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Abstract. This chapter describes a technology and methodology re-
ferred to as built-in contract testing that checks the pairwise interactions
of components in component-based software construction at integration
and deployment time. Such pairwise interactions are also referred to as
contracts. Built-in contract testing is based on building test functional-
ity into components, in particular tester components on the client side
and testing interfaces on the server side of a pairwise contract. Since
building test software into components has implications for the overall
component-based development process, the technology is integrated with
and made to supplement the entire development cycle starting from re-
quirements specification activities and modeling. The chapter outlines
typical specification concepts that are important for built-in contract
testing, provides a guide on how to devise built-in contract testing arti-
facts on the basis of models, and discusses issued involved in using this
approach with contemporary component technologies.

1 Introduction

The vision of component-based development is to allow software vendors to avoid
the overheads of traditional development methods by assembling new applica-
tions from high-quality, prefabricated, reusable parts. Since large parts of an
application may therefore be constructed from already existing components, it
is expected that the overall time and costs involved in application development
will be reduced, and the quality of the resulting applications will be improved.
This expectation is based on the implicit assumption that the effort involved in
integrating components at deployment time is lower than the effort involved in
developing and validating applications through traditional techniques. However,
this does not take into account the fact that when an otherwise fault-free com-
ponent is integrated into a system of other components, it may fail to function as
expected. This is because the other components to which it has been connected
are intended for a different purpose, have a different usage profile, or are them-
selves faulty. Current component technologies can help to verify the syntactic
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compatibility of interconnected components (i.e. that they use and provide the
right signatures), but they do little to ensure that applications function correctly
when they are assembled from independently developed parts. In other words,
they do nothing to check the semantic compatibility of inter-connected compo-
nents, so that the individual parts are assembled into meaningful configurations.
Software developers may therefore be forced to perform more integration and
acceptance testing in order to attain the same level of confidence in the system’s
reliability. In short, although traditional development time verification and val-
idation techniques can help assure the quality of individual components, they
can do little to assure the quality of applications that are assembled from them
at deployment time.

1.1 Contracts in Component-Based Development

The correct functioning of a system of components at run time is contingent
on the correct interaction of individual pairs of components according to the
client/server model. Component-based development can be viewed as an ex-
tension of the object paradigm in which, following Meyer [12], the set of rules
governing the interaction of a pair of objects (and thus components) is typically
referred to as a contract. This characterizes the relationship between a compo-
nent and its clients as a formal agreement, expressing each party’s rights and
obligations. Testing the correct functioning of individual client/server interac-
tions against the specified contract therefore goes along way towards verifying
that a system of components as a whole will behave correctly.

1.2 Contract-Based Integration Testing

The testing approach described in this chapter is therefore based on the notion
of building contract tests into components so that they can validate that the
servers to which they are “plugged” dynamically at deployment time will fulfill
their contract. Although built-in contract testing is primarily intended for val-
idation activities at deployment and configuration-time, the approach also has
important implications on other development phases of the overall software life-
cycle. Consideration of built-in test artifacts needs to begin early in the design
phase as soon as the overall architecture of a system is developed and/or the in-
terfaces of components are specified. Built-in contract testing therefore needs to
be integrated with an overall software development methodology. In this chapter
we explain the basic principles behind built-in contract testing, and how they af-
fect component-based development principles. Additionally we show how it can
be integrated with model-based development.

Since we are talking about components and component-based development, it
is important that we initially define the term component and its usage through-
out this chapter. We choose to define a software component as a unit of compo-
sition with explicitly specified provided, required and configuration interfaces,
plus quality attributes [§]. This definition is based on the well known definition
of the 1996 European Conference on Object-Oriented Programming [16], that
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defines a component as a unit of composition with contractually specified inter-
faces and context dependencies only that can be deployed independently and is
subject to composition by third parties. We have intentionally chosen a broader
definition that avoids the terminology independently deployable, since we are not
specifically restricting ourselves to contemporary component technologies such
as CORBA, .NET or EJB/J2EE. In this respect we are closer to Booch’s defini-
tion which sees a component as a logically, cohesive, loosely coupled module that
denotes a single abstraction [7]. From this it becomes apparent that components
are basically built upon the same fundamental principles as object technology.
The principles of encapsulation, modularity, and unique identities are all basic
object-oriented principles that are subsumed by the component paradigm [3].

1.3 Structure of This Chapter

Since built-in contract testing is primarily dependent upon specification docu-
ments and models we initially introduce (Section B)) typical specification concepts
that are required for its application. These represent the basis from which all
built-in contract testing concepts are derived and specified. Section Blintroduces
functional test generation techniques that may be used for test case design and
discusses how the test cases may be derived from the specification documents.
These test cases make up the tester components that are integral part of built-
in contract testing. The following Section (Section M) describes the concepts of
the technology in detail, the tester components that comprise the tests and are
built into the client, and the testing interface that is built into the server of
a client/server relationship. Additionally, the Section provides a guide for the
development of these artifacts from models. Section Bldiscusses the implications
of using built-in contract testing with typical component concepts such as reuse,
commercial third-party components, and Web-services, and Section [l summa-
rizes and concludes this chapter.

2 Component Specification

The initial starting point for a software development project is typically a sys-
tem or application specification derived and decomposed from the system re-
quirements. Requirements and specifications are also the primary source for
acceptance and integration testing. Requirements are collected from the cus-
tomer of the software. They are decomposed in order to remove their genericity
in the same way as system designs are decomposed in order to obtain finer
grained parts that are individually controllable. These parts are implemented
and later composed into the final product. The decomposition activity aims to
obtain meaningful, individually coherent parts of the system, the components.
It is also referred to as component engineering or component development. The
composition activity tries to assemble already existing parts into a meaningful
configuration that reflects the predetermined system requirements. In its purest
form, component-based development is only concerned with the second item,
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representing a bottom-up approach to system construction. This requires that
every single part of the overall application is already available in a component
repository in a form that exactly maps to the requirements of that application.
Typically, this is not the case, and merely assembling readily available parts
into a configuration will quite likely lead to a system that does not conform to
its original requirements. Component-based development is therefore usually a
mixture of top-down decomposition and bottom-up composition activities.

A specification is a set of descriptive documents that collectively define what
a component can do. Typically, each individual document represents a distinct
view on the subject component, and thus only concentrates on a particular
aspect. Whichever notation is used for the documents, a specification should
contain everything that is necessary in order to fully use the component and
understand its behavior, for composition with other components. As such, the
specification can be seen as defining the provided interface of the component. It
therefore describes everything that is externally knowable about a component’s
structure (e.g. associated components) in the form of a structural model, func-
tionality (e.g. operations) in the form of pre- and post conditions, and behavior
(e.g. states and state transitions) in the form of a behavioral specification. Addi-
tionally, a specification may contain non-functional requirements which represent
the quality attributes stated in the component definition. They are part of the
quality assurance plan of the overall development project or the specific compo-
nent. A complete set of documentation for the component is also desirable, and
a decision model that captures the built-in variabilities that the component may
provide. These variabilities are supported through configuration interfaces.

2.1 Structural Specification

The structural specification defines operations and attributes of the considered
subject component, the components that are associated with the subject (e.g.
its clients and servers), and constraints on these associations. This is important
for defining the different views that clients of component instances can have
of the subject. Essentially, this maps to the prospective configurations of the
subject, and thus its provided configuration interfaces. A structural specification
is not traditionally used in software projects, but the advent of model driven
development approaches has increased its importance as a specification artifact.
In the form of a UML class or object model, the structural specification provides
a powerful way of defining the nature of the classes and relationships by which
a component interacts with its environment. It is also used to describe any
structure that may be visible at the subject’s interface [3].

To illustrate the concepts described in this chapter we will use the well known
example of an Automated Teller Machine (ATM). Fig. [l depicts the structural
model of an ATM component (the subject) as a UML class diagram. The struc-
tural model only depicts the direct environment of the subject. These are the
components with which the ATM interacts.
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«Component» «Component»
CashDispensingUnit CashAcceptingUnit

«Subject»
«Component» ATM
TouchScreen

withdrawMoney ( )
depositMoney ()
«Component» performBankTransfer ()

CardReader printBalance ()
printStatement ( )
insertCard ()

«Component»
Printer

Fig. 1. UML-style structural specification of an ATM application

«Component»
TransactionManager

2.2  Functional Specification

The purpose of the functional specification is to describe the externally visible
effects of the operations supplied by the component - that is, its provided in-
terface. Example operation specifications for a BankingCard component in the
context of the CardReader component are depicted in Tables [[]and 2l These pro-
vide a full functional specification of the banking card. The respective structural
and behavioral models are depicted in Fig.

The most important elements of a functional specification are the Assumes
and Result clauses which represent the pre- and post-conditions for the operation.
These are also essential for testing. The Assumes clause defines what must be
true for the operation to guarantee correct expected execution, and the Result
clause describes what is expected to become true as a result of the operation if
it executes correctly. It is possible to execute an operation if its Assumes clause
is false, but then the effects of the operation are not certain to satisfy the post-
condition (compare with design by contract [12]). The basic goal of the Result
clause is the provision of a declarative description of the operation in terms of
its effects. This means it describes what the operation does, and not how. Pre-
and post-conditions typically comprise constraints on the provided inputs, the
provided outputs, the state before the operation invocation (initial state), and
the state after the operation invocation (final state) [3] [IT].

2.3 Behavioral Specification

The object paradigm encapsulates data and functionality in one single entity, the
object. This leads to the notion of states, and the transitions between states, that
typically occur in objects when they are operational. The component paradigm
subsumes these. Components may have states too. If a component does not have
states, it is referred to as functional object or functional component, meaning
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Table 1. Example operation spec. for the banking card component, event validate PIN

Name validatePIN

Description Validates a given Pin and, on success, returns the stored cus-
tomerDetails. After three unsuccessful invocations (invalid Pin)
the card is locked.

Constraints cardLockRequest from card locks the cardReader (card is not re-
turned to customer)

Receives Pin: Integer.

Returns On success: customer details.
On failure: invalid Pin error.

Sends None.
Reads None.
Changes None.
Rules Unless card is locked: return customer details.

After third unsuccessful invocation [invalid Pin AND card not
locked]: lock the card.

After second unsuccessful invocation [invalid Pin AND card not
locked]: allow one last unsuccessful attempt.

After first unsuccessful invocation [invalid Pin AND card not
locked]: allow two more unsuccessful attempts.

After no unsuccessful invocations [invalid Pin AND card not
locked]: allow three more unsuccessful attempts.

One successful invocation clears the card from previous unsuccess-
ful invocations.

Assumes card not locked AND Number of unsuccessful attempts < 3

Result (card locked AND Number of unsuccessful attempts = 3) XOR
(card not locked AND Number of unsuccessful attempts < 3)

Table 2. Example operation spec. for the banking card component, event unlockCard

Name unlockCard

Description Unlocks a previously locked card, so that it may be used again.

Constraints Only locked cards can be unlocked.

Receives SecurityPin: Integer.

Returns On success [valid SecurityPin]: CustomerDetails stored on the
card.

Sends On failure [invalid SecurityPin]: Security Pin Error.

Reads None.

Changes None.

Rules On success [valid SecurityPin]: set card to cleared.

Assumes Card locked AND (valid SecurityPin OR, invalid SecurityPin).

Result (Card cleared AND valid SecurityPin) XOR invalid SecurityPin.
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Behavioral Model of the validatePin ( Pin ) [validPin] Structural Model of the

BankingCard / return CustomerDetails BankingCard

validatePin ( Pin )
[invalidPin] validatePin ( Pin ) [validPin] <<acquires>>J/
/ return PinError |/ return CustomerDetails

«Component»
CardReader

«Subject»

validatePin ( Pin ) KineCard
P BankingCar
[Valnd?m] SecondAttempt
/ return CustomerDetails + validatePin

validatePin ( Pin ) + unlockCard
[invalidPin]
/ return PinError

ThirdAttempt

validatePin ( Pin )
[invalidPin]
unlockCard ( SecurityPin ) / return LockError
[validSecurityPin]

/ return CustomerDetails Locked

entry / CardReader.lock ()

unlockCard ( SecurityPin )
[invalidSecurityPin]
/ return SecurityPinError

Fig. 2. UML-style behavioral specification and structural specification of an ATM
banking card component

it has no internal attributes that are exhibited through its provided interface.
In other words, a pure functional component does not exhibit externally vis-
ible states and transitions. It may, however, have internal states that are not
externally visible.

The purpose of the behavioral specification (or the behavioral model) is to
show how the component behaves in response to external stimuli [3] and changes
its externally visible states. It concentrates on the Assumes and Result clauses
of the functional specification that define the pre- and post-conditions of the
operations (Tables[l and ). If the component has externally visible states, and
most components do, the behavioral model succinctly expresses much of the
complexity that is collectively contained in the pre- and post-conditions of the
component’s operations.

The behavioral model describes the instances of a component in terms of their
observable states, and how these states change as a result of external stimuli that
affect the component instance [11],[6]. A state is a particular configuration of the
data values of an object’s internal attributes. A state itself is not visible. What
is visible or externally observable is a difference in behavior of the component
from one state to another when stimuli are sent. In other words, if the same mes-
sage is sent to a component instance twice, the instance may behave differently,
depending on its original state before the message is received. A transition, or
change from one state into another is triggered by an event, which is typically
a message arrival. A guard is a condition that must be true before a transition
can be made. Guards are used for separating transitions to various states that
are based on the same event [I1]. A behavioral specification may be represented
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Table 3. Behavioral specification according to the model in Fig. 2.

Initial Pre Event PostCondition Final
State Condition State
Cleared [Valid Pin] validatePin (Pin) CustomerDetails Cleared
returned
Cleared [Invalid Pin] validatePin (Pin) PinError returned Second
Attempt
Second [Valid Pin] validatePin (Pin) CustomerDetails Cleared
Attempt returned
Second [Invalid Pin] validatePin (Pin) PinError returned Third
Attempt Attempt
Third [Valid Pin] validatePin (Pin) CustomerDetails Cleared
Attempt returned
Third [Invalid Pin] validatePin (Pin) LockError returned  Locked
Attempt
Locked [Valid unlockCard CustomerDetails Cleared
SecurityPin] (SecurityPin) returned
Locked [Invalid unlockCard SecurityPinError Locked

SecurityPin] (SecurityPin)

through one or more UML state diagrams or state tables. Fig. [ displays the
behavioral model (plus the structural model) for the BankingCard component
with two public operations, and Table [ displays the corresponding state table.

2.4 Component Realization

The specification does not provide sufficient information to implement a com-
ponent. Before that is possible it is necessary to define how a component will
realize its services. The component realization is a set of descriptive documents
that collectively define how a component realizes its specification. A higher-
level component is typically realized through, and composed of, a combination
of lower-level components that are contained within, and act as servers to, the
higher-level component. Once it has been defined which parts of a logical higher
level component will be implemented through which sub-components, the im-
plementation of the higher level component can be started.

A component realization describes the items that are inherent to the imple-
mentation of the higher-level component. This is the part of the functionality
that will be local to the considered component and not implemented through
sub-components. These items correspond to the component’s private design that
the user of the component does not see. The user or the system integrator only
cares about a component’s provided and required interfaces, because these define
the context into which the component will be integrated.
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3 Specification- and Model-Based Component Testing

The previous Section described the initial starting point for using and applying
built-in contract testing in component development - namely a sound specifica-
tion, ideally in the form of documents that directly support the generation of
the built-in testing architecture and the built-in test suites. In this Section we
discuss how the specification can be used for the generation of test artifacts for
integration testing.

Since component specifications are the primary source of information for the
development of built-in contract test architectures and test suites, built-in con-
tract testing is primarily concerned with functional testing techniques that view
an integrated component as a black box. However, black and white-box testing
cannot be strictly separated in component testing. Component engineering takes
a fractal-like view of software systems in which components are made of other
components that in turn are made of other components in a recursive manner.
The terminology of black and white boxes has only a meaning for the level of
abstraction that we are looking at. A white box test for a super-ordinate com-
ponent maps to a black box test for a sub-ordinate component and so on. Thus,
testing in the traditional code-based-testing sense has no meaning in component
integration testing since we are only concerned with the testing of interfaces.

3.1 Functional Testing

Functional testing techniques completely ignore the internal mechanisms of a
system or a component (its internal implementation) and focus solely on the
outcome generated in response to selected inputs and execution conditions [10].

Domain Analysis and Partitioning Testing. Typical representatives of
functional testing techniques are domain analysis testing and partitioning tech-
niques. A domain is defined as a subset of the input space that somehow af-
fects the processing of the tested component. Domains are determined through
boundary inequalities, algebraic expressions that define which locations in the
input space belong to the domain of interest [5]. Domain analysis is used for
and sometimes also referred to as partitioning testing. Many functional test case
generation techniques are based upon partition testing. Equivalence partitioning
is a strategy that divides the set of all possible inputs into equivalence classes.
The equivalence relation defines the properties for which input sets are belonging
to the same partition, for example equivalent behavior (state-transitions). Pro-
portional equivalence partitioning, for example, allocates test cases according to
the probability of their occurrence in each sub-domain.

State-Based Testing. State-based testing concentrates on checking the correct
implementation of the component’s state model. Test case design is based on the
individual states and the transitions between these states. In object-oriented or
component-based testing effectively any type of testing is state-based as soon as
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the object or component exhibits states, even if the tests are not obtained from
the state model. In this case, there is no test case without the notion of a state
or a state-transition. In other words, pre- and post-conditions of every single
test case must consider states and behavior. State-based testing comprises a
number of test coverage strategies: Piecewise coverage concentrates on exercising
distinct specification pieces, for example coverage of all states, all events, or all
actions. This technique is not directly related to the structure of the underlying
state machine that implements the behavior, so it is only accidentally effective
at finding behavioral faults [6]. Transition coverage is achieved through a test
suite if every specified transition in the state model is exercised at least once.
As a consequence, this covers all states, all events and all actions. Transition
coverage may be improved if every specified transition sequence is exercised at
least once [6]. This is also a method sequence based testing technique. Round-
trip path coverage is defined through the coverage of at least every defined
sequence of specified transitions that begin and end in the same state. The
shortest round-trip path is a transition that loops back on the same state. A
test suite that achieves full round-trip path coverage will reveal all incorrect or
missing event/action pairs [0].

Method-Sequence-Based Testing. This test case generation technique con-
centrates on the correct implementation of a component’s combinations, or se-
quences of provided operations. Test case design is based on the behavioral
model, such as a UML state chart diagram. Here, the paths through the state
model are checked. This may also include multiple invocations of the same op-
eration. Method sequences are typical representatives of usage profiles, that is
a profile of how a client uses the services of a component. Table (] shows an
excerpt of a typical test suite based on method sequences for the BankingCard
component.

3.2 Model-Based Testing

Model-based testing concentrates on how tests may be derived from graphical
specification notations such as the UML. Such techniques are traditionally used
in the development of safety critical and real-time systems (e.g. Petri Nets), and
more recently it concentrates upon approaches for how to derive test information
from individual UML models.

Models represent a solid foundation for test case generation that is primar-
ily based on the specification, and are therefore mainly functional. Models use
powerful (semi-) formal abstract notations in order to express requirements spec-
ifications. Having good requirements is crucial not only for the development of
a system but additionally for the development of its testing infrastructure. If re-
quirements are additionally testable they are the perfect source for instant test
scenario generation.

Class and Package Diagrams. Class diagrams represent structure, that is
associations between entities plus externally visible attributes and operations
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of classes (or components). They are a valuable source for testing. Specifica-
tion class diagrams (server) represent the interfaces that individual components
export to their clients and therefore show which operations need to be tested,
which operations support the testing and which external states are important
for a unit. These can directly guide the construction of tester components for a
server component. Realization class diagrams (client) represent the operations of
the servers that a client is associated with. They only contain externally visible
server operations and attributes that a client is actually using. It means such a
diagram restricts the operational profile of a client in terms of operations. This
helps to determine the range of operations that a tester component must con-
sider. Class diagrams may be used to generate test cases according to boundary
conditions and component interaction criteria [6]. Package diagrams represent a
similar source as class diagrams although on a coarser grained level of abstrac-
tion. In built-in contract testing such component diagrams (component trees)
are used to indicate variability in an application and therefore mark the asso-
ciations between components that need to be augmented with built-in contract
testing artifacts.

State Diagrams. State diagrams are a valuable source for testing in many
ways. This is also demonstrated in Table @l State diagrams are the primary
source for test case generation in built-in contract testing for development of
tester components as well as testing interfaces. State diagrams concentrate on
the dynamics of components in terms of externally visible states and transitions
between the states. State chart diagrams may also be used to generate test cases
according to class hierarchy and collaboration testing criteria [6].

Collaboration Diagrams. While state diagrams concentrate on the behavior
of individual objects, UML collaboration diagrams represent the behavioral in-
teractions between objects. They describe how the functions of a component are
spread over multiple collaborating entities (i.e. sub-components) and how they
interact in order to fulfill higher-level requirements. Collaboration diagrams rep-
resent two views on an entity, a structural view, and a behavioral view. Addi-
tionally, they pose constraints on a system. Since collaboration diagrams realize
a complete path for a higher-level use case they may be used to define complete
message sequence paths according to the use case [I].

Use Cases, Operational Profiles, and Scenarios. Many organizations de-
fine use cases as their primary requirements specifications, for example [13]. Ad-
ditionally, they use operational profiles in order to determine occurrences and
probabilities of system usage. Use case models thereby map to operations in an
operational profile. Another application of use cases is the generation of state
chart diagrams [14] from use-case driven requirements engineering, or the gen-
eration of collaboration diagrams. Use cases may be used to generate test cases
according to combinational function and category partitioning criteria [6]. Sce-
narios are used to describe the functionality and behavior of a software system
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Table 4. Test case design based on method sequences according to the behavioral
model of the banking card

# Initial Pre Event PostCondition Final
State Condition State
1 Cleared  [Valid Pin] validatePin (Pin)  CustomerDetails Cleared
returned

2 Cleared  [Invalid Pin] validatePin (Pin)  PinError returned
[Valid Pin] validatePin (Pin)  CustomerDetails Cleared
returned

3 Cleared  [Invalid Pin] validatePin (Pin)  PinError

returned

[Invalid Pin] validatePin (Pin)  PinError
returned

[Valid Pin] validatePin (Pin)  CustomerDetails Cleared
returned

4 Cleared  [Invalid Pin] validatePin (Pin)  PinError

returned
[Invalid Pin] validatePin (Pin)  PinError

returned
[Invalid Pin] validatePin (Pin)  PinError

returned
[Invalid unlockCard Invalid SecurityPin
SecurityPin] (SecurityPin) returned
[Valid unlockCard CustomerDetails Cleared
SecurityPin] (SecurityPin) returned

from the user’s perspective in the same way as use cases. Scenarios essentially
represent abstract tests for the developed system that can be easily derived by
following a simple process. This is laid out in the SCENT Method [I5].

4 Specification of the Contract Testing Artifacts

The previous Section described which specification documents may be used to
generate test data for the test suites of built-in contract testing. This Section
concentrates on the description of the contract testing architecture and explains
the nature of the contract testing interface on the server side, and the contract
tester component on the client side of a component relationship. The test suites
are contained within the tester components.

Meyer defines the relationship between an object and its clients as a
formal agreement or a contract, expressing each party’s rights and obligations
in the relationship. This means that individual components define their side
of the contract as either offering a service (this is the server in a client-server
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relationship) or requiring a service (this is the client in a client-server relation-
ship). Built-in contract testing focuses on verifying these pairwise client/server
interactions between two components when an application is assembled. This is
typically performed at deployment time when the application is configured for
the first time, or later during the execution of the system when a re-configuration
is performed.

The previous sections have laid out the foundations for the development of
the built-in contract testing artifacts. They can be seen as an entry criterion
for using built-in contract testing. This is a sound development process that is
ideally based on models, though other notations may be acceptable as long as
they provide similar contents, plus a testable requirements specification (that is
part of the method) from which the tests may be derived. Additionally, we need
to define the test target in terms of a quality assurance plan [3] that determines
the testing techniques for deriving the individual test cases. This may be a
selection of the test case generation techniques that we have introduced in the
previous Section (Section [3)).

The two primary built-in contract testing artifacts are the server tester com-
ponent that is built into the client of a component in order to test the server
when it is plugged to the client, and the testing interface that is built into (ex-
tends) the normal interface of the server and provides introspection mechanisms
for the testing by the client.

4.1 Built-in Server Tester Components

Configuration involves the creation of individual pairwise client/server relations
between the components in a system. This is usually done by an outside “third
party”, which we refer to as the context of the components (Fig. Bl). This creates
the instances of the client and the server, and passes the reference of the server
to the client (i.e. thereby establishing the clientship connection between them).
This act of configuring clients and servers may be represented through a special
association that is indicated through an <acquires>> stereotype as illustrated
in Fig. [ or in Fig. B The context that establishes this connection may be the
container in a contemporary component technology, or it may simply be the
parent object.

In order to fulfill its obligations towards its own clients, a client component
(e.g. CardReader in Fig.B]) that acquires a new server (e.g. BankingCard in Fig.
B) must verify the server’s semantic compliance to its clientship contract. In
other words, the client must check that the server provides the semantic service
that the client has been developed to expect. The client is therefore augmented
with in-built test software in the form of a server tester component (e.g. Bank-
ingCardTester in Fig.[3), and this is executed when the client is configured to use
the server. In order to achieve this, the client will pass the server’s reference to
its own in-built server tester component. If the test fails, the tester component
may raise a contract testing exception and point the application programmer or
system integrator to the location of the failure.
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ATM Context
<<creates>> <<creates>>
<<Component>> <<acquires>> <<Component>>
CardReader X BankingCard
Client Server
<<acquires>>

<<acquires>>
<<Component>>

BankingCardTester

Fig. 3. Structural model of built-in contract testing server tester component for the
BankingCard/CardReader example

4.2 Built-in Contract Testing Interfaces

The object-oriented and component-based development paradigms build on the
principles of abstract data types which advocate the combination of data and
functionality into a single entity. State transition testing is therefore an essential
part of component verification. In order to check whether a component’s opera-
tions are working correctly it is not sufficient simply to compare their returned
values with the expected values. The compliance of the component’s externally
visible states and transitions to the expected states and transitions according to
the specification state model must also be checked. These externally visible states
are part of a component’s contract that a user of the component must know in
order to use it properly. However, because these externally visible states of a
component are embodied in its internal state attributes, there is a fundamental
dilemma.

The basic principles of encapsulation and information hiding dictate that
external clients of a component should not see the internal implementation and
internal state information. The external test software of a component (i.e. the
built-in contract tester component) therefore cannot get or set any internal state
information. The user of a correct component simply assumes that a distinct
operation invocation will result in a distinct externally visible state of the com-
ponent. However, the component does not usually make this state information
visible in any way. This means that expected state transitions as defined in the
specification state model cannot normally be tested directly.

The contract testing paradigm is therefore based on the principle that com-
ponents should ideally expose externally visible (i.e. logical) state information
by extending the normal functional server as displayed in Fig.[ In other words,
a component should ideally not only expose its externally visible signatures,
but additionally it should openly provide the model of its externally visible be-
havior. A testing interface therefore provides additional operations that read
from and write to internal state attributes that collectively determine the states
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Fig. 4. Structural model of a testing interface or testable component for the ATM
example

<<Component>>
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+validatePin ()
+unlockCard ()
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TestableBankingCard

<<Testing Component>>
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+bitState Cleared
+bitState SecondAttempt
+bitState Third Attempt
+bitState Locked
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+isInState (binState)

+setToCleared ()
+setToSecondAttempt ()
+setToThirdAttempt ()
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+isInCleared ()
+isInSecondAttempt ( )

+isInThirdAttempt ()
+isInLocked (

Fig. 5. Class diagram of a testable BankingCard component with testing interface op-
eration that reflect the behavioral model. Two alternative implementations are feasible

of a component’s behavioral model. A component that supports its own test-
ing by external clients through an additional testing interface in this way is
called testable component. Fig. B] displays two alternative implementations for
a TestableBankingCard component that exposes a testing interface according to
its behavioral model depicted in Fig. [ The first implementation type defines
a number of public state variables that represent the states of the behavioral
model and act as input parameter for the setToState and IsInState testing in-
terface operations. The first operation sets the component to one of the defined
states and the second one checks whether the component is in a particular state.
The second implementation type defines an individual setToState and isInState
operation per state in the behavioral model.
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4.3 Component Associations in Built-in Contract Testing

The previous sub-sections have introduced the two primary artifacts that must
be generated for built-in contract testing: tester component and testing interface.
These represent additional functionality whose focus is testing. The first one
extends the client component and contains the actual test cases that check the
client’s deployment environment. The second extends the interface of the server
in order to make the server more testable.

If a server does not provide a testing interface (e.g. a COTS component) it
does not mean that contract testing may not be used. It is simply limited with
regard to testing controllability and observability. The test cases in the client
must be designed differently as well according to the missing testing interface.

The Client and the Client’s Tester Component. In the client role, a com-
ponent may own and contain its tester component. This means that the test
cases, typically organized as components in their own right, are permanently
encapsulated and built into the client. This is the simplest form of built-in con-
tract testing, and it provides no direct run-time configurability with respect to
the type and amount of testing the client component will perform when it is
connected to its server components. This association can be expressed through
the UML composition relationship.

A more flexible way of built-in contract testing is realized through a loosely
associated tester component that may be acquired by the testing client in the
same way it acquires any other external resources. Here, the component pro-
vides a configuration interface through which any arbitrary tester component
that represents the client’s view on a tested server may be set. This provides
flexibility in terms of how much testing will be performed at deployment time,
and additionally it provides flexibility as to which type of tester will be applied
according to an instantiated product line. Such an association may be repre-
sented through a UML aggregation association, or more specifically through the
stereotype <acquires>> that identifies the tester component as an externally
acquired server (e.g. Fig. B and H)).

The Server and the Server’s Testing Interface. In a server role, a com-
ponent must be much more closely connected to its testing interface because its
implementation must be able to access the server’s internal variables (i.e. for
setting and getting the states). The testing interface is therefore directly built in
to the component and extends its normal functionality with additional testing
functionality.

More flexible is a typical extension (inheritance) mechanism. Enabling and
disabling the built-in testing interface can then be achieved simply by instantiat-
ing the desired type of object accordingly. Such an association can be indicated
through the UML extension symbol plus the <extends> stereotype. In any
case, the testing interface of a component must be visible at its external bound-
ary. For components with nested objects it means that each of these sub-objects
must be dealt with individually inside the component.
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The Client’s Tester and the Server’s Testing Interface. The tester com-
ponent of the client and the server’s testing interface inter-operate in the same
way as their respective functional counterparts. Since testers and testing in-
terfaces are directly built into the system, testing represents only additional
functionality that happens to be executed at component integration. The tester
component must only “know” the reference of the tested server, and this is sim-
ply passed into the tester component when the clientship relation is established.
Testing in this respect is only executing some additional code that uses some ad-
ditional interface operations. Therefore, built-in contract testing is initially only
a distinct way of implementing functionality that is executed when components
are interconnected during deployment. This only concerns the architecture of a
system (i.e. which components will expose additional interfaces, which compo-
nents will contain tester components). The test cases inside a tester component
are arbitrary, and they can be developed according to traditional criteria or any
of the criteria introduced in Section

4.4 Fitting It All Together — The Contract Testing Method

In a development project where no built-in contract testing is applied at the
component level, the following steps may be applied in order to add built-in
integration testing artifacts to test the individual semantic component interac-
tions. Once these artifacts have been introduced, they can be reused in the same
way as the components’ functionality is reused in subsequent projects. In other
words, every repeated integration of such an augmented component with other
components in a new project can be automatically verified.

Step 1 — The Tested Interactions and the Contract Testing Architec-
ture. In general, any client-server interaction may be augmented with built-
in testing interfaces and tester components. Such interactions are represented
through any arbitrary association in a structural diagram.

Associations between classes that are encapsulated in a reusable component
are likely to stay fixed throughout a component’s life cycle. Such associations may
be augmented with removable built-in contract testing artifacts for development-
time component integration testing. Such variability in testing may be imple-
mented through a development- or compile-time configuration mechanism (e.g.
include in C++), or through a run-time configuration interface that dynamically
allocates tester components, and testable components with testing interfaces.

Components as units of integration will have permanent built-in testing in-
teractions at their boundaries. This means that every external association that
requires or imports an interface will be permanently augmented with a built-
in contract tester component whose tests reflect its expectations towards its
servers, and every external association that provides or exports an interface will
be permanently augmented with a built-in testing interface.

The stereotype <acquires>> represents dynamic associations that may be
configured according to the needs of the application (i.e. component bound-
aries). The decisions about where contract testing artifacts will be built in are
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documented in the structure of the system. This is simply an additional software
construction effort in the overall development process that adds functionality to
the application. For any client-server relationship we will have to add testing
interface and tester component as modeled in Fig. @l

Step 2 — Specification of the Testing Interface and the Tester Compo-
nent. The testing interface is used to set and retrieve state information about
the tested server component. This is defined in the server’s behavioral model.
Each state in this model represents a setting for which the behavior of some
operation is distinctively different from any other settings. The individual states
that the behavioral model defines is therefore an ideal basis for specifying state
setting and checking operations. Each state in the state model therefore maps
to one state setting and one state checking method, according to which strategy
is used (compare with the class diagram in Fig. [).

The tester components are developed according to the expectation of the
testing client. In other words, a client’s specification (e.g. its behavioral model)
represents a description of what the client needs from its environment in order to
fulfill its own obligations. It represents the expectation of the testing component
on its environment. So, the tests are not defined by the specification of the
associated server - in this case it would only be a unit test of the server that the
producer of such component may already have performed.

For example, the tester component for a BankingCard component that is
built into the client CardReader component may comprise tests according to
method sequence testing criteria as defined in Table [l If the associated server
component BankingCard exports a built-in contract testing interface according
to the structural definition in Fig. bl (first/left alternative implementation) the
tester component can apply an integration test sequence as displayed in Table
This corresponds to the specification of test case # 4 in Table [l

Step 3 — Component Integration. Once all the functional component ar-
tifacts and the built-in contract testing component artifacts on both sides of a
component contract have been properly defined and implemented, the two com-
ponents can be integrated (plugged together). This follows the typical process
for component integration, i.e. a wrapper is defined and implemented for the
client or the server, or an adaptor is designed and implemented that realizes the
mapping between the two roles. Since the testing artifacts are integral parts of
the individual components on either sides of the contract they are not subject
to any special treatment, they are just treated like any normal functionality. For
example, an adaptor takes the operation calls from the client and transforms
them to into a format that the server can understand. If the server produces
results, the adaptor takes these and translates them back into the format of the
client. Since the built-in contract testing artifacts are part of the client’s and
server’s contracts they will be mapped through the adaptor as well. Component
platforms such as CORBA Components already provide support for this type of

mapping.
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Table 5. Example test case for a BankingCard Tester Component that will be built
into the CardReader component

Initial State Operation Invocation Expected Outcome
Setup & Parameter Constraints & Final State
SetToState(Cleared) validatePin (Pin) PinError expected
AND [Invalid Pin]
validatePin (Pin) PinError expected
AND [Invalid Pin]
validatePin (Pin) PinError expected
AND [Invalid Pin]
unlockCard (SecurityPin) SecurityPinError expected
AND [Invalid SecurityPin]
unlockCard (SecurityPin) CustomerDetails expected
AND [Valid SecurityPin] AND IsInState(Cleared)

5 Built-in Contract Testing
and the Component Paradigm

The previous Section introduced the basic principles that guide the develop-
ment of built-in contract testing artifacts for the two roles in a client/server-
relationship between components. These are valid for both object-oriented and
component-based development. In this Section we describe how these ideas can
be integrated with mainstream industrial component technologies.

5.1 Built-in Contract Testing and Reuse

Testing takes a big share of the total effort in the development of large and/or
complex software. Nevertheless, component-based software engineering has
mainly focused on cutting development time and cost by reusing functional code.
If the components cannot be used in new target domains without extensive re-
work or re-testing, the time saving becomes questionable [9]. Hence, there is a
need to reuse not only functional code but also the tests and test environments
that verify a component’s interactions on the target platform. To attain effective
test reuse in software development, there are several aspects that must be taken
into account.

Contract testing includes a flexible architecture that focuses on these aspects.
It is the application of this architecture that makes reuse possible. In the initial
approach of built-in testing as proposed by Wang et. al. [17], complete test cases
are put inside the components and are therefore automatically reused with the
component. While this strategy seems attractive at first sight, it is not flexible
enough to suit the general case. A component needs different types of tests in
different environments and it is neither feasible nor sensible to have them all
built-in permanently.
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Under the contract testing paradigm test cases are separated from their re-
spective components and put in separate tester components. The components
still have some built-in test mechanisms, but only to increase their accessibil-
ity for testing by clients. The actual testing is done by the tester components
that are associated with the client components through their interfaces. In this
way, an arbitrary number of tester components can be connected to an arbitrary
number of functional components. This offers a much more flexible way to reuse
tests as they do not have to be identical to the ones originally delivered with a
component. The tests can be customized to fit the context of the component at
all stages in the component’s life cycle.

The overall concept of test reuse in built-in contract testing follows the fun-
damental reuse principles of all object and component technologies. Because
testing is inherently built into an application or parts thereof (the components)
testing will be reused whenever functionality is reused. In fact testing in this re-
spect is normal functionality. Only the time when this functionality is executed
distinguishes it from the other non-testing functionality, that is at configuration
or deployment time.

5.2 Built-in Contract Testing
and Commercial Off-the-Shelf (COTS) Components

The integration of commercially available third party components into new appli-
cations represents one of the main driving factors for component-based software
development since it greatly reduces the effort involved in generating new ap-
plications. Such components are aimed at solving typical problems in distinct
domains, and ideally they can be purchased off-the-shelf and simply plugged
into an application. However, this ideal scenario is still some way from reality.
Although they reduce the effort involved in achieving new functionality, third
party components typically increase the effort involved in integrating the over-
all application, since they are typically available in a form that presents some
integration difficulties. For example, they may provide syntactically or semanti-
cally different interfaces from what is expected and required, or they may not
be entirely fit for the intended purpose. In any way, the usage and integration of
third party components typically requires either the development of wrappers or
adaptor components that hide and compensate for these differences, or changes
in the design and implementation of the integrating client component.

Once a new component can communicate syntactically with a provided COTS
component through some mechanism, the next step is to make sure that they can
also communicate semantically. In other words, the fact that two components
are capable of functioning together says nothing about the correctness of that
interaction. This is where built-in contract testing provides its greatest benefits.

Ideally, all commercially available components should provide testability fea-
tures such as the introspection mechanism that is realized through built-in con-
tract testing interfaces. Such components will naturally fit into applications
that are driven by the built-in contract testing paradigm. They simply need
to be interconnected syntactically, and this of course includes the functional-
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ity as well as the testing aspects of the two components. The built-in contract
testing paradigm not only suggests that testing interfaces should be provided
with commercial components but also that these should be provided according
to well-defined templates, so that the syntactic integration effort may eventually
be removed completely. However, since the technology has not yet penetrated
into the component industry, it is likely that component vendors will not provide
their components with such testability features.

Commercial third party components cannot typically be augmented with an
additional built-in contract testing interface that provides a client with an in-
trospection mechanism for improved testability and observability. This means
that COTS components can only be tested through their provided functional
interface, as is traditionally the case in object and component testing. How-
ever, modern object languages or component platforms such as Java do provide
mechanisms that enable internal access to a component. They can break the
encapsulation boundary of binary components in a controlled way and offer in-
ternal access. Such mechanisms can be used to realize testing interfaces according
to the built-in contract testing philosophy for any arbitrary third party compo-
nent. [] describe how this can be achieved using Java’s reflection mechanism
in the form of a suitable Java Library. Here, we only give a brief overview. The
architecture of the library is displayed in Fig. 6 Built-in contract testing can
initially be carried out by using three primary concepts. These are the testabil-
ity contract, the tester and test case. These are the fundamental features that
support the assessment of test results, control of the execution environment, and
actions to be taken if faults are encountered. Additionally, the library provides
state based testing support that is more essential to built-in contract testing.
These concepts are the state-based testability contract, the state-based tester,
and the state-based test case. The state-based concepts abide by the principles
of Harel’s state machines [4].

5.3 Built-in Contract Testing and Web-Services

Web-Services are commercial software applications that are executed on re-
mote hosts and provide individual services which are used to realize distributed
component-based systems. Web-Services fulfill all the requirements of Szyper-
ski’s component definition [I6], that is a service is only described and used based
on interface descriptions and more importantly, it is independently deployable.
This means that a Web-Service provides its own run-time environment, so that
a component-based application is not bound to a specific platform. Every part
of such an application is entirely independent from any other part, and there is
no overall run-time support system but the underlying network infrastructure.
Web-Services represent the ultimate means of implementing component-based
systems.

Contract testing provides the ideal technique for checking dynamic and dis-
tributed component-based systems that are implemented through Web-Services.
In fact this is the scenario for which built-in contract testing provides the most
benefits. The syntactic compatibility between a client and a Web-based server
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Fig. 6. Organization of the built-in contract testing Java support library [4]

is ensured through an XML mapping between their interfaces. Their semantic
compatibility is checked through the built-in server tester components inside the
client that are executed to validate the associated server. These tests are per-
formed when the client is registering with a service for the first time (i.e. during
configuration,) or if the client requests the same specification of the server from
a different Web-Service provider (i.e. during re-configuration).

Fig. [[ displays a sample containment hierarchy of a remote connection be-
tween the ATM component (in the teller machine) and the bank’s transac-
tion manager that collects all ATM transactions. The <remotely acquires>>-
relationship indicates that the TransactionManager (in this case a testable com-
ponent) is not locally available. This means that this relationship will be im-
plemented through some underlying networking infrastructure. The stereotype
<remotely acquires>> hides the underlying complexity of the network implemen-
tation and only considers the level of abstraction that is important for testing.
This technique is termed stratification [2]. As soon as the connection between
the two interacting components is established, a normal contract test may be
initiated regardless of how the connection is realized in practice. The server pro-
vides a suitable test interface that the client’s built-in tests can use. The client
and server do not “know” that they are communicating through Web-Interfaces.
This connection is established through their respective contexts when the context
of the ATM component registers with the context of the TransactionManager
component (Fig. [7).

Web-Services typically provide instances that are ready to use. As a result,
the server component that is provided through the remote service is already
configured and set to a distinct required state. A run-time test is therefore likely
to change or destroy the server’s initial configuration, so that it may not be
usable by the client any more. Clearly, for the client, such a changed server is of
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Fig. 7. Association between two remotely connected components based on a WEB-
Service implementation

no use and this creates a fundamental dilemma for built-in contract testing of
Web-Services.

Under object-oriented run-time systems the client can solve this dilemma by
simply creating a clone of the tested component and passing the clone to the test
software. This works because client and server are handled by the same run-time
environment. For example, in Java this is performed through the Object.clone
method. In this case, the test software may completely corrupt the newly created
clone without any effect on the original instance, it is simply thrown away after
the test, and the original is used as working server. However, in a Web-Service
environment the run-time system of the client is different from that of the server,
so that the client cannot construct a new instance from an existing one. The client
and server are residing within completely different run-time scopes on completely
different network nodes. Contract testing can therefore only be applied in a
Web-Service context if the Web-Service provides some way for the client to
have a clone created and accessed for testing. Some contemporary component
technologies such as CORBA Components are capable of doing exactly that.

6 Summary and Conclusions

This chapter has described the methodology and process of built-in contract
testing for component integration in model-driven component-based application
construction. It is a technology that is based on building the test software directly
into components - built-in tester components at the client side of a component
interaction and built-in testing interfaces at its server side. In this way, a compo-
nent can check whether it has been brought into a suitable environment, and an
environment can check whether each component provides the right services. This
enables system integrators who reuse such components to validate immediately
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and automatically whether a component is working correctly in the environment
of a newly created application.

Built-in contract testing delivers the same basic benefits as any reuse tech-
nology. The effort of building test software into individual components is paid
back depending on how often such a component will be reused in a new con-
text, and a component is reused depending on how easily it may be reused in
new contexts. Built-in contract testing greatly simplifies the reuse of a compo-
nent because once it has been integrated syntactically into a new environment
its semantic compliance with the expectations of that new environment may be
automatically assessed.

Current and future work focuses on the integration of built-in contract testing
with an abstract test description notation, the TTCN-3 technology, and the
extension of the contract term to cope with non-functional (i.e. response time)
requirements.
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