

Group Genesis
Group genesis requires two or more parties to be present.

1. Group members agree on a cyclic group, G, of order ¢, and a generator, o in G;
each member then chooses a secret share, N. € G.

2. The first member, M,, instantiates a Tuple Space and places a new tuple in the
space. The tuple initially contains M,'s contribution and the current cardinal value.
M, then sends a broadcast message to the group stating that tuple has been created.



A New Framework for Building Secure Collaborative Systems 173

3. Upon receipt of the broadcast message, each member attempts to remove the tuple
from the space in order to add its contribution. Because fake() request will with-
draw the tuple from the space; the other take() will block until the tuple is returned
to the space. The member who receives the tuple then adds an entry in the tuple
for itself and updates all existing intermediate values and the cardinal value. This
step is repeated until M, ... M, , have written their contributions into the tuple.

4. The last member of the group has special role in the key generation process. The
last member is not pre-determined; it is simply the last member to send a take() re-
quest. M, first performs a fake() operation on the tuple. It then exponentiates each
intermediate value in the tuple with its secret exponent, Sn, and adds in an inter-
mediate value for itself. Unlike its predecessors, M does not update the cardinal
value, as the final cardinal value is the group key. Instead, it writes the tuple back
into the space with the previous cardinal value and the updated intermediate val-
ues. Mn then sends a broadcast message to the group, which informs them of the
termination of the key generation phase.

Upon receipt of the broadcast message, each member read()s its intermediate value
and uses it to compute the group key.

Member Addition —join()

A join() operation denotes the addition of a single group member. Semantics for join()

entail a modification of the group key, such that the new member's share is included

in the group key. The steps required for join() follow.

1. M,,, take()s the tuple out of the space, adds its intermediate value, updates each
existing intermediate values, and write()s the tuple back into the space.

2. M. performs a take() on the tuple, updates the cardinal value, write()s the tuple
back into the space, and notifies all group members that the key generation is com-
plete.

Following a join() operation, the new member becomes new group controller (i.e.,
M, =M.

By default, join does not ensure forward or backward secrecy. In many scenarios,
this may be admissable; however, a simple extension to the join operation can ensure
forward and backward secrecy. The revised protocol requires the existing group con-
troller, M, factor its secret, S, out of the existing cardinal and intermediate values,
choose a new secret, S , and exponentiate each intermediate value with it.

Member Removal - leave()

Leave entails the removal of a group member's contribution to the group key, thereby
prohibiting it from decrypting subsequent group messages. The following protocol
assumes that the departure is voluntary. If the departure is not voluntary, the first step
is clearly omitted, however, the excluded member is still unable to derive the group
key.

1. The departing member, M, factors its contribution out of each entry in the tuple.
2. The group controller, M., chooses a new secret S. and exponentiates each entry
in the tuple with it.

GC?



174

H.-P. Bischof, A. Kaminsky, and J. Binder

Conclusion

We present a dynamic, fault--tolerant symmetric key management system. Unlike
other key management paradigms, our approach does not require a specific order in
which contributions are collected, nor does it rely on a trusted or centralized entity to
combine the partial keys.

References

1.

2.

3.

11.

S. Capkun, L. Buttyan, and J. Hubaux. Self-organized public-key management for mobile
ad hoc networks, 2002.

D. Gelernter. Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80-112, January 1985.

Internet Engineering Task Force. IP Routing for Wireless/Mobile Hosts (mobileip) Working
Group. http://www ietf.org/html.charters/mobileip-charter.html.

. A. Kaminsky, Hans-Peter Bischof. Many-to-Many Invocation: A new object oriented para-

digm for ad hoc collaborative systems. 17th Annual ACM Conference on Object Oriented
Programming Systems, Languages, and Applications (OOPSLA 2002), Onward! track, No-
vember 2002, to appear. Preprint:
http://www.cs.rit.edu/~anhinga/publications/publications.shtml

. Yongdae Kim, Adrian Perrig, and Gene Tsudik. Simple and fault-tolerant key agreement for

dynamic collaborative groups. In Proceedings of the 7th ACM conference on Computer
and communications security, pages 235244, 2000

.H. Luo and S. Lu. Ubiquitous and robust authentication services for ad hoc wireless net-

works, 2000.

. Michael Steiner, Gene Tsudik, and Michael Waidner. CLIQUES: A new approach to group

key agreement. In Proceedings of the 18th International Conference on Distributed Comput-
ing Systems (ICDCS98), pages 380387, Amsterdam, 1998. IEEE Computer Society Press.

. Jefferson S, Tuttle. Security in an Ad Hoc Network using Many-to-Many Invocation,

http://www.cs.rit.edu/~jst1734

. A. Wollrath, R. Riggs, and J. Waldo. A distributed object model for the Java system. Com-

puting Systems, 9(4):265-290, Fall 1996.

.S.-M. Yoo and Z.-H. Zhou. All-to-all communication in wireless ad hoc networks. In Pro-

ceedings of the 39" Annual ACM Southeast Conference, pages 180-181, March 2001.
http://webster.cs.uga.edu/~jam/acm-se/review/abstract/syoo.ps.

Lidong Zhou and Zygmunt J. Haas. Securing ad hoc networks. IEEE Network, 13(6):2430,
1999.



	Introduction
	Target Environmnet
	The M2MI Paradigm
	Handles
	Omnihandles
	Exporting Objects
	Unihandles
	Multihandles
	M2MI-Based Systems
	Service Discovery – Printing
	M2MI Architecture
	M2MI Security

	Decentralized Keymanagement in Ad Hoc Networkd
	State of the Art
	Looking Forward
	Group Genesis
	Member Addition – join()
	Member Removal - leave()
	Conclusion

	References

