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Preface

This book is a compilation of much of the material I used for various game theory
courses over, roughly, the past two decades. The first part, Thinking Strategically, is
intended for undergraduate students in economics or business, but can also serve as
an introduction for the subsequent parts of the book. The second and third parts go
deeper into the various topics treated in the first part. These parts are intended for
more mathematically oriented undergraduate students, or for graduate students in
(for instance) economics. Part II is on noncooperative games and Part III on coop-
erative games. Part IV is only a mathematical tools chapter. Every chapter has a
final section with problems. Selected hints, answers, and solutions to these prob-
lems are given at the end of the book. Complete solutions can be obtained from the
author.

The book claims neither originality nor completeness. As to originality, the
material draws heavily on game theory texts developed by many others, often in
collaboration. I mention in particular Jean Derks, Thijs Jansen, Andrés Perea, Ton
Storcken, Frank Thuijsman, Stef Tijs, Dries Vermeulen, and Koos Vrieze. I am also
greatly indebted to a large number of introductory, intermediate, and advanced texts
and textbooks on game theory, and hope I have succeeded in giving sufficient credit
to the authors of these works in all relevant places. As to completeness, the book is
far from achieving this quality but I trust that it presents at least the basics of game
theory. When writing and compiling the material I had ambitious plans for many
more chapters, and only hope that the phrase that all good things must come to an
end applies here.

How to Use this Book

Part I of the book is intended, firstly, for undergraduate students in economics and
business and, secondly, as preparation and background for Parts II-IV. Part I is pre-
ceded by Chap. 1, which is a general introduction to game theory by means of
examples. The first chapter of Part I, Chap. 2 of the book, is on zero-sum games.
This chapter is included, not only for historical reasons — the minimax theorem

vii



viii Preface

of von Neumann [140] was one of the first formal results in game theory — but
also because zero-sum games (all parlor games) require basic, strictly competitive,
game-theoretic thinking. The heart of Part I consists of Chaps. 3—6 on noncoop-
erative games and applications, and Chap. 9 as a basic introduction to cooperative
games. These chapters can serve as a basics course in game theory. Chapters 7 and
8 on repeated games and evolutionary games can serve as extra material, as well as
Chap. 10 on cooperative game models and Chap. 11, which is an introduction to the
related area of social choice theory.

Although this book, in particular Part I, can be used for self-study, it is not
intended to replace the teacher. Part I is meant for students who are knowledge-
able in basic calculus, and does not try to avoid the use of mathematics on that basic
level. There is, after all, a reason why we teach calculus courses to (for instance)
undergraduate students in economics. Nevertheless, the mathematics in Part I does
not go beyond such things as maximizing a quadratic function or elementary matrix
notation. In my own experience, the difficulties that students encounter when study-
ing formal models are usually conceptual rather than mathematical, but they are
often confused with mathematical difficulties. A well recognized example is the
distinction between parameters and variables in a model. Another example is the
use of mathematical notation. Even in Part I of the book (almost) all basic game
theory models are described in a formally precise manner, although I am aware that
some students may have a blind spot for mathematical notation that goes beyond
simple formulas for functions and equations. This formal presentation is included
especially because many students have always been asking questions about it: leav-
ing it out may lead to confusion and ambiguities. On the other hand, a teacher may
decide to drop these more formal parts and go directly to the examples of concretely
specified games. For example, in Chap. 5, the game theory teacher may decide to
skip the formal Sect. 5.1 and go directly to the worked out examples of games with
incomplete information — and perhaps later return to Sect. 5.1.

I can be much shorter on Parts II-1V, which require more mathematical sophis-
tication and are intended for graduate students in economics, or for an elective
game theory course for students in (applied) mathematics. In my experience again,
it works well to couple the material in these parts to related chapters in Part I. In par-
ticular, one can combine Chaps. 2 and 12 on zero-sum games, Chaps. 3 and 13 on
finite games, Chaps. 4, 5, and 14 on games with incomplete information and games
in extensive form, and Chaps. 8 and 15 on evolutionary games.! For cooperative
game theory, one can combine Chap. 9 with Part III.

Each chapter concludes with a problems section. Partial hints, answers and solu-
tions are provided at the end of the book. For a complete set of solutions for teachers,
please contact the author by email.?

! Chapter 7 is on repeated games but no advanced chapter on this topic is included. See, e.g., [39],
[75], or [88].
2 H.Peters @ke.unimaas.nl.
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References

This is a textbook and not a handbook, and consequently the list of references is
limited and far from complete. In most cases references in the text are indicated by
a number and only in some cases also by the name(s) of the author(s), for instance
when a concept is named after a person.

Notation

I do not have much to say on notation. Bold letters are used to indicate vectors —
while working on the book I came to regret this convention very much because of
the extra work, but had already passed the point of no return. Transpose signs for
vectors and matrices are only used when absolutely necessary. Vector inequalities
use the symbols > for all coordinates strictly larger and > for all coordinates at least
as large — and of course their reverses.

Errors

All errors are mine, and I would appreciate any feedback. All comments, not only
those on errors, are most welcome.

Maastricht Hans Peters
May 2008
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Chapter 1
Introduction

The best introduction to game theory is by way of examples. In this chapter we
start with a global definition of the field in Sect. 1.1, collect some historical facts in
Sect. 1.2, and present examples in Sect. 1.3. In Sect. 1.4 we briefly comment on the
distinction between cooperative and noncooperative game theory.

1.1 A Definition

Game theory is a formal, mathematical discipline which studies situations of com-
petition and cooperation between several involved parties. This is a broad definition
but consistent with the large number of applications. These applications range from
strategic questions in warfare to understanding economic competition, from eco-
nomic or social problems of fair distribution to behavior of animals in competitive
situations, from parlor games to political voting systems — and this list is certainly
not exhaustive.

Although game theory is an official mathematical discipline (AMS' Classifica-
tion code 90D) it is applied mostly by economists. Many articles and books on game
theory and applications are found under the JEL? codes C7x. The list of references
at the end of this book contains many textbooks and other books on game theory.

1.2 Some History

In terms of applications, game theory is a broad discipline, and it is therefore not
surprising that ‘game-theoretic’ situations can be recognized in the Bible (see [17])
or the Talmud (see [7]). Also the literature on strategic warfare contains many

! American Mathematical Society.
2 Journal of Economic Literature.
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2 1 Introduction

situations that could have been modelled using game theory: a very early reference,
over 2,000 years old, is the work of the Chinese warrior-philosopher Sun Tzu (see
[130]). Early works dealing with economic problems are the work of A. Cournot
on quantity competition (see [21]) and J. Bertrand on price competition (see [11]).
Some of the work of C.L. Dodgson (better known as Lewis Carroll, the writer of
Alice’s Adventures in Wonderland) is an early application of zero-sum games to
the political problem of parliamentary representation, see [32] and [12].

One of the first more formal works on game theory is the article of the logi-
cian Zermelo, see [150]. He proved that in the game of chess either White has a
winning strategy (i.e., can always win), or Black has a winning strategy, or each
player can always enforce a draw.? Up to the present, however, it is still not known
which of these three cases is the true one. A milestone in the history of game the-
ory is the work of von Neumann on zero-sum games [140], in which he proved the
famous minimax theorem for zero-sum games. This article was the basis for the
book Theory of Games and Economic Behavior by John von Neumann and Oskar
Morgenstern [141], by many regarded as the starting point of game theory. In this
book the authors extended von Neumann’s work on zero-sum games and laid the
groundwork for the study of cooperative (coalitional) games.*

The title of the book of von Neumann and Morgenstern reveals the intention of
the authors that game theory was to be applied to economics. Nevertheless, in the
fifties and sixties the further development of game theory was mainly the domain of
mathematicians. Seminal articles in this period were the papers by John F. Nash> on
Nash equilibrium and on bargaining (see [91] and [90]) and Shapley on the Shapley
value and the core for games with transferable utility (see [121] and [122]6). Apart
from these articles, the foundations of much that was to follow later were laid in the
contributed volumes [68], [69], [33], [73], and [34].

In the late sixties and seventies of the previous century game theory became
accepted as a new formal language for economics in particular. This develop-
ment was stimulated by the work of John Harsanyi on modelling games with
incomplete information (see [50]) and Reinhard Selten [117, 118] on (sub)game
perfect Nash equilibrium.” From the eighties on, large parts of economics have
been rewritten and further developed using the ideas, concepts and formal language
of game theory. Articles on game theory and applications can be found in many
economic journals. Journals focusing on game theory are the International Journal
of Game Theory, Games and Economic Behavior, and International Game The-
ory Review. Game theorists are organized within the Game Theory Society, see
http://www.gametheorysociety.org/.

3 See Sect. 13.2.5.

4 See [31] for a comprehensive history of game theory up to 1945,

5 See [89] for a biography, and the later movie with the same title A Beautiful Mind.
6 See also [16].

7 In 1994, Nash, Harsanyi and Selten received the Nobel prize in economics for the mentioned
work in game theory.
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1.3 Examples

Every example in this section is based on a ‘story’. Each time this story is presented
first and, next, it is translated into a formal mathematical model. Such a mathemat-
ical model is an alternative description, capturing the essential ingredients of the
story with the omission of details that are considered unimportant: the mathemat-
ical model is an ‘abstraction’ of the story. After having established the model, we
spend some lines on how to ‘solve’ it: we try to say something about how the players
should or would act. In more philosophical terms, these ‘solutions’ can be norma-
tive or positive in nature, or somewhere in between, but often such considerations
are left as food for thought for the reader. As a general remark, a basic distinction
between optimization theory and game theory is that in optimization it is usually
clear what is meant by the word ‘optimal’, whereas in game theory we deal with
human (or, more generally, animal) behavior and then it is less clear what ‘optimal’
means.® Each example is concluded by further comments, possibly including a short
preview on the treatment of the exemplified game in the book.

The examples are grouped in subsections on zero-sum games, NONZero-sum
games, extensive form games, cooperative games, and bargaining games.

1.3.1 Zero-Sum Games

The first example is taken from [106].

The Battle of the Bismarck Sea

Story The game is set in the South-Pacific in 1943. The Japanese admiral Imamura
has to transport troops across the Bismarck Sea to New Guinea, and the American
admiral Kenney wants to bomb the transport. Imamura has two possible choices: a
shorter Northern route (2 days) or a larger Southern route (3 days), and Kenney must
choose one of these routes to send his planes to. If he chooses the wrong route he
can call back the planes and send them to the other route, but the number of bombing
days is reduced by 1. We assume that the number of bombing days represents the
payoff to Kenney in a positive sense and to Imamura in a negative sense.

Model The Battle of the Bismarck Sea problem can be modelled as in the following

table:
North  South

North 2 2
South 1 3 ’

8 Feyerabend’s [35] ‘anything goes’ adage reflects a workable attitude in a young science like game
theory.



4 1 Introduction

This table represents a game with two players, namely Kenney and Imamura.
Each player has two possible choices; Kenney (player 1) chooses a row, Imamura
(player 2) chooses a column, and these choices are to be made independently and
simultaneously. The numbers represent the payoffs to Kenney. For instance, the
number 2 up left means that if Kenney and Imamura both choose North, the payoff
to Kenney is 2 and to Imamura —2. (The convention is to let the numbers denote
the payments from player 2 (the column player) to player 1 (the row player).) This
game is an example of a zero-sum game because the sum of the payoffs is always
equal to zero.

Solution In this particular example, it does not seem difficult to predict what will
happen. By choosing North, Imamura is always at least as well off as by choosing
South, as is easily inferred from the above table of payoffs. So it is safe to assume
that Imamura chooses North, and Kenney, being able to perform this same kind of
reasoning, will then also choose North, since that is the best reply to the choice of
North by Imamura. Observe that this game is easy to analyze because one of the
players has a weakly dominant choice, i.e., a choice which is always at least as good
(giving always at least as high a payoff) as any other choice, no matter what the
opponent decides to do.

Another way to look at this game is to observe that the payoff 2 resulting from
the combination (North, North) is maximal in its column (2 > 1) and minimal in
its row (2 < 2). Such a position in the matrix is called a saddlepoint. In such a
saddlepoint, neither player has an incentive to deviate unilaterally.” Also observe
that, in such a saddlepoint, the row player maximizes his minimal payoff (because
2 =min{2,2} > 1 = min{1,3}), and the column player (who has to pay according
to our convention) minimizes the maximal amount that he has to pay (because 2 =
max{2,1} <3 =max{2,3}). The resulting payoff of 2 from player 2 to player 1 is
called the value of the game.

Comments Two-person zero-sum games with finitely many choices, like the one
above, are also called matrix games since they can be represented by a single matrix.
Matrix games are studied in Chaps.2 and 12. The combination (North, North) in
the example above corresponds to what happened in reality back in 1943. See the
memoirs of Winston Churchill [20].1°

Matching Pennies

Story In the two-player game of matching pennies, both players have a coin and
simultaneously show heads or tails. If the coins match, player 2 gives his coin to
player 1; otherwise, player 1 gives his coin to player 2.

Model This is a zero-sum game with payoff matrix

9 As will become clear later, this implies that the combination (North, North) is a Nash equilibrium.
10 1 1953, Churchill received the Nobel prize in literature for this work.
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Heads Tails

Heads 1 -1

Tails < —1 1 > '
Solution Observe that in this game no player has a (weakly) dominant choice, and
that there is no saddlepoint: there is no position in the matrix at which there is simul-
taneously a minimum in the row and a maximum in the column. Thus, there does
not seem to be a natural way to solve the game. Von Neumann [140] proposed to
solve games like this — and zero-sum games in general — by allowing the players to
randomize between their choices. In the present example of matching pennies, sup-
pose player 1 chooses heads or tails both with probability 5 Suppose furthermore

that player 2 plays heads with probability ¢ and tails with probability 1 — ¢, where
0 < g < 1. In that case the expected payoff for player 1 is equal to

Mg —14(1-g)1)

a1 (1 —g) 1]+

2
which is independent of ¢, namely, equal to 0. So by randomizing in this way
between his two choices, player 1 can guarantee to obtain 0 in expectation (of
course, the actually realized outcome is always +1 or —1). Analogously, player 2,
by playing heads or tails each with probability é, can guarantee to pay O in expec-
tation. Thus, the amount of 0 plays a role similar to that of a saddlepoint. Again, we
will say that O is the value of this game.

Comments The randomized choices of the players are usually called mixed strate-
gies. Randomized choices are often interpreted as beliefs of the other player(s) about
the choice of the player under consideration. See, e.g., Sect. 3.1.

Von Neumann [140] proved that every two-person matrix game has a value if the
players can use mixed strategies: this is the minimax theorem.

1.3.2 Nonzero-Sum Games

Prisoners’ Dilemma

Story Two prisoners (players 1 and 2) have committed a crime together and are
interrogated separately. Each prisoner has two possible choices: he may ‘cooper-
ate’ (C) which means ‘not betray his partner’ or he may ‘defect’ (D), which means
‘betray his partner’. The punishment for the crime is 10 years of prison. Betrayal
yields a reduction of 1year for the traitor. If a prisoner is not betrayed, he is
convicted to 1 year for a minor offense.

Model This situation can be summarized as follows:

C D

C(-1,-1 —10,0
p\0,-10 -9,-9)"
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This table must be read in the same way as before, but now there are two payoffs
at each position: by convention the first number is the payoff for player 1 and the
second number is the payoff for player 2. Observe that the game is no longer zero-
sum, and we have to write down both numbers at each matrix position.

Solution Observe that for both players D is a strictly dominant choice: for each
player, D is (strictly) the best choice, whatever the other player does. So it is natural
to argue that the outcome of this game will be the pair of choices (D, D), leading
to the payoffs —9, —9. Thus, due to the existence of strictly dominant choices, the
Prisoners’ Dilemma game is easy to analyze.

Comments The payoffs (—9,—9) are inferior: they are not ‘Pareto optimal’, the
players could obtain the higher payoff of —1 for each by cooperating, i.e., both
playing C. There is a large literature on how to establish cooperation, e.g., by rep-
utation effects in a repeated play of the game. See, in particular, Axelrod [8]. If the
game is played repeatedly, other (higher) payoffs are possible, see Chap. 7.

The Prisoners’ Dilemma is a metaphor for many economic situations. An out-
standing example is the so-called tragedy of the commons ([47]; see also [45], p. 27,
and Problem 6.26 in this book).

Battle of the Sexes

Story A man and a woman want to go out together, either to a soccer match or to a
ballet performance. They forgot to agree where they would go to that night, are in
different places and have to decide on their own where to go; they have no means
to communicate. Their main concern is to be together, the man has a preference for
soccer and the woman for ballet.

Model A table reflecting the situation is as follows.

Soccer Ballet

Soccer 2,1 0,0
Ballet 0,0 1,2 -

Here, the man chooses a row and the woman a column.

Solution Observe that no player has a dominant choice. The players have to coor-
dinate without being able to communicate. Now it may be possible that the night
before they discussed soccer at length; each player remembers this, may think that
the other remembers this, and so this may serve as a ‘focal point’ (see Schelling!!
[115] on the concept of focal points). In the absence of such considerations it is hard
to give a unique prediction for this game. We can, however, say that the combina-
tions (Soccer, Soccer) and (Ballet, Ballet) are special in the sense that the players’
choices are ‘best replies’ to each other; if the man chooses Soccer (Ballet), then
it is optimal for the woman to choose Soccer (Ballet) as well, and vice versa. In

1 One of the winners of the 2005 Nobel prize in economics; the other one was R.J. Aumann.
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literature, such choice combinations are called Nash equilibria. The concept of Nash
equilibrium [91] is no doubt the main solution concept developed in game theory.

Comments The Battle of the Sexes game is metaphoric for problems of coordination.

Matching Pennies

Every zero-sum game is, trivially, a special case of a nonzero-sum game. For
instance, the Matching Pennies game discussed in Sect. 1.3.1 can be represented
as a nonzero-sum game as follows:

Heads Tails
Heads [ 1,—1 —1,1
Tails ( -1,1 1,1) '
Clearly, no player has a dominant choice and there is no combination of a row and
a column such that each player’s choice is optimal given the choice of the other
player — there is no Nash equilibrium. If mixed strategies are allowed, then it can
be checked that if player 2 plays Heads and Tails each with probability 5, then for
player 1 it is optimal to do so too, and vice versa. Such a combination of mixed
strategies is again called a Nash equilibrium. Nash [91] proved that every game in

which each player has finitely many choices — zero-sum or nonzero-sum — has a
Nash equilibrium in mixed strategies. See Chaps. 3 and 13.

A Cournot Game

Story Two firms produce a similar (‘homogenous’) product. The market price of
this product is equal to p = 1 — Q or zero (whichever is larger), where Q is the total
quantity produced. There are no production costs.

Model The two firms are the players, 1 and 2. Each player i = 1,2 chooses a
quantity ¢; > 0, and makes a profit of Kj(q1,¢2) = ¢i(1 — q1 — g2) (or zero if
Q1+q2=1).

Solution Suppose player 2 produces ¢q» = é Then player 1 maximizes his own
profit ¢;(1 — gy — %) by choosing g; = é Also the converse holds: if player 1
chooses g1 = % then g = % maximizes profit for player 2. This combination
of strategies consists of mutual best replies and is therefore again called a Nash

equilibrium.

Comments Situations like this were first analyzed by Cournot [21]. The Nash equi-
librium is often called Cournot equilibrium. It is easy to check that the Cournot
equilibrium in this example is again not ‘Pareto optimal’: if the firms each would
produce 411, then they would both be better off.
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The main difference between this example and the preceding ones is, that each
player here has infinitely many choices, also without including mixed strategies.
See further Chap. 6.

1.3.3 Extensive Form Games

All examples in Sects. 1.3.1 and 1.3.2 are examples of ‘one-shot games’. The players
choose only once, independently and simultaneously. In parlor games as well as
in games derived from real-life economic or political situations, this is often not
what happens. Players may move sequentially, and observe or partially observe each
others’ moves. Such situations are better modelled by ‘extensive form games’.

Sequential Battle of the Sexes

Story The story is similar to the story in Sect. 1.3.2, but we now assume that the
man chooses first and the woman can observe the choice of the man.

Model This situation can be represented by the decision tree in Fig. 1.1. Player 1
(the man) chooses first, player 2 (the woman) observes player 1’s choice and then
makes her own choice. The first number in each pair of numbers is the payoff to
player 1, and the second number is the payoff to player 2. Filled circles denote
decision nodes (of a player) or end nodes (followed by payoffs).

Solution An obvious way to analyze this game is to work backwards. If player 1
chooses S, then it is optimal for player 2 to chooses S as well, and if player 1 chooses
B, then it is optimal for player 2 to choose B as well. Given this choice behavior of
player 2 and assuming that player 1 performs this line of reasoning about the choices
of player 2, player 1 should choose S.

Comments What this simple example shows is that in such a so-called extensive
form game, there is a distinction between a play plan of a player and an actual move
or choice of that player. Player 2 has the plan to choose S (B) if player 1 has chosen
S (B). Player 2’s actual choice is S — assuming as above that player 1 has chosen

2,1 0,0 0,0 1,2

Fig. 1.1 The decision tree of sequential Battle of the Sexes
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S. We use the word strategy to denote a play plan, and the word action to denote
a particular move. In a one-shot game there is no difference between the two, and
then the word ‘strategy’ is used.

Games in extensive form are studied in Chaps. 4 and 14. The solution described
above is an example of a so-called backward induction (or subgame perfect) (Nash)
equilibrium. Such equilibria were first explicitly studied in [117]. There are other
equilibria as well. Suppose player 1 chooses B and player 2’s plan (strategy) is to
choose B always, independent of player 1’s choice. Observe that, given the strategy
of the opponent, no player can do better, and so this combination is a Nash equilib-
rium, although player 2’s plan is only partly ‘credible’: if player 1 would choose S
instead of B, then player 2 would be better off by changing her choice to S.

Sequential Cournot

Story The story is similar to the story in Sect. 1.3.2, but we now assume that firm 1
chooses first and firm 2 can observe the choice of firm 1.

Model Since each player i = 1,2 has infinitely many actions g; > 0, we cannot draw
a picture like Fig. 1.1 for the sequential Battle of the Sexes. Instead of straight lines
we use zigzag lines to denote a continuum of possible actions. For this example we
obtain Fig. 1.2.

Player 1 moves first and chooses g; > 0. Player 2 observes player 1’s choice of
g1 and then chooses g > 0.

Solution Like in the sequential Battle of the Sexes game, an obvious way to solve
this game is by working backwards. Given the observed choice ¢, player 2’s opti-
mal (profit maximizing) choice is g = é(l —q1) or ga = 0, whichever is larger.
Given this ‘reaction function’ of player 2, the optimal choice of player 1 is obtained
by maximizing the profit function ¢, — ¢y (1 —¢1 — é(l —¢1)). The maximum is
obtained for g = é Consequently, player 2 chooses g, = }‘.

Comments The solution described here is another example of a backward induc-
tion or subgame perfect equilibrium. It is also called ‘Stackelberg equilibrium’. See
[142] and Chap. 6.

Entry Deterrence

Story An old question in industrial organization is whether an incumbent monop-
olist can maintain his position by threatening to start a price war against any new

1 q1 >0 2 g >0
ON\NNNNNNNLONNNNNNNNND ¢1 (1 —q1 —q2),q2(1 —q1 — q2)

Fig. 1.2 The extensive form of sequential Cournot
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Entrant

Incumbent

0,100

40,50 —10,0
Fig. 1.3 The game of entry deterrence. Payoffs: entrant, incumbent

firm that enters the market. In order to analyze this question, consider the following
situation. There are two players, the entrant and the incumbent. The entrant decides
whether to Enter (E) or to Stay Out (O). If the entrant enters, the incumbent can
Collude (C) with him, or Fight (F) by cutting the price drastically. The payoffs are
as follows. Market profits are 100 at the monopoly price and 0 at the fighting price.
Entry costs 10. Collusion shares the profits evenly.

Model This situation can be represented by the decision tree in Fig. 1.3.

Solution By working backward, we find that the entrant enters and the incumbent
colludes.

Comments Also here there exists another Nash equilibrium. If the entrant stays out
and the incumbent’s plan is to fight if the entrant would enter, then this is again a
combination where no player can do better given the strategy of the other player.
Again, one might argue that the ‘threat’ of the incumbent firm to start a price war
in case the potential entrant would enter, is not credible since the incumbent hurts
himself by carrying out the threat.

Entry Deterrence with Incomplete Information

Story Consider the following variation on the foregoing entry deterrence model.
Suppose that with 50% probability the incumbent’s payoff from Fight (F) is equal
to some amount x rather than the 0 above, that both firms know this, but that the true
payoff is only observed by the entrant. This situation might arise, for instance, if the
technology or cost structure of the entrant firm is private information but both firms
would make the same estimate about the associated probabilities.

Model This situation can be modelled by including a chance move in the game tree.
Moreover, the tree should express the asymmetric information between the players.
Consider the following game tree. In this tree, there is first a chance move. The
entrant learns the outcome of the chance move and decides to enter or not. If he
enters, then the incumbent decides to collude or fight, without however knowing the
outcome of the chance move: this is indicated by the dashed line. Put otherwise, the
incumbent has two decision nodes where he should choose, but he does not know at
which node he actually is. Thus, he can only choose between ‘collude’ and ‘fight’,
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40,50
C
Entrant
0,100 @ [}
O E
F
50% ®—10,0
Chance @ Inc.
40,50
50% C
oimwe ©° e F
Entrant
—10,x

Fig. 1.4 Entry deterrence with incomplete information

2,1 0,0 0,0 1,2

Fig. 1.5 Simultaneous Battle of the Sexes in extensive form

without making this choice contingent on the outcome of the chance move. See
Fig. 1.4.

Solution Clearly, if x < 50 then an obvious solution is that the incumbent colludes
and the entrant enters. Also the combination of strategies where the entrant stays out
no matter what the outcome of the chance move is, and the incumbent fights, is a
Nash equilibrium. A complete analysis is more subtle and may include considering
probabilistic information that the incumbent might derive from the action of the
entrant in a so-called ‘perfect Bayesian equilibrium’, see Chaps. 5 and 14.

Comments The collection of the two nodes of the incumbent, connected by the
dashed line, is usually called an ‘information set’. Information sets are used in gen-
eral to model imperfect information. In the present example imperfect information
arises since the incumbent does not know the outcome of the chance move. Imper-
fect information can also arise if some player does not observe some move of some
other player. As a simple example, consider again the simultaneous move Battle of
the Sexes game of Sect. 1.3.2. This can be modelled as a game in extensive form as
in Fig. 1.5.

Hence, player 2, when he moves, does not know what player 1 has chosen. This
is equivalent to players 1 and 2 moving independently and simultaneously.
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1.3.4 Cooperative Games

In a cooperative game the focus is on payoffs and coalitions, rather than on strate-
gies. The prevailing analysis has an axiomatic flavor, in contrast to the equilibrium
analysis of noncooperative theory.

Three Cooperating Cities

Story Cities 1, 2 and 3 want to be connected with a nearby power source. The
possible transmission links and their costs are shown in the following picture. Each
city can hire any of the transmission links. If the cities cooperate in hiring the links
they save on the hiring costs (the links have unlimited capacity). The situation is
represented in Fig. 1.6.

Model The players in this situation are the three cities. Denote the player set by N =
{1,2,3}. These players can form coalitions: any subset S of N is called a coalition.
Table 1.1 presents the costs as well as the savings of each coalition. The numbers
¢(S) are obtained by calculating the cheapest routes connecting the cities in the
coalition S with the power source.'? The cost savings v(S) are determined by

v(S):= Zc({z}) —c(S) foreach nonempty SCN.
icS

The cost savings v(S) for coalition S are equal to the difference in costs correspond-
ing to the situation where all members of S work alone and the situation where all
members of § work together. The pair (N, v) is called a cooperative game.

100 30
a \/50
power
. A
140 20

Fig. 1.6 Situation leading to the three cities game

Table 1.1 The three cities game

s {2 {30 {12y {13} {230 {123}

c(S) 100 140 130 150 130 150 150
v(S) 0 0 0 90 100 120 220

12 Cf. Bird [14].
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Solution Basic questions in a cooperative game (N,v) are: which coalitions will
actually be formed, and how should the proceeds (savings) of such a coalition be
distributed among its members? To form a coalition the consent of every member is
needed, but it is likely that the willingness of a player to participate in a coalition
depends on what the player obtains in that coalition. Therefore, the second ques-
tion seems to be the more basic one, and in this book attention is focussed on that
question. Specifically, it is usually assumed that the ‘grand’ coalition N of all play-
ers is formed, and the question is then reduced to the problem of distributing the
amount v(N) among the players. In the present example, how should the amount
220 (=v(N)) be distributed among the three cities? In other words, we look for vec-
tors X = (x1,Xx2,x3) € R3 such that x; +x, + x3 = 220, where player i € {1,2,3}
obtains x;. One obvious candidate is to choose x; = x, = x3 = 220/3, but this does
not really reflect the asymmetry of the situation: some coalitions save more than
others. The literature offers many quite different solutions to this distribution prob-
lem, among which are the core, the Shapley value, and the nucleolus. The core, for
instance, consists of those payoff distributions that cannot be improved upon by any
smaller coalition. For the three cities example, this means that the core consists of
those vectors (x,x2,x3) such that x; + xy + x3 = 220, x1,x2,x3 > 0, x; + x5 > 90,
x1+x3 > 100, and x> +x3 > 120. Hence, this is quite a big set and therefore rather
indeterminate as a solution to the game. In contrast, the Shapley value consists by
definition of one point (vector), in this example the distribution (65,75,80). Also
the nucleolus consists of one point, in this case the vector (56%,76%,86%).13

Comments The implicit assumptions in a game like this are, first, that a coalition
can make binding agreements on the distribution of its payoff and, second, that any
payoft distribution that distributes (or, at least, does not exceed) the savings or, more
generally, worth of the coalition is possible. For these reasons, such games are called
cooperative games with transferable utility. See Chaps. 9 and 16-20.

The Glove Game

Story Assume there are three players, 1, 2, and 3. Players 1 and 2 each possess a
right-hand glove, while player 3 has a left-hand glove. A pair of gloves has worth 1.
The players cooperate in order to generate a profit.

Model The associated cooperative game is described by Table 1.2.

Table 1.2 The glove game

s {1y {2} {3 {2t {13} {23} {1,2,3}
vWs) 0 0 0 0 1 1 1

13 The reader should take these claims for granted. Definitions of these concepts are provided in
Chap. 9. See also Chaps. 16-20.
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Table 1.3 Preferences for dentist appointments
Mon Tue Wed

Adams 2 4 8
Benson 10 5 2
Cooper 10 6 4

Table 1.4 The dentist game: a permutation game

§ {2 33 {12y {13p {23 {1,2.3}
W) 25 4 14 18 9 24

Solution The core of this game consists of exactly one vector (see Problem 1.5).
The Shapley value assigns 2/3 to player 3 and 1/6 to both player 1 and player 2.
The nucleolus is the unique element of the core.

A Permutation Game

Story (From [22], p.54) Mr. Adams, Mrs. Benson, and Mr. Cooper have appoint-
ments with the dentist on Monday, Tuesday, and Wednesday, respectively. This
schedule not necessarily matches their preferences, due to different urgencies and
other factors. These preferences (expressed in numbers) are given in Table 1.3.

Model This situation gives rise to a game in which the coalitions can gain by reshuf-
fling their appointments. For instance, Adams (player 1) and Benson (player 2)
can change their appointments and obtain a total of 14 instead of 7. A complete
description of the resulting game is given in the Table 1.4.

Solution The core of this game is the convex hull of the vectors (15,5,4), (14,6,4),
(8,6,10), and (9,5,10). The Shapley value is the vector (9},63,8), and the nucle-
olus is the vector (11},5},7).14

A Voting Game

(From [98], p. 247: The United Nations Security Council.) The United nations Secu-
rity Council consists of five permanent members (United States, Russia, Britain,
France, and China) and ten other members. Motions must be approved by nine
members, including all the permanent members. This situation gives rise to a 15-
player so called voting game (N,v) with v(S) = 1 if the coalition S contains the
five permanent members and at least four nonpermanent members, and v(S) = 0
otherwise. Such games are also called simple games. Coalitions with worth equal to
1 are called winning, the other coalitions are called losing. Simple games are studied
in Chap. 16.

14 See Chap. 20 for an analysis of permutation games.
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A solution to such a voting game is interpreted as representing the power of a
player, rather than payoff (money) or utility.

1.3.5 Bargaining Games

Bargaining theory focusses on agreements between individual players.

A Division Problem

Story Consider the following situation. Two players have to agree on the division of
one unit of a perfectly divisible good, say a liter of wine. If they reach an agreement,
say (a, ) where a, 8 > 0and o+ 8 < 1, then they split up the one unit according to
this agreement; otherwise, they both receive nothing. The players have preferences
for the good, described by utility functions.

Model To fix ideas, assume that player | has a utility function u; (&) = o and player
2 has a utility function us (@) = v/@. Thus, a distribution (@, 1 — ) of the good leads
to a corresponding pair of utilities (u(@),uz(1 — @)) = (a,v/1 — &). By letting o
range from O to 1 we obtain all utility pairs corresponding to all feasible distributions
of the good, as in Fig. 1.7. It is assumed that also distributions summing to less than
the whole unit are possible. This yields the whole shaded region.

Solution Nash [90] proposed the following way to ‘solve’ this bargaining prob-
lem: maximize the product of the players’ utilities on the shaded area. Since this
maximum will be reached on the boundary, the problem is equivalent to

max (x\/l — .
0<a<l

The maximum is obtained for o = % So the ‘solution’ of the bargaining problem

21

53 \/3), which is the point z in the picture above. This implies

in utilities equals (

uz

1

uy

w R ——

Fig. 1.7 A bargaining game
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that player 1 obtains % of the 1 unit of the good, whereas player 2 obtains % As
described here, this solution comes out of the blue. Nash, however, provided an
axiomatic foundation for this solution (which is usually called the Nash bargaining
solution).

Comments The bargaining literature includes many noncooperative, strategic
approaches to the bargaining problem, including an attempt by Nash himself [92].
An important, seminal article in this literature is Rubinstein [110], in which the bar-
gaining problem is modelled as an alternating offers extensive form game. Binmore
et al. [13] observed the close relationship between the Nash bargaining solution and
the strategic approach of Rubinstein. See Chap. 10.

The bargaining game can be seen as a special case of a cooperative game without
transferable utility. Also games with transferable utility form a subset of the more
general class of games without transferable utility. See also Chap. 21.

1.4 Cooperative vs. Noncooperative Game Theory

The usual distinction between cooperative and noncooperative game theory is that in
a cooperative game binding agreements between players are possible, whereas this is
not the case in noncooperative games. This distinction is informal and also not very
sharp: for instance, the core of a cooperative game has a clear noncooperative fla-
vor; a concept like correlated equilibrium for noncooperative games (see Sect. 13.7)
has a clear cooperative flavor. Moreover, quite some game-theoretic literature is
concerned with viewing problems both from a cooperative and a noncoopera-
tive angle. This approach is sometimes called the Nash program; the bargaining
problem discussed above is a typical example. In a much more formal sense, the the-
ory of implementation is concerned with representing outcomes from cooperative
solutions as equilibrium outcomes of specific noncooperative solutions.

A more workable distinction between cooperative and noncooperative games can
be based on the ‘modelling technique’ that is used: in a noncooperative game players
have explicit strategies, whereas in a cooperative game players and coalitions are
characterized, more abstractly, by the outcomes and payoffs that they can reach.
The examples in Sects. 1.3.1-1.3.3 are examples of noncooperative games, whereas
those in Sects. 1.3.4 and 1.3.5 are examples of cooperative games.

Problems

1.1. Battle of the Bismarck Sea

(a) Represent the ‘Battle of the Bismarck Sea’ as a game in extensive form.
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(b) Now assume that Imamura moves first, and Kenney observes Imamura’s move
and moves next. Represent this situation in extensive form and solve by working
backwards.

(c) Answer the same questions as under (b) with the roles of the players reversed.

1.2. Variant of Matching Pennies

Consider the following variant of the ‘Matching Pennies’ game
Heads Tails
Heads X —1
Tails —1 1)
where x is a real number. For which value(s) of x does this game have a saddlepoint,
if any?
1.3. Mixed Strategies

Consider the following zero-sum game:

L R
T /3 2
B\1 4)/°
(a) Show that this game has no saddlepoint.

(b) Find a mixed strategy (randomized choice) of (the row) player 1 that makes his
expected payoff independent of player 2’s strategy.

(c) Find a mixed strategy of player 2 that makes his expected payoff independent of
player 1’s strategy.

(d) Consider the expected payoffs found under (b) and (c). What do you conclude
about how the game could be played if randomized choices are allowed?

1.4. Three Cooperating Cities

Show that the Shapley value and the nucleolus of the ‘Three Cooperating Cities
Game’ are elements of the core of this game.

1.5. Glove Game
(a) Compute the core of the glove game.

(b) Is the Shapley value an element of the core?

1.6. Dentist Appointments

For the permutation (dentist appointments) game, check if the Shapley value and
the nucleolus are in the core of the game.
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1.7. Nash Bargaining

Verify the computation of the Nash bargaining solution for the division problem.

1.8. Variant of Glove Game

Suppose there are n = ¢+ r players, where ¢ players own a left-hand glove and r
players own a right-hand glove. Let N be the set of all players and let S C N be a
coalition. As before, each pair of gloves has worth 1. Find an expression for v(S),
i.e., the maximal profit that S can generate by cooperation of its members.



Chapter 2
Finite Two-Person Zero-Sum Games

This chapter deals with two-player games in which each player chooses from finitely
many pure strategies or randomizes among these strategies, and the sum of the play-
ers’ payoffs or expected payoffs is always equal to zero. Games like the ‘Battle of
the Bismarck Sea’ and ‘Matching Pennies’, discussed in Sect. 1.3.1 belong to this
class.

In Sect. 2.1 the basic definitions and theory are discussed. Section 2.2 shows
how to solve 2 x n and m x 2 games, and larger games by elimination of strictly
dominated strategies.

2.1 Basic Definitions and Theory

Since all data of a finite two-person zero-sum game can be summarized in one
matrix, such a game is usually called a ‘matrix game’.

Definition 2.1 (Matrix game). A matrix game is an m X n matrix A of real numbers,
where the number of rows m and the number of columns » are integers greater than
orequal to 1. A (mixed) strategy of player 1 is a probability distribution p over the
rows of A, i.e., an element of the set

m
A" :={p=(p1,....pm) ER™| Y pi=1, pi>0foralli=1,...,m}.
i=1
Similarly, a (mixed) strategy of player 2 is a probability distribution q over the

columns of A, i.e., an element of the set

n
A :={q=(q1,....qn) ER"| Y gq;j=1,q; > 0forall j=1,...,n}.
j=1

H. Peters, Game Theory — A Multi-Leveled Approach. 21
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A strategy p of player 1 is called pure if there is a row i with p; = 1. This strategy
is also denoted by e'. Similarly, a strategy q of player 2 is called pure if there is a
column j with g; = 1. This strategy is also denoted by e/

The interpretation of such a matrix game A is as follows. If player 1 plays row i (i.e.,
pure strategy e') and player 2 plays column j (i.e., pure strategy e/), then player 1
receives payoff a;; and player 2 pays a;; (and, thus, receives —a;;), where a;; is the
number in row i and column j of matrix A. If player 1 plays strategy' p and player
2 plays strategy q, then player 1 receives the expected payoft?

pAq = Z Z piqjdij,

i=1j=

and player 2 receives —pAq.

For ‘solving’ matrix games, i.e., establishing what clever players would or should
do, the concepts of maximin and minimax strategies are important, as will be
explained below. First we give the formal definitions.

Definition 2.2 (Maximin and minimax strategies). A strategy p is a maximin
strategy of player 1 in matrix game A if

min{pAq | q € A"} > min{p'Aq| q € A"} for all p’ € A™.
A strategy q is a minimax strategy of player 2 in matrix game A if
max{pAq | p € A"} < max{pAq' | p € A"} forall ¢’ € A".

In words: a maximin strategy of player 1 maximizes the minimal (with respect to
player 2’s strategies) payoff of player 1, and a minimax strategy of player 2 mini-
mizes the maximum (with respect to player 1’s strategies) that player 2 has to pay
to player 1. Of course, the asymmetry in these definitions is caused by the fact that,
by convention, a matrix game represents the amounts that player 2 has to pay to
player 1.3

In order to check if a strategy p of player 1 is a maximin strategy it is sufficient
to check that the first inequality in Definition 2.2 holds with e/ forevery j=1,...,n
instead of every q € A". This is not difficult to see but the reader is referred to
Chap. 12 for a more formal treatment. A similar observation holds for minimax
strategies. In other words, to check if a strategy is maximin (minimax) it is sufficient
to consider its performance against every pure strategy, i.e., column (row).

Why would we be interested in such strategies? At first glance, such strate-
gies seem to express a very conservative or pessimistic, worst-case scenario atti-
tude. The reason for considering maximin/minimax strategies is provided by von

! Observe that here, by a ‘strategy’ we mean a mixed strategy: we add the adjective ‘pure’ if we
wish to refer to a pure strategy.

2 Since no confusion is likely to arise, we do not use transpose notations like p” Aq or pAq” .

3 It can be proved by basic mathematical analysis that maximin and minimax strategies always
exist.
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Neumann [140]. Von Neumann shows* that for every matrix game A there is a real
number v = v(A) with the following properties:

1. A strategy p of player 1 guarantees a payoff of at least v to player 1 (i.e., pAq > v
for all strategies q of player 2) if and only if p is a maximin strategy.

2. A strategy q of player 2 guarantees a payment of at most v by player 2 to player 1
(i.e., pAq < v for all strategies p of player 1) if and only if q is a minimax strategy.

Hence, player 1 can obtain a payoff of at least v by playing a maximin strategy,
and player 2 can guarantee to pay not more than v — hence secure a payoff of at
least —v — by playing a minimax strategy. For these reasons, the number v = v(A) is
also called the value of the game A — it represents the worth to player 1 of playing
the game A — and maximin and minimax strategies are called optimal strategies for
players 1 and 2, respectively.

Therefore, ‘solving’ the game A means, naturally, determining the optimal strate-
gies and the value of the game. In the ‘Battle of the Bismarck Sea’ in Sect. 1.3.1,
the pure strategies N of both players guarantee the same amount 2. Therefore, this
is the value of the game and N is optimal for both players. The analysis of that game
is easy since it has a ‘saddlepoint’, namely position (1, 1) with a;; = 2. The formal
definition of a saddlepoint is as follows.

Definition 2.3 (Saddlepoint). A position (i, j) in a matrix game A is a saddlepoint if
ajj > agjforallk=1,... mand a;j <ay forallk=1,...,n,
i.e., if a;; is maximal in its column j and minimal in its row i.

Clearly, if (i, j) is a saddlepoint, then player 1 can guarantee a payoff of at least a;;
by playing the pure strategy row i, since «;; is minimal in row i. Similarly, player 2
can guarantee a payoff of at least —a;; by playing the pure strategy column j, since
a;j is maximal in column j. Hence, a;; must be the value of the game A: v(A) = a;;,
e/ is an optimal (maximin) strategy of player 1, and e/ is an optimal (minimax)
strategy of player 2.

2.2 Solving 2 x n Games and m x 2 Games

In this section we show how to solve matrix games where at least one of the players
has two pure strategies. We also show how the idea of strict domination can be of
help in solving matrix games.

4 See Chap. 12 for a more rigorous treatment of zero-sum games and a proof of von Neumann’s
result.
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2.2.1 2 x n Games

We demonstrate how to solve a matrix game with 2 rows and n columns graphically,
by considering the following 2 x 4 example:

1 2 3 4

e e e e
(10 2 4 1
A= ( 2 10 8 12)'
We have labelled the columns of A, i.e., the pure strategies of player 2 for reference

below. Let p = (p, 1 — p) be an arbitrary strategy of player 1. The expected payoffs
to player 1 if player 2 plays a pure strategy are equal to:

pAe! = 10p+2(1—p)=8p+2
pAe? = 2p+10(1—p)=10—8p
pAe’ =4p+8(1—p)=8—4p
pAet = p+12(1—p)=12—-11Ip.

We plot these four linear functions of p in one diagram:

12
10 et 10
e2
8 3
6 6
1
¢ 4
2 2
1
0 pr=1 1

In this diagram the values of p are plotted on the horizontal axis, and the four straight
gray lines plot the payoffs to player 1 if player 2 plays one of his four pure strategies,
respectively. Observe that for every 0 < p < 1 the minimum payoff that player 1 may
obtain is given by the lower envelope of these curves, the thick black curve in the
diagram: for any p, any combination (¢1,¢2,¢3,¢4) of the points on e!, %, €*, and
e* with first coordinate p would lie on or above this lower envelope. Clearly, the
lower envelope is maximal for p = p* = ;, and the maximal value is 6. Hence,
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we have established that player 1 has a unique optimal (maximin) strategy, namely
p* = (1, 1), and that the value of the game, v(A), is equal to 6.

What are the optimal or minimax strategies of player 2? From the theory of the
previous section we know that a minimax strategy q = (¢1,¢2,93,494) of player 2
should guarantee to player 2 to have to pay at most the value of the game. From
the diagram it is clear that g4 should be equal to zero since otherwise the payoff to
player 1 would be larger than 6 if player 1 plays (é, ;), and thus q would not be a
minimax strategy. So a minimax strategy has the form q = (¢1,¢2,¢3,0). Any such
strategy, plotted in the diagram, gives a straight line that is a combination of the
lines associated with e, €%, and e* and which passes through the point (;,6) since
all three lines pas through this point. Moreover, for no value of p should this straight
line exceed the value 6, otherwise ¢ would not guarantee a payment of at most 6 by
player 2. Consequently, this straight line has to be horizontal. Summarizing this

argument, we look for numbers ¢q1,¢2,¢g3 > 0 such that

2q1+10g, +8q3 = 6 (left endpoint should be (0,6))
10g1 +2g> +4q3 = 6 (right endpoint should be (1,6))
q1+¢g2+q3 =1 (qis a probability vector).

This system of equations is easily reduced® to the two equations

3g1—q2 =1
G +q+q; =1

The first equation implies that if ¢; = ; then ¢o = 0 and if ¢; = 5 then g, = é
Clearly, g; and g, cannot be larger since then their sum exceeds 1. Hence the set of
optimal strategies of player 2 is

1
. q2=3q1—1, g4 =0}.

1
SCHSZ

{q: (417‘]27613744) € A4 | 3

2.2.2 m x 2 Games

The solution method to solve m x 2 games is analogous. Consider the following
example:

el /10 2

2
e 2 10
A= el 4 8
e \1 12

> For instance, by substitution. In fact, one of the two first equations could be omitted to begin
with, since we already know that any combination of the three lines passes through (]2,6), and two
points are sufficient to determine a straight line.
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Let q = (¢,1 — g) be an arbitrary strategy of player 2. Again, we make a diagram
in which now the values of g are put on the horizontal axis, and the straight lines
indicated by e for i = 1,2,3,4 are the payoffs to player 1 associated with his four
pure strategies (rows) as functions of g. The equations of these lines are given by:

e'lAq=10g+2(1—¢q)=8q+2
e’Aq =2¢+10(1 —q)=10—8q
eAq=4g+8(1—q)=8—4q
etAq=q+12(1—g)=12—11gq.

The resulting diagram is as follows.

12
10 et 10
e2
8 3
118 118
19 19
1
¢ 4
2 2
1
0 g =19 1

Observe that the maximum payments that player 2 has to make are now located on

the upper envelope, represented by the thick black curve. The minimum is reached at
the point of intersection of e' and e* in the diagram, which has coordinates ( }g , 11198 ).

118 “and the unique optimal (minimax) strategy of

Hence, the value of the game is 19 >

player 2 is q* = (}g, ]99).

To find the optimal strategy or strategies p = (p1, p2, p3, p4) of player 1, it fol-
lows from the diagram that p, = p3 = 0, otherwise for g = }g the value '1198 of the
game is not reached, so that p is not a maximin strategy. So we look for a com-

bination of e! and e* that gives at least 11198 for every g, hence it has to be equal

to 11198 for every g. This gives rise to the equations 2p; + 12p4 = 10p; + ps = 1]198
and p; + p4 = 1, with unique solution p; = ié and py = 189. So the unique optimal

strategy of player 1 is (15,0,0, 189).
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2.2.3 Strict Domination

The idea of strict domination can be used to eliminate pure strategies before the
graphical analysis of a matrix game. Consider the game

1 2 3 4

e e e e
100 2 5 1
A= ( 2 10 8 12) ’

which is almost identical to the game in Sect. 2.2.1, except that a3 is now 5 instead
of 4. Consider a strategy (o;,1 — @,0,0) of player 2. The expected payments from
this strategy from player 2 to player 1 are 8 + 2 if player 1 plays the first row
and 10 — 8« if player 1 plays the second row. For any value }‘ <o< g, the first
number is smaller than 5 and the second number is smaller than 8. Hence, this is
strictly better for player 2 than playing his pure strategy >, no matter what player 1
does. But then, for any strategy q = (¢1,92,93,94) of player 2 with g3 > 0, the
expected payoff to player 2 would become strictly larger (his payment to player 1
strictly smaller) by transferring the probability g3 to the first two pure strategies
in some right proportion @, i.e., by playing (g1 + ag3,q2 + (1 — &t)g3,0,q4) for
some 411 <o< g, instead of q. Hence, in an optimal (minimax) strategy we must
have g3 = 0. This implies that, in order to solve the above game, we can start by
deleting the third column of the matrix. In the diagram in Sect.2.2.1, we do not
have to draw the line corresponding to e>. The value of the game is still 6, player 1
still has a unique optimal strategy p* = (é, é), and player 2 now also has a unique
optimal strategy, namely the one where g3 = 0, which is the strategy (5, é,O, 0).

In general, strictly dominated pure strategies in a matrix game are not played
with positive probability in any optimal strategy and can therefore be deleted before
solving the game. Sometimes, this idea can also be used to solve matrix games in
which each player has more than two pure strategies (m,n > 2). Moreover, the idea
can be applied iteratively, that is, after deletion of a strictly dominated pure strategy,
in the smaller game perhaps another strictly dominated pure strategy can be deleted,
etc., until no more pure strategies are strictly dominated.®

We first provide a formal definition of strict domination for completeness’ sake,
and then discuss another example where iterated elimination of strictly dominated
strategies is applied.

Definition 2.4 (Strict domination). Let A be an m X n matrix game and i a row. The
pure strategy €' is strictly dominated if there is a strategy p = (p1,..., pm) € A™ with
pi = 0 such that pAe/ > e‘Ae/ for every j = 1,...,n. Similarly, let j be a column.
The pure strategy e/ is strictly dominated if there is a strategy q = (q1,...,qn) € A"
with g; = 0 such that eAq < e'Ae/ foreveryi=1,...,m./

6 Of course, all this needs to be proved formally, but in this chapter it is just assumed. See Chap. 13
for a more formal treatment.

7 An equivalent definition is obtained if the conditions p; = 0 and ¢ 7 = 0 are omitted.
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Example 2.5. Consider the following 3 x 3 matrix game:

6 0 2

A=[0 5 4

3 2 1
For player 1, the third strategy e is strictly dominated by the strategy p = ( 172, 152, )s
since pA = (3;,2 112,22) has every coordinate strictly larger than e’A = (3,2, 1).

Hence, in any optimal strategy player 1 puts zero probability on the third row.
Elimination of this row results in the matrix

6 0 2
B= (0 5 4) '
Now, player 2’s third strategy e’ is strictly dominated by the strategy q = (}‘, Z, ),
since Bq = (3,32), which has every coordinate strictly smaller than Be® = (2,4).

Hence, in any optimal strategy player 2 puts zero probability on the third column.
Elimination of this column results in the matrix

6 0
(5 2)
This is a 2 x 2 matrix game, which can be solved by the method in Sect.2.2.1 or
Sect.2.2.2. See Problem 2.1(a).

Problems
2.1. Solving Matrix Games

Solve the following matrix games, i.e., determine the optimal strategies and the
value of the game. Each time, start by checking if the game has a saddlepoint.

(a)
6 0
0 5

What are the optimal strategies in the original matrix game A in Example 2.5?

(b)
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(©)
1 3 1
2 20
0 3 2
(d)
16 12 2
2 6 16
8 8 6
0o 7 8
()
31 40
1 2 0 5
®
1 0 2
4 1 1
3 1 3
2.2. Saddlepoints

(a) Let A be an arbitrary m x n matrix game. Show that any two saddlepoints must
have the same value. In other words, if (i, j) and (k,I) are two saddlepoints, show
that ajj = ag-

(b) Let A be a 4 x 4 matrix game in which (1,1) and (4,4) are saddlepoints. Show
that A has at least two other saddlepoints.

(c) Give an example of a 4 x 4 matrix game with exactly three saddlepoints.

2.3. Rock—Paper—Scissors

In the famous Rock—Paper—Scissors two-player game each player has three pure
strategies: Rock, Paper, and Scissors. Here, Scissors beats Paper, Paper beats Rock,
Rock beats Scissors. Assign a 1 to winning, O to a draw, and —1 to losing. Model
this game as a matrix game, try to guess its optimal strategies, and then show that
these are the unique optimal strategies. What is the value of this game?



Chapter 3
Finite Two-Person Games

In this chapter we consider two-player games where each player chooses from
finitely many pure strategies or randomizes among these strategies. In contrast to
Chap. 2 it is no longer required that the sum of the players’ payoffs is zero (or,
equivalently, constant). This allows for a much larger class of games, including
many games relevant for economic or other applications. Famous examples are the
‘Prisoners’ Dilemma’ and the ‘Battle of the Sexes’ discussed in Sect. 1.3.2.

In Sect. 3.1 we introduce the model and the concept of ‘Nash equilibrium’. Sec-
tion 3.2 shows how to compute Nash equilibria in pure strategies for arbitrary games,
all Nash equilibria in games where both players have exactly two pure strategies, and
how to use the concept of strict domination to facilitate computation of Nash equilib-
ria and to compute equilibria also of larger games. The structure of this chapter thus
parallels the structure of Chap. 2. For a deeper and more comprehensive analysis of
finite two-person games see Chap. 13.

3.1 Basic Definitions and Theory

The data of a finite two-person game can be summarized by two matrices. Usu-
ally, these matrices are written as one matrix with two numbers at each position.
Therefore, such games are often called ‘bimatrix games’. The formal definition is
as follows.

Definition 3.1 (Bimatrix game). A bimatrix game is a pair of m X n matrices
(A,B), where m and n are integers greater than or equal to 1.

The interpretation of such a bimatrix game (A, B) is that, if player 1 (the row player)
plays row i and player 2 (the column player) plays column j, then player 1 receives
payoff a;; and player 2 receives b;;, where these numbers are the corresponding
entries of A and B, respectively. Definitions and notations for pure and mixed strate-
gies, strategy sets and expected payoffs are similar to those for matrix games, see

H. Peters, Game Theory — A Multi-Leveled Approach. 31
© Springer-Verlag Berlin Heidelberg 2008
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Sect. 2.1, but for easy reference we repeat them here. A (mixed) strategy of player
1 is a probability distribution p over the rows of A, i.e., an element of the set

m
A" :={p=(p1,....pm) €ER"[Y pi=1, pi>0foralli=1,...,m}.
i=1

1=

Similarly, a (mixed) strategy of player 2 is a probability distribution q over the
columns of A, i.e., an element of the set

n
A" Z:{q:(l]l7---7Qn)€Rn ‘ quil, q]ZOfOFalljil,,l’l}
j=1

A strategy p of player 1 is called pure if there is a row i with p; = 1. This strategy
is also denoted by e'. Similarly, a strategy q of player 2 is called pure if there is a
column j with g; = 1. This strategy is also denoted by e/. If player 1 plays p and
player 2 plays q then the payoff to player 1 is the expected payoff

m n
pAq=Y Y pigjai;,
i=1j=1
and the payoff to player 2 is the expected payoff
m n
pBa=Y Y pig;bi;.
i=1j=1

As mentioned, the entries of A and B are usually grouped together in one
(bi)matrix, by putting the pair a;;, b;; at position (i, j) of the matrix. Cf. the examples
in Sect. 1.3.2.

Central to noncooperative game theory is the idea of best reply. It says that
a rational selfish player should always maximize his (expected) payoff, given his
knowledge of or conjecture about the strategies chosen by the other players.

Definition 3.2 (Best reply). A strategy p of player 1 is a best reply to a strategy q
of player 2 in an m X n bimatrix game (A, B) if

pAq > p'Aq forall p’ € A™.
Similarly, q is a best reply of player 2 to p if
pBq >pBq forall ¢ €A".

In a ‘Nash equilibrium’, each player’s strategy is a best reply to the other player’s
strategy.

Definition 3.3 (Nash equilibrium). A pair of strategies (p*,q*) in a bimatrix game
(A,B) is a Nash equilibrium if p* is a best reply of player 1 to q* and q* is a best
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reply of player 2 to p*. A Nash equilibrium (p*,q*) is called pure if both p* and q*
are pure strategies.

The concept of a Nash equilibrium can be extended to quite arbitrary games, includ-
ing games with arbitrary numbers of players, strategy sets, and payoff functions. We
will see a lot of examples in later chapters of this book. For finite two-person games,
Nash [91] proved that every game has a Nash equilibrium in mixed strategies, i.e., a
Nash equilibrium according to Definition 3.3. See Sect. 13.1 for such a proof. Gener-
ally speaking, the main concern with Nash equilibrium is not its existence but rather
the opposite, namely its abundance, as well as its interpretation. In many games,
there are many Nash equilibria, and then the questions of equilibrium selection and
equilibrium refinement are relevant. With respect to interpretation, an old question
is how in reality the players would come to play a Nash equilibrium. The definition
of Nash equilibrium does not say anything about this.

For a Nash equilibrium in mixed strategies as in Definition 3.3, an additional
question is what the meaning of such a mixed strategy is. Does it mean that the
players actually randomize when playing the game? A different and quite common
interpretation is that a mixed strategy of a player, say player 1, represents the belief,
or conjecture, of the other player, player 2, about what player 1 will do. Thus, it
embodies the ‘strategic uncertainty’ of the players in a game, a term coined by von
Neumann and Morgenstern [141].

For now, we just leave these questions aside and take the definition of Nash equi-
librium at face value. We show how to compute pure Nash equilibria in general, and
all Nash equilibria in games where both players have two pure strategies. Just like
in Chap. 2, we also consider the role of strict domination.

3.2 Finding Nash Equilibria

To find all Nash equilibria of an arbitrary bimatrix game is a difficult task. We refer
to Sect. 13.2.3 for more discussion on this problem. Here we restrict ourselves to,
first, the much easier problem of finding all Nash equilibria in pure strategies of an
arbitrary bimatrix game and, second, to showing how to find all Nash equilibria in
2 x 2 games graphically. It is also possible to solve 2 x 3 and 3 x 2 games graphically,
see Sect. 13.2.2. For larger games, graphical solutions are impractical or, indeed,
impossible.

3.2.1 Pure Nash Equilibria

To find the pure Nash equilibria in a bimatrix game, one can first determine the pure
best replies of player 2 to every pure strategy of player 1, and next determine the
pure best replies of player 1 to every pure strategy of player 2. Those pairs of pure
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strategies that are mutual best replies are the pure Nash equilibria of the game. To
illustrate this method, consider the bimatrix game

w X Y Z

T (22 40 1,1 372
M|03 1,5 44 3,4
B \20 2,1 51 1,0

)

First we determine the pure best replies of player 2 to every pure strategy of player
1, indicated by the stars at the corresponding entries. This yields:

w X Y Z
T (2,2 40 1,1 372
M| 03 1,5 44 3.4
B \20 2,1° 51% 1,0

Next, we determine the pure best replies of player 1 to every pure strategy of player
2, again indicated by the stars at the corresponding entries. This yields:

w X Y Z

T (22 40 1,1 3*2
M| 03 1,5 44 34
B \2:0 2,1 51 1,0

Putting the two results together yields:

w o X Y z
T [2*2* 40 1,1 3%2°
M| 03 1,5 44 34
B \ 25,0 2,1 551 1,0

We conclude that the game has three Nash equilibria in pure strategies, namely
(T,W), (T,Z), and (B,Y). In mixed strategy notation, these are the pairs (e',e'),
(e',e), and (e®,e?), respectively. In more extensive notation: ((1,0,0),(1,0,0,0)),
((1,0,0),(0,0,0,1)), and ((0,0,1),(0,0,1,0)), respectively.

Strictly speaking, one should also consider mixed best replies to a pure strategy
in order to establish whether this pure strategy can occur in a Nash equilibrium, but
it is not hard to see that any mixed best reply is a combination of pure best replies
and, thus, can never lead to a higher payoff. For instance, in the example above,
any strategy of the form (¢,0,0,1 — ¢) played against T yields to player 2 a payoff
of 2 (=2g+2(1 —gq)) and is therefore a best reply, but does not yield a payoff
higher than W or Z. However, the reader can check that all strategy pairs of the form
(T,(¢,0,0,1—¢q)) (0 < g < 1) are also Nash equilibria of this game.
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It is also clear from this example that a Nash equilibrium does not have to result
in ‘Pareto optimal’ payoffs': the payoff pair (4,4), resulting from (M,Y), is better
for both players than the equilibrium payoffs (2,2), resulting from (7, W). We know
this phenomenon already from the ‘Prisoners’ Dilemma’ game in Sect. 1.3.2.

3.2.2 2 x 2 Games

The best way to demonstrate the graphical solution method for 2 x 2 games is by
means of an example. Consider the bimatrix game

L R
T (2,2 0,1
(4.8) = B(lJ 13)'
Observe that this game has two Nash equilibria in pure strategies, namely (7,L) and
(B,R), cf. Sect.3.2.1. To find all Nash equilibria we determine the best replies of
both players.

First consider the strategy (¢,1 — ) of player 2. The best reply of player 1 to
this strategy is T or, equivalently, (1,0), if the expected payoff from playing T is
higher than the expected payoff from playing B, since then it is also higher than the
expected payoff from playing any combination (p,1 — p) of T and B. Hence, the
best reply is T if

2g+0(1—¢q)>1g+3(1—¢q),

soifg > i. Similarly, we find that B is the best reply if g < 2, and that 7" and B are
both best replies if g = i. In the last case, since 7" and B yield the same payoff to
player 1 against (¢, 1 — g), it follows that any (p, 1 — p) is a best reply. Summarizing,
if we denote the set of best replies of player 1 against (¢,1 —¢q) by Bi(g,1 —¢q), we
have

{(1,0)} if3<g<1
Bi(g.1—q)=1< {(p,1=p)|0<p<1} ifg=] 3.1
{(0,1)} if0<g<j.

By completely analogous arguments, we find that for a strategy (p,1 — p) the best
replies B2(p, 1 — p) of player 2 are given by

{(1,0)} if2<p<l
Bo(p.1—p)=2 {(q.1-q)|0<qg<1} ifp=2 (32)
{(0,1)} if0<p<3.

! Formally, a pair of payoffs is Pareto optimal if there is no other pair of payoffs which are at least
as high for both players and strictly higher for at least one player.
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By definition, the Nash equilibria of the game are the strategy combinations (p*,q*)
such that p* € B(q") and q* € B,(p*), i.e., the points of intersection of the best reply
functions in (3.1) and (3.2). A convenient way to find these points is by drawing the
graphs of Bi(g,1 —¢q) and B>(p,1 — p). We put p on the horizontal axis and ¢ on the
vertical axis and obtain the following diagram.

1 ®
3/4 O
q
®
0 P 2/3 1

The solid black curve is the best reply function of player 1 and the solid grey curve
is the best reply function of player 2. The solid circles indicate the three Nash
equilibria of the game: ((1,0),(1,0)), ((2/3,1/3),(3/4,1/4)),and ((0,1),(0,1)).

3.2.3 Strict Domination

The graphical method discussed in Sect.3.2.2 is suited for 2 x 2 games. It can be
extended to 2 x 3 and 3 x 2 games as well, see Sect. 13.2.2.

In general, for the purpose of finding Nash equilibria the size of a game can
sometimes be reduced by iteratively eliminating strictly dominated strategies. We
look for a strictly dominated (pure) strategy of a player, eliminate the associated
row or column, and continue this procedure for the smaller game until there is no
more strictly dominated strategy. In fact, it can be shown (see Sect. 13.3) that no
pure strategy that is eliminated by this procedure is ever played with positive prob-
ability in a Nash equilibrium of the original game. Thus, no Nash equilibrium of
the original game is eliminated. Also, no Nash equilibrium is added. It follows, in
particular, that the order in which strictly dominated strategies are eliminated does
not matter.

For completeness we first repeat the definition of strict domination, formulated
for a bimatrix game, and then present an example.

Definition 3.4 (Strict domination). Let (A,B) be an m x n bimatrix game and
i a row. The pure strategy €' is strictly dominated if there is a strategy p =
(p1,-..,pm) € A™ with p; = 0 such that pAe/ > e‘Ae/ for every j = 1,...,n. Sim-
ilarly, let j be a column. The pure strategy e/ is strictly dominated if there is
a strategy q = (q1,...,qn) € A" with g; = 0 such that e’Bq > e/Be/ for every
i=1,....,m
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Consider the following bimatrix game

T (22 2,1 22 0,0
(AB) = M[1,0 41 24 15
B \0,4 31 30 3,3

Observe, first, that no pure strategy (row) of player 1 is strictly dominated by another
pure strategy of player 1, and that no pure strategy (column) of player 2 is strictly
dominated by another pure strategy of player 2. Consider the second pure strategy,
X, of player 2. Then X is strictly dominated by any strategy of the form (¢,0,1—g¢,0)
with 411 <g< 2. So X can be eliminated, to obtain

w Yy z
T (2,2 2,2 0,0
M| 1,0 2,4 1,5
B \0,4 30 3,3

Next, observe that, in this reduced game for player 1, pure strategy M is strictly
dominated by any strategy of the form (p,0,1 — p) with é <p< % So M can be

eliminated to obtain
w Y Z

T (2,2 22 0,0
B \0,4 30 3,3)°
Here, finally, Z can be eliminated since it is strictly dominated by W, and we are left

with the 2 x 2 game
w Y

T (2,2 2,2

B \04 3,0/
This game can be solved by using the graphical method of Sect.3.2.2. Doing so
results in the diagram

1/3
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The solid black (grey) curve is the graph of player 1’s (2’s) best reply function.
In this case, they overlap in infinitely many points, resulting in the set of Nash
equilibria {((1,0),(g,1 —¢g))| 1/3 < g < 1}. In the original 3 x 4 game, the set of
all Nash equilibria is therefore equal to

{((1,0,0),(¢,0,1-¢,0)) [1/3<gq <1}.

Problems

3.1. Some Applications

In each of the following situations, set up the corresponding bimatrix game and
solve for all Nash equilibria.

(a) Pure coordination ([106], p.35). Two firms (Smith and Brown) decide whether
to design the computers they sell to use large or small floppy disks. Both players
will sell more computers if their disk drives are compatible. If they both choose for
large disks the payoffs will be 2 for each. If they both choose for small disks the
payoffs will be 1 for each. If they choose different sizes the payoffs will be —1 for
each.

(b) The welfare game ([106], p. 70). This game models a government that wishes to
aid a pauper if he searches for work but not otherwise, and a pauper who searches
for work only if he cannot depend on government aid, and who may not succeed in
finding a job even if the tries. The payoffs are 3,2 (for government, pauper) if the
government aids and the pauper tries to work; —1, 1 if the government does not aid
and the pauper tries to work; —1,3 if the government aids and the pauper does not
try to work; and 0,0 in the remaining case.

(c) Wage game ([45], p.51; [80]). Each of two firms has one job opening. Suppose
that firm i (i = 1,2) offers wage w;, where 0 < ;wl < wp < 2wy and wy # wy.
Imagine that there are two workers, each of whom can apply to only one firm. The
workers simultaneously decide whether to apply to firm 1 or firm 2. If only one
worker applies to a given firm, that worker gets the job; if both workers apply to one
firm, the firm hires one worker at random (with probability é) and the other worker
is unemployed (and has a payoff of zero).

(d) Marketing game. Two firms sell a similar product. Each percent of market share
yields a net payoff of 1. Without advertising both firms have 50% of the market.
The cost of advertising is equal to 10 but leads to an increase in market share of
20% at the expense of the other firm. The firms make their advertising decisions
simultaneously and independently. The total market for the product is of fixed size.

(e) Voting game. Two political parties, I and /1, each have three votes that they can
distribute over three party-candidates each. A committee is to be elected, consisting
of three members. Each political party would like to see as many as possible of their
own candidates elected in the committee. Of the total of six candidates those three
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that have most of the votes will be elected; in case of ties, tied candidates are drawn
with equal probabilities.

3.2. Matrix Games

(a) Since a matrix game is a special case of a bimatrix game, it may be ‘solved’ by
the method graphical method of Sect. 3.2.2. Do this for the game in Problem 2.1(a).
Compare your answer with what you found previously.

(b) Argue that a pair consisting of a maximin and a minimax strategy in a matrix
game is a Nash equilibrium; and that any Nash equilibrium in a matrix game must
be a pair consisting of a maximin and a minimax strategy. (You may give all your
arguments in words.)

(¢) A maximin strategy for player 1 in the bimatrix game (A,B) is a maximin
strategy in the matrix game A. Which definition is appropriate for player 2 in this
respect? With these definitions, find examples showing that a Nash equilibrium in a
bimatrix game does not have to consist of maximin strategies, and that a maximin
strategy does not have to be part of a Nash equilibrium.

3.3. Strict Domination
Consider the bimatrix game
w X Y Z

T (6,6 44 1,2 8,5
(A.B) = g (4,5 6,6 2,8 4,4)'

(a) Which pure strategy of player 1 or player 2 is strictly dominated by a pure
strategy?

(b) Describe all combinations of strategies W and Y of player 2 that strictly
dominate X.

(c) Find all equilibria of this game.

3.4. Iterated Elimination (1)

Consider the bimatrix game (from [145], p. 65)

w X Y Z
A /54 44 45 122
B| 37 87 58 106
cl210 76 46 95
D\ 44 59 410 10,9

(a) Find a few different ways in which strictly dominated strategies can be iteratedly
eliminated in this game.

(b) Find the Nash equilibria of this game.
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3.5. Iterated Elimination (2)

Consider the bimatrix game

2,0 1,1 42
3.4 1,2 2,3
1,3 0,2 3,0

Find the Nash equilibria of this game.

3.6. Weakly Dominated Strategies

A pure strategy i of player 1 in an m x n bimatrix game (A, B) is weakly dominated
if there a strategy p = (p1,...,pm) € A™ with p; = 0 such that pAe/ > e‘Ae’ for
every j = 1,...,n, and pAe/ > e'Ae/ for at least one j. The definition of a weakly
dominated strategy of player 2 is similar. In words, a pure strategy is weakly domi-
nated if there is some pure or mixed strategy that is always at least as good, and that
is better against at least one pure strategy of the opponent. Instead of iterated elim-
ination of strictly dominated strategies one might also consider iterated elimination
of weakly dominated strategies. The advantage is that in games where no strategy
is strictly dominated it might still be possible to eliminate strategies that are weakly
dominated. The main disadvantages are that some Nash equilibria of the original
game may be eliminated as well, and also that the order of elimination may matter.
These issues are illustrated by the following examples.

(a) Consider the bimatrix game

X v z
A /11,10 6,9 10,9
B| 11,6 6,6 9,6
c\ 12,10 69 9,11

First, determine the pure Nash equilibria of this game. Next, apply iterated elim-
ination of weakly dominated strategies to reduce the game to a 2 X 2 game and
determine the unique Nash equilibrium of this game.

(b) Consider the bimatrix game

X Y z
A/1,1 0,0 2,0
Bl12 1.2 1,1
c\o0 1,1 1,1

Show that different orders of eliminating weakly dominated strategies may result in
different Nash equilibria.
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3.7. A Parameter Game

Consider the bimatrix game
L R

T (1,1 a,0

B \0,0 2,1)°
where a € R. Determine the Nash equilibria of this game for every possible value
of a.

3.8. Equalizing Property of Mixed Equilibrium Strategies

(a) Consider again the game of Problem 3.3, which has a unique Nash equilibrium
in mixed strategies. In this equilibrium, player 1 puts positive probability p* on T
and 1 — p* on B, and player 2 puts positive probability g* on W and 1 —g* on Y.
Show that, if player 2 plays this strategy, then both 7 and B give player 1 the same
expected payoff, equal to the equilibrium payoff. Also show that, if player 1 plays
his equilibrium strategy, then both W and Y give player 2 the same expected payoff,
equal to the equilibrium payoff, and higher than the expected payoff from X or
from Z.

(b) Generalize the observations made in (a), more precisely, give an argument for
the following statement:

Let (A,B) be an m x n bimatrix game and let (p*,q*) be a Nash equilibrium. Then
each row played with positive probability in this Nash equilibrium has the same
expected payoff for player 1 against q* and this payoff is at least as high as the
payoff from any other row. Each column played with positive probability in this
Nash equilibrium has the same expected payoff for player 2 against p* and this
payoffis at least as high as the payoff from any other column.

You may state your argument in words, without using formulas.



Chapter 4
Finite Extensive Form Games

Most games derived from economic or political situations have in common with
most parlor games (like card games and board games) that they are not ‘one-shot’:
players move sequentially, and one and the same player may move more often than
once. Such games are best described by drawing a decision tree which tells us whose
move it is and what a player’s information is when that player has to make a move.

In this chapter these so-called ‘games in extensive form’ are studied. Attention
here is restricted to games with finitely many players (usually two), finitely many
decision moments and finitely many moves. See Sect. 1.3.3 for a few examples.
We also assume that each player has ‘complete information’, which — formally —
boils down to either there being no chance move in the game or, if a chance move
occurs, each player becoming informed about the outcome of that chance move.
This excludes, for instance, the game of entry deterrence with incomplete infor-
mation in Sect. 1.3.3: for the analysis of games with incomplete information see
Chap. 5. Chapter 14 extends the analysis of the present and the next chapter.

The first section of this chapter introduces games in extensive form. In order
to avoid a load of cumbersome notation the treatment will be somewhat informal
but — hopefully — not imprecise. In Sect. 4.2 we define strategies and the ‘strategic
form’ of a game: the definition of Nash equilibrium for extensive form games is then
practically implied. The focus in this chapter is on pure Nash equilibrium.

In the third section the concept of Nash equilibrium is refined by considering
subgame perfection (first introduced in [117] and [118]) and backward induction. A
further important refinement, called ‘perfect Bayesian equilibrium’, is treated in the
fourth section.

4.1 The Extensive Form

A game in extensive form is described by a game tree. Such a game tree is char-
acterized by nodes and edges. Each node is either a decision node of a player, or a
chance node, or an end node. Each edge corresponds to either an action of a player
or a choice made by chance, sometimes called a ‘move of Nature’.

H. Peters, Game Theory — A Multi-Leveled Approach. 43
© Springer-Verlag Berlin Heidelberg 2008
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()

) )

Fig. 4.1 A game in extensive form

() )

Figure 4.1 illustrates these and other concepts.

The upper node in the tree, the root of the tree, is a decision node of player 1 and
the starting point of the game. Player 1 chooses between three actions, namely A, B,
and C. Player 2 learns that player 1 has chosen either A or B, or C. The first event
is indicated by the dashed line connecting the two left decision nodes of player 2.
In that case, player 2 has two actions, namely / and r. We call the two connected
nodes an information set of player 2: player 2 knows that the play of the game
has arrived at one of these nodes but he does not know at which one. The fact that
player 2 has the same set of actions at each of the two nodes in this information
set is a necessary consequence: if this were not the case, player 2 would know at
which node he was (i.e., would know whether player 1 would have played A or
B) by simply examining the set of available actions, which would go against the
interpretation of an information set. This last argument is one consequence of the
more general assumption that the whole game tree is common knowledge between
the players: each player knows it, knows that the other player(s) know(s) it, knows
that the other player(s) know(s) that he knows it, etc.

If player 1 plays C, then there is a chance move, resulting with probability 1/4
in a decision node of player 2 (following U) and with probability 3/4 in a decision
node of player 1 (following D). At player 2’s decision node this player has two
actions, namely L and R. At player 1’s decision node this player has also two actions,
namely a and b. All the remaining nodes are end nodes, indicated by payoff pairs,
where the upper number is the payoff to player 1 and the lower number the payoff
to player 2. In this diagram, the payoffs are written as column vectors, but we also
write them as row vectors, whatever is convenient in a given situation.

We note that also the singleton decision nodes are called information sets. So in
this game, each player has two different information sets. Call an information set
nontrivial if it consists of at least two nodes. Games with nontrivial information sets
are called games with imperfect information. If a game has only trivial information
sets, then we say that it has perfect information. In the present example, if player 2
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Chance

0 06 606

Fig. 4.2 The game of Fig. 4.1, now with perfect information

(a) (b)

Fig. 4.3 Anexample of a cycle (a), and of a game without perfect recall (b)

observes whether player 1 chooses A or B, then the game has perfect information.
See Fig.4.2.

The chance move in our example is not a particularly interesting one, since the
players learn what the outcome of the chance move is.!

As mentioned before, we do not give a formal definition of a game in extensive
form: the examples in Figs.4.1 and 4.2 illustrate the main ingredients of such a
game.> An important condition is that the game tree should be a tree indeed: it
should have a single root and no ‘cycles’. This means that a situation like for
instance in Fig. 4.3a is not allowed.

We also consider only games in extensive form that have perfect recall: each
player remembers what he did in the past. For instance, a situation like in Fig. 4.3b,

! The situation is different if at least one player is not completely informed about the outcome of a
chance move and if this lack of information has strategic consequences. In that case, we talk about
games with ‘incomplete’ information, see Chap. 5.

2 See Chap. 14 for a formal definition.
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where player 1 at his lower information set does not recall which action he took
earlier, is not allowed.?

4.2 The Strategic Form

In a game in extensive form, it is extremely important to distinguish between
‘actions’ and ‘strategies’. An action is a possible move of a player at an information
set. In the games in Figs. 4.1 and 4.2 player 1 has the actions A, B, and C, and a and
b; and player 2 has the actions / and r, and L and R. In contrast:

A strategy is a complete plan to play the game.

This is one of the most important concepts in game theory. In the games in Figs. 4.1
and 4.2, a possible strategy for player 1 is:

Start by playing C; if the chance move of the game results in D, then play b.
Another strategy of player 1 is:
Start by playing A; if the chance move of the game results in D, then play b.

The last strategy might look strange since player 1’s first action A excludes him
having to take a further action. Nevertheless, also this plan is regarded as a possible
strategy.*

A possible strategy for player 2 in the game of Fig. 4.1 is:

Play [ if player 1 plays A or B, and play L if player 1 plays C and the chance
move results in U.

Note that player 2 cannot make his action contingent on whether player 1 plays A
or B, since player 2 does not have that information. In the perfect information game
of Fig. 4.2, however, player 2’s strategy should tell what player 2 plays after A and
what he plays after B. A possible strategy would then be:

Play [ if player 1 plays A, play r if player 1 plays B, and play L if player 1
plays C and the chance move results in U.

A more formal definition of a strategy of a player is:
A strategy is a list of actions, exactly one at each information set of that player.

In both our examples, a strategy of player 1 is therefore a list of two actions since
player 1 has two information sets. The number of possible strategies of player 1 is
the number of different lists of actions. Since player 1 has three possible actions at

3 The assumption of perfect recall plays a particular role for the relation between mixed and
behavioral strategies, see Chap. 14.

4 Although there is not much lost if we would exclude such strategies — as some authors do.
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his first information set and two possible actions at his second information set, this
number is equal to 3 x 2 = 6. The strategy set of player 1 can be denoted, thus, as

{Aa,Ab,Ba,Bb,Ca,Cb} .

Similarly, in the imperfect information game in Fig.4.1 player 2 has 2 x 2 =4
different strategies, and his strategy set can be denoted as

{IL,IR,rL,rR} .

In the perfect information game in Fig. 4.2 player 2 has three information sets and
two actions at each information set, so 2 x 2 x 2 = 8 different strategies, and his
strategy set can be denoted as

{IIL,IIR,IrL,IrR,rIL, IR, rrL,rrR} |

where the first letter is the action to be played if player 1 plays A and the second
letter is the action to be played if player 1 plays B.

There are several important reasons why we are interested in strategies. The
main reason is that by considering strategies the extensive form game is effectively
reduced to a one-shot game. Once we fix a profile (in the present example, pair) of
strategies we can compute the payoffs by following the path followed in the game
tree. Consider for instance the strategy pair (Cb,rL) in the game in Fig.4.1. Then
player 1 starts by playing C, and this is followed by a chance move; if the result
of this move is U, then player 2 plays L; if the result is D, then player 1 plays b.
Hence, with probability 1/4 the resulting payoff pair is (0,0) and with probability
3/4 the resulting payoff pair is (0,8). So the expected payoffs are 0 for player 1
and 6 for player 2. In this way, we can compute the payoffs in the game of Fig. 4.1
resulting from each of the 6 x 4 possible strategy combinations. Similarly, for the
game in Fig. 4.2 we compute 6 x 8 payoff pairs. We next write these payoff pairs in
a bimatrix, as in Chap. 3. The resulting bimatrix games are presented in Fig. 4.4.
Such a bimatrix game is called the strategic form of the extensive form game. The
definition of Nash equilibrium of an extensive form game is then almost implied:

A Nash equilibrium of a game in extensive form is a Nash equilibrium of the
strategic form.

This definition holds for pure Nash equilibria and, more generally, Nash equilibria
in mixed strategies, but in this chapter we restrict attention to pure strategies and
pure strategy Nash equilibria.

The pure strategy Nash equilibria of the bimatrix games in Fig. 4.4 can be found
by using the method of Sect.3.2.1. The equilibria correspond to the double-starred
entries. Thus, the imperfect information game has six different Nash equilibria in
pure strategies, and the perfect information game has ten different Nash equilibria
in pure strategies.

In the next two sections we examine these Nash equilibria more closely and
discuss ways to distinguish between them.
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IL IR rL rR
Aa 4,1 41 77,20 7,2F
Ab 41 4,1 7%2¢ 72*
Ba | 6,3 6,3* 4,0 4,0
Bb | 6*,3* 6,3* 4.0 4,0
Ca | 6,6 8,7 6,6 87"
Ch 0,6 2,7* 0,6 2,7*

lIL lIR IrL IrR rlL rIR rrL rrR
Aa /41 41 41 41 T2 720 720 1,20
Ab 41 41 41 4,1 742 7,2% 72 72*
Ba | 6°,3* 6,3* 40 40 6,3 6,3 4,0 4,0
Bb | 63" 6,3 40 40 63 63 40 4,0
Ca | 6,6 87" 6*,6 8.7* 6,6 8 7" 6,6 87"
Cb 0,6 27 06 2,77 06 2,7 06 27"

Fig. 4.4 The 6 x 4 strategic form of the game in Fig.4.1 and the 6 x 8§ strategic form of the game
in Fig.4.2

Chance

Fig. 4.5 The reduced game of Fig. 4.2

4.3 Backward Induction and Subgame Perfection

We first consider the perfect information game of Fig.4.2. This game can be ana-
lyzed using the principle of backward induction. This means that we start with the
nodes preceding the end nodes, and turn them into end nodes with payoffs result-
ing from choosing the optimal action(s). For the game under consideration this
yields the reduced game of Fig.4.5. Note that player 2’s strategy has already been
completely determined: it is the strategy r/R. Player 1 has chosen a at his lower
information set. Next, in this reduced game, player 1 chooses the action(s) that
yield(s) the highest payoff. Since A yields a payoff of 7, B a payoff of 6, and C
a(n expected) payoff of 1/4 x 8+3/4 x 8 = 8, it is optimal for player 1 to choose C.
Hence, we obtain the strategy combination (Ca, rIR) with payoffs (8,7). This is one
of the ten Nash equilibria of the game (see Fig. 4.4). It is called backward induction
equilibrium. It can be shown that applying the backward induction principle always
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results in a (pure) Nash equilibrium.> As a by-product, we obtain that a game of
perfect information has at least one Nash equilibrium in pure strategies, which can
be obtained by backward induction.

It is important to distinguish between backward induction equilibrium (in this
game, (Ca,rlR)) and backward induction outcome. The latter refers to the actual
play of the game or, equivalently, the equilibrium path, in this case (Ca, R). Observe
that there are other Nash equilibria in this game that generate the same outcome or
path, namely (Ca,lIR), (Ca,lrR), and (Ca,rrR): they all generate the path (Ca,R),
but differ in the left part of the tree, where player 2 makes at least one subopti-
mal decision. Hence, the principle of backward induction ensures that every player
always takes an optimal action, even in parts of the game tree that are not actually
reached when the game is played.

A more general way to do this is to use the idea of subgame perfection (first
explicitly formulated by Selten [117]). The definition of a subgame is as follows:

A subgame is any part of the game tree, starting at a single decision node
(trivial information set) of a player or a chance node, which is not connected
to the tree by any later information set.

The game in Fig. 4.2 has six different subgames, namely: the entire game; the game
starting from the chance move; and the four games starting from the four nodes
preceding the end nodes. The definition of a subgame perfect equilibrium is as
follows:

A subgame perfect equilibrium is a strategy combination that induces a Nash
equilibrium in every subgame.

To see what this means, consider again the game in Fig.4.2. In order for a strategy
combination to be a subgame perfect equilibrium, it has to induce a Nash equi-
librium in every subgame. Since the entire game is a subgame, a subgame perfect
equilibrium has to be a Nash equilibrium in the entire game, and, thus, the ten Nash
equilibria in this game are the candidates for a subgame perfect equilibrium. This
is the case for any game, and therefore a subgame perfect equilibrium is always
a Nash equilibrium. A subgame perfect equilibrium also has to induce an equilib-
rium in each of the four one-player subgames preceding the end nodes: although
we have not defined Nash equilibria for one-person games, the only reasonable def-
inition is that a player should choose the action that is optimal. In the example,
this means that (from left to right) the actions r, [, R, and a, should be chosen.
This implies that the players choose optimally also in the subgame starting from the
chance node. Summarizing, we look for the Nash equilibrium or equilibria that gen-
erate the mentioned actions, and the only Nash equilibrium that does this is again
(Ca,rIR). Hence, the unique subgame perfect equilibrium in this game is (Ca, riR).
It is not surprising that this is also the backward induction equilibrium: in games of
perfect information, backward induction equilibria and subgame perfect equilibria
coincide.

> This result is intuitive but nevertheless not that easy to prove formally. See, e.g., [102], Chap. 3.
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1

Fig. 4.6 A three-player game

Let us now consider the imperfect information version of the game in Fig. 4.1. In this
case, backward induction cannot be applied to the left part of the game tree: since
player 2 does not know whether player 1 has played A or B when he has to choose
an action in his left information set, he cannot choose between [ and r. In terms of
subgames, the only subgames are now: the entire game; the two subgames following
U and D; and the subgame starting from the chance move. Hence, the restrictions
imposed by subgame perfection are that player 1 should play a, player 2 should play
R, and the strategy combination should be a Nash equilibrium in the entire game.
Of the six Nash equilibria of the game (see Fig. 4.4), this leaves the two equilibria
(Ca,IR) and (Ca,rR). So these are the subgame perfect equilibria of the game in
Fig.4.1.

We conclude this section with an example which shows more clearly than the pre-
ceding example that subgame perfection can be more generally applied than the
backward induction principle. Consider the game in Fig. 4.6, which is a three player
game (for a change). Clearly, backward induction cannot be applied here. For sub-
game perfection, notice that this game has only two subgames: the entire game, and
the game starting with player 2’s decision node. The latter game is a game between
players 2 and 3 with strategic form

l r
L (3,1 0,0
R <0,0 1,3>
which has two pure Nash equilibria, namely (L,!) and (R, 7). Hence, a subgame
perfect equilibrium has to induce one of these two equilibria in the subgame. Note
that if the first equilibrium is played, then player 1 should play A, yielding him a
payoff of 3 rather than the payoff of 2 obtained by playing B. If the other equilibrium

is played in the subgame, then player 1 should obviously play B since A now yields
only 1. So the two subgame perfect equilibria are (A,L,[) and (B,R,r).
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Alternatively, one can first compute the (pure) Nash equilibria of the entire game.
The strategic form of the game can be represented as follows, where the left matrix
results from player 1 playing A and the right matrix from player 1 playing B.

l r l r

L (33,1 00,0 L (20000 24,007
I:4 R< 0,00 1,1*,3*> 1B R(Z*,O*,O* 2*,0*,0*)'

Best replies are marked by asterisks (for player 1 one has to compare the corre-
sponding payoffs over the two matrices), and the pure Nash equilibria are (A,L,1),
(B,L,r), (B,R,l), and (B,R,r). The subgame perfect equilibria are those where the
combination (L,/) or (R,r) is played, resulting in the two equilibria found above.

4.4 Perfect Bayesian Equilibrium

A further refinement of Nash equilibrium and of subgame perfect equilibrium is pro-
vided by the concept of ‘perfect Bayesian equilibrium’. Consider an information set
of a player in an extensive form game. A belief of that player is simply a probability
distribution over the nodes of that information set or, equivalently, over the actions
leading to that information set. Of course, if the information set is trivial (consists
of a single node) then also the belief is trivial, namely attaching probability 1 to the
unique node. Our somewhat informal definition of a perfect Bayesian equilibrium
is as follows.

A perfect Bayesian equilibrium in an extensive form game is a combination of
strategies and a specification of beliefs such that two conditions are satisfied:

1. The beliefs are consistent with the strategies under consideration.

2. The players choose optimally given the beliefs.

The first condition is a version of ‘Bayesian consistency of beliefs’ and the sec-
ond condition is ‘sequential rationality’.® The first condition says that the beliefs
should satisfy Bayesian updating with respect to the strategies whenever possible.
The second condition says that a player should maximize his expected payoff given
his beliefs. In order to see what these conditions mean exactly, we consider some
examples.

Consider the game in Fig. 4.1. This game has one nontrivial information set. Sup-
pose player 2’s belief at this information set is given by the probabilities ¢ at the
left node and 1 — o at the right node, where 0 < o < 1. That is, if this informa-
tion set is reached then player 2 attaches probability ¢ to player 1 having played
A and probability 1 — « to player 1 having played B. All the other information sets

© In the expression ‘perfect Bayesian equilibrium’ the word ‘Bayesian’ refers to the meaning of
‘consistency’, namely consistent with respect to Bayesian updating. There is also a stronger version
of consistency, resulting in ‘sequential equilibrium’. See [66] and Chap. 14.
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are trivial and therefore the beliefs attach probability 1 to each of the correspond-
ing nodes. Given these beliefs, applying condition (2) means that player 2 should
choose R and player 1 should choose a at the corresponding information sets. At
the nontrivial information set, player 2 should choose the action that maximizes his
expected payoff. The expected payoff from / isequalto - 14+ (1 — &) -3 =320
and the expected payoff from r is a -2+ (1 — o) -0 = 2. Hence, [/ is optimal if
3—20>2a,i.e.,if & <3/4 and ris optimal if a@ > 3 /4.

In this game, it is always optimal for player 1 to play C, given the actions R and a
following the chance move: C yields 8 whereas A or B yield at most 7. But if player
1 does not play A or B, then condition (1) above does not put any restriction on the
belief o of player 2. More precisely, if player 1 plays C then the nontrivial informa-
tion set of player 2 is reached with zero probability, and therefore the probability o
cannot by determined by Bayesian updating, that is, by computing the conditional
probability of reaching the left (or right) node in player 2’s information set. This
means that ¢ can be chosen in any way we like, but given & player 2 should choose
optimally, as computed before. Hence, we have essentially two perfect Bayesian
equilibria, namely (Ca, L) with beliefs o < 3/4 and (Ca,rL) with beliefs a > 3 /4.
Note that these are also the subgame perfect equilibria, now ‘backed up’ by a belief
of player 2 on his nontrivial information set.

It is not difficult to see that a perfect Bayesian equilibrium is always subgame
perfect, and therefore also a Nash equilibrium.” In fact, by assigning probabilities
to nodes in an information set, we essentially make it possible to apply backward
induction again, as is clear from the example.

In order to show that the perfect Bayesian equilibrium requirement can have
an additional impact compared to subgame perfection, consider the variation on
the game of Fig. 4.1, obtained by replacing the payoffs (4,1) after A and / by the
payoffs (4,3). One can check that the subgame perfect equilibria are still (Ca,/L)
and (Ca,rL). Obviously, a rational player 2 would never play r at his nontrivial
information set since / is always better, but subgame perfection does not rule this
out. But clearly, there is no belief that player 2 could have at this information set
that would make r optimal: if we denote player 2’s belief by (o, 1 — @) as before,
then r yields 20 whereas [ yields 3, which is always larger than 2. Hence, the
only perfect Bayesian equilibrium is (Ca, /L), with arbitrary belief of player 2 at his
nontrivial information set.

As another example, consider again the game of Fig. 4.6, reproduced in Fig. 4.7 with
belief (o, 1 — o) attached to the nodes in the information set of player 3.

There are two ways to find the perfect Bayesian equilibria of this game. One can
consider the subgame perfect equilibria and find appropriate beliefs. Alternatively,
one can start from scratch and apply a form of backward induction. To illustrate the
last method, start with player 3. If player 3 plays / then his (expected) payoff is .
If player 3 plays r then his (expected) payoff is 3 — 3o Therefore, [ is optimal if
o > 3/4 and r is optimal if a <3 /4.

7 For a more formal treatment see Chap. 14.
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Fig. 4.7 The three-player game of Fig. 4.6 with belief of player 3

Now suppose player 3 plays /. Then it is optimal for player 2 to play L. If player
2 plays L, then (1) in the definition of a perfect Bayesian equilibrium implies @ = 1:
that is, player 3 should indeed believe that player 2 has played L. Since 1 >3/4, 1
is the optimal action for player 3. Player 1, finally, should play A, yielding payoff 3
instead of the payoff 2 resulting from B. So we have a perfect Bayesian equilibrium
(A,L,I) with belief o = 1.

If player 3 plays r, then it is optimal for player 2 to play R, resulting in o = 0,
and thus making it optimal for player 3 to play r indeed. In this case, player 1 should
play B. Hence, we have a perfect Bayesian equilibrium (B, R, r) with belief a = 0.

Problems

4.1. Counting Strategies

Consider the following simplified chess game. White moves first (in accordance
with the usual rules). Black observes White’s move and then makes its move. Then
the game ends in a draw. Determine the strategy sets of White and Black. How many
strategies does Black have?

4.2. Extensive vs. Strategic Form

Each game in extensive form leads to a unique game in strategic form. The converse,
however, is not true. Consider the following bimatrix game and find two different
games in extensive form with this bimatrix game as strategic form:

ay,ay by,by erex fi,f2
cr,eo di,dy g1,82 hihy )
4.3. Entry Deterrence

Consider the entry deterrence game of Chap. 1, of which the extensive form is
reproduced in Fig. 4.8.
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Entrant

Incumbent

0,100

40,50 —10,0

Fig. 4.8 Entry deterrence, Problem 4.3

(a) Write down the strategic form of this game.

(b) Determine the Nash equilibria (in pure strategies). Which one is the backward
induction equilibrium? Which one is subgame perfect? In which sense is the other
equilibrium based on an ‘incredible threat’?

4.4. Choosing Objects

Four objects Oy, O3, O3, and O4 have different worths for two players 1 and 2, given
by the following table:

O, 0y O3 Oy

Worth for player 1: 1 2 3 4
Worth for player 2: 2 3 4 1

Player 1 starts with choosing an object. After him player 2 chooses an object, then
player 1 takes his second object, and finally player 2 gets the object that is left.

(a) Draw the decision tree for this extensive form game.
(b) How many strategies does each player have?

(c) Determine the backward induction or subgame perfect equilibria (in pure strate-
gies).

4.5. An Extensive Form Game

For the game in Fig.4.9, write down the strategic form and compute all Nash
equilibria, subgame perfect equilibria, and perfect Bayesian equilibria in pure
strategies.

4.6. Another Extensive Form Game

For the game in Fig.4.10, write down the strategic form and compute all Nash
equilibria, subgame perfect equilibria, and perfect Bayesian equilibria in pure
strategies.
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Fig. 4.9 Extensive form game of Problem 4.5

5)

(2)

Fig. 4.10 Extensive form game of Problem 4.6

(5)

4.7. A Centipede Game

In the centipede game, the two players move alternatingly. On each move, a player
can stop (S) or continue (C). On any move, a player is better off stopping the game
than continuing if the other player stops immediately afterward, but is worse off
stopping than continuing if the other player continues, regardless of the subsequent
actions. The game ends after a finite number of periods. Consider an example of this
game in Fig. 4.11.

(a) Determine the backward induction or subgame perfect equilibrium of this game.
What is the associated outcome?

(b) Show that there are other Nash equilibria, but that these always result in the same
outcome as the subgame perfect equilibrium.
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1 C 2 C 1 C 2 C 1 C 2 C

@ 3,6

2,0 1,3 4,2 3,5 6,4 5,7

Fig. 4.11 The centipede game of Problem 4.7

4.8. Finitely Repeated Games
Consider the prisoners’ dilemma game of Chap. 1:

C D
c(-1,-1 —-10,0
D\ 0,—-10 —-9,-9)°
Suppose that this game is played twice. After the first play of the game the players
learn the outcome of that play.

(a) How many strategies does each player have in this game?

(b) Determine the subgame perfect equilibrium or equilibria of this game. What if
the game is repeated more than twice but still finitely many times?

Consider, next, the following bimatrix game:

L R
T (2,1 1,0
B \5,1 44)°
Suppose again that the game is played twice, and that after the first play of the game
the players learn the outcome of that play.

(c) Determine the subgame perfect equilibrium or equilibria of this game. What if
the game is repeated more than twice but still finitely many times?

(d) Exhibit a Nash equilibrium (of the twice repeated game) where (B, L) is played

in the first round.

Consider the following bimatrix game:

L M R
T /88 0,9 0,0
cl9.0 00 3,1
B\0,0 1,3 3,3

(e) For the twice repeated version of this game, describe a subgame perfect equilib-
rium in which (7, L) is played in the first round.
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Consider, finally, the bimatrix game (cf. [9])

L M R
T /53 0,0 2,0
cl0,0 22 00
B \0,0 0,0 0,0

(f) For the twice repeated version of this game, describe a subgame perfect equilib-
rium in which (B, R) is played in the first round.



Chapter 5
Finite Games with Incomplete Information

In a game of imperfect information players may be uninformed about the moves
made by other players. Every one-shot, simultaneous move game is a game of imper-
fect information. In a game of incomplete information players may be uninformed
about certain characteristics of the game or of the players. For instance, a player may
have incomplete information about actions available to some other player, or about
payoffs of other players. Following Harsanyi [50], we model incomplete informa-
tion by assuming that every player can be of a number of different types. A type of a
player summarizes all relevant information (in particular, actions and payoffs) about
that player. Furthermore, it is assumed that each player knows his own type and,
given his own type, has a probability distribution over the types of the other play-
ers. Often, these probability distributions are assumed to be consistent in the sense
that they are the marginal probability distributions derived from a basic commonly
known distribution over all combinations of player types.

In this chapter we consider games with finitely many players, finitely many types,
and finitely many strategies. These games can be either static (simultaneous, one-
shot) or dynamic (extensive form games). A Nash equilibrium in this context is
also called ‘Bayesian equilibrium’, and in games in extensive form an appropriate
refinement is perfect Bayesian equilibrium. As will become clear, in essence the
concepts studied in Chaps. 3 and 4 are applied again.

In Sect.5.1 we present a brief introduction to the concept of player types in a
game. Section 5.2 considers static games of incomplete information, and Sect. 5.3
discusses so-called signaling games, which is the most widely applied class of
extensive form games with incomplete information.

5.1 Player Types

Consider a set of players, say N = {1,2,...,n}. For each player i € N, there is a finite
set of types T; which that player can have. If we denote by T =T} x Tp X ... X T,
the set

T={(t1,t2,...,tn) |1 ET1, 1 ETa,...,ta €Ty},

H. Peters, Game Theory — A Multi-Leveled Approach. 59
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i.e., the set of all possible combinations of types, then a game with incomplete infor-
mation specifies a separate game for every possible combinationt = (t1,t,...,,) €
T,1in a way to be explained in the next sections. We assume that each player i knows
his own type #; and, given ¢;, attaches probabilities

Pty tiotstivts - s talti)

to all type combinations t; € Ty, ..., t;i—1 € Ti_1, tiy1 € Ty 1, ..., ty, € T, of the other
players.

Often, these probabilities are derived from a common probability distribution p
over T, where p(t) is the probability that the type combination is #. This is also what
we assume in this chapter. Moreover, we assume that every player i, apart from his
type own type t;, also knows the probability distribution p. Hence, if player i has
type t;, then he can compute the probability that the type combination of the other
players is the vector (f1,...,ti_1,ti11,...,t,). Formally, this probability is equal to
the conditional probability

p(l‘l,...,ti,],ti,[pr],...,[,,)
p(ll cens iy tipy, .. tn|ti):
P Yoottty th)

where the sum in the denominator is taken over all possible types of the other play-
ers, i.e., over all possible 7} € Ty,...,1/_; € Ti_1,t{,| € Tiy1,...,t, € T,. Hence, the
sum in the denominator is the probability that player i has type ¢;.

Thus, a player in a game of incomplete information can make his actions depen-
dent on his own type but not on the types of the other players. However, since he
knows the probabilities of the other players’ types, he can compute the expected
payoffs from taking specific actions. In the next two sections we will see how this
works in static and in extensive form games.

5.2 Static Games of Incomplete Information

Instead of giving formal definitions we discuss a few examples.

Battle-of-the-Sexes with One-Sided Incomplete Information

The first example (taken from [96], p.273) is a variant of the Battle-of-the-Sexes
(see Sect. 1.3.2) in which player 1 (the man) does not know whether player 2 (the
woman) wants to go out with him or avoid him. More precisely, player 1 does not
know whether he plays the game y or the game n, where these games are as follows:

S B S B

S (2,1 0,0 S (2,0 0,2
Y B\0o0 1,2 " slo1 1,0)°
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Chance

2 0 0 0 0 1

1 0 0 1 2 0
Fig. 5.1 An extensive form representation of the Battle-of-the-Sexes game with incomplete
information

) )

N SB BS BB
S (27,05 19,15 15,0 0,1
B\ 005 050 0515 11

Fig. 5.2 The strategic form of the game in Fig. 5.1. Player 1 is the row player

Player 1 attaches probability 1/2 to each of these games, and player 2 knows this.
In the terminology of types, this means that player 1 has only one type, simply
indicated by ‘1°, and that player 2 has two types, namely y and n. So there are two
type combinations, namely (1,y) and (1,n), each occurring with probability 1/2.
Player 2 knows player 1’s type with certainty, and also knows her own type, that
is, knows which game is actually being played. Player 1 attaches probability 1/2 to
each type of player 2.

What would be a Nash equilibrium in a game like this? To see this, it is helpful
to model the game as a game in extensive form, using the tree representation of
Chap. 4. Such a tree representation is given in Fig. 5.1.

The game starts with a chance move which selects which of the two bimatrix
games is going to be played. In the terminology of types, it selects the type of player
2. Player 2 is informed but player 1 is not. Player 2 has four different strategies but
player 1 only two. From this strategic form it is apparent that every Nash equilibrium
is subgame perfect, since there are no nontrivial subgames. Also, every Nash equi-
librium is perfect Bayesian, since the only nontrivial information set (of player 1)
is reached with positive probability for any strategy of player 2, and thus the beliefs
are completely determined by player 2’s strategy through Bayesian updating.

The strategic form of the game is given in Fig.5.2. There, the first letter in a
strategy of player 2 says what player 2 plays if y is chosen by the Chance move, and
the second letter says what player 2 plays if n is chosen. Also the best replies are
indicated.
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From the strategic form it is apparent that the game has a unique Nash equi-
librium in pure strategies, namely (S,SB).! In this equilibrium player 1 plays S,
type y of player 2 plays S and type n of player 2 plays B. Such an equilibrium is also
called Bayesian equilibrium but, clearly, it is a Nash equilibrium of an appropriately
specified extensive form (or strategic form) game.

The (pure) Nash equilibrium or equilibria of a game like this can also be found
without drawing the extensive form and computing the strategic form. Suppose first
that player 1 plays S in an equilibrium. Then the best reply of player 2 is to play
S if her type is y and B if here type is n. The expected payoff to player 1 is then
1; playing B against this strategy of player 2 yields only 0.5. So (S,SB) is a Nash
equilibrium. If, on the other hand, player 1 plays B, then the best reply of player 2
if her type is y, is B and if her type is n it is S. This yields a payoff of 0.5 to player
1, whereas playing S against this strategy of player 2 yields payoff 1. Hence, there
is no equilibrium where player 1 plays B. Of course, this is also apparent from the
strategic form, but the argument can be made without complete computation of the
strategic form.

Battle-of-the-Sexes with Two-Sided Incomplete Information

The next example (cf. [96], p.277) is a further variation of the Battle-of-the-Sexes
game in which neither player knows whether the other player wants to be together
with him/her or not. It is based on the four bimatrix games in Fig. 5.3. These four
bimatrix games correspond to the four possible type combinations of players 1 and
2. The probabilities of these four different combinations are given in Table 5.1.
One way to find the Nash equilibria of this game is to draw the extensive form

S B S B
S (2,1 0,0 S (2,0 02
Y2 g loo 1,2) Y2 B lo1 1,0
S B S B

.S (0,1 2,0 .S (0,0 2,2
my2s g (1,0 0,2 mms g 1,1 0,0
Fig. 5.3 Payoffs for Battle-of-the-Sexes with two types per player

Table 5.1 Type probabilities for Battle-of-the-Sexes with two types per player
t yiy2 yimz nyz  nm

pt)  2/6  2/6  1/6  1/6

! One may use the graphical method of Chap. 3 to find possible other, mixed strategy equilibria.
Here we focus on pure Nash equilibrium.
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and compute the associated strategic form: see Problem 5.1. Alternatively, we can
systematically examine the sixteen possible strategy pairs, as follows.
The conditional type probabilities can easily be computed from Table 5.1. For

instance,
p(y1y2) 2/6

PO = L pim) T (2/6)+ 2/6) ~ Y

The other conditional probabilities are computed in the same way, yielding:
plnalyr) =172, ply2lni) =1/2,  p(nalni) =1/2,

pOily2) =2/3, p(uily2) =1/3, piln2) =2/3, p(nifn2) =1/3.

Suppose player 1 plays the strategy SS, meaning that he plays S (the first letter) if his
type is y; and also S (the second letter) if his type is n;. (Throughout this argument
the first letter of a strategy refers to the y-type and the second letter to the n-type.)
Then the expected payoff for type y, of player 2 if she plays Sis (2/3)-14(1/3)-
1 =1 and if she plays Bitis (2/3)-0+ (1/3)-0= 0. Hence the best replay of type
y2 is S. Similarly, for type nj of player 2, playing S yields 0 and playing B yields 2,
so that B is the best reply. Hence, player 2’s best reply against SS is SB. Suppose,
now, that player 2 plays SB. Then playing S yields type y; of player 1 an expected
payoffof (1/2)-2+(1/2)-0=1 and playing B yields (1/2)-0+(1/2)-1=1/2,s0
that S is the best reply for type y; of player 1. Similarly, for type n; playing S yields
(1/2)-0+(1/2)-2=1 whereas playing B yields 1/2. Hence, S is the best reply for
type n;. Hence, player 1’s best reply against SB is SS. We conclude that (SS,SB) is
a Nash equilibrium.

Next, suppose player 1 plays SB. Similar computations as before yield that player
2 has two best replies, namely SB and BB. Against SB player 1’s best reply is SS
(as established in the previous paragraph) and not SB, so this does not result in a
Nash equilibrium. Against BB player 1’s best reply is BS and not SB, so also this
combination is not a Nash equilibrium.

Third, suppose that player 1 plays BS. Then player 2 has two best replies, namely
BS and BB. Against BS the best reply of player 1 is SS and not BS, so this combi-
nation is not a Nash equilibrium. Against BB, player 1’s best reply is BS, so the
combination (BS, BB) is a Nash equilibrium.

Finally, suppose player 1 plays BB. Then player 2’s best reply is BS. Against
this, player 1’s best reply is SS and not BB. So BB of player 1 is not part of a Nash
equilibrium.

We conclude that the game has two Nash equilibria in pure strategies, namely:
(1) both types of player 1 play S, type y, of player 2 also plays S but type n;
of player 2 plays B; (2) type y; of player 1 plays B, type n; plays S, and both
types of player 2 play B. Again, these equilibria are also called Bayesian Nash
equilibria.
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5.3 Signaling Games

The extensive form can be used to examine a static game of incomplete information,
usually by letting the game start with a chance move that picks the types of the
players (see Sect.5.2). More generally, the extensive form can be used to describe
incomplete information games where players move sequentially. An important class
of such games is the class of signaling games. One of the first examples is the Spence
[128] job market signaling model (see Problem 5.4).

A (finite) signaling game starts with a chance move that picks the type of player
1. Player 1 is informed about his type but player 2 is not. Player 1 moves first, player
2 observes player 1’s action and moves next, and then the game ends. Such a game
is called a signaling game because the action of player 1 may be a signal about his
type: that is, from the action of player 1 player 2 may be able to infer something
about the type of player 1.

An Example

Consider the example in Fig. 5.4. (The numbers between square brackets at player
2’s decision nodes are the beliefs of player 2, which are used in a perfect Bayesian
equilibrium below.) In this game, player 1 learns the result of the chance move but
player 2 does not. In the terminology of Sect. 5.1, there are two type combinations,
namely (¢,2) and (#',2), each one occurring with probability 1/2.

In order to analyze this game and find the (pure strategy) Nash equilibria, one
possibility is to first compute the strategic form. Both players have four strategies.
Player 1 has strategy set

{LL,LR,RL,RR},

L t R
L 2
.5
@ Chance
.5
@
L t R

0,2

Fig. 5.4 A signaling game
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uu ud du dd
LL [ 3,7° 37" 4,1 4,1
LR 2,3 2,5 570 5%2
RL | 4,5* 24 22 0,1
RR 3,1 1,2 3,1 1,2°

Fig. 5.5 The strategic form of the game in Fig. 5.4

where the first letter refers to the action of type ¢ and the second letter to the action
of type ¢’. Player 2 has strategy set

{uu,ud,du,dd} ,

where the first letter refers to the action played if player 1 plays L (hence, at player
2’s left information set) and the second letter to the action played if player 1 plays
R (hence, at player 2’s right information set). The (expected) strategic form of the
game can be computed in the usual way and is presented in Fig. 5.5. The (pure) best
replies are marked with an asterisk. This shows that the game has two Nash equi-
libria, namely (RL,uu) and (LL,ud). What else can be said about these equilibria?
Observe that the only subgame of the game is the entire game, so that both equilibria
are trivially subgame perfect. Are they also perfect Bayesian?>

First consider the equilibrium (RL,uu). The consistency requirement on the
beliefs (see Sect.4.4) requires o = 0 and B = 1. Given these beliefs, uu is indeed
the best reply of player 2. This should not come as a surprise, since it is implicit in
the computation of the strategic form. Thus, the pair (RL,uu) is a perfect Bayesian
equilibrium with beliefs @ = 0 and 8 = 1. Such an equilibrium is called separating:
it separates the two types of player 1, since these types play different actions. In this
equilibrium, the action of player 1 is a signal for his type, and the equilibrium is
‘information revealing’.

Next, consider the Nash equilibrium (LL,ud). Consistency of beliefs forces
o = 1/2: since each type of player 1 plays L, the conditional probabilities of the two
decision nodes in the left information set of player 2 are both equal to 1/2. Given
o = 1/2 it follows that u is optimal at player 2’s left information set (in fact, in this
game u is optimal for any ), but again this already follows from the computation
of the strategic form. The beliefs (3,1 — ), however, are not restricted by the con-
sistency requirement since, in equilibrium, the right information set is reached with
probability 0; but they should be such that player 2’s action d is optimal at player 2’s
right information set, by the sequential rationality requirement. Hence, the expected
payoft to player 2 from playing d should be at least as large as the expected payoff
from playing u, so 4(1 — B) > 23, which is equivalent to B < 2/3. Thus, (LL,ud) is
a perfect Bayesian equilibrium with beliefs o = 1/2 and § < 2/3. Such an equilib-
rium is called pooling, since it ‘pools’ the two types of player 1. In this equilibrium,
the action of player 1 does not reveal any information about his type.

2 See Sect. 4.4.
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The Intuitive Criterion

In a perfect Bayesian equilibrium the only requirement on a player’s beliefs is the
consistency requirement, saying that whenever possible a belief should assign the
conditional probabilities to the nodes in an information set derived from the com-
bination of strategies under consideration. In the literature, there are proposals for
further restrictions on beliefs in order to exclude unreasonable or implausible ones.
An important restriction is the intuitive criterion proposed in [19]. In words, this
criterion says the following. Consider a perfect Bayesian equilibrium in a signal-
ing game. Then a belief of player 2 (the uninformed player) on an information set
should attach probability zero to any type of player 1 that could never possibly gain
(compared to the equilibrium payoff) by playing the action leading to this informa-
tion set. In the case, however, that this would exclude all possible types of player 1,
then the criterion does not put any restriction on player 2’s belief.

Let us apply this criterion to the perfect Bayesian equilibrium (LL,ud) of the
game in Fig. 5.4. The equilibrium payoff to type 7 of player 1 is equal to 2. Note that
type t of player 1 could have a reason to deviate to R, since then he could possibly
get a payoff of 4. The equilibrium payoff to type ¢’ of player 1 is 4. Type ', however,
could get at most 2 (in fact, would always get 2 in this game) by deviating to R. The
intuitive criterion now says that it is not reasonable for player 2 to assume that type
¢’ would ever deviate to R. Formally, the intuitive criterion implies 8 = 1. With this
belief, however, (LL,ud) is no longer a perfect Bayesian equilibrium.

Applied to a separating equilibrium like (RL,uu), the intuitive criterion has no
bite, since there the beliefs are completely determined by the actions, which are
optimal in equilibrium.

Computing Perfect Bayesian Equilibria in the Extensive Form

The perfect Bayesian equilibria can also be found without first computing the
strategic form.

First, assume that there is an equilibrium where player 1 plays LL. Then @ = 1/2
by the consistency requirement, and player 2’s optimal action at the left information
set following L is u. At the right information set, player 2’s optimal action is u if
B >2/3and d if B < 2/3. If player 2 would play u after R, then type ¢ of player
1 would improve by playing R instead of L, so this cannot be an equilibrium. If
player 2 plays d after R, then no type of player 1 would want to play R instead of L.
We have established that (LL,ud) with beliefs o = 1/2 and  <2/3 is a (pooling)
perfect Bayesian equilibrium. (We have already seen above that it does not satisfy
the intuitive criterion.)

Second, assume player 1 plays LR in equilibrium. Then player 2’s beliefs are
o =1 and B = 0, and player 2’s best reply is ud. But then type ¢ of player 1 would
gain by playing R instead of L, so this cannot be an equilibrium.



Problems 67

Third, assume player 1 plays RL in equilibrium. Then ¢ = 0, B = 1, and player
2’s best reply is uu. Against uu, RL is player 1’s best reply, so that (RL,uu) is a
(separating) perfect Bayesian equilibrium with beliefs o« =0 and 8 = 1.

Fourth, suppose player 1 plays RR in equilibrium. Then 8 = 1/2 and player 2’s
best reply after R is d. After L, player 2’s best reply is u for any value of or. Against
ud, however, type ¢ of payer 1 would gain by playing L instead of R. So RR is not
part of an equilibrium.

Of course, these considerations can also be based on the strategic form, but we
do not need the entire strategic form to find the perfect Bayesian equilibria.

Problems

5.1. Battle-of-the-Sexes

Draw the extensive form of the Battle-of-the-Sexes game in Sect. 5.2 with payoffs
in Fig. 5.3 and type probabilities in Table 5.1. Compute the strategic form and find
the pure strategy Nash equilibria of the game.

5.2. A Static Game of Incomplete Information

Compute all pure strategy Nash equilibria in the following static game of incomplete
information:

1. Chance determines whether the payoffs are as in Game 1 or as in Game 2, each
game being equally likely.
2. Player 1 learns which game has been chosen but player 2 does not.

The two bimatrix games are:

L R L R
T (1,1 0,0 T (0,0 0,0
Game 1: B <070 0’0> Game 2: B (0,0 2,2)

5.3. Another Static Game of Incomplete Information

Player 1 has two types, 7; and f{, and player 2 has two types, 7, and 5. The
conditional probabilities of these types are:

pleln) =1, p(nln)=3/4, pnln)=3/4, plnln)=0.

(a) Show that these conditional probabilities can be derived from a common distri-
bution p over the four type combinations, and determine p.

As usual suppose that each player learns his own type and knows the conditional
probabilities above. Then player 1 chooses between T and B and player 2 between
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L and R, where these actions may be contingent on the information a player has.
The payoffs for the different type combinations are given by the bimatrix games

L R L R L R
i T (2,2 0,0 Jo T (2,2 0,0 e T (2,2 0,0
2= p\3,0 1,1 12 p\0,0 1,1 2= ploo 1,1)°
where the type combination (¢1,1}) is left out since it has zero probability.

(b) Compute all pure strategy Nash equilibria for this game.

5.4. Job-Market Signaling

(Cf. [128].) A worker can have either high or low ability, each with probability 1/2.
A worker knows his ability, but a firm which wants to hire the worker does not.
The worker, whether a high or a low ability type, can choose between additional
education or not. Choosing additional education does not enlarge the worker’s pro-
ductivity but may serve as a signal to the firm: a high ability worker can choose
education without additional costs, whereas for a low ability worker the cost of edu-
cation equals e > 0. The firm chooses either a high or a low wage, having observed
whether the worker took additional education or not. The payoff to the firm equals
the productivity of the worker minus the wage. The payoff to the worker equals the
wage minus the cost of education; if, however, this payoff is lower than the worker’s
reservation utility, he chooses not to work at all and to receive his reservation utility,
leaving the firm with O payoff. Denote the productivities of the high and low ability
worker by pf’ and p’, respectively, and denote the high and low wages by w" and
w!. Finally, let 7/ and r* denote the reservation utilities of both worker types. (All
these numbers are fixed.)

(a) Determine the extensive form of this game.
Choose p' =10, pt =8, wh=6,w =4, /1 =3, /L =2, ¢=3.

(b) Compute the strategic form of this game, and determine the pure strategy Nash
equilibria. Also compute the perfect Bayesian equilibrium or equilibria in pure
strategies, determine whether they are separating or pooling and whether they satisfy
the intuitive criterion.

5.5. A Joint Venture

(Cf. [106], p.65.) Software Inc. and Hardware Inc. are in a joint venture together.
The parts used in the joint product can be defective or not; the probability of defec-
tive parts is 0.7, and this is commonly known before the start of the game. Each can
exert either high or low effort, which is equivalent to costs of 20 and 0. Hardware
moves first, but software cannot observe his effort. Revenues are split equally at the
end. If both firms exert low effort, total profits are 100. If the parts are defective, the
total profit is 100; otherwise (i.e., if the parts are defective), if both exert high effort,
profit is 200, but if only one player does, profit is 100 with probability 0.9 and 200
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40,50
Entrant
0,100 @ .
o E :
0, 1
50% : ®-10.0
Chance @ Inc.:
1
1 40,50
50% : i
1
0,100 @ 0 @ £
Entrant

—10,x

Fig. 5.6 The entry deterrence game of Problem 5.6

with probability 0.1. Hardware discovers the truth about the parts by observation
before he chooses effort, but software does not.

(a) Determine the extensive form of this game. Is this a signaling game?
(b) Determine the strategic form of this game.

(c) Compute the (pure) Nash equilibria? Which one(s) is (are) subgame perfect?
Perfect Bayesian?

5.6. Entry Deterrence

The entry deterrence game of Chap. 1 is reproduced in Fig. 5.6. For this game, com-
pute the pure strategy perfect Bayesian equilibria for every value of x € R. Which
one(s) is (are) pooling or separating? Satisfy the intuitive criterion?

5.7. The Beer—Quiche Game

(Cf. [19].) Consider the following two-player signaling game. Player 1 is either
‘weak’ or ‘strong’. This is determined by a chance move, resulting in player 1 being
‘weak” with probability 1/10. Player 1 is informed about the outcome of this chance
move but player 2 is not. Player 1 has two actions: either have quiche (Q) or have
beer (B) for breakfast. Player 2 observes the breakfast of player 1 and then decides
to duel (D) or not to duel (N) with player 1. The payoffs are as follows. If player 1
is weak and eats quiche then D and N give him payoffs of 1 and 3, respectively; if
he is weak and drinks beer, then these payoffs are 0 and 2, respectively. If player 1
is strong, then the payoffs are 0 and 2 from D and N, respectively, if he eats quiche;
and 1 and 3 from D and N, respectively, if he drinks beer. Player 2 has payoff 0
from not duelling, payoff 1 from duelling with the weak player 1, and payoff —1
from duelling with the strong player 1.
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(a) Draw a diagram modelling this situation.

(b) Compute all the pure strategy Nash equilibria of the game. Find out which of
these Nash equilibria are perfect Bayesian equilibria. Give the corresponding beliefs
and determine whether these equilibria are pooling or separating, and which ones
satisfy the intuitive criterion.

5.8. Issuing Stock

The following financing problem is studied in [86]. The players are a manager (M)
and an existing shareholder (O). The manager is informed about the current value
of the firm a and the NPV (net present value) of a potential investment opportu-
nity b, but the shareholder only knows that high values and low values each have
probability 1/2. More precisely, either (a,b) = (a,b) or (a,b) = (a,b), each with
probability 1/2, where a < a and b < b. The manager moves first and either proposes
to issue new stock E (where E is fixed) to undertake the investment opportunity, or
decides not to issue new stock. The existing shareholder decides whether to approve
of the new stock issue or not. The manager always acts in the interest of the existing
shareholder: their payoffs in the game are always equal.

If the manager decides not to issue new stock, then the investment opportunity
is foregone, and the payoff is either a or a. If the manager proposes to issue new
stock but this is not approved by the existing shareholder, then again the investment
opportunity is foregone and the payoff is either a or a. If the manager proposes to
issue new stock E and the existing shareholder approves of this, then the payoff
to the existing shareholder is equal to [M/(M + E)](a+ b+ E) in the good state
(a,b) and [M/(M +E)](a+ b+ E) in the bad state (a,b); here, M = (1/2)[a+ b] +
(1/2)[a+ b] is the price of the existing shares if the investment is undertaken.

1,2
L t R
L 2
.5
@® Chance
.5
@
L t R

Fig. 5.7 The signaling game of Problem 5.9(a)
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(v)

Fig. 5.8 The signaling game of Problem 5.9(b). Each type of player 1 has probability 1/3

O ONO RO

(a) Set up the extensive form of this signaling game.

(b) Take a = 150, a = 50, b = 20, b = 10, and E = 100. Compute the pure strategy
perfect Bayesian equilibria of this game. Are they pooling, separating? How about
the intuitive criterion? Try to interpret the results from an economic point of view.

(c) Repeat the analysis of (b) for b = 100.

5.9. More Signaling Games

(a) Compute the pure strategy perfect Bayesian equilibria and test for the intuitive
criterion in the signaling game in Fig.5.7.

(b) Consider the signaling game in Fig. 5.8, where the chance move is not explic-
itly drawn in order to keep the diagram simple. Compute the pure strategy perfect
Bayesian equilibria and test for the intuitive criterion.



Chapter 6
Noncooperative Games: Extensions

In Chaps.2-5 we have studied noncooperative games in which the players have
finitely many (pure) strategies. The reason for the finiteness restriction is that in
such games special results hold, like the existence of a value and optimal strategies
for two-person zerosum games, and the existence of a Nash equilibrium in mixed
strategies for finite nonzerosum games.

The basic game-theoretical concepts discussed in these chapters can be applied
to much more general games. Once, in a game-theoretic situation, the players,
their possible strategies, and the associated payoffs are identified, the concepts of
best reply and of Nash equilibrium can be applied. Also the concepts of backward
induction, subgame perfection, and perfect Bayesian equilibrium carry over to quite
general extensive form games. In games of incomplete information, the concept of
player types and the associated Nash equilibrium (Bayesian Nash equilibrium) can
be applied also if the game has infinitely many strategies.

The bulk of this chapter consists of various, diverse examples verifying these
claims. The main objective of the chapter is, indeed, to show how the basic game-
theoretic apparatus can be applied to various different conflict situations; and, of
course, to show these applications themselves.

In Sect. 6.1 we generalize some of the concepts of Chaps. 2—-3. This section serves
only as background and general framework for the examples in the following sec-
tions. Concepts specific to extensive form games and to incomplete information
games are adapted later, when they are applied. In Sects. 6.2—6.7 we discuss, respec-
tively, Cournot competition with complete and incomplete information, Bertrand
competition, Stackelberg equilibrium, auctions with complete and incomplete infor-
mation, mixed strategies with objective probabilities, and sequential bargaining.
Variations on these topics and various other topics are treated in the problem section.

6.1 General Framework: Strategic Games

An n-person strategic game is a 2n + 1-tuple

G=(N,Si,...,Sn,u1,...,up),

H. Peters, Game Theory — A Multi-Leveled Approach. 73
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where

e N={l,...,n},withn € N, n > 1, is the set of players;

o foreveryi € N, S, is the strategy set of player i;

e foreveryie N, u;:S=S; x--- xS, — R is the payoff function of player i;
i.e., for every strategy combination (sy,...,s,) € S where 51 € Sy, ..., s, € Sy,
ui(sy,...,5,) € Ris player i’s payoff.

A best reply of player i to the strategy combination (s1,...,8;—1,8i+1,.--,8,) of the
other players is a strategy s; € S; such that

/
Mi(Sl,..-,S1'7]7Si,Si+17---7Sn) Z ui(s]7...7Sl'7]’sl'7sl'+l’...,s”)

forall 5. € S;.

A Nash equilibrium of G is a strategy combination (s7,...,s;;) € S such that for
each player i, s7 is a best reply to (s7,..., 87,87, ,--.,5,).

A strategy s} € S; of player i is strictly dominated by s; € S; if

/
Ui(STy ey Si 15 8isSic Ty ySn) > Ui(S1y oo Sim1, 87, Sid 152 ,5n)

forall (s1,...,8i—1,8it15--,5n) €SI X+ XS;_1 X Siy1 X+ XSy, i.e., for all strategy
combinations of players other than i. Clearly, a strictly dominated strategy is never
used in a Nash equilibrium.

For completeness we also define weak domination. A strategy s; € S; of player i
is weakly dominated by s; € S; if

/
Mi(Sl,..-,SF],SZ‘,SHL],---,Sn) Z ui(s]7...7Sl'7]’sl'7sl'+l’...,s”)

forall (sy,...,8—1,8i+15.--,82) €S X -+ X Si_1 X Si1 X -+ X Sy, such that at least
once this inequality is strict.

The reader should verify that matrix games (Chap. 2) and bimatrix games (Chap. 3)
are special cases of this general framework. The same is true for the concepts of
Nash equilibrium and domination discussed in these chapters.

6.2 Cournot Quantity Competition

6.2.1 Simple Version with Complete Information

In the simplest version of the famous Cournot [21] model, two firms producing a
homogenous good are competing in quantity. Each firm offers a quantity of this
good on the market. The price of the good depends on the total quantity offered:
the higher this quantity is, the lower the price of the good. The profit for each firm
is equal to total revenue (price times quantity) minus total cost. This gives rise to
a two-person game in which the players’ strategies are the quantities offered and
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the payoff functions are the profit functions. In a simple version, the price depends
linearly on total quantity and marginal cost is constant while there are no fixed costs.
Specifically, we study the following game:

(a) The set of playersis N = {1,2}.

(b) Each player i = 1,2 has set of strategies S; = [0, ), with typical element g;.

(c) The payoff function of player i is I1;(q1,92) = qiP(q1,92) — cqi, for all g1, ¢ >
0, where

_Ja—q—q2 it qit+q2<a
P(q17q2){0 if q1+q2>a

is the market price of the good and c is marginal cost, with @ > ¢ > 0.

A Nash equilibrium in this game is a pair (qlc7 qg), with qlc7 qg > 0, of mutually best
replies, that is,

I (¢5,45) > i (q1,45), Th(q§,q5) >Ta(qf,q2) forall gi,q2>0.

For obvious reasons, this equilibrium is also called Cournot equilibrium. To find
the equilibrium, we first compute the best reply functions, also called reaction func-
tions. The reaction function f3;(g2) of player 1 is found by solving the maximization
problem

I
max 1(91,92)

for each given value of g, > 0. For g, < a this means maximizing the function

qgila—q1—q2) —cqi =qi(a—c—q1—q2)

for g; > 0. For ¢» < a — ¢, the maximum is obtained by setting the derivative
with respect to g;, namely the function a — 2¢g; — g2 — ¢, equal to zero, yielding
g1 = (a—c—q)/2." For a—c¢ < g3 < a, it is optimal to take g = 0 since other-
wise the profit is negative. Note that, indeed, ¢; + ¢» < a in these cases. If g, > a,
then P(q1,¢2) = 0 independent of the choice of ¢;, and then player 1 maximizes
profit —cg; by choosing g; = 0 if ¢ > 0 and ¢q; € [0,00) if ¢ = 0. Summarizing,
we have

{“9"} ifgpp<a-—c

{0} ifa—c<qgpr<a
_ 6.1
B1(q2) {0} ifa<gyandc>0 b
[0, 0) ifa < gy andc=0.

(Since, in all cases of interest, this reaction function is single-valued — if ¢ = 0 and
a < g we may just as well take g; = 0 since this does not occur in equilibrium

I The second derivative is equal to —2 so that, indeed, we have a maximum.
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q2

0 agc a—c q1

Fig. 6.1 The Cournot model: the solid black curve is the reaction function of player 1 and the solid
gray curve the reaction function of player 2. The point ¢€ is the Nash-Cournot equilibrium. The
two isoprofit curves of the players through the Nash equilibrium are drawn, and the shaded area
consists of the quantity combinations that Pareto dominate the equilibrium

anyway — usually the braces are omitted.) By completely symmetric arguments we
obtain for the reaction function of player 2:

{51}y ifgr<a-—c

) {0} ifa—c<q; <a
B2(q1) = {0} ifa<gyandc>0 62)
[0,00) ifa<gqyandc=0.

These reaction functions are drawn in Fig. 6.1. The Nash equilibrium is the point of
intersection of the reaction functions. It is obtained by simultaneously solving the
two equations ¢; = (a —c—g2)/2 and g2 = (a — ¢ — q1)/2, resulting in

a—c¢ a—c¢

(('hcaqg):( 37 3 )

Pareto Optimality

A pair (q1,q>) of strategies is Pareto optimal if there is no other pair (¢/,q5) such
that the associated payoffs are at least as good for both players and strictly better for
at least one player. Not surprisingly, the equilibrium (q(f, qg) is not Pareto optimal.
For instance, both players can strictly benefit from joint profit maximization, by
solving the problem

max  ITi(q1,92) +112(q1,92) -
q1,92>0

The first-order conditions, obtained by setting the partial derivatives with respect to
q1 and g; equal to zero, result in the equation a — 2q; — 2g> — ¢ = 0, so that any pair
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(q1,92) > 0 with ¢ +¢2 = (a —c)/2 is a solution (check again the second-order
conditions). Taking ¢ = ¢» = (a — ¢)/4 yields each player a profit of (a — c)?/8,
whereas in the Nash equilibrium each player obtains (a — ¢)?/9. See also Fig. 6.1,
where all points in the gray-shaded area ‘Pareto dominate’ the Nash equilibrium:
the associated payoffs are at least as good for both agents and better for at least one
agent.

6.2.2 Simple Version with Incomplete Information

Consider the Cournot model of Sect. 6.2.1 but now assume that the marginal cost of
firm 2 is either high, cy, or low, ¢z, where ¢y > ¢y, > 0. Firm 2 knows its marginal
cost but firm 1 only knows that it is ¢y with probability ¥ or ¢; with probability
1 — 9. The cost of firm 1 is ¢ and this is commonly known. In the terminology of
Sect. 5.1, player 1 has only one type but player 2 has two types, cg and cz. The
associated game is as follows:

(a) The player setis {1,2}.

(b) The strategy set of player 1 is [0,o0) with typical element g, and the strategy
set of player 2 is [0,00) X [0,e0) with typical element (gm,q). Here, gy is the
chosen quantity if player 2 is of type cy, and gy is the chosen quantity if player
2 is of type cp.

(c) The payoff functions of the players are the expected payoff functions. These are

I1i(q1,981,9.) = ¥11i(q1,qu) + (1 — 9)Li(q1,qz1) ,

for i = 1,2, where II;(+,-) is the payoff function from the Cournot model of
Sect.6.2.1.

To find the (Bayesian) Nash equilibrium, we first compute the best reply function
or reaction function of player 1, by maximizing Iy (q1,qu,q1) over g1 > 0, with gy
and ¢y, regarded as given. Hence, we solve the problem

max Slgila—c—qi—qu)+ (1 -9)[gi(a—c—q1—qr)] .
1=
Assuming gqpy,qr < a — c (this has to be checked later for the equilibrium), this
problem is solved by setting the derivative with respect to ¢g; equal to zero, which
yields
a—c—Vqy—(1—139)qL

@1 =q1(qn,q1) = 5 ( . (6.3)
Observe that, compared to (6.1), we now have the expected quantity dgp + (1 —
¥)qy, instead of ¢;: this is due to the linearity of the model.

For player 2, we consider, for given g, the problem

max  Olgula—cy—q1—qu)]+ (1 —9)|gLla—cL—q1—qL)] -
qH,9L>0
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Since the first term in this function depends only on gy and the second term only
on ¢y, solving this problem amounts to maximizing the two terms separately. In
other words, we determine the best replies of types ¢y and ¢; separately.” Assuming
q1 < a—cpy (and hence q; < a — cr) this results in

a—CHy —
qu = qu(q1) = ;] a (6.4)
and
a—cCc| —
aw=quq)=""" . 6.5)

The Nash equilibrium is obtained by simultaneously solving (6.3-6.5), using sub-
stitution or linear algebra. The solution is the triple

c a—2c+0cg+(1—3)ct

q1 = 3
a—2cg+c 1—0
a5 = 04 (cw —cL)
3 6
-2 5
qg:a §L+C76(CH7CL)-

Assuming that the parameters of the game are such that these three values are non-
negative and that ¢; < a—cy and gy, g1 < a— c, this is the Bayesian Nash—Cournot
equilibrium of the game. This solution should be compared with the Nash equilib-
rium in the complete information model with asymmetric costs, see Problem 6.1.
The high cost type of firm 2 produces more than it would in the complete informa-
tion case: it benefits from the fact that firm 1 is unsure about the cost of firm 2 and
therefore produces less than it would if it knew for sure that firm 2 had high costs.
Similarly, the low cost firm 2 produces less.

6.3 Bertrand Price Competition

Consider two firms who compete in the price of a homogenous good.® Specifically,
assume that the demand ¢ for the good is given by ¢ = g(p) = max{a — p,0} for
every p > 0. The firm with the lower price serves the whole market; if prices are
equal the firms share the market equally. Each firm has the same marginal cost
0 < ¢ < a, and no fixed cost. If firm 1 sets a price p; and firm 2 sets a price p;, then
the profit of firm 1 is

2 This is generally so in a Bayesian, incomplete information game: maximizing the expected payoff
of a player over all his types is equivalent to maximizing the payoff per type.

3 See Problem 6.3(d)—(f) for an example of price competition with heterogenous goods.
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IT;

Fig. 6.2 The profit function of firm i in the monopoly situation

(p1—c)(a—p1) if py <pzand p; <a
i (p1,p2) = 4 s(pr—c)@a—p1) ifpi=prandp; <a
0 in all other cases.

Similarly, the profit of firm 2 is

(p2—c)(a—p2) if pp<prandpr <a
IL(p1,p2) =14 s(p2—c)la—p2) ifpr=prandp, <a
0 in all other cases.

So, in terms of the game, these are the payoff functions of players 1 and 2; their
strategy sets are [0,c0) for each, with typical elements p; and p,. To find a Nash
equilibrium (Bertrand equilibrium) we first compute the best reply functions (reac-
tion functions). An important role is played by the price that maximizes profit if
there is only one firm in the market, i.e., the monopoly price p” = (a+c¢)/2. Also
note that the profit function is a quadratic function, and that profit increases as the
price gets closer to the monopoly price. See Fig. 6.2.

To determine player 1’s best reply function B (p2) we distinguish several cases.

If p» <c,then any p; < p, yields player 1 a negative payoff, whereas any p; > p»
yields a payoff of zero. Hence, the set of best replies in this case is the interval
(p27°°)'

If p» =c, then any p;| < p, yields a negative payoff for player 1, and any p; > p»
yields zero payoff. So the set of best replies in this case is the interval [c,o0).

If ¢ < po < p™, then the best reply of player 1 would be a price below p; (to
obtain the whole market) and as close to the monopoly price as possible (to maxi-
mize payoff) but such a price does not exist: for any price p; < p», a price in between
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p1 and p, would still be better. Hence, in this case the set of best replies of player 1
is empty.*
If po > p™ then the unique best reply of player 1 is the monopoly price p™.
Summarizing we obtain

{pilpi>pa}  ifpa<c
_JipIp=ct  ifpa=c
ﬁl(pZ)— 0 ifC<p2§pm

{r"} if py > p".

For player 2, similarly,

{p2[p2>pi} ifpr<c
_JAp2lp2=>c} ifpr=c
Palp1) = 0 ifc<p <p™

{p™} if p; > p™.

The point(s) of intersection of these best reply functions can be found by making a
diagram or by direct inspection. We follow the latter method and leave the diagram
method to the reader. If po» < ¢ then a best reply p; satisfies p; > p». But then,
according to f3>(p1), we always have p, > p; or pp = p™, a contradiction. Therefore,
in equilibrium, we must have p, > c¢. If p» = ¢, then p; > c; if however, p; > ¢ then
the only possibility is pp = p™, a contradiction. Hence, p; = ¢ as well and, indeed,
p1 = p2 = c is a Nash equilibrium. If p; > ¢, then the only possibility is p; = p”
but then p; is never a best reply. We conclude that the unique Nash equilibrium
(Bertrand equilibrium) is p; = p» = c.

Itis also possible to establish this result without completely computing the best reply
function. Suppose, in equilibrium, that p; # p», say p; < p>. If p; < p” then player
1 can increase his payoff by setting a higher price still below p;. If p; > p™ then
player 2 can increase his payoff by setting a price below py, e.g., slightly below p™
if p; = p™ and equal to p™ if p; > p™. Hence, we must have p; = p, in equilibrium.
If this common price is below ¢ then each player can improve by setting a higher
price. If this common price is above c then each player can improve by setting a
slightly lower price. Hence, the only possibility that remains is p; = p» = ¢, and
this is indeed an equilibrium, as can be verified directly.

6.4 Stackelberg Equilibrium

In the Cournot model of Sect. 6.2.1, the two firms move simultaneously. Consider
now the situation where firm 1 moves first, and firm 2 observes this move and moves
next. This situation has already been mentioned in Chap. 1. The corresponding

4 If prices are in smallest monetary units this somewhat artificial consequence is avoided. See
Problem 6.7.
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1 q1 >0 2 q >0
[ AVAVAVAVAVAVAVAVAV. aVaVaVAVAVAVAVAVAVY, I/ QR —qz).,qz(l—q] —qg)

Fig. 6.3 Extensive form representation of the Stackelberg game with firm 1 as the leader

extensive form game is reproduced in Fig. 6.3. In this game, player 1 has infinite
action/strategy set [0, ), with typical element ¢;. In the diagram, we use a zigzag
line to express the fact that the number of actions is infinite. Player 2 has the infi-
nite set of actions [0,e0) with typical element ¢,, again represented by a zigzag
line. A strategy of player 2 assigns to each information set, hence to each decision
node — the game has perfect information — an action. Hence, a strategy of player
2 is a function s, : [0,00) — [0,00). Obviously, the number of strategies of player 2
is infinite as well.> The appropriate solution concept is the backward induction or
subgame perfect equilibrium. The subgames of this game are the entire game and
the infinite number of one-player games starting at each decision node of player 2,
i.e., following each choice g; of player 1. Hence, the subgame perfect equilibrium
can be found by backward induction, as follows. In each subgame for player 2, that
is, after each choice g, player 2 should play optimally. This means that player 2
should play according to the reaction function fB,(g;) as derived in (6.2). Then,
going back to the beginning of the game, player 1 should choose g; > 0 so as to
maximize IT; (g1, B2(¢q1)). In other words, player 1 takes player 2’s optimal reac-
tion into account when choosing ¢;. Assuming g; < a — ¢ — it is easy to verify that
g1 > a— cis not optimal — player 1 maximizes the expression

a—c—q
a—Cc— — .
a q 5

The maximum is obtained for ¢; = (a —¢)/2, and thus g2 = B> ((a —¢)/2) = (a —
¢)/4. Hence, the subgame perfect equilibrium of the game is

q1=(a—-0c)/2, q=PBq)-

The subgame perfect equilibrium outcome is by definition the resulting play of the
game, that is, the actions chosen on the equilibrium path in the extensive form. In
this case, the equilibrium outcome is

gi=(a—c)/2, g3=(a—c)/4.

The letter *S’ here is the first letter of ‘Stackelberg’, after whom this equilibrium is
named (see [142]). More precisely, this subgame perfect equilibrium (or outcome)
is called the Stackelberg equilibrium (or outcome) with player 1 as the leader and
player 2 as the follower. Check that player 1’s profit in this equilibrium is higher
and player 2’s profit is lower than in the Cournot equilibrium ¢§ = ¢§ = (a —¢)/3.
See also Problem 6.9.

> In mathematical notation the strategy set of player 2 is the set [0, oo)[o’“).
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q2
a—c
a—c
2
qs
0 a—c a—c q1

Fig. 6.4 As before, the solid black curve is the reaction function of player 1 and the solid gray
curve the reaction function of player 2. The point ¢° = (,¢, “,¢) is the Stackelberg equilibrium:
it is the point on the reaction curve of player 2 where player 1 maximizes profit. The associated
isoprofit curve of player 1 is drawn

The Stackelberg equilibrium is depicted in Fig. 6.4. Observe that player 1, the
leader, picks the point on the reaction curve of player 2 which has maximal profit
for player 1. Hence, player 2 is on his reaction curve but player 1 is not.

6.5 Auctions

An auction is a procedure to sell goods among various interested parties, such that
the prices are determined in the procedure. Examples range from selling a painting
through an ascending bid auction (English auction) and selling flowers through a
descending bid auction (Dutch auction) to tenders for public projects and selling
mobile telephone frequencies. For a recent overview, see [78].

In this section we consider a few simple, classical auction models. We start with
first and second-price sealed-bid auctions under complete information, and end with
a first-price sealed bid auction with incomplete information. Some variations and
extensions are discussed in Problems 6.10-6.13.

6.5.1 Complete Information

Consider n individuals who are interested in one indivisible object. Each individual
i has valuation v; > 0 for the object. We assume without loss of generality vi > vy >
-+ > vy. In a first-price sealed-bid auction each individual submits a bid b; > 0 for
the object: the bids are simultaneous and independent ( ‘sealed bids’). The individual
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with the highest bid wins the auction and obtains the object at a price equal to his
own bid (‘first price’). In case there are more highest bidders, the bidder among
these with the lowest number wins the auction and pays his own bid.

This gives rise to a game with player set N = {1,2,...,n}, where each player i
has strategy set S; = [0,00) with typical element b;. The payoff function to player i is

' ‘ _ fvi—b; ifi=min{keN|b,>bjforall jeN}
ui(b1,ba, b bn) = { 0 otherwise.
One Nash equilibrium in this game is the strategy combination (by,...,b,) =

(v2,v2,v3,...,v,). To check this one should verify that no player has a better bid,
given the bids of the other players: see Problem 6.10. In this equilibrium, player 1
obtains the object and pays v, the second-highest valuation. Check that this is also
the outcome one would approximately expect in an auction with ascending bids
(English auction) or descending bids (Dutch auction).

This game has many Nash equilibria. In each of these equilibria, however, a
player with a highest valuation obtains the object. Bidding one’s true valuation
as well as bidding higher than one’s true valuation are weakly dominated strate-
gies. Bidding lower than one’s true valuation is not weakly dominated (see Sect. 6.1
for the definition of weak domination). Problem 6.10 is about proving all these
statements.

A second-price sealed-bid auction differs from a first-price sealed-bid auction only
in that the winner now pays the bid of the second highest bidder. In the case that
two or more players have the highest bid the player with the lowest number wins
and pays his own bid. The main property of this auction is that for each player
i, the strategy of bidding v; weakly dominates all other strategies. This and other
properties are collected in Problem 6.11.

6.5.2 Incomplete Information

We consider the same setting as in Sect.6.5.1 but now assume that each bidder
knows his own valuation but has only a probabilistic estimate about the valuations
of the other bidders. In the terminology of types (cf. Sect. 5.1), a bidder’s valuation
is his true type, and each bidder holds a probability distribution over the type com-
binations of the other bidders. To keep things simple, we assume that every bidder’s
type is drawn independently from the uniform distribution over the interval [0, 1],
that this is common knowledge, and that each bidder learns his true type. The auc-
tion is a first-price sealed-bid auction. Of course, we can no longer fix the ordering
of the valuations, but we can still employ the same tie-breaking rule in case of more
than one highest bid.

We discuss the case of two bidders and postpone the extension to n > 2 bidders
until Problem 6.13. In the associated two-person game, a strategy of playeri € {1,2}
should assign a bid to each of his possible types. Since the set of possible types is
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the interval [0, 1] and it does not make sense to ever bid more than 1, a strategy
is a function s; : [0,1] — [0, 1]. Hence, if player i’s type is v;, then b; = s;(v;) is
his bid according to the strategy s;. The payoff function u; of player i assigns to
each strategy pair (s;,s;) (where j is the other player) player i’s expected payoff if
these strategies are played. In a (Bayesian) Nash equilibrium of the game, player i
maximizes this payoff function given the strategy of player j, and vice versa. For
this, it is sufficient that each type of player i maximizes expected payoff given the
strategy of player j, and vice versa.

We claim that s7(v;) = v;/2 and s}(v2) = v2/2 is a Nash equilibrium of this
game. To prove this, first consider type v; of player 1 and suppose that player 2
plays strategy s5. If player 1 bids by, then the probability that player 1 wins the
auction is equal to the probability that the bid of player 2 is smaller than or equal
to by. This probability is equal to the probability that v, /2 is smaller than or equal
to by, i.e., to the probability that v, is smaller than or equal to 2b;. We may assume
without loss of generality that b; < 1/2, since according to 53 player 2 will never bid
higher than 1/2. Since v, is uniformly distributed over the interval [0, 1] and 2b; < 1,
the probability that v, is smaller than or equal to 2b; is just equal to 2b;. Hence, the
probability that the bid b; of player 1 is winning is equal to 2b; if player 2 plays s,
and therefore the expected payoff from this bid is equal to 2b;(v; — by) (if player 1
loses his payoff is zero). This is maximal for b = v; /2. Hence, s{(v;) =v;/21is a
best reply to s5. The converse is almost analogous — the only difference being that for
player 2 to win player 1’s bid must be strictly smaller due to the tie-breaking rule
employed, but this does not change the associated probability under the uniform
distribution. Hence, we have proved the claim.

Thus, in this equilibrium, each bidder bids half his true valuation, and a player
with the highest valuation wins the auction.

How about the second-price sealed-bid auction with incomplete information? This is
more straightforward since bidding one’s true valuation (s;(v;) = v; for all v; € [0, 1])
is a strategy that weakly dominates every other strategy, for each player i. Hence,
these strategies still form a (Bayesian) Nash equilibrium. See Problem 6.11.

6.6 Mixed Strategies and Incomplete Information

Consider the bimatrix game (cf. Chap. 3)

L R
T (2,1 2,0
G= B (3,0 1,3) ’
which has a unique Nash equilibrium ((p*,1 — p*),(¢"*,1 — ¢*)) with p* =3/4
and ¢* = 1/2. The interpretation of mixed strategies and of a mixed strategy

Nash equilibrium in particular is an old issue in the game-theoretic literature. One
obvious interpretation is that a player actually plays according to the equilibrium
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probabilities. Although there is some empirical evidence that this may occur in
reality (see [144]), this interpretation may not be entirely convincing, in particu-
lar since in a mixed strategy Nash equilibrium a player is indifferent between all
pure strategies played with positive probability in equilibrium (see Problem 3.8).
An alternative interpretation — also mentioned in Sect. 3.1 — is that a mixed strategy
of a player represents the belief(s) of the other player(s) about the strategic choice
of that player. For instance, in the above equilibrium, player 2 believes that player 1
plays T with probability 3/4. The drawback of this interpretation is that these beliefs
are subjective, and it is not explained how they are formed. Harsanyi [51] proposed
a way to obtain a mixed strategy Nash equilibrium as the limit of pure (Bayesian)
Nash equilibria in games obtained by adding some objective uncertainty about the
payoffs. In this way, the strategic uncertainty of players as expressed by their beliefs
is replaced by the objective uncertainty of a chance move.

In the above example, suppose that the payoff to player 1 from (T, L) is the uncer-
tain amount 2 4 ¢ and the payoff to player 2 from (B,R) is the uncertain amount
3+ B. Assume that both o and f3 are (independently) drawn from a uniform distri-
bution over the interval [0,x], where x > 0. Moreover, player 1 learns the true value
of o and player 2 learns the true value of 8, and all this is common knowledge
among the players. In terms of types, player 1 knows his type o and player 2 knows
his type . The new payoffs are given by

L R

T (2+a,l 2,0

B ( 3,0 1,3+ ) ’
A (pure) strategy of a player assigns an action to each of his types. Hence, for player
1 itis amap s; : [0,x] — {T,B} and for player 2 it is a map s, : [0,x] — {L,R}.

To find an equilibrium of this incomplete information game, suppose that player

2 has the following rather simple strategy: play L if B is small and R if 8 is large.
Specifically, let b € [0, x] such that each type B < b plays L and each type 3 > b plays
R. Call this strategy s, (b). What is player 1’s best reply against s,(b)? Suppose the
type of player 1 is «. If player 1 plays T, then his expected payoff is equal to 2 4 o
times the probability that player 2 plays L plus 2 times the probability that player 2
plays R. The probability that player 2 plays L, given the strategy s, (b), is equal to the

probability that 3 is at most equal to b, and this is equal to b/x since f is uniformly
distributed over [0,x]. Hence, the expected payoff to player 1 from playing 7 is

b b b
2+a) 42(1— )=2+4a-
X X X

Similarly, the expected payoff to player 1 from playing B is

b b b
3. 41(1—")=142-".
X X X
From this, it easily follows that 7 is at least as good as B if & > (2b — x)/b. Hence,
the following strategy of player 1 is a best reply against the assumed strategy of
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player 2: play 7 if a > a and play B if a < a, where a = (2b — x)/b. Call this
strategy s1(a).

For the converse, assume that player 1 plays s;(a). To find player 2’s best reply
against s;(a) we proceed similarly as above. If type  of player 2 plays L then
the expected payoff is 1 times the probability that player 1 plays T, hence 1 times
(x—a)/x. If type B of player 2 plays R then his expected payoff is equal to 3 + 3
times the probability that player 1 plays B, hence (3+ f3)a/x. So L s at least as good
as Rif B < (x—4a)/a. Hence, player 2’s best reply against s (a) is the strategy s, (b)
with b = (x —4a)/a.

Summarizing these arguments, we have that (s;(a),s2(b)) is a Nash equilibrium
for

a=2b—x)/b, b= (x—4a)/a.

Solving these two equations simultaneously for solutions a,b € [0, x] yields:

a=(1/8)(x+4—x2+16), b=(1/2)(x—4+2+16).

In this equilibrium, the a priori probability that player 1 will play T, that is, the
probability of playing T before he learns his type, is equal to (x —a)/x, hence to
(v/x2 416+ 3x — 4) /4x. Similarly, the a priori probability that player 2 plays L is
equal to b/x, hence to (x — 4 4 v/x2 + 16)/2x. What happens to these probabilities
as the amount of uncertainty decreases, i.e., for x approaching 0? For player 1,

. VX2 H1643x—4 . x/Vx2+16+3 3
lim = lim =",
x—0 4x x—0 4 4

where the first identity follows from I"Hopital’s rule. Similarly for player 2:

C x—4+V2H16 . 14x/Va24+16 1
lim = lim = _.
x—0 2x x—0 2 2
In other words, these probabilities converge to the mixed strategy Nash equilibrium
of the original game.

6.7 Sequential Bargaining

In its simplest version, the bargaining problem involves two parties who have to
agree on one alternative within a set of feasible alternatives. If they fail to reach
an agreement, a specific ‘disagreement’ alternative is implemented. In the game-
theoretic literature on bargaining there are two main strands, namely the cooperative,
axiomatic approach as initiated by Nash in [90], and the noncooperative, strate-
gic approach, with Nash [92] and Rubinstein [110] as seminal articles. These two
approaches are not entirely disconnected and, in fact, there is a close relation-
ship between the so-called Nash bargaining solution as proposed in [90] and the
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Rubinstein subgame perfect equilibrium outcome in [110]. In this section the focus
is on the strategic approach, but in Sect.6.7.2 we also mention the connection
with the Nash bargaining solution. For an introduction to the axiomatic bargaining
approach see Sect. 10.1.

6.7.1 Finite Horizon Bargaining

Consider the example in Sect. 1.3.5, where two players bargain over the division of
one unit of a perfectly divisible good, e.g., one liter of wine. If they do not reach
an agreement, we assume that no one gets anything. To keep the problem as simple
as possible, assume that the preferences of the players are represented by u; (o) =
up(a) = o for every o € [0,1]. That is, obtaining an amount o of the good has
utility o for each player. Observe that the picture of the feasible set in Sect. 1.3.5
would become a triangle in this case.

To model the bargaining process we consider the following alternating offers
procedure. There are 7 € N rounds. In round # = 0 player 1 makes a proposal, say
(a,1 —a), where a € [0, 1], meaning that he claims an amount & for himself, so
that player 2 obtains 1 — . Player 2 can either accept this proposal, implying that
the proposal is implemented and the game is over, or reject the proposal. In the latter
case the next round ¢ = 1 starts, and the first round is repeated with the roles of the
players interchanged: player 2 makes the proposal and player 1 accepts or rejects
it. If player 1 accepts the proposal then it is implemented and the game is over; if
player 1 rejects the proposal then round # = 2 starts, and the roles of the players are
interchanged again. So at even moments, player 1 proposes; at odd moments, player
2 proposes. The last possible round is round 7': if this round is reached, then the
disagreement alternative (0,0) is implemented.

As assumed above, receiving an amount ¢ at time (round) ¢ has a utility of o for
each player, but this is the utility at time . We assume that utilities are discounted
over time, reflecting the fact that receiving the same amount earlier is more valuable.
Specifically, there is a common discount factor 0 < § < 1, such that receiving o at
time ¢ has utility 6’ o at time 0.

In Fig. 6.5 this bargaining procedure is represented as a game in extensive form.
Here, we assume that 7 is odd.

We look for a subgame perfect equilibrium of this game, which can be found by
backward induction. Note that subgames start at each decision node of a player, and
that, except at player 1’s decision node at r = 0, there are infinitely many subgames
starting at each decision node since there are infinitely many possible proposals and
therefore infinitely many possible paths leading to a decision node.

To start the analysis, at the final decision node, player 2 accepts if @ < 1 and is
indifferent between acceptance and rejection if & = 1. In the subgame starting at
round 7" — 1 with a proposal of player 1, the only equilibrium therefore is for player
1 to propose o = 1 and for player 2 to accept any proposal: if player 2 would reject
o = 1 then player 1 could improve by proposing 0 < o < 1, and given that player 2
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t=0 t=1 t=2 t=T-1 t=T

o

(o, 1 — ) o(a,1—a)  &(a,1—a) 8" o, 1-a) ST o, 1 —a)

Fig. 6.5 The extensive form representation of the finite horizon bargaining procedure. The number
of rounds 7 is odd, o denotes the proposed amount for player 1, A is acceptance and R is rejection

t=0 t=1 t=2 t=T-1

T-1
7 M 7 = ®(5.0)

(a,1—a) S(a,1—0) 8% a,1—0a) 87 %o, 1—a)

Fig. 6.6 The game of Fig. 6.5 reduced by replacing rounds 7 — 1 and T by the equilibrium payoffs
of the associated subgames

accepts any proposal, o = 1 is optimal for player 1. Hence, we can replace the part
of the game from round T — 1 on by the pair of payoffs (§7 ~!,0), as in Fig. 6.6.

Similarly, in this reduced game, in the complete subgame starting at round
T — 2 the only backward induction equilibrium is player 2 proposing @ = § and
player 1 accepting this proposal or any higher o and rejecting any lower c,
since player 1 can always obtain 87! = 872§ by rejecting player 2’s proposal.
Hence, we can replace this whole subgame by the pair of payoffs (67—, 87 ~2(1 —
0)). Continuing this line of reasoning, in the subgame starting at round 7 — 3,
player 1 proposes o = 1 — 6(1 — &), which will be accepted by player 2. This
results in the payoffs (67 3(1 — &(1 —8)),87 2(1 — §)). This can be written as
(673(1—6+8%),873(8 —82)). By backtracking all the way to round 0 (see
Table 6.1), we find that player 1 proposes 1 — & + &> —---+ 87! and player 2
accepts this proposal, resulting in the payoffs 1 — &8 + 8% —--- + 87! for player
1 and § — 8% +---— 87! for player 2. This is the subgame perfect equilibrium
outcome of the game and the associated payoffs. This outcome is the path of play,
induced by the following subgame perfect equilibrium:

e Atevenrounds?, player 1 proposes & = 1 — 8 +---+ 871" and player 2 accepts
this proposal or any smaller ¢, and rejects any larger .
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Table 6.1 The proposals made in the subgame perfect equilibrium

Round Proposer Share for player 1 Share for player 2
T 0 0

T-1 1 1 0

T-2 2 1) 1-0

T-3 1 1-6+82 562

T—-4 2 §—-82+83 1-8+6%2-8°

0 1 1—8+8%—-..+87! 5§82+ — 87!

e At odd rounds ¢, player 2 proposes & = & — 8%+ --- + 871" and player 1
accepts this proposal or any larger o, and rejects any smaller «.

In Problem 6.15 some variations on this finite horizon bargaining game are
discussed.

6.7.2 Infinite Horizon Bargaining

In this subsection we consider the same bargaining problem as in the previous sub-
section, but now we assume 7" = oo: the number of rounds may potentially be infinite.
If no agreement is ever reached, then no player obtains anything. This game, like
the finite horizon game, has many Nash equilibria: see Problem 6.15(f).

One way to analyze the game is to consider the finite horizon case and take the
limit as 7" approaches infinity: see Problem 6.15(e). In fact, the resulting distribution
is the uniquely possible outcome of a subgame perfect equilibrium, as can be seen
by comparing the answer to Problem 6.15(e) with the result presented below. Of
course, this claim is not proved by just taking the limit.

Note that a subgame perfect equilibrium cannot be obtained by backward induc-
tion, since the game has no final decision nodes. Here, we will just describe a pair
of strategies and show that they are a subgame perfect equilibrium of the game. For
a proof that the associated outcome is the unique outcome resulting in any subgame
perfect equilibrium see [110].

Letx" = (xj,x3) and y* = (y7,y3) such that x7,x3,y7,y5 > 0, x} +x3 =y +y; =
1, and moreover

x5 =08y5, yj=06x]. (6.6)

It is not difficult to verify that x* = (1/(1+6),6/(1+8)) and y* = (6/(1 +
0),1/(1+46)). Consider the following strategies for players 1 and 2, respectively:

(of) Atr=0,2,4,... propose x*;att =1,3,5,... accept a proposal z = (zj,z) of
player 2 if and only if z; > Ox].
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(05) Atr=1,3,5,... propose y*; att = 0,2,4,... accept a proposal z = (z1,z2) of
player 1 if and only if z, > dyj.

These strategies are stationary: players always make the same proposals. Moreover,
a player accepts any proposal that offers him at least the discounted value of his own
demand. According to (6.6), player 2 accepts the proposal y* and player 1 accepts
the proposal x*. Hence, play of the strategy pair (o}, 05 ) results in player 1’s pro-
posal x* = (1/(1+6),6/(1+ 9)) being accepted at round 0, so that these are also
the payoffs. We are going to show that (o, 05) is a subgame perfect equilibrium of
the game.

To show this, note that there are two kinds of subgames: subgames where a player
has to make a proposal; and subgames where a proposal is on the table and a player
has to choose between accepting and rejecting the proposal.

For the first kind of subgame we may without loss of generality consider the
entire game, i.e., the game starting at r = 0. We have to show that (o}, 65) is a Nash
equilibrium in this game. First, suppose that player 1 plays ;. By accepting player
1’s proposal at t = 0, player 2 has a payoff of 6 /(1 + &). By rejecting this proposal,
the most player 2 can obtain against o} is 6/(1+ 8), by proposing y* in round
t = 1. Proposals z with zo > y3 and thus z; < y] are rejected by player 1. Hence, o5
is a best reply against o}’ Similarly, if player 2 plays o, then the best player 1 can
obtain is x] at r = 0 with payoff 1/(1 + §), since player 2 will reject any proposal
that gives player 1 more than this, and also does not offer more.

For the second kind of subgame, we may without loss of generality take t = 0
and assume that player 1 has made some proposal, say z = (z1,z2) — the argument
for t odd, when there is a proposal of player 2 on the table, is analogous. First,
suppose that in this subgame player 1 plays o}. If zo > 8y, then accepting this
proposal yields player 2 a payoff of z; > §y; = 8/(1+ 8). By rejecting, the most
player 2 can obtain against o} is /(1 + &) by proposing y* at ¢ = 1, which will
be accepted by player 1. If, on the other hand, z, < §y3, then player 2 can indeed
better reject z and obtain §/(1+ &) by proposing y* at r = 1. Hence, o5 is a best
reply against 6. Next, suppose player 2 plays ;. Then z is accepted if zp > Sy}
and rejected otherwise. In the first case it does not matter how player 1 replies, and
in the second case the game starts again with player 2 as the first proposer, and by
an argument analogous to the argument in the previous paragraph, player 1’s best
reply is 7.

We have, thus, shown that (o7, 65 ) is a subgame perfect equilibrium of the game.
In Problem 6.16 some variations on this game are discussed.

Note, finally, that nothing in the whole analysis changes if we view the number
0 not as a discount factor but as the probability that the game continues to the
next round. Specifically, if a proposal is rejected, then assume that with probability
1 — & the game stops and each player receives 0, and with probability 6 the game
continues in the usual way. Under this alternative interpretation, the game ends with
probability 1 (Problem 6.16(e)), which makes the infinite horizon assumption more
acceptable.
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Problems

6.1. Cournot with Asymmetric Costs

Consider the Cournot model of Sect. 6.2.1 but now assume that the firms have differ-
ent marginal costs cy,cy > 0. Compute the Nash equilibrium: distinguish different
cases with respect to the values of ¢ and ¢;.

6.2. Cournot Oligopoly

Consider the Cournot model of Sect.6.2.1 but now assume that there are n firms

instead of two. Each firm i = 1,2,...,n offers ¢; > 0 and the market price is
P(q1,92,--.,qn) =max{a—q1 —qo— -+ —qn,0} .

Each firm still has marginal cost ¢ with @ > ¢ > 0 and no fixed costs.

(a) Set up the game associated with this situation.

(b) Derive the reaction functions of the players.

(c) Derive a Nash equilibrium of the game by trying equal quantities offered. What
happens if the number of firms becomes large?

(d) Show that the Nash equilibrium found in (c) is unique.

6.3. Quantity Competition with Heterogenous Goods

Suppose, in the Cournot model, that the firms produce heterogenous goods, which
have different market prices. Specifically, suppose that these market prices are
given by

p1 =max{5—3q; —2¢»,0}, p, =max{4.5—1.5q;—3¢»,0}.

The firms still compete in quantities.

(a) Formulate the game corresponding to this situation. In particular, write down the
payoff functions.

(b) Solve for the reaction functions and the Nash equilibrium of this game. Also
compute the corresponding prices.

(c) Compute the quantities at which joint profit is maximized. Also compute the
corresponding prices.

In (d)—(f), we assume that the firms compete in prices.

(d) Derive the demands for g; and g as a function of the prices. Set up the associated
game where the prices p; and p; are now the strategic variables.

(e) Solve for the reaction functions and the Nash equilibrium of this game. Also
compute the corresponding quantities.
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(f) Compute the prices at which joint profit is maximized. Also compute the
corresponding quantities.

(g) Compare the results found under (b) and (c) with those under (e) and (f).®

6.4. A Numerical Example of Cournot with Incomplete Information

Redo the model of Sect.6.2.2 for the following values of the parameters: a = 1,
c=0,0%=1/2, ¢, =0, cy = 1/4. Compute the Nash equilibrium and compare
with what was found in the text. Also compare with the complete information case
by using the answer to Problem 6.1.

6.5. Cournot with Two-Sided Incomplete Information

Consider the Cournot game of incomplete information of Sect. 6.2.2 and assume that
also firm 1 can have high costs or low costs, say ¢, with probability 7 and ¢; with
probability 1 — 7. Set up the associated game and compute the (four) reaction func-
tions. (Assume that the parameters of the game are such that the Nash equilibrium
quantities are positive and the relevant parts of the reaction functions can be found
by differentiating the payoff functions (i.e., no corner solutions).) How can the Nash
equilibrium be computed? (You do not actually have to compute it explicitly.)

6.6. Incomplete Information about Demand

Consider the Cournot game of incomplete information of Sect. 6.2.2 but now assume
that the incomplete information is not about the cost of firm 2 but about market
demand. Specifically, assume that the number a can be either high, ay, with proba-
bility ¥, or low, ar, with probability 1 — . Firm 2 knows the value for sure but firm
1 only knows these probabilities. Set up the game and compute the reaction func-
tions and the Nash equilibrium (make appropriate assumptions on the parameters
ay, ar, ¥, and c¢ to avoid corner solutions).

6.7. Variations on Two-Person Bertrand

(a) Assume that the two firms in the Bertrand model of Sect. 6.3 have different
marginal costs, say c; < ¢y < a. Derive the best reply functions and find the Nash—
Bertrand equilibrium or equilibria, if any.

(b) Reconsider the questions in (a) for the case where prices and costs are restricted
to integer values, i.e., pi,pa2,ci,c2 € {0,1,2,...}. Distinguish between the cases
c1 = ¢ and ¢1 < ¢;. (This reflects the assumption that there is a smallest monetary
unit.)

6.8. Bertrand with More Than Two Firms

Suppose that there are n > 2 firms in the Bertrand model of Sect. 6.3. Assume again
that all firms have equal marginal cost ¢, and that the firm with the lowest price gets

6 The goods in the model of this problem are strategic substitutes. In duopoly models like this the
distinction between strategic substitutes and strategic complements is important for the differences
between quantity and price competition. See, e.g., [137].
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the whole market. In case of a tie, each firm with the lowest price gets an equal share
of the market. Set up the associated game and find all its Nash equilibria.

6.9. Variations on Stackelberg

(a) Suppose, in the model in Sect. 6.4, that the firms have different marginal costs ¢
and ¢, (cf. Problem 6.1). Compute the Stackelberg equilibrium and outcome with
firm 1 as a leader and with firm 2 as a leader.

(b) Give a logical argument why the payoff of the leader in a Stackelberg equilib-
rium is always at least as high as his payoff in the Cournot equilibrium. Can you
generalize this to arbitrary games?

(c) Consider the situation in Sect. 6.4, but now assume that there are » firms, firm 1
moves first, firm 2 second, etc. Assume again perfect information, and compute the
subgame perfect equilibrium.

6.10. First-Price Sealed-Bid Auction
Consider the game associated with the first-price sealed-bid auction in Sect. 6.5.1.
(a) Show that (by,...,b,) = (v2,v2,v3,...,v,) is a Nash equilibrium in this game.

(b) Show that, in any Nash equilibrium of the game, a player with the highest valua-
tion obtains the object. Exhibit at least two other Nash equilibria in this game, apart
from the equilibrium in (a).

(c) Show that bidding one’s true valuation as well as bidding higher than one’s true
valuation are weakly dominated strategies. Also show that bidding lower than one’s
true valuation is not weakly dominated. (Note: to show that a strategy is weakly
dominated one needs to exhibit some other strategy that is always — that is, whatever
the other players do — at least as good as the strategy under consideration and at least
once — that is, for at least one strategy combination of the other players — strictly
better.)

(d) Show that, in any Nash equilibrium of this game, at least one player plays a
weakly dominated strategy.

6.11. Second-Price Sealed-Bid Auction

Consider the game associated with the second price sealed bid auction in Sect. 6.5.1.
(a) Formulate the payoff functions in this game.

(b) Show that (by,...,b,) = (v1,...,v,) is a Nash equilibrium in this game.

(c) Show, for each player, that bidding one’s true valuation weakly dominates any
other action (show that this holds even if each player only knows his own valuation).
(d) Show that (by,...,b,) = (v2,v1,0,...,0) is a Nash equilibrium in this game.
What about (by,...,b,) = (v1,0,0,...,0)?

(e) Determine all Nash equilibria in the game with two players (n = 2). (Hint:
compute the best reply functions and make a diagram.)
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6.12. Third-Price Sealed-Bid Auction

In the auction of Sect. 6.5.1, assume that there are at least three bidders and that the
highest bidder wins and pays the third highest bid.

(a) Show that for any player i bidding v; weakly dominates any lower bid but does
not weakly dominate any higher bid.

(b) Show that the strategy combination in which each player i bids his true valuation
v; is in general not a Nash equilibrium.

(c) Find some Nash equilibria of this game.

6.13. n-Player First-Price Sealed-Bid with Incomplete Information

Consider the setting of Sect. 6.5.2 but now assume that the number of bidders/players
is n > 2. Show that (s7,...,s}) with s7(v;) = (1 — 1/n)v; for every player i is a
Nash equilibrium of this game. (Hence, for large n, each bidder almost bids his true
valuation.)

6.14. Mixed Strategies and Objective Uncertainty

Consider the bimatrix game

L R
T (4,1 1,3
B\1,2 30/
(a) Compute the Nash equilibrium of this game.

(b) Add some uncertainty to the payoffs of this game and find a pure (Bayesian)
Nash equilibrium of the resulting game of incomplete information, such that the
induced a priori mixed strategies converge to the Nash equilibrium of the original
game as the amount of uncertainty shrinks to 0.

6.15. Variations on Finite Horizon Bargaining

(a) Adapt the arguments and the results of Sect. 6.7.1 for the case where T is even
and the case where player 2 proposes at even rounds.

(b) Let T =3 in Sect. 6.7.1 and suppose that the players have different discount fac-
tors ; and &. Compute the subgame perfect equilibrium and the subgame perfect
equilibrium outcome.

(c) Consider again the model of Sect. 6.7.1, let T = 3, but now assume that the utility
function of player 2 is us (@) = /o for all @ € [0, 1]. Hence, the utility of receiving
o at time ¢ for player 2 is equal to §’+/a. Compute the subgame perfect equilibrium
and the subgame perfect equilibrium outcome.

(d) Suppose, in the model of Sect. 6.7.1, that at time 7' the ‘disagreement’ distribu-
tion is s = (s1,s2) with 51,5 > 0 and s; + 55 < 1, rather than (0,0). Compute the
subgame perfect equilibrium and the subgame perfect equilibrium outcome.
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(e) In (d), compute the limits of the equilibrium shares for 7" going to infinity.
Do these limits depend on s?

(f) Show, in the game in Sect.6.7.1, that subgame perfection really has a bite.
Specifically, for every s = (s1,s2) with 51,55 > 0 and s; + s, = 1, exhibit a Nash
equilibrium of the game in Fig. 6.5 resulting in the distribution s.

6.16. Variations on Infinite Horizon Bargaining

(a) Determine the subgame perfect equilibrium outcome and subgame perfect equi-
librium strategies in the game in Sect. 6.7.2 when the players have different discount
factors 8; and 5.

(b) Determine the subgame perfect equilibrium outcome and subgame perfect equi-
librium strategies in the game in Sect. 6.7.2 when player 2 proposes at even rounds
and player 1 at odd rounds.

(c) Determine the subgame perfect equilibrium outcome and subgame perfect equi-
librium strategies in the game in Sect. 6.7.2 when the ‘disagreement’ distribution is
s = (s1,52) with 51,52 > 0 and s1 + s < 1, rather than (0,0), in case the game never
stops.

(d) Consider the game in Sect.6.7.2, but now assume that the utility function of
player 2 is up(a) = v/a for all o € [0,1]. Hence, the utility of receiving « at time
t for player 2 is equal to &"v/a.. Compute the subgame perfect equilibrium and the
subgame perfect equilibrium outcome. (Hint: first determine for this situation the
values for x* and y* analogous to (6.6).)

(e) Interpret, as at the end of Sect. 6.7.2, the discount factor as the probability that
the game continues to the next round. Show that the game ends with probability
equal to 1.

6.17. A Principal-Agent Game

There are two players: a worker (the agent) and an employer (the principal). The
worker has three choices: either reject the contract offered to him by the employer,
or accept this contract and exert high effort, or accept the contract and exert low
effort. If the worker rejects the contract then the game ends with a payoff of zero
to the employer and a payoff of 2 to the worker (his reservation payoff). If the
worker accepts the contract he works for the employer: if he exerts high effort the
revenues for the employer will be 10 with probability 0.8 and 6 with probability
0.2; if he exerts low effort then these revenues will be 10 with probability 0.2 and
6 with probability 0.8. The employer can only observe the revenues but not the
effort exerted by the worker: in the contract he specifies a high wage wy in case
the revenues equal 10 and a low wage wy, in case the revenues are equal to 6. These
wages are the respective choices of the employer. The final payoff to the employer
if the worker accepts the contract will be equal to revenues minus wage. The worker
will receive his wage; his payoff equals this wage minus 3 if he exerts high effort
and this wage minus 0 if he exerts low effort.
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(a) Set up the extensive form of this game. Does this game have incomplete or
imperfect information? What is the associated strategic form?

(b) Determine the subgame perfect equilibrium or equilibria of the game.

6.18. The Market for Lemons

(Cf. [1].) A buyer wants to buy a car but does not know whether the particular car
he is interested in has good or bad quality (a lemon is a car of bad quality). About
half of the market consists of good quality cars. The buyer offers a price p to the
seller, who is informed about the quality of the car; the seller may then either accept
of reject this price. If he rejects, there is no sale and the payoff will be 0 to both. If
he accepts, the payoff to the seller will be the price minus the value of the car, and
to the buyer it will be the value of the car minus the price. A good quality car has a
value of 15,000, a lemon has a value of 5,000.

(a) Set up the extensive as well as strategic form of this game.

(b) Compute the subgame perfect equilibrium or equilibria of this game.

6.19. Corporate Investment and Capital Structure

(Cf. [45], p.205.) Consider an entrepreneur who has started a company but needs
outside financing to undertake an attractive new project. The entrepreneur has pri-
vate information about the profitability of the existing company, but the payoff of
the new project cannot be disentangled from the payoff of the existing company —
all that can be observed is the aggregate profit of the firm. Suppose the entrepreneur
offers a potential investor an equity stake in the firm in exchange for the necessary
financing. Under what circumstances will the new project be undertaken, and what
will the equity stake be? In order to model this as a game, assume that the profit of
the existing company can be either high or low: # = L or # = H, where H > L > 0.
Suppose that the required investment for the new project is /, the payoff will be R,
the potential investor’s alternative rate of return is r, with R > I(1 + r). The game is
played as follows:

1. Nature determines the profit of the existing company. The probability that 7 = L
is p.

2. The entrepreneur learns 7 and then offers the potential investor an equity stake s,
where 0 < s < 1.

3. The investor observes s (but not 7r) and then decides either to accept or to reject
the offer.

4. 1If the investor rejects then the investor’s payoff is I(1 +r) — I and the
entrepreneur’s payoff is 7. If he accepts his payoff is s(m + R) — I and the
entrepreneur’s is (1 —s)(T+R).

(a) Set up the extensive form and the strategic form of this signaling game.

(b) Compute the weak sequential equilibrium or equilibria, if any.
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6.20. A Poker Game

(Cf. [134].) Consider the following game. There are two players, I and II. Player I
deals II one of three cards — Ace, King, or Queen — at random and face down. II
looks at the card. If it is an Ace, II must say ‘Ace’, if a King he can say ‘King’ or
‘Ace’, and if a Queen he can say ‘Queen’ or ‘Ace’. If IT says ‘Ace’ player I can either
believe him and give him $1 or ask him to show his card. If it is an Ace, I must pay
IT $2, but if it is not, IT pays I $2. If II says ‘King’ neither side looses anything, but
if he says ‘Queen’ IT must pay player I $1.

(a) Set up the extensive form and the strategic form of this zerosum game.

(b) Determine its value and optimal strategies (cf. Chap. 2).

6.21. A Hotelling Location Problem

Consider n players each choosing a location in the interval [0, 1]. One may think
of n shops choosing locations in a street, n firms choosing product characteristics
on a continuous scale from 0 to 1, or n political parties choosing positions on the
ideological scale. We assume that customers or voters are uniformly distributed over
the interval, with a total of 1. The customers go to (voters vote for) the nearest shop
(candidate). E.g., if n = 2 and the chosen positions are x; = 0.2 and x, = 0.6, then 1
obtains 0.4 and 2 obtains 0.6 customers (votes). In case two or more players occupy
the same position they share the customers or voters for that position equally.

In the first scenario, the players care only about winning or loosing in terms of the
number of customers or votes. This scenario may be prominent for presidential elec-
tions, as an example. For each player the best alternative is to be the unique winner,
the second best alternative is to be one of the winners, and the worst alternative is
not to win. For this scenario, answer questions (a) and (b).

(a) Show that there is a unique Nash equilibrium for n = 2.
(b) Exhibit a Nash equilibrium for n = 3.

In the second scenario, the payoffs of the players are given by the total numbers of
customers (or voters) they acquire. For this scenario, answer questions (c) and (d).

(c) Show that there is a unique Nash equilibrium for n = 2.

(d) Is there a Nash equilibrium for n = 3? How about n = 4?

6.22. Median Voting

Of the n persons in a room, each person has an ideal room temperature, and the
further away (lower or higher) the room temperature is from the ideal, the worse it
is for this person. Specifically, if the ideal temperature of person i is #; and the room
temperature is x, then person i’s utility is equal to —|x — #;|. In order to find a com-
promise, the janitor asks each person to propose a room temperature, and based on
the proposed temperatures a compromise is determined. Let the ideal temperatures
be given by #; <1, <--- <t,. The proposed temperatures are not necessarily equal
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to the ideal temperatures. Only temperatures (proposed and ideal) in the interval
0°C-30°C are possible.

(a) Suppose the janitor announces that he will take the average of the proposed
temperatures as the compromise temperature. Formulate this situation as an n person
game, that is, give the strategy sets of the players and the payoff functions. Does this
game have a Nash equilibrium?

(b) Suppose n is odd, and suppose the janitor announces that he will take the median
of the proposed temperatures as the compromise temperature. Formulate this situa-
tion as an n person game, that is, give the strategy sets of the players and the payoff
functions. Show that, for each player, proposing his ideal temperature weakly dom-
inates any other strategy: thus, in particular, (71,...,7,) is a Nash equilibrium of this
game. Does the game have any other Nash equilibria?

6.23. The Uniform Rule

An amount M > 0 of a good (labor, green pea soup,...) is to be distributed com-
pletely among n persons. Each person i considers an amount #; > 0 as the ideal
amount, and the further away the allocated amount is from this ideal, the worse it
is. Specifically, if the amount allocated to person i is x;, then person i’s utility is
equal to —|x —7;|. In order to find a compromise, each person is asked to report
an amount, and based on the reported amounts a compromise is determined. Let
the ideal amounts be given by #; <t < --- < ,. The reported amounts are not
necessarily equal to the ideal amounts.

(a) Suppose M is distributed proportionally to the reported amounts, that is, if the
reported amounts are (71, ...,r,), then person i receives x; = (ri / Z;?:] rj) M. (If all

rj are zero then take x; = M /n.) Formulate this situation as a game. Does this game
have a Nash equilibrium?

Consider the following division rule, called the uniform rule, see [129]. Let
(r1,...,ry) denote the reported amounts. If M < Z?ZI r;j, then each person i receives

Xi = min{ri,l} s
where A4 is such that Y5, x; = M. If M > };_, r;, then each person i receives
x; =max{r,A},

where, again, A is such that Z?:l xj=M.

(b) Suppose that n =3 and r| = 1, r», = 2, and r3 = 3. Apply the uniform rule for
M=4,M=5M=55M=6M=65M=T7,M=8,M=09.

(c) Suppose, for the general case, that the uniform rule is used to distribute the
amount M. Formulate this situation as a game. Show that reporting one’s ideal
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amount weakly dominates any other strategy: thus, in particular, (¢1,...,#,) is a Nash
equilibrium of this game. Does the game have any other Nash equilibria?

6.24. Reporting a Crime

There are n individuals who witness a crime. Everybody would like the police to be
called. If this happens, each individual derives satisfaction v > 0 from it. Calling the
police has a cost of ¢, where 0 < ¢ < v. The police will come if at least one person
calls. Hence, this is an n-person game in which each player chooses from {C,N}: C
means ‘call the police’ and N means ‘do not call the police’. The payoff to person i
is 0 if nobody calls the police, v — c if i (and perhaps others) call the police, and v if
the police is called but not by person i.

(a) What are the Nash equilibria of this game in pure strategies? In particular, show
that the game does not have a symmetric Nash equilibrium in pure strategies (a Nash
equilibrium is symmetric if every player plays the same strategy).

(b) Compute the symmetric Nash equilibrium or equilibria in mixed strategies.
(Hint: suppose, in such an equilibrium, every person plays C with probability
0 < p < 1. Use the fact that each player must be indifferent between C and N.)

(c) For the Nash equilibrium/equilibria in (b), compute the probability of the crime
being reported. What happens to this probability if n becomes large?

6.25. Firm Concentration

(From [145], p. 102) Consider a market with 10 firms. Simultaneously and indepen-
dently, the firms choose between locating downtown and locating in the suburbs.
The profit of each firm is influenced by the number of other firms that locate in
the same area. Specifically, the profit of a firm that locates downtown is given by
5n — n® + 50, where n denotes the number of firms that locate downtown. Similarly,
the profit of a firm that locates in the suburbs is given by 48 —m, where m denotes
the number of firms that locate in the suburbs. In equilibrium how many firms locate
in each region and what is the profit of each?

6.26. Tragedy of the Commons

(Cf. [47], and [45], p.27) There are n farmers, who use a common piece of land to
graze their goats. Each farmer i chooses a number of goats g; — for simplicity we
assume that goats are perfectly divisible. The value to a farmer of grazing a goat
when the total number of goats is G, is equal to v(G) per goat. We assume that there
is a number G such that v(G) > 0 for G < G and v(G) = 0 for G > G. Moreover, v is
twice differentiable with v/(G) < 0 and v"'(G) < 0 for G < G. The payoff to farmer
i if each farmer j chooses g, is equal to

giv(g1+ -+ gi-1+8i+ g1+ +gn)—cgi,
where ¢ > 0 is the cost per goat.

(a) Interpret the conditions on the function v.
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(b) Show that the total number of goats in a Nash equilibrium (g7,...,g}) of this
game, G* = g} +--- + g, satisfies

v(G*)+ (1/n)GV (G*) —c =0.

(c) The socially optimal number of goats G** is obtained by maximizing Gv(G) — c¢G
over G > 0. Show that G** satisfies

v(G*) 4+ GV (G™) —c=0.

(d) Show that G* > G**. (Hence, in a Nash equilibrium too many goats are grazed.)



Chapter 7
Repeated Games

In the famous prisoners’ dilemma game the bad (Pareto inferior) outcome, result-
ing from each player playing his dominant action, cannot be avoided in a Nash
equilibrium or subgame perfect Nash equilibrium even if the game is repeated a
finite number of times, cf. Problem 4.8(a)—(c). As we will see in this chapter, this
bad outcome can be avoided if the game is repeated an infinite number of times.
This, however, is going to have a price, namely the existence of a multitude of out-
comes attainable in equilibrium. Such an embarrassment of richness is expressed by
a so-called Folk theorem.

As was illustrated in Problem 4.8(d)—(g), also finite repetitions of a game may
sometimes lead to outcomes that are better than (repeated) Nash equilibria of the
original game. See also [9] and [37].

In this chapter we consider two-person infinitely repeated games and formulate
Folk theorems both for subgame perfect and for Nash equilibrium. The approach
is somewhat informal, and mainly based on examples. In Sect.7.1 we consider
subgame perfect equilibrium and in Sect. 7.2 we consider Nash equilibrium.

7.1 Subgame Perfect Equilibrium
7.1.1 The Prisoners’ Dilemma

Consider the prisoners’ dilemma game

C D
o _ € (50,50 30,60
= p \ 60,30 40,40 )

(This is the ‘marketing game’ of Problem 3.1(d).) In G, each player has a strictly
dominant action, namely D, and (D, D) is the unique Nash equilibrium of the game,
also if mixed strategies are allowed.

H. Peters, Game Theory — A Multi-Leveled Approach. 101
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We assume now that G, is played infinitely many times, at times t = 0,1,2,...,
and that after each play of G, the players learn what has been played,' i.e., they
learn which element of the set {(C,C), (C,D), (D,C), (D,D)} has occurred.” These
realizations induce an infinite stream of associated payoffs, and we assume that there
is a common discount factor 0 < § < 1 such that the final payoff to each player is
the d-discounted value of the infinite stream of payoffs. That is, player i (i = 1,2)
obtains

Z 8! - (payoff from ¢-th play of the stage game),
=0

where §; = 8 for i = 1,2. Here, the expression stage game is used for the one-shot
game G, in order to distinguish the one-shot game from the repeated game.

As always, a strategy of a player is a complete plan to play the game. This
means that, at each moment ¢, this plan should prescribe an action of a player —
a mixed or pure strategy in G, — for each possible history of the game up to
time ¢, that is, an action for each sequence of length 7 of elements from the set
{(C,0),(C,D),(D,C),(D,D)}. Clearly, such a strategy can be quite complicated
and the number of possible different strategies is enormous. We will be able,
however, to restrict attention to quite simple strategies.

The infinite extensive form game just defined is denoted by G7(5). A natural
solution concept for this game is the concept of subgame perfect (Nash) equilibrium.
Each subgame in G (§) is, basically, equal to the game G, (6) itself: the difference
between two subgames is the difference between the two histories leading to those
subgames. For instance, at f = 6, there are 4% possible histories of play and therefore
there are 4° different subgames; each of these subgames, however, looks exactly like

G2 (8).

We will now exhibit a few subgame perfect equilibria of G77(8). First consider the
simple strategy:

D% play D at each moment t = 0,1,2,..., independent of the history of the
game.

First observe that D™ is a well-defined strategy. If both players play D™ then the
resulting payoff is

i4o 8" =40/(1-6)
t=0

for each player. We claim that (D, D*) is a subgame perfect equilibrium in G}; (3).
Consider any =0, 1,. .. and any subgame starting at time 7. Then (D%, D) induces
a Nash equilibrium in this subgame: given that player 2 always plays D, player 1
cannot do better than always playing D as well, and vice versa. Hence, (D*,D*) is

! In the marketing game, one can think of the game being played once per period — a week, month
— each player observing in each period whether his opponent has advertised or not.

2 Hence, a player does not learn the exact, possibly mixed, action of his opponent, but only its
realization.



7.1 Subgame Perfect Equilibrium 103

a subgame perfect equilibrium. In this subgame perfect equilibrium, the players just
play the Nash equilibrium of the stage game at every time ¢.

We next exhibit another subgame perfect equilibrium. Consider the following
strategy:

Tr(C): atr =0 and at every time ¢ such that in the past only (C, C) has occurred
in the stage game: play C. Otherwise, play D.

Strategy Tr(C) is a so-called trigger strategy. A player playing this strategy starts
playing C and keeps on playing C as long as both players have only played C in
the past; after any deviation from this, however, this player plays D and keeps on
playing D forever. Again, Tr(C) is a well-defined strategy, and if both players play
Tr(C), then each player obtains the payoff

iso 8 =50/(1—8).

t=0

Is (Tr(C),Tr(C)) also a subgame perfect equilibrium? The answer is a qualified
yes: if & is large enough, then it is. The crux of the argument is as follows. At each
stage of the game, a player has an incentive to deviate from C and play his dominant
action D, thereby obtaining a momentary gain of 10. Deviating, however, triggers
eternal ‘punishment’ by the other player, who is going to play D forever. The best
reply to this punishment is to play D as well, entailing an eternal loss of 10 from the
next moment on. So the discounted value of this loss is equal to 106 /(1 — §), and to
keep a player from deviating this loss should be at least as large as the momentary
gain of 10. This is the case if and only if § > 1/2.

More formally, we can distinguish two kinds of subgames that are relevant for
the strategy combination (7r(C),Tr(C)). One kind are those subgames where not
always (C,C) has been played in the past. In such a subgame, Tr(C) tells a player
to play D forever, and therefore the best reply of the other player is to do so as
well, i.e., to play according to Tr(C). So in this kind of subgame, (Tr(C),Tr(C))
is a Nash equilibrium. In the other kind of subgame, no deviation has occurred so
far: in the past always (C,C) has been played. Consider this subgame at time 7 and
suppose that player 2 plays Tr(C). If player 1 plays Tr(C) as well, his payoff is
equal to

T—1 oo

Y 508+ ) 508"
=0 t=T

If, instead, he deviates at time 7 to D, he obtains

-1 oo
Y 508 +608"+ ) 408"
=0 t=T+1
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Hence, to avoid deviation (and make 77(C) player 1’s best reply in the subgame)
we need that the first payoff is at least as high as the second one, resulting in the
inequality

5087 /(1—8)>6087 440871 /(1-8)

or, equivalently, & > 1/2 — as found before. We conclude that for every 8§ > 1/2,
(Tr(C),Tr(C)) is a subgame perfect equilibrium of the game G7;(5). The existence
of this equilibrium is a major reason to study infinitely repeated games. In popular
terms, it shows that cooperation is sustainable if deviations can be credibly punished,
which is the case if the future is sufficiently important (i.e., 6 large enough).

To exhibit a subgame perfect equilibrium different from (D*,D*) and (Tr(C),
Tr(C)), consider the following strategies:

Try: As long as the sequence (C,D), (D,C), (C,D), (D,C), (C,D), (D,C), ...
has occurred in the past from time 0 on, play C at t € {0,2,4,6,...}; play D
attr € {1,3,5,7,...}. Otherwise, play D.

Try: As long as the sequence (C,D), (D,C), (C,D), (D,C), (C,D), (D,C), ...
has occurred in the past from time O on, play D at t € {0,2,4,6,...}; play C
att € {1,3,5,7,...}. Otherwise, play D.

Note that these are again ‘trigger strategies’: the players ‘tacitly’ agree on a certain
sequence of play, but revert to playing D forever after a deviation. If player 1 plays
Try and player 2 plays Try, then the sequence (C,D), (D,C), (C,D), (D,C), ...,
results. To see why (Tr;,Tr,) might be a subgame perfect equilibrium, note that
on average a player obtains 45 per stage, which is more than the 40 that would be
obtained from deviating from this sequence and playing D forever. More precisely,
suppose player 2 plays Tr, and suppose player 1 considers a deviation from Try. It
is optimal to deviate at an even moment, say at ¢t = 0. This yields a momentary gain
of 10 and a discounted future loss of

20(8' + 8 +84--)—10(8>+8* +8%+---).

To keep player 1 from deviating this loss should be at least as large as the gain of
10, hence
208 1062
- >1
1-6%2 1-862~ 0
which yields 6 > 1/2. We conclude (the formal argument is analogous to the one
before) that for each § > 1/2, (Tr1,Tr2) is a subgame perfect equilibrium in G (5).

More generally, by playing appropriate sequences of elements from the set of possi-
ble outcomes {(C,C),(C,D),(D,C),(D,D)} of the stage game G, the players can
on average reach any convex combination of the associated payoffs in the long run.
That is, take any such combination

1 (50,50) + 02(30,60) + 03(60,30) + 440, 40),
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(30,60)

(50,50)

(40,40)

(60,30)

Fig. 7.1 For every payoff pair in the shaded area there is a 6 large enough such that this payoff
pair can be obtained as the limiting (long run) average in a subgame perfect equilibrium of Gy, (5)

where @; € R, o; > O foreveryi=1,...,4,and ):?:1 o; = 1. By choosing a sequence
of possible outcomes such that (C,C) occurs (in the long run) in a fraction ¢ of the
stages, (C,D) in a fraction o, (D,C) in a fraction o3, and (D,D) in a fraction
04, then the above payoffs are reached as averages in the limit. As long as these
limiting average payoffs exceed 40 for each player, associated trigger strategies can
be formulated that lead to these payoffs and that trigger eternal play of (D, D) after
a deviation, similar to the strategies Tr(C), Tr; and Tr, above. For 0 sufficiently
high, such strategies form again a subgame perfect equilibrium in G;,"(S ). Figure 7.1
shows the payoffs that can be reached this way as limiting average payoffs in a
subgame perfect equilibrium of G7; () for 6 high enough.

7.1.2 Some General Observations

For the prisoners’ dilemma game we have established that each player playing
always D is a subgame perfect equilibrium of G (5) for every 0 < § < 1. The
following proposition follows from exactly the same simple logic.

Proposition 7.1. Let G be any arbitrary (not necessarily finite) n-person game, and
let the strategy combination s = (sy,...,Si,...,8,) be a Nash equilibrium in G. Let
0 < 0 < 1. Then each player i playing s; at every moment t is a subgame perfect
equilibrium in G*(8).

3 We assume that G*(8) is well-defined, in particular that the discounted payoff sums are finite.
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In particular, this proposition holds for any bimatrix game (see Definition 3.1) and
any (at least any or pure) Nash equilibrium in this bimatrix game.

Let G = (A, B) be an m x n-bimatrix game. Let P(G) be the convex hull of the set
{(aij,bij) €ER*|i=1,...,m, j=1,...,n}. Thatis,

m n m n
P(G)Z ZZaij(aij,bij) ZZ(XijZI,Vi,ji 0;; >0

i=1j=1 i=1j=1

For the prisoners’ dilemma game G,, P(G,) is the quadrangle with (40,40),
(30,60), (60,30), and (50,50) as vertices, see Fig.7.1. The elements (payoff pairs)
of P(G) can be obtained as limiting (long run) average payoffs in the infinitely
repeated game G by an appropriate sequence of play.* The following proposition
says that every payoff pair in P(G) that strictly dominates the payoffs associated
with a Nash equilibrium of G can be obtained as limiting average payoffs in a
subgame perfect equilibrium of G(8) for & large enough. Such a proposition is
known as a Folk theorem.” Its proof (omitted here) is somewhat technical but basi-
cally consists of formulating trigger strategies in a similar way as for the prisoners’
dilemma game above. In these strategies, after a deviation from the pattern leading
to the desired limiting average payoffs, players revert to the Nash equilibrium under
consideration of the stage game forever.

Proposition 7.2 (Folk theorem for subgame perfect equilibrium). Ler (p*,q*)
be a Nash equilibrium of G, and let X = (x1,x2) € P(G) such that x; > p*Aq* and
X2 > p*Bq*. Then thereis a0 < 8 < 1 such that for every 8 > 8 there is a subgame
perfect equilibrium in G*(8) with limiting average payoffs x.”

7.2 Nash Equilibrium

In this section we consider the consequences of relaxing the subgame perfection
requirement for a Nash equilibrium in an infinitely repeated game. When thinking
of trigger strategies as in Sect. 7.1, this means that deviations can be punished more
severely, since the equilibrium does not have to induce a Nash equilibrium in the
‘punishment subgame’.

4 P(G) is sometimes called the cooperative payoff space. Its elements are also attainable if the
players could agree to pick payoff pairs randomly, i.e., to agree on some probability distribution —
called correlated strategy — over the payoff pairs in the set {(a;;,b;;)}. See Sect. 13.7.

3 This expression refers to the fact that results like this had been known among game theorists even
before they were formulated and written down explicitly. They belonged to the folklore of game
theory.

6 For a stronger result see [38], where it is shown that Proposition 7.3 below also holds for subgame
perfect Nash equilibrium if the dimension of the cooperative payoff space is equal to the number of
players. This, however, requires more sophisticated strategies. See also [39] for further references.
7 Formally, if &y, &1, &, ... is a sequence of real numbers, then the limiting average is the number
limy_... T]H Y7 &, assuming that this limit exists.
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For the infinitely repeated prisoners’ dilemma game this has no consequences.
In the game G‘;’(S), each player can guarantee to obtain at least 40 at each stage,
so that more severe punishments are not possible. In the following subsection we
consider a different example.

7.2.1 An Example

Consider the bimatrix game

L R
U /(1,1 0,0
“=p (0,0 —1,4>'

The set P(G)) is the triangle with vertices (1,1), (0,0), and (—1,4). In the game
G the strategy U is a strictly dominant strategy for player 1. The unique Nash
equilibrium is (U, L). Player 1 always playing U and player 2 always playing L is
a subgame perfect equilibrium in G(8) for every 0 < 6 < 1, cf. Proposition 7.1.
Proposition 7.2 does not add anything to this observation, since P(G) does not

contain any payoff pair larger than (1, 1) for each player.
Now consider the following strategies in the infinitely repeated game G7(9):

Ni: Att =0 play D. After a history where (D,R) was played att = 0,4,8,12,...
and (U, L) at all other times: play D atz = 0,4,8,12,... and play U at all other
times. After any other history play the mixed action (‘5‘7 ;), that is, play U with
probability ‘5‘ and D with probability é

Np: Att =0 play R. After a history where (D,R) was played at r = 0,4,8,12,...
and (U, L) at all other times: play R att = 0,4,8,12,... and play L at all other
times. After any other history play R.

Note that these strategies are again trigger strategies. They induce a sequence of
play in which within each four times, (D,R) is played once and (U,L) is played
thrice. After a deviation player 1 plays the mixed action (‘5‘, ; ) and player 2 the pure
action R forever. Thus, in a subgame following a deviation the players do not play a
Nash equilibrium: if player 2 plays R always, then player 1’s best reply is to play U
always. Hence, (N7, N,) is not a subgame perfect equilibrium.

We claim, however, that (N;,N,) is a Nash equilibrium if § is sufficiently large.

First observe that player 2 can never gain from deviating since, if player 1 plays
N1, then N, requires player 2 to play a best reply in the stage game at every moment
t. Moreover, after any deviation player 1 plays (‘5‘7 ;) at any moment #, so that both
L and R have an expected payoff of ‘51 for player 2, which is less than 1 and less
than 4.

Suppose player 2 plays N,. If player 1 wants to deviate from NNy, the best moment
to do so is one where he is supposed to play D, so att = 0,4,.... Without loss of
generality suppose player 1 deviates at r = 0. Then (U, R) results at r = 0, yielding
payoff O to player 1. After that, player 2 plays R forever, and the best reply of
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player 1 to this is to play U forever, again yielding 0 each time. So his total payoff
from deviating is 0. Without deviation player 1°s total discounted payoff is equal to

—1(8°+ 8+ 8%+ )+ 1(8' +87+ 8+ 8 +8°+ 87 +--).

In order to keep player 1 from deviating this expression should be at least 0, i.e.

—1 n 1 ~0
-84 1-86 1-68%]

which holds if and only if § > 8* with 8* ~ 0.54.% Hence, for these values of
0, (N1,N,) is a Nash equilibrium in G (8). The limiting average payoffs in this
equilibrium are equal to 3 (1,1) +  (—1,4), hence to (1, 7).

The actions played in this equilibrium after a deviation are, in fact, the actions
that keep the opponent to his maximin payoff. To see this, first consider the action

of player 2, R. The payoff matrix of player 1 is the matrix A with

L R
u/l 0
=500 5)
The value of the matrix game A, cf. Chap. 2, is equal to 0 — in fact, (U,R) is a
saddlepoint of A — and, thus, player 1 can always obtain at least 0. By playing R,
which is player 2’s optimal strategy in A, player 2 can hold player 1 down to O.
Hence, this is the most severe punishment that player 2 can inflict upon player 1
after a deviation.

Similarly, if we view the payoff matrix B for player 2 as a zerosum game with

payofts to player 2 and, following convention, convert this to a matrix game giving
the payoffs to player 1, we obtain

L R
u/-1 0
5= ( 0 4) '
In this game, (‘5‘, ;) is an (the) optimal strategy for player 1, yielding the value of
the game, which is equal to — ‘5‘. Hence, player 2 can guarantee to obtain a payoff
of ‘5‘, but player 1 can make sure that player 2 does not obtain more than this by
playing (‘51, é) Again, this is the most severe punishment that player 1 can inflict
upon player 2 after a deviation.

By using these punishments in a trigger strategy, the same logic as in Sect. 7.1
tells us that any pair of payoffs in P(G) that strictly dominates the pair
(v(A),—v(—B)) = (0, %) can be obtained as limiting average payoffs in a Nash
equilibrium of the game G7°(8) for 6 sufficiently large. This is illustrated in Fig. 7.2.

8 Found by solving a third degree equation.
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(7174)

(1,1)

(0,0)

Fig. 7.2 For every payoff pair in the shaded area there is a 6 large enough such that this payoff
pair can be obtained as the limiting (long run) average in a Nash equilibrium of G (§)

7.2.2 A Folk Theorem for Nash Equilibrium

Let G = (A,B) be an arbitrary m x n bimatrix game. Let v(A) be the value of the
matrix game A and let v(—B) be the value of the matrix game —B. Asin Sect. 7.1 let
P(G) be the cooperative payoff space. The following proposition generalizes what
we found above for the game G.

Proposition 7.3 (Folk theorem for Nash equilibrium). Ler x = (x;,x) € P(G)
such that x| > v(A) and x, > —v(—B). Then there is a 0 < 8 < 1 such that for
every 0 > 87 there is Nash equilibrium in G*(0) with limiting average payoffs x.

Problems

7.1. On Discounting and Limiting Average

(a) In a repeated game, interpret the discount factor 0 < & < 1 as the probability
that the game will continue, i.e., that the stage game will be played again. Show
that, with this interpretation, the repeated game will end with probability 1 (cf.
Problem 6.16(e)).

(b) Can you give an example in which the limit that defines the long run average
payofts, does not exist? (cf. Footnote 7).

7.2. Nash and Subgame Perfect Equilibrium in a Repeated Game

Consider the following bimatrix game:

L R
T (23 1,5
G=AB)=p (01 01>'

(
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(a) Determine all Nash equilibria of this game. Also determine the value v(A) of the
matrix game A and the value v(—B) of the matrix game —B. Determine the optimal
strategies of player 2 in A and of player I in —B.

(b) Consider the repeated game G*(8). Which limiting average payoff(s) can be
obtained in a subgame perfect equilibrium of this repeated game according to
Proposition 7.1 or Proposition 7.2? Does this depend on 6?

(c) Which limiting average payoffs can be obtained in a Nash equilibrium in G*(9)
according to Proposition 7.3? Describe a pair of Nash equilibrium strategies that
result in the long run average payoffs (2,3). What is the associated minimum value
of 87

7.3. Nash and Subgame Perfect Equilibrium in Another Repeated Game

Consider the following bimatrix game:

L R
T (2,1 0,0
G:(A’B):B<00 12)'

(a) Which payoffs can be reached as limiting average payoffs in subgame perfect
equilibria of the infinitely repeated game G™(§) for suitable choices of & according
to Propositions 7.1 and 7.2?

(b) Which payoffs can be reached as limiting average payoffs in Nash equilib-
ria of the infinitely repeated game G*(§) for suitable choices of § according to
Proposition 7.3?

(c) Describe a subgame perfect Nash equilibrium of G*(6) resulting in the limiting

average payoffs (%, 3) Also give the corresponding restriction on §.

7.4. Repeated Cournot and Bertrand

(a) Reconsider the duopoly (Cournot) game of Sect. 6.2.1. Suppose that this game is
repeated infinitely many times, and that the two firms discount the streams of payoffs
by a common discount factor 6. Describe a subgame perfect Nash equilibrium of
the repeated game that results in each firm receiving half of the monopoly profits on
average. Also give the corresponding restriction on 8. What could be meant by the
expression ‘tacit collusion’?

(b) Answer the same questions as in (a) for the Bertrand game of Sect. 6.3.



Chapter 8
An Introduction to Evolutionary Games

In an evolutionary game, players are interpreted as populations — of animals or indi-
viduals. The probabilities in a mixed strategy of a player in a bimatrix game are
interpreted as shares of the population. Individuals within the same part of the pop-
ulation play the same pure strategy. The main ‘solution’ concept is the concept of
an evolutionary stable strategy.

Evolutionary game theory originated in the work of the biologists Maynard Smith
and Price [77]. Taylor and Jonker [133] and Selten [120], among others, played an
important role in applying the developed evolutionary biological concepts to bound-
edly rational human behavior, and to establish the connection with dynamic systems
and with game-theoretic concepts like Nash equilibrium. A relatively recent and
comprehensive overview can be found in Weibull [147].

This chapter presents a short introduction to evolutionary game theory. For a
somewhat more advanced continuation see Chap. 15.

In Sect.8.1 we consider symmetric two-player games and evolutionary stable
strategies. Evolutionary stability is meant to capture the idea of mutation from the
theory of evolution. We also establish that an evolutionary stable strategy is part of
a symmetric Nash equilibrium. In Sect. 8.2 the connection with the so-called repli-
cator dynamics is studied. Replicator dynamics intends to capture the evolutionary
idea of selection based on fitness. In Sect. 8.3 asymmetric games are considered.
Specifically, a connection between replicator dynamics and strict Nash equilibrium
is discussed.

8.1 Symmetric Two-Player Games and Evolutionary Stable
Strategies

A famous example from evolutionary game theory is the Hawk—Dove game:

Hawk Dove
Hawk [ 0,0 3,1
Dove 1,3 2,2 )
H. Peters, Game Theory — A Multi-Leveled Approach. 111
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This game models the following situation. Individuals of the same large population
meet randomly, in pairs, and behave either aggressively (Hawk) or passively (Dove)
— the fight is about nest sites or territories, for instance. This behavior is geneti-
cally determined, so an individual does not really choose between the two modes
of behavior. The payoffs reflect (Darwninian) fitness, e.g., the number of offspring.
In this context, players 1 and 2 are just two different members of the same popula-
tion who meet: indeed, the game is symmetric — see below for the formal definition.
A mixed strategy p = (p1,p2) (of player 1 or player 2) is naturally interpreted as
expressing the population shares of individuals characterized by the same type of
behavior. In other words, p; x 100% of the population are Hawks and p; x 100%
are Doves. In view of this interpretation, in what follows we are particularly inter-
ested in symmetric Nash equilibria, i.e., Nash equilibria in which the players have
the same strategy. The Hawk—Dove game has three Nash equilibria, only one of
which is symmetric namely ((},3),(3,5)).! The formal definitions of a symmetric
game and a symmetric Nash equilibrium are as follows.

Definition 8.1. Let G = (A,B) be an m x n-bimatrix game. Then G is symmetric
if m =n and B = AT, where AT denotes the transpose of A.> A Nash equilibrium
(p*,q") of G is symmetric if p* = q*.

We state the following fact without a proof (see Chap. 15).

Proposition 8.2. Every symmetric bimatrix game G has a symmetric Nash equilib-
rium.

With the interpretation above it is meaningful to consider symmetric Nash equilib-
ria. In fact, we will require a little bit more.

Let G = (A, B) be a symmetric game. Knowing that the game is symmetric, it is
sufficient to give the payoff matrix A, since then B = AT . In what follows, when we
talk about a symmetric game A we mean the game G = (A, AT). Let A be an m x m-
matrix. Recall (cf. Chap. 2) that A" denotes the set of mixed strategies (for player 1
or player 2). The following definition is due to Maynard Smith and Price [77].

Definition 8.3. A strategy x € A” is an evolutionary stable strategy (ESS) in A if for
every strategy y € A™, y # x, there exists some & € (0,1) such that for all € € (0, &)
we have

xA(ey+ (1 —¢€)x) > yA(ey + (1 — €)x). (8.1

The interpretation of an ESS x is as follows. Consider any small mutation €y + (1 —
€)x of x. Condition (8.1) then says that against such a small mutation, the original
strategy X is better than the mutant strategy y. In other words, if the population x

! The Hawk—Dove game can also be interpreted as a Game of Chicken. Two car drivers approach
each other on a road, each one driving in the middle. The driver who is the first to return to his
own lane (Dove) ‘loses’ the game, the one who stays in the middle ‘wins’ (Hawk). With this
interpretation also the asymmetric equilibria are of interest.

2 Hence, bijj=ajiforalli,j=1,...,m.
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is invaded by a small part of the mutant population y, then x survives since it fares
better against this small mutation than the mutant y itself does. In [77] evolutionary
stability was regarded as expressing stability of a population against mutations. We
will see below that evolutionary stability has game-theoretic as well as dynamic
consequences.

Before applying Definition 8.3 to the Hawk—Dove game, it is convenient to first
establish the following propositions, which show that an ESS results in a symmetric
Nash equilibrium with a special additional property. Readers not interested in the
proofs may also skip these propositions and continue with the summary following
Proposition 8.5.

Proposition 8.4. Let A be an m x m-matrix and let x € A™ be an ESS in A. Then
(x,X) is a Nash equilibrium in G = (A,AT).

Proof. Let y € A™, then it is sufficient to show xAx > yAx. Let & be as in
Definition 8.3, then

xA(ey+ (1 —¢€)x) > yA(ey + (1 — €)x)
for all 0 < € < & by (8.1). By letting € go to zero, this implies XAx > yAx. a

This proposition shows that, indeed, evolutionary stable strategies result in sym-
metric Nash equilibria. Hence, to find ESS’s, it is sufficient to restrict attention to
symmetric Nash equilibria. A second convenient property of ESS’s is given in the
next proposition.

Proposition 8.5. Let A be an m x m-matrix. If x € A™ is an ESS in A, then, for all
y € A" with'y # x we have:

XAX = yAX = xAy > yAy. (8.2)

Conversely, if (x,X) € A™ x A™ is a Nash equilibrium in G = (A,AT) and (8.2) holds,
then X is an ESS.

Proof. Let x € A" be an ESS. Let y € A" with y # x and xAx = yAx. Suppose
that yAy > xAy. Then, for any € € [0,1], yA(ey + (1 — €)x) > xA(ey + (1 — €)x),
contradicting (8.1).

Conversely, let (x,x) € A™ x A™ be a Nash equilibrium in G = (A,AT) and let
(8.2) hold for x. If xAx > yAx, then also xA(ey + (1 — &€)x) > yA(ey + (1 — €)x)
for small enough €. If xAx = yAx, then xAy > yAy, hence (8.1) holds for any
€€ (0,1]. O

The two preceding propositions state that evolutionary stable strategies are those
strategies x that (1) occur in a symmetric Nash equilibrium and (2) perform strictly
better against any alternative best reply y than that alternative best reply performs
against itself.

Thus, the evolutionary stable strategies for an m x m matrix A can be found as
follows. First, compute the symmetric Nash equilibria of the game G = (A, B) with
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B = AT This can be done using the methods developed in Chap. 3. Second, for
each such equilibrium (x,x), check whether (8.2) holds. If it does, then x is an
evolutionary stable strategy.

We apply this method to the Hawk—Dove game. For this game,

Hawk Dove
A Hawk 0 3
~ Dove 1 2 )
The unique symmetric equilibrium strategy was x = (é, ;) Lety = (y,1—y) be an
arbitrary strategy, then the condition xAx = yAx in (8.2) is always satisfied. This can

be seen by direct computation but it also follows from the fact that (x,x) is a Nash
equilibrium (how?). Hence, we have to check if

XAy > yAy
forall y = (y, 1 — y) # x. This inequality reduces (check!) to

4y* —4y+1>0,

which is true for all y # 5 Thus, x = (é, 5) is the unique ESS in A.

8.2 Replicator Dynamics and Evolutionary Stability

Central in the theory of evolution are the concepts of mutation and selection. While
the idea of mutation is meant to be captured by the concept of evolutionary sta-
bility, the idea of selection is captured by the so-called replicator dynamics. We
illustrate the concept of replicator dynamics, introduced in [133], by considering
again the Hawk—Dove game

Hawk Dove
Hawk [/ 0,0 3,1
Dove 1,3 2,2 )

Consider a mixed strategy or, in the present context, vector of population shares
x = (x,1 —x). Consider an arbitrary individual of the population. Playing ‘Hawk’
against the population x yields an expected payoff or ‘fitness’ of

0-x+3-(1—x)=3(1—-x)
and playing ‘Dove’ yields

l-x+2-(1—x)=2—nx.
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Hence, the average fitness of the population is
x-3(1—x)+(1—x)-(2—x)=2—-2x%

We now assume that the population shares develop over time, i.e., that x is a
function of time ¢, and that the change in x, described by the time derivative
x =%(t) = dx(r)/dt, is proportional to the difference with the average fitness. That
is, we assume that x is given by the following equation

X(t) = dx(t)/dt = x(1) [3(1 —x(t)) — (2 —2x(1)?)] . (8.3)

Equation (8.3) is the replicator dynamics for the Hawk—Dove game. The equation
says that the population of Hawks changes continuously (described by dx(r)/dr),
and that this change is proportional to the difference of the fitness at time ¢ (which
is equal to 3(1 —x(¢))) with the average fitness of the population (which is equal to
2 —2x(t)?). Simplifying (8.3) and writing x instead of x(¢) yields

x=dx/dt =x(x—1)2x—1).

This makes it possible to make a diagram of dx/dt as a function of x (a so-called
phase diagram). See Fig. 8.1. We see that this replicator dynamics has three different
roots, the so-called rest points3 x=0,x= ;, and x = 1. For these values of x, the
derivative dx/dt is equal to zero, so the population shares do not change: the system
is at rest. In case x = 0 all members of the species are Doves, their fitness is equal to
the average fitness, and so nothing changes. This rest point, however, is not stable. A
slight disturbance, e.g., a genetic mutation resulting in a Hawk, makes the number
of Hawks increase because dx/dt becomes positive: see Fig. 8.1. This increase will
go on until the rest point x = 5 is reached. A similar story holds for the rest point
x = 1, where the population consists of only Hawks. Now suppose the system is at
the rest point x = é Note that, after a disturbance in either direction, the system will
move back again to the state where half the population consists of Doves. Thus, of
the three rest points, only x = ; is stable.

1
0 \/ X
2

Fig. 8.1 Replicator dynamics for the Hawk—-Dove game

3 Also called equilibrium points, critical points, stationary points.
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Recall from the previous section that x = (é, ;) is also the unique evolutionary

stable strategy of the Hawk—Dove game. That this is no coincidence follows from
the next proposition, which we state here without a proof (see Chap. 15 for a proof).

Proposition 8.6. Let A be a 2 x 2-matrix. Then:

(1) A has at least one evolutionary stable strategy.
(2) x = (x,1 —x) is an evolutionary stable strategy of A, if and only if X is a stable
rest point of the replicator dynamics.

For general m x m-matrices the set of completely mixed” rest points of the replicator
dynamics coincides with the set of completely mixed (symmetric) Nash equilibrium
strategies. There are also connections between stability of rest points and further
properties of Nash equilibria. See Chap. 15 for more details.

8.3 Asymmetric Games

The evolutionary approach to game theory is not necessarily restricted to sym-
metric situations, i.e., bimatrix games of the form (A, AT) in which the row and
column players play identical strategies. In biology as well as economics one can
find many examples of asymmetric situations. Think of two different species com-
peting about territory in biology. As to economics, see for instance [42], Chap. 8 for
some applications. The following example is also taken from [42]. Here only the
formal analysis is discussed.
Consider the 2 x 2-bimatrix game

L R
T (0,0 2,2
(A.B)=p (1,5 1,5)'
Think of two populations, the row population and the column population. In each
population there are two different types: 7 and B in the row population and L and
R in the column population. Individuals of one population are continuously and
randomly matched with individuals of the other population, and we are interested
again in the development of the population shares. To start with, assume the shares
of T and B types in the row population are x and 1 — x, respectively, and the shares

of L and R types in the column population are y and 1 — y. The expected payoff of a
T type individual is given by

0-y+2-(1—y)=2-2y.
For a B type individual it is

Ly+1-(1—y)=1.

4 Le., all coordinates positive.
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For an L type individual it is

0-x+5-(1—x)=5-"5x.
And for an R type individual:

2:x+5-(1—x)=5-3x.
The average of the row types is therefore:

x2(1=y)]+1-(1-x)
and the replicator dynamics for the population share x(¢) of 7 individuals is given
b
’ dx/dt =x[2(1 —y) —x[2(1 —y)] — (1 =x)] = x(1 —x)(1 —2y). (8.4)

Here, we write x and y instead of x(r) and y(r). Similarly one can calculate the
replicator dynamics for the column population (check this result!):

dy/dt = y(1 —y)(—2x). (8.5)

We are interested in the rest points of the dynamical system described by (8.4) and
(8.5), and, in particular, by the stable rest points. The easiest way is to make a
diagram of the possible values of x and y, see Fig.8.2. In this diagram, the black
lines are the values of x and y for which the derivative in (8.4) is equal to 0, i.e., for
which the row population is at rest. The light gray lines are the values of x and y for
which the derivative in (8.5) is equal to O: there, the column population is at rest.
The points of intersection are the points where the whole system is at rest; this is the
set

{(0,y) [0 <y <1}U{(1,0)} U{(1,1)}. (8.6)

In Fig. 8.2, arrows indicate the direction in which x and y move. For instance, if
1>y>)and 0 <x< 1 we have dx/dt <0 and dy/dt < 0, so that in that region

1 < <
—
1
y=,

N

1
Fig. 8.2 Phase diagram of
the asymmetric evolutionary

game 0 X 1
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x as well as y decrease. A stable rest point is a rest point such that, if the system
is slightly disturbed and changes to some point close to the rest point in question,
then it should move back again to this rest point. In terms of the arrows in Fig. 8.2
this means that a stable rest point is one where all arrows in the neighborhood point
towards that point. It is obvious that in our example the point (1,0) is the only such
point. So the situation where the row population consists only of 7" type individuals
(x = 1) and the column population consists only of R type individuals (y = 0) is the
only stable situation with respect to the replicator dynamics.

Is there a relation with Nash equilibrium? One can check (!) that the set of Nash
equilibria in this example is the set:

{(T.R).(B.LU{(B.(g.1-q))| ) <g <1},

So the stable rest point (7,R) is a Nash equilibrium. Furthermore, it has a special
characteristic, namely, it is the only strict Nash equilibrium of the game. A strict
Nash equilibrium in a game is a Nash equilibrium where each player not only does
not gain but in fact strictly loses by deviating. For instance, if the row player deviates
from 7T in the Nash equilibrium (7,R) then he obtains strictly less than 2. All the
other equilibria in this game do not have this property. For instance, if the column
player deviates from L to R in the Nash equilibrium (B, L), then he still obtains 5.

The observation that the stable rest point of the replicator dynamics coincides
with a strict Nash equilibrium is not a coincidence. The following proposition is
stated without a proof (see [119] or [57]).

Proposition 8.7. In a 2 x 2 bimatrix game a pair of strategies is a stable rest point
of the replicator dynamics if, and only if, it is a strict Nash equilibrium. For larger
games, any stable rest point of the replicator dynamics is a strict Nash equilibrium,
but the converse does not necessarily hold.

In the literature the concept of evolutionary stable strategy is extended to asymmet-
ric games. See the cited references for details.

Problems
8.1. Symmetric Games

Compute the evolutionary stable strategies for the following payoff matrices A.

(a) A= (‘51 (3)> (Prisoners’ Dilemma)

(b)A = ((2) ?) (Coordination game)
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8.2. More Symmetric Games

For each of the following two matrices, determine the replicator dynamics, rest
points and stable rest points, and evolutionary stable strategies. Include phase dia-
grams for the replicator dynamics. For the evolutionary stable strategies, provide
independent arguments to show evolutionary stability by using Propositions 8.4 and
8.5; that is, without using the replicator dynamics.

() ()

8.3. Asymmetric Games

For each of the following two asymmetric situations, determine the replicator
dynamics, rest points and stable rest points, including phase diagrams. Also deter-
mine all Nash and strict Nash equilibria.

r (0,0 1,1 r (2,2 0,1
(4.4 )(1,1 0.0) BBEI={10 00)

8.4. Frogs Call for Mates ([42], p.215)

Consider the following game played by male frogs who Call or Don’t Call their
mates.

Call Don’t Call
Call P—z,P—z m—z,1—m
Don’tCall \ 1 —m,m—z 0,0

The payoffs are in units of ‘fitness’, measured by the frog’s offspring. Here z denotes
the cost of Calling (danger of becoming prey, danger of running out of energy); and
m is the probability that the male who calls in a pair of males, the other of whom
is not calling, gets a mate. Typically, m > é Next, if no male calls then no female
is attracted, and if both call returns diminish and they each attract P females with
0<P<LI

(a) Show that there are several possible evolutionary stable strategies for this game,
depending on the parameters (m, z, P).

(b) Set m = 0.6 and P = 0.8 . Find values for z for each of the following situations:
(1) Don’t Call is an evolutionary stable strategy (ESS); (2) Call is an ESS; (3) A
mixture of Call and Don’t Call is an ESS.
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(c) Suppose there are two kinds of frogs in Frogs call for mates. Large frogs have
a larger cost of calling (z;) than do small frogs (z,). Determine the correspond-
ing asymmetric bimatrix game. Determine the possible stable rest points of the
replicator dynamics.

8.5. Video Market Game ([42], pp.229, 233).

Two boundedly rational video companies are playing the following asymmetric
game:

Open system Lockout system

Open system 6,4 5,5
Lockout system 9,1 10,0

Company I (the row company) has to decide whether to have an open system or a
lockout system. Company II (the column company) has to decide whether to create
its own system or copy that of company I. What is a rest point of the replicator
dynamics for this system?



Chapter 9
Cooperative Games with Transferable Utility

The implicit assumption in a cooperative game is that players can form coalitions
and make binding agreements on how to distribute the proceeds of these coalitions.
A cooperative game is more abstract than a noncooperative game in the sense that
strategies are not explicitly modelled: rather, the game describes what each possible
coalition can earn by cooperation. In a cooperative game with transferable utility
it is assumed that the earnings of a coalition can be expressed by one number. One
may think of this number as an amount of money, which can be distributed among
the players in any conceivable way — including negative payments — if the coalition
is actually formed. More generally, it is an amount of utility and the implicit assump-
tion is that it makes sense to transfer this utility among the players — for instance,
due to the presence of a medium like money, assuming that individual utilities can
be expressed in monetary terms.

This chapter presents a first acquaintance with the theory of cooperative games
with transferable utility.! A few important solution concepts — the core, the Shap-
ley value, and the nucleolus — are briefly discussed in Sects. 9.2-9.4. We start with
examples and preliminaries in Sect.9.1.

9.1 Examples and Preliminaries

In Chap. I we have seen several examples of cooperative games with transferable
utilities: the three cities game, a glove game, a permutation game, and a voting
game. For the stories giving rise to these games the reader is referred to Sect. 1.3.4.
Here we reconsider the resulting games.

In the three cities game, cooperation between cities leads to cost savings
expressed in amounts of money, as in Table 9.1. In the first line of this table all
possible coalitions are listed. It important to note that the term ‘coalition’ is used
for any subset of the set of players. So a coalition is not necessarily formed. The

! See Chaps. 16-20 for a more advanced treatment.

H. Peters, Game Theory — A Multi-Leveled Approach. 121
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Table 9.1 The three cities game

s o {13 {2p {3} {12} {1,3} {23} ({1,2,3}
W) 0 0 0 0 90 100 120 220

Table 9.2 A glove game

s o {1} {2p {3} {12} {1,3} {23} ({1,2,3}
W) 0 0 0 0 0 1 1 1

Table 9.3 A permutation game

§ o {1} {23 {3 {12y {13} {23} ({1,2,3}
W) o0 2 5 4 14 18 9 24

empty subset (empty coalition) has been added for convenience: it just is assigned
the number 0 by convention. The numbers in the second line of the table are called
the ‘worths’ of the coalitions. For instance, coalition S = {1,2} has worth 90. In
this particular example, 90 is the amount of cost savings earned by cities 1 and 2 if
they cooperate. It is assumed that this amount can be split between the two players
(cities) if the coalition is actually formed. That is, player 1 may receive x; € R and
player 2 may receive x, € R such that x; +x, = 90 or, more generally, x| +x; < 90.

In the glove game in Sect. 1.3.4 coalitions may make pairs of gloves. The game
is described in Table 9.2. In this game the worth 1 of the ‘grand coalition” {1,2,3},
for instance, means that this coalition can earn 1 by producing one pair of gloves.
One can think of this number as expressing the monetary value of this pair of gloves.
Alternatively, one can think of one pair of gloves having ‘utility’ equal to 1. Again,
it is assumed that the players can split up this amount in any way they like. So
a possible distribution takes the form (x,xy,x2) € R3 such that x; +x3 +x3 < 1.
For i = 1,2,3, the number x; may represent the money that player i receives, or (if
nonnegative) the percentage of time that player i is allowed to wear the gloves.

The permutation game (dentist game) of Sect. 1.3.4 is reproduced in Table 9.3.
In this game, one could think of the worth of a coalition as expressing, for instance,
savings of opportunity costs by having dentist appointments on certain days. What
is important is that, again, these worths can be distributed in any way among the
players of the coalitions.

For the voting game related to the UN Security Council, a table could be con-
structed as well, but this table would be huge: there are 2'5 = 32,768 possible
coalitions (cf. Problem 9.1). Therefore, it is more convenient to describe this game
as follows. Let the permanent members be the players 1,...,5 and let the other
members be the players 6,...,15. Denote by N = {1,2,...,15} the grand coalition
of all players and by v(S) the worth of a coalition S C N. Then

1 if{1,...,5} CSand|S| >9,
v(S) = {0 otherwise,
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where |S| denotes the number of players in S. In this case the number 1 indicates
that the coalition is ‘winning’ and the number O that the coalition is ‘losing’. In ana-
lyzing games like this the resulting numbers — e.g., nonnegative numbers xp, .. .,X5
summing to 1 — are usually interpreted as power indices, expressing the power of a
player in some way or another.

We summarize the concepts introduced informally in the preceding examples for-
mally within the following definition.

Definition 9.1. A cooperative game with transferable utility or TU-game is a pair
(N,v), where N = {1,2,...,n} with n € N is the set of players, and v is a function
assigning to each coalition S, i.e., to each subset S C N a real number v(S), such that
v(0) = 0. The function v is called the characteristic function and v(S) is called the
worth of S. The coalition N is called the grand coalition. A payoff distribution for
coalition S is a vector of real numbers (x;);cs.

When analyzing a TU-game there are two important questions to answer: which
coalitions are formed; and how are the worths of these coalitions distributed among
their members? In this chapter we assume that the grand coalition is formed and we
concentrate on the second question. This is less restrictive than it might seem at first
sight, since coalition formation depends, naturally, on how the proceeds of a coali-
tion are going to be distributed among its members. Thus, also if smaller coalitions
are formed the distribution question has to be considered for these coalitions.

9.2 The Core

Consider the three cities game in Table 9.1, suppose that the grand coalition gets
together, and suppose that there is a proposal x; = 40, x, = 40, and x3 = 140 for
distribution of the savings v(N) = 220 on the bargaining table. One can imagine, for
instance, that player 3 made such a proposal. In that case, players 1 and 2 could
protest successfully, since they can save v({1,2}) = 90 > 80 = x; + x, without
player 3. We express this by saying that x = (x|,x2,x3) is not in the ‘core’ of this
game. More generally, the core of the three cities game is the set of payoff distribu-
tions for N = {1,2,3} such that the sum of the payoffs is equal to v(N) = 220 and
each nonempty coalition S obtains at least its own worth. Formally, it is the set

C = {(x1,%2,x3) €R? | x1,20,x3 > 0
x1+x2 >90, x; +x3 > 100, xp +x3 > 120
X1+XQ+X3=220}.

To obtain a better idea of how this set looks like, we can make a diagram. Although
C is a subset of R3, the constraint x; + x» + x3 = 220 makes that the C is contained
in a two-dimensional subset of R3, i.e., the plane through the points (220,0,0),
(0,220,0), and (0,0,220). The triangle formed by these three points is represented
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(0,0,220)

(100,0,120)

(220,0,0) (0,220,0)

(100,120,0)

Fig. 9.1 The set C — the core — of the three cities game. The line segment a corresponds to the
constraint x +x, > 90, the line segment b corresponds to the constraint x| +x3 > 100, and the line
segment ¢ corresponds to the constraint x, +x3 > 120

in Fig.9.1. Note that C is a subset of this triangle by the constraints x; > 0 for every
i =1,2,3, derived from the conditions x; > v({i}) for i = 1,2,3. The set C is the
shaded area bounded by the three constraints for the two-person coalitions.
Hence, the core of the three cities game is the polygon with vertices (100, 120,0),
(0,120,100), (0,90, 130), (90,0, 130), and (100,0, 120).

We now give the formal definition of the core and of some other related concepts.
It will be convenient to use the notation x(S) := Y ;csx; for a payoff distribution

x = (xq,...,%,) € R" and a nonempty coalition S C N = {1,...,n}.

Definition 9.2. For a TU-game (N, v), a payoff distribution x = (xj, ...,x,) € R"is

e Efficient if x(N) = v(N)
e Individually rational if x; > v({i}) foralli e N
e Coalitionally rational if x(S) > v(S) for all nonempty coalitions S

The core of (N,v) is the set
C(N,v) ={xeR"|x(N) =v(N) and x(S) > v(S) forall 0 #S C N} .

So the core of (N,v) is the set of all efficient and coalitionally rational payoff
distributions.

The core of a game can be a large set, like in the three cities game; a ‘small’ set, like
in the glove game (see Problem 9.2); or it can be empty (see again Problem 9.2).
Games with nonempty cores were characterized in [16] and [122]: see Chap. 16.
In general, core elements can be computed by linear programming techniques. For
games with two or three players the core can be computed graphically, as we did
for the three cities game. Sometimes, the core can be computed by using the special
structure of a specific game under consideration.
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9.3 The Shapley Value

The Shapley value [121] is a solution concept for TU-games that is quite different
from the core. Whereas the core is a (possibly empty) set, the Shapley value assigns
a unique payoff distribution for the grand coalition to every TU-game. The Shapley
value is not so much based on strategic considerations but, rather, assigns to each
player his ‘average marginal contribution’ in the game.

Consider again the three cities game? of Table 9.1. Imagine a setting where
the players enter a bargaining room one by one, and upon entering each player
demands and obtains his marginal contribution. Suppose that player 1 enters first,
player 2 enters next, and player 3 enters last. Player 1 enters an empty room and
can take his ‘marginal contribution” v({1}) —v(0) = 0 —0 = 0. When player 2
enters, player 1 is already present, and player 2 obtains his marginal contribu-
tion v({1,2}) —v({1}) = 90 — 0 = 90. When, finally, player 3 enters, then the
coalition {1,2} is already present. So player 3 obtains his marginal contribution
v({1,2,3}) —v({1,2}) =220 — 90 = 130. Hence, this procedure results in the pay-
off distribution (0,90, 130), which is called a marginal vector. Of course, this payoff
distribution does not seem quite fair since it depends on the order in which the
players enter the room, and this order is quite arbitrary: there are five other pos-
sible orders. The Shapley value takes the marginal vectors of all six orders into
consideration, and assigns to a TU-game their average. See Table 9.4.

For an arbitrary TU-game (N,v) with player set N = {1,...,n} the Shapley value
can be computed in the same way, by first computing the marginal vectors corre-
sponding to the n! different orders of the players, and then taking the average — that
is, summing all marginal vectors and dividing the result by n!. If the number of
players is large, then this is a huge task. In the UN security council voting game of
Sect. 9.1, for instance, this would mean computing 15! > 13 x 10'! marginal vectors.
Fortunately, there is a more clever way to compute the total marginal contribution
of a player.

Table 9.4 Computation of the Shapley value for the three cities game. The Shapley value is
obtained by dividing the totals of the marginal contributions by 6

Order of entry 1 2 3

1,23 0 90 130
1,3,2 0 120 100
2,13 90 0 130
23,1 100 0 120
3,12 100 120 0
32,1 100 120 0
Total 390 450 480

Shapley value 65 75 80

2 Cf. Bird [14).
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For instance, let (N, v) be a TU-game with 10 players. Consider player 7 and the
coalition {3,5,9}. The marginal contribution v({3,5,9,7}) — v({3,5,9}) accruing
to player 7 occurs in more than one marginal vector. In how many marginal vectors
does it occur? To compute this, note that first players 3, 5, and 9 must enter, and
this can happen in 3! different orders. Then player 7 enters. Finally, the other
six players enter, and this can happen in 6! different orders. Therefore, the total
number of marginal vectors in which player 7 obtains the marginal contribution
v({3,5,9,7}) —v({3,5,9}) is equal to 3! x 6!. By counting in this way the number
of computations is greatly reduced.

We now repeat this argument for an arbitrary TU-game (N, v), an arbitrary player
i € N, and an arbitrary coalition S that does not contain player i. By the same argu-
ment as in the preceding paragraph, the total number of marginal vectors in which
player i receives the marginal contribution v(SU {i}) — v(S) is equal to the number
of different orders in which the players of S can enter first, |S|!, multiplied by the
number of different orders in which the players not in SU{i} can enter after player
i, which is (n —|S| — 1)!. Hence, the total contribution obtained by player i by enter-
ing after the coalition S is equal to |S|!(n— |S| — 1)![v(SU{i}) — v(S)]. The Shapley
value for player i is then obtained by summing over all coalitions S not contain-
ing player i, and dividing by n!. In fact,we use this alternative computation as the
definition of the Shapley value.

Definition 9.3. The Shapley value of a TU-game (N,v) is denoted by ®(N,v). Its
i-th coordinate, i.e., the Shapley value payoff to player i € N, is given by

|S[t(n— S| —
n!

o= Y Dlsu iy —vis)).

SCN: igS

Especially for larger TU-games it is easier to work with the formula in Definition 9.3
than to use the definition based on marginal vectors. For some purposes, however, it
is easier to use the latter definition (see, e.g., Problem 9.5).

The Shapley value of the three cities game is an element of the core of that game
(check this). In general, however, this does not have to be the case even if the core
is nonempty — see, e.g., Problem 9.6.

The definition of the Shapley value as assigning to each player in a game his
average marginal contribution, can be regarded as a justification of this solution
concept by itself. In literature there are, moreover, a number of axiomatic char-
acterizations of the Shapley value. In an axiomatic characterization one proceeds
as follows. Consider an arbitrary map, which (like the Shapley value) assigns to
each game with player set N a payoff vector. Next, define ‘reasonable’ properties or
axioms for this map. Such axioms limit the possible maps (i.e., solution concepts),
and if the axioms are strong enough, they admit only one solution concept. This so-
called axiomatic approach is quite commonplace in cooperative game theory. An
axiomatic characterization of the Shapley value has already been given in [121].
Problem 9.13 preludes to this. For details, see Chap. 17.
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9.4 The Nucleolus

In order to define the last solution concept to be considered in this chapter, call a TU-
game (N,v) essential if v(N) > ¥ ,,cnv({i}). Hence, for an essential game there are
payoff distributions for the grand coalition that are both efficient and individually
rational. Such payoff distributions are called imputations, following [141]. The set

I(N,v) = {x € RY | x(N) = »(N), x; > v({i}) forall i € N}

is called the imputation set of the TU-game (N, v). So a game (N,v) is essential if
and only if I(N,v) # 0.3

Let (N,v) be an essential TU-game, let x € I(N,v), and let S be a nonempty
coalition unequal to N. The excess of S at x, denoted by e(S,x), is defined by

e(S,x) =v(S) —x(S) .

The excess can be seen as a measure of the dissatisfaction of the coalition S with the
imputation x: the larger e(S,x), the less S obtains at x relative to its worth v(S). In
particular, if this excess is positive then S obtains less than its own worth.

In words, the nucleolus of an essential TU-game (N,v) is defined as follows.
First, for every imputation x compute all excesses. Then select those imputations
for which the maximal excesses are smallest. If this is the case at a unique impu-
tation, then that imputation is the nucleolus of the game. If not, then consider the
second maximal excesses of the selected imputations and make a further selection
by taking those imputations for which these second maximal excesses are smallest.
If this happens at a unique imputation, then that is the nucleolus. Otherwise, con-
tinue with the third maximal excesses, etc., until a unique imputation is found: this
is the nucleolus.

Thus, the idea behind the nucleolus is to make the largest dissatisfaction as small
as possible. If there is more than one possibility to do this, then we also make the
second largest dissatisfaction as small as possible, etc., until a unique distribution
is reached. In this sense, the nucleolus is similar in spirit to the main principle of
distributive justice proposed in [107], namely to maximize the lot of the worst off
people in society. The nucleolus was introduced in [116].

We illustrate this procedure by means of the three cities game, reproduced in
Table 9.5. The third line of the table gives the excesses at the imputation (70,70, 80).
The choice of this particular imputation is arbitrary: we use it as a starting point to
find the nucleolus. The largest excess at this imputation is —30, namely for the
coalition {2,3}.# Clearly, we can decrease this excess by giving players 2 and 3
more at the expense of player 1. Doing so implies that the excess of {1,2} or of
{1,3} or of both will increase. Consider the imputation (563,763,863). At this
imputation, the excesses of the three two-player coalitions are equal, see Table 9.5.,

3 Check the statements made in this paragraph.

4 The excess of the grand coalition at any imputation is zero, and therefore does not play a role in
finding the nucleolus. These excesses are omitted from the table.
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Table 9.5 Heuristic determination of the nucleolus of the three cities game

S {1+ {2p {3+ {n2} {1,3} {23} {1,2,3}
v(S) 0 0 0 90 100 120 220
e(S,(70,70,80)) -70 -70 -80 -50 —50 —30

e(S,(562,762,862)) 562 -762 862 —43) 43} 43!

and these are also the maximal excesses. Now first observe that at this imputation
the maximal excess must be smallest. This is so since the sum of the excesses of
the three two-player coalitions at any imputation must be the same, namely equal to
—130, as follows from

e({1,2},x) +e({1,3},x) +e({2,3},x) = v({1,2}) +v({1,3}) +v({2,3})
—2(x1—|—x2 +X3)
=310—2-220
= —130.

This implies that none of these excesses can be decreased without increasing at least
one other excess. Second, the imputation at which these three excesses are equal is
unique, since the system

90*)C] — X2 = 1007)6] — X3
100—x1—x3 = ]20—)62—)63
X1 +x2+x3 =220

X1,%2,x3 > 0

has a unique solution — namely, indeed, (56% , 76% , 86%). So this imputation must be
the nucleolus of the three cities game.

This example suggests that, at least for a three player TU-game, it is easy to
find the nucleolus, namely simply by equating the excesses of the three two-player
coalitions. Unfortunately, this is erroneous. It works if the worths of the two-player
coalitions are large relative to the worths of the single player coalitions, but other-
wise it may fail to result in the nucleolus. Consider the three-player TU-game in
Table 9.6, which is identical to the three cities game except that now v({1} = 20.
The third line of the table shows the excesses at (56%,76%,86%) in this TU-game
(observe that this vector is still an imputation). The maximal excess is now —36%
for the single-player coalition {1}. Clearly, the original imputation is no longer
the nucleolus: the excess of {1} can be decreased by giving player 1 more at the
expense of players 2 and/or 3. Suppose we equalize the excesses of {1} and {2,3}
by solving the equation 20 — x; = 120 — x, — x3. Together with x| +x, +x3 = 220
this yields x; = 60 and x; + x3 = 160. Trying the imputation (60,75,85), obtained
by taking away the same amount from players 2 and 3, yields the excesses in the
fourth line of Table 9.6. We claim that (60,75, 85) is the nucleolus of this TU-game.
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Table 9.6 Heuristic determination of the nucleolus in the three cities game with the worth of
coalition {1} changed to 20

S 2 3y {2y {13} {23} {1.2,3}
v(S) 20 0 0 90 100 120 220
e(S,(563,763,863)) —363 —765 —863 —43} —431 —43}
e(S,(60,75,85)) —40 -75 -85 45 45 —40

The maximal excess is —40, reached by the coalitions {1} and {2,3}, and this
cannot be decreased: decreasing the excess for one of the two coalitions implies
increasing the excess for the other coalition. Hence, x| has to be equal to 60 in the
nucleolus. The second maximal excess is —45, reached by the coalitions {1,2} and
{1,3}. Since x; has already been fixed at 60, a decrease in the excess for one of
these two coalitions implies an increase of the excess for the other coalition. Hence,
also x, and x3 are fixed, at 75 and 85, respectively.

These two examples indicate that it is not easy to compute the nucleolus. In general,
it can be computed by solving a series of linear programs. The arguments used above
to show that a particular imputation is indeed the nucleolus implicitly use a general
property of the nucleolus called the Kohlberg criterion. See Chap. 19 for a more
detailed study of the nucleolus.

In spite of its not being easy to compute the nucleolus is an attractive solution. It
assigns a unique imputation to every essential game and, moreover, if a game has a
nonempty core, the nucleolus assigns a core element: see Problem 9.9.

Problems

9.1. Number of Coalitions

Show that a set of n € N elements has 2" different subsets.

9.2. Computing the Core

(a) Compute the core of the glove game of Table 9.2.

(b) Compute the core of the dentist game of Table 9.3.

(c) Compute the core of the UN security council voting game in Sect. 9.1.

(d) Consider the two-person game ({1,2}),v) given by v({1}) =a, v({2}) = b, and
v({1,2}) = ¢, where a,b,c € R. Give a necessary and sufficient condition on a, b,
and c for the core of ({1,2},v) to be nonempty. Compute the core.

9.3. A Condition for Non-Emptiness of the Core of a Three-Person Game

Let ({1,2,3},v) be a three-person game which has a nonempty core. Show that
2v({1,2,3}) > v({1,2}) +v({1,3}) +v({2,3}). (Hint: Take a core element x =
(x1,x2,x3) and write down the core constraints.)
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9.4. ‘Non-Monotonicity’ of the Core

Consider the following four-person game: v({i}) = 0 for every i = 1,...,4,
v({1,2}) =v({3,4}) =0, v(S) = 1 for all other two-person coalitions and for all
three-person coalitions, and v(N) = 2.

(a) Show that C(N,v) = {(a,a,1 —a,1 — ) eR* [0 < ¢ < 1}.

(b) Consider the game (N,V') equal to (N, v) except for v/({1,3,4}) = 2. Show that
the core of (N,V') consists of a single element. What about the payoff to player 1
if core elements in (N,v) and (N,V') are compared? Conclude that the core is not
‘monotonic’ (cf. [82]).

9.5. Efficiency of the Shapley Value

Let (N, v) be an arbitrary TU-game. Show that the Shapley value ®(N, v) is efficient.
(Hint: take an order iy,is,...,i, of the players and show that the sum of the coor-
dinates of the corresponding marginal vector is equal to v(N); use this to conclude
that ®(N,v) is efficient.)

9.6. Computing the Shapley Value

(a) Compute the Shapley value of the glove game of Table 9.2. Is it an element of
the core?

(b) Compute the Shapley value of the dentist game of Table 9.3. Is it an element of
the core?

(c) Compute the Shapley value of the UN security council voting game in Sect. 9.1.
(Hint: observe the — more or less — obvious fact that the Shapley value assigns the
same payoff to all permanent members and also to all nonpermanent members. Use
the formula in Definition 9.3.) Is it an element of the core?

9.7. The Shapley Value and the Core

For every real number « the three-player TU-game v, is given by: v,({i}) = 0 for
i=1,2,3,v,({1,2}) =3,va({1,3}) =2, vo({2,3}) = 1, v,({1,2,3}) = a.
(a) Determine the minimal value of a so that the TU-game v, has a nonempty core.

(b) Calculate the Shapley value of v, for a = 6.

(c) Determine the minimal value of a so that the Shapley value of v, is a core
distribution.

9.8. Shapley Value in a Two-Player Game

Let (N,v) be a two-player TU-game, i.e., N = {1,2}. Compute the Shapley value
(expressed in v({1}), v({2}), and v({1,2})), and show that it is in the core of the
game provided the core is nonempty.

9.9. The Nucleolus and the Core

Let (N,v) be an essential TU-game, and suppose that it has a nonempty core. Show
that the nucleolus of (N, v) is a core element.
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9.10. Computing the Nucleolus
(a) Compute the nucleolus of the glove game of Table 9.2.
(b) Compute the nucleolus of the dentist game of Table 9.3.

(c) Compute the nucleolus of the UN security council voting game in Sect.9.1.
(Hint: use Problem 9.9.)

(d) Compute the nucleolus of the games (N, v) and (N,V') in Problem 9.4.

9.11. Nucleolus of Two-Player Games

Let (N,v) be an essential two-player TU-game. Compute the nucleolus.

9.12. Computing the Core, the Shapley Value, and the Nucleolus

(a) Compute the Shapley value and the nucleolus in the three-player TU-game
given by: v({i}) =1 for i = 1,2,3, v({1,2}) = 2, v({1,3}) = 3, v({2,3}) =4,
v({1,2,3}) = 6. Is the Shapley value a core element in this game?

(b) Compute the core of this game. Make a picture.

(c) Suppose we increase v({1}). What is the maximal value of v({1}) such that the
game still has a nonempty core?

9.13. Properties of the Shapley Value

The properties of the Shapley value described in (a)—(c) below are called symmetry,
additivity, and dummy property, respectively. It can be shown (see Chap. 17) that
the Shapley value is the unique solution concept that assigns exactly one payoff
vector to each TU-game and has these three properties together with efficiency (cf.
Problem 9.5). In other words, a solution concept has these four properties if, and
only if, it is the Shapley value. In this exercise you are asked to show the ‘easy’ part
of this statement, namely the if-part.

(Hint: in each case, decide which of the two formulas for the Shapley value is most
convenient to use.)

(a) Let (N,v) be a TU-game, and suppose players i and j are symmetric in this
game, i.e., v(SU{i}) = v(SU{,j}) for all coalitions S which do not contain i or j.
Show that i and j obtain the same payoff from the Shapley value.

(b) Let (N,v) and (N,w) be two TU-games with the same player set N. Define the
sum of these TU-games as the TU-game with player set N where the worth of each
coalition S is given by v(S) 4+ w(S); denote this TU-game by (N,v+ w). Show that
the Shapley value assigns to this sum TU-game the payoff vector which is the sum
of the Shapley values of (N,v) and (N,w).

(c) Call player i a dummy in the TU-game (N,v) if v(SU{i}) = v(S) + v({i}) for
every coalition S to which player i does not belong. Show that the Shapley value
assigns exactly the payoff v({i}) to player i.



Chapter 10
Cooperative Game Theory Models

The common features of a cooperative game theory model — like the model of a
game with transferable utility in Chap. 9 — include: the abstraction from a detailed
description of the strategic possibilities of a player; instead, a detailed description
of what players and coalitions can attain in terms of outcomes or utilities; solution
concepts based on strategic considerations and/or considerations of fairness, equity,
efficiency, etc.; if possible, an axiomatic characterization of such solution concepts.
For instance, one can argue that the core for TU-games is based on strategic con-
siderations whereas the Shapley value is based on a combination of efficiency and
symmetry or fairness with respect to contributions. The latter is made precise by an
axiomatic characterization as in Problem 9.13.

In this chapter a few other cooperative game theory models are discussed:
bargaining problems in Sect. 10.1, exchange economies in Sect. 10.2, matching
problems in Sect. 10.3, and house exchange in Sect. 10.4.

10.1 Bargaining Problems

An example of a bargaining problem is the division problem in Sect.1.3.5. A
noncooperative, strategic approach to such a bargaining problem can be found in
Sect. 6.7, see also Problems 6.15 and 6.16. In this section we treat the bargaining
problem from a cooperative, axiomatic perspective. Surprisingly, there is a close
relation between this approach and the strategic approach, as we will see below. In
Sect. 10.1.1 we discuss the Nash bargaining solution and in Sect. 10.1.2 its relation
with the Rubinstein bargaining procedure of Sect. 6.7.
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10.1.1 The Nash Bargaining Solution

We start with the general definition of a two-person bargaining problem. !
Definition 10.1. A two-person bargaining problem is a pair (S,d), where

(1) S € R? is a convex, closed and bounded set.
(2) d = (dy,d>) € S such that there is some point X = (xj,x;) € S with x; > d; and
Xy > ds.

S is the feasible set and d is the disagreement point.

The interpretation of a bargaining problem (S,d) is as follows. The two players
bargain over the feasible outcomes in S. If they reach an agreement x = (x1,x;) € S,
then player 1 receives utility x; and player 2 receives utility x;. If they do not reach
an agreement, then the game ends in the disagreement point d, yielding utility d,
to player 1 and d> to player 2. Note that this is an interpretation: the bargaining
procedure is not spelled out, so formally there is only the pair (S,d).

For the example in Sect. 1.3.5, the feasible set and the disagreement point are
given by

S:{X€R2|0SX17X2§1,X2§\/17.X]}, dy=d,=0.

See also Fig. 1.7. In general, a bargaining problem may look as in Fig. 10.1. The set
of all such bargaining problems is denoted by Z.

Nash [90] raised the following question: for any given bargaining problem (S, d),
what is a good compromise? In formal terms, he was looking for a map F : % — R?
which assigns a feasible point to every bargaining problem, i.e., satisfies F(S,d) € S
for every (S,d) € . Such a map is called a (two-person) bargaining solution.
According to Nash, a bargaining solution should satisfy four conditions, namely:

Fig. 10.1 A two-person
bargaining problem

! We restrict attention here to two-person bargaining problems. For n-person bargaining problems
and, more generally, NTU-games, see Remark 10.3 and Chap. 21.

2 A subset of R¥ is convex if with each pair of points in the set also the line segment connecting
these points is in the set. A set is closed if it contains its boundary or, equivalently, if for every
sequence of points in the set that converges to a point that limit point is also in the set. It is bounded
if there is a number M > 0 such that |x;| < M for all points X in the set and all coordinates i.
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P(S) > F(S,d)

(a) (b)

F(T,d)=F(S,d)

(d

Fig. 10.2 TIllustration of the four conditions (‘axioms’) determining the Nash bargaining solution
—cf. Theorem 10.2. In (a) the Pareto optimal subset of § is the thick black curve. The bargaining
problem (S,d) in (b) is symmetric, and symmetry of F means that F should assign a point of the
thick black line segment. In (c¢), which illustrates scale covariance, we took d to be the origin,
and T arises from S by multiplying all first coordinates by 2: then scale covariance implies that
Fy(T,d) =2F(S,d). The independence of irrelevant alternatives axiom is illustrated in (d)

Pareto optimality, symmetry, scale covariance, and independence of irrelevant alter-
natives. We discuss each of these conditions in detail. The conditions are illustrated
in Fig. 10.2a—d.

For a bargaining problem (S,d) € 4, the Pareto optimal points of S are those
where the utility of no player can be increased without decreasing the utility of the
other player. Formally,

P(S)={xe S|forally € S with y; > x;, y» > xp, we have y = x}

is the Pareto optimal (sub)set of S. The bargaining solution F is Pareto optimal
if F(S,d) € P(S) for all (S,d) € %. Hence, a Pareto optimal bargaining solution
assigns a Pareto optimal point to each bargaining problem. See Fig. 10.2a for an
illustration.

A bargaining problem (S,d) € % is symmetric if d| = d, and if S is symmetric
with respect to the 45°-line through d, i.e., if

S={(x2,x1) € R?| (x1,x2) € S}.
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In a symmetric bargaining problem there is no way to distinguish between the play-
ers other than by the arbitrary choice of axes. A bargaining solution is symmetric
if F1(S,d) = F»(S,d) for each symmetric bargaining problem (S,d) € 4. Hence, a
symmetric bargaining solution assigns the same utility to each player in a symmetric
bargaining problem. See Fig. 10.2b.

Observe that, for a symmetric bargaining problem (S, d), Pareto optimality and
symmetry of F would completely determine the solution point F(S,d), since there
is a unique symmetric Pareto optimal point in S.

The condition of scale covariance says that a bargaining solution should not
depend on the choice of the origin or on a positive multiplicative factor in the
utilities. For instance, in the wine division problem in Sect. 1.3.5, it should not mat-
ter if the utility functions were i) (@) = a0 + by and iix (&) = az+/a + by, where
ap,az,by,by € R with aj,ap > 0. Saying that this should not matter means that the
final outcome of the bargaining problem, the division of the wine, should not depend
on this. One can think of i1}, i1, expressing the same preferences about wine as uy, u;
in different units.® Formally, a bargaining solution F is scale covariant if for all
(S7d> € Zandall ay,a»,by,by € R with a;,ar > 0 we have

F ({(a1x1 +b1,a2x2+b2) cR? | (xl,xz) S S},(aldl +b1,a2d2+b2))

= (a1F1 (S,d) er],aze(S,d) +b2).

For a simple case, this condition is illustrated in Fig. 10.2c.

The final condition imposed by Nash [90] is also regarded as the most controver-
sial one. Consider a bargaining problem (§,d) with solution outcome z = F(S,d) €
S. In a sense, z can be regarded as the best compromise in S according to F'. Now
consider a smaller bargaining problem (7',d) with T C S and z € T. Since z was the
best compromise in S, it is should certainly be regarded as the best compromise in
T: z is available in 7 and every point of T is also available in S. Thus, we should
conclude that F(7,d) =z = F(S,d). As a less abstract example, suppose that in the
wine division problem the wine is split fifty—fifty, with utilities (1/2,/1/2). Sup-
pose now that no player wants to drink more than 3 /4 liter of wine: more wine does
not increase utility. In that case, the new feasible set is

T={xeR?|0<x <3/4,0<x</3/4 x2</1-x1}.

According to the argument above, the wine should still be split fifty—fifty: 7 C S
and (1/2,+/1/2) € T. This may seem reasonable but it is not hard to change the
example in such a way that the argument is, at the least, debatable. For instance,
suppose that player 1 still wants to drink as much as possible but player 2 does not
want to drink more than 1/2 liter. In that case, the feasible set becomes

T ={xeR?|0<x <1,0<x </1/2, s </1—x1},

3 The usual assumption (as in [90]) is that the utility functions are expected utility functions, which
uniquely represent preferences up to choice of origin and scale.
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and we would still split the wine fifty—fifty. In this case player 2 would obtain his
maximal feasible utility: (1/2,1/1/2) no longer seems a reasonable compromise
since only player 1 makes a concession. This critique was formalized in [63], see
Chap.21.

Formally, a bargaining solution F is independent of irrelevant alternatives if for
all (S,d),(T,d) € Zwith T C S and F(S,d) € T, we have F(T,d) = F(S,d). See
Fig. 10.2d for an illustration.

Nash [90] proved that these four conditions determine a unique bargaining solu-
tion F™", defined as follows. For (S,d) € &, F™"(S,d) is equal to the unique point
z € S with z; > d; for i = 1,2 and such that

(Z] 7d1)(22 7d2) > (X] 7d1)()€2 7d2) forallx € Swithx; > d;, i=1,2.

The solution F™" is called the Nash bargaining solution. Formally, the result of
Nash is as follows.

Theorem 10.2. The Nash bargaining solution F¥" is the unique bargaining solu-
tion which is Pareto optimal, symmetric, scale covariant, and independent of irrele-
vant alternatives.

For a proof of this theorem and the fact that F™" is well defined — i.e., the point z
above exists and is unique — see Chap. 21.

10.1.2 Relation with the Rubinstein Bargaining Procedure

In the Rubinstein bargaining procedure the players make alternating offers. See
Sect. 6.7.2 for a detailed discussion of this noncooperative game, and Problem 6.16d
for the application to the wine division problem of Sect. 1.3.5. Here, we use this
example to illustrate the relation with the Nash bargaining solution.

The Nash bargaining solution assigns to this bargaining problem the point z =
(2/3,+/1/3). This means that player 1 obtains 2/3 of the wine and player 2 obtains
1/3. According to the Rubinstein infinite horizon bargaining game with discount
factor 0 < 8 < 1 the players make proposals x = (x1,x2) € P(S) and y = (y1,y2) €
P(S) such that

Xy =06y2, y1=06xi, (10.1)

and these proposals are accepted in (subgame perfect) equilibrium. Setting x; =
for a moment, we obtain y; = da and thus v/1 — &t = x» = 8y, = /1 — Sa. This is
an equation in § and a with solution (check!)

1-8* 1456
S 1-8 146+6%

X1 =0
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Fig. 10.3 The wine division
problem. The disagreement

point is the origin, and z is

the Nash bargaining solution
outcome. The points x and y
are the proposals of players

1 and 2, respectively, in the

subgame perfect equilibrium
of the Rubinstein bargaining
game for 6 = 0.5

For & = 0.5 the corresponding proposals x and y are represented in Fig. 10.3. In
general, it follows from (10.1) that

(x1 = d1)(x2 —da) = x102 = (y1/8)(8y2) = y1y2 = (y1 — d1) (y2 — d)

hence the Rubinstein proposals x and y have the same ‘Nash product’: see Fig. 10.3,
where the level curve of this product through x and y is drawn. As J increases to
1, this level curve shifts up until it passes through the point z, since z = F™"(S,d)
maximizes this product on the set S: see again Fig. 10.3.

We conclude that the subgame perfect equilibrium outcome of the infinite hori-
zon Rubinstein bargaining game converges to the Nash bargaining solution outcome
as the discount factor § approaches 1.

Remark 10.3. Two-person bargaining problems and TU-games (Chap.9) are both
special cases of the general model of cooperative games without transferable utility,
so-called NTU-games. In an NTU-game, a set of feasible utility vectors V(T) is
assigned to each coalition T of players. For a TU-game (N,v) and a coalition T,
this set takes the special form V(T) = {x € R" | ¥;crx; <v(T)}, i.e., a coalition T
can attain any vector of utilities such that the sum of the utilities for the players in
T does not exceed the worth of the coalition. In a two-player bargaining problem
(S,d), one can set V({1,2}) =S and V({i}) ={aa € R | a < d;} fori =1,2. See
also Chap. 21.

10.2 Exchange Economies

In an exchange economy with n agents and k goods, each agent is initially endowed
with a bundle of goods. Each agent has preferences over different bundles of goods,
expressed by some utility function over these bundles. By exchanging goods among
each other, it is in general possible to increase the utilities of all agents. One way
to arrange this exchange is to introduce prices. For given prices the endowment of
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each agent represents the agent’s income, which can be spent on buying a bundle
of the goods that maximizes the agent’s utility. If prices are such that the market
for each good clears — total demand is equal to total endowment — while each agent
maximizes utility, then the prices are in equilibrium: such an equilibrium is called
Walrasian or competitive equilibrium. Alternatively, reallocations of the goods can
be considered which are in the core of the exchange economy. A reallocation of the
total endowment is in the core of the exchange economy if no coalition of agents can
improve the utilities of its members by, instead, reallocating the total endowment of
its own members among each other. It is well known that a competitive equilibrium
allocation is an example of a core allocation.

This section is a first acquaintance with exchange economies. Attention is
restricted to exchange economies with two agents and two goods. We work out
an example of such an economy. Some variations are considered in Problem 10.4.

There are two agents, A and B, and two goods, 1 and 2. Agent A has an endowment
e' = (ef,e)) € R? of the goods, and a utility function u* : RZ — R, representing
the preferences of A over bundles of goods.* Similarly, agent B has an endowment
eB = (8 e8) € R? of the goods, and a utility function u® : R2 — R. (Note that we
use superscripts to denote the agents and subscripts to denote the goods.) This is a
complete description of the exchange economy.

For our example we take ¢! = (2,3), e = (4,1), v (x;,x2) = x}x, and
uB(x1,x2) = x1x3. Hence, the total endowment in the economy is e = (6,4), and
the purpose of the exchange is to reallocate this bundle of goods such that both
agents are better off.

Let p = (p1,p2) be a vector of positive prices of the goods. Given these prices,
both agents want to maximize their utilities. Agent A has an income of pje{ + pae,
i.e., the monetary value of his endowment. Then agent A solves the maximization
problem

maximize u* (x1,x;)

. 10.2
subject to p1x1 + paxo = p]e‘i1 +p2€‘g, x1,x3 > 0. ( )

The income constraint is called the budget equation. The solution of this maximiza-
tion problem is a bundle x*(p) = (/' (p), x5 (p)), called agent A’s demand function.
Problem (10.2) is called the consumer problem (of agent A). Similarly, agent B’s
consumer problem is

maximize u?(x;,x,)

. 10.3
subject to p1x| + paxo = ple? erzeg, x1,x3 > 0. ( )

For our example, (10.2) becomes

maximize x%xz
subject to p1x1 + pax2 =2p1 +3p2, x1,%2 >0,

AR? = {x = (x1,%2) €R? | x1, x2 > 0}.



140 10 Cooperative Game Theory Models

which can be solved by using Lagrange’s method or by substitution. By using the
latter method the problem reduces to

maximize x7 ((2p1 +3p2 — p1x1)/p2)

subject to x; > 0 and 2p; +3p> — p1x1 > 0. Setting the derivative with respect to x;

equal to 0 yields
2 3pr—
le< P1+3p2 P1x1)_x%(p1)207
P2 P2

which after some simplifications yields the demand function x; = xﬁ‘(p) = (4p; +
6p2)/3p1. By using the budget equation, x5 (p) = (2p1 +3p2)/3pa. Similarly, solv-
ing (10.3) for our example yields x¥(p) = (4p1 + p2)/3p1 and x5(p) = (8p;1 +
2p2)/3pa (check this).

The prices p are Walrasian equilibrium prices if the markets for both goods clear.
For the general model, this means that x{ (p) +x%(p) = ¢/ +¢? and ¥4 (p) +x5(p) =
eg + eg . For the example, this means

(4p1+6p2)/3p1+(4p1+p2)/3p1 =6 and

(2p1+3p2)/3p2+ (8p1 +2p2)/3p2 = 4.

Both equations result in the same condition, namely 10p; — 7p, = 0. This is no
coincidence, since prices are only relative, as is easily seen from the budget equa-
tions. In fact, the prices represent the rate of exchange between the two goods, and
are meaningful even if money does not exist in the economy. Thus, p = (7,10)
(or any positive multiple thereof) are the equilibrium prices in this exchange econ-
omy. The associated equilibrium demands are x*(7,10) = (88/21,22/15) and
x5(7,10) = (38/21,38/15).

We now turn to the core of an exchange economy. A reallocation of the total endow-
ments is in the core if no coalition can improve upon it. Basically, this is the same
definition as in Chap.9 for TU-games (Definition 9.2). In a two-person exchange
economy, there are only three coalitions (excluding the empty coalition), namely
{A}, {B}, and {A,B}. Consider an allocation (x*,x?) with x{ +x& = ¢/ + ¢ and
xg +x§ = e‘% + eg . To avoid that agents A or B can improve upon (x*,x5) we need
that

(x>t (@), WP (xP) > uP (), (10.4)
which are the individual rationality constraints. To avoid that the grand coalition

{A,B} can improve upon (x*,x5) we need that

For no (y*,y?) with y! +y% = ¢/ +¢? and y) + 5 = &) + €8 we have:
uA (y4) > u? (x*) and u®(y?) > uP (xB) with at least one inequality strict.

(10.5)



10.2 Exchange Economies 141

In words, (10.5) says that there should be no other reallocation of the total endow-
ments such that no agent is worse off and at least one agent is strictly better off. This
is the efficiency or Pareto optimality constraint.
We apply (10.4) and (10.5) to our example. The individual rationality constraints
are
()2d > 12, xF(d)? >4,

The Pareto optimal allocations, satisfying (10.5), can be computed as follows. Fix
the utility level of one of the agents, say B, and maximize the utility of A subject
to the utility level of B being fixed. By varying the fixed utility level of B we find
all Pareto optimal allocations. In the example, we solve the following maximization
problem for ¢ € R:

maximize (¥ )?x)
subject to X} +x8 =6, x5 +x5 =4, B(E)? =c, ¥, 24,288 >0.

By substitution this problem reduces to

maximize (x{)2x)
subject to (6 —x{)(4 —x%)> = ¢, x{,x5 >0.

The associated Lagrange function is (x{)2x) — A[(6 —x{)(4 —x3)* — ¢] and the first-
order conditions are

2003 +A(4=25) =0, ()’ +24(6—x)(4—x5) =0.
Extracting A from both equations and simplifying yields

q= M
24 —3x}

Thus, for any value of x’? between 0 and 6 this equation returns the corresponding

value of x4, resulting in a Pareto optimal allocation with x# = 6 —x{ and x5 =4 — x4

It is straightforward to check by substitution that the Walrasian equilibrium allo-
cation x*(7,10) = (88/21,22/15) and x?(7,10) = (38/21,38/15) found above, is
Pareto optimal. This is no coincidence: the First Welfare Theorem states that in
an exchange economy like the one under consideration, a Walrasian equilibrium
allocation is Pareto optimal.’

Combining the individual rationality constraint for agent A with the Pareto opti-
mality constraint yields 4(x})3/(24 — 3x{') > 12, which holds for x{ larger than
approximately 3.45. For agent B, similarly, the individual rationality and Pareto
optimality constraints imply

2
96 — 16xq‘) -

<6x?>(24_3x?

5 For a proof of this theorem, see for instance [59].
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Fig. 10.4 The contract curve is the curve through ¢ and ¢’. The point ¢ is the point of intersection
of the contract curve and the indifference curve of agent A through the endowment point e. The
point ¢’ is the point of intersection of the contract curve and the indifference curve of agent B
through the endowment point e. The core consists of the allocations on the contract curve between
c and . The straight line (‘budget line’) through e is the graph of the budget equation for A at the
equilibrium prices, i.e., 7x; + 10x, = 44, and its point of intersection with the contract curve, w,
is the Walrasian equilibrium allocation. At this point the indifference curves of the two agents are
both tangential to the budget line

which holds for xf]1 smaller than approximately 4.88. Hence, the core of the exchange
economy in the example is the set

{(, 24, %8 x8) e R* | 3.45 < x| < 4.88,

d= =6 A —a ).
Clearly, the Walrasian equilibrium allocation is in the core, since 3.45 < 88/21 <
4.88, and also this is no coincidence (see for instance [59]). Thus, decentralization
of the reallocation process through prices leads to an allocation that is in the core.

For an exchange economy with two agents and two goods a very useful pictorial
device is the Edgeworth box, see Fig. 10.4. The Edgeworth box consists of all pos-
sible reallocations of the two goods. The origin for agent A is the South West corner
and the origin for agent B the North East corner. In the diagram, the indifference
curves of the agents through the endowment point are plotted, as well as the con-
tract curve, i.e., the set of Pareto optimal allocations. The core is the subset of the
contract curve between the indifference curves of the agents through the endowment
point.

10.3 Matching Problems

In a matching problem there is a group of agents that have to form couples. Exam-
ples are: students who have to be coupled with schools; hospitals that have to be
coupled with doctors; workers who have to be coupled with firms; men who have
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Table 10.1 A matching problem

nmy my  ms3 wi w2 w3
wy o Wi wi mp mpy m
wi wy Wy m3 mp  m3

w3 my m3 My

to be coupled with women; etc. In this section we consider so-called one-to-one
matching problems.®

The agents are divided in two equally large (finite and nonempty) sets, denoted
M and W. Each agent in M has a strict preference over those agents in W which
he prefers over staying single. Similarly, each agent in W has a strict preference
over those agents in M which she prefers over staying single. In such a matching
problem; a matching assigns to each agent in M at most one agent in W, and vice
versa; thus, no two agents in M are assigned the same agent in W, and vice versa.

Such matching problems are also called marriage problems, and the agents of M
and W are called men and women, respectively. While the problem may indeed refer
to the ‘marriage market’, this terminology is of course adopted for convenience.
Other examples are matching tasks and people, or matching roommates.

As an example, consider the matching problem in Table 10.1. The set of men is
M = {my,my,m3} and the set of women is W = {w;,wy,ws}. The columns in the
table represent the preferences. For instance m; prefers w, over wy over staying sin-
gle, but prefers staying single over w3. An example of a matching in this particular
matching problem is (my,w;), (ms,w,), my, w3, meaning that m; is married to wy
and m3 to wp, while m; and wj stay single.7 Observe that this matching does not
seem very ‘stable’: m; and w, would prefer to be married to each other instead of
to their partners in the given matching. Moreover, m; and w3 would prefer to be
married to each other instead of being single. Also, for instance, any matching in
which m; would be married to w3 would not be plausible, since m; would prefer to
stay single.

The obvious way to formalize these considerations is to require that a matching
should be in the core of the matching problem. A matching is in the core of there
is no subgroup (coalition) of men and/or women who can do better by marrying (or
staying single) among each other. For a matching to be in the core, the following
two requirements are certainly necessary:

(c1) Each person prefers his/her partner over being single.

(c2) If m € M and w € W are not matched to each other, then it is not the case that
both m prefers w over his current partner if m is married or over being single
if m is not married; and w prefers m over her current partner if w is married or
over being single if w is not married.

6 This section is largely based on Sect. 8.7 in [96].
7 Check that there are 34 possible different matchings for this problem.
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Obviously, if (cl) were violated then the person in question could improve by
divorcing and becoming single; if (c2) were violated then m and w would both be
better off by marrying each other. A matching satisfying (c1) and (c2) is called sta-
ble. Hence, any matching in the core must be stable. Interestingly, the converse is
also true: any stable matching is in the core. To see this, suppose there is a match-
ing outside the core and satisfying (c1) and (c2). Then there is a coalition of agents
each of whom can improve by marrying or staying single within that coalition. If
a member of the coalition improves by becoming single, then (c1) is violated. If
two coalition members improve by marrying each other, then (c2) is violated. This
contradiction establishes the claim that stable matchings must be in the core. Thus,
the core of a matching problem is the set of all stable matchings.

How can stable matchings be computed? A convenient procedure is the deferred
acceptance procedure proposed in [41]. In this procedure, the members of one of the
two parties propose and the members of the other party accept or reject proposals.
Suppose men propose. In the first round, each man proposes to his favorite woman
(or stays single if he prefers that) and each woman, if proposed to at least once,
chooses her favorite man among those who have proposed to her (which may mean
staying single). This way, a number of couples may form, and the involved men
and women are called ‘engaged’. In the second round, the non-engaged men (in
particular, rejected men) propose to their second-best woman (or stay single); then
each woman again picks here favorite among the men who proposed to her including
possibly the man to whom she is currently engaged. The procedure continues until
all proposals are accepted. Then all currently engaged couples marry and a matching
is established.

It is not hard to verify that this matching is stable. A man who stays single was
rejected by all women he preferred over staying single and therefore can find no
woman who prefers him over her husband or over being single. A woman who stays
single was never proposed to by any man whom she prefers over staying single.
Consider, finally, an m € M and a w € W who are married but not to each other. If
m prefers w over his current wife, then w must have rejected him for a better partner
somewhere in the procedure. If w prefers m over her current husband, then m has
never proposed to her and, thus, prefers his wife over her.

Of course, the deferred acceptance procedure can also be applied with women as
proposers, resulting in a stable matching that is different in general.

Table 10.2 shows how the deferred acceptance procedure with the men proposing
works, applied to the matching problem in Table 10.1.

Table 10.2 The deferred acceptance procedure applied to the matching problem of Table 10.1. The
resulting matching is (my,wy), (ma,w2), (m3,w3)

Stage | Stage 2  Stage 3  Stage 4

mp: — wy rejected — w
my — wj rejected — wp
m3 — wj rejected — w» rejected



10.4 House Exchange 145

There may be other stable matchings than those found by applying the deferred
acceptance procedure with the men and with the women proposing. It can be shown
that the former procedure — with the men proposing — results in a stable matching
that is optimal, among all stable matchings, from the point of view of the men,
whereas the latter procedure — with the women proposing — produces the stable
matching optimal from the point of view of the women. See also Problems 10.6
and 10.7.

10.4 House Exchange

In a house exchange problem each one of finitely many agents owns a house, and
has a preference over all houses. The purpose of the exchange is to make the agents
better off. A house exchange problem is an exchange economy with as many goods
as there are agents, and where each agent is endowed with one unit of a different,
indivisible good.?

Formally, the player set is N = {1,...,n}, and each player i € N owns house /;,
and has a strict preference of the set of all (n) houses. In a core allocation, each
player obtains exactly one house, and there is no coalition that can make each of
its members strictly better off by exchanging their initially owned houses among
themselves.

As an example, consider the house exchange problem in Table 10.3. In this prob-
lem there are six possible different allocations of the houses. Table 10.4 lists these
allocations and also which coalition could improve by exchanging their own houses.

Table 10.3 A house exchange problem with three players. For instance, player | prefers the house
of player 3 over the house of player 2 over his own house

Player 1  Player2  Player 3

h3 h hy
hy hy h3
/’l] h3 h]

Table 10.4 Analysis of the house exchange problem of Table 10.3. There are two core allocations

Player I  Player2 Player3  Improving coalition(s)

hy hy h3 {1,2}, {1,2,3}

hy h3 hy {2}, {1,2}

hy hy h3 None: core allocation

hy h3 hy {2}, {3}, {2,3}, {1,2,3}
h3 hy hy None: core allocation

h3 hy hy {3}

8 This section is based largely on Sect. 8.5 in [96].
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Especially for larger problems, the ‘brute force’ analysis as in Table 10.4 is rather
cumbersome. A different and more convenient way is to use the top trading cycle
procedure. In a given house exchange problem a top trading cycle is a sequence
i1,i2,...,i; of players, with k > 1, such that the favorite house of player i; is house
hi, , the favorite house of player i is house /;,, . .., and the favorite house of player i;
is house h;, . If k = 1, then this simply means that player i; already owns his favorite
house. In the top trading cycle procedure, we look for a top trading cycle, assign
houses within the cycle, and next the involved players and their houses leave the
scene. Then we repeat the procedure for the remaining players, etc., until no player
is left.

In the example in Table 10.3 there is only one top trading cycle, namely 1,3,2,
resulting in the allocation 1 : hs, 3 : hy, 2 : hy, a core allocation: in fact, each player
obtains his top house. In general, it is true that for strict preferences the top trading
cycle procedure results in a core allocation. The reader should check the validity of
this claim (Problem 10.8).

‘What about the other core allocation found in Table 10.4? In this allocation, the
grand coalition could weakly improve: by the allocation 1 : h3, 3 : hy, 2 : hy players 1
and 3 would be strictly better off, while player 2 would not be worse off. We define
the strong core as consisting of those allocations on which no coalition could even
weakly improve, that is, make all its members at least as good off and at least one
member strictly better off. In the example, only the allocation 1 : i3, 3 : hy, 2 : hy is
in the strong core. In general, one can show that the strong core of a house exchange
problem with strict preferences consists of the unique allocation produced by the
top trading cycle procedure.

Problems

10.1. A Division Problem (1)

Suppose two players (bargainers) bargain over the division of one unit of a per-
fectly divisible good. Player 1 has utility function u; (o) = a and player 2 has utility
function us(B) = 1 — (1 — 8)? for amounts &, B € [0, 1] of the good.

(a) Determine the set of feasible utility pairs. Make a picture.

(b) Determine the Nash bargaining solution outcome, in terms of utilities as well as
of the physical distribution of the good.

(c) Suppose the players’ utilities are discounted by a factor 6 € [0, 1). Calculate the
Rubinstein bargaining outcome, i.e., the subgame perfect equilibrium outcome of
the infinite horizon alternating offers bargaining game.

(d) Determine the limit of the Rubinstein bargaining outcome, for § approaching 1,
in two ways: by using the result of (b) and by using the result of (c).
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10.2. A Division Problem (2)

Suppose that two players (bargainers) bargain over the division of one unit of a
perfectly divisible good. Assume that player 1 has utility function u(a) (0 < a < 1)
and player 2 has utility function v(¢t) = 2u(er) (0 < o < 1).

Determine the physical distribution of the good according to the Nash bargaining
solution. Can you say something about the resulting utilities? (Hint: use the relevant
properties of the Nash bargaining solution.)

10.3. A Division Problem (3)

Suppose that two players (bargainers) bargain over the division of two units of a
perfectly divisible good. Assume that player 1 has a utility function u(a) = § (0 <
o < 2) and player 2 has utility function v(a) = /a (0 < o < 2).

(a) Determine the physical distribution of the good according to the Rubinstein
bargaining procedure, for any discount factor 0 < 8 < 1.

(b) Use the result to determine the Nash bargaining solution distribution.

(c) Suppose player 1’s utility function changes to w(a) = o for 0 < o < 1.6 and
w(a) = 1.6 for 1.6 < a < 2. Determine the Nash bargaining solution outcome, both
in utilities and in physical distribution, for this new situation.

10.4. An Exchange Economy

Consider an exchange economy with two agents A and B and two goods. The
agents are endowed with initial bundles e* = (3,1) and e = (1,3). Their prefer-
ences are represented by the utility functions u” (x1,x2) = In(x; + 1) + In(x; +2)
and u® (x1,x2) = 3In(x; + 1) +1In(xa + 1).

(a) Compute the demand functions of the agents.

(b) Compute Walrasian equilibrium prices and the equilibrium allocation.
(c) Compute the contract curve and the core. Sketch the Edgeworth box.
(d) Show that the Walrasian equilibrium allocation is in the core.

(e) How would you set up a two-person bargaining problem associated with this
economy? Would it make sense to consider the Nash bargaining solution in order to
compute an allocation? Why or why not?

10.5. The Matching Problem of Table 10.1 Continued®

(a) Apply the deferred acceptance procedure to the matching problem of Table 10.1
with the women proposing.

(b) Are there any other stable matchings in this example?

9 Problems 10.5-10.7 are taken from [96].
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Table 10.5 The matching problem of Problem 10.6

nmy my  ms3 wi w2 w3
wi wi wi mp omp o m
wy w2 W3 my m3 Ny
w3 w3z w3 m3  mp M3

Table 10.6 The matching problem of Problem 10.7

my my m3 wi w2 w3
w2 w1 w1 my m3 my
wi w3 w2 m3 nmy m3
w3 w2 w3 my my my

10.6. Another Matching Problem

Consider the matching problem with three men, three women, and preferences as in
Table 10.5.

(a) Compute the two matchings produced by the deferred acceptance procedure with
the men and with the women proposing.

(b) Are there any other stable matchings?

(c) Verify the claim made in the text about the optimality of the matchings in (a) for
the men and the women, respectively.

10.7. Yet Another Matching Problem: Strategic Behavior

Consider the matching problem with three men, three women, and preferences as in
Table 10.6.

(a) Compute the two matchings produced by the deferred acceptance procedure with
the men and with the women proposing.

(b) Are there any other stable matchings?

Now consider the following noncooperative game. The players are wy, wo, and ws.
The strategy set of a player is simply the set of all possible preferences over the men.
(Thus, each player has 16 different strategies.) The outcomes of the game are the
matchings produced by the deferred acceptance procedure with the men proposing,
assuming that each man uses his true preference given in Table 10.6.

(c) Show that the following preferences form a Nash equilibrium: w, and w3 use
their true preferences, as given in Table 10.6; wy uses the preference (my,my,m3).
Conclude that sometimes it may pay off to lie about one’s true preference. (Hint: in
a Nash equilibrium, no player can gain by deviating.)

10.8. Core Property of Top Trading Cycle Procedure

Show that for strict preferences the top trading cycle results in a core allocation.
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Table 10.7 The house exchange problem of Problem 10.10

Player I  Player2 Player3 Player4

hs ha hy hs
hy Iy ha hy
ha Iy I hy
hy I h ha

10.9. House Exchange with Identical Preferences

Consider the n-player house exchange problem where all players have identical
strict preferences. Find the house allocation(s) in the core.

10.10. A House Exchange Problem'?

Consider the house exchange problem with four players in Table 10.7.
Compute all core allocations and all strong core allocations.

10.11. Cooperative Oligopoly

Consider the Cournot oligopoly game with n firms with different costs cy, ¢z, ..., cs.
(This is the game of Problem 6.2 with heterogenous costs.) As before, each firm
i offers ¢; > 0, and the price-demand function is p = max{0,a — p- qi}, where

0<ci<aforalli.

(a) Show that the reaction function of player i is

a—ci—Y g
qi = max{0, ' Zzﬁélqz}.

(b) Show that the unique Nash equilibrium of the game is ¢* = (¢7, ... ,¢j;) with

L a —nc,-Jr):#icj
qi = n4+ 1 )
for each i, assuming that this quantity is positive.
(c) Derive that the corresponding profits are
(a—nci+Y;zic))?
(n+1)?
for each player i.

Let the firms now be the players in a cooperative TU-game with player set N =
{1,2,...,n}, and consider a coalition S C N. What is the total profit that S can make
on its own? This depends on the assumptions that we make on the behavior of the

10 Taken from [83].



150 10 Cooperative Game Theory Models

players outside S. Very pessimistically, one could solve the problem

;?%qujr};gsgf’,(qh s n),
which is the profit that S can guarantee independent of the players outside S. This
view is very pessimistic because it presumes maximal resistance of the outside play-
ers, even if this means that these outside players hurt themselves. In the present case
it is not hard to see that this results in zero profit for S.

Two alternative scenarios are: S plays a Cournot-Nash equilibrium in the (n —
|S|+ 1)-player oligopoly game against the outside firms as separate firms, or S plays
a Cournot—Nash equilibrium in the duopoly game against N \ S.

In the first case we in fact have an oligopoly game with costs c; for every player
J ¢ S and with cost cg := min{c; : i € S} for ‘player’ (coalition) S.

(d) By using the results of (a)—(c) show that coalition § obtains a profit of

a—(n—|S|+1)es+ Y jescil?
(n—=151+2)
in this scenario. Thus, this scenario results in a cooperative TU-game (N, v ).

(e) Assume n =3, a =7, and ¢; =i for i = 1,2,3. Compute the core, the Shapley
value, and the nucleolus for the TU-game (N, vy ).

(f) Show that in the second scenario, coalition S obtains a profit of

2 _ 2
Vs (S) (a CsTCN S) 7
resulting in a cooperative game (]\77 V2).

(g) Assume n =3, a =7, and ¢; =i for i = 1,2,3. Compute the core, the Shapley
value, and the nucleolus for the TU-game (N,v3).



Chapter 11
Social Choice

Social choice theory studies the aggregation of individual preferences into a com-
mon or social preference. It overlaps with several social science disciplines, such as
political theory (e.g., voting for Parliament, or for a president) and game theory (e.g.,
voters may vote strategically, or candidates may choose positions strategically). For
a general overview see [3] and [4].

In the classical model of social choice, there is a finite number of agents who
have preferences over a finite number of alternatives. These preferences are either
aggregated into a social preference according to a so-called social welfare function,
or result in a common alternative according to a so-called social choice function.

The main purpose of this chapter is to review two classical results, namely
Arrow’s [2] Theorem and Gibbard’s [44] and Satterthwaite’s [112] Theorem. The
first theorem applies to social welfare functions and says that, if the social prefer-
ence between any two alternatives should only depend on the individual preferences
between these alternatives and, thus, not on individual preferences involving other
alternatives, then the social welfare function must be dictatorial. The second theo-
rem applies to social choice functions and says that the only social choice functions
that are invulnerable to strategic manipulation are the dictatorial ones. These results
are often referred to as ‘impossibility theorems’ since dictatorships are generally
regarded undesirable.

Both results are closely related: indeed, the proof of the Theorem of Gibbard and
Satterthwaite in [44] uses Arrow’s Theorem. The presentation in this chapter closely
follows that in Reny [108], which is both simple and elegant, and which shows the
close relation between the two results. The approach in [108] is itself based on a few
other sources: see [108] for the references.

Section 11.1 is introductory. Section 11.2 discusses Arrow’s Theorem and
Sect. 11.3 the Gibbard—Satterthwaite Theorem.
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11.1 Introduction and Preliminaries

11.1.1 An Example

Suppose there are three agents (individuals, voters) who have strict preferences over
a set of five alternatives (ay,...,as), as given in Table 11.1.

In this table the preferences of the players are represented by the Borda scores:
the best alternative of an agent obtains 5 points, the second best 4 points, etc., until
the worst alternative which obtains 1 point. So, for instance, agent 1 has the prefer-
ence aPjasPyazPiasPia; in the notation to be introduced below. We use the Borda
scores (Borda [25]) as a convenient way to represent these preferences and, more
importantly, to obtain an example of a social welfare as well as a social choice
function.

First, suppose that we want to extract a common social ranking of the alternatives
from the individual preferences. One way to do this is to add the Borda scores per
alternative. In the example this results in 9,7,11,8,10 for ay,a;,a3,aq4,as, respec-
tively, resulting in the social ranking azPasPaiPasPa;. If we just want to single
out one alternative, then we could take the one with the maximal Borda score, in
this case alternative a3. In the terminology to be introduced formally below, Borda
scores give rise to a social welfare as well as a social choice function.'

One potential drawback of using Borda scores to obtain a social ranking is,
that the ranking between two alternatives may not just depend on the individual
preferences between these two alternatives. For instance, suppose that agent 1’s
preference would change to ajPjasPiasPiazPia;. Then the Borda scores would
change t0 9,7,8,10,9 for ay,as,as3, a4, as, respectively, resulting in the social rank-
ing a4PailasPazPa, (where I denotes indifference). Observe that no agent’s prefer-
ence between a; and a4 has changed, but that socially this preference is reversed.
This is not a peculiarity of using Borda scores: Arrow’s Theorem, to be discussed
in Sect. 11.2, states that the only way to avoid this kind of preference reversal is
to make one agent the dictator, i.e., to have the social preference coincide with the
preference of one fixed agent.

A potential drawback of using the Borda scores in order to single out a unique
alternative is that this method is vulnerable to strategic manipulation. For instance,
suppose that agent 1 would lie about his true preference given in Table 11.1 and

Table 11.1 Borda scores
Agent a; ay a3 as as

1 5 1 3 2 4
2 1 2 3 4 5
3 34 5 2 1

! Note that ties may occur, but this need not bother us here.
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claim that his preference is a;PjasPyaxPiasPias instead. Then the Borda scores
would change t0 9,9,9, 8,10 for ay,a»,a3,a4,as, respectively, resulting in the cho-
sen alternative as instead of a3. Since agent 1 prefers as over az according to his
true preference, he gains by this strategic manipulation. Again, this phenomenon
is not a peculiarity of the Borda method: the Gibbard—Satterthwaite Theorem in
Sect. 11.3 shows that the only way to avoid it is (again) to make one fixed agent a
dictator.

11.1.2 Preliminaries

LetA={ay,...,an} be the set of alternatives. To keep things interesting we assume
m > 3.2 The set of agents is denoted by N = {1,...,n}. We assume n > 2.

A binary relation on A is a subset of A X A. In our context, for a binary relation
R on A we usually write aRb instead of (a,b) € R and interpret this as an agent or
society (weakly) preferring a over b. Well-known conditions for a binary relation R
on A are:

(a) Reflexivity: aRa for all a € A.

(b) Completeness: aRb or bRa for all a,b € A with a # b.

(c) Antisymmetry: For all a,b € A, if aRb and bRa, then a = b.
(d) Transitivity: For all a,b,c € A, aRb and bRc imply aRc.

A preference on A is a reflexive, complete and transitive binary relation on A. For
a preference R on A we write aPb if aRb and not bRa; and alb if aRb and bRa.
The binary relations P and I are called the asymmetric and symmetric parts of
R, respectively, and interpreted as strict preference and indifference. Check (see
Problem 11.1) that P is antisymmetric and transitive but not reflexive and not
necessarily complete, and that [ is reflexive and transitive but not necessarily anti-
symmetric and not necessarily complete. By .Z* we denote the set of all preferences
on A, and by .Z C .Z* the set of all antisymmetric (i.e., strict) preferences on A.
In plain words, elements of -£* order the elements of A but allow for indifferences,
while elements of . order the elements of A strictly.

In what follows, it is assumed that agents have strict preferences while
social preferences may have indifferences. A strict preference profile is a list
(R1,...,Ri,...,R,), where R; is the strict preference of agent i. Hence, N denotes
the set of all strict preference profiles. A social choice functionisamap f: N — A,
i.e., it assigns a unique alternative to every profile of strict preferences. A social
welfare function is a map F : LN PE e, it assigns a (possibly non-strict)
preference to every profile of strict preferences.

2 See Problem 11.7 for the case m = 2.

3 Elements of .# are usually called linear orders and those of .#* weak orders.
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11.2 Arrow’s Theorem

In this section the focus is on social welfare functions. We formulate three properties
for a social welfare function F : N — #*. Call F:

(1) Pareto Efficient (PE) if for each profile (Ry,...,R,) € £V and all a,b € A,
if aR;b for all i € N, then aPb, where P is the asymmetric part of R =
F(Ri,...,Ry).

(2) Independent of Irrelevant Alternatives (ITA) if for all (Ry,...,R,) € £V and
(R\,...,R,) € &N and all a,b € A, if aR;b < aR'b for all i € N, then aRb <
aR'b, where R =F(Ry,...,R,) and R' = F(R),...,R),).

(3) Dictatorial (D) if there is an i € N such that F(Ry,...,R,) = R; for all
(Ry,...,Ry) € LN,

Pareto Efficiency requires that, if all agents prefer an alternative a over an alternative
b, then the social ranking should also put a above b. Independence of Irrelevant
Alternatives says that the social preference between two alternatives should only
depend on the agents’ preferences between these two alternatives and not on the
position of any other alternative.* Dictatoriality says that the social ranking is always
equal to the preference of a fixed agent, the dictator. Clearly, there are exactly n
dictatorial social welfare functions.

The first two conditions are regarded as desirable but the third clearly not. Unfor-
tunately, Arrow’s Theorem implies that the first two conditions imply the third
one.’

Theorem 11.1 (Arrow’s Theorem). Let F' be a Pareto Efficient and IIA social
welfare function. Then F is dictatorial.

Proof.

Step 1. Consider a profile in .#" and two distinct alternatives a,b € A such that
every agent ranks a on top and b at bottom. By Pareto Efficiency, the social ranking
assigned by F' must also rank a on top and b at bottom.

Now change agent 1’s ranking by raising b in it one position at a time. By IIA,
a is ranked socially (by F) on top as long as b is still below a in the preference of
agent 1. In the end, if agent 1 ranks b first and a second, we have a or b on top of the
social ranking by Pareto efficiency of F. If a is still on top in the social ranking, then
continue the same process with agents 2,3, etc., until we reach some agent k such
that b is on top of the social ranking after moving b above a in agent k’s preference.
Tables 11.2 and 11.3 give the situations just before and just after b is placed above
a in agent k’s preference.’

4 Although there is some similarity in spirit, this condition is not in any formal sense related to the
IIA condition in bargaining, see Sect. 10.1 or Chap. 21.

> For this reason the theorem is often referred to as Arrow’s Impossibility Theorem.

% In these tables and also the ones below, we generically denote all preferences by Ry, ..., R,. The
last column in every table will be used in Sect. 11.3.
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Table 11.2
R,
b
a
Table 11.3
Ry
b
a
Table 11.4
Ry
b
a
Table 11.5
R

- R

© Riy

Ry

© R

Ry

Q

Ry

Ry

Ry

R+

Ry

Ry

Ry
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Step 2. Now consider Tables 11.4 and 11.5. The profile in Table 11.4 arises from the
one in Table 11.2 by moving a to the last position for agents i < k and to the second
last position for agents i > k. In exactly the same way, the profile in Table 11.5 arises
from the one in Table 11.3. Then ITA applied to Tables 11.3 and 11.5 implies that b is
socially top-ranked in Table 11.5. Next, IIA applied to the transition from Table 11.5
to Table 11.4 implies that in Table 11.4 b must still be socially ranked above every
alternative except perhaps a. But IIA applied to the transition from Table 11.2 to
Table 11.4 implies that in Table 11.4 a must still be socially ranked above every
alternative. This proves that the social rankings in Tables 11.4 and 11.5 are correct.
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Table 11.6
Ry Ry Re R - Ry F O f
a a a
c )
b
C C . C C
b b . a a
a a b b
Table 11.7
R+ Ry Re R - Ry F O f
a a a
c )
b c
C C . C C
b b . b b b
a a . a a

Step 3. Consider a third alternative ¢ distinct from a and b. The social ranking in
Table 11.6 is obtained by from Table 11.4 by applying IIA.

Step 4. Consider the profile in Table 11.7, obtained from the profile in Table 11.6 by
switching a and b for agents i > k. By IIA applied to the transition from Table 11.6
to Table 11.7, we have that a must still be socially ranked above every alternative
except possibly b. However, b must be ranked below ¢ by Pareto efficiency, which
shows that the social ranking in Table 11.7 is correct.

Step 5. Consider any arbitrary profile in which agent k prefers a to b. Change the
profile by moving c between a and b for agent k and to the top of every other agent’s
preference (if this is not already the case). By IIA this does not affect the social
ranking of a vs. b. Since the preference of every agent concerning a and c is now as
in Table 11.7, ITA implies that a is socially ranked above ¢, which itself is socially
ranked above b by Pareto Efficiency. Hence, by transitivity of the social ranking we
may conclude that a is socially ranked above b whenever it is preferred by agent k
over b. By repeating the argument with the roles of b and ¢ reversed, and recalling
that ¢ was an arbitrary alternative distinct from a and b, we may conclude that the
social ranking of a is above some alternative whenever agent k prefers a to that
alternative: k is a ‘dictator’ for a. Since a was arbitrary, we can repeat the whole
argument to conclude that there must be a dictator for every alternative. Since there
cannot be distinct dictators for distinct alternatives, there must be a single dictator
for all alternatives. d
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11.3 The Gibbard-Satterthwaite Theorem

The Gibbard—Satterthwaite Theorem applies to social choice functions. We start by
listing the following possible properties of a social choice function f : .V — A.
Call f:

(1) Unanimous (UN) if for each profile (Ry,...,R,) € N and each a € A, if aR;b
foralli€ Nandall b € A\ {a}, then f(Ry,...,R,) =a.

(2) Monotonic (MON) if for all profiles (Ry,...,R,) € N and (R},...,R}) € LN
andalla € A,if f(Ry,...,R,) =aandaR;b = aR'bforallb € A\ {a} andi €N,
then f(R},...,R)) =a.

(3) Dictatorial (D) if there is an i € N such that f(R;,...,R,) = a where aR;b for
allb € A\ {a}, forall (Ry,...,R,) € £N.

(4) Strategy-Proof (SP) if for all profiles (Ry,...,R,) € <" and (R!,...,R,) € &N
andall i € N, if R, = R; for all j € N\ {i}, then f(R1,...,Ry) Ri f(R},...,Ry;).

Unanimity requires that, if all agents have the same top alternative, then this alter-
native should be chosen. Monotonicity says that, if some alternative a is chosen
and the profile changes in such a way that a is still preferred by every agent over
all alternatives over which it was originally preferred, then a should remain to be
chosen. Dictatoriality means that there is a fixed agent whose top element is always
chosen. Strategy-Proofness says that no agent can obtain a better chosen alternative
by lying about his true preference.

In accordance with mathematical parlance, call a social choice function f :
ZN — A surjective if for every a € A there is some profile (Ry,...,R,) € &N
such that f(Ry,...,R,) = a. Hence, each a is chosen at least once.” The Gibbard—
Satterthwaite Theorem is as follows.

Theorem 11.2 (Gibbard-Satterthwaite Theorem). Let f : N — A be a surjec-
tive and strategy-proof social choice function. Then f is dictatorial.

We will prove the Gibbard—Satterthwaite Theorem by using the next theorem, which
is a variant of the Muller-Satterthwaite Theorem [84].

Theorem 11.3 (Muller-Satterthwaite). Ler f : N — A be a unanimous and
monotonic social choice function. Then f is dictatorial.

Proof of Theorem 11.2. We prove that f is unanimous and monotonic. The result
then follows from Theorem 11.3.

Suppose that f(Ry,...,R,) = a for some profile (Ry,...,R,) € £V and some
alternative a € A. Let i € N and let (R],...,R,) € " be a profile such that for
all j € N\ {i} we have R} = R; and for all b € A\ {a} we have aR}b if aR;b. We
wish to show that f(R/,...,R)) = a. Suppose, to the contrary, that f(R},...,R)) =
b # a. Then SP implies aR;b, and hence aR}b. By SP, however, bR}a, hence, by
antisymmetry of R!, a = b, a contradiction. This proves f(R/,...,R}) = a.

7 In the social choice literature this property is sometimes called citizen-sovereignty.
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Now suppose that (R},...,R),) € £V is a profile such that for all i € N and
all b € A\ {a} we have aR/b if aR;b. By applying the argument in the preceding
paragraph n times, it follows that f(R},...,R}) = a. Hence, f is monotonic.

To prove unanimity, suppose that (Ry,...,R,) € N and a € A such that aR;b
for all i € N and b € A\ {a}. By surjectivity there is (R],...,R}) € £V with
f(R,...,R},) = a. By monotonicity we may move a to the top of each agent’s
preference and still have a chosen. Next, again by monotonicity, we may change
each agent i’s preference to R; without changing the chosen alternative, i.e.,
f(Ry,...,R,) = a. Hence, f is unanimous. O

Proof of Theorem 11.3. The proof parallels the proof of Theorem 11.1 and uses
analogous steps and the same tables.

Step 1. Consider a profile in .V and two distinct alternatives a,b € A such that
every agent ranks a on top and b at bottom. By unanimity, f chooses a.

Now change agent 1’s ranking by raising b in it one position at a time. By MON,
a is chosen by f as long as b is still below a in the preference of agent 1. In the end,
if agent 1 ranks b first and a second, we have a or b chosen by f, again by MON. If
a is still chosen, then continue the same process with agents 2,3, etc., until we reach
some agent k such that b is chosen after moving b above a in agent k’s preference.
Tables 11.2 and 11.3 give the situations just before and just after b is placed above
a in agent k’s preference.

Step 2. Now consider Tables 11.4 and 11.5. The profile in Table 11.4 arises from the
one in Table 11.2 by moving a to the last position for agents i < k and to the second
last position for agents i > k. In exactly the same way, the profile in Table 11.5 arises
from the one in Table 11.3.

Then MON applied to Tables 11.3 and 11.5 implies that b is chosen in Table 11.5.
Next, MON applied to the transition from Table 11.5 to Table 11.4 implies that in
Table 11.4 the choice must be either b or a. Suppose b would be chosen. Then MON
applied to the transition from Table 11.4 to Table 11.2 implies that in Table 11.2
b must be chosen as well, a contradiction. Hence, a is chosen in Table 11.4. This
proves that the choices by f in Tables 11.4 and 11.5 are correct.

Step 3. Consider a third alternative c¢ distinct from a and b. The choice in Table 11.6
is obtained by from Table 11.4 by applying MON.

Step 4. Consider the profile in Table 11.7, obtained from the profile in Table 11.6 by
switching a and b for agents i > k. If the choice in Table 11.7 were some d unequal
to a or b, then by MON it would also be d in Table 11.6, a contradiction. If it were
b, then by MON it would remain b even if ¢ would be moved to the top of every
agent’s preference, contradicting unanimity. Hence, it must be a.

Step 5. Consider any arbitrary profile with a at the top of agent k’s preference. Such
a profile can always be obtained from the profile in Table 11.7 without worsening
the position of @ with respect to any other alternative in any agent’s preference. By
MON therefore, a must be chosen whenever it is at the top of agent k’s preference,
so k is a ‘dictator’ for a. Since a was arbitrary, we can find a dictator for every other
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alternative but, clearly, these must be one and the same agent. Hence, this agent is
the dictator. O

There is a large literature that tries to escape the rather negative conclusions of
Theorems 11.1-11.3 by adapting the model and/or restricting the domain. Examples
of this are provided in Problems 6.22 and 6.23.

Problems

11.1. Preferences
Let R be a preference on A, with symmetric part / and asymmetric part P.

(a) Prove that P is antisymmetric and transitive but not reflexive and not necessarily
complete.

(b) Prove that I is reflexive and transitive but not necessarily complete and not
necessarily antisymmetric.

11.2. Pairwise Comparison

For a profile r = (Ry,...,R,) € "N and a,b € A define
N(a,b,r) ={i € N|aR;b},

i.e., N(a,b,r) is the set of agents who (strictly) prefer a to b in the profile r. With
r we can associate a binary relation C(r) on A by defining aC(r)b :< |N(a,b,r)| >
IN(b,a,r)| forall a,b € A. If aC(r)b we say that ‘a beats b by pairwise majority’.

(a) Is C(r) reflexive? Complete? Antisymmetric?

(b) Show that C(r) is not transitive, by considering the famous Condorcet profile®
for N ={1,2,3} and A = {a,b,c}: aR\bR|c, bRycRa, cR3aR3b.

(c) Call a a Condorcet winner if |N(a,b,r)| > |N(b,a,r)| forall b € A\ {a}.Is there
a Condorcet winner in the example in Sect. 11.1?

11.3. Independence of the Conditions in Theorem 11.1

Show that the conditions in Theorem 11.1 are independent. That is, exhibit a social
welfare function that is Pareto efficient and does not satisfy ITA or dictatoriality, and
one that satisfies ITA and is not dicatorial nor Pareto efficient.

11.4. Independence of the Conditions in Theorem 11.2

Show that the conditions in Theorem 11.2 are independent.

11.5. Independence of the Conditions in Theorem 11.3

Show that the conditions in Theorem 11.3 are independent.

8 See [27], and see [43] for a comprehensive study of this so-called Condorcet paradox.
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11.6. Copeland Score and Kramer Score

The Copeland score of an alternative a € A at a profile r = (Ry,...,R,) € £V is
defined by
c(a,r)=|{beA|N(a,b,r) > N(b,a,r)}|,

i.e., the number of alternatives that a beats (cf. Problem 11.2). The Copeland ranking
is obtained by ranking the alternatives according to their Copeland scores.

(a) Is the Copeland ranking a preference? Is it antisymmetric? Does the derived
social welfare function satisfy IIA? Pareto efficiency?

The Kramer score of an alternative a € A at a profile r = (Ry,...,R,) € £V is
defined by
k(a,r) = min |N(a,b,r)|,
(@r) =, min_N{a.b.r)
i.e., the worst score among all pairwise comparisons. The Kramer ranking is
obtained by ranking the alternatives according to their Kramer scores.

(b) Is the Kramer ranking a preference? Is it antisymmetric? Does the derived social
welfare function satisfy IIA? Pareto efficiency?

11.7. Two Alternatives

Show that Theorems 11.1-11.3 no longer hold if there are just two alternatives, i.e.,
ifm=2.



Chapter 12
Matrix Games

In this chapter we study finite two-person zerosum games — matrix games — more
rigorously. In particular, von Neumann’s Minimax Theorem [140] is proved. The
chapter builds on Chap. 2 in Part I, and the reader is advised to read this chapter and
in particular Definition 2.1 before continuing.

Section 12.1 presents a proof of the Minimax Theorem, and Sect. 12.2 shows
how a matrix game can be solved — optimal strategies and the value of the game can
be found — by solving an associated linear programming problem.

12.1 The Minimax Theorem

Let A be an m x n matrix game. For any strategy p € A" of player 1, let v (p) =
mingear PAQ. It is easy to see that vy (p) = minje(y . q) pAe/, since pAq is a convex
combination of the numbers pAe’. In the matrix game A player 1 can guarantee a
payoff of at least

vi(A) := maxvi (p).

Similarly, for any strategy q € A" of player 2 let v2(q) = maxpean pAqQ =
max;c(1,..m} €'Aq, then player 2 can guarantee to have to pay at most

v2(A) := min va(q).

Intuitively, player 1 should not be able to guarantee to obtain more than what player
2 can guarantee to pay maximally. Indeed, we have the following lemma.

Lemma 12.1. For any m x n matrix game, vi(A) < v2(A).
Proof. Problem 12.1. a

The following theorem is due to von Neumann [140].
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Theorem 12.2 (Minimax Theorem for Matrix Games). For any m X n matrix
game A, vi(A) = vy (A).

Proof. Suppose that A is any m X n matrix game. Then either (1) or (2) in
Lemma 22.3 has to hold.

First suppose that (1) holds. Then there are y € R” and z € R™ with (y,z) > 0,
(y,z) # 0 and Ay +z = 0. It cannot be the case that y = 0, since that would imply that
also z = 0, a contradiction. Hence Y}, yx > 0. Define q € A" by g; = y;/ ¥} vk
forevery j=1,...,n. ThenAq = —z/Y}_, yx <0. Hence v»(q) < 0, and therefore
n(A) <0.

Suppose instead that (2) holds. Then there is an x € R™ with x > 0 and xA > 0.
Define p € A" by p = x/ Y/ x;, then v (p) > 0 and therefore v (A) > 0.

We conclude that, for any matrix game A, it is not possible to have v;(A) <0 <
1% (A)

Fix some matrix game B, and suppose that v{(B) < vo(B). We derive a contra-
diction, and by Lemma 12.1 this completes the proof of the theorem.

Let A be the matrix game arising by subtracting the number v; (B) from all entries
of B. Then, clearly, v{(A) = v{(B) —vi(B) = 0 and v2(A) = v2(B) — vi(B) > 0.
Hence, vi(A) <0 < vo(A), which is the desired contradiction. O

In view of Theorem 12.2 we can define the value of the game A by v(A) = v;(A) =
v2(A). An optimal strategy of player 1 is a strategy p such that vi(p) > v(A).
Similarly, an optimal strategy of player 2 is a strategy q such that v2(q) < v(A).
Theorem 12.2 implies that v; (p) = v2(q) = v(A) for such optimal strategies. In par-
ticular, the optimal strategies for player 1 are exactly the maximin strategies, and the
optimal strategies for player 2 are exactly the minimax strategies (cf. Definition 2.2).

For computation of optimal strategies and the value of matrix games in some
special cases, see Chap.2 and Problems 12.2 and 12.3. In general, matrix games
can be solved by linear programming. This is demonstrated in the next section.

12.2 A Linear Programming Formulation

Let A be an m x n matrix game. Adding the same number to all entries of A changes
the value by that same number but not the optimal strategies of the players. So we
may assume without loss of generality that all entries of A are positive. We define
the (m+1) x (n+ 1) matrix B as follows:

~1
-1
~1
~1—=1-—1 0
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Let b= (0,...,0,—1) € R""! and ¢ = (0,...,0,—1) € R""!, Define V := {x €
R |xB>b,x >0} and W := {y € R*"! | By < ¢,y > 0}. It is easy to check that
V,W # 0. The Duality Theorem of Linear Programming (Theorem 22.5) therefore
implies:

Corollary 12.3. min{x-¢|x €V} =max{b-y |y e W}

The minimum and maximum problems in this corollary are so-called linear pro-
gramming (LP) problems. If we call the minimization problem the primal problem,
then the maximization problem is the dual problem — or vice versa. The common
minimum/maximum is called the value of the LP, and x and y achieving the value
are called optimal solutions. Denote the sets of optimal solutions by O,,, and O,,,,
respectively.

We shall prove the following result.

Theorem 12.4. Let A be an m x n matrix game with all entries positive.

(1) If p € A™ is an optimal strategy for player 1 and q € A" is an optimal strategy
for player 2 in A, then (p,v(A)) € O,,, and (q,v(A)) € O,... The value of the LP
is —v(A).

) Ifx=(x1,... 7xm7xm+1) €0, andy= (yl yee 7yn7yn+1) € O, then (xl yeesXm)
is an optimal strategy for player 1 in A, (y1,...,yn) is an optimal strategy for
player 2 in A, and v(A) = X1 = Ynt1-

Proof. (1) Let p € A™ and q € A" be optimal strategies in the matrix game A. Then
pAe/ >v(A) and e'Aq < v(A) foralli=1,...,mand j = 1,...,n. Since all entries of
A are positive and therefore v(A) > 0, this implies (p,v(A)) € V and (q,v(A)) € W.
Since (p,v(A))-¢= —v(A) and (q,v(A)) -b = —v(A), Lemma 22.8 implies that the
value of the LP is —v(A), (p,v(A)) € O,;, and (q,v(A)) € O,.

(2) Let x = (X1,...,Xmt1) € Opy. Since x-¢ = —v(A) by (1), we have x| =
v(A). Since xB > b, we have (xi,...,x,)Ae/ >v(A) forall j=1,...,n, x; >0 for
alli=1,...,m,and Y7" , x; < 1. Suppose that }"7* ; x; < 1. Obviously, Y, x; > 0,
otherwise x = (0,...,0,v(A)) ¢ V since v(A) > 0. Then, letting = (Y7, x;) "' >
1, we have rx € V and rx-¢ = —tv(A) < —v(A), contradicting x € O,,,. Hence,
Y7 xi=1,and (xi,...,x,) is an optimal strategy of player 1 in A.

The proof of the second part of (2) is analogous. a

The interest of this theorem derives from the fact that since the invention of the sim-
plex algorithm by George Dantzig in 1947 (see any textbook on linear programming
or operations research) solving linear programming problems is a well established
area. Thus, one can apply any (computer) method for solving LPs to find the value
and optimal strategies of a matrix game.

Observe that, by slightly modifying part (2) of the proof of Theorem 12.4, we
can in fact derive the Minimax Theorem from the Duality Theorem (Problem 12.4).
Conversely, with each LP we can associate a matrix game and thereby derive the
Duality Theorem from the Minimax Theorem (see, e.g., [98]). This confirms the
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close relationship between linear programming (Duality Theorem) and the theory
of matrix games (Minimax Theorem).

Problems

12.1. Proof of Lemma 12.1

Prove Lemma 12.1.

12.2. 2 x 2 Games

Consider the 2 x 2 matrix game

A <a11 alz) '
azr  ax
Assume that A has no saddlepoints (cf. Definition 2.3).
(a) Show that we may assume, without loss of generality,

ayp >ar, app<ayp, ax<day, day >dal.

(b) Show that the unique optimal strategies p and q and the value of the game are
given by:

A AT (4) = Al
P=gasgr 97 gagr VYT qangr
where A* is the adjoint matrix of A, i.e.,
Ar = 92 —on
—ay ap )’
|A| is the determinant of A, and J := (1,1).!
12.3. Symmetric Games
An m x n matrix game A = (a;;) is called symmetric if m = n and a;; = —aj; for all

iLhj=1,...,m.
Prove that the value of a symmetric game is zero and that the sets of optimal
strategies of players 1 and 2 coincide.

12.4. The Duality Theorem Implies the Minimax Theorem

Modify the proof of part (2) of Theorem 12.4 in order to derive the Minimax The-
orem from the Duality Theorem. (Hint: first show that the value of the LP must be
negative.)

' J denotes the row vector and J7 the transpose, i.e., the column vector. In general, we omit the
transpose notation if confusion is unlikely.
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12.5. Infinite Matrix Games

Consider the following two-player game. Each player mentions a natural number.
The player with the highest number receives one Euro from the player with the
lowest number. If the numbers are equal then no player receives anything.

(a) Write this game in the form of an infinite matrix game A.

(b) Compute sup, infq pAq and infq sup, pAq, where p and q are probability distri-
butions over the rows and the columns of A, respectively. (Conclude that this game
has no ‘value’.)

12.6. Equalizer Theorem

Let v be the value of the m x n-matrix game A, and suppose that pAe” = v for every
optimal strategy p of player 1. Show that player 2 has an optimal strategy q with
gn > 0 (cf. Chap. 20 in [6]).



Chapter 13
Finite Games

This chapter builds on Chap. 3, where we studied finite two person games — bimatrix
games. The reader is advised to (re)read this chapter before continuing. The present
chapter offers a more rigorous treatment of finite games, i.e., games with finitely
many players — often two — who have finitely many pure strategies over which they
can randomize.!

In Sect. 13.1 a proof of Nash’s existence theorem is provided. Section 13.2 goes
deeper into bimatrix games. In Sect. 13.3 the notion of iterated dominance is stud-
ied, and its relation with rationalizability indicated. Sections 13.4—13.6 present some
basics about refinements of Nash equilibrium. Section 13.7 is on correlated equilib-
rium in bimatrix games, and Sect. 13.8 concludes with an axiomatic characterization
of Nash equilibrium based on a reduced game (consistency) condition.

13.1 Existence of Nash Equilibrium

A finite game is a 2n + 1-tuple
G=(N,S1,...,Snut1,...,up),

where

e N={I,...,n}, withn € N, n > 1, is the set of players.

o foreveryic N, S, is the finite pure strategy set of player i.

o foreveryie N, u;:S=>5 x---x8, — Ris the payoff function of player i; i.e.,
for every pure strategy combination (sy,...,s,) € S where s; € Sy, ..., sy € Sy,
ui(sy,...,5,) € Ris player i’s payoff.

This definition is identical to the definition of an n-person game in Chap. 6, except
that the pure strategy sets are now finite. The elements of S; are the pure strategies

! We only discuss games with complete information. In the terminology of Chap. 5, each player
has only one type.
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of player i. A (mixed) strategy of player i is a probability distribution over S;. The
set of (mixed) strategies of player i is denoted by A(S;). Observe that, whenever we
talk about a strategy, we mean a mixed strategy (which may of course be pure).

Let (01,...,0,) €A(S]) X ... X A(S,) be a strategy combination. Player i’s payoff
from this strategy combination is defined to be his expected payoff. With some abuse

of notation this is also denoted by u;(o7,...,0,). Formally,
ui(o1,...,0,) = Z (HO', 8 )u, STyeeesSn)-
(1,--:8n) €S \IEN

For a strategy combination ¢ and a player i € N we denote by (o7, 0_;) the strategy
combination in which player i plays o} € A(S;) and each player j # i plays ©;.

A best reply of player i to the strategy combination o_; of the other players is a
strategy 0; € A(S;) such that u;(0;,0_;) > ui(o!,0_;) for all 6] € A(S;).

A Nash equilibrium of G is a strategy comblnation 6" € [Tien A(S;) such that for
each player i, o;" is a best reply to ¢*,.

As in Chaps. 3 and 6, B; denotes player i’s best reply correspondence. That is, B; :
[Tjen, j2A(S;) — A(S;) assigns to each strategy combination of the other players
the set of all best replies of player i.

Nash [91] proved that every finite game has a Nash equilibrium in mixed strategies.
Formally:

Theorem 13.1 (Existence of Nash equilibrium). Every finite game G = (N, Sy, ...,
Susu1,- .. up) has a Nash equilibrium.

The proof of this theorem is based on Kakutani’s fixed point theorem. Readers not
familiar with this theorem should consult Sect. 22.5 first.

Proof of Theorem 13.1. Consider the correspondence

B : HA(S,) — HA(S,), (0'],...,0',,) — HB,'(G]’...7O-Z'7]7O-Z'+]7...,Gn).

ieN ieN ieN

This correspondence is convex-valued and upper semi-continuous (Problem 13.1).
By Kakutani’s fixed point theorem (Theorem 22.10) it has a fixed point o*. By
definition of 3, any fixed point is a Nash equilibrium of G. a

13.2 Bimatrix Games

Two-person finite games — bimatrix games — were studied in Chap.3. Here we
present some extensions. In Sect. 13.2.1 we give some formal relations between pure
and mixed strategies in a Nash equilibrium. In Sect. 13.2.2 we extend the graphi-
cal method for computing Nash equilibria (cf. Sect. 3.2.2). In Sect. 13.2.3 a general
mathematical programming method is described by which equilibria of bimatrix
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games can be found. Section 13.2.4 reconsiders matrix games as a special kind of
bimatrix games. Section 13.2.5 is about Zermelo’s theorem on the game of chess.

13.2.1 Pure and Mixed Strategies in Nash Equilibrium

Let (A,B) be an m x n bimatrix game (Definition 3.1). The first lemma says that to
determine whether a strategy pair is a Nash equilibrium it is sufficient to compare
the expected payoff of a (mixed) strategy with the payoffs of pure strategies.

Lemma 13.2. Strategy combination (p*,q*) € A" x A" is a Nash equilibrium of
(A,B) if and only if p*"Aq* > €'Aq* forall i =1,...,m and p*Aq* > p*Be’ for all
j=1,...,n

Proof. Problem 13.2. a

The next lemma says that a player always has a pure best reply against any strategy
of the opponent.

Lemma 13.3. Letp € A" and q € A". Then thereisani € {1,....m} withe' € Bi(q)
anda j€{1,...,n} with e/ € B(p).

Proof. Problem 13.3. a

In light of these lemmas it makes sense to introduce the pure best reply correspon-
dences.

Definition 13.4. Let (A,B) be an m x n bimatrix game and let p € A™ and q € A”.
Then

PBi(q)={ie{l,...,m} | eAq= m]?xekAq}

is the set of pure best replies of player 1 to q and
PBy(p) = {j € {1,...,n} | pAe/ = maxpAe‘}

is the set of pure best replies of player 2 to p.

Observe that, with some abuse of notation, the pure best replies in this definition are
labelled by the row and column numbers.

The carrier C(p) of a mixed strategy p € A¥, where k € N, is the set of coordinates
that are positive, i.e.,

Clp) ={iefl,....k} [ pi>0}.

The next lemma formalizes the observation used already in Chap. 3, namely that
in a best reply a player puts positive probability only on those pure strategies that
maximize his expected payoff (cf. Problem 3.8).
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Lemma 13.5. Let (A, B) be an m X n bimatrix game, p € A" and q € A". Then

p € Bi(q) & C(p) € PBi(q)

and
q € B2(p) < C(q) € PBy(p).
Proof. We only show the first equivalence.

Firstlet p € B1(q), and assume i € C(p) and, contrary to what we want to prove,
that e’/Aq < max; e‘Aq. Then

m

m
pAq = m]?xekAq =Y m max e‘Aq > Y prefAq =pAq,
k=1 1

k=

where the first equality follows from Lemma 13.3. This is a contradiction, hence
e/Aq = max, e¥Aq and i € PB(q).
Next, assume that C(p) C PB;(q). Then

pAq = Zpi eiAq = Z Di eiAq = Z Di maxekAq = maxekAq.
i icClp) iecp) K k
So pAq > e/Aq forall i = 1,...,m, which by Lemma 13.2 implies p € Bi(q). O

The following corollary is an immediate consequence of Lemma 13.5. It is, in
principle, helpful to find Nash equilibria or to determine whether a given strategy
combination is a Nash equilibrium. See Example 13.7.

Corollary 13.6. A strategy pair (p,q) is a Nash equilibrium in a bimatrix game
(A,B) if and only if C(p) C PBi(q) and C(q) C PB;(p).

Example 13.7. Consider the bimatrix game

(A’B) =

—_— == O
—_——O O

—_
N
—
—_
— O O O
—_ =

and the strategies p = (0, é, ;, é) and q = (;, é,0,0). Since

Aq =

1
2
1
| and pB=(1111),
1

PBi(q) = {2,3,4} and PBy(p) = {1,2,3,4}. Since C(p) = {2,3,4} and C(q) =
{1,2}, we have C(p) C PB(q) and C(q) € PB;(p). So Corollary 13.6 implies that
(p,q) is a Nash equilibrium.
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13.2.2 Extension of the Graphical Method

In Sect.3.2.2 we learnt how to solve 2 x 2 bimatrix games graphically. We now
extend this method to 2 x 3 and 3 x 2 games. For larger games it becomes impractical
or impossible to use this graphical method.

As an example consider the 2 x 3 bimatrix game

21 1.0 1.1
(4,B) = (2,0 11 o,o)'

The Nash equilibria of this game are elements of the set A% x A3 of all possible
strategy combinations. This set can be represented as in Fig. 13.1.
Here player 2 chooses a point in the triangle with vertices ey, e, and ez, while player
1 chooses a point of the horizontal line segment with vertices e; and e;.

In order to determine the best replies of player 1 note that

2qi+q2+q3
Aq = 7).
a (241+fh
As e]Aq = e2Aq < ¢3 =0, it follows that

1 i
- (i) s

This yields the best reply correspondence represented in Fig. 13.2.
Similarly,

pB=(pip2p1)

Fig. 13.1 The set A> x A3 e e’
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Fig. 13.2 The best reply
correspondence of player 1
(shaded)

Fig. 13.3 The best reply
correspondence of player 2

(shaded/thick)
&2
e (5,3) e’
implies
{e?} if p1 < p2
Ba(p) = { A if p1 = po

{qeA’ g =0} if p1 > p.

This yields the best reply correspondence represented in Fig. 13.3.
Figure 13.4 represents the intersection of the two best reply correspondences and,
thus, the set of Nash equilibria.

13.2.3 A Mathematical Programming Approach

In Sect. 12.2 we have seen that matrix games can be solved by linear programming.
Nash equilibria of an m x n bimatrix game (A, B) can be found by considering the
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Fig. 13.4 The set of Nash
equilibria

following quadratic programming problem (cf. Mangasarian and Stone [76]):

ma ,q,a,b) :=pA Bq—a—>b
L f(p,q,a,b) := pAq+pBq—a

subjectto e'Aq<a foralli=1,2,....m

pBe/ <b forall j=1,2,...,n. 3.0

Theorem 13.8. (p,q,a,b) is a solution of (13.1) if and only if (p,q) is a Nash
equilibrium of (A,B), a = pAq, b = pBq.

Proof. Problem 13.7. O

If (A, B) is a zero-sum game, i.c., if B = —A, then (13.1) reduces to

max —a—>b
peA™, qeA", a,beR
subjectto e'Aq<a foralli=1,2,...,m (13.2)
—pAe/ <b forall j=1,2,...,n. :
Program (13.2) can be split up into two independent programs
max —a
qeA”, aeR
subjectto e'Aq<a foralli=1,2,....m (13.3)
and
min b
peA™, beR
subjectto pAe/ > —b forall j=1,2,....n. (13.4)

One can check that these problems are equivalent to the LP and its dual for matrix
games in Sect. 12.2, see Problem 13.8.
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Lemke and Howson [70] provide an algorithm to find at least one Nash equilibrium
of a bimatrix game. See [143] for an overview.

13.2.4 Matrix Games

Since matrix games are also bimatrix games, everything that we know about
bimatrix games is also true for matrix games. In fact, the Minimax Theorem (Theo-
rem 12.2) can be derived directly from the existence theorem for Nash equilibrium
(Theorem 13.1). Moreover, each Nash equilibrium in a matrix game consists of a
pair of optimal (maximin and minimax) strategies, and each such pair is a Nash
equilibrium. As a consequence, in a matrix game, Nash equilibrium strategies are
exchangeable — there is no coordination problem, and all Nash equilibria result in
the same payoffs.

All these facts are collected in the following theorem. For terminology concern-
ing matrix games see Chap. 12. The ‘new’ contribution of this theorem is part (2),
part (1) is just added to provide an alternative proof of the Minimax Theorem.

Theorem 13.9. Let A be an m x n matrix game. Then:

(D) vi(A) =v2(A).

(2) A pair (p*,q"*) € A" x A" is a Nash equilibrium of (A, —A) if and only if p* is
an optimal strategy for player 1 in A and q* is an optimal strategy for player 2
in A.

Proof. (1) In view of Lemma 12.1 it is sufficient to prove that vi(A) > v,(A).
Choose (Pp,q) € A™ x A" to be a Nash equilibrium of (A,—A) — this is possible
by Theorem 13.1. Then

PAG < PAG <PpAq forallpeA”, qe A"

This implies max, pAq < pAq for all q, hence v;(A) = ming max, pAq’ < pAq for
all q. So
v2(A4) < minpAq < maxminpAq = v;(A).
q P dq

(2) First, suppose that (p*,q*) € A™ x A" is a Nash equilibrium of (A, —A). Then

P'Aq” = maxpAq” =va(q") = minvs(q) = v2(A) = v(A).
If p* were not optimal, then p*Aq < v(A) for some q € A", so p*Aq* < p*Aq < v(A),
a contradiction. Similarly, ¢* must be optimal.
Conversely, suppose that p* and q* are optimal strategies. Since pAq* < v(A) for
all p € A™ and p*Aq > v(A) for all q € A", it follows that p* and q* are mutual best
replies and, thus, (p*,q") is a Nash equilibrium in (A, —A). O
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13.2.5 The Game of Chess: Zermelo’s Theorem

On of the earliest formal results in game theory is Zermelo’s Theorem on the game
of chess, published in [150]. In this subsection we provide a simple proof of this
theorem, based on Theorem 13.9.

The game of chess is a classical example of a zero-sum game. There are three possi-
ble outcomes: a win for White, a win for Black, and a draw. Identifying player 1 with
White and player 2 with Black, we can associate with these outcomes the payoffs
(I,—1), (—1,1), and (0,0), respectively. In order to guarantee that the (extensive
form) game stops after finitely many moves, we assume the following stopping rule:
if the same configuration on the chess board has occurred more than twice, the game
ends in a draw. Since there are only finitely many configurations on the chess board,
the game must stop after finitely many moves. Note that the chess game is a finite
extensive form game of perfect information and therefore has a Nash equilibrium in
pure strategies — see Sect. 4.3. To be precise, this is a pure strategy Nash equilibrium
in the associated matrix game, where mixed strategies are allowed as well.

Theorem 13.10 (Zermelo’s Theorem). In the game of chess, either White has a
pure strategy that guarantees a win, or Black has a pure strategy that guarantees a
win, or both players have pure strategies that guarantee at least a draw.

Proof. Let A = (a;;) denote the associated matrix game, and let row i* and column
J* constitute a pure strategy Nash equilibrium. We distinguish three cases.

Case 1. ajj+ =1, i.e., White wins. By Theorem 13.9, v(A) = 1. Le., White has a
pure strategy that guarantees a win, namely play row i*.

Case 2. ajj» = —1, i.e., Black wins. By Theorem 13.9, v(A) = —1. Le., Black has
a pure strategy that guarantees a win, namely play column j*.

Case 3. ajj» =0, i.e., the game ends in a draw. By Theorem 13.9, v(A) = 0. Hence,
both White and Black can guarantee at least a draw by playing row i* and column
J*, respectively. O

13.3 Iterated Dominance and Best Reply

A pure strategy of a player in a finite game is strictly dominated if there is another
(mixed or pure) strategy that yields always — whatever the other players do — a
strictly higher payoff. Such a strategy is not played in a Nash equilibrium, and
can therefore be eliminated. In the smaller game there may be another pure strat-
egy of the same or of another player that is strictly dominated and again may be
eliminated. This way a game may be reduced to a smaller game for which it is eas-
ier to compute the Nash equilibria. If the procedure results in a unique surviving
strategy combination then the game is called dominance solvable, but this is a rare
exception.
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We applied these ideas before, in Chaps.2 and 3. In this section we show,
formally, that by this procedure of iterated elimination of strictly dominated strate-
gies no Nash equilibria of the original game are lost, and no Nash equilibria are
added.

For iterated elimination of weakly dominated strategies the situation is differ-
ent: Nash equilibria may be lost, and the final result may depend on the order of
elimination. See Problem 3.6.

We start with repeating the definition of a strictly dominated strategy for an arbitrary
finite game.

Definition 13.11. Let G = (N, Sy, ...,Sp, u1,...,u,) be a finite game, i € N, s; € S;.
Strategy s; is strictly dominated by strategy o; € A(S;) if u;(0;,0-;) > u;(s;,0_;) for
all 6_; € [1£;A(S;). Strategy s; € S, is strictly dominated if it is strictly dominated
by some strategy o; € A(S;).

The fact that iterated elimination of strictly dominated strategies does not essentially
change the set of Nash equilibria of a game is a straightforward consequence of the
following lemma.

Lemma 13.12. Let G= (N, Sy,...,Sp,ui,. .., u,) be a finite game, i € N, and let s; €
S; be strictly dominated. Let G' = (N,Sy,...,Si—1,8i \ {si},Six1, ..., Sn,ut}, ..., u,)
be the game arising from G be eliminating s; from S; and restricting the utility
functions accordingly. Then:

(1) If o is a Nash equilibrium in G, then oc;(s;) = 0 (where o;(s;) is the probability
assigned by ©; to pure strategy s; € S;) and ¢’ is a Nash equilibrium in G,
where 6} = o for each j € N\ {i} and o] is the restriction of 6; to S; \ {si}.

(2) If 6’ is a Nash equilibrium in G', then & is a Nash equilibrium in G, where
oj= Gj{for each j € N\ {i} and o;(t;) = o} (t;) for all t; € S; \ {si}.

Proof. (1) Let o be a Nash equilibrium in G, and let 7; € A(S;) strictly dominate s;.
If G,'(Si) > 0, then
ui(é'i + O'i(S,')Ti, OL,‘) > u,'(O'i, Gﬂ'),

where 6; : S; — R is defined by 6;(#;) = 0;(1;) forall ; € S;\ {s;} and 6;(s;) = 0. This
contradicts the assumption that o is a Nash equilibrium in G. Therefore, o;(s;) = 0.
With ¢’ and G’ as above, we have

u(01,....,0/_1,T,0}1,...,00) = ui(O1,...,0i-1,T, Cit1,...,0n),

for every 7/ € A(S;\ {si}), where T/ € A(S;) assigns O to s; and is equal to 7/ other-
wise. From this it follows that o] is still a best reply to o’ ;. It is straightforward that
also for each j # i, o7 is still a best reply to ¢’ ;. Hence ¢ is a Nash equilibrium
in G

(2) Let ¢’ and o be as above in (2). Obviously, for every player j # i, o; is still a
best reply in ¢ since 0;(s;) = 0, i.e., player i puts zero probability on the new pure
strategy s;. For player i, o; is certainly a best reply among all strategies that put zero
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probability on s;. But then, o; is a best reply among all strategies, since strategies
that put nonzero probability on s; can never be best replies by the first argument in
the proof of (1). Hence, o is a Nash equilibrium in G. a

Obviously, a strictly dominated pure strategy is not only never played in a Nash
equilibrium, but, a forteriori, is never (part of) a best reply. Formally, we say that a
pure strategy s; of player i in the finite game G = (N,Sy,...,Sy,uy,...,uy,) is never
a best reply if for all (0;);+ and all o; € Bi((0;);i), we have o;(s;) = 0. The
following result (cf. [99]) shows that for two-player games also the converse holds.

Theorem 13.13. In a finite two-person game every pure strategy that is never a best
reply, is strictly dominated.

Proof. Let (A,B) be an m x n bimatrix game and suppose without loss of gen-
erality that pure strategy e! € A™ of player 1 is never a best reply. Let b =

(—=1,—-1,...,—1) e R".
Let A be the (m — 1) x n matrix with i-th row equal to the first row of A minus the
i+ 1-throw of A, ie., d;j =ajj—ajy jforeveryi=1,....m—1land j=1,...,n

The assumption that the pure strategy e' of player 1 is never a best reply is equivalent
to the statement that the system

Ag>0, qen”
has no solution. This, in turn, is equivalent to the statement that the system

has no solution. This means that the system in (2) of Lemma 22.6 (with A instead of
A there) has no solution. Hence, this lemma implies that the system

xeR™! xA<b, x>0
has a solution. By definition of b and A we have for such a solution x = (x2,...,%,):
m i m
x>0 and Y xe'A>Y xelA+(1,...,1).
i=2 i=2

This implies that x # 0 and therefore that e! is strictly dominated by the strategy
m m
(07.76'2/ ina s 7xm/ in) €A™
i=2 i=2

Hence, e! is strictly dominated. O

For games with more than two players Theorem 13.13 does not hold, see Prob-
lem 13.11 for a counterexample.

The concept of ‘never a best reply’ is closely related to the concept of rationalizabil-
ity (Bernheim [10], Pearce [99]). Roughly, rationalizable strategies are strategies
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that survive a process of iterated elimination of strategies that are never a best reply.
Just like the strategies surviving iterated elimination of strictly dominated strategies,
rationalizable strategies constitute a set-valued solution concept. The above theorem
implies that for two-player games the two solution concepts coincide. In general, the
set of rationalizable strategies is a subset of the set of strategies that survive iterated
elimination of strictly dominated strategies.

The implicit assumption justifying iterated elimination of strategies that are domi-
nated or never a best reply is quite demanding. Not only should a player believe that
some other player will not play a such a strategy, but he should also believe that the
other player believes that he (the first player) believes this and, in turn, will not use
such a strategy in the reduced game, etc.’

13.4 Perfect Equilibrium

Since a game may have many, quite different Nash equilibria, literature has focused
since a long time on so-called refinements of Nash equilibrium. We have seen
examples of this in extensive form games, such as subgame perfect equilibrium
and perfect Bayesian equilibrium (Chaps. 4, 5). One of the earliest and best known
refinements of Nash equilibrium in strategic form games is the concept of ‘trem-
bling hand perfection’, introduced by Selten [118]. This refinement excludes Nash
equilibria that are not robust against ‘trembles’ in the players’ strategies.

Formally, let G = (N,Sy,...,S,u1,...,u,) be a finite game and let i be an error
function, assigning a number p;, € (0,1) to every i € N and h € S;, such that
Y hes; Hin < 1 for every player i. The number p;, is the minimum probability with
which player i is going to play pure strategy h, perhaps by ‘mistake’ (‘trembling
hand’). Let, for each i € N, A(S;,u) = {o; € A(S;) | 6i(h) > pyy forall h € S;}, and
let G(u) denote the game derived from G by assuming that each player / may only
choose strategies from A(S;, (). The game G(u) is called the u-perturbed game.
Denote the set of Nash equilibria of G by NE(G) and of G(u) by NE(G(u)).

Lemma 13.14. For every error function u, NE(G(1)) # 0.
Proof. Analogous to the proof of Theorem 13.1. a

A perfect Nash equilibrium is a Nash equilibrium that is the limit of some sequence
of Nash equilibria of perturbed games. Formally:

Definition 13.15. A strategy combination 6 € NE(G) is perfect if there is a
sequence G(u'), t € N of perturbed games with p' — 0 for t — oo and a sequence
of Nash equilibria 6 € G(u") such that 6" — o fort — co.

2 See [132] or [102].
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As follows from the proof of Theorem 13.17 below, a perfect strategy combination
is indeed a Nash equilibrium.

Call a strategy combination ¢ in G completely mixed if o;(h) > 0 for all i € N and
hes;.

Lemma 13.16. A completely mixed Nash equilibrium of G is perfect.
Proof. Problem 13.12. a

Also if a game has no completely mixed Nash equilibrium, it still has a perfect Nash
equilibrium.

Theorem 13.17. Every finite game G = (N,S1,...,Su,u1,...,u,) has a perfect Nash
equilibrium.

Proof. Take any sequence (G(u')),_o of perturbed games and ¢’ € NE(G(u'"))
for each 7 € N. Since [];cy A(S;) is a compact set we may assume without loss of
generality that the sequence (0" );cry converges to some 6 € [[;ey A(S;). It is easy to
verify that ¢ € NE(G), hence, o is a perfect Nash equilibrium. O

The following lemma relates the Nash equilibria of a perturbed game to pure best
replies in such a game.

Lemma 13.18. Let G(i) be a perturbed game and © a strategy combination in
G(u).

(1) If 6 € NE(G(1)), i € N, h € S;, and 6i(h) > L, then h € Bi(G_).
(2) Ifforalli € N and h € S;, 6;(h) > Wy, implies h € B;i(6_;), then 6 € NE(G(1)).

Proof. (1) Let o € NE(G(u)),i € N, h € S;, and o;(h) > L. Suppose, contrary to
what we wish to prove, that i ¢ B;(0_;). Take &’ € S; with /' € B;(6_;). (Such an
h' exists by an argument similar to the proof of Lemma 13.3.) Consider the strategy
o/ defined by o](h) = Wy, o/(h') = o;(h') + oi(h) — Wy, and o] (k) = o;(k) for
all k € S;\ {h,h'}. Then o] € A(S;,1t) and u;(0!,0-;) > u;(c), contradicting the
assumption 6 € NE(G(1)).

(2) Let i € N. The condition in (2) implies that, if 4 € S; and & ¢ B;(0_;), then
0;(h) = pj,. This implies that o; is a best reply to (o) j. Thus, 6 € NE(G(u)). O

Below we present two characterizations of perfect Nash equilibrium that both avoid
sequences of perturbed games. The first one is based on the notion of -equilibrium,
introduced in [87].
Let € > 0. A strategy combination ¢ € [[;ey A(S;) is an €-perfect equilibrium of
G ifitis completely mixed and o;(h) < € foralli € N and all h € S; with h ¢ B;(o_;).
An e-perfect equilibrium of G need not be a Nash equilibrium of G, but it puts
probabilities of at most € on pure strategies that are not best replies.

The announced characterizations are collected in the following theorem.?

3 This theorem is based on [118] and [87] and appears as Theorem 2.2.5 in [138].
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Theorem 13.19. Let G = (N, Sy, ..., Su,u1,...,up) and & € [Ljen A(S;). The follow-
ing statements are equivalent:

(1) o is a perfect Nash equilibrium of G;

(2) o is a limit of a sequence of €-perfect equilibria 6¢ of G for € — 0;

(3) o is a limit of a sequence of completely mixed strategy combinations 6¢ for
€ — 0, where o; € Bi(0f;) for eachi € N and each c* in this sequence.

Proof. (1) = (2): Take a sequence of perturbed games G(u’), t € N with u’ — 0
and a sequence ¢’ € NE(G(u')) with " — o. For each 7 define € € R by €' =
max{ly, | i € N, h € S;}. Then, by Lemma 13.18(1), ¢’ is an &’-equilibrium for
every 7. So (2) follows.

(2) = (3): Take a sequence of g-equilibria 6¢ as in (2) converging to ¢ for € — 0.
Let i € N. By the definition of e-perfect equilibrium, if o;(h) > 0 for some h € S;,
then for € sufficiently small we have & € B;(o_;). This implies o; € B;i(c_;). So (3)
follows.

(3) = (1): Let ¢ (t €N) be a sequence as in (3) with & — 0 and of — o as
t — oo Foreachr € N, i € N and h € S; define u!, = £ (h) if 6;(h) = 0 and p!, =
€' otherwise. Then, for € sufficiently small, y’ is an error function, G(u’) is a
perturbed game, and 6% is a strategy combination in G(u'). By Lemma 13.18(2),

o € NE(G(u'")). So o is a perfect Nash equilibrium of G. O

There is a close relation between the concept of domination and the concept of per-
fection. We first extend the concept of (weak) domination to mixed strategies. In the
game G = (N,Sy,...,Sp,ui,...,u,), call a strategy o; € A(S;) (weakly) dominated
by o] € A(S;) if ui(0;,0-;) <ui(o],0-;) forall 6_; € [T,.;A(S;), with at least one
inequality strict. (Observe that it is actually sufficient to check this for combinations
s—i € [1j%S:.) Call o; undominated if there is no Gi/ by which it is dominated, and
call a strategy combination ¢ undominated if ©; is undominated for every i € N. We
now have:

Theorem 13.20. Every perfect Nash equilibrium in G is undominated.

Proof. Let o be a perfect Nash equilibrium and suppose that (say) o is dominated.
Then there is a 6] € A(S}) such that u; (o1,5-1) <uj(o],s_) forall s_; € [T, Si.
with at least one inequality strict. Take a sequence (0" );cry of strategy combinations
as in (3) of Theorem 13.19, converging to o. Then, since every ¢’ is completely
mixed, we have u; (0‘1, 1) <ui(oj,0" ) for every ¢. This contradicts the fact that
o) is a best reply to 6" ;. a

The converse of Theorem 13.20 is only true for two-person games. For a
counterexample involving three players, see Problem 13.13.

For proving the converse of the theorem for bimatrix games, we use the following
auxiliary lemma. In this lemma, for a matrix game A, C5(A) denotes the set of all
columns of A that are in the carrier of some optimal strategy of player 2 in A.
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Lemma 13.21. Let G = (A,B) be an m x n bimatrix game and let p € A™. Define
the m x n matrix A = (d;;) by d;; = a;j — pAe/ foralli=1,....mand j=1,...,n.
Then p is undominated in G if and only if v(A) = 0 and Cy(A) = {1,...,n}.

Proof. First note pA = 0 and therefore v(A) > 0.

For the if-direction, suppose that p is dominated in G, say by p’. Then p’A = pA,
hence p'A = 0. Therefore, if v(A~) = 0, then p’ is an optimal strategy in A and, thus,
j ¢ C>(A) whenever p’Ae/ > 0. This proves the if-direction.

For the only-if direction suppose that p is undominated in G. Then clearly v(A) =
0 otherwise p would be dominated in G by any strategy that is optimal for player 1
in A. Suppose there is a column j that is not an element of C>(a). By Problem 12.6
there must be an optimal strategy p’ of player 1 in A such that p’Ae/ > 0, so that
p'A = 0, hence p’A = pA. So p’ dominates p in G, a contradiction. This proves the
only-if direction. a

Theorem 13.22. Let G = (A, B) be a bimatrix game, and let (p,q) be an undomi-
nated Nash equilibrium. Then (p,q) is perfect.

Proof. LetA asin Lemma 13.21, then p is an optimal strategy for player 1 in A since
pA = 0 and v(A) = 0. By Lemma 13.21 we can find a completely mixed optimal
strategy q for player 2 in A. So p is a best reply to ¢’ in A, i.e., pAq’ > pAq’ for
all p, and thus pAq’ — pAq’ < 0 for all p. So p is also a best reply to q’ in G. For
1 > & > 0define q° = (1 —¢€)q+€q’. Then g is completely mixed, p is a best reply
to q%, and q° — q for € — 0. In the same way we can construct a sequence p¢ with
analogous properties, converging to p. Then implication (3) = (1) in Theorem 13.19
implies that (p,q) is perfect. O

The following example shows an advantage but at the same time a drawback of
perfect Nash equilibrium.

Example 13.23. Consider the bimatrix game

L R
u /1,1 10,0
D (0,10 10,10)’
which has two Nash equilibria, both pure, namely (U,L) and (D,R). Only (U,L) is
perfect, as can be seen by direct inspection or by applying Theorems 13.20 and
13.22. At the equilibrium (D,R), each player has an incentive to deviate to the
other pure strategy since the opponent may deviate by mistake. This equilibrium

is excluded by perfection. On the other hand, the unique perfect equilibrium (U, L)
is payoff-dominated by the equilibrium (D, R).

Another drawback of perfect equilibrium is the fact that adding dominated strategies
may result in adding perfect Nash equilibria, as the following example shows.
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Example 13.24. In the game

L c R
u/ 1,1 00 -—1-2
M| 00 00 0,-2 |,
D\-2-1 -2,0 -2,-2

there are two perfect Nash equilibria, namely (U,L) and (M,C). If we reduce the
game by deleting the pure strategies D and R, the only perfect equilibrium that
remains is (U,L).

This motivated the introduction of a further refinement called proper Nash equilib-
rium in [87]. See the next section.

13.5 Proper Equilibrium

A perfect equilibrium is required to be robust only against some ‘trembles’ and,
moreover, there are no further conditions on these trembles. Myerson [87] proposes
the additional restriction that trembles be less probable if they are more ‘costly’.

Given some € > 0, call a strategy combination ¢ in the game G = (N,Sy,...,
Susu1,...,uy) an g-proper equilibrium if ¢ is completely mixed and for all i € N
and i,k € S; we have

ui(h,0_;) < I/tl'(k, o_i)= O'l'(h) < 807(]().
Observe that an €-proper equilibrium does not have to be a Nash equilibrium.

Definition 13.25. A strategy combination ¢ in G is proper if, for some sequence
€' — 0, there exist & -proper equilibria o (&") such that (') — o©.

Since, in a proper strategy combination o, a pure strategy h of a player i that is
not a best reply to 6_; is played with probability 0, it follows that a proper strategy
combination is a Nash equilibrium.* Moreover, since it is straightforward by the
definitions that an &-proper equilibrium is also an g-perfect equilibrium, it follows
from Theorem 13.19 that a proper equilibrium is perfect. Hence, properness is a
refinement of perfection. Example 13.24 shows that this refinement is strict: the
Nash equilibrium (M,C) is perfect but not proper. To see this, note that in an &-
proper equilibrium (p,q) we must have at least g3 < €q. But then U is a best reply
of player 1, hence it is not possible that a sequence of such g-proper equilibria
converges to (M,C).

4 Note that, by replacing the word ‘proper’ by ‘perfect’ in Definition 13.25, we obtain an alternative
definition of perfect (Nash) equilibrium. This follows from Theorem 13.19.
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A proper Nash equilibrium always exists:

Theorem 13.26. Let G = (N, Sy, ..., Sy, u1,...,uy) be a finite game. Then G has a
proper Nash equilibrium.

Proof. Tt is sufficient to show that for € > 0 close to O there exists an €-proper
equilibrium of G. Let 0 < & < 1 and define the error function u by w; = £l5i/|5;]
foralli € N and k € S;. Forevery i € N and ¢ € [];eyA(S;, 1) define

Fi(o) = {‘L’,’ S A(Si,u) | Vk,l € S; [u,'(k, OL,') < u,'(l,OL,') = Ti(k) < E‘L','(l)]}.
Then Fj(o) # 0 as can be seen as follows. Define
vi(G,k) = |{l € S; | M,’(k7 O',i) < ui(l,G,,’)}‘,

forall k € S;, and 7;(k) = 8Vf(6‘f">/21 "% forall k € S;. Then 1, € F;(o). Consider
the correspondence

F:T]AGSu) — [JAGS),0), o= []F(o).

JEN JEN ieN

Then F satisfies the conditions of the Kakutani fixed point theorem (Theorem 22.10)
— see Problem 13.14. Hence, F' has a fixed point, and each fixed point of F is an
e-proper equilibrium of G. a

In spite of the original motivation for introducing properness, this concept suffers
from the same deficit as perfect equilibrium: adding strictly dominated strategies
may enlarge the set of proper Nash equilibria. See Problem 13.15 for an example of
this.

13.6 Strictly Perfect Equilibrium

Another refinement of perfect equilibrium is obtained by requiring robustness of a
Nash equilibrium with respect to all ‘trembles’. This results in the concept of strictly
perfect equilibrium (Okada [95]).

Definition 13.27. A strategy combination ¢ in the game G = (N,Sy,...,S,,
ui,...,u,) is strictly perfect if, for every sequence {G(u')} ;o of perturbed games
there exist profiles o' € NE(G(u'")) such that o' — ©.

Clearly, a strictly perfect strategy combination is a perfect Nash equilibrium.
For some further observations concerning strictly perfect equilibrium see
Problem 13.16.
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13.7 Correlated Equilibrium

In the preceding sections we studied several refinements of Nash equilibrium. In
this section the set of Nash equilibria is extended in a way to become clear below.
It is, however, not the intention to enlarge the set of Nash equilibria but rather to
enable the players to reach better payoffs by allowing some communication device.
This is going to result in the concept of correlated equilibrium, introduced in [5].
Attention in this section is restricted to bimatrix games, and we closely follow the
presentation in [98].

In order to fix ideas, consider the situation where two car drivers approach a
road crossing. Each driver has two pure strategies: ‘stop’ (s) or ‘cross’(c). The
preferences for the resulting combinations are as expressed by the following table:

c N
¢ (~10,—10 50
(4.8) = ( 0,5 1,1)'

This bimatrix game has two asymmetric and seemingly unfair pure Nash equilibria,
and one symmetric mixed Nash equilibrium ((3/8,5/8),(3/8,5/8)), resulting in an
expected payoff of —5/8 for both, and therefore also not quite satisfying.

Now suppose that traffic lights are installed that indicate ¢ (‘green’) or s (‘red’)
according to the probabilities in the following table:

c s
c (0.00 0.55
s <0.40 0.05>'
E.g., with probability 0.55 (55% of the time) the light is green for driver 1 and red
for driver 2. Assume that the players (drivers) are not forced to obey the traffic lights
but know the probabilities as given in the table. We argue that it is in each player’s
own interest to obey the lights if the other player does so.

If the light is green for player 1 then player 1 knows with certainty that the light
is red for player 2. So if player 2 obeys the lights and stops, it is indeed optimal for
player 1 to cross. If the light is red for player 1, then the conditional probability that
player 2 crosses (if he obeys the lights) is equal to 0.4/0.45 ~ 0.89 and the condi-
tional probability that player 2 stops is 0.05/0.45 = 0.11. So if player 1 stops, his
expected payoffis 0.89-0+0.11-—1 = —0.11, and if he crosses his expected payoff
i 0.89-—10+0.11-5 = —8.35. Clearly, it is optimal for player 1 to obey the light
and stop. For player 2 the argument is similar, so that we can indeed talk of an equi-
librium: such an equilibrium is called a correlated equilibrium. Note that there is no
mixed strategy combination in the game (A, B) that induces these probabilities. In
terms of the situation in the example, this particular equilibrium cannot be reached
without traffic lights serving as a communication device between the players. The
overall expected payoffs of the players are 0.55-5+0.05-—1 =2.7 for player 1 and
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0.40-540.05-—1=1.95 for player 2, which is considerably better for both than
the payoffs in the mixed Nash equilibrium.

In general, let (A, B) be an m X n bimatrix game. A correlated strategy is an m X n
matrix P = (p;;) with " Y5 pij =l and p;; > Oforalli=1,...,m, j=1,...,n.
A correlated strategy P can be thought of as a communication device: the pair (i, j)
is chosen with probability p;;, and if that happens, player 1 receives the signal 7 and
player 2 the signal j. Suppose player 2 obeys the signal. If player 1 receives signal i
and indeed plays 7, his expected payoff is

n
n
Y pijaij [} i
j=1
and if he plays row k instead, his expected payoff is

n
Z,]pijakj /Z:;lpij-
j=

So to keep player 1 from disobeying the received signal, we should have

(ngE

(a,'j—akj)p,'jzo foralli,k=1,...,m. (13.5)

J

Il
-

The analogous condition for player 2 is

(g E

(b,’j—bﬂ)p,'jzo forall j,l=1,...,n. (13.6)

Il
-

Definition 13.28. A correlated equilibrium in the bimatrix game (A,B) is a corre-
lated strategy P = (p;;) satisfying (13.5) and (13.6).

For the two-driver example conditions (13.5) and (13.6) result in four inequalities,
which are not difficult to solve (Problem 13.17). In general, any Nash equilibrium
of a bimatrix game results in a correlated equilibrium (Problem 13.18), so existence
of a correlated equilibrium is not really an issue.

The set of correlated equilibria is convex (Problem 13.19), so the convex hull of
all payoff pairs corresponding to the Nash equilibria of a bimatrix game consists of
payoff pairs attainable in correlated equilibria. Problem 13.20 presents an example
of a game in which some payoff pairs can be reached in correlated equilibria but not
as convex combinations of payoff pairs of Nash equilibria.

In general, correlated equilibria can be computed using linear programming. Specifi-
cally, let (A, B) be an m x n bimatrix game. We associate with (A, B) an mn x (m(m—
1)+n(n—1)) matrix C as follows. For each pair (i, j)of arow and a column in (A, B)



188 13 Finite Games

we have a row in C, and for each pair (h,k) of two different rows in (A, B) or two
different columns in (A, B) we have a column in C. We define

aijj—ayj ifi=he{l,...;m}and ke{l,....m}
Clijynk) = bij—bin ifj=ke{l,...,n}and he{l,...,n}
0 otherwise.

Consider C as a matrix game. By construction of C and (13.5) and (13.6), any cor-
related equilibrium P = (p;;) of (A,B) viewed as a strategy p of player 1 in C (not
to be confused with player 1 in (A, B)) has an expected payoff vector pC > 0, and
therefore v(C), the value of the matrix game C, is nonnegative. In particular, this
implies that any optimal strategy of player 1 in C is a correlated equilibrium in
(A,B). If v(C) = 0 then any correlated equilibrium in (A, B) is an optimal strategy
of player 1 in C, but if v(C) > 0 then there may be correlated equilibria in (A,B)
that are not optimal strategies for player 1 in C — they may only guarantee zero. The
latter is the case in the two-drivers example (Problem 13.21).

Matrix games can be solved by linear programming, see Sect. 12.2.

We conclude with an example’ in which the described technique is applied.

Example 13.29. Consider the bimatrix game
l/ 2/ 3/
1 /31 2,5 6,0
(4.B) =, ( 1.4 33 2,6)'
The associated matrix game C is as follows.

(1,2) (2,1 (1n2) (13) (2,1) (2.3) (3.1) (3.2)
2 0 —4 1 0 0 0 0

(1,1
(1,2) | -1 0 0 0 4 5 0 0
(1,3 4 0 0 0 0 0 -1 -5
(2,1) 0 -2 1 -2 0 0 0 0
(2,2 0 1 0 0 —1 -3 0 0
(2,3 0 —4 0 0 0 0 2 3
It can be checked that this game has value 0, by using the optimal strategies
2 3
P — 1 /0 03 0.075
~2\0 05 0.125

for player 1 in C and (0,0,1/2,1/2,0,0,0,0) for player 2 in C. The optimal strategy
for player 1 in C is unique, and since v(C) = 0 this implies that the game (A, B) has
a unique correlated equilibrium. Consequently, this must correspond to the unique

> This is Example VIIL.4.4 in [98].
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Nash equilibrium of the game. Indeed, ((3/8,5/8),(0,4/5,1/5)) is the unique Nash
equilibrium of (A, B) and it results in the probabilities given by P.

13.8 A Characterization of Nash Equilibrium

The concept of Nash equilibrium requires strong behavioral assumptions about the
players. Each player should be able to guess what other players will do, assume that
other players know this and make similar conjectures, etc., and all this should be
in equilibrium. The basic difficulty is that Nash equilibrium is a circular concept.
Not surprisingly, theories of repeated play or learning or, more generally, dynamic
models that aim to explain how players in a game come to play a Nash equilibrium,
have in common that they change the strategic decision into a collection of single-
player decision problems.®

In this section (based on [101]) we review a different approach, which is axiomatic
in nature. The Nash equilibrium concept is viewed as a solution concept: a corre-
spondence which assigns to any finite game a set of strategy combinations. One of
the conditions (axioms) put on this correspondence is a condition of consistency
with respect to changes in the number of players: if a player leaves the game, leav-
ing his strategy as an input behind, then the other players should not want to change
their strategies. This is certainly true for Nash equilibrium, but can be put as an
abstract condition on a solution correspondence. By assuming that players in single-
player games — hence, in ‘simple’ maximization problems — behave rationally, and
by adding a converse consistency condition, it follows that the solution correspon-
dence must be the Nash equilibrium correspondence. We proceed with a formal
treatment of this axiomatic characterization.

Let I" be a collection of finite games of the form G = (N, Sy, ..., Sy, u1,...,u,). (tis
implicit that also the set of players N may vary in I".) A solution on I" is a function
¢ that assigns to each G € I' a set of strategy combinations @(G) C [T;en A(S;).” A
particular solution is the Nash correspondence NE, assigning to each G € I the set
NE(G) of all Nash equilibria in G.

Definition 13.30. The solution ¢ satisfies one-person rationality (OPR) if for every
one-person game G = ({i},S;,u;) in I"

(P(G) = {G,' € A(S,) | ui(G,-) > ui(‘l:,-) forall 7; € A(Sl)}

The interpretation of OPR is clear and needs no further comments.

Let G= (N,Sy,...,Sy, ui,...,u,) be a game, @ =M C N, and let ¢ be a strategy
combination in G. The reduced game of G with respect to M and o is the game
GM"G = (M, (Si)ieM> (Lth),'eM), where I/th(‘L') = M,'(T, O-N\M) forall T € HjeMA(Sj).g
6 See, e.g., [149].

7 The presentation in [101] is for more general games.
8 For a subset T C N, denote (o) jer by or.
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The interpretation of such a reduced game is straightforward: if the players of N\ M
leave the game, leaving their strategy combination Oy, 5, behind, then the remaining
players are faced with the game G-, Alternatively, if it is common knowledge
among the players in M that the players outside M play according to ¢, then they
are faced with the game GM:°. Call a collection of games I" closed if it is closed
under taking reduced games.

Definition 13.31. Let I be a closed collection of games and let ¢ be a solutiononI".
Then ¢ is consistent (CONS) if for every game G = (N, S1,...,Su, u1,...,uy), every
0 # M C N, and every strategy combination ¢ € ¢(G), we have oy, € ¢(GM:°).

The interpretation of consistency is: if the players outside M have left the game
while leaving the strategy combination Oy, behind, then there should be no need
for the remaining players to revise their strategies.

The consequence of imposing OPR and CONS on a solution correspondence is
that it can contain only Nash equilibria:

Proposition 13.32. Let I" be a closed collection of games and let ¢ be a solution on
I satisfying OPR and CONS. Then ¢(G) C NE(G) for every G €T

Proof. Let G = (N,Sy,...,Sy, ui,...,uy) € I' and o € ¢(G). By CONS, o; €
@(G9) for every i € N. By OPR, u?(0;) > u? (1;) for every 7; € A(S;) and i € N.
Hence

u;(o;, GN\{,}) > Mi(TuO'N\{i}) for every 7; € A(S;) and i € N.

Thus, 6 € NE(G). O

Proposition 13.32 says that NE is the maximal solution (with respect to set-
inclusion) satisfying OPR and CONS. (It it trivial to see that NE satisfies these
conditions.) To derive a similar minimal set-inclusion result we use another condi-
tion.

Let I'" be a closed collection of games and let ¢ be a solution on I". For a game
G=(N,S1,...,Sn, ui,...,uy) € I with [N| > 2 denote

?(G)={c e [JA(S) | forall® #M ¢ N, oy € ¢(G"°)}.
ieN

Definition 13.33. A solution ¢ on a closed collection of games satisfies converse
consistency (COCONS) if for every game G with at least two players, $(G) C ¢(G).

Converse consistency says that strategy combinations of which the restrictions
belong to the solution in smaller reduced games should also belong to the solu-
tion in the game itself. Note that consistency can be defined by the converse
inclusion @(G) C @(G) for every G € I', which explains the expression ‘converse
consistency’. Obviously, the Nash equilibrium correspondence satisfies COCONS.

Proposition 13.34. Let I" be a closed collection of games and let ¢ be a solution on
I satisfying OPR and COCONS. Then ¢(G) 2 NE(G) forevery GET.
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Proof. The proof is by induction on the number of players. For one-person games
the inclusion follows (with equality) from OPR. Assume that NE(G) C ¢(G) for
all z-person games in I" where 7 < k and k > 1. Let Go be a k+ 1-person game in
I'. Note that NE(Go) C NE(Gy) by CONS of NE. By the induction hypothesis,
NE(Gy) C @(Go) and by COCONS, ¢(Go) C ¢(Go). Thus, NE(Go) C ¢(Gy). O

Corollary 13.35. Let I' be a closed family of games. The Nash equilibrium corre-
spondence is the unique solution on I satisfying OPR, CONS, and COCONS.

It can be shown that the axioms in Corollary 13.35 are independent (Problem 13.23).

The consistency approach fails when applied to refinements of Nash equilibrium,
see [93] for details. For instance, Problem 13.24 shows that the correspondence of
perfect equilibria is not consistent.

Problems

13.1. Existence of Nash Equilibrium

Prove that the correspondence f in the proof of Theorem 13.1 is upper semi-
continuous and convex-valued. Also check that every fixed point of f is a Nash
equilibrium of G.

13.2. Lemma 13.2

Prove Lemma 13.2.

13.3. Lemma 13.3

Prove Lemma 13.3.

13.4. Dominated Strategies

Let (A, B) be an m X n bimatrix game. Suppose there exists a q € A" such that ¢, =0
and Bq > Be" (i.e., there exists a mixture of the first 7 — 1 columns of B that is strictly
better than playing the n-th column).

(a) Prove that ¢} = 0 for every Nash equilibrium (p*,q*).
Let (A’, B') be the bimatrix game obtained from (A, B) be deleting the last column.

(b) Prove that (p+,q’) is a Nash equilibrium of (A’,B’) if and only if (p*,q*) is a
Nash equilibrium of (A, B), where ¢’ is the strategy obtained from q* by deleting
the last coordinate.
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13.5. A 3 x 3 Bimatrix Game

Consider the 3 x 3 bimatrix game

0,4 4,0 53
(A,B)={4,0 0,4 53
3,5 3,5 6,6

Let (p,q) be a Nash equilibrium in (A, B).
(a) Prove that {1,2} Z C(p).

(b) Prove that C(p) # {2,3}.

(c) Find all Nash equilibria of this game.
13.6. A 3 x 2 Bimatrix Game

Use the graphical method to compute the Nash equilibria of the bimatrix game

0,0 2,1
AB)=[22 0.2
2,2 0,2

13.7. Proof of Theorem 13.8

Prove Theorem 13.8.

13.8. Matrix Games

Show that the pair of linear programs (13.3) and (13.4) is equivalent to the LP and
its dual in Sect. 12.2 for solving matrix games.

13.9. Tic-Tac-Toe

The two-player game of Tic-Tac-Toe is played on a 3 x 3 board. Player 1 starts by
putting a cross on one of the nine fields. Next, player 2 puts a circle on one of the
eight remaining fields. Then player 1 puts a cross on one of the remaining seven
fields, etc. If player 1 achieves three crosses or player 2 achieves three circles in
a row (either vertically or horizontally or diagonally) then that player wins. If this
does not happen and the board is full, then the game ends in a draw.

(a) Design a pure maximin strategy for player 1. Show that this maximin strategy
guarantees at least a draw to him.

(b) Show that player 1 cannot guarantee a win.

(c) What is the value of this game?
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13.10. Iterated Elimination in a Three-Player Game

Solve the following three-player game (from [145]), where player 1 chooses rows,
player 2 columns, and player 3 one of the two games L and R:

l r l r
U (14,24,32 8,30,27) R: U (16,24,30 30,16,24)

Lo p 30,1624 13,12,50 D \ 30,23,14 14,24,32

13.11. Never a Best Reply and Domination

In the following game (taken from [39]) player 1 chooses rows, player 2 chooses
columns, and player 3 chooses matrices. The diagram gives the payoffs of player 3.
Show that Y is never a best reply for player 3, and that Y is not strictly dominated.

L R L R
U (9 0 U0 9

V'D(O 0) W'D(9 0)
L R L R

U0 0 U (6 0
X'D(O 9) Y'D<o 6)

13.12. Completely Mixed Nash Equilibria are Perfect

Prove Lemma 13.16.

13.13. A Three-Player Game with an Undominated but not Perfect Equilibrium

Consider the following three-player game, where player 1 chooses rows, player 2
columns, and player 3 matrices (taken from [138]):

l r [ r
I U /1,1,1 1,0,1 R: u (1,10 0,00
"D\ 1,1,1 0,0,1 "D \0,1,0 1,0,0/"
(a) Show that (U,1,L) is the only perfect Nash equilibrium of this game.
(b) Show that (D, [, L) is an undominated Nash equilibrium.

13.14. Existence of Proper Equilibrium

Prove that the correspondence F' in the proof of Theorem 13.26 satisfies the
conditions of the Kakutani fixed point theorem.

13.15. Strictly Dominated Strategies and Proper Equilibrium

Consider the three-person game (cf. [138], p.31)
l r l r

L. U (111 001) . U (000 000
“ p 0,01 00,1 " p\0,00 1,1,0)
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where player 1 chooses rows, player 2 chooses columns, and player 3 chooses
matrices.

(a) First assume that player 3 is a dummy and has only one strategy, namely L.
Compute the perfect and proper Nash equilibrium or equilibria of the game.

(b) Now suppose that player 3 has two pure strategies. Compute the perfect and
proper Nash equilibrium or equilibria of the game. Conclude that adding a strictly
dominated strategy (namely, R) has resulted in an additional proper equilibrium.

13.16. Strictly Perfect Equilibrium

(a) Show that a completely mixed Nash equilibrium in a finite game G is strictly
perfect.

(b) Show that a strict Nash equilibrium in a game G is strictly perfect. (A Nash
equilibrium is strict if any unilateral deviation of a player leads to a strictly lower
payoff for that player.)

(c) Compute all Nash equilibria, perfect equilibria, proper equilibria, and strictly
perfect equilibria in the following game, where o, 3 > 0. (Conclude that strictly
perfect equilibria may fail to exist.)

L M R
U (0 a0 00
(A’B)_D(O,ﬁ 0,0 a,O)'

13.17. Correlated Equilibria in the Two-Driver Example (1)

Compute all correlated equilibria in the game

¢ s
¢ (—-10,—10 5,0
(A’B)—s( 0,5 1,1>’
by using the definition of correlated equilibrium.

13.18. Nash Equilibria are Correlated

Let (p,q) be a Nash equilibrium in the m x n bimatrix game (A,B). Let P = (p;;)
be the m x n matrix defined by p;; = p;g; foralli=1,...,mand j=1,...,n. Show
that P is a correlated equilibrium.

13.19. The Set of Correlated Equilibria is Convex

Show that the set of correlated equilibria in a bimatrix game (A, B) is convex.

13.20. Correlated vs. Nash Equilibrium
Consider the bimatrix game (cf. [5])

6,6 2,7
(A’B):
72 0,0
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1 1
P(? 3).
1o

(a) Compute all Nash equilibria of (A, B).

and the correlated strategy

(b) Show that P is a correlated equilibrium and that the associated payoffs fall
outside the convex hull of the payoff pairs associated with the Nash equilibria of
(A,B).

13.21. Correlated Equilibria in the Two-Driver Example (2)

Consider again the game of Problem 13.17 and set up the associated matrix C as in
Sect. 13.7. Show that the value of the matrix game C is equal to 3, and that player 1 in
C has a unique optimal strategy. (Hence, this method gives one particular correlated
equilibrium.)

13.22. Finding Correlated Equilibria

Compute (the) correlated equilibria in the following game directly, and by using the
associated matrix game.

2
1 /52 1,3
(A’B)_Z (2,3 4,1)'
13.23. Independence of the Axioms in Corollary 13.35

Show that the three conditions in Corollary 13.35 are independent: for each pair of
conditions, exhibit a solution that satisfies these two conditions but not the third one.

13.24. Inconsistency of Perfect Equilibria
Consider the three-person game Gy
L R L R
D T (1,1,1 1,0,1 U T (0,1,0 0,0,0
"B\ 1,1,1 0,0,1 " B \1,1,0 0,0,0
where player 1 chooses rows, player 2 columns, and player 3 matrices. Let I" consist

of this game and all its reduced games. Use this collection to show that the perfect
Nash equilibrium correspondence is not consistent.



Chapter 14
Extensive Form Games

A game in extensive form specifies when each player in the game is to move, what
his information is about the sequence of previous moves, which chance moves occur,
and what the final payoffs are. Such games are discussed in Chaps. 4 and 5, and also
occur in Chaps. 6 and 7. The present chapter extends the material introduced in the
first two mentioned chapters, and the reader is advised to (re)read these chapters
before continuing.

Section 14.1 formally introduces extensive form structures and games, and
Sect. 14.2 introduces behavioral strategies and studies the relation between behav-
ioral and mixed strategies. Section 14.3 is on Nash equilibrium and its main
refinements, namely subgame perfect equilibrium and sequential equilibrium. For
more about refinements and some relations with refinements of Nash equilibrium in
strategic form games see [138] and [102].

14.1 Extensive Form Structures and Games

An extensive form game' is based on a directed rooted tree. A directed rooted tree
is a pair T = (X,E), where:

e X is afinite set with |X| > 2. The elements of X are called nodes.

e Eisasubsetof X x X. The elements of E are called edges. Anedge e = (x,y) € E
is called an outgoing edge of x and an ingoing edge of y.

e There is an xp € X, called the root, such that for each x € X \ {xo} there is
a unique path from xo to x. Here, a path from xg to x is a series of edges
(xo,xl ), (x1 ,XZ), ceey (xk,l ,xk), (xk,x) for some k > 0.

e Xx( has no ingoing edges.

These conditions imply that each node which is not the root, has exactly one ingoing
edge. Moreover, there are nodes which have no outgoing edges. These nodes are
called end nodes. The set of end nodes is generally denoted by Z (C X).

! The presentation in this section is based on Perea [102].

H. Peters, Game Theory — A Multi-Leveled Approach. 197
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An extensive form structure is a tuple . = (T,N,P, ¢, </ , ), where:

e T = (X,E) is adirected rooted tree with root xp and set of end nodes Z.

e N={l,...,n} withn > 1 is the set of players.

e P:X\Z— NU{C} is a function assigning to each non-end node either a player
or Chance C. If P(x) is a player, then node x is a decision node of player P(x),
otherwise x is a chance node.

e ¥ = (H;);en where for each i € N, H; is a partition of the set P~! (i) of decision
nodes of player i. The sets i € H; are called information sets of player i. Each
h € H; is assumed to satisfy (1) every path in T intersects H; at most once and (2)
every node in / has the same number of outgoing edges.

o o = (A(h))pen, where H = Uiy H, and for each h € H, A(h) is a partition of the
set of edges outgoing from nodes x € h. The partition A(/) is such that for each
x € hand each a € A(h), a contains exactly one edge outgoing from x. Every set
a € A(h) is called an action at h. It is assumed that |A(h)| > 2 for each h € H.

e T assigns to each chance node a probability distribution over set of the outgoing
edges, where it is assumed that all these probabilities are positive.

In Fig. 14.1 — which is a partial reproduction of Fig.4.1 — these concepts are
illustrated.

In this extensive form structure, the directed rooted tree has 14 nodes xg, x1,...,X3
and, consequently, 13 edges. The set of end nodes is Z = {x, ..., x13} and the player
setis N = {1,2}. The function P: {xo,...,xs} — {1,2} U{C} is defined by P(x) =1
for x € {xp,xs5}, P(x) =2 for x € {x2,x3,x4}, and P(x;) = C. The information sets
are {xo},{xs} € Hy and {x2,x3},{x4} € H,. The actions for player 1 are: {(xp,x2)},
{()C(),X3)}, {()Co,xl)} € A({XO}) and {()CS,xlz)}, {(xs,x13)} S A({xs}). The actions
for player 2 are: {(x2,x¢), (x3,x3) }, { (x2,%7), (x3,x9) } € A({x2,x3}) and {(x4,x10) }.
{(xa,x11)} € A({x4}). Finally, t(x;) = (1/4,3/4), where 1/4 is the probability of
(x1,x4) and 3/4 is the probability of (xi,xs).

Clearly, this formal notation is quite cumbersome and we try to avoid its use as
much as possible. It is only needed to give precise definitions and proofs.

X6 X7 X8 X9 X10 X11 X12 X13

Fig. 14.1 An extensive form structure
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Fig. 14.2 Part of an extensive form structure without perfect recall

It is usually assumed that an extensive form structure . satisfies perfect recall:
this means that each player always remembers what he did in the past. The formal
definition is as follows.

Definition 14.1. An extensive form structure . satisfies perfect recall for player
i € N if for every information set & € H; and each pair of nodes x,y € h, player i’s
outgoing edges on the path from the root to x belong to the same player i actions
as player i’s outgoing edges on the path from the root to y. We say that .7 satisfies
perfect recall if it satisfies perfect recall for every player.

Figure 14.2 shows part of an extensive form structure without perfect recall.

The condition of perfect recall, introduced by Kuhn [67], plays an important role
for the relation between mixed and behavioral strategies (see Sect. 14.2).

We also repeat the definitions of perfect and imperfect information (cf. Chap. 4).

Definition 14.2. An extensive form structure .% has perfect information if for every
i € N and h € H;, |h| = 1. Otherwise, . has imperfect information.

We conclude this section with the formal definition of an extensive form game.
An extensive form game I" is an n+ 1 tuple I' = (., uy,...,uy), where . is an
extensive form structure and for each player i € N, u; : Z — R. The function u; is
player i’s payoff function.

A game I' = (., uy,...,u,) has (im)perfect information if . has (im)perfect
information.

14.2 Pure, Mixed and Behavioral Strategies

Let . = (T,N,P,.5¢, 4/ ,7) be an extensive form structure. A pure strategy s; of
player i € N is a map assigning an action a € A(h) to every information set i € H;.
By S; we denote the (finite) set of pure strategies of player i.

Any strategy combination (sy,...,s,), when played, results in an end node of
the game tree. Therefore, with each extensive form game I' = (., uy,...,u,) we
can associate a strategic form game G(I") = (Sy,...,S,, u1,...,uy,) in the obvious
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way. A (mixed) strategy of player i € N is an element of A(S;), i.e., a probability
distribution over the elements of S;.

When considering an extensive form game (structure) it seems more natural to
consider, instead of mixed strategies, so-called behavioral strategies. A behavioral
strategy of a player assigns to each information set of that player a probability dis-
tribution over the actions at that information set. Formally, we have the following
definition.

Definition 14.3. Let ./ = (T,N,P,. %, </, T) be an extensive form structure. A
behavioral strategy of player i € N is a map b; assigning to each information set
h € H; a probability distribution over the set of actions A (k).

Given a behavioral strategy there is an obvious way to define an associated mixed
strategy: for each pure strategy, simply multiply all probabilities assigned by the
behavioral strategy to the actions occurring in the pure strategy. Consider for
instance the extensive form structure in Fig. 14.3. In this diagram a behavioral
strategy by of player 1 is indicated. The associated mixed strategy o] assigns the
probabilities o1(A,1) = -3 = ¢, 61(A,r) = 33 =13, 01(B,])= )3 = ¢, and
o1(B,r) = é . % = é Strategy o7 is the ‘right’ mixed strategy associated with b
in the following sense. Suppose player 2 plays the mixed or behavioral strategy —
there is no difference in this case — which puts probability & on L and 1 — & on R.
If player 1 plays the behavioral strategy b; then the probability distribution gener-
ated over the end nodes of the game is x5 — | - @, xo — 3 -0, x7— L (1 —a),
Xg — % -(1— a). The same distribution is generated by the mixed strategy o). E.g.,
the probability that xs is reached equals 01 (A,l) - o = (17 -, etc. We call by and o
outcome equivalent. Obviously, it would have been sufficient to check this for the
two pure strategies L and R for player 2.

We summarize these considerations in a definition and a proposition, which is
presented without a formal proof.

Definition 14.4. Two (behavioral or mixed) strategies of player i in . are out-
come equivalent if for each pure strategy combination s_; of the other players
the probability distributions generated by the two strategies over the end nodes are
equal.

1 Xo

Fig. 14.3 From behavioral to mixed strategies
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Proposition 14.5. Let b; be a behavioral strategy of player i in .. Then there is
a mixed strategy o; of player i that is outcome equivalent to b;. Such a strategy
O; is obtained by assigning to each pure strategy s; of player i the product of the
probabilities assigned by b; to the actions chosen by s;.

It should be noted that there is not necessarily a unique mixed strategy that is out-
come equivalent to a given behavioral strategy. For instance, in the example above,
if we change the behavioral strategy of player 1 such that it assigns probability O to
action A and probability 1 to action B at information set {x(}, then any mixed strat-
egy which puts zero probability on (A,7) and (A, r) is outcome equivalent, resulting
in each end node other than x, with zero probability.

Also for the converse question it is not hard to figure out a procedure. Suppose that
o) is a mixed strategy of player i, & is an information set of player i, and a is an
action in h. First, let S;(k) denote the set of pure strategies of player i such that
the play of the game possibly reaches A, in other words, such that there exists a
path through % containing the actions prescribed by the pure strategy under consid-
eration. Then o;(S;(h)) is the total probability assigned by o; to this set of pure
strategies. Within this set, consider those pure strategies that assign a to 7 and
divide their total probability by oc;(S;(%)) if 0;(S;(h)) > 0: the result is defined to be
bi(h)(a).If 0;(Si(h)) = 0 then we can choose b;(h) arbitrary. This way, we construct
a behavioral strategy b; that is outcome equivalent to the mixed strategy o;.

As an illustration consider the extensive form structure in Fig. 14.4, which is the
same as the one in Fig. 14.3. Consider the mixed strategy o of player 1 defined by:
(A1) — L, (A1) . (B,])— 2, (B,r)— [} . Following the above procedure we
obtain

bi(A) = Gl(AJ)TGI(M) =5+10=1o
bi(B) = <BJ>TGI<BJ) =3+1=10
bi(l) = o (A%(fé;l)m,r) - 1/51+/f/1o - %
bi(r) = 4, (Ac.,yf)(fé;rl)m,r) = 1/51411310 =5

Fig. 14.4 From mixed to behavioral strategies
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It is straightforward to verify that b; and o} are outcome equivalent.
Outcome equivalence is not guaranteed without perfect recall: see Problem 14.2
for an example. With perfect recall, we have the following theorem.?

Theorem 14.6 (Kuhn). Let the extensive form structure . satisfy perfect recall.
Then, for every player i and every mixed strategy ©; there is a behavioral strategy
b; that is outcome equivalent to c;.3

14.3 Nash Equilibrium and Refinements

Let I' = (., (ui)ien) be an extensive form game with associated strategic form
game G(I') = ((Si)ien, (ui)ien). We assume that . satisfies perfect recall.

A pure strategy Nash equilibrium of I" is defined to be a pure strategy Nash
equilibrium of G(I'). Note that, if I" has perfect information, then a pure strategy
Nash equilibrium exists (cf. Chap. 4).

A mixed strategy Nash equilibrium of I' is defined to be a (mixed strategy) Nash
equilibrium of G(I"). By Theorem 13.1 such an equilibrium always exists.

Consider, now, a behavioral strategy combination b = (b;);cy in I". Such a strat-
egy combination generates a probability distribution over the end nodes and, thus,
an expected payoff for each player. We call b; a best reply of player i € N to the
strategy combination b_; if there is no other behavioral strategy b’ of player i such
that (b, b_;) generates a higher expected payoff for player i. We call b a Nash equi-
librium (in behavioral strategies) of I" if b; is a best reply to b_; for every player
ieN.

Let o be a mixed strategy Nash equilibrium of I". By Theorem 14.6 there is a behav-
ioral strategy combination b that is outcome equivalent to o. We claim that b is a
Nash equilibrium of I". Suppose not, then there is a player i € N and a behavioral
strategy b/ that gives player i a higher expected payoff against b_;. By Proposi-
tion 14.5 there is a mixed strategy o that is outcome equivalent to b}. Consequently,
o/ gives player i a higher expected payoff against o_;, a contradiction. We have thus
proved:

Theorem 14.7. Every extensive form game has a Nash equilibrium.

In fact, a similar argument as the one leading to this theorem can be applied to show
that every Nash equilibrium (in behavioral strategies) results in a Nash equilibrium
in mixed strategies. Hence, one way to find the (behavioral strategy) Nash equilibria
of an extensive form game is to determine all (mixed strategy) Nash equilibria of the
associated strategic form game. Which way is most convenient depends on the game
at hand. In particular for refinements it is often easier to compute behavioral equilib-
rium strategies directly, without first computing the mixed strategy Nash equilibria.
Before discussing these refinements we first consider an example.

2 For a proof see [67] or [102], Theorem 2.4.4.
3 The behavioral strategy b; can be constructed as described in the text.



14.3 Nash Equilibrium and Refinements 203

(5)

(5)

Fig. 14.5 The game I;

Table 14.1 The strategic form G(I7) of I}

L R
Al (8,0 0,8
Ar | 0,8 8,0
Bl | 6,0 6,0
Br \ 6,0 6,0

Example 14.8. Consider the extensive form game I in Fig. 14.5. This game is based
on the extensive form structure of Fig. 14.4, in which the symbols for the end nodes
are replaced by payoffs for player 1 (upper number) and player 2 (lower number).
The associated strategic form of this game is given in Table 14.1.

(Note that in G(I") there is no essential difference between Bl and Br.*) To find
the Nash equilibria in G(I7), first note that player 2 will never play pure in a Nash
equilibrium. Suppose, in equilibrium, that player 2 plays (a, 1 — o) with 0 < o <
1, and player 1 plays p = (p1,p2,p3), where p; is the probability on Al, p, the
probability on Ar, and p3 the joint probability on Bl and Br. Since 0 < o < 1, player
2 is indifferent between L and R, which implies that p; = p,. Suppose p; = p» > 0.
Then we must have 8 > 6 and 8(1 — o) > 6, which is impossible. Hence p3 = 1
and both 6 > 8orand 6 > 8(1 — ), so 1/4 < o0 < 3/4. This implies that b = (by,b;)
is a (behavioral strategy) Nash equilibrium of I" if and only if

bi(A)=0, by(B)=1, 1/4<by(L)<3/4.
So by (1) may take any arbitrary value.

In the remainder of this section we consider refinements of Nash equilibrium.

4 Indeed, some authors do not distinguish between these strategies, e.g., [102].



204 14 Extensive Form Games

14.3.1 Subgame Perfect Equilibrium

Let x be a non-end node in an extensive form structure .# and let 7% = (V*,E¥) be
the subtree starting from x — i.e., V* is the subset of V consisting of all nodes of V
that can be reached by a path starting from x, and E* is the subset of E of all edges
with endpoints in V*. Assume that every information set of . is contained either
in V* or in V \ V*. (This implies, in particular, that {x} is a singleton information
set.) Let .#* denote the substructure obtained by restricting . to T*. Then, for the
extensive form game I' = (., (u;)ien ), the game I'* = (%, (u} )ien) is defined by
restricting the payoff functions to the end nodes still available in V*. We call I'™*
a subgame of I'. For a behavioral strategy combination b = (b;);cy we denote by
b* = (bY)ien the restriction to I'*.

Definition 14.9. A behavioral strategy combination b in I" is a subgame perfect
equilibrium if b* is a Nash equilibrium for every subgame I"™.

Clearly, this definition extends the definition of subgame perfection for pure strategy
combinations given in Chap. 4.

Since the whole game I is a subgame (I" = I, where x is the root of the game
tree), every subgame perfect equilibrium is a Nash equilibrium. By carrying out a
backward induction procedure as in Sect. 4.3, it can be seen that a subgame perfect
equilibrium exists in any extensive form game.’

Subgame perfection often implies a considerable reduction of the set of Nash
equilibria. The following example is the continuation of Example 14.8.

Example 14.10. To find the subgame perfect equilibria in I, we only have to ana-
lyze the subgame I7". It is easy to see that this subgame has a unique Nash
equilibrium, namely player 2 playing L and R each with probability 1,/2, and player
1 playing / and r each with probability 1/2. This results in a unique subgame perfect
equilibrium b = (by,b;) given by

bi(B)=1, bi(l)=1/2, by(L)=1/2.

14.3.2 Perfect Bayesian and Sequential Equilibrium

In games without proper subgames and in games of imperfect information the sub-
game perfection requirement may not have much bite (see the examples in Chaps. 4
and 5). The concept of sequential equilibrium allows to distinguish between Nash
equilibria by considering beliefs of players on information sets.

5 This is intuitive but not trivial. See, e.g., [102].
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Consider an extensive form structure ./ = (T,N,P, 7, %/,T). A belief system 3
assigns to every information set 1 € H = U;cyH; a probability distribution 3, over
the nodes in /. An assessment is a pair (b, B) of a behavioral strategy combination
b = (bi)ien and a belief system f3.

For any node x in the game tree 7T, let Py(x) denote the probability that x is
reached given b, that is, P, (x) is the product of the probabilities of all edges on the
unique path form the root x( to x: these probabilities are given by b, or by 7 in case
of a chance node on the path. For h € H, P,(h) =Y .;, P»(x) is the probability that
the information set /4 is reached, given b.

The next definition is the formal version of the consistency requirement intro-
duced already in Chap. 4.

Definition 14.11. An assessment (b,f3) in . is Bayesian consistent if fj,(x) =
Py(x)/Py(h) for all h € H for which P,(h) > 0 and all x € A.

By Bayesian consistency the players’ beliefs are determined by the behavioral
strategies on all information sets that are reached with positive probability. In gen-
eral, this requirement is quite weak and does not imply, for instance, that the beliefs
of one and the same player are internally consistent. Consider the extensive form
structure in Fig. 14.6. Suppose that player 1 plays a and player 2 plays e. Then the
beliefs of player 2 at the information sets {xj,x»} and {x3,x4} are not restricted
by Bayesian consistency. Moreover, a belief f(x;) = B(x4) = 1 is allowed, which
means that player 2’s beliefs are not internally consistent.

In many applications this drawback does not occur, and Bayesian consistency is
strong enough. For instance, in signaling games (see Chap. 5) Bayesian consistency
implies the usual stronger versions like consistency in the sense of Kreps and Wilson
[66] below. See Problem 14.4.

In the literature® the condition of updating consistency has been proposed to
remedy the indicated defect. In the example above, with player 1 playing a and

X3
L
e 8
2
Fig. 14.6 If player 1 plays X4
a, then player 2’s beliefs o
at {x1,x2} and {x3,x4} are e ¥ 8

independent under Bayesian
consistency

6 See [102] and the references therein.
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player 2 playing e, updating consistency would imply that 8 (x3) = (x;), as seems
natural.

A much stronger requirement is the original consistency condition in [66]. Call a
behavioral strategy b; of player i completely mixed if b;(h)(x) > 0 for each h € H;
and x € h. A behavioral strategy combination b = (b;);ey is completely mixed if b;
is completely mixed for every i € N. Observe that, if b is completely mixed and the
assessment (b, ) is Bayesian consistent, then 3 is uniquely determined by b.

Definition 14.12. An assessment (b, ) in . is consistent if there exists a sequence
(0™, B™)men of Bayesian consistent assessments with each 0™ completely mixed
and lim,, (6™, ™) = (b, B).

Consistency implies Bayesian consistency (Problem 14.3). Consistency is clearly
stronger than Bayesian consistency. For instance, in the extensive form structure
of Fig. 14.6, it is easily seen that consistency requires player 2 to have identical
beliefs on his two information sets, i.e., B(x;) = B(x3). This is true even if on his
right information set player 2 is replaced by some other player 3, as in Fig. 14.7. It
shows that (this strong form of) consistency is stronger than Bayesian consistency
combined with ‘updating consistency’, since the latter condition would only require
a player to ‘update’ his own earlier beliefs.

Consider now an extensive form game I' = (., (u;)ien). Let (b, ) be an assess-
ment. Leti € N, h € H;, a € A(h), and x € h. Suppose player i is at node x and takes
action a. This corresponds to an edge (x,y) in the game tree. Then each end node
on a path starting from x and passing though y is reached with a probability that is
equal to the product of the probabilities of all edges on this path following y, given
by b, and the probabilities of eventual chance nodes on this path. This way, we can
compute the expected payoff to player i from playing a, conditional on being at node
x: denote this payoff by u;(a|b,x). Player i’s expected payoff from action a, given
information set A, is then equal to Y., B (x)u;(a|b,x).

f s
L
e 8
3
X4
L
Fig. 14.7 Under consistency, e ¥ 8

the beliefs of players 2 and 3
are identical: B (x1) = B(x3)
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Definition 14.13. An assessment (b, ) in I" = (., (u;)ien) is sequentially rational
if forevery i € N, h € H;, and a € A(h) we have

bi(h)(a >0:>Zﬁ x)u;i(alb,x) = max Zﬁ (d'|b,x).

x€h a'cA(h) xeh

Sequential rationality of an assessment (b, 3) means that a player puts only posi-
tive probability on those actions at an information set / that maximize his expected
payoff, given /4 and his belief {§ (x)|x € h}.

Definition 14.14. An assessment (b, ) in I' = (., (u;)ien) is a sequential equilib-
rium if it is sequentially rational and consistent.

Sequential equilibria were introduced in [66].

Theorem 14.15. Every sequential equilibrium is subgame perfect and, in particular,
a Nash equilibrium.

For a proof of this theorem (which is somewhat cumbersome in terms of notation),
see [102], Lemma 4.2.6, or [138], Theorem 6.3.2.

In Chap. 4 we introduced, somewhat informally, the notion of perfect Bayesian equi-
librium. An assessment (b,f) is a perfect Bayesian equilibrium if the beliefs
satisfy Bayesian updating in the extensive form structure ‘as much as possible’,
given the behavioral strategy combination b, and if it is sequentially rational. There
is no unified definition in the literature of the expression ‘as much as possible’. It
implies at least Bayesian consistency, but it should also imply, for instance, that the
beliefs on the information set {x3,x4} are identical to the beliefs on the information
set {x1,x2} in Figs. 14.6 and 14.7. It should imply Bayesian consistency of beliefs
on subgames (cf. the game in Fig.4.7 in Chap.4), and it should imply subgame
perfection. The main motivation for considering perfect Bayesian equilibrium is to
avoid the condition involving limiting assessments in the definition of consistency.®
In this chapter we stick to sequential equilibrium but keep in mind that, in order to
compute sequential equilibria for a given game, the method of Bayesian updating
‘as much as possible’ is a good heuristic.

There is hardly any general method available to compute sequential equilibria: it
depends very much on the game at hand what the best way is. We consider one
example and refer to the problem section for other examples.

Example 14.16. Consider the three-player game in Fig. 14.8. To find the sequential
equilibria of this game, first observe that consistency requires the beliefs of players 2

7 Actually, the definition of sequential rationality in Definition 14.13 is called ‘local’ sequential
rationality. Together with consistency, it implies the sequential rationality condition in [66]. It is,
however, easier to apply. See also [102], Chap. 4, or [138], Chap. 6. See the same sources for a
proof that sequential equilibria always exist.

8 For instance, Fudenberg and Tirole [40] provide two definitions of perfect Bayesian equilibrium
for different classes of games and show that their concepts coincide with sequential equilibrium.



208 14 Extensive Form Games

Fig. 14.8 Sequential equilibrium analysis in a three-player game

and 3 to be the same, so 3 = f’. Denote behavioral strategies of the players by b; (a)
and bl(b) =1 —bl(a), bg(c) and bz(d) =1 —bz(c), and b3(e) and b3(f) =1 —b3(€).

Starting with player 3, sequential rationality requires bs(e) = 1 if B > |, bs(e) =
0if B < j,and0<bs(e) < 1if f = .

Using this, if § > }‘ then playing c yields O for player 2 and playing d yields 1.
Therefore by(c) = 0. Similarly, b>(c) = 1if B < }.If f =} thend yields 1 whereas
c yields 3b5(f). Hence, by(c) = 0if B = } and b3(f) < 3: ba(c) =1if B = | and
b3(f) > 3;and 0 < by(c) < 1if B =} and b3(f) = 3.

We finally consider player 1. If b (a) > 411 then consistency requires § = by (a) >
4 and therefore b>(c) = 0. So player 1 obtains 2b;(a) + 1(1 —by(a)) = 1 +by(a),
which is maximal for by (a) = 1. Obviously, player 1 cannot improve on this. So we
have the following sequential equilibrium:

bi(a)=1, by(c)=0, by(e)=1, B=p =1.

If by(a) < } then B = by(a) < } and therefore by(c) = 1 and b3(e) = 0. So
player 1 obtains 15 (a) +2(1 —by(a)) =2 — b (a), which is maximal for by (a) = 0.
Obviously again, player 1 cannot improve on this. So we have a second sequential
equilibrium:
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bi(a)=0, by(c)=1, b3(e)=0, B=PB=0.

If by(a) = 3‘ then player 1 must be indifferent between a and b. This implies that
the expected payoff from a should be equal to the expected payoff from b, hence
that 2(1 — ba(c)) + 1ba(c) = 2bs(c) + 1(1 — ba(c)) which is true for by(c) = 1. The
preceding analysis for player 2 shows that for player 2 to play completely mixed we
need b3(e) = % So we have a third sequential equilibrium

Problems

14.1. Mixed and Behavioral Strategies

Determine all mixed strategies that are outcome equivalent with the behavioral
strategy represented in the following one-player extensive form structure.

14.2. An Extensive form Structure Without Perfect Recall

Consider the following extensive form structure:

X3 X4 X5 X6
(a) Show that this one-player extensive form structure has no perfect recall.

(b) Consider the mixed strategy o) that assigns probability 1/2 to both (L,!) and
(R,r). Show that there is no behavioral strategy that generates the same probability
distribution over the end nodes as o} does.
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14.3. Consistency Implies Bayesian Consistency

Let (b, ) be a consistent assessment in an extensive form structure .. Show that
(b, B) is Bayesian consistent.

14.4. (Bayesian) Consistency in Signaling Games
Prove that Bayesian consistency implies consistency in a signaling game.

[A general definition of a signaling game (cf. also Chap. 5) is as follows. The set of
players is N = {1,2} and for the extensive form structure .’ we have:

(1) The directed rooted tree is T = (X, E)) with root xg,
X = {xo,xl,...,xk,xil,...,x,-l,xijl,...,x,-jm ‘ 1= 1,...,1{, j: 1,...,1},

where k,[,m > 2,

E = {(XO,X,'),(X,',XZ‘]'),(xl‘j7xijj/) | 1= 1,...,](, j: 1,...,1, j/ = 1,...,m}.

Hence

Z={xjizli=1,..k j=1,....0, j=1,....m}.

ijj
(2) The chance and player assignment P is defined by P(xg) = C, P(x;) = 1 for all
i=1,....k P(xj)=2foralli=1,... .k j=1,...,L

(3) The information sets are
H] = {{xl},...,{xk}}, Hz = {{xlj,...,xkj} | j: 1,...,1}.

(4) The action sets are

A{x}) ={{(xixip)} | j=1,...,1} foreveryi=1,...,k

for player 1 and

A({xlj,...,xkj}) = {{(xlj,xljj/),...,(xkj,xkjj/)} | j/ = 1,...,m}

forevery j=1,...,[, for player 2.
(5) The map 7 assigns a positive probability to each edge in the set

{(x0,x1),-..,(x0,x¢)}. (Player 1 has k ‘types’.)
Finally, the players have payoff functions u;,u; : Z — R.]

14.5. Computation of Sequential Equilibrium (1)

Compute the sequential equilibrium or equilibria in the game I in Fig. 14.5.

14.6. Computation of Sequential Equilibrium (2)

Consider the following extensive form game.
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() () ()

(a) Determine the strategic form of this game.
(b) Determine all Nash and subgame perfect Nash equilibria of this game.

(c) Determine all sequential equilibria of this game.

14.7. Computation of Sequential Equilibrium (3)

Consider the following extensive form game below.

(a) Determine the strategic form of this game.

(b) Compute the Nash equilibria and subgame perfect Nash equilibria.

(c) Compute the sequential equilibria.
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14.8. Computation of Sequential Equilibrium (4)

Consider the following extensive form game.

6 ) 06

Compute all sequential equilibria of this game.

= G

14.9. Computation of Sequential Equilibrium (5)

Compute all Nash, subgame perfect and sequential equilibria in the following game.

—()




Chapter 15
Evolutionary Games

In this chapter we go somewhat deeper into evolutionary game theory. The concepts
of evolutionary stable strategy and replicator dynamics, introduced in Chap. 8, are
further explored, and proofs of results mentioned in that chapter are provided. We
advise the reader to study Chap. 8 first, although the present chapter is largely self-
contained.

This chapter is based mainly on [147]. In Sect. 15.1 we briefly review sym-
metric two-player games. Section 15.2 discusses evolutionary stable strategies and
Sect. 15.3 replicator dynamics.

15.1 Symmetric Two-Player Games

Much of evolutionary game theory is concerned with symmetric two-player games.
A (finite) symmetric two-player game is completely determined by a pair of m x m
payoff matrices (A,B) such that B= AT, ie., B= (bij)i";—y is the transpose of A =
(aij)i";—;- In other words, forall i, j € {1,2,....,m}, we have b;j = aj;.

In such a game we are particularly interested in symmetric (pure and mixed strat-
egy) Nash equilibria. A Nash equilibrium (07,0,) is symmetric if o = 0. We
denote by NE(A,AT) the set of all Nash equilibria of (A,A”) and by

NE(A) = {x € A" | (x,x) € NE(A,AT)}

the set of all strategies that occur in a symmetric Nash equilibrium. By a standard
application of Kakutani’s fixed point theorem we prove that this set is nonempty.

Proposition 15.1. For any m x m-matrix A, NE(A) # 0.

Proof. For each x € A™, viewed as a strategy of player 2 in (A,AT), let B (x) be the
set of best replies of player 1in (A,AT). Then the correspondence x +— f; (x) is upper
semi-continuous and convex-valued (check this), so that by the Kakutani Fixed Point
Theorem 22.10 there is an x* € A" with x* € f;(x*). Since player 2’s payoff matrix

H. Peters, Game Theory — A Multi-Leveled Approach. 213
© Springer-Verlag Berlin Heidelberg 2008
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is the transpose of A, it follows that also x* € 8,(x*). Hence, (x*,x*) € NE(A,AT),
sox* € NE(A). O

15.1.1 Symmetric 2 x 2 Games

For later reference it is convenient to have a classification of symmetric 2 x 2 games
with respect to their symmetric Nash equilibria. Such a game is described by the

payoff matrix
A (9 an
ay axn )’

For the purpose of Nash equilibrium analysis, we may consider without loss of
generality (check!) the matrix

A= (@n—an ax—an) _ (an—a 0 (a1 O
ax) —az; ax —dap 0 ax —ap 0 ar )’
where a| :=aj| —ay; and ay := ayy — ay;. For a generic matrix A, implying a;,as #
0, there are essentially three different cases:

(1) a; <0, ay > 0. In this case, NE(A') = {€?}, i.e., each player playing the second
strategy is the unique symmetric Nash equilibrium.
(2) aj,a; > 0.1In this case, NE(A’) = {e!,e? .k}, where & = (ar /(a1 +a3),a; /(a1 +

az)).

(3) aj,az < 0. 1In this case, NE(A") = {%} with % as in (2).

15.2 Evolutionary Stability

15.2.1 Evolutionary Stable Strategies

In evolutionary game theory the interpretation of a symmetric two-person game
is that players in a possibly large population randomly meet in pairs. Let such a
game be described by A, then a mixed strategy x € A™ is interpreted as a vector
of population shares: for each k, x; is the share of the population that ‘plays’ pure
strategy k. Such a strategy is called evolutionary stable if it performs better against
a small ‘mutation’ than that mutation itself. For convenience the formal definition is
reproduced here (cf. [77] and Definition 8.3).

Definition 15.2. A strategy x € A™ is an evolutionary stable strategy (ESS) in A
if for every strategy y € A, y # X, there exists some & € (0,1) such that for all
€ € (0,&) we have

xA(ey+ (1 —¢€)x) > yA(ey + (1 — €)x). (15.1)
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The set of all ESS is denoted by ESS(A).
Evolutionary stable strategies can be characterized as follows.

Proposition 15.3. Let A be a symmetric m x m game. Then
ESS(A)={x e NE(A) |Vy € A"y # x [xAx = yAX = xAy > yAy|} .

This proposition follows from Propositions 8.4 and 8.5.

From Problems 15.1-15.3 it follows that the concept of ESS does not ‘solve’
the prisoners’ dilemma nor the ‘coordination problem’. Also, an ESS may be
completely mixed (Hawk—Dove), or fail to exist (Rock—Paper—Scissors).

15.2.2 The Structure of the Set ESS(A)

Let x be an ESS and let y € A™, y # x such that the carrier! of y is contained in the
carrier of x, i.e., C(y) € C(x). Since x € NE(A) by Proposition 15.3, this implies
XAx = yAx and hence, again by Proposition 15.3, xAy > yAy. We have established:

Proposition 15.4. [f x € ESS(A) and y € A" with 'y # x and C(y) C C(x), then
Yy ¢ NE(A).

This implies the following corollary (check!):

Corollary 15.5. The set ESS(A) is finite. If x € ESS(A) is completely mixed, then
ESS(A) = {x}.

15.2.3 Relations with Other Refinements

If x € NE(A) is weakly dominated by y € A", then xAx = yAx and yAy > xAy;
so by Proposition 15.3, x ¢ ESS(A). Therefore, if x € ESS(A), then (x,x) is an
undominated equilibrium and hence perfect by Theorem 13.22. It can even be shown
that (x,x) is proper (see [138]). The next proposition summarizes these facts.

Proposition 15.6. If x € ESS(A), then (x,x) € NE(A,AT) is undominated, perfect
and proper.

The unique (symmetric) equilibrium in the Rock—Paper—Scissors game in Prob-
lem 15.3 is proper (why?), but the associated equilibrium strategy is not ESS, so
the converse of Proposition 15.6 does not hold.

! Recall — see Chap. 13 — that the carrier of y, C(y), is the set {i € {1,...,m} | y; > 0}.
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15.2.4 Other Characterizations of ESS

Uniform Invasion Barriers

The number &y in the definition of an ESS can be interpreted as an ‘invasion barrier’:
if the share of the mutant strategy y is smaller than &y, then the ‘incumbent’ strategy
x fares better against the mutated population than the mutant y itself does, so that
the mutant strategy becomes extinct. In a large but finite population, it would not
make sense if this invasion barrier could become arbitrarily small since then the
‘mutant’ population would sometimes have to consist of less than one individual
to guarantee survival of the strategy x under consideration. This gives rise to the
following definition (from [139]).

Definition 15.7. A strategy x € A™ has a uniform invasion barrier if there exists an
€ € (0,1) such that (15.1) holds for all strategies y # x and every € € (0,&).

It turns out that possessing a uniform invasion barrier characterizes an evolutionary
stable strategy.

Proposition 15.8. For each x € A", x € ESS(A) if and only if x has a uniform
invasion barrier.

Proof. Let x € A, If x has a uniform invasion barrier €, then clearly x is an ESS by
choosing, in (15.1), &y = € for each y € A™.
Conversely, let x be an ESS. Define the function b : A™\ {x} — [0,1] by

b(y) =sup{d €[0,1]| Ve € (0,0) [(x—y)A(ey + (1 — &)x) > 0]}

for all y € A"\ {x}. We first consider the function b on the compact set Z = {z €
A™| z; =0 for some i € C(x)}. Considery € Z. Since x is an ESS, we have that (x —
y)A(ey + (1 — €)x) is positive for small positive values of €. Since this expression
depends linearly on &, this implies that there can be at most one value of €, which
we denote by &y, such that (x —y)A(ey+ (1 — €)x) = 0. If & € (0,1), then (x —
Y)A(&y+ (1 — &)x) = 0 implies that (x —y)A(x —y) # 0, since otherwise

0=(x—y)A(gy+ (1 —&)x) = (x—y)Ax

and, thus, (x —y)A(ey+ (1 — €)x) =0 for all &, a contradiction. Hence, in that case,
b(y) = & = (x —y)Ax/(x — y)A(x —y); otherwise, b(y) = 1. It is not hard to see
this implies that b is a continuous function. Since b is positive and Z is compact,
minyezb(y) > 0. Hence, x has a uniform invasion barrier, namely this minimum
value, on the set Z.

Now suppose that y € A™, y # x. We claim that there is a A € (0, 1] such that
y =Az+ (1 —A)x for some z € Z. To see this, first note that we can take A = 1 if
y € Z. If y ¢ Z then consider, for each u > 0, the point z(u) = (1 — p)x+ uy, and
let 1 > 1 be the largest value of y such that z(¢t) € A™. Then there is a coordinate
ie{l,...,m} withz;(f1) =0, z;() > O for all u < 1, and z;(1t) < O for all p > fi.
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Clearly, this implies x; > y;, hence i € C(x), and thus z(ft) € Z. Then, for z = z(f1)
and A = 1/[1, we havey = Az+ (1 — A)x.
By straightforward computation we have

(x—y)A(ey+ (1 —€)x) = A(x—z)A(eAz+ (1 — €A)x)

for each € > 0, so that b(y) = min{b(z)/A,1} > b(z).
We conclude that € = minyez b(y) is a uniform invasion barrier for x. O

Local Superiority

By Proposition 15.3, a completely mixed ESS earns a higher payoff against any
mutant than such a mutant earns against itself. This global superiority property can
be generalized to the following local version [56].

Definition 15.9. The strategy x € A™ is locally superior if it has an open neighbor-
hood U such that xAy > yAy forally € U \ {x}.

The local superiority condition provides another characterization of ESS.
Proposition 15.10. For each x € A", x € ESS(A) if and only if X is locally superior.

Proof. Letx € A™.

First suppose that x is locally superior, and let U be as in Definition 15.9. Letz
A"\ {x} and define for each 0 < € < 1 the point w(g) by w(e) = €z+ (1 — €)x. Then
there is &, > 0 such that w(e) € U for all € € (0,¢,), hence xAw(g) > w(€)Aw(¢).
This implies xAw(e) > zAw(¢) for all € € (0,¢&,). In particular, we have

exAz+ (1 — €)xAx > €zAz+ (1 — €)zAx

for all € € (0,¢&,), hence XAx > zAX. So x € NE(A). Suppose now that ZAx = XAX.
Then, for € € (0,¢&,),

exAz = xAw(e) — (1 — €)xAx
> zAw(g) — (1 — €)xAx
= ezAz+ (1 — €)zAx — (1 — €)xAX
= €7Az,

so that x is an ESS.
Conversely, let x be an ESS with uniform invasion barrier (cf. Proposition 15.8)
€ €(0,1), and let Z be as in the proof of Proposition 15.8. Let

V={yeA"|y=¢ez+ (1 —€)xforsomezec Zand € € [0,€)}.

Since Z is closed and x ¢ Z, there is an open neighborhood U of x such that U N
A™ C V. Suppose that y # x, y € UNA™. Then y € V, and by Proposition 15.8,
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zAy = 7A(ez+ (1 — €)x) < xA(ez+ (1 — €)x) = xAy, with z as in the definition of
V. This implies yAy = €zAy + (1 — €)xAy < xAy. O

Local Strict Efficiency

Consider the special case of a symmetric game (A, B) with AT = A, hence A is itself
symmetric and B = A. Call such a game doubly symmetric.

Definition 15.11. A strategy x € A™ is locally strictly efficient if it has an open
neighborhood U such that xAx > yAy forally € U\ {x}.

For doubly symmetric games, local strict efficiency characterizes ESS ([57]).

Proposition 15.12. Let A = AT. Then x € ESS(A) if and only if X is locally strictly
efficient.

Proof. Letx € A". Foranyy #x and z = 5x+ 5y, we have
YAY = XAX — 2XAz — 22ZAX + 42AZ .
Hence, using the symmetry of A,
XAX — yAy = 4[xAz — 2Az] .

If x is locally strictly efficient, then this identity implies that x is locally superior,
and conversely. By Proposition 15.10, it follows that x is an ESS if and only if x is
locally strictly efficient. a

15.3 Replicator Dynamics and ESS

The concept of an evolutionary stable strategy is based on the idea of mutation.
Incorporation of the evolutionary concept of selection calls for a more explicitly
dynamic approach.

15.3.1 Replicator Dynamics

As before, consider a symmetric game described by the m x m matrix A. A mixed
strategy x € A™ can be interpreted as a vector of population shares (a state) over the
pure strategies, evolving over time. To express time dependence, we write X = x(2).
For each pure strategy i, the expected payoff of playing i when the population is in
state x is equal to e’Ax, hence the average population payoffis equal to Y7 | x;e'Ax =
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xAx. In the replicator dynamics ([133]) it is assumed that population shares develop
according to the differential equation

X; = dx;(t)/dt = [e'Ax —xAX] x; (15.2)

for each pure strategy i = 1,2,...,m, where dependence on 7 is (partly) suppressed
from the notation. In other words, the share of the population playing strategy i
changes with rate proportional to the difference between the expected payoff of i
(individual fitness) and the average population payoff (average fitness).

To study the replicator dynamics in (15.2) one needs to apply the theory of dif-
ferential equations and dynamical systems (e.g., [55]). For a first analysis we can
restrict attention to a few basic concepts and facts.

For each initial state x(0) = x” € A™, the system (15.2) induces a solution or
trajectory &(t,x") in A™. Call state x a stationary point of the dynamics (15.2) if
X = (d&1,...,%) = (0,...,0). If m =2 then x; = 0 or 2, = 0 is sufficient for x to be
a stationary point, since (15.2) implies the natural condition )/ | x; = 0. Note that
any €' is a stationary point — this is a more or less artificial property of the replicator
dynamics. A state x is Lyapunov stable if every open neighborhood B of x contains
an open neighborhood B® of x such that & (¢,x") € Bforall x” € B” and ¢ > 0. A state
x asymptotically stable if it is Lyapunov stable and it has an open neighborhood B*
such that lim, ... £ (t,x°) = x for all x’ € B*. It is not hard to show that Lyapunov
stability implies stationarity.

15.3.2 Symmetric 2 x 2 Games

In order to analyze the replicator dynamics for symmetric 2 x 2 games correspond-
ing to A, we can without loss of generality restrict attention again to the normalized

game
[ a1 0
A—(O a2>-

X1 = [alxl — agxﬂxl)Cz (15.3)

Now (15.2) reduces to

(and X, = —x1). For case I (a1 < 0 and a; > 0) the stationary points of the dynam-
ics are x = e! and x = e2. For all other x, X1 < 0, which implies that the system
then converges to e, the unique ESS. Hence, the (unique) ESS is also the (unique)
asymptotically stable state.

From the answers to Problems 15.5 and 15.6 we have:

Proposition 15.13. Let A be a generic 2 x 2 matrix and let x € A>. Then x € ESS(A)
if and only if X is an asymptotically stable state of the replicator dynamics.

Note that this proposition implies Proposition 8.6(2). Part (1) of Proposition 8.6
follows from Problem 15.2.
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15.3.3 Dominated Strategies

Does the replicator dynamics discard of dominated strategies? One answer to this
question is provided by the following proposition, which states that if we start from
a completely mixed strategy eventually all strictly dominated pure strategies vanish,
i.e., their population shares converge to zero.

By A§j we denote the (relative) interior of the set A™, i.e., Af = {x € A" [ x > 0}
is the set of completely mixed strategies or states.

Proposition 15.14. Let X € A be completely mixed and let pure strategy i be
strictly dominated. Then lim, ... &(¢,x°) = 0.

Proof. Let i be strictly dominated by y € A” and let

€ = min yAX — e/Ax .
XEA™

By continuity of the expected payoff function and compactness of A, € > 0. Define
vi: Af — Rby vi(x) =1Inx; — Y} y;In(x;). The function v; is differentiable, with
time derivative at any point x = & (r,x") equal to

ey [dvi(&(e,x7))
Vi(X) a |: dt :|§(t,x0)x
2 Jvi(x) |

= Xj
=9

Xi B O VK|
i j= X

= (e’ —x)Ax — Zyj(ef —X)AX

=1

= (e'—y)Ax < —£<0.
Hence, v;(€(z,x")) decreases to minus infinity as ¢ — oo. This implies
é:l'(l,Xo) — 0. O

Proposition 15.14 remains true for pure strategies i that are iteratively strictly dom-
inated (see [111]). For weakly dominated strategies several things may happen, see
Problem 15.7.

15.3.4 Nash Equilibrium Strategies

Consider again the finite symmetric two-player game with payoff matrix A. What
is the relation between the replicator dynamics and Nash equilibrium strategies?
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The answer is given by the following proposition, where ST (A) denotes the set of
stationary states, hence (check!):

ST(A) = {x € A™| Vi € C(x) [e'Ax = xAX]} . (15.4)

Proposition 15.15. For any finite symmetric two-player game with payoff matrix A
we have:

(1) {e!,...,e"} UNE(A) C ST(A).

(2) ST(A)NAJ = NE(A)NAj.

(3) ST(A)NAY is a convex set and if z € A" is a linear combination of states in this
set, thenz € NE(A).

Proof. Tt is straightforward from (15.2) that €’ € ST(A) for every pure strategy i. If
x € NE(A), then every i € C(x) is a pure best reply, hence e’Ax = xAx; for i ¢ C(x),
x; = 0. Hence, x € ST(A). This proves (1). Also (2) is immediate since e'Ax = xAx
for every x € ST(A) NA{ and every x € NE(A) NA.

It remains to prove the last claim. Let x and y be completely mixed stationary
points, and let o, B € R and z = ax+ By € A™. For any pure strategy i we have

e'Az = ae'Ax + Be'Ay = axAx + ByAy

since X,y € ST(A) NAj. This implies that actually e'Az = zAz for all pure strategies
i, hence z is stationary. If z is completely mixed, then we are done by part (2).
Otherwise, z is a boundary point of ST(A) N A and hence of NE(A) NA{', so z €
NE(A) since NE(A) is a closed set. Finally, since A™ is convex and z € ST (A) NAf'
forall o, > 0 with o+ B =1, ST(A) N A is a convex set. O

Proposition 15.15 implies that every (symmetric) Nash equilibrium is stationary.
The weakest form of dynamical stability, Lyapunov stability, leads to a refinement
of Nash equilibrium, as the next result shows.

Proposition 15.16. Let x € A™ be a Lyapunov stable stationary state. Then X €
NE(A).

Proof. Suppose x ¢ NE(A). Then e/Ax — xAx > 0 for some i ¢ C(x). By continuity,
there is a § > 0 and an open neighborhood U of x such that e’/Ay — yAy > § for all
y € UNA™. But then & (t,x°) > x%exp(8t) for all X € UNA™ and ¢ > 0 such that
E(t,x") € UNA™2 So &(t,x°) increases exponentially from any x’ € U NAJ with
x? > 0 whereas x; = 0. This contradicts Lyapunov stability of x. a
The final result in this section says that if a trajectory of the replicator dynamics

starts from an interior (completely mixed) state and converges, then the limit state
is a Nash equilibrium strategy.

Proposition 15.17. Let x° € AY and x € A™ such that x = limy_. & (¢,x°). Then
x € NE(A),

2 This follows from the fact that the system y = 8y with initial condition y(0) = y° has solution
y(1) = exp ().
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Proof. Suppose that x ¢ NE(A). Then there is a pure strategy i and an € > 0 such that
e/Ax — xAx = ¢. Hence, there is a T € R such that €'A& (¢,x°) — & (,x°)AE (¢,x°) >
g/2 for all t > T. By (15.2), %; > x;&/2 for all + > T, and hence &(z,x") >
&(T,x%) exp(e(t—T)/2) forallt > T. Since &(T,x°) > 0, this implies & (¢,x") — oo
as t — oo, a contradiction. O

15.3.5 Perfect Equilibrium Strategies

In the preceding subsection we have seen that Lyapunov stability implies Nash
equilibrium. What are the implications of asymptotic stability?

First, asymptotic stability implies Lyapunov stability and therefore also Nash
equilibrium. Since Nash equilibrium implies stationarity, however, it must be the
case that an asymptotically stable Nash equilibrium strategy is isolated, meaning
that it has an open neighborhood in which there are no other Nash equilibrium strate-
gies. If not, there would be arbitrarily close stationary states, which conflicts with
asymptotic stability.

Second, asymptotic stability also implies perfection ([15]).

Proposition 15.18. Let x € A™ be asymptotically stable. Then (x,x) € NE(A,AT) is
isolated and perfect.

Proof. We still have to prove that (x,x) € NE(A) is a perfect equilibrium. Suppose
not. Then x is weakly dominated by some y € A™\ {x}, see Theorem 13.22. Hence
yAz > xAz for all z € A™. Define v: A" — R by

v(z)= ) (yi—x)n(z)

ieC(z)

for all z € A”. Similarly as in the proof of Proposition 15.14, we obtain that v is
nondecreasing along all interior solution trajectories of (15.2), i.e., at any z € Af,

v(z)= ) (i —xi)zi =Y (i —x))[e'Az — zA7] = (y —x)Az > 0.

icC(z) <

™

L

Since x is asymptotically stable, it has an open neighborhood U such that & (¢,x°) —
x for all X’ € U N A™. By nondecreasingness of v along all interior solution tra-
jectories this implies v(x) > v(z) for all z € U NAj. We will construct, however,
a z in UNAJ with v(z) > v(x). This is a contradiction and, hence, X must be
perfect.

To construct z, define for 6 € (0,1), w € A¥, and € > 0,

z=(1—¢)[(1-8)x+8y|]+ew.
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For ¢ sufficiently small, we have y; > x; = z; > x; and y; < x; = z; < x;. Moreover

W(z) — v(x) = f‘,l@,- “x)ina) = ¥ )i
i= ieC(x
= (yi—x)[In(z;) —In(x)]+ Y yiln(z).
ieC(x) i#C(x)

The second term in the expression after the last equality sign is zero. To see this,
it is sufficient to show that C(y) C C(x). Suppose that j € C(y) and j ¢ C(x). By
asymptotic stability of x, & (¢,x") — x for all x” € U NAP. In particular, v(& (t,x%))
is nondecreasing with 7. However, & j(t,xo) — xj = 0 whereas y; > 0, so for some
constant ¥ we have v(& (1,x°)) < y+y;In(&;(,x°)) — —oo, a contradiction.

So we have v(z) > v(x), which completes the proof. O

Problems

15.1. Computing ESS in 2 x 2 Games (1)
Compute ESS(A) for the following payoff matrices A.

(a)A = (;1 g) (Prisoners’ Dilemma)

(b)A = ((2) (1)> (Coordination game)

02
15.2. Computing ESS in 2 x 2 Games (2)

Compute ESS(A’) for each of the cases (1), (2), and (3) in Sect. 15.1.1. Compare
with your answers to Problem 15.1.

15.3. Rock—Paper—Scissors (1)

©)A= (_1 4) (Hawk-Dove game)

Show that the Rock—Paper—Scissors game

A=

NN O =
S =N
—_ N O

has no ESS.
15.4. Uniform Invasion Barriers

Find the maximal value of the uniform invasion barrier for the ESS’s in each of the
cases (1), (2), and (3) in Sect. 15.1.1.
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15.5. Replicator Dynamics in Normalized Game (1)
Show that A and A’ (see Sect. 15.3.2) result in the same replicator dynamics.
15.6. Replicator Dynamics in Normalized Game (2)

(a) Simplify the dynamics (15.3) for case (1) in Sect. 15.1.1 by substituting x, =
1 —x and plot %; as a function of x; € [0,1].

(b) Carry out this analysis also for cases (2) and (3). What is your conclusion?

15.7. Weakly Dominated Strategies and Replicator Dynamics

- (0)

Investigate the trajectories of the replicator dynamics.

(a) Consider the matrix

(b) Consider the matrix
111
A=|110
000
Investigate the trajectories of the replicator dynamics.

(Cf. Proposition 15.14 and for more on weakly dominated strategies see [147],
p.-83.)

15.8. Stationary Points and Nash Equilibria

Consider the two-person symmetric game with payoff matrix

A=

—_— N O
— O N
S OO

(a) Compute NE(A).
(b) Compute ST(A).
15.9. Lyapunov Stable States in 2 x 2 Games

Consider the normalized two-player symmetric 2 x 2 game A’. Compute the Lya-
punov stable states for cases (1), (2), and (3).

15.10. Nash Equilibrium and Lyapunov Stability

Consider the symmetric game with payoff matrix

01
A=100
00

— N O

Compute NE(A). Show that the unique element in this set is not Lyapunov stable
(see [147], Sect. 3.3.2 for more on this).
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15.11. Rock—Paper-Scissors (2)

Consider the generalized Rock—Paper—Scissors game with payoff matrix

1 24a 0
A= 0 1 2+4a
24a O 1

where a € R.
(a) Write down the three equations of the replicator dynamics.
(b) Define A(x) = In(xx2x3) for x positive and show that /1(x) = 3 +a — 3xAx.

(c) Show that the average payoff is equal to
a
xx =145 |IxP)
for each x € A3, where |[x|| is the Euclidean norm of x. Conclude that A(x) =
5 (3lIxI*—=1).
2
(d) Show that /2(}, 3, 3) = 0 and /2(x) has the same sign as a for other x € A™.

(e) Show that the unique Nash equilibrium in this game is (1) asymptotically stable
for a > 0; (2) Lyapunov but not asymptotically stable for a = 0; (3) not Lyapunov
stable for a < 0.



Chapter 16

TU-Games: Domination, Stable Sets,
and the Core

In a game with transferable utility (TU-game) each coalition (subset of players) is
characterized by its worth, i.e., a real number representing the payoff or utility that
the coalition can achieve if it forms. It is assumed that this payoff can be freely
distributed among the members of the coalition in any way desired.

For some examples the reader is referred to Chap. 1. Chapter 9 presents a first
acquaintance with transferable utility games. Although the present chapter and the
following ones are self-contained, it may be helpful to study the relevant parts of
Chaps. 1 and 9 first.

In this chapter the focus is on the core of a transferable utility game. Section 16.1
starts with a weaker concept, the imputation set, and introduces the concept of dom-
ination. Section 16.2 introduces the domination core and the core. Section 16.3
studies these solution concepts for a special class of TU-games called simple
games. In Sect. 16.4 we briefly review von Neumann and Morgenstern’s stable
sets, which are also based on the concept of domination. Section 16.5, finally,
presents a characterization of games with non-empty cores in terms of
balancedness.

16.1 Imputations and Domination

We start with repeating the definition of a game with transferable utility (cf.
Definition 9.1).

Definition 16.1. A cooperative game with transferable utility or TU-game is a pair
(N,v), where N = {1,2,...,n} with n € N is the set of players, and v is a function
assigning to each coalition S, i.e., to each subset S C N a real number v(S), such that
v(0) = 0. The function v is called the characteristic function and v(S) is called the
worth of S. The coalition N is called the grand coalition. A payoff distribution for
coalition S is a vector of real numbers (x;);cs.

H. Peters, Game Theory — A Multi-Leveled Approach. 229
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The set of coalitions is also denoted by 2V, so that a TU-game is a pair (N,v) with
v: 2V — R such that v(0) = 0. The game (N, v) is often denoted by v if no confu-
sion about the set of players is likely to arise. Also, for a coalition {i, j,...,k} we
sometimes write v(ij...k) instead of v({i, j,...,k}). By @V the set of all TU-games
with player set N is denoted.

We frequently use the notation x(S) := Y ,csx; for a payoff distribution x =
(x1,...,%,) € RN and a coalition S C N.

Let (N,v) be a TU-game. A vector x € R is called an imputation if
(1) xis individually rational, i.e.
x; >v(i) forallieN,
(2) xis efficient i.e.
x(N) = v(N).

The set of imputations of (N,v) is denoted by /(v). An element x € I(v) is a payoff
distribution of the worth v(N) of the grand coalition N which gives each player i a
payoff x; which is at least as much as he can obtain when he operates alone.

Example 16.2. A game v is called additive if v(SUT) = v(S) + v(T') for all disjoint
coalitions S and 7. Such a game is completely determined by the worths of the one-
person coalitions v(i) (i € N), since v(S) = Y ;cgv(i) for every coalition S. For an
additive game v, I(v) consists of one point: I(v) = {(v(1),v(2),...,v(n))}.

Note that for a game v

(ngE

I(v) #0 ifandonly if v(N) > ) v(i).

1

For an essential game v, thatis, a game with v(N) > Y | v(i), I(v) is the convex hull
of the points: f',£%,... . f where f} := v(k) if k # i and f} := v(N) — e (3 v(k)
(see Problem 16.1).

Example 16.3. Let (N,v) be a three-person game with v(1) = v(3) =0, v(2) = 3,
v(1,2,3) = 5. Then I(v) is the triangle with vertices f' = (2,3,0), f> = (0,5,0) and
3 = (0,3,2) (see Fig. 16.1).

The following concept was already introduced in [141].

Definition 16.4. Let (N,v) be a game. Let y, z € I(v), S € 2V \ {0}. Then y
dominates z via coalition S, denoted by ydomgz, if

(1) yi >z foralli €S,
(2) (8) < v(S).

Fory,z € I(v), y is said to dominate z (notation: ydomz) if there is an § € 2V\ {0}
such that ydomg z.
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Fig. 16.1 Example 16.3 (0,0,5)

£ =(0,3,2)

(5,0,0)

Interpretation: the payoff distribution y is better than z for all members i € S if (1)
holds and the payoffs (y;);cs are attainable for the members of S by cooperation if
(2) holds. Against each z in

D(S):={z€I(v) | there exists y € I(v) with ydomgz}

the players of S can protest successfully. The set D(S) consists of the imputations
which are dominated via S. Note that always D(N) = 0 (see Problem 16.3). We call
x € I(v) undominated if x € 1(v) \ Uscom 93 D(S)-

Example 16.5. Let (N,v) be the three-person game with v(1,2) =2, v(N) =1 and
v(S)=0if S #{1,2}, N. Then D(S) =0 if S # {1,2} and D({1,2}) = {x € I(v) |
x3 > 0}. The elements x in /(v) which are undominated satisfy x3 = 0.

16.2 The Core and the Domination-Core

The concept of domination defined in the preceding section gives rise to the
following definitions.

Definition 16.6. The domination core (D-core) of a game (N, v) is the set

DC(v):=Iv)\ |J D),

S€2N\ {0}
i.e., the set of all undominated elements in /(v). The core of a game (N, v) is the set

C(v):={xeI(v)|x(S)>v(S) forall § € 2V\ {0}}.
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If x € C(v), then no coalition S # N has an incentive to split off if x is the proposed
payoff distribution in N, because the total amount x(S) allocated to S is not smaller
than the amount v(S) which the players in S can obtain by forming the coalition S.

For the game in Example 16.5 the D-core is nonempty and the core is empty. In
general the following holds.

Theorem 16.7. The core is a subset of the D-core for each TU-game.

Proof. Let (N,v) be a game and x € I(v), x € DC(v). Then there is a y € I(v)
and a coalition S such that ydomgx. Thus, v(S) > y(S) > x(S), which implies that
xZC). O

Elements of C(v) can easily be obtained because the core is defined with the aid
of linear inequalities. The core is a polytope. Also the D-core is a convex set: see
Problem 16.2.

A natural question that arises is: for which games is the core equal to the D-core?
Consider the following condition on a game (N, v):

v(N) >v(S)+ Y v(i) forall S € 2V \ {0}. (16.1)
ieN\S

It turns out that this condition is sufficient for the equality of core and D-core.
Theorem 16.8. Let (N,v) be a game satisfying (16.1). Then DC(v) = C(v).

Proof. In view of Theorem 16.7 it is sufficient to show that DC(v) C C(v).
Claim. Let x € I(v) with x(S) < v(S) for some S, then there is a'y € I(v) such that
ydomg X.

To prove this claim, define y as follows. If i € S, then y; := x; + S|~ (v(S) — x(S)).
Ifi ¢S, then y; :=v(i) + (v(N) = v(S) — Liems v(i))|N\S|~!. Theny € I(v), where
yi > v(i) for i € N\ S follows from (16.1). Furthermore, ydomgx. This proves the
claim.

To prove DC(v) C C(v), suppose x € DC(v). Then there is no y € I(v) with
ydomx. In view of the Claim it follows that x(S) > v(S) for all S € 2V \ {0}. Hence,
xeC(v). O

Many games v derived from practical situations have the following property:
v(SUT) > v(S)+v(T) for all disjoint S, 7 C N. (16.2)

A game satisfying (16.2) is called super-additive. Observe that (16.2) implies (16.1),
so that Theorem 16.8 holds for super-additive games in particular.

16.3 Simple Games

In this section we study the core and D-core of simple games. Simple games arise
in particular in political situations, see for instance the United Nations Security
Council example in Chap. 1.
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Definition 16.9. A simple game (N,v) is a game where every coalition has either
worth 0 or worth 1, and the grand coalition N has worth 1. Coalitions with worth
1 are called winning, the other coalitions are called losing. A minimal winning
coalition is a winning coalition for which every proper subset is losing. A player i is
called a dictator in a simple game (N,v) if v(S) = 1 if and only if i € S. A player i
is called a veto player in a simple game (N, v) if i belongs to all winning coalitions.
The set of veto players of v is denoted by veto(v). Hence,

veto(v) = [{S €2V [ v(S) =1}.

The next example suggests that non-emptiness of the core has something to do with
the existence of veto players.

For each i € N let e/ € R”" denote the vector with i-th coordinate equal to 1 and
all other coordinates equal to 0.

Example 16.10. (1) For the dictator game §;, which is the simple game with &;(S) =
1if and only if i € S one has I(8;) = {e'}, veto(5;) = {i} and C(§;) = DC(§;) = {e'}.
(2) For the three-person majority game with v(S) = 1if |S| € {2,3} and v(S) = 0 if
IS| € {0,1} one has:

(1,2} n{1,3}n{2,3}N{1,2,3} =0 = veto(v)

and
C(v) =DC(v) =0.

(3) For the T-unanimity game ur, which is the simple game with ur(S) = 1 if and
only if T C S, veto(ur) =T and

C(ur) = DC(ur) = conv{e' | i€ T}.

The following theorem shows that the core of a simple game is nonempty if and only
if the game has veto players. Furthermore, core elements divide the total amount
v(N) =1 of the grand coalition among the veto players. The D-core is equal to the
core for simple games except in one case where there is exactly one k € N with
v(k) = 1 and k is not a veto player. See also Example 16.12 below.

Theorem 16.11. Let (N,v) be a simple game. Then:

(1) C(v) = conv{e! € R" | i € veto(v)}.
(2) If veto(v) =0 and {i € N | v(i) = 1} = {k}, then C(v) = 0 and DC(v) = {e*}.
Otherwise, DC(v) = C(v).

Proof. (a) Suppose i € veto(v). Let S € 2N\ {0}. If i € S then €/(S) = 1 > v(S),
otherwise €/(S) = 0 = v(S). Obviously, ¢/(N) = 1 =v(N). So & € C(v). This proves
the inclusion D in (1) because C(v) is a convex set.

(b) To prove the inclusion C in (1), let x € C(v). It is sufficient to prove: i ¢

veto(v) = x; = 0. Suppose, to the contrary, that x; > 0 for some non-veto player
i. Take S with v(S) =1 and i € S (such an S exists otherwise i would be a veto
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player). Then x(S) = x(N) —x(N\ S) < 1 —x; < 1, contradicting the fact that x is a
core element. This concludes the proof of (1).

(c) If veto(v) =0 and k is the only player in the set {i € N | v(i) = 1}, then
C(v) = 0 by part (1), whereas I(v) = {e*}, hence DC(v) = {e}. If veto(v) = 0
and {i € N | v(i) = 1} = 0 then (16.1) is satisfied, so that core and D-core are equal
by Theorem 16.8. If veto(v) =0 and |[{i € N | v(i) = 1}| > 2 then I(v) = 0 so that
C(v)=DC(v) =0.

(d) To complete the proof of (2), suppose veto(v) # 0. Then [{i e N |v(i) =1} < 1.
If {i € N|v(i) =1} = {k} then veto(v) = {k} and I(v) = {e}}, so that C(v) =
{ek} = DC(v). I, finally, {i € N | v(i) = 1} = 0, then (16.1) is satisfied and the core
equals the D-core by Theorem 16.8. a

Example 16.12. LetN ={1,2,3},v(1) =v(2,3) =v(1,2,3) = 1 and v(S) =0 for the
other coalitions. Then veto(v) = @, C(v) = 0, DC(v) = {e'}. Note that this simple
game is not super-additive, and does not satisfy (16.1).

16.4 Stable Sets

Stable sets were already introduced by von Neumann and Morgenstern [141] — the
core was introduced by Gillies [46]. The definition is again based on the concept of
domination. By way of example, let v be the three-person game with all worths equal
to 1 except for the one-person coalitions, which have worth equal to 0. Observe
that the three vectors (4, 5,0), (,0,3), and (0, },}) are imputations that do not
dominate each other. Moreover, each imputation other than one of these three is
dominated by one of these three (see Problem 16.5). For this reason, von Neumann

and Morgenstern called the set of these three imputations a ‘solution’ of the game.
Definition 16.13. Let v be a game and let A C I(v). The set A is called a stable set if

(1) if x,y € A then x does not dominate y.
(2) if x € I(v) \ A then there is a y € A that dominates x.

The first property in Definition 16.13 is called internal stability and the second one
external stability.

The three-person game described above has many stable sets: see Problem 16.5.
But even if a game has only one stable set then still a selection would have to be
made, for practical purposes; stability, however, is a property of sets, not of single
payoff distributions. The core does not suffer from this problem and, moreover, in
that case there exist some plausible choices (like the nucleolus, see Chap. 19). More-
over, games with non-empty cores have been exactly characterized (see Sect. 16.5),
whereas the problem of existence of stable sets is only partially solved. Lucas [72]
gives an example of a(n essential) game that does not have a stable set; see also [98],
p.253.

Some partial existence results are given now. First, essential simple games always
have stable sets:
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Theorem 16.14. Let v be a simple game and let S be a minimal winning coalition.
Let AS be the set of those imputations x with x; = 0 for every i ¢ S. Then, if AS # 0,
it is a stable set.

Proof. Problem 16.8. a

A game (N,v) is called a zero-one game if all one-person coalitions have worth 0
and the grand coalition N has worth 1. In the following example symmetric three-
person zero-one games are considered.

Example 16.15. Let (N,v) be a game with N = {1,2,3} and v(i) = 0 for all i € N,
v(N) =1, and v(S) = & for every two-person coalition S, where 0 < o < 1. Then:

(a) Let ot > 3. Then

1
{(x,x,1=2x), (x,1 —2x,x), (1 —2x,x,x) | g <x< 2} (16.3)

is a stable set.

(b) For o < %, the set in (16.3) is internally but not externally stable. The union of
this set with the core of the game is a stable set.

(c) For o < é the core is a (the unique) stable set.

For the proofs of these statements see Problem 16.9.
The next theorem gives the relation between the domination core and stable sets.

Theorem 16.16. Let (N,v) be a game. Then:

(a) The D-core of v is a subset of any stable set.
(b) Suppose the D-core of v is a stable set. Then it is the unique stable set of the
game.

Proof. Problem 16.10. o

16.5 Balanced Games and the Core

In this section we derive the Bondareva—Shapley ([16], [122]) Theorem which char-
acterizes games with non-empty cores in terms of balancedness. First, the concepts
of balanced maps, collections, and games are introduced.
Let N:={1,2,...,n}. Amap A : 2V \ {0} - R, :={r € R |t >0} is called a
balanced map if
Z A(S)es =e.
seaM\ {0}

Here e° is the characteristic vector for coalition S with

=1 ifieS and =0 ificN\S.



236 16 TU-Games: Domination, Stable Sets, and the Core

A collection B of coalitions is called a balanced collection if there is a balanced map
A such that
B={Sc2V|A(S) >0}.

Example 16.17. (1) Let Ni,Na,...,N; be a partition of N, i.e., N = Ule N,, NyN
N; =0if s #¢. Then {N,N,,...,N; } is a balanced collection, corresponding to the
balanced map A with A(S) = 1if S € {N},Na,..., Ny} and A(S) = 0, otherwise.

(2) For N ={1,2,3} the set B={{1,2}, {1,3},{2,3}} is balanced and corresponds
to the balanced map A with

A(S)=0 if|s|€{1,3} and /I(S):; if |5] = 2.

In order to have an interpretation of a balanced map, one can think of each player
having one unit of time (or perhaps energy, labor) to spend. Each player can
distribute his time over the various coalitions of which he is a member. Such a
distribution is ‘balanced’ if it corresponds to a balanced map A, where A (S) is inter-
preted as the length of time that the coalition S exists (‘cooperates’); balancedness
of A means that each player spends exactly his one unit of time over the various
coalitions.

Definition 16.18. A game (N, v) is called a balanced game if for each balanced map
A :2M\ {0} — R we have

Y A(S)v(S) < v(N). (16.4)

S

Extending the interpretation of a balanced map in terms of a distribution of time to
a game, balancedness of a game could be interpreted as saying that it is at least as
productive to have the grand coalition operate during one unit of time as to have a
balanced distribution of time over various smaller coalitions — worths of coalitions
being interpreted as productivities. Thus, in a balanced game, it seems advantageous
to form the grand coalition. Indeed, technically the importance of the notion of
balancedness follows from Theorem 16.21, proved by Bondareva [16] and Shapley
[122]; this theorem characterizes games with a nonempty core. Its proof is based on
the following duality theorem.
For x,y € R", x -y denotes the usual inner product: X-y = Y1, x;y;.

Theorem 16.19. Let A be an n x p-matrix, b € R? and ¢ € R”, and let {x € R" |
XA >b} #£0and {y e RP | Ay =c,y > 0} # 0. Then
min{x-c|xA >b} =max{b-y|Ay =c,y > 0}.

Proof. Problem 16.13. O

Remark 16.20. In Theorem 16.19 also the following holds: if one of the programs
is infeasible (i.e., one of the two sets in the theorem is empty), then both programs
do not have an optimal solution (i.e., neither the minimum nor the maximum are
attained). See Problem 16.14 for a proof.
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Theorem 16.21. Let (N,v) be a TU-game. Then the following two assertions are
equivalent:

(1) C) £0
(2) (N,v) is a balanced game.

Proof. First note that C(v) # 0 if and only if

v(N) = min{ix,- | x € RN, x(S) > v(S) forall S € 2V \ {0} }. (16.5)
=1

=

By the duality theorem, Theorem 16.19, equality (16.5) holds if and only if
v(N) =max{} A(S)(S) | Y 1(S)e’ =e", 1 > 0}. (16.6)

(Take for A the matrix with the characteristic vectors % as columns, let ¢ := eV and

let b be the vector of coalitional worths. Obviously, the non-emptiness conditions in
Theorem 16.19 are satisfied.) Now (16.6) holds if and only if (16.4) holds. Hence
(1) and (2) are equivalent. a

Problems

16.1. Imputation Set of an Essential Game

Prove that for an essential game v, I(v) is the convex hull of the points f',£2, ... ",
as claimed in Sect. 16.1.

16.2. Convexity of the Domination Core

Prove that for each game the domination core is a convex set.

16.3. Dominated Sets of Imputations
(1) Prove that for each game (N,v), D(S) = 0if |S| € {1,n}.

(2) Determine for each S the set D(S) for the cost savings game (three communities
game) in Chap. 1. Answer the same questions for the glove game in Chap. 1.

16.4. The Domination Relation

(1) Prove that dom and domg are irreflexive relations and that domyg is transitive
and antisymmetric.'

(2) Construct a game (N,v) and imputations x and y such that xdomy and y domx.

(3) Construct a game (N,v) and x,y,z € I(v) with xdomy and ydomz and not
xdomz.

! See Sect. 11.1 for definitions.
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16.5. Stable Sets in a Three-Person Game

Let ({1,2,3},v) be the game with all worths equal to 1 except for the one-person
and the empty coalitions, which have worth equal to 0.

(1) Prove that each element of the imputation set of this game is dominated by
another element.

(2) Prove that in this game each x € I(v) \ A is dominated by an element of A :=
{(5:3.0), (5,0,5). (0,5, 5)}-

(3) If c€[0,}) and B := {x € I(v) | x3 = c}, then each element of I(v)\ B is
dominated by an element of B. Show this.

16.6. Singleton Stable Set

Prove that if a game (N, v) has a one-element stable set then v(N) = Y, cy v(i) (from

[81]).
16.7. A Glove Game
Consider the three-person simple game v defined by

(5= {1 ifs={1.2) or {23} or {1,2,3}
V)= 0  otherwise.

(a) Show that any imputation (x1,x»,x3) that is not equal to > is dominated by
another imputation.

(b) Compute the core and the domination core.
(c) Show that the domination core is not a stable set.
(d) Show that
B:={(A,1-22,4)|0<A < ;}
is a stable set.
16.8. Proof of Theorem 16.14
Prove Theorem 16.14.
16.9. Example 16.15
Prove the statements in Example 16.15.
16.10. Proof of Theorem 16.16

Prove Theorem 16.16. Does this theorem also hold for the core instead of the
D-core?

16.11. Core and D-core

Is (16.1) also a necessary condition for equality of the core and the D-core? (cf.
Theorem 16.8).
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16.12. Strategic Equivalence

Let (N,w) be strategically equivalent to (N,v), that is, there are k € R, k > 0 and
a € RY such that for each coalition S: w(S) = kv(S) + a(S). Show that

(1) C(w) =kC(v)+a (:={x e RY |x =ky+aforsomey c C(v)})
(2) DC(w) = kDC(v) +a.

(The equalities (1) and (2) express that the core and the D-core are covariant w.r.t.
strategic equivalence.)

16.13. Proof of Theorem 16.19
Prove Theorem 16.19. (Hint: use Theorem 22.5.)

16.14. Infeasible Programs in Theorem 16.19

Prove the claim made in Remark 16.20. Hint: Suppose, say, that there is noy > 0
with Ay = c¢. Then, certainly, the max-program does not have an optimal solution.
Use Farkas’ Lemma (Lemma 22.4) to conclude that there exists a vector z with
zZA > 0 and z - ¢ < 0. Suppose the min-program is feasible, i.e., there is an x with
XA > b. Then, show that the min-program does not have an optimal solution by
considering the vectors x+z fort € R, r > 0.

16.15. Balanced Maps and Collections

(1) Show that for any balanced map A one has Y3 A(S) > 1, with equality if and
only if the corresponding balanced collection equals {N}.

(2) If B is a balanced collection unequal to {N'}, then
B¢ :={Se2V\{0}|N\SeB}
is also a balanced collection. Give the corresponding balanced map.
(3) Let S € 2V\ {0,N}. Prove that {S, (N \ {i})ics} is balanced collection.
(4) Prove that the balanced maps form a convex set A”.
16.16. Minimum of Balanced Games
Show that the minimum of two balanced games is again balanced.
16.17. Balanced Simple Games

A simple game has a non-empty core if and only if it has veto players, cf. Theo-
rem 16.11(1). Derive this result from Theorem 16.21.



Chapter 17
The Shapley Value

In Chap. 16 set-valued solution concepts for games with transferable utilities were
studied: the imputation set, core, domination core, and stable sets. In this chapter,
a one-point (single-valued) solution concept is discussed: the Shapley value. It may
again be helpful to first study the relevant parts of Chaps. 1 and 9.

Section 17.1 introduces the Shapley value by several formulas and presents (a
variation on) Shapley’s axiomatic characterization using additivity. In Sect. 17.2 we
present three other characterizations of the Shapley value: a description in terms of
Harsanyi dividends; an axiomatic characterization of Young based on strong mono-
tonicity; and Owen’s formula for the Shapley value based on a multilinear extension
of games. Section 11.3 discusses Hart and Mas-Colell’s approach to the Shapley
value based on potential and reduced games.

17.1 Definition and Shapley’s Characterization

The Shapley value is one of the most interesting solution concepts in cooperative
game theory. The seminal paper [121] is the starting point of a large literature on
this solution concept and related concepts. For overviews see [109] and Chaps. 53
and 54 in [6].

Let (N,v) be a TU-game and let 0 : N — N be a permutation of the player set.
Imagine that the players enter a room one by one in the ordering o(1), (2),...,
o (n) and give each player the marginal contribution he creates in the game. To be
more specific, let the set of predecessors of i in ¢ be the coalition

Ps(i):={reN|o ' (r) <o (i)}

For example, if N = {1,2,3,4,5} and 6(1) =2, 0(2) =5,0(3) =4, 0(4) = 1, and
o(5) = 3, player 2 enters first, next players 5, 4, 1, and 3. So Ps(1) = {2,5,4}.
Define the marginal vector m® by

m{ = v(Ps(i) U{i}) — v(Ps(i)). (17.1)

H. Peters, Game Theory — A Multi-Leveled Approach. 241
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Thus, the marginal vector m® gives each player his marginal contribution to the
coalition formed by his entrance, according to the ordering .!

Definition 17.1. The Shapley value ®(v) of a game (N,v) is the average of the
marginal vectors of the game, i.e.

d(»v) = Y me. (17.2)

(Here II(N) denotes the set of permutations of N.)

Example 17.2. (1) For a two-person game (N,v) the Shapley value is

v(N) —v(1) —v(2)
> )

v(N)—v(1)—v(2)

5 v(2)+

20) = (v(1)+
(2) Let (N,v) be the three-person game with v(1) = v(2) =v(3) =0, v(1,2) =4,
v(1,3) =7,v(2,3) = 15, v(1,2,3) = 20. Then the marginal vectors are given in the
Table 17.1. The Shapley value of this game is equal to é(21745754)’ as one easily
obtains from this table.

(3) The Shapley value ®(v) for an additive game is equal to (v(1),v(2),..., v(n)).

Based on (17.2), a probabilistic interpretation of the Shapley value is as follows.

Suppose we draw from an urn, containing the elements of II(N), a permutation ¢

(probability (n!)~"). Then let the players enter a room one by one in the order ¢ and

give each player the marginal contribution created by him. Then the i-th coordinate

D;(v) of ®(v) is the expected payoff to player i according to this random procedure.
Using (17.1) formula (17.2) can be rewritten as

D)= Y v(Po(i)U{i}) = v(Ps(i). (17.3)

n senw)

The terms at the right hand side of the summation sign are of the form v(SU{i}) —
v(S), where S is a subset of N not containing i. For how many orderings does

Table 17.1 Example 17.2(2)

(6(1),6(2),6(3)) m® m$ mg
(1,2,3) 0 4 16
(1,3,2) 0o 13 7
(2,1,3) 4 0 16
(2,3,1) 5 0 15
(3,1,2) 7 13 0
(3,2,1) 5 15 0
Y 21 45 54

1 Of course, m® depends on the game v.
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one have Ps(i) = S? The answer is |S|!(n— 1 —|S])!, where the first factor |S|!
corresponds to the number of orderings of S and the second factor (n — 1 — [S])! to
the number of orderings of N\ (SU {i}). Hence, (17.3) can be rewritten to obtain

S|t (n = 1=1S])!

n!

CI)i(V) = Z

S¢S

(v(SU{i}) —v(S)). (17.4)

Note that
S =T =[St _ 17 g\ 7!
n! T (‘S‘ ) ’

This gives rise to a second probabilistic interpretation of the Shapley value. Con-
struct a subset S to which i does not belong, as follows. First, draw at random a
number from the urn containing the numbers (possible sizes) 0,1,2,...,n— 1, where
each number has probability n~! to be drawn. If size s is chosen, draw a set from
the urn containing the subsets of N\ {i} of size s, where each set has the same prob-
ability (") ! to be drawn. If § is drawn with | S| = s, then pay player i the amount
v(SU{i}) —v(S). Then, in view of (17.4), the expected payoff for player i in this
random procedure is the Shapley value for player i of the game (N, v).

Shapley [121] gave an axiomatic characterization of the Shapley value. That is,
he formulated a number of properties that a one-point solution should (or might)
have and then showed that the Shapley value is the only solution with these prop-
erties. This characterization — in a somewhat different form — is the next subject of
this section.

Definition 17.3. A value on %" is amap y : ¥V — RV 2

The following axioms for a value y : 4~ — R" are used in the announced charac-
terization of the Shapley value.

Efficiency (EFF): Y, wi(v) = v(N) for all v € V.

The efficiency (sometimes called Pareto optimality or Pareto efficiency) axiom
needs no further explanation.

Call a player i in a game (N, v) a null-player if v(SUi) —v(S) = 0 for every coali-
tion S € 2V, Such a player does not contribute anything to any coalition, in particular
also v(i) = 0. So it seems reasonable that such a player obtains zero according to the
value. This is what the following axiom requires.

Null-player Property (NP): y;(v) = 0 for all v € ¢V and all a null-players i in v.

Call players i and j symmetric in the game (N,v) if v(SUi) = v(SU j) for every
coalition S C N\ {i, j}. Symmetric players have the same contribution to any coali-
tion, and therefore it seems reasonable that they should obtain the same payoff
according to the value. That is the content of the following axiom.

Symmetry (SYM): y;(v) = y;(v) for all v € ¢V and all symmetric players i and j
inv.

2 Occasionally, also the word solution will be used.
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The last axiom needed in the announced characterization can be interpreted as
follows. Suppose the game (N,v) is played today and the game (N,w) tomorrow.
If the value y is applied then player i obtains in total: y;(N,v) + y;(N,w). One may
also argue that, in total, the game (N, v+ w) is played and that, accordingly, player
i should obtain y;(N,v+ w). The following axiom expresses the possible point of
view that these two evaluations should not make a difference.

Additivity (ADD): y(v+w) = y(v) + w(w) for all v,w € ¥V,
The announced characterization is the following theorem.

Theorem 17.4. Let y : @GN — RN be a value. Then v satisfies EFF, NP, SYM, and
ADD, if, and only if, y is the Shapley value ®P.

The proof of Theorem 17.4 uses, through the additivity axiom, the fact that &V is a
linear space, with addition defined by (v+w)(S) = v(S) +w(S) and scalar multipli-
cation (av)(S) = ov(S) for all v,w € 4V, S € 2V, and o € R. An obvious basis for
@GN istheset {17 € 9N | T € 2N\ {0} }, where 17 is the game defined by 17(T) = 1
and 17(S) = 0 for all S # T (cf. Problem 17.1). This basis is not very well suited
for the present purpose because the Shapley value ®(17) (T € 2V \ {0}) cannot
easily be determined from the axioms in Theorem 17.4: for example, there is no
null-player in the game 17 (cf. Problem 17.1).

Another basis is the collection of unanimity games {ur € ¥V | T € 2V\ {0}},
see Example 16.10(3) for the definition, and Problem 17.2. This basis is used in the
following proof.

Proof of Theorem 17.4. That the Shapley value satisfies the four axioms in the
theorem is the subject of Problem 17.3.

Conversely, suppose y satisfies the four axioms. It has to be proved that y = .
Take v € 4" Then there are unique numbers c7 (T # 0) such that v = YriocTur
(cf. Problem 17.2). By ADD of y and ® it follows that

v(v) =Y wlcrur), @)=Y ®(crur).

T#0 T#0
So it is sufficient to show that forall 7T £ @ and c € R :
y(cur) = P(cur). (17.5)
Take T # 0 and ¢ € R. Note first that foralli € N\ T
cur(SU{i}) —cur(S)=0 forall S,
implying that i is a null-player in cur. So, by NP of y and ®:
yi(cur) = ®i(cur) =0 forallie N\T. (17.6)

Now suppose that i, j € T, i # j. Then, for every coalition S C N\ {i, j}, cur (SUi) =
cur(SU j) =0, which implies that i and j are symmetric in cur. Hence, by SYM of
v and &:
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®i(cur) = Pj(cur) foralli,jeT (17.7)

and similarly
yi(cur) = yj(cur) foralli,jeT. (17.8)

Then EFF, (17.6), (17.7), and (17.8) imply that
Vi(cur) = ®;(cur) =|T| ‘¢ forallieT. (17.9)

Now (17.6) and (17.9) imply (17.5). a

The following two axioms (for a value y) are stronger versions of the null-player
property and symmetry, respectively. Call a player i in a game (N, v) a dummy player
ifv(SUi) —v(S) =v(i) forall S C N\ {i}.

Dummy player Property (DUM): y;(v) = v(i) for all v € ¥V and all a dummy
players i in v.

A dummy player only contributes his own worth to every coalition, and that is what

he should be payed according to the dummy property.
For a permutation ¢ € I1(N) define the game v° by

Vo (o(U)) :=v(U) forallU 2" or
Vvo(S) = v(o () forall§ 2V

and define 6* : RY — RN by (6% (x)) () := x¢ forall x e RV and k € N.
Anonymity (AN): w(v°) = *(y(v)) for all v € 4V and all & € TI(N).

Anonymity implies that a value does not discriminate between the players solely on
the basis of their ‘names’ (i.e., numbers).

The dummy player property implies the null-player property, and anonymity
implies symmetry. The Shapley value has the dummy player property. See
Problem 17.4 for these claims.

The Shapley value is also anonymous.

Lemma 17.5. The Shapley value ® is anonymous.

Proof. (1) First we show that
p*(m°(v)) =mPe (W) forallve 4N p,cen(N).
This follows because for all i € N:

mPe (V) poiy = P ({po(1),...,po ()} —vP({po(l),...,po(i—1)})
—v({o(1),...,00)}) —v({o(1),...,ai—1)})
= (m°()s@ = (P*(Mm° () poi-
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(2) Take v € ¥V and p € TI(N). Then (1), the fact that p +— po is a surjection on
I1(N) and the linearity of p* imply

1

DWW = nl' m®(v°) = ol Zm’m(v”)
" Gell(N) ‘o
1 . o 1 *
= (P M) =p7( Y m?)=p (D).
o o
This proves the anonymity of &. ad

As is clear by now the Shapley value has many appealing properties. In the following
sections more properties and characterizations of the Shapley value are considered.
However, it also has some drawbacks. In a balanced game the Shapley value does not
necessarily assign a core element. Also, it does not have to be individually rational
(cf. Problem 17.5).

Variations of the Shapley value, obtained by omitting the symmetry (or
anonymity) requirement in particular, are discussed in Chap. 18.

17.2 Other Characterizations

In this section three other characterizations of the Shapley value are discussed: the
dividend approach, the axiomatization of Young [148] based on strong monotonic-
ity, and the multilinear approach of Owen [97].

17.2.1 Dividends

Harsanyi [48] has introduced the following concept.

Definition 17.6. Let (N,v) be game. For each coalition T the dividend A,(T) is
defined, recursively, as follows.

$:8GT

The relation between dividends and the Shapley value is described in the next theo-
rem. The Shapley value of a player in a game turns out to be the sum of all equally
distributed dividends of coalitions to which the player belongs.

Theorem 17.7. Let v = Y. con\ (o) CTUT (as in Problem 17.2). Then:

(1) A(T) =cr forall T # 0.
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(2) The Shapley value ®;(v) for player i is equal to the sum of the equally distributed
dividends of the coalitions to which player i belongs i.e.,

A(T)

(I),'(V): Z |T‘ .

T:ieT

Proof. Tn the proof of Theorem 17.4 it was shown that ®(crur) = |T| 'cre’ for
each T, so by ADD, ®(v) = Yrgcr|T| e’
Hence, ®;(v) = Y7..er cr|T|~". The only thing left to show is that

er =A(T) forall T # 0. (17.10)

The proof of this is done by induction. If |T| = 1, say T = {i}, then ¢z = v(i) =
Ay(T). Suppose (17.10) holds for all S & T. Then A(T) = v(T) — Yocr A(S) =
v(T)— ngr cs = cr because v(T') = Ygcr Cs. O
The concept of coalitional dividend is important not only for the Shapley value but
for a wider range of solution concepts. See [30].

17.2.2 Strong Monotonicity

The Shapley value obviously has the property that if a player contributes at least as
much to any coalition in a game v than in a game w, then his payoff from the Shapley
value in v is at least as large as that in w. Formally, the Shapley value satisfies the
following axiom for a value y : 4V — RN a proof is immediate from (17.4).

Strong Monotonicity (SMON): y;(v) > y;(w) for all v, w € ¥V that satisfy

v(SU{i}) —v(S) > w(SU{i}) —w(S) forall §e2".

Young [148] has proved that together with efficiency and symmetry this axiom
characterizes the Shapley value.

Theorem 17.8. Let v : 4V — RN be a value. Then y satisfies EFF, SYM, and
SMON, if and only if y is the Shapley value ®.

Proof. Obviously, @ satisfies the three axioms. Conversely, suppose y satisfies the
three axioms:

(1) Let zbe the game that is identically zero. In this game, all players are symmetric,
so SYM and EFF together imply y(z) = 0.

(2) Let i be a null-player in a game v. Then the condition in SMON applies to z
and v with all inequalities being equalities. So SMON yields y;(v) > y;(z) and
Vi(z) = yi(v). Hence by (1), yi(v) = 0.

(3) Letc € Rand T € 2V \ {0}. Then (2) implies w;(cur) = 0 for every i € N\ T.
This, SYM, and EFF imply y;(cur) = c|T|~! forevery i € T. Hence, y(cur) =
c|T| e
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(4) Bach v € @ can be written in a unique way as a linear combination of {u7 |
T € 2V\ {0}} (see Problem 17.2). So v is of the form ¥ crur. The proof of
y(v) = ®P(v) will be completed by induction on the number a(v) of terms in
Y crur with cr 7& 0.

From (1), y(v) = ®(v) =0 if a(v) =0, and from (3), y(v) = ®(v) if a(v) =1

because ®(cur) = c|T|~'e’. Suppose y(w) = ®(w) forall w € ¥V with a(w) <k,

where k > 2. Let v be a game with a(v) = k. Then there are coalitions T, D>, ...,

T; and real numbers c1, ¢3, ..., c;, unequal to zero, such that v = ZI::I cqur,. Let

D:=nk_T,.

For i € N\ D, define w' := Y,.icr c,uz,. Because o(w') < k, the induction
hypothesis implies: y;(w') = ®;(w'). Further, for every S € 2V:

k k
v(SUi)—v(S) = ;cruT,(SUi) - ;cruTr(S)

= Z crur, (SUI) — Z crur, (S)

riel; rie’,
= w (SUi) —w'(S),
so that, by SMON of y and &, it follows that y;(v) = y;(w') = ®;(w') = &;(v). So
wi(v) = d;(v) foralli € N\D. (17.11)

(17.11) and EFF for y and ® yield

Y wi(v) =) Pi(v). (17.12)

ieD ieD
Leti,j € D, then forevery S C N\ {i, j}:
k k
0=)v(SUi) =Y cur,(SUi) =Y crur,(SUJj)=v(SUJ),

r=1 r=1

so i and j are symmetric. Hence, by SYM of y and ®:
vi(v) = yi(v), @i(v) =Dj(v). (17.13)

Now y(v) = ®(v) follows from (17.11), (17.12) and (17.13). a0

17.2.3 Multilinear Extension

The Shapley value of a game may also be described by means of the multilinear
extension of a game (cf. [97, 98]). Let (N,v) be game. Consider the function f :
[0,1]Y — R on the hypercube [0, 1]V, defined by
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fx,. . ox) =Y, (Hx, I[T0—x >v(S). (17.14)

Se2N \i€S ieN\S

Observe that the set of extreme points of [0, 1]V, ext([0,1]"), is equal to {e’ | S €
2N1. By Problem 17.8(1),

f(e%)=v(S) foreachsc2V. (17.15)

So f can be seen as an extension of ¥: ext([0, 1]V) — R with #(e’%) := v(S). In view
of Problem 17.8, f is called the multilinear extension of (V or) v.

One can give a probabilistic interpretation of f(x). Suppose that each of the
players i € N, independently, decides whether to cooperate (probability x;) or not
(probability 1 —x;). So with probability [Ticsxi [Tiens (1 —x;) the coalition S forms,
which has worth v(S). Then f(x) as given in (17.14) can be seen as the expectation
of the worth of the formed coalition.

Another interpretation is to see x € [0, 1]V as a fuzzy set, where x; is the intensity
of availability of player i and to see f as a characteristic function, defined for fuzzy
coalitions in N.

Denote by Dy f(x) the derivative of f w.r.t. the k-th coordinate in x. The following
result [97] provides another description of the Shapley value, as the integral along
the main diagonal of [0, 1] of Dy f.

Theorem 17.9. & (v) = [} (Dyf)(t,1,... ,t)dt for each k € N.
Proof.

Dkf(X) = TéT [ H Xi H (1 xi)] V(T)

ieT\{k} ieN\T

-y [gxi I1 (1x,-)]v(S)

SkeS iEN\(SU{k})

[Tx TII (lxi)] ((SU{k}) = v(S))-

S:kgS LS EN\(SU{k})

Hence, fo (Dif) (1.1, 0)dt = L (Jo 11(1 =) 1dr) (v(SU{k}) = v(S)).

Using the well-known (beta-)integral formula

LS —Is|—1 [S[1(n—[S]—1)!
./ot (I—=0)" dr =

n!

it follows that [} (Dxf)(t,1,...,0)dt = Lpgs "I (w(SU{k}) — v(S))
D, (v) by (17.4).

Example 17.10. Let (N,v) be the three-person game with v(1) = v(2) = v(3) =
v(1,2) =0, v(1,3) =1, v(2,3) = 2, v(N) = v(1,2,3) = 4. Then f(x1,x2,x3) =
x1 (1 —x2)x3 +2(1 — x1) x2x3 + 4x100x3 = x1X3 + 2x0x3 + X023 for all x € [0, 1]V,

o
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So le(X> = X3 + X2X3, sz(X) = 2x3 +Xx1x3, D3f(X) = x1 + 2x2 + x1x2. Theo-
rem 17.9 implies

D (v) = ./0] Dy f(t,t,t)dt = /Ol(z+zz)dz = 2,

1 1 1
<1>2(v)=/0 (2t+z2)dz=13,c1>3(v)=/0 (3z+t2)dt:12.

17.3 Potential and Reduced Game

This section starts off with discussing the potential approach to the Shapley value.
The potential is, in a sense, dual to the concept of dividends. Next, reduced games
are considered, which leads to another axiomatic characterization of the Shapley
value. This section is based on [52].

17.3.1 The Potential Approach to the Shapley Value

Denote by ¥ is the family of all games (N,v) with an arbitrary finite (player) set
N (not necessarily the set of the first n natural numbers). It is convenient to include
also the game (0, v), with empty player set. Thus,

9= |J 9"
NCN, |N|<oo

Definition 17.11. A potential (Hart and Mas-Colell [52]) is a function P: ¥ — R
satisfying

P(0,v) =0 (17.16)
Y DiP(N,v) =v(N) forall (N,v) €¥. (17.17)
ieN

Here D;P(N,v) := P(N,v) — P(N\ {i},v) with v the restriction to N\ {i} in the last
expression.

If P is a potential then (17.17) says that the ‘gradient’ grad P(N,v) := (D;P(N,v))ien
is an efficient payoff vector for the game (N, v).
Note that

P({i},v) = v({i})
P({i,j}.v) = ;(V({l}j}) +v({ih) +v({j})

if P is a potential. More generally, it follows from (17.17) that
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P(Nv) = IN|"'(v(N) + Y P(N\ {i},v)). (17.18)

ieN

So the potential of (N,v) is uniquely determined by the potential of subgames of
(N,v), which implies with (17.16) the first assertion in Theorem 17.12 below. The
second assertion in this theorem connects the potential of a game to the Harsanyi
dividends (see Sect. 17.2.1). Further, the gradient of P in (N, v) is equal to the Shap-
ley value of (N,v). It also provides an algorithm to calculate the Shapley value, by
calculating with (17.16) and (17.18) the potentials of the game and its subgames and
then using Theorem 17.12(3).

Theorem 17.12. (1) There is a unique potential P : 4 — R.

(2) P(N,v) = Yozrener|T|I™! forv= Yo rcncrur.

(3) grad P(N,v) = ®(N,v).

Proof. (1) follows immediately from (17.16) and (17.18).

(2) and (3). Let Q : 4 — R be defined by Q(0,v) := 0 and Q(N,v) := Yreom (o}

cr|T|~! for all (N,v), where v = Y crur, if N # 0. Further, for each (N,v) and i € N
DONv)= Y crT|'= Y 7| (17.19)

0ATCN 0ATCN\{i}

if v=Yrcycrur and V' = Yrcon gy cpur where v/ is the restriction of v to pAANUS
Since V/(S) = Yy iy crur(S) for all S € N\ {i} and {ur | T C N\ {i}} is a
basis of the linear space of games with player set N \ {i}, we obtain ¢7 = ¢/ for all
T C N\ {i}. But then (17.19) and Theorem 17.7 imply

DiQ(Nv)= Y cr|T|"" =®;(N,v).

T:ieT

Further, by efficiency (EFF) of ®:

Y DiQ(N,v) =) ®i(N,v) =v(N).

i€N iEN
So Q is a potential. From (1) it follows that Q = P and then (3) holds. O

The potential of a game can also be expressed directly in terms of the coalitional
worths, as in the following theorem.

Theorem 17.13. For each game (N,v) € 4:

(IS] = D(IN = IS])!

P(N,v) :ng V! u(S).
Proof. Let for each (N,v) € 4,
oW,y = Y, (SI=DHINI=ISDY gy

e IN|!
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Then Q(0,v) = 0. It is sufficient for the proof of Q(N,v) = P(N,v), to show that
D;Q(N,v) = ®;(N,v) forall i € N. Now
DiQ(N,v) = Q(N,v) = Q(N\ {i},v)

_ g (1= DN =T

7w IN|!
—1)! —1—|S)
(1= 1N = 1= sy
SCN\{i} (‘N|71)'
! — S| —=1)!
SCN\{i} V!
S| —1D)I(|N|—|S])!
ooy (S Dm=Ish
SCN\{i} V]
—1)! —1—|S)
(1= 1N = 1= sy
SN} (INT= 1)t
S|H(IN|—|S]—1)! )
=y RIS s i) - vis) = v
SCN\{i} IN!
where the last equality follows from (17.4). a

A probabilistic interpretation of Theorem 17.13 is the following. The number
IN|='P(N,v) is the expectation of the normalized worth |S|~!v(S) of the formed

coalition S C N if the probability that S forms is |N| ! (m
drawing first a size s € {1,2,...,|N|} and then a set S with |S| = s).
Theorem 17.12 can be used to calculate the Shapley value, as the following

example shows.

)71 (corresponding to

Example 17.14. Consider the three-person game (N, v) given in Table 17.2. The div-
idends of the subcoalitions and the potential of the subgames are given in lines 3 and
4 of this table, respectively. It follows that

Table 17.2 Example 17.14

S o {1} {2} {3t {12} {13} {2,3} {1,2,3}
v(S) 0o 1 2 3 5 6 9 15
A(S) 0o 1 2 3 2 2 4 1
ASY/IS 0 1 2 3 1 1 2 ]
P(S,v) o 1 2 3 4 5 7 104

B(N.v) = (3},51,6))
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®(N,v) = (D1P(N,v),D2P(N,v),D3P(N,v))
1 1 1 1 1 1
10, —-7,10_ —5,10_—4)=(3_,5_,6
( 3 3 3 )=( 3’737 3>
@({2,3},\)) = (7737772) = (475)

17.3.2 Reduced Games

To introduce the concept of a reduced game, consider the game in Example 17.14.
Suppose that the players agree on using the Shapley value, and consider the coalition
{1,2}. If players 1 and 2 pool their Shapley value payoffs then together they have
3; + 5% =38 % Another way to obtain this amount is to take the worth of the grand
coalition, 15, and to subtract player 3’s payoft, 6 % Consider {1} as a subcoalition
of {1,2}. Player 1 could form a coalition with player 3 and obtain the worth 6, but
he would have to pay player 3 according to the Shapley value of the two-player
game ({1,3},v), which is the vector (2,4); recall that the players agree on using
the Shapley value. So player 1 is left with 6 —4 = 2. Similarly, player 2 could form
a coalition with player 3 and obtain v(2,3) = 9 minus the Shapley value payoff
for player 3 in the game ({2,3},v), which is 5. So player 2 is left with 9 — 5 = 4.
So a ‘reduced’ game ({1,2},7) has been constructed with (1) =2, #(2) =4, and
7(1,2) = 83. The Shapley value of this game is the vector (3},51). Observe that
these payoffs are equal to the Shapley value payoffs in the original game. This is not
a coincidence; the particular way of constructing a reduced game as illustrated here
leaves the Shapley value invariant.

A general game theoretic principle is the following. Suppose in a game a subset
of the players consider the game arising among themselves; then, if they apply the
same ‘solution rule’ as in the original game, their payoffs should not change — they
should have no reason to renegotiate. Of course, the formulation of this principle
leaves open many ways to define ‘the game arising among themselves’. Different
definitions correspond to different solution rules. Put differently, there are many ways
to define reduced games, leading to many different ‘reduced game properties’ as
specific instances of the above general game theoretic principle. Instead of ‘reduced
game property’ also the term ‘consistency’ is used. This concept has been very fruitful
over the past decades — in cooperative as well as noncooperative game theory.>

For the Shapley value the following reduced game turns out to be relevant. It is
the reduced game applied in the example above.

Definition 17.15. Let y be a value, assigning to each element (N, v) of ¢ a vector
W(N,v) € RN For (N,v) €4 and U C N, U # 0, the game (N \ U, vy ) is defined
by vy y(0) =0 and

vu,yp(S) :=v(SUU) - Z Vi(SUU,v) forall S € 2V\V\ {0}.
keu

vy, is called the (U, y)-reduced game of v.

3 Cf. Sect. 13.8.
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Thus, the worth of coalition § in the game vy y is obtained by subtracting from the
worth of SUU in the game (SUU,v) the payoffs of the players in U according to
the value y. The reduced game property or consistency property for a value y on ¢
based on this reduced game is the following.

HM-consistency (HMC)*: for all games (N,v) and all U C N, U # 0
Vi(N\U,vyy) =Vi(N,v) forallic N\U. (17.20)
The following lemma is used in the proof of HM-consistency of the Shapley value.

Lemma 17.16. Let (N,v) € 4. Suppose Q : 2V — R satisfies

Y (0() = Q(S\{i})) =v(S) foreachse2"\ {0}.
=
Then for each S € 2V:
0(S) = P(S,v) + Q(0). (17.21)
Proof. The proof of (17.21) is by induction on |S|. Obviously, (17.21) holds if

|S| = 0. Take T with |T| > 0 and suppose (17.21) holds for all S with |S| < |T|.
Then

Q(T) = |77 (v(T) + ;Q(T\{i}))

= |77 (v(T) +T(Q(0) + Y, P(T\ {i},v))

ieT

= Q(0)+|T|" ' (v(T) + Y. P(T\ {i}.v))

ieT

= Q(0)+P(T,v). 0

Lemma 17.17. The Shapley value ® is HM-consistent.
Proof. Take (N,v)in ¢, and 0 # U C N. We have to prove that
®;(N\U,vy o) =Pi(N,v) forallie N\U. (17.22)

Note that, in view of the definition of vy ¢, efficiency of ®, and Theorem 17.12(3),
we have forall S C N\ U:

vua(S) =v(SUU) = Y ®(SUUv) =) ®(SUU,v)
icU icS

=Y P(SUU,v)=P((SUU)\{i},v). (17.23)

icS

4 Named after Hart and Mas-Colell.
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For § € 2M\V define Q(S) := P(SUU,v). Then, by Lemma 17.16, with N\ U and
vy,@ in the roles of N and v, (17.23) implies

Q(S) = P(S,vU7<1>) + Q(@) = P(S,vU7<1>) +P(U,v)
forall S C N\ U. Hence, by the definition of Q:
P(SUU,v) = P(S,vy.0) + P(U,v). (17.24)
(17.24) and Theorem 17.12(3) imply
®;(N\U,vy.0) = P(N\U,vy.0) — P(N\U)\ {i},vv.0)
= P(N,V) 7P(N\ {l}7v) = @i(N,V).
So (17.22) holds. a
Call a value y standard for two-person games if for all ({i,j},v)

Villi, 7hv) = S 0G6.)) +v() — (),

.. .. . .
vi({i ) = 5 (0, )) = v(i) +v())-
Note that the Shapley value is standard for two-person games. It turns out that this
property, together with HM-consistency, characterizes the Shapley value.

Theorem 17.18. Let y be a value on 9. Then y is standard for two-person games
and HM-consistent if, and only if, Y is the Shapley value.

Proof. (a) By Lemma 17.17, ® is HM-consistent. Further, ® is standard for two-
person games.

(b) For the proof of the converse, assume Y has the two properties in the theorem. It
will first be proved that y is efficient. For two-person games this is true by standard-
ness. Let ({i},v) be a one-person game. To prove that y;({i},v) = v(i), construct a
two-person game ({7, j},v*) (with j # i) by defining

V(i) = v(@), vi() =0, v ) = ().
From the standardness of y it follows that
vi((,j),v") = v(@), w;((i, j),v") = 0. (17.25)

The definition of v} ,, and (17.25) imply: v} ,, (i) = v*(i, j) — y;((i, j), v*) = v(i) —
0=v(i). So
{i}viy) = ({i}v). (17.26)

Then, by (17.26), the consistency of y and (17.25):

vi{it,v) = wil{i}viy) = wi{i, j}v) = v(i).
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So for one- and two-person games the rule v is efficient. Take a game (S,v) with
|S| > 3 and suppose that for all games (7,v) with |T'| < |S| the rule y is efficient.
Take k € S. Then the consistency of y implies

Zwi(&v) = Wk(S7V)+ Z Wi(&v)
ics ieS\{k}

=S v+ Y, wilS\{k},viy)
ieS\{k}

= Wi(S,v) + v y(S\ {k})
=v(S).
Hence, vy is an efficient rule.

(c)IfaQ:¥ — R can be constructed with Q(0,v) = 0 and

Vi(N,v) = Q(N,v) = O(N\{i},v) (17.27)

for all (N,v) in ¢ and i € N, then by (b) and Theorem 17.12(1), Q = P and then
y;(N,v) = ®;(N,v) by Theorem 17.12(3).

Hence, the only thing to do is to construct such a Q. Start with Q(0,v) := 0,
o({i},v) :=v(i), 0({i, j},v) :== 5 (v(i, j) +v(i) +v(j)) and continue in a recursive
way as follows. Let (N,v) € ¢, |[N| > 3 and suppose Q with property (17.27) has
been defined already for games with less than |N| players. Then one can define
Q(N,v) := a if, and only if

o—Q(N\{i},v)=y;(N,v) forallieN.
This implies that the proof is complete if it can be shown that

Vi(N,v) + O(N\ {i},v) = y;(N,v)+ Q(N\ {j},v) foralli,jeN. (17.28)

To prove (17.28) take k € N\ {7, j}(|[N| > 3). Then

Vi(N,v) = Wi(N,v) = Wi(N\ {k}, viey) — Wi(N \ {k},vey)
= Q(N\{k},viy) = QN \ {k. i}, viey)

— O(N\{k},vey) + QIN\{k, j},vey)
(—O(N\{k,i},viy) + QN \{i, j, k},viy))
+OWN\{k, j}viy) — QN \{i, j.k}, vicy)
= —Yi(N\{k, i}, viy) + V(N \ {k, j}, vicy)
=y (N\{i},v) + wi(N\ {j}.v)
= —O(N\{i},v)+ Q(N\{i, j},v)

+OWN\{j},v) — QN \{i,j},v)
= OWN\{j},v) - QN \{i},v),
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where HM-consistency of y is used in the first and fifth equality and (17.27) for
subgames in the second, fourth and sixth equality.
This proves (17.28). O

Problems

17.1. The Games 1¢

(a) Show that {17 € 9N | T € 2¥\ {0}} is a basis for ¥V.

(b) Show that there is no null-player in a game (N, 17) (T # 0).
(c) Determine the Shapley value ®(N, 17).

17.2. Unanimity Games

(a) Prove that the collection of unanimity games {ur | T € 2"\ {0}} is a basis for
@N _(Hint: In view of Problem 17.1(a) it is sufficient to show linear independence.)

(b) Prove that for each game v € @N.

v= Z crur  with  c¢r = Z (=D)T=Bly(s).
T\ (0} S:SCT

17.3. Necessity of the Axioms in Theorem 17.4
Show that the Shapley value satisfies EFF, NP, SYM, and ADD.

17.4. Dummy Player Property and Anonymity

Show that DUM implies NP, and that AN implies SYM, but that the converses of
these implications do not hold. Show that the Shapley value has the dummy player

property.
17.5. Shapley Value, Core, and Imputation Set

Show that the Shapley value of a game does not have to be an element of the core or
of the imputation set, even if these sets are non-empty. How about the case of two
players?

17.6. Shapley Value as a Projection

The Shapley value @ : 4¥ — R can be seen as a map from %" to the space AV of
additive games by identifying RY with AV,
Prove that & : ¥V — AV is a projectioni.e. o d = P.

17.7. Shapley Value of Dual Game

The dual game (N,v*) of a game (N,v) is defined by v*(S) = v(N) —v(N '\ S) for
every S C N. Prove that the Shapley value of v* is equal to the Shapley value of v.
(Hint: If v=Y arur, then v* =Y oruj.)
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17.8. Multilinear Extension
(1) Prove (17.15).

(2) Show that f in (17.14) is a multilinear function. (A function g : R” — R is called
multilinear if g is of the form g(x) = Y7y cr ([T;er xi) for arbitrary real numbers
CT.)

(3) Prove that £ is the unique multilinear extension of ¥ to [0, 1]V.
17.9. The Beta-Integral Formula
Prove the beta-integral formula used in the proof of Theorem 17.9.

17.10. Path Independence of ®

Let (N,v) € 4N with N = {1,2,...,n}. Prove that for each permutation 7 : N — N
we have

™=

Zn:d)T(k)({r(l),r(Z),...,r(k)},v) =Y O ({1,2,...,k},v).
=1

k=1

17.11. An Alternative Characterization of the Shapley Value

Let y be a value on ¢. Prove: y = @ if and only if y has the following four
properties:

(1) y is HM-consistent.
(2) y is efficient for two-person games.
(3) y is anonymous for two-person games.

(4) y is relative invariant w.r.t. strategic equivalence for two-person games. (This

means: (Wi(7), y;(7)) = a(yi(v), y;(v)) + (Bi, B;) whenever #(S) = av(S) +
Y.ics Bi for every coalition S, where ¢ > 0 and f3;, ; € R.)



Chapter 18
Core, Shapley Value, and Weber Set

In Chap. 17 we have seen that the Shapley value of a game does not have to be
in the core of the game, nor even an imputation (Problem 17.5). In this chapter
we introduce a set-valued extension of the Shapley value, the Weber set, and show
that it always contains the core (Sect. 18.1). Next, we study so-called convex games
and show that these are exactly those games for which the core and the Weber set
coincide. Hence, for such games the Shapley value is an attractive core selection
(Sect. 18.2). Finally, we study random order values (Sect. 18.3), which fill out the
Weber set, and the subset of weighted Shapley values, which still cover the core
(Sect. 18.4).

18.1 The Weber Set

Let (N,v) € 9V, Recall the definition of a marginal vector from Sect. 17.1.

Definition 18.1. The Weber set of a game (N,v) € ¥V is the convex hull of its
marginal vectors:

W(v) := conv{m®(v) | o € TI(N)} .

Example 18.2. Consider the three-person game ({1,2,3},v) defined by v(12) =
v(13)=1,v(23) = —1,v(123) =3, and v(i) = 0 for every i € {1,2,3}. The marginal
vectors of this game, the core and the Weber set are given in Fig. 18.1.

We show now that the core is always a subset of the Weber set (Weber [146]; the
proof is from Derks [29]).

Theorem 18.3. Let (N,v) € 4VN. Then C(v) CW(v).

Proof. Suppose thereis anx € C(v)\ W (v). By a separation theorem (Theorem 22.1),
there exists a vector y € RY such that w-y > x-y for every w € W (v). In particular,

m®-y>x-y foreveryo €II(N). (18.1)

H. Peters, Game Theory — A Multi-Leveled Approach. 259
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(6(1),0(2),0(3)) m§ m§ m§
(1,2,3) 0 1 2
(1,3,2) 0 2 1
(2,1,3) 1 0 2
(2,3,1) 4 0 -1
(3,1,2) 1 2 0
(3,2,1) 4 —1 0
(0,—1,4)

W(v)
(4,-1,0)

(5,7],*1) O (074771)

(4,0,—1)

Fig. 18.1 Example 18.2. The core is the convex hull of the vectors (3,0,0), (1,2,0), (0,2,1),
(0,1,2), and (1,0,2). The Weber set is the convex hull of the six marginal vectors

Letm e H(N) with Yr(1) > Yr(2) > > Ya(n)- Since x € C(V),

mry = i‘{y,I(i)(v(n(l),n(Z),...Jr(i)) —v(n(l),m(2),...,m(i—1)))

i=1

n—1 i

< Ya) X Xx() + L, (i) — Va(ie1) Z
=

i=1 j=1
i

_;yn Z ;yn an

= Z)’n(i)xn:(i) =Xy
i=1

contradicting (18.1). a
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18.2 Convex Games

For the coincidence of core and Weber set the following possible property of a game
plays a crucial role.

Definition 18.4. A TU-game (N,v) is convex if the following condition holds for
all S, T CN:
v(S)+v(T) <v(SUT)+v(SNT). (18.2)

Observe that convexity of a game implies super-additivity (cf. (16.2)): v is super-
additive if (18.2) holds whenever S and T have empty intersection. The intuition
is similar: larger coalitions have a relatively larger worth. This intuition is also
apparent in the following condition:

Forallie Nand SCT C N\ {i}: v(SUQ) —v(S) <v(TUi)—w(T). (18.3)
Lemma 18.5. A game (N,v) € 9V is convex if and only if it satisfies (18.3).

Proof. Letv € 4. Obviously, (18.3) follows from (18.2) by taking, for S and T in
(18.2), SUiand T from (18.3), respectively.
In order to derive (18.2) from (18.3), first take Sy C 7o C N and R C N\ Tp, say
R =/{iy,...,ix}. By repeated application of (18.3) one obtains
V(S() U i1) —v(Sp) < V(T() U i1) — V(T())
V(So Ui iz) — V(So U il) < V(To Ui iz) — V(TO U i])

v(So Uiy ~~~ik) —v(SoUiy---ig—q) < V(TOUi1---ik) —V(T()Uil---ik,l) .
Adding these inequalities yields
v(SoUR) —v(So) < v(TyUR) —v(Tp)

for all R C N\ Ty. Applying this inequality to arbitrary S, T by setting So = SN 7T,
To=T,and R=S\T, yields (18.2). O

The importance of convex games for the relation between the core and the Weber
set follows from the following theorem (Shapley [124]; Ichiishi [58]).

Theorem 18.6. Let v € 9N, Then v is convex if and only if C(v) = W (v).

Proof. (a) Suppose v is convex. For the ‘only if” part it is, in view of Theorem 18.3
and convexity of the core, sufficient to prove that each marginal vector m”™(v) of v is
in the core. In order to show this, assume for notational simplicity that 7 is identity.
Let S C N be an arbitrary coalition, say S = {ij,...,is}. Then, for 1 < k <, by
(18.3):

v(il,...,ik)fv(il,...,ik,l) Sv(l,z,...,ik)7\)(1,2,...,1'/(7l)ZmZ(V) .
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Summing these inequalities from k& =1 to k = s yields
N
v(S) =v(i1,..., i) < Z Zm
k=1 icS
which shows m™(v) € C(v).
(b) For the converse, suppose that all marginal vectors of v are in the core. Let

S,T C N be arbitrary. Order the players of N as follows:

N = {l17 lk>lk+l7 ié7i€+l7"'7iS7iS+17~~~7in}'
P G
SOT T\S S\T N\(SUT)

This defines an ordering or permutation 7 with corresponding marginal vector
m(v) =m™(v). Since m(v) € C(v),

V() < %mi(v)
k s
= Zm,J(v)Jr Z mi; (v)
Jj=1 Jj=0+1
=v(i1,. ., 0x)
+ (i, yiprr) —vlit, .- ip)]
+ (i, eyigrn) —v(iny .- sips]

+ --‘[V(il,...,is)7\)(!.1,...,['5,1]
=v(SNT)+v(SUT)—v(T),
which implies (18.2). So v is a convex game. O

An immediate consequence of Theorem 18.6 and the definition of the Shapley value
(Definition 17.1) is the following corollary.

Corollary 18.7. Let v € 4V be convex. Then ®(v) € C(v), i.e., the Shapley value is
in the core.

18.3 Random Order Values

A value v : 9V — RV is called a random order value if there is a probability
distribution p over the set of permutations IT(N) of N such that

=Y p N,v)

EEH

for every (N,v) € ¥V, In that case, we denote ¥ by ®”. Observe that ®” is the
Shapley value ® if p(r) = 1/n! for every & € II(N). Obviously,

W(v) = {x € RN | x = ®”(v) for some p}.
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Random order values satisfy the following two conditions.

Monotonicity (MON): y/(v) > 0 for all monotonic games v € ¢V, [The game v is
monotonic if S C T implies v(S) < v(T) for all S,7 C N.]

Linearity (LIN): w(av+ Bw) = aw(v) + By(w) for all v,w € 4V, and o, € R
(where, for each S, (av+ Bw)(S) = av(S) + Bw(S)).

Monotonicity says that in a monotonic game, where larger coalitions have higher
worths, i.e., all marginal contributions are nonnegative, every player should receive a
nonnegative payoff. Linearity is a strengthening of additivity. The main result in this

section is the following characterization of random order values (see Problem 18.7
for a strengthening of the ‘only if” part of this theorem).

Theorem 18.8. Ler v : @GN RN be a value. Then v satisfies LIN, DUM, EFF, and
MON if and only if it is a random order value.

The proof of Theorem 18.8 is based on a sequence of propositions and lemmas,
which are of independent interest.

Proposition 18.9. Let y : 9N — RN be a linear value. Then there is a collection of
constants {a7 € R[i €N, 0 # T C N} such that W;(v) = Lo.rcy apv(T) for every
ve 9N andic N.

Proof. Letay, := yi(17) foralli € N and @ # T C N (cf. Problem 17.1). For every
vE DN we have v = Yr.ov(T)17. The desired conclusion follows from linearity
of y. O

Proposition 18.10. Let y : 4V — RN be a linear value satisfying DUM. Then there
is a collection of constants {p'» € R|i € N, T C N\ i} with YrewPr = 1 for all
i € N, such that for every v € 4~ and everyi € N:

Vi) = Y s Ui (7))

TCN\i

Proof. Let v € 9" and i € N. By Proposition 18.9 there are ). such that y;(v) =
Yozrenapv(T). Then 0 = yi(uy;) = ay Jrajv\l., where the first equality follows
from DUM. Assume now as induction hypothesis that a} ;+ay =0 forall T C N \i
with |T'| > k > 2 (we have just established this for k =n— 1), and let S C N \ i with
|S| =k — 1. Then

0 = wi(us)

- Y &

T:SCT

_ i i i i
= Y (dpyi+ay)+agy+ds
T:SCTCN\i

i i
= agy;t+ag,

! As before, we write N \ i instead of N\ {i} (etc.) for brevity.
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where the last equality follows by induction and the first one by DUM. Hence, we
have proved that a ; +a} = 0 for all T C N\iwith 0 <|T[<n—1. Now define,
forallie Nandall such 7T, pT = aTUl —a’y, and define pj := a{ } Then for every

ve@Nandie N:
viv) = Y @)=Y prv(Tui)—v(T)].
0ATCN TCN\i
Finally, by DUM,

L=up (i) =vilug) = Y, pr,
TCN\i

which completes the proof of the proposition. a

Proposition 18.11. Let v : 9V — RY be a linear value satisfying DUM and MON.
Then there is a collection of constants {p € R[i € N, T C N\ i} with Y7oy pr =
Land pi; > 0forall S CN\iandi€ N, such that for every v € 9N and every i € N:

wi(v)= Y, priv(TUi)—w(T)].

TCN\i

Proof. In view of Proposition 18.10 we only have to prove that the weights piT are
nonnegative. Let i € N and T C N\ i and consider the game i assigning worth 1 to
all strict supersets of 7' and 0 otherwise. Then y;(iiy) = p%. by Proposition 18.10.
Since dr is a monotonic game, this implies piT > 0. O

Lemma 18.12. Let v : 9V — RY be a value and {p}. e R |i € N, T C N\ i} bea
collection of constants such that for every v € 4N and every i € N:

wiv)= Y, priv(TUi)—w(T)].

TCN\i

Then vy is efficient if and only if Y ;cn ij\i =land Y cr piT\l. =Y jeNT p]% for all
0#T#N.

Proof. Letv € 4V . Then

W) =), Z\ Prv(TUi) —v(T)]
iENTCN\i
- (g 2 )

Clearly, this implies efficiency of y if the relations in the lemma hold. Conversely,
suppose that y is efficient. Let @ ## T C N and consider the games ur and iir. Then
the preceding equation implies that

y(ur)(N) —yw(ar)(N) = Y. phi— Y p)

icT JEN\T
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The relations in the lemma now follow by efficiency of v, since ur(N) — iy (N) is
equal to 1 if 7 = N and equal to O otherwise. a

We are now sufficiently equipped to prove Theorem 18.8.

Proof of Theorem 18.8. We leave it to the reader to verify that random order values
satisfy the four axioms in the theorem. Conversely, let y satisfy these four axioms.
By Proposition 18.11 there is a collection of constants {pi- € R |i € N, T C N\ i}
with Y ren; piT =land pg >0 forall SC N\iand i€ N, such that for every v € 4V
and every i € N: .
vilv)= Y priv(TUi)—v(T)].
TCN\i

For all i € N and T C N\ i define A(T) := ¥jenr pj} and A(i;T) := ph.JA(T)
if A(T) # 0, A(i;T) := 0 if A(T) = 0. For any permutation 7w € II(N) write
= (i1,...,iy) (thatis, w(k) = iy for all k € N). Define

p(m) = py Al {i DAG3: {inia}) -+ Alins (it - in1 }) -
Then it can be verified (Problem 18.8) that

Z p(m Zpé, . (18.4)

well(N) ieEN

We claim that for every 0 <7 <n— 1 we have

Y Y ph=1. (18.5)

T:|T|=t ieN\T

To prove this, firstlet f = n — 1. Then the sum on the left-hand side of (18.5) is equal
to Yien pjv\l., which is equal to 1 by Lemma 18.12. Now as induction hypothesis
assume that (18.5) holds for 7 + 1. Then
Z Z Pr = Z Z P
T:|T|=t ieN\T T:|T|=t+1 i€l
=Yy Y
T:|T|=t+1 ieN\T
=1

)

where the second equality follows by Lemma 18.12 and the last equality by induc-
tion. This proves (18.5). In particular, for 7 = 0, we have Y ;cy pp = 1. Together with
(18.4) this implies that p(-) as defined above is a probability distribution on IT(N).

In order to complete the proof, it is sufficient to show that y = ®”. For every game
ve %N andi € N we can write

= X P () Ui) = v(Pz(i))] ,

TFEH



266 18 Core, Shapley Value, and Weber Set

where Pr (i) denotes the set of predecessors of player i under the permutation 7 (cf.
Sect. 17.1). Hence, it is sufficient to prove that for alli € N and T C N\ i we have

pr = Y  pm). (18.6)
RET(N): T=Pyg(i)

This is left as an exercise (Problem 18.9) to the reader. a

18.4 Weighted Shapley Values

The Shapley value is a random order value that distributes the dividend of each
coalition equally among all the members of that coalition (see Theorem 17.7). In
this sense, it treats players consistently over coalitions. This is not necessarily the
case for every random order value. To be specific, consider Example 18.2. The pay-
off vector (2.5,—0.5,1) is a point of the Weber set that can be obtained uniquely
as d”(v), where the probability distribution p assigns weights 1/2 to the permuta-
tions (3,2,1) and (2, 1,3). If we look at the distribution of dividends resulting from
the associated marginal vectors (cf. Problem 18.1), we obtain that A, (123) is split
equally between players 1 and 3 (they are the only ones that occur last in the two per-
mutations), whereas A, (23) is split equally between players 2 and 3. (A,(12) goes
to player 1 and A,(13) is split evenly between players 1 and 3.) Hence, whereas
player 2 has zero power compared to player 3 in distributing A, (123), they have
equal power in distributing A, (23). In this respect, players 2 and 3 are not treated
consistently by ®7.

In order to formalize the idea of consistent treatment, we first define positively
weighted Shapley values. Let @ € RY with @ > 0. The positively weighted Shap-
ley value ®% is defined as the unique linear value which assigns to each unanimity
game (N, ug):

® _ fo/o(S) fories
@ (us) = {0 forie N\S. (18.7)

Owen [97] has shown that these positively weighted values are random order values.
More precisely, define independently distributed random variables X; (i € N) on
[0,1] by their cumulative distribution functions [0,1] 3 ¢ — " (that is, X; < r with
probability t“’i). Then, define the probability distribution p® by

1 In Th—1 %)
pe(m) = / / / / dty - de R de de (18.8)
0o Jo JO 0

for every permutation 7 = (iy, i, ...,i,). Thatis, p®(x) is defined as the probability
that iy comes before i, i» before i3, etc., evaluated according to the independent
random variables X;. Then we have

Theorem 18.13. For every @ € RN with @ > 0, ®® = ®r”,
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Proof. Let S be a nonempty coalition and i € S. It is sufficient to prove that
(0]
@ (us) = w;/@(S). Note that

o us)= Y p°m),

T:S\iCPr (i)

and, the right-hand side of this identity is equal to

L rti
/ ! dr9O\) g
0 Jo !

which, in turn, is equal to @;/®(S). O

Next, we extend the concept of weighted Shapley value to include zero weights.
Consider for instance, the three-person random order value that puts weight 1/2 on
the permutations (1,2,3) and (1,3,2). Then (cf. again Problem 18.1) the dividend
A, (12) goes to player 2, the dividend A, (13) to player 3, and the dividends A, (23)
and A,(123) are split equally between players 2 and 3. Thus, this random order
value treats players consistently but we cannot just formalize this by giving player
1 weight 0 since player 1 does obtain A, (1).

To accommodate this kind of random order values we introduce the concept of a
weight system. A weight system w is an ordered partition (S7,...,Sy) of N together
with a vector @ € R" such that @ > 0. The weighted Shapley value ®" is defined
as the unique linear value which assigns to each unanimity game ug € ¥V:

@;/0(SNS,) forieSNS,, and m =max{h:S,NS # 0}

w —
D7 (us) = {O otherwise. (18.9)

Hence, Sj, is more powerful as / is larger; for each coalition S we consider the subset
of the most powerful players SN S,,, where m is the largest index % such that the
intersection of S;, with S is nonempty, and they distribute the dividend of coalition
S according to their (relative) weights @;/®(SN S,,). Clearly, for k = 1 we obtain a
positively weighted Shapley value as defined above.

Weighted Shapley values are again random order values. For a weight system w
with ordered partition (Sj,...,S;) we only assign positive probability to those per-
mutations in which all players of §; enter before all players of S, all players of S,
enter before all players of S3, etc. Given such a permutation we can assign proba-
bility p;(7) to the order induced by 7 on S in the same way as we did above in
(18.8); similarly, we assign probabilities py(7),..., pr(7) to the orders induced on
S2,...,Sk, respectively. Then we define

k
p"(n) Zthh(%)~
=1

It can be shown again that ®* = &F" .
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An axiomatic characterization of weighted Shapley values is provided in Kalai and
Samet [62], see also Derks et al. [30], and Problem 18.10.

By Theorem 18.3 we know that the core of any game is included in the Weber set
and, thus, in any game any core element corresponds to at least one random order
value. The following theorem states that, in fact, the core is always covered by the
set of weighted Shapley values.

Theorem 18.14. Let v € 4N and x € C(v). Then there is a weight system w such
that x = ®"(v).

For a proof of this theorem we refer to Monderer et al. [79].

Problems

18.1. Marginal Vectors and Dividends
Let (N,v) € ¥V,

(1) Show that
v(S) =Y AT), (18.10)

7Cs
where A, (T) are the dividends defined in Sect. 17.1.

(2) Express each marginal vector m”™ in terms of dividends.

18.2. Convexity and Marginal Vectors
Prove that a game (N, v) is convex if and only if for all T € 2V\ {0}:

18.3. Strictly Convex Games

Call a game (N, v) strictly convex if all inequalities in (18.3) hold strictly. Show that
in a strictly convex game all marginal vectors are different.

18.4. Sharing Profits

Consider the following situation with n+ 1 players. Player O (the landlord) owns the
land and players 1,2,...,n are n identical workers who own their labor only. The
production f : {0,1,...,n} — R describes how much is produced by the workers.
Assume that f is nondecreasing and that f(0) = 0. We associate with this situation
a TU-game that reflects the production possibilities of coalitions. Without agent 0
a coalition has zero worth, otherwise the worth depends on the number of workers.

More precisely,
_J0 if0¢S
V() '{f(|S|—l) ifoes
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for every coalition S C {0, 1,...,n}.
(a) Compute the marginal vectors and the Shapley value of this game.
(b) Compute the core of this game.

(c) Give a necessary and sufficient condition on f such that the game is convex. (So
in that case, the core and the Weber set coincide and the Shapley value is in the
core.)

18.5. Sharing Costs

(Cf. [71].) Suppose that n airlines share the cost of a runway. To serve the planes of
company i, the length of the runway must be ¢;, which is also the cost of a runway
of that length. Assume 0 < ¢; < ¢p < --- < ¢,. The cost of coalition S is defined as
cs = max,cg ¢; for every nonempty coalition S.

(a) Model this situation as a cost savings game (cf. the three communities game in
Chap. 1).

(b) Show that the resulting game is convex, and compute the marginal vectors, the
Shapley value, and the core.

18.6. Independence of the Axioms in Theorem 18.8

Show that the axioms in Theorem 18.8 are independent.

18.7. Null-Player in Theorem 18.8
Show that Theorem 18.8 still holds if DUM is replaced by NP.

18.8. Equation (18.4)
Prove (18.4).

18.9. Equation (18.6)
Prove (18.6).

18.10. Characterization of Weighted Shapley Values

Say that a value y : 4N — R¥ satisfies the Partnership axiom if y;(y(ur)(S)us) =
Y (ur) forall S C T C N and all i € S. Prove that a value y satisfies LIN, DUM,
EFF, MON, and Partnership, if and only if it is a weighted Shapley value.

18.11. Core and Weighted Shapley Values in Example 18.2

In Example 18.2, determine for each x € C(v) a weight system w such that x =
D"(v).



Chapter 19
The Nucleolus

The core of a game with transferable utility can be a large set, but it can also be
empty. The Shapley value assigns to each game a unique point, which, however,
does not have to be in the core.

The nucleolus (Schmeidler [116]) assigns to each game with a nonempty impu-
tation set a unique element of that imputation set; moreover, this element is in the
core if the core of the game is nonempty. The pre-nucleolus always exists (and does
not have to be an imputation, even if this set is nonempty), but for balanced games
it coincides with the nucleolus.

In this chapter, which is partially based on the treatment of the subject in [100]
and [98], we consider both the nucleolus and the pre-nucleolus. The reader is
advised to read the relevant part of Chap. 9 first.

In Sect.19.1 we start with an example illustrating the (pre-)nucleolus and
Kohlberg’s balancedness criterion (Kohlberg [65]). Section 19.2 introduces the lexi-
cographic order, on which the definition of the (pre-)nucleolus in Sect. 19.3 is based.
Section 19.4 presents the Kohlberg criterion, which is a characterization of the (pre-)
nucleolus in terms of balanced collections of coalitions. Computational aspects are
discussed in Sect. 19.5, while Sect. 19.6 presents Sobolev’s [127] characterization
of the pre-nucleolus based on a reduced game property.

19.1 An Example

Consider the three-person TU-game given by Table 19.1. It is easy to see that
this game has a nonempty core; for instance, (8,8,8) is a core element. Let x =
(x1,x2,x3) be an arbitrary efficient payoff distribution. For a nonempty coalition S,
define the excess of S at x as e(S,x) := v(S) — x(S). For an efficient vector x the
excess of the grand coalition N is always zero, and is therefore omitted from con-
sideration. The idea underlying the nucleolus is as follows. For an arbitrary efficient
vector consider the corresponding vector of excesses. Among all imputations (and
for the pre-nucleolus: among all efficient vectors) find those where the maximal
excess is minimal. If this set consists of one point, then this is the (pre-)nucleolus.
Otherwise, continue by minimizing the second largest excess, etc. Note that if a
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Table 19.1 The example of Sect. 19.1

S o {1} {2p {3v {1.2p {1,3} {23} ({123}
v(S) 0 4 4 4 8 12 16 24
e(S,(8,8,8)) —4 -4 -4 -3 —4 0
e(S,(6,9,9)) -2 -5 -5 -7 -3 -2
e(S,(6,8,10)) -2 -4 -6 -6 —4 -2

game has a nonempty core then every core element has by definition only non-
positive excesses, whereas efficient payoff vectors outside the core have at least one
positive excess. This implies that for balanced games the successive minimization of
excesses can be restricted to core elements, and the pre-nucleolus and the nucleolus
coincide.

In order to illustrate these ideas, consider again Table 19.1, where the excesses
of some core vectors for this example are calculated. The highest excess for the
core vector (8,8,8) is equal to zero, attained for the coalition {2,3}. Obviously, this
excess can be decreased by increasing the payoff for players 2 and 3 together, at
the expense of player 1, who has an excess of —4. Thus, a next ‘try’ is the payoff
vector (6,9,9), which indeed has maximal excess —2 reached for coalitions {1} and
{2,3}.Itis then obvious that this is indeed the minimal maximal excess, because the
excess for coalition {1} can only be decreased by increasing the excess for {2,3},
and vice versa. Observe that the collection {{1},{2,3}} is balanced (in particular,
it is a partition).! At (6,9,9) the second maximal excess is equal to —3, reached
by the coalition {1,3}. Again, this might be decreased by improving the payoff
for players 1 and 3 together at the expense of player 2. Because the payoff for
player 1 has already been fixed at 6, this means that the payoff for player 3 has to
be increased and that of player 2 has to be decreased. These observations lead to the
next ‘try’ (6,8, 10), where the maximal excess is still equal to —2, and the second
maximal excess equals —4, reached by the coalitions {2} and {1,3}. It is obvious
that this second maximal excess, as well as the third maximal excess of —6, cannot
be decreased any further. Observe that also the collections {{1},{2,3},{2},{1,3}}
and {{1},{2,3},{2},{1,3},{3}.{1,2}} are all balanced.

It follows that (6,8,10) is the (pre-)nucleolus of this game. Moreover, the
excesses are closely related to balanced collections of coalitions; this will appear
to be a more general phenomenon, known as the Kohlberg criterion.

19.2 The Lexicographic Order

The definition of the nucleolus is based on a comparison of vectors by means of the
lexicographic order. We briefly discuss this order and examine some of its proper-
ties. Let R¥ be the real vector space of dimension k. A binary relation > on R¥ that
satisfies:

! See Chap. 16.
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(1) Reflexivity: x = x for all x € R¥
(2) Transitivity: x =z for all x,y,z € Rf withx = yand y > z

is called a partial order. For a partial order >, we write X > y to indicate that x >~y
and y # x. A partial order - is called a weak order if it satisfies

(3) Completeness: x =y ory > x for all x,y € R* with x #£y
If also
(4) Antisymmetry: x =y for all x,y € R¥ withx = yandy > x

the relation is called a linear order.?

On the vector space R¥ we define the linear order >1ex as follows. For any two
vectors x and y in RX, x is lexicographically larger than or equal to y — notation:
X ~1ex ¥ — if either x =y, or x # y and for

i=min{j € {1,....k} | x; #y;}

we have that x; > y;. In other words, x should assign a higher value than y to the
first coordinate on which x and y are different. For obvious reasons the order > is
called the lexicographic order on R,

The lexicographic order cannot be represented by a continuous utility function
(cf. Problem 19.5). In fact, it can be shown that the lexicographic order on R¥ cannot
be represented by any utility function (cf. Problem 19.6).

19.3 The (Pre-)Nucleolus

Let (N,v) be a TU-game and let X C RV be some set of payoff distributions. For

every non-empty coalition S C N and every x € X the excess of § at X is the number
e(S,x,v) :=v(S) —x(S).

This number can be interpreted as the dissatisfaction (complaint, regret) of the coali-
tion S if x is the payoff vector. For every x € X let 6(x) denote the vector of excesses
at x arranged in non-increasing order, hence

G(X) = (e(Sl,x,v),...,e(Szn,l,x,v))

such that e(S;,x,v) > e(S,,x,v) forall 1 <r < p <2"—1. Let =¢ be the lexico-
graphic order on R*'~!, as defined in Sect. 19.2. The nucleolus of (N, v) with respect
to X is the set

AN (N, X):={x€X | 0(y) =1ex O(x) forally € X}.

2 See also Chap. 11. Here, we repeat some of the definitions for convenience.
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So the nucleolus consists of all payoff vectors in X at which the excess vectors are
lexicographically minimized. The motivation for this is that we first try to mini-
mize the dissatisfaction of those coalitions for which this is maximal, next for those
coalitions that have second maximal excess, etc.

We first establish conditions under which the nucleolus with respect to a set X is
non-empty.

Theorem 19.1. Let X be non-empty and compact. Then A (N,v,X) # 0 for every
game v.

Proof. First observe that all excess functions e(S,-,v) are continuous and therefore
0(-) is continuous. Define Xj := X and, recursively,

X :={xeX,_1|6(y) > 06,(x) forally € X,_;}

forall + =1,2,...,2" — 1. Since 6(-) is continuous, Weierstrass’ Theorem implies
that every X; is a non-empty compact subset of X;_;. This holds in particular for
t =2"—1and, clearly, Xon_; = A (N,v,X). O

We will show that, if X is, moreover, convex, then the nucleolus with respect to X
consists of a single point. We start with the following lemma.

Lemma 19.2. Let X be convex, X,y € X, and 0 < o < 1. Then
a8 (x) + (1 —)6(y) =iex O(ax+ (1 - a)y). (19.1)
Proof. Let Sy, ...,S2n_1 be an ordering of the non-empty coalitions such that
0(ox+ (1 —a)y) = (e(Si,ax+ (1 —a)y,v),...,e(Sx_1,0x+ (1 — )y, v)).

The right-hand side of this equation is equal to aa+ (1 — o)b, where a =
(e(S1,x,v),...,e(S»m_1,x,v)) and b = (e(S1,y,v),...,e(Sx»_1,y,v)). Since
0(x) =1ex a and O(y) =jex b it follows that

00(x)+ (1 —a)0(y) =1ex ¢a+ (1 —a)b=0(ax+ (1 —a)y),

hence (19.1) holds. O

Remark 19.3. Formula (19.1) shows that 6(-) is quasi-convex with respect to the
ordering >iex.

Theorem 19.4. Let X be non-empty, compact, and convex. Then, for every game
(N,v), the nucleolus with respect to X consists of a single point.

Proof. By Theorem 19.1 the nucleolus is non-empty. Let x,y € A4 (N,v,X) and
0 < o < 1. Then 6(x) = 6(y). By Lemma 19.2,

O(ox+ (1 —a)y) =oab(x)+ (1 —a)6(y).
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Hence 0 (ox+ (1 —a)y)= 0(x)= 0(y) and therefore 6 (x)= 0(y) = aa+ (1 — o)b,
with a and b as in the proof of Lemma 19.2. Since 0(xX) >jx a and 0(y) =jex b it
follows that a = 6(x) and b = 6(y). In a and b the coalitions are ordered in the
same way and therefore this is also the case in 6(x) and 6(y). Hence x and y have
all excesses equal, and thus x =y. O

Well-known choices for the set X are the imputation set I(N,v) of a game (N,v) and
the set of efficient payoff distributions 7*(N,v) = {x € R | x(N) = v(N)}. For an
essential game (N,v) the set I(N,v) is non-empty, compact and convex, and there-
fore Theorem 19.4 implies that the nucleolus with respect to I(N,v) consists of a
single point, called the nucleolus of (N,v), and denoted by v(N,v). Although the
set I*(N,v) is not compact, the nucleolus of (N,v) with respect to this set exists
and is also single-valued (see Problem 19.7): its unique member is called the pre-
nucleolus of (N,v), denoted by v*(N,v). In Problem 19.8 the reader is asked to
show that both points are in the core of the game if this set is non-empty, and then
coincide.

19.4 The Kohlberg Criterion

In this section we derive the so-called Kohlberg criterion for the pre-nucleolus,
which characterizes this solution in terms of balanced sets (cf. Chap. 16). A sim-
ilar result can be derived for the nucleolus, see Problem 19.9, but the formulation
for the pre-nucleolus is slightly simpler.

We start, however, with Kohlberg’s characterization in terms of side-payments.
A side-payment is a vector y € R satisfying y(N) = 0. Let (N,v) be a game and
for every o € R and x € RY denote by

P(a,x,v) ={SCN\{0} ] e(S,x,v) > a}
the set of coalitions with excess at least & at X.

Theorem 19.5. Let (N,v) be a game and x € I*(N,v). Then the following two
statements are equivalent.

(1) x=Vv*(N,v).
(2) For every o such that 2 (o, x,v) # 0 and for every side-payment y with y(S) > 0
forevery S € P(a,x,v) we have y(S) = 0 for every S € Z(a,x,v).

Proof. Assume that x = v*(N,v) and that the conditions in (2) are fulfilled for x, a,
and y. Define z¢ = x+ €y for every € > 0. Then z. € I*(N,v). Choose €* > 0 such
that, for all S € Z(a,x,v) and non-empty 7 ¢ 2(o.,X,v),

e(S,ze+,v) > e(T,ze+,v). (19.2)
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For every S € 2(a,x,v),

e(S,2¢+,v) = v(8) — (x(S) +€"(S))
e(S,x,v) —€"y(S)
< e(S,x,v). (19.3)

Assume, contrary to what we want to prove, that y(S) > 0 for some S € Z(a,x,v).
Then, by (19.2) and (19.3), 6(x) =jex 0(z¢+), a contradiction.

Next, let x € I*(N,v) satisfy (2). Letz = v*(N,v). Denote

{e(S,x,v) | S€2VM\{0}} ={au,..., )}

with oy > --- > a,. Define y = z — x. Hence, y is a side-payment. Since 0(X) »ex
0(z), we have e(S,x,v) = oy > ¢(S,z,v) forall S € Z(oy,x,v) and thus

e(S,x,v) —e(S,z,v) = (z—x)(S) =y(S) > 0.

Therefore, by (2), y(S) =0 for all S € Z(oy,x,v).
Assume now that y(S) = 0 for all S € Z(oy,x,v) for some 1 < < p. Then, since
6(x) Ziex 0(2),

e(S,x,v) = 0411 > e(S,z,v) forall S € Z(0441,x,v)\ Z(0%,x,v).

Hence y(S) > 0 and thus, by (2), y(S) =0forally € Z(a.1,x,v). We conclude that
y(S)=0forall S € 2V \ {0},s0y =0 and x = z. O

We can now prove Kohlberg’s characterization of the pre-nucleolus by balanced
collections.

Theorem 19.6 (Kohlberg). Let (N,v) be a game and x € I*(N,v). Then the follow-
ing two statements are equivalent.

(1) x=Vv*(N,v).

(2) For every a, Z(o,x,v) # 0 implies that (o, X, v) is a balanced collection.

Proof. Assume that x satisfies (2). Let @ € R such that 2(a,x,v) # 0, and let y
be a side-payment with y(S) > 0 for all § € Z(a,x,v). Since, by (2), Z(a,x,v) is
balanced there are numbers A(S) > 0, S € Z(a,x,v), such that

A(S)eS =e.
SeZ(ax,v)

By taking the product on both sides with y this implies

Y A =y(N)=0.

SeZ(ax,v)

Therefore y(S) = 0 for every S € Z(a,x,v). Thus, Theorem 19.5 implies x =
V¥(N,v).
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Assume next that x = v*(N,v). Let o € R such that 2(a, x,v) # 0. Consider the
linear program

max Z ¥(S) subject to —y(S) <0, S € Z(a,x,v), and y(N) =0. (19.4)
SeZ(ax,v)

This program is feasible and, by Theorem 19.5, its value is 0. Hence (see Prob-
lem 19.10) its dual is feasible, that is, there are A(S) >0, S € 2(a,x,v), and
A(N) € R such that

- Y A®e+ane’= Y e
SeZ(ax,v) SeZ(ax,v)

Hence A(N)e" = Yseo(axy) (1 + A(S))e. Since 1+ A(S) > 0 for every
S e 2(a,x,v), we have A(N) > 0 and thus Z(a,x,v) is balanced. O

19.5 Computation of the Nucleolus

For two-person games, the (pre-)nucleolus is easy to compute (see Problem 19.13).
In general, the computation of the nucleolus can be based on the subsequent deter-
mination of the sets Xy, X1, X, ... in Theorem 19.1, but this may not be easy, as the
following example shows.

Example 19.7. Consider the TU-game v with player set N = {1,2,3,4} defined by?

20 ifS=N

§ ifS={1,2}

)8 ifs={3,4}
=9y irs— {1
2 ifS={3}

0  otherwise.

First observe that it is easy to find some imputation (e.g., x = (6,4,5,5)) such that
the excesses of {1,2} and {3,4} are both equal to —2 and all other excesses are at
most —2. Clearly, this must be the minimal (over all imputations) maximal excess
attainable, since decreasing the excess of {1,2} implies increasing the excess of
{3,4} by efficiency, and vice versa. Thus,

Xi={xel(v)[0(x)1 = -2},

and X, = X since the excess of —2 is reached at the two coalitions {1,2)} and
{3,4}. Consistently with the Kohlberg criterion, these coalitions form a balanced
collection. Next, observe that the remaining excesses are always at most as large as
at least one of the excesses of the four one-person coalitions. So we can find the

3 Observe that this game has a non-empty core and therefore the nucleolus and pre-nucleolus
coincide and are elements of the core. Cf. Problem 19.8.
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second-highest excess by minimizing & subject to the constraints*

8 —X] — X2 = -2
8 — X3 — X4 = -2
4—x1 < a
0 < o
2—-x3< o
—x < o
This can be rewritten as the system
X|+x2 = 10
X3+ X4 = 10
X; > 4—a
X > -
x3>2—0o
X4 > —O
with an obvious minimum value @ = —3. So the next two coalitions of which the

excesses become fixed are {1} and {2}, and, thus, the nucleolus allocates x; =7 to
player 1 and x, = 3 to player 2. The third step in the computation is to decrease
even further subject to the constraints

x3+x4 =10
x3>2—o
X4 > —O.

(Note that the constraints that only refer to x; and x, have become superfluous.) This
linear program has an obvious solution o¢ = —4, which yields x3 = 6 and x4 = 4.
Thus, the (pre-)nucleolus of this game is

v(v) =v*(v)=(7,3,6,4).

It is interesting to see that, even though at first glance player 4 does not seem to
have any noticeable advantage over player 2, he is still doing better in the nucleolus.
This is due to the fact that early on in the process player 4 was grouped together
with player 3, who has a lower individual value than player 1, with whom player 2
becomes partnered. Thus, player 4 obtains a bigger slice of the cake of size 10 that
he has to share with player 3, than player 2 does in a similar situation.

This example raises the question how the nucleolus of a given TU-game can be
computed in a systematic way. More generally, let (N,v) be a game. In order to
compute the nucleolus .4 (N,v,X) for X C R a convex polyhedral set, determined
by a system of linear (in)equalities, we can start by solving the linear program’

Minimize « subject to x(S) + o > v(S), VO#Se2V xeX.

4 The game v is omitted from the notation.
> Under appropriate restrictions this program is feasible and bounded.
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Let o denote the minimum of this program and let X; C X be the set of points
where the minimum is obtained. If |X;| = 1 then .4 (N,v,X) = X|. Otherwise, let
2 be the set of coalitions S such that e(S,x,v) = o for all x € X;, and solve the
linear program

Minimize o subject to x(S) + o > v(S), VO #Se2V\ %, x€X,.

Continuing in this way, we eventually reach a unique point which constitutes the
nucleolus of v with respect to X (cf. Theorem 19.4). The following example (taken
from [98)]) illustrates this.

Example 19.8. Let N = {1,2,3,4} and v(N) = 100, v(123) = 95, v(124) = 85,
v(134) = 80, v(234) = 55, v(ij) = 50 for all i # j, v(i) = O for all i. We compute
the pre-nucleolus (which will turn out to be an imputation and therefore equal to the
nucleolus). We start with the linear program

Minimize o
subject to

x| + xo + x3 + o> 95

X1 + X2 + x4+ 0> 85

X1 +x3+x4+a> 80

Xp) +x3+x4+ 0> 55

xi +x;j+a> 50

Xi +a> 0
X1 + X2 + X3 + x4 = 100.

Solving this program results in o = 10, obtained over the set X given by
x1+x =60, x;>30, x>25  x3=25, x4=15,

and
P = {123,124,34},

which is a balanced set, as was to be expected (cf. Theorem 19.6).
The second linear program is now
Minimize o
subject to
X1 +x3 +x4 + 0> 80
Xo +x3 + x4+ 0> 55
X1 + x3 + o 50
X1 +x4 +Q 50
X2 + X3 + o 50
X2 +x4 +Q 50
xXi + o 0
x € Xj.

VIV

>
>

\%
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By some simplifications this program reduces to

Minimize o
subject to
X1+ o > 40
Xy + o > 35
X1 +xy = 60
x1 > 30
X2 Z 257

with solution ap = 7.5, x; = 32.5, xp = 27.5. Hence, the (pre-)nucleolus of this
game is
Vv(N,v) = v*(N,v) = (32.5,27.5,25,15),

and % = {123,124,34}, %, = {134,234}. By Theorem 19.6 it can be verified that
we have indeed found the pre-nucleolus (Problem 19.15).

19.6 A Characterization of the Pre-Nucleolus

The pre-nucleolus is a single-valued solution concept, defined for any game (N, v).
Hence, it is an example of a value on ¢ (see Chap. 17). In this section we provide a
characterization based on a reduced game property. This characterization was pro-
vided by Sobolev [127]; here, we follow the presentation of [100]. We will not give
a complete proof of this characterization but, instead, refer the reader to the cited
literature.

Let y be a value on ¢, and let x € RV Let S be a non-empty coalition. The DM
reduced game for S at x is the game (S,vsy) € 45 defined by

0 ifT=0
vex(T) =14 v(N)—x(N\S) ifT=S
maxpcpsV(TUQ) —x(Q) otherwise.

This reduced game was introduced by Davis and Maschler [24]. Its interpretation is
as follows. Suppose x is the payoff vector for the grand coalition. The coalition S
could renegotiate these payoffs among themselves. Assume that the outside players
are happy with x. Hence, S has v(N) —x(N \ S) to redistribute. Any smaller coali-
tion 7', however, could cooperate with zero or more outside players and pay them
according to x: then vs x(7') as defined above is the maximum they could get. Hence,
the redistribution game takes the form vy x.

The following axiom for a value y on ¢ requires the outcome of the redistribu-
tion game for S to be equal to the original outcome.

Davis—Maschler consistency (DMC) y;(S,vsx) = W;(N,v) for every (N,v) € ¢,
0#ASCN,x=y(N,v)andi€S.

The announced characterization is based on two other axioms, namely Anonymity
(AN, see Sect. 17.1) and the following axiom.
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Covariance (COV) y(N,av+b) = oy (N,v) +b for all (N,v) € 4, every a € R,
a >0, and every b € RV, where (av +b)(S) := av(S) + b(S) for every non-empty
coalition S C N.

Remark 19.9. Covariance requires that the value y respects strategic equivalence of
games, cf. Problem 16.12.

We first prove that the pre-nucleolus is Davis—Maschler consistent.
Lemma 19.10. The pre-nucleolus, as a value on 94, is Davis—Maschler consistent.

Proof. Let (N,v) €4,x=v*(N,v) and @ # S C N. Let x5 € RS be the restriction of x
to S, then we have to prove that Xg = v*(S,vgx). Let & € R with Z(0ot,Xg,vsx) # 0
and let ys € RS be a side-payment with ys(Q) > 0 for every Q € Z(o,Xs,vsx)
then, in view of Theorem 19.5 it is sufficient to prove that ys(Q) = 0 for every
0 € Z(a,Xg,vsx). Note that

{(TNS|T € D(a,x,v), 0#TNS+#S} = D(at,x5,vs55) \ {S}. (19.5)

Extend ys to a vector y € RY by setting y; = 0 for all i € N\ S. Then y(N) = 0 and,
by (19.5),y(Q) > 0forall Q € Z(a,x,v). By Theorem 19.5, it follows that y(Q) =0
forall 0 € Z(a,x,v). Hence, by (19.5), ys(Q) =0 for all Q € Z(a,Xs,vsx), which
completes the proof. a

As an additional result, we prove that COV and DMC imply Efficiency (EFF).

Lemma 19.11. Let y be a value on ¢ satisfying COV and DMC. Then y satisfies
EFF.

Proof. Let ({i},v) be a one-person game. If v(i) = 0 then, by COV, y({i},0) =
y({i},2-0) =2y({i},0), hence y({i},0) = 0. Again by COV,

v({i},v) = y({i},0+v) = y({i},0) +v(i) = v(i),
so EFF is satisfied. Now let (N, v) € ¢4 with at least two players. Let x = y(N,v) and
i € N.By DMC, x; = y({i},v{; x)- Hence, x; = vi;) (i) = v(N) —x(N '\ {i}), where
the second equality follows by definition of the reduced game. Thus, x(N) = v(N)
and the proof is complete. a

The announced characterization of the pre-nucleolus by Sobolev [127] is as follows.

Theorem 19.12. A value y on 9 satisfies COV, AN, and DMC if and only if it is the
pre-nucleolus.

Proof. COV and AN of the pre-nucleolus follow from Problem 19.17. DMC follows
from Lemma 19.10. For the (quite involved) proof of the only-if statement we refer
the reader to [127] or [100]. O

Snijders [126] provides a characterization of the nucleolus on the class of all games
with non-empty imputation set by modifying the Davis—Maschler consistency
condition.
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Problems

19.1. Binary Relations

Give an example of a relation that satisfies (1)—(3), but not (4) in Sect. 19.2. Also
find an example that only violates (3), and one that only violates (2). What about
(1)? Give an example of a partial order that is neither antisymmetric nor complete.

19.2. Linear Orders

Let > be a linear order. Show that x > y holds if and only if x > y and x #y.

19.3. The Lexicographic Order (1)

Show that > is indeed a linear order.

19.4. The Lexicographic Order (2)

Find the set of points (x1,x;) in R? for which (x1,x;) =jex (3,1). Draw this set in
the Cartesian plane. Is this set closed?

19.5. Representability of Lexicographic Order (1)

Let u:R" — R be a continuous function. Define =, by x =, y if and only if u(x) >
u(y). Use Problem 19.4 to show that =, 7> .

19.6. Representability of Lexicographic Order (2)

Show that the lexicographic order cannot be represented by any utility function.
[Hint: take the lexicographic order on R? and argue that representability implies
that for each real number ¢ we can find a rational number ¢(#) such that g(r) # q(s)
whenever ¢ # 5. Hence, we have uncountably many different rational numbers, a
contradiction. ]

19.7. Single-Valuedness of the Pre-Nucleolus

Prove that the nucleolus of any game (N, v) with respect to I* (N, v) is single-valued.

19.8. (Pre-)nucleolus and Core
Let (N,v) be a game with C(N,v) # 0. Prove that v(N,v) = v*(N,v) € C(N,v).
19.9. Kohlberg Criterion for the Nucleolus

Let (N, v) be a game satisfying I(N,v) # 0, and letx € I(N,v). Prove thatx = V(N,v)
if and only if for every o € R: if Z(a,v,x) # 0 then there exists a set & (o, x,v) C
{{/}1j€eN, xj=v(j)} such that Z(a,x,v) U&(a,X,v) is balanced.

19.10. Proof of Theorem 19.6

In the proof of Theorem 19.6, determine the dual program and conclude that it is
feasible. Hint: use Theorem 16.19 and Remark 16.20.



Problems 283

19.11. Nucleolus of a Three-Person Game (1)
Compute the nucleolus of the three-person game v defined by
s {28 {3} {12} {13} {2.3} {1,2,3}
vs) 4 3 2 4 3 2 12
19.12. Nucleolus of a Three-Person Game (2)
(a) Compute the nucleolus of the three-person TU-game defined by

s {1y {23 3¢ {12} {1,3p {23} {1,2,3}
vs) o 0 1 7 5 3 10

(b) Make a graphical representation of the sets Xp, X1, X>,. ..

19.13. Nucleolus of a Two-Person Game

Compute the pre-nucleolus of a two-person game and the nucleolus of an essential
two-person game.

19.14. Individual Rationality Restrictions for the Nucleolus

Compute the nucleolus and the pre-nucleolus of the three-person TU-game defined
by v(12) = v(13) =2, v(123) = 1 and v(S) = 0 for all other coalitions.

19.15. Example 19.8

Verify that (32.5,27.5,25,15) is indeed the pre-nucleolus of the game in Exam-
ple 19.8, by applying Theorem 19.6.

19.16. (Pre-)nucleolus of a Symmetric Game

Let v be an essential game. Suppose that v is symmetric (meaning that there exists a
function f:R — R such that v(S) = f(|S]) for every coalition S.)

(a) Prove that the (pre-)nucleolus is symmetric, that is, v(v); = v(v); and v*(v); =
v*(v); for all players i, j € N. Give a formula for the (pre-)nucleolus.

(b) Prove that X; (cf. Theorem 19.1) is a singleton set. Which coalitions have
maximal excess in the (pre-)nucleolus?

19.17. COV and AN of the Pre-Nucleolus

Prove that the pre-nucleolus satisfies COV and AN.

19.18. Apex Game

Consider the five-person apex game (N,v) with N = {1,2,3,4,5} and v(S) = 1 if
1 €Sand|S| > 2orif |S| >4, and v(S) = 0 otherwise. Compute the (pre-)nucleolus
of this game.
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19.19. Landlord Game
Consider the landlord game in Problem 18.4. (See also [82].)

(a) Assume that for all i = 1,...,n— 1 we have f(i)— f(i—1) > f(i+1)— f(i).
Show that the (pre-)nucleolus of this game assigns f(n) — 5 [f(n) — f(n—1)] to the
landlord. Compare with the Shapley value.

(b) Assume that for all i = 1,...,n— 1 we have f(i) — f(i— 1) < f(i+1) — f(i),
and that nll f(n) < J[f(n)— f(n—1)]. Show that the (pre-)nucleolus of this game
treats all players (including the landlord) equally.

19.20. Game in Sect. 19.1

Use the algorithm of solving successive linear programs to find the (pre-)nucleolus
of the game discussed in Sect. 19.1. Use Theorem 19.6 to verify that the (pre-)
nucleolus has been found.

19.21. The Prekernel
For a game (N, v) define the pre-kernel Z*(N,v) C I*(N,v) by

e%/ ]\,7 — N7 S7 )
( \)) = {.x (S 1 ( V) | Nlil}zjl})i . e( X V)
— S7 B V f 11 ., j S N .
]\]I\r?{%)? J e( X ) oralli j }

Prove that v*(N,v) € JZ*(N,v).



Chapter 20
Special Transferable Utility Games

In this chapter we consider several classes of games with transferable utility which
are derived from specific economic (or political) models or combinatorial problems.
In particular, we study assignment and permutation games, flow games, and voting

games.!

20.1 Assignment and Permutation Games

An example of a permutation game is the ‘dentist game’ described in Sect. 1.3.4. An
example of an assignment game is the following (from [22]).

Example 20.1. Vladimir (player 1), Wanda (player 2), and Xavier (player 3) each
own a house that they want to sell. Yolanda (player 4) and Zarik (player 5) each
want to buy a house. Vladimir, Wanda, and Xavier value their houses at 1, 1.5, and
2, respectively (each unit is 100,000 Euros). The worths of their houses to Yolanda
and Zarik, respectively, are 0.8 and 1.5 for Vladimir’s house, 2 and 1.2 for Wanda’s
house, and 2.2 and 2.3 for Xavier’s house.

This situation gives rise to a five-player TU-game, where the worth of each coali-
tion is defined to be the maximal surplus that can be generated by buying and selling
within the coalition. For instance, in the coalition {2,3,5} the maximum surplus is
generated if Zarik buys the house of Xavier, namely 2.3 — 2 = 0.3, which is greater
than the 1.2 — 1.5 = —0.3 that results if Zarik buys Wanda’s house. Each coalition
can generate a payoff of at least O because it can refrain from trading at all. The
complete game is described in Table 20.1, where coalitions with only buyers or
only sellers are left out. A game like this is called an assignment game.

We will examine such games in detail,? starting with the basic definitions.

! Both our choice of topics and our treatment of these are limited. There is a large literature on
combinatorial games and on voting games.

2 The presentation is mainly based on [22], Chap. 3.
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Table 20.1 An assignment game
S (s S ) N v(S)

14 0 125 05 345 03
15 05 134 02 1,234 0.5
2405 135 05 1,235 0.5
25 0 145 05 1,245 1
34 02 234 05 1,345 0.7
35 03 235 03 2,345 0.8
124 05 245 0.5 12,345 1

Let M and P be two finite, disjoint sets. For each pair (i, j) € M x P the number
a;j > 01is interpreted as the value of the matching between 7 and j. With this situation
a cooperative game (N,v) can be associated, as follows. The player set N is the set
MUP. For each coalition § C N the worth v(S) is the maximum that S can achieve by
making pairs among its own members. Formally, if S C M or S C P then v(S) :=0,
because no pairs can be formed at all. Otherwise, v(S) is equal to the value of the
following integer programming problem.

max Ycy Y jcpdijXij
subjectto Y ;cpxij < 15(i) forallie M
Yiemxij < 1s(j) forall jeP (20.1)
xij €{0,1} forallie M, jeP.

Here, 15(i) := 1 if i € S and equal to zero otherwise. Games defined by (20.1) are
called assignment games. These games were introduced by Shapley and Shubik
[125]. Verify that in Example 20.1 the numbers a;; are given by a;; = max{hij —
ci,0}, where h;; is the value of the house of player i to player j and ¢; is the value of
the house of player i for himself.

As will become clear below, a more general situation is the following. For each
ieN={L2,...,n} let kiz(;y be the value placed by player i on the permutation
m € II(N). (The implicit assumption is that kiz(;) = ki (;) Whenever 7(i) = o(i).)
Each coalition S C N may achieve a permutation 7 involving only the players of S,
thatis, 7(i) =i for all i € S. Let I1(S) denote the set of all such permutations. Then
a game v can be defined by letting, for each nonempty coalition S, the worth

S) = kiz(iy- 20.2
V( ) ”Iélrall();),;g in(i) ( )

The game thus obtained is called a permutation game, introduced in [136]. Alter-
natively, the worth v(S) in such a game can be defined by the following integer
programming problem.

max Yey ) jEN kijxij
subject to Y ;e Xij = 15(i) forallie N
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Yienxij=1s(j) forall jeN (20.3)
x,'jE{O,]} foralli,j€N.

The two definitions are equivalent, and both can be used to verify that the ‘dentist
game’ of Sect. 1.3.4 is indeed a permutation game (Problem 20.1).

The relation between the class of assignment games and the class of permutation
games is a simple one. The former class is contained in the latter, as the following
theorem shows.

Theorem 20.2. Every assignment game is a permutation game.

Proof. Let v be an assignment game with player set N =M UP. For all i,j € N
define
- ajj ifieM,jeP
Y1 0 otherwise.
Let w be the permutation game defined by (20.3) with k;; as above. Note that the
number of variables in the integer programming problem defining v(S) is |M| x |P|,
while the number of variables in the integer programming problem defining w(S)
is (|M|+|P|)*>. For S C M or S C P, w(S) = 0 = v(S). Let now S C N with § ¢
M and S Z P. Let x € {0,1}™*IPl be an optimal solution for (20.1). Define £ €
{0, 1} (MIHPD? by
Xiji=x; ifieM,jeP
Xiji=x; ifieP, jeM
Xiji= 1s(i) — inj ifieM
Jj€P
Xjj = 1s(j) — inj ifjeP
ieM
%;j =0 in all other cases.

Then £ satisfies the conditions in problem (20.3). Hence, for every S,
W(S) Z Z Z kiijij = Z Z ajjXij = V(S)

iEN jeEN i€M jeP

On the other hand, let z € {0, 1}(M+IP)* be an optimal solution for (20.3). Define
2 {0, 1}MIxIPl by
fij::Zij forieM, jeP.

Then Z satisfies the conditions in problem (20.1). Hence, for every S,
v($)> Y Y aijzii=Y Y kijzij = w(S).
ieM jeP ieM jeP
Consequently,v=w. o

The converse of Theorem 20.2 is not true, as the following example shows. As a
matter of fact, a necessary condition for a permutation game to be an assignment
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game is the existence of a partition of the player set N of the permutation game into
two subsets N| and N, such that the value of a coalition S is 0 whenever S C N; or
S C N,. The example shows that this is not a sufficient condition.

Example 20.3. Let N = {1,2,3} and let v be the permutation game with the numbers
kij given in the following matrix:

N = O
S O o
S O =

Then v(i) = 0 for every i € N, v(1,2) = v(1,3) = 3, v(2,3) =0, and v(N) = 4.
Note that this game satisfies the condition formulated above with Ny = {1} and
N, = {2,3}, but it is not an assignment game (Problem 20.2).

The main purpose of this section is to show that permutation games and, hence,
assignment games are balanced and, in fact, totally balanced. A TU-game (N, v) is
totally balanced if the subgame (M, v) — where v is the restriction to M — is balanced
for every M C N. Balanced games are exactly those games that have a non-empty
core, see Chap. 16.

Theorem 20.4. Assignment games and permutation games are totally balanced.

Proof. In view of Theorem 20.2, it is sufficient to prove that permutation games are
totally balanced. Because any subgame of a permutation game is again a permuta-
tion game (see Problem 20.3), it is sufficient to prove that any permutation game is
balanced.

Let (N,v) be a permutation game, defined by (20.3). By the Birkhoff-von
Neumann Theorem (Theorem 22.11) the integer restriction can be dropped so that
each v(S) is also defined by the following program:

max Yey Y jen kijxij
subject to Y ;e xij = 15(i)  forallie N
Yienxij=1s(j) forall jeN (20.4)
x;; >0 foralli,j € N.

Note that this is a linear programming problem of the same format as the maximiza-
tion problem in Theorem 16.19. Namely, with notations as there, take

y = (x11>---7x1n7x21>---7x2n7---7xn17~~~7xnn)

b= (kll7---aklnak217--~ak2n7---7kn1a~~-7knn)

¢ = (Is, 1g).
Further, let A be the 2n x n*>-matrix with row k € {1,...,n} containing a 1 at
columns k,k +n,k+2n,...,k+ (n— 1)n and zeros otherwise; and with row k +n

(ke {1,...,n}) containing a 1 at columns (k— 1)n+1,...,kn and zeros otherwise.
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The corresponding dual problem, the minimization problem in Theorem 16.19, then
has the form:

min Z 1s(d)yi + Z 1s(j)z;

iEN JEN
subjectto y;+z; > k;; foralli,jEN. (20.5)

Let (§,2) be an optimal solution of problem (20.5) for S = N. Then, by Theo-
rem 16.19 and the fact that the maximum in problem (20.4) for S = N is equal
to v(N) by definition, it follows that

ieN

Since (§,2) satisfies the restrictions in problem (20.5) for every S C N, it furthermore
holds that for every S C N,

Y Oi+z) =Y 1s(@)9i+ Y 1s()2 > v(S).

iceS ieN ieN

Therefore, u € RY defined by u; := i+ Z; is in the core of v. O

20.2 Flow Games

In this section another class of balanced games is considered. These games are
derived from the following kind of situation. There is a given capacitated network,
the edges of which are controlled by subsets of players. These coalitions can send
a flow through the network. The flow is maximal if all players cooperate, and then
the question arises how to distribute the profits. One can think of an almost literal
example, where the edges represent oil pipelines, and the players are in power in
different countries through which these pipelines cross. Alternatively, one can think
of rail networks between cities, or information channels between different users.

Capacitated networks are treated in Sect.22.7, which should be read before
continuing.

Consider a capacitated network (V,E k) and a set of players N := {1,2,...,n}.
Suppose that with each edge in E a simple game is associated.® The winning coali-
tions in this simple game are supposed to control the corresponding edge; the
capacitated network is called a controlled capacitated network. For any coalition
S C N consider the capacitated network arising from the given network by deleting
the edges that are not controlled by S. A game can be defined by letting the worth of
S be equal to the value of a maximal flow through this restricted network. The game
thus arising is called a flow game.

3 See Sect. 16.3.
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Fig. 20.1 Example 20.5 w e
4
e3 w3
q @ s
10
5
2 €

Example 20.5. Consider the capacitated network in Fig. 20.1. This network has three
edges denoted ej, ep, and e3 with capacities 4,5 and 10, respectively. The control
games are wi, wp, w3 with N = {1,2,3} and

wi(S)=1 ifSe{{1,2},N}and w;(S) = 0 otherwise
wa(S)=1 ifSe{{1,3},N}and wy(S) = 0 otherwise
wi(S)=1 if, andonlyif, 1 €S.

The coalition {1,2} can only use the edges e; and e3, so the maximal flow (per
time unit) for {1,2} is 4. This results in v({1,2}) = 4 for the corresponding flow
game (N, v). This game is given by v(i) =0 foralli e N, v({1,2}) =4,v({1,3}) =5,
v({2,3}) =0and v(N) =9.

A minimum cut in this network corresponding to the grand coalition is ({¢},
N\ {q}). By the Max-Flow Min-Cut Theorem of Ford and Fulkerson [36], Theo-
rem 22.15, the sum of the capacities of ¢; and e, (4+5) is equal to v(N). Divide v(N)
as follows. Divide 4 equally among the veto players of wy, and 5 equally among the
veto players of w;. The result for the players is the payoff vector (4; ,2, 2;) Note
that this vector is in C(v).

The next theorem shows that the non-emptiness of the core of the control games is
inherited by the flow game.

Theorem 20.6 (cf. [23]). Suppose all control games in a controlled capacitated
network have veto players. Then the corresponding flow game is balanced.

Proof. Take a maximal flow for the grand coalition and a minimum cut in the
network for the grand coalition, consisting of the edges

e1,es,...,e, with capacities ki, k2, ... ,kp

and control games wy, wa, ..., W), respectively. Then Theorem 22.15 implies that
v(N) = Y?_, k. For each r take x" € C(w,) and divide k, according to the division
key x" (i.e., k,x] is the amount for player 7). Note that non-veto players get nothing.
Then Y_, k,x" € C(v) since:

(D) Y X2 kxf =Y ke Y xf =Y ke =v(N).
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(2) For each coalition §, the set
Eg:={e,:re{l,...p},w(S) =1}

is associated with a cut of the network, governed by the coalition S.

Hence, Yies (XV ) ket ) = X0 ke Yies X > Y0 kwr () = Leepy kr =
capacity(Es) > v(S), where the last inequality follows from Theorem 22.15. O

The next theorem is a kind of converse to Theorem 20.6.

Theorem 20.7. Each nonnegative balanced game arises from a controlled capaci-
tated network where all control games possess veto players.

Proof. See Problem 20.5. a

20.3 Voting Games: The Banzhaf Value

Voting games constitute another special class of TU-games. Voting games are simple
games which reflect the distribution of voting power within, for instance, political
systems. There is a large body of work on voting games within the political science
literature. In this section we restrict ourselves to a brief discussion of a well-known
example of a power index, to so-called Banzhaf—Coleman index and the associated
value, the Banzhaf value.

A power index is a value applied to voting (simple) games. The payoff vec-
tor assigned to a game is interpreted as reflecting power distribution — e.g., the
probability of having a decisive vote — rather than utility.

We start with an illustrating example.

Example 20.8. Consider a parliament with three parties 1, 2, and 3. The numbers
of votes are, respectively, 50, 30, and 20. To pass any law, a two-third majority
is needed. This leads to a simple game with winning coalitions {1,2}, {1,3}, and
{1,2,3}. The Shapley value* of this game is (%, é, é) as can easily be checked.
By definition of the Shapley value this means that in four of the six permutations
player 1 makes the coalition of his predecessors winning by joining them, whereas
for players 2 and 3 this is only the case with one permutation for each. The coalitions
that are made winning by player 1 if he joins, are {2}, {3}, and {2,3}. In the Shapley
value the last coalition is counted double. It might be more natural to count this
coalition only once. This would lead to an outcome (; , ;, ;) instead of the Shapley

value. The associated value is called the normalized Banzhaf-Coleman index.

For a simple game (N,v), the normalized Banzhaf-Coleman index can be defined
as follows. Define a swing for player i as a coalition S C N with i € S, S wins, and
S\ {i} loses. Let 6; be the number of swings for player i, then define the numbers

4 Also called the Shapley—Shubik power index in this context.
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0;
ﬁi(N,V) = wn 9.
j=19j
The vector B(N,v) is the normalized Banzhaf—Coleman index of the simple game
(N,v).
For a general game (N, v) write

0:(v) := Z (SUi) —v(S)].
SCN: i¢S

For a simple game v this number 6;(v) coincides with the number 6; above.
Next, define the value ¥ : ¥V — RN by
0; 1
i) _ y W(SU#) —v(S)]. (20.6)

Fi(v): SN[
SCN: igS

T oIN-1

The value ¥ is called the Banzhaf value. The remainder of this section is devoted to
an axiomatic characterization of this value. In the literature many characterizations
are available. The one presented below is based on Nowak [94]. The characteriza-
tion uses the axioms SYM (Symmetry), SMON (Strong Monotonicity), and DUM
(Dummy Property), which were all introduced in Chap. 17. Besides, it uses a kind
of ‘reduced game’ or ‘amalgamation’ property, as follows.

For a game (N,v) (with at least two players) and different players i, j put p =
{i,j} and define the game ((N'\ p) U{p},v,) by

vp(S)=v(S) and v,(SU{p})=v(SUp), foranySCN\p. (20.7)

Thus, v, is an (n — 1)-person game obtained by amalgamating players i and j in v
into one player p in v,.

Let y be an arbitrary value (on the class ¢ of all games with arbitrary player set).
The announced axiom is as follows.
2-Efficiency (2-EFF): y;(v) + y;(v) = y,(v,) for all v,i, j, p,v, as above.
The following theorem gives a characterization of the Banzhaf value.

Theorem 20.9. The value v on ¢ satisfies 2-EFF, SYM, DUM, and SMON, if and
only if y is the Banzhaf value V.

Proof. That the Banzhaf value satisfies the four axioms in the theorem is the subject
of Problem 20.9. For the converse, let ¥ be a value satisfying the four axioms. We
prove that y = V.

Step I: Let ur be a unanimity game. We first show that
vilur) =121 ifieT and wi(ur)=0 ifigT. (20.8)

If |T| = 1 then every player is a dummy, so that (20.8) follows from DUM. Suppose
(20.8) holds whenever |T'| < k or [N| < m, and consider a unanimity game ur where
now the number of players is m+ 1, and T contains k+ 1 players. Let i, j € T, put
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p ={i, j} and consider the game (u7),. Then (ur ), is the m-person unanimity game
of the coalition 7" = (T \ p) U{p}, and |T’| = k. By the induction hypothesis

Wp((ur),) = 1/27 7 = 12571,
By 2-EFF this implies
Wi(ur) + wj(ur) = 1/271.
From this and SYM it follows that

vilur) =1/2 =121 e,

and by DUM, y;(ur) =0 when j ¢ T. Thus, y is the Banzhaf value on unanimity
games for any finite set of players. In the same way, one shows that this is true for
any real multiple cur of a unanimity game.

Step 2: For an arbitrary game v write v =} g7 crur, and let o(v) denote the number
of nonzero coefficients in this representation. The proof will be completed by induc-
tion on the number ¢ (v) and the number of players. For a(v) = 1 Step 1 implies
y(v) = ¥(v) independent of the number of players. Assume that y(v) = ¥(v) on
any game v with at most n players, and also any game v with a(v) < k for some
natural number k and with n+ 1 players, and let v be a game with n+ 1 players and
with a(v) = k+ 1. There are k+ 1 different nonempty coalitions 77, ..., ;1 with

k+1

V= Z CT, UT,,
r=I1

where all coefficients are nonzero. Let 7 :=T; N...N T4 . Because k+1 > 2, it
holds that N\ T # 0. Assume i ¢ T. Define the game w by

w = Z CT, UT, .

r:ieTy

Then a(w) < k and v(SUi) — v(S) = w(SUP) — w(S) for every coalition S not con-
taining player i. By SMON and the induction hypothesis it follows that y;(v) =
y;(w) = W(w) = ¥(w). Hence,

y;(v) =¥(v) foreveryie N\T. (20.9)

Let je T andie N\T, put p = {i, j}, and consider the game v,. Because the game
v, has n players the induction hypothesis implies

Vp(vp) = ¥ (vp)- (20.10)

Applying axiom 2-EFF to both y and ¥ yields

Vp(vp) = vi(v) + w;(v) and  ¥,(vp) =H(v) + F(v). (20.11)
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Combining (20.9), (20.10), and (20.11) implies y;(v) = ¥;j(v) for every j € T.
Together with (20.9) this completes the induction argument, and therefore the
proof. a

Problems

20.1. The Dentist Game

Show that (20.2) and (20.3) are equivalent, and use each of these to verify that the
‘dentist game’ of Sect. 1.3.4 is a permutation game.

20.2. Example 20.3
Show that the game in Example 20.3 is not an assignment game.
20.3. Subgames of Permutation Games

Prove that subgames of permutation games are again permutation games. Is this also
true for assignment games?

20.4. A Flow Game

Consider the network in Fig. 20.2. Suppose that this is a controlled capacitated net-
work with player set N = {1,2,3,4}, suppose that all edges have capacity 1 and that
wi = 01, wy = &, w3 = & and wy(S) = 1iff S € {{3,4},N}. (Here, §; is the simple
game where a coalition is winning if, and only if, it contains player i.)

(1) Calculate the corresponding flow game (N, v).
(2) Calculate C(v).

(3) The proof of Theorem 20.6 describes a way to find core elements by looking at
minimum cuts and dividing the capacities of edges in the minimum cut in some way
among the veto players of the corresponding control game. Which elements of C(v)
can be obtained in this way?

20.5. Every Nonnegative Balanced Game is a Flow Game

Prove that every nonnegative balanced game is a flow game. (Hint. Use the following
result (cf. [28]): every nonnegative balanced game can be written as a positive linear
combination of balanced simple games.)

€] es

Fig. 20.2 The network of
Problem 20.4 € 4
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Fig. 20.3 The network

of Problem 20.6 1 w1
10 "
Fig. 20.4 The network wy
of Problem 20.7
w3
q ® s

20.6. On Theorem 20.6 (1)

(1) Consider a controlled capacitated network with a minimum cut, where all control
games corresponding to the edges in this minimum cut (connecting vertices between
the two sets in the cut) have veto players. Prove that the corresponding flow game is
balanced.

(2) Show that the flow game, corresponding to Fig. 20.3, where the winning coali-
tions of wy are {1,3}, {2,4} and N = {1,2,3,4}, where the winning coalitions of
wy are {1,2} and N and of w3 {3,4} and N and where the capacities are 1, 10,
10 respectively, has a nonempty core. Note that there is no minimum cut where all
control games have veto players.

20.7. On Theorem 20.6 (2)

Prove that the two-person flow game corresponding to the controlled capacitated
network of Fig.20.4 has an empty core, where w; = 8, wp = &, wi(S) = 1 if
S # 0, and where the capacities of the edges are equal to 1.

20.8. Totally Balanced Flow Games

(Cf. [64].) Let (N,v) be the flow game corresponding to a controlled capacitated
network where all control games are dictatorial games (games of the form &;, see
Problem 20.4). Prove that each subgame (S, vs) (where vs is the restriction of v to
25) has a nonempty core, i.e., that the game (N, v) is totally balanced.

20.9. If-Part of Theorem 20.9

Prove that the Banzhaf value satisfies 2-EFF, SYM, DUM, and SMON. Is it possible
to weaken DUM to NP (the null-player property) in Theorem 20.9? Give an example
showing that the Banzhaf value is not efficient.



Chapter 21
Bargaining Problems

The game-theoretic literature on bargaining can be divided in two strands: the
cooperative and the noncooperative approach. Here, the focus is on the coopera-
tive approach, which was initiated by Nash [90] and which is axiomatic in nature.!
A seminal article on noncooperative bargaining is Rubinstein [110]. The basic idea
of that paper is briefly repeated below, see Sect. 6.7 for a more elaborate discussion.
We conclude the chapter with a few remarks on games with non-transferable utility
(NTU-games).

21.1 The Bargaining Problem

Bargaining problems? were introduced by Nash [90]. A two-person bargaining prob-
lem is a pair (S,d) where S is a compact convex nonempty subset of R? and d is
an element of S such that x > d for some x € S. The elements of S are called out-
comes and d is the disagreement outcome. The interpretation of such a problem
(S,d) is as follows. Two bargainers, 1 and 2, have to agree on some outcome X € S,
yielding utility x; to bargainer i. If they fail to reach such an agreement, they end up
with the disagreement utilities d = (d;,d,). B denotes the family of all two-person
bargaining problems.

A (bargaining) solution is a map F : B — R? such that F(S,d) € S for all
(S,d) € B. Nash [90] proposed to characterize such a solution by requiring it to
satisfy certain axioms. More precisely, he proposed the following axioms.3

Weak Pareto Optimality (WPO): F(S,d) € W(S) for all (S,d) € B, where W(S) :=
{x€S|Vy€R?:y>x=y¢S} is the weakly Pareto optimal subset of S.

! For comprehensive surveys see [103] or [135].
2 See Sect. 10.1 for a first discussion.

3 See Fig. 10.2 for an illustration of these axioms. In Sect. 10.1 the stronger Pareto Optimality is
imposed instead of Weak Pareto Optimality. In the diagram — panel (a) — that does not make a
difference.

H. Peters, Game Theory — A Multi-Leveled Approach. 297
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Symmetry (SYM): Fi(S,d) = F5(S,d) for all (S,d) € B that are symmetric, i.e.,
di =doand S = {(x2,x1) € R? | (x1,x2) € S}.

Scale Covariance (SC): F(aS+b,ad +b) = aF(S,d) +b for all (S,d) € B, where
beR? ac R, ax:= (ajx;,axx;) forall x € R?, and aS := {ax | x € S}.

Independence of Irrelevant Alternatives (ITA): F(S,d) = F(T,e) for all (S,d),
(T,e) e Bwithd=e,SCT,and F(T,e) €.

Weak Pareto Optimality says that it should not be possible for both bargainers to
gain with respect to the solution outcome. If a game is symmetric, then there is
no way to distinguish between the bargainers, and a solution should not do that
either: that is what Symmetry requires. Scale Covariance requires the solution to be
covariant under positive affine transformations: the underlying motivation is that the
utility functions of the bargainers are usually assumed to be of the von Neumann—
Morgenstern type, which implies that they are representations of preferences unique
only up to positive affine transformations (details are omitted here). Independence
of Irrelevant Alternatives requires the solution outcome not to change when the set
of possible outcomes shrinks, the original solution outcome still remaining feasible.

The Nash (bargaining) solution N : B — R? is defined as follows. For every
(S,d) € B,

N(S,d) = argmax{(x; —d)(xo —d>) | x € S,x > d}.

That the Nash bargaining solution is well defined, follows from Problem 21.3.
Nash [90] proved the following theorem.

Theorem 21.1. Let F : B — R? be a bargaining solution. Then the following two
statements are equivalent:

(1) F=N.
(2) F satisfies WPO, SYM, SC, IIA.

Proof. The implication (1)=(2) is the subject of Problem 21.4. For the implication
(2)=(1), assume F satisfies WPO, SYM, SC, and IIA. Let (S,d) € B, and z :=
N(S,d). Note that z > d. Let T := {((z1 —d1) !, (z2 —d2) ") (x—d) | x € S}. By
SC,

F(T,0)=((z1 —di) (o= o) )F(S,d) = ((z1 —d1) ', (z2—da) " )d (21.1)

and
N(T,0) = ((z1—d)) " (22— dy) (z—d) = (1,1). (21.2)

Hence, in order to prove F(S,d) = N(S,d), it is, in view of (21.1) and (21.2),
sufficient to show that F(7,0) = (1,1). By (21.2) and Problem 21.5, there is a sup-
porting line of T at (1,1) with slope —1. So the equation of this supporting line is
X1 +x2 = 2. Choose a > 0 so large that T C D := conv{(—a,—0), (—a,2+ a),
(2+a,—a)}. Cf. Fig.21.1.

Then (D,0) € B, (D,0) is symmetric, and W(D) = conv{(—a,2 + &), (2+
o, —a)}. Hence by SYM and WPO of F:
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(—o,2+ )

2+a,—a)

(—OC, —OC)

Fig. 21.1 Proof of Theorem 21.1

F(D,0) = (1,1). (21.3)

Since T C D and (1,1) € T, we have by IIA and (21.3): F(7,0) = (1,1). This
completes the proof. a

21.2 The Raiffa—Kalai-Smorodinsky Solution

Kalai and Smorodinsky [63] replaced Nash’s ITA (the most controversial axiom in
Theorem 21.1) by the following condition. For a problem (S,d) € B,

u(S,d) := (max{x; |[x € §,x > d},max{x; | x € §,x > d})

is called the utopia point of (S,d).

Individual Monotonicity (IM): F;(S,d) < F;(T,e) for all (S,d), (T,e) € Band i, j €
{1,2} withi # j,d=e,S C T, and 4;(S,d) = u;(T,e).

The Raiffa—Kalai—Smorodinsky solution (Raiffa [105]) R: B — R? is defined as
follows. For every (S,d) € B, R(S,d) is the point of intersection of W (S) with the
straight line joining d and u(S,d).

The following theorem is a modified version of the characterization theorem
obtained by Kalai and Smorodinsky [63]. In order to understand the proof it is
advisable to draw pictures, just as in the proof of the characterization of the Nash
bargaining solution.
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Theorem 21.2. Let F : B — R? be a bargaining solution. Then the following two
statements are equivalent:

(1) F =R
(2) F satisfies WPO, SYM, SC, and IM.

Proof. The implication (1)=-(2) is the subject of Problem 21.7. For the converse
implication, assume F has the four properties stated. Let (S,d) € B and let T :=
{ax+b|x € S} witha:= ((u;(S,d) —d;)~", (u(S,d) —d>)~!), b:= —ad. By SC
of Rand F,R(T,0) = aR(S,d) +band F(T,0) =aF(S,d) +b. Hence, for F(S,d) =
R(S,d), it is sufficient to prove that R(T,0) = F(T,0).

Since u(T,0) = (1,1), R(T,0) is the point of W(T') with equal coordinates, so
Ri(T,0) =Ry(T,0). If R(T,0) = (1,1) = u(T,0), then let L := conv{(0,0),(1,1)}.
Then by WPO, F(L,0) = (1,1), so by IM, F(T,0) > F(L,0), hence F(T,0) =

F(L0) = R(T.0). i

Next assume R(7,0) < (1,1). Let T := {x e R? | y < x < z for some y,z € T'}.

Clearly T C T and u(T,0) = u(T,0) = (1,1) so by IM:

F(T,0) > F(T,0), (21.4)
and further, since R(T,0) € W(T) and R, (T,0) = Ra(T ,0),
R(T,0) = R(T,0). (21.5)

LetV := conV{O R(T7,0),(1,0),(0,1)}. By WPO and SYM, F(V,0) = R(T,0). B

VCT, u(V,0) = (T,0) = ( 1), and IM, we have F(T,0) > F(V,0) = R(T,0),
hence F(T,0) = R(T,0). Combined with (21.4), this implies R(7,0) > F(T,0),
hence R(T,0) = F(T,0) by WPO and the fact R(T,0) < (1,1). This completes the
proof. g

21.3 The Egalitarian Solution

Consider the following two properties for a bargaining solution F'.

Pareto Optimality (PO): F(S,d) € P(S) for all (S,d) € B, where P(S) :={x € S |
Vy € S:y > x =y = x} is the Pareto optimal subset of S.

Monotonicity (MON): F(S,d) < F(T,e) for all (S,d), (T,e) € B with S C T and
d=e.

Clearly, P(S) C W(S) for every (S,d) € B, and Pareto optimality is a stronger
requirement than Weak Pareto Optimality. The Nash and Raiffa solutions are Pareto
optimal, and therefore WPO can be replaced by PO in Theorems 21.1 and 21.2.
Monotonicity is much stronger than Individual Monotonicity or Restricted Mono-
tonicity (see Problem 21.8 for the definition of the last axiom) and in fact it is
inconsistent with Weak Pareto Optimality (see Problem 21.10).



21.3 The Egalitarian Solution 301

Call a problem (S,d) € B comprehensive if z <y < x implies y € S forall z, x € S,
y € R?. By B¢ we denote the subclass of comprehensive problems.

The egalitarian solution E : B¢ — R? assigns to each problem (S,d) € B the
pointE(S,d) € W(S) with E; (S,d) —d; = Ez(S,d) —dy.

The following axiom is a weakening of Scale Covariance.

Translation Covariance (TC): F(S+e,d+e) = F(S,d) + e for all problems (S,d)
and all e € R,

The following theorem gives a characterization of the egalitarian solution based on
Monotonicity.

Theorem 21.3. Let F : B¢ — R? be a bargaining solution. Then the following two
statements are equivalent:

(1) F=E.
(2) F satisfies WPO, MON, SYM, and TC.

Proof. The implication (1)=>(2) is the subject of Problem 21.11. For the converse
implication, let (S,d) € B°. We want to show F(S,d) = E(S,d).

In view of TC of F and E, we may assume d =0. Let V := {x e R> [0 < x <
E(S,0)}. Clearly, (V,0) € B¢ is a symmetric problem, so F(V,0) = E(S,0) by SYM
and WPO of F. By MON,

F(S,0) > F(V,0) = E(S,0). (21.6)

If E(S,0) € P(S), then (21.6) implies F(S,0) = E(S,0), so we are done. Now sup-
pose E(S,0) € W(S)\ P(S). Without loss of generality, assume E;(S,0) = u;(S,0),
i.e., E1(S,0) = max{x; | x € S, x > 0}. Hence, E{(S,0) = F|(S,0) by (21.6).
Suppose F>(S,0) > E»(S,0). The proof will be finished by contradiction. Let o >
0 with E7(S,0) < a < F»(S,0). Let T := conv(SU{(a,0), (a,)}). Then (T,0) €
B¢ and E(T,0) = (a,a) € P(T), so F(T,0) = (o, ) by our earlier argument (see
the line below (21.6)). On the other hand, by MON, F»(T,0) > F>(S,0) > «, a
contradiction. ad

An alternative characterization of the egalitarian solution can be obtained by using
the following axioms.

Super-Additivity (SA): F(S+T,d+e) > F(S,d)+ F(T,e) forall (S,d), (7,e) € B.
Here, S+7 :={x+y|xe€S,yeT}.

Individual Rationality (IR): F(S,d) > d for all (S,d) € B.

Theorem 21.4. Let F : B¢ — R? be a bargaining solution. Then the following two

statements are equivalent:

(1) F=E.
(2) F satisfies WPO, SA, SYM, IR, and TC.
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Proof. (1)=(2) follows from Theorem 21.3 and Problem 21.12. For the converse
implication, let (S,d) € B¢. We wish to show F(S,d) = E(S,d). In view of TC of
F and E we may assume d = 0. Forevery 1 > & >01let V€ := {x c R? |0 < x <
(1—€)E(S,0)}. Then (V€,0) € B® and F(V¥,0) = E(VE,0) = (1 —¢€)E(S,0) by
WPO and SYM of F and E. Since S = V¢ + (S — V¥), we have by SA:

F(S,0) > (1—¢€)E(S,0)+ F(S—V¥?,0). 21.7)
Letting € decrease to 0, we obtain by (21.7) and IR:
F(S,0) > E(S,0). (21.8)

If £(S,0) € P(S), then (21.8) implies F(S,0) = E(S,0) and we are done. Otherwise,
suppose without loss of generality that E;(S,0) = max{x; | x € S,x > 0}. Let z
be the point of P(S) with z; = E|(S,0), hence o := E»(S,0) —z2 < 0 since, by
assumption, E(S,0) & P(S). For € > 0, let R¢ := conv{(0,¢€), (0, ), (¢,c)}. Then
(Re,0) € BC. Further, let Ty := S+ R¢. By construction, E(7T¢,0) € P(T¢), hence, as
before, F(T¢,0) = E(T¢,0). If € approaches 0, F (T¢,0) converges to E(S,0) and by
SA and IR, F(T¢,0) > F(S,0). So E(S,0) > F(S,0). Combined with (21.8), this
gives F(S,0) = E(S,0). O

21.4 Noncooperative Bargaining

A different approach to bargaining is obtained by studying it a as strategic process.
In this section we discuss the basics of the model of Rubinstein [110] in an informal
manner.*

Point of departure is a bargaining problem (S,d) € B. Assume d = 0 and
write S instead of (S,d). Suppose bargaining takes place over time, at moments
t=0,1,2,... Ateven moments, player 1 makes some proposal x = (x,x;) € P(S)
and player 2 accepts or rejects it. At odd moments, player 2 makes some proposal
x = (x1,x2) € P(S) and player 1 accepts or rejects it. The game ends as soon as a
proposal is accepted. If a proposal x = (x,x;) is accepted at time 7, then the play-
ers receive payoffs (6'x;,8'x;). Here 0 < 6 < 1 is a so called discount factor; it
reflects impatience of the players, for instance because of foregone interest pay-
ments (‘shrinking cake’). If no proposal is ever accepted, then the game ends with
the disagreement payoffs of (0,0).

Suppose player 1 has in mind to make some proposal y = (y1,y2) € P(S), and
that player 2 has in mind to make some proposal z = (z1,z2) € P(S). So player 1
offers to player 2 the amount y;. Player 2 expects to get z, if he rejects y, but he
will get z; one round later. So player 1°s proposal y will be rejected by player 2 if
y2 < 872; on the other hand, there is no need to offer strictly more than 8z,. This
leads to the equation

Y2 = 5Z2. (2] 9)

4 See also Sect. 6.7.
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By reversing in this argument the roles of players 1 and 2 one obtains
Z1:5y1. (21]0)

These two equations define unique points y and z in P(S). The result of the Rubin-
stein bargaining approach is that player 1 starts by offering y, player 2 accepts, and
the game ends with the payoffs y = (y1,y2).

This description is informal. Formally, one defines a dynamic noncooperative
game and looks for the (in this case) subgame perfect Nash equilibria of this game.
It can be shown that all such equilibria result in the payoffs y (or in z if player 2
would start instead of player 1).5

The surprising fact is that, although at first sight the Rubinstein approach is quite
different from the axiomatic approach by Nash (Theorem 21.1) the resulting out-
comes turn out to be closely related. From (21.9), (21.10) one derives easily that
Y1Y2 = 2122, 1.e., the points y and z are on the same level curve of the function
X = (x1,X2) — x1x2, which appears in the definition of the Nash bargaining solu-
tion. Moreover, if the discount factor & approaches 1, the points y and z converge to
one another on the curve P(S), and hence to the Nash bargaining solution outcome.
In words, as the players become more patient, the outcome of the Rubinstein model
converges to the Nash bargaining solution outcome.®

21.5 Games with Non-Transferable Utility

Both TU-games and bargaining problems are special cases of NTU-games, games
with non-transferable utility. In an NTU-game, the possibilities from cooperation for
each coalition are described by a set, rather than a single number. For a TU-game
(N,v) those sets can be defined as

V($) = {x e R | x(S) < v(S)}

for every coalition S. For a two-person bargaining problem (S,d) the set of feasible
payoffs is S for the grand coalition {1,2} and (—eo,d;] for each player i.

The core concept can be extended to NTU-games (for two- or n-person bargain-
ing problems it is just the part of the Pareto optimal set weakly dominating the
disagreement outcome). Also the balancedness concept can be extended; the main
result here is that balanced games have a nonempty core, but the converse is not true
(Scarf [114]).

Most other solution concepts for NTU-games (in particular the Harsanyi [49] and
Shapley [123] NTU-values, and the consistent value of Hart and Mas-Colell [53])
extend the Nash bargaining solution as well as the Shapley value for TU-games.
An exception are the monotonic solutions of Kalai and Samet [61], which extend

5 Fora proof of this fact, see Rubinstein [110] or Sutton [131]. For a relatively recent and elaborate
discussion of noncooperative bargaining models see Muthoo [85].

6 See also Binmore et al. [13].
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the egalitarian solution of the bargaining problem. See de Clippel et al. [26] for an
overview of various axiomatic characterizations of values for NTU-games, and see
Peters [104] for an overview of NTU-games in general.

Most (though not all) results of this chapter on bargaining can be extended to
the n-person case without too much difficulty. This is not true for the Rubinstein
approach, the extension of which is not obvious. One possibility is presented by
Hart and Mas-Colell [53].

Problems

21.1. Anonymity and Symmetry

Call a two-person bargaining solution anonymous if Fi(S',d") = F»(S,d) and
F>(S',d') = Fi(S,d) whenever (S,d), (§',d’) € Bwith §' = {(x2,x1) € R? | (x1,x2) €
S} and (d,d}) = (da,d,). Prove that Anonymity implies Symmetry but not vice
versa.

21.2. Revealed Preference

Let By = {(S,d) € B | d = (0,0), S is zero-comprehensive} where S is zero-
comprehensive if for all x € S and y € Ri with y < x we have y € §. Write §
instead of (S,0). Let = be a binary relation on R? and F : By — R? a solution. Say
that > represents F if for every S € By:

{F(S)} ={xeS|x>=yforeveryy € S},

i.e., if F' uniquely maximizes >~ on S. Prove: F satisfies IIA if and only if F' can be
represented by a binary relation >.

21.3. The Nash Solution is Well-defined

Show that N is well defined, i.e., that the function (x; —d;)(x, — dy) takes its
maximum on {x € S | x > d} at a unique point.

21.4. (1) = (2) in Theorem 21.1
Show that N satisfies the properties WPO, SYM, SC, and IIA.

21.5. Geometric Characterization of the Nash Bargaining solution

Show that, for every (S,d) € B, N(S,d) = z > d if and only if there is a supporting
line of S at z with slope the negative of the slope of the straight line through d and z.
21.6. Strong Individual Rationality

Call a solution F strongly individually rational (SIR) if F(S,d) > d for all (S,d) € B.
The disagreement solution D is defined by D(S,d) := d for every (S,d) € B. Show
that the following two statements for a solution F' are equivalent:
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(H)F=NorF =D.
(2) F satisfies IR, SYM, SC, and IIA.

Derive from this that N is the unique solution with the properties SIR, SYM, SC,
and ITA. (Hint: For the implication (2)=-(1), show that, for every (S,d) € B, either
F(S,d)=dor F(S,d) € W(S). Also show that, if F(S,d) = d for some (S,d) € B,
then F(S,d) =d forall (S,d) € B.)

21.7. (1) = (2) in Theorem 21.2

Show that the Raiffa—Kalai—Smorodinsky solution has the properties WPO, SYM,
SC, and IM.

21.8. Restricted Monotonicity

Call a solution F : B — R? restrictedly monotonic (RM) if F(S,d) < F(T,e)
whenever (S,d), (T,e) e B,d=¢e,SCT, u(S,d) =u(T,e).

(1) Prove that IM implies RM.
(2) Show that RM does not imply IM.

21.9. Global Individual Monotonicity

For a problem (S,d) € B, g(S) := (max{x; | x € S}, max{x, | x € §}) is called the
global utopia point of S. Global Individual Monotonicity (GIM) is defined in the
same way as IM, with the condition “u;(S,d) = u;(T,e)” replaced by: g;(S) = gi(T).
The solution G : B — R? assigns to each (§,d) € B the point of intersection of W (S)
with the straight line joining d and g(S). Show that G is the unique solution with the
properties WPO, SYM, SC, and GIM.

21.10. Monotonicity and (weak) Pareto Optimality
(1) Show that there is no solution satisfying MON and WPO.

(2) Show that, on the subclass By introduced in Problem 21.2, there is no solution
satisfying MON and PO. Can you find a solution on this class with the properties
MON and WPQO?

21.11. The Egalitarian Solution (1)

(1) Show that E satisfies MON, SYM, and WPO (on B°).
(2) Show that E is translation covariant on B¢.

21.12. The Egalitarian Solution (2)

Show that the egalitarian solution is super-additive.
21.13. Independence of Axioms

In the characterization Theorems 21.1-21.4, show that none of the axioms used can
be dispensed with.
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21.14. Nash and Rubinstein

Suppose two players (bargainers) bargain over the division of one unit of a perfectly
divisible good. Player 1 has utility function u; (&) = & and player 2 has utility func-
tion up (@) = 1 — (1 — &)? for amounts o € [0, 1] of the good. If they do not reach
an agreement on the division of the good they both receive nothing.

(a) Determine the set of feasible utility pairs. Make a picture.

(b) Determine the Nash bargaining solution outcome, in terms of utilities as well as
of the physical distribution of the good.

(c) Suppose the players’ utilities are discounted by a factor 6 € (0,1). Calculate the
Rubinstein bargaining outcome.

(d) Determine the limit of the Rubinstein bargaining outcome, for 6 approaching 1,
in two ways: by using the result of (b) and by using the result of (c).



Chapter 22
Tools

This chapter collects some mathematical tools used in this book: (direct) convex
separation results in Sects.22.2 and 22.6; Lemmas of the Alternative, in partic-
ular Farkas’ Lemma in Sect.22.3; the Linear Duality Theorem in Sect.22.4; the
Brouwer and Kakutani Fixed Point Theorems in Sect. 22.5; the Krein—Milman The-
orem and the Birkhoff-von Neumann Theorem in Sect.22.6; and the Max-Flow
Min-Cut Theorem of Ford and Fulkerson in Sect. 22.7.

22.1 Some Definitions

A subset Z C R” is convex if with any two points x,y € Z, also the line segment
connecting X and y is contained in Z. Formally:

VX, yeZVO<A<1:Ax+(1-A)yeZ

If Z is a closed set' then for convexity it is sufficient to check this condition for
A = 1/2 (see Problem 22.1). It is easy to see that a set Z C R" is convex if and
only if Z];:1 Ajx/ € Z forall x',...,x* € Z and all nonnegative 4,,...,4; € R with
Z];:1 Aj=1.Such a sum Z];:1 Ajx/ is called a convex combination of the x/.

For vectors X = (x1,...,%,), Y = (V1,---,yn) € R,

n
xoyi= Y
i=1

denotes the inner product of x and y, and

k=¥l := \/ioc,-yi)z

1A set Z C R" is closed if it contains the limit of every converging sequence in Z.

H. Peters, Game Theory — A Multi-Leveled Approach. 309
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is the Euclidean distance between x and y. A set C C R" is a (convex) cone if, with
eachx,yeCand A e R,A >0,also Axe Candx+y € C.

22.2 A Separation Theorem

In this section we derive the simplest version of a separation result, namely separat-
ing a point from a convex set.

Theorem 22.1. Let Z C R" be a closed convex set and let x € R"\ Z. Then there is
ayeR"withy-z>y-Xforeveryzec Z.

Thus, this theorem states the geometrically obvious fact that a closed convex set and
a point not in that set can be separated by a hyperplane (with normal y).

Proof of Theorem 22.1. Let 2’ € Z such that 0 < ||x —2'|| < ||x —z|| for all z € Z.
Such a z’ exists by the Theorem of Weierstrass, since the Euclidean distance from
X is a continuous function on the set Z, and for the minimum of z — ||x — z|| on Z
attention can be restricted to a compact subset of Z. Lety =z’ —x. Let z € Z. For
any o, 0 < ¢ < 1, convexity of Z implies z' + a(z —2) € Z, and thus

12+ a(z—2') —x|[* > ||z —x]|*.

Hence,
202 —x)-(z—2) +a?||z—Z|* > 0.

Thus, letting o | 0, it follows that (z' —x) - (z—2') > 0. From this, (2’ —x)-z >
(Z—x)-2 =2 —x)-x+ (2 —x)- (' —x) > (' —x) - x.
Because z was arbitrary, it follows thaty-z >y - x for every z € Z. a

Remark 22.2. A consequence of Theorem 22.1 is that there are real numbers o and
B satisfyingy-z> o andy-x < o, andy-z > 8 andy-x = f3, for all z € Z (notations
as in the Lemma).

22.3 Lemmas of the Alternative

Theorem 22.1 can be used to derive several lemmas of the alternative. These lemmas
have in common that they describe two systems of linear inequalities and equations,
exactly one of which has a solution.

Lemma 22.3 (Theorem of the Alternative for Matrices). Let A be an m X n

matrix. Exactly one of the following two statements is true:

(1) There arey € R" and z € R" with (y,z) > 0, (y,z) # 0 and Ay+z = 0.
(2) There is an x € R™ with x > 0 and XA > 0.
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Proof. We leave it to the reader to prove that at most one of the systems in (1) and
(2) has a solution (Problem 22.2).

Now suppose that (1) is not true. It is sufficient to prove that the system in (2)
must have a solution. Observe that (1) implies that 0 is a convex combination of the
columns of A and the set {e/ € R™ | j = 1,...,m}. This follows from dividing both
sides of the equation Ay +z = 0 by Y7, y; + ¥’ z;. Hence, the assumption that
(1) is not true means that 0 ¢ Z, where Z C R™ is the convex hull of the columns
of A and the set {¢/ € R™ | j=1,...,m}. By Theorem 22.1 and Remark 22.2 there
is an x € R” and a number 3 € R such that x-z > f§ forall z€ Z and x-0 = 3.
Hence, B = 0 and, in particular, XA > 0 and x > 0 since the columns of A and all e/
for j =1,...,m are elements of Z. Thus, (2) is true. O

Another lemma of the alternative is Farkas’s Lemma.

Lemma 22.4 (Farkas’ Lemma). Let A be an m x n matrix and b € R". Exactly one
of the following two statements is true:

(1) There is an x € R™ with x > 0 and XA =b.
(2) Thereis ay € R" with Ay > 0 andb -y < 0.

Proof. We leave it to the reader to show that at most one of the two systems in (1)
and (2) can have a solution (Problem 22.3). Assume that the system in (1) does not
have a solution. It is sufficient to prove that the system in (2) must have a solution.

The assumption that the system in (1) does not have a solution is equivalent to
the statement b ¢ Z where

Z ={z € R"| there exists an x € R”, x > 0 with z = xA}.

Observe that Z is a closed convex set. By Theorem 22.1 and Remark 22.2 it follows
that thereisay € R” andan ¢ € Rwithy-b < awandy-z > o for all z € Z. Because
0 € Z it follows that @ <y-0 =0, hence y-b < a < 0. To prove that the system
in (2) has a solution, it is sufficient to prove that Ay > 0. Suppose not, i.e., there is
an i with (Ay); < 0. Then e/Ay < 0, so (Me')Ay — —oo as R 3 M — oo, Observe,
however, that (Me')A € Z for every M > 0, so that (Me')Ay > « for every such M.
This contradiction completes the proof of the lemma. a

These lemmas can be interpreted geometrically. We show this for Farkas’ Lemma in
Fig. 22.1. Consider the row vectors r; of A as points in R”. The set of all nonnegative
linear combinations of the r; forms a cone C. The statement that the system in (1)
in Lemma 22.4 has no nonnegative solution means that the vector b does not lie in
C. In this case, the lemma asserts the existence of a vector y which makes an obtuse
angle with b and a nonobtuse angle with each of the vectors r;. This means that
the hyperplane L orthogonal to y has the cone C on one side and the point b on the
other.
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Fig. 22.1 Geometric interpretation of Farkas’ Lemma

22.4 The Duality Theorem of Linear Programming

In this section we prove the following theorem.

Theorem 22.5 (Duality Theorem of Linear Programming). Let A be an n X p
matrix, b € RP, and ¢ € R". Suppose V :={x € R" |xA>b, x>0} #AQand W :=
{YER? |Ay <,y >0} #0. Thenmin{x-¢c|x €V} =max{b-y|ycW}.

To prove this theorem, we first prove the following variant of Farkas’ Lemma.

Lemma 22.6. Let A be an m x n matrix and b € R". Exactly one of the following
two statements is true:

(1) There is an x € R™ with xA <b and x > 0.
(2) Thereisay € R" withAy > 0, b-y <0, andy > 0.

Proof. Problem 22.4. a

The following three lemmas are further preparations for the proof of the Duality
Theorem.

Lemma 22.7. Letx € V andy € W (cf. Theorem 22.5). Thenx-¢>b-y.
Proof. x-¢>xAy >b-y. ]

Lemma 22.8. LetX €V, €W with&-c=b-§. ThenX-c =min{x-c|x €V} and
b-y=max{b-y|ye W}

Proof. By Lemma 22.7, foreveryx € V:x-¢ > b -y =%-c. Similarly,b-y <X -c =
b-yforeveryy e W.

O

Proof of Theorem 22.5. In view of Lemmas 22.7 and 22.8, it is sufficient to show
the existence of X € V and § € W with X-¢ < b-§. So it is sufficient to show that the
system
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—-A 0 ¢
(X,Y)( 0 Al _b> <(=b,c,0),x>0,y>0

has a solution. Suppose this is not the case. By Lemma 22.6, there exists a vector
(z,w,t) € R” x R" x R with

—-A 0 ¢ z
( ) w | >0, (=b,c,0)-(z,w,1) <0, z>0, w>0, 1>0.

0 A" —b -
t
Hence
Az <tc (22.1)
wA > tb (22.2)
c-w<b-z (22.3)

If+ =0, then Az < 0, wA > 0, hence, forx € V andy € W:
b-z<xAz<0<wAy<w-c

contradicting (22.3). If # > 0, then by (22.1) and (22.2), " 'z€ W and t'w € V.
By (22.3), b- (t7'z) > (+~'w) - ¢, which contradicts Lemma 22.7. Hence, the first
system above must have a solution. a

22.5 Some Fixed Point Theorems

Let Z C R” be a nonempty convex and compact set.> Let f : Z — Z be a continuous
function. A point x* € Z is a fixed point of f if f(x*) = x*.

If n =1, then Z is a closed interval of the form [a,b] C R, and then it is clear
from intuition that f must have a fixed point: formally, this is a straightforward
implication of the intermediate-value theorem.

More generally, Brouwer [18] proved the following theorem. For a proof, see e.g.
[113].

Theorem 22.9 (Brouwer Fixed Point Theorem). Let Z C R" be a nonempty com-
pact and convex set and let f : Z — Z be a continuous function. Then f has a fixed
point.

A generalization of Brouwer’s fixed point theorem is Kakutani’s fixed point theorem
[60]. Let F : Z — Z be a correspondence, i.e., F(x) is a nonempty subset of Z for
every X € Z. Call F convex-valued if F(x) is a convex set for every x € Z. Call
F upper semi-continuous if the following holds: for every sequence (x*)icy in Z
converging to x € Z and for every sequence (y);cy in Z converging to y € Z, if

ZAsetZCR"is compact if it is closed and bounded. A set Z C R" is bounded if there is an M > 0
such that ||x|| < M for all x € Z.
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y* € F(x) for every k € N, then y € F(x). A point x* € Z is a fixed point of Z if
X" € F(x").

Theorem 22.10 (Kakutani Fixed Point Theorem). Let Z C R”" be a nonempty
compact and convex set and let F : Z — Z be an upper semi-continuous and
convex-valued correspondence. Then F has a fixed point.

One way to prove this theorem is to derive it from the Brouwer fixed point Theorem:
see, e.g., [54].

22.6 The Birkhoff-von Neumann Theorem

Let C be a convex set in some linear space V. An element e € C is called an
extreme point of C if for all x,y € C with e = ;(x +y)itholds thatx =y (=e). By
ext(C) the set of extreme points of C is denoted. See Problem 22.5 for alternative
characterizations of extreme points.

An n x n-matrix D is called doubly stochastic if 0 < d;; < 1foralli,j=1,...,n,
Y_i1dij = 1for all i, and Y}, d;j = 1 for all j. If moreover d;; € {0,1} for all
i,j=1,...,n, then D is called a permutation matrix. Let D,, denote the set of all
n x n doubly stochastic matrices, and let P, ., denote the set of all n x n permutation
matrices. Note that D,,», is a convex compact set, and that P, is a finite subset of
Dy, . The following theorem gives the exact relation.

Theorem 22.11 (Birkhoff-von Neumann).

(1) ext(Duxn) = Puxn
(2) Dyxcn = conv(Pyxy).

Part (2) of Theorem 22.11 follows from the Theorem of Krein—-Milman (Theo-
rem 22.13 below). In the proof of the latter theorem the dimension of a subset of a
linear space V plays a role. A subset of V of the form a + L where a € V and L is
a linear subspace of V, is called an affine subspace. Check that a subset A of V' is
affine if, and only if, with any two different elements x and y of A, also the straight
line through x and y is contained in A (Problem 22.6). For an affine subspace a + L
of V the dimension is defined to be the dimension of the linear subspace L. For an
arbitrary subset A of V, its dimension dim(A) is defined to be the dimension of the
smallest affine subspace of V containing the set A.

The following separation lemma is used in the proof of the Theorem of Krein—
Milman.

Lemma 22.12. Let C be a nonempty convex subset of R" and a € R"\ C. Then there
existsap € R"\ {0} withp-a<p-cforeveryceC.

Proof. We distinguish two cases: a € clo(C) and a ¢ clo(C) (clo denotes the
topological closure).
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(1) Suppose a & clo(C). Then the result follows from Theorem 22.1, with clo(C) in
the role of the set Z there.

(2) Suppose a € clo(C). Because a ¢ C it follows that a is not in the interior of
C. Hence, there is a sequence a',a’,... € R"\ clo(C) converging to a. By The-
orem 22.1 again, for each k there is a p* € R"\ {0} with p*-a* < p*.c for all
¢ € clo(C), and we can take these vectors p* such that ||p*|| = 1 for every k (|| - ||
denotes the Euclidean norm). Because {x € R" | ||x|| = 1} is a compact set, there
exists a converging subsequence pk(l),pk<2>, ...of p!,p?,... with limit, say, p. Then
p-a=1lim_.p“".a*0) < limy_.,p*¥.c=p-cforall c € clo(C). 0

Theorem 22.13 (Krein—-Milman). Let C be a nonempty compact and convex subset
of R". Then ext(C) # 0 and C = conv(ext(C)).

Proof. (1) Because C is compact and x — ||x|| (where || - || denotes the Euclidean
norm) is continuous, there exists by the Theorem of Weierstrass an e € C with ||e|| =
maxyec||x||. Then e € ext(C), which can be proved as follows. Suppose that e =

5 (x! +x?) for some x',x* € C. Then

| [P IR PR 1
= < <
lell = Il 6 +3) < Ikl 10211 < el + el

implies ||x![| = ||x?|| = ||1(x' +x?)||. By definition of the Euclidean norm this is
only possible if x! = x> = e. This shows e € ext(C). Hence, ext(C) # 0.

(2) The second statement in the theorem will be proved by induction on dim(C).

(a) If dim(C) = 0, then C = {a} for some a € R”, so ext(C) = {a} and
conv(ext(C)) = {a} =C.

(b) Let k € N, and suppose that conv(ext(D)) = D for every nonempty compact and
convex subset D of R” with dim(D) < k. Let C be a k-dimensional compact convex
subset of R". Obviously, conv(ext(C)) C C. So to prove is still: C C conv(ext(C)).
Without loss of generality assume 0 € C (otherwise, shift the whole set C). Let W be
the smallest affine (hence, linear) subset of R” containing C. Hence, dim(W) = k.
From part (1) of the proof there is an e € ext(C). Let x € C. If x = e then x €
conv(ext(C)). If x # e then the intersection of the straight line through x and e with
C is a line segment of which one of the endpoints is e. Let b be the other endpoint.
Then b is a boundary point of C. Then, by Lemma 22.12, there is a linear function
f:W — Rwith f(b) =min{f(c) | ¢ € C} and f # 0 (check this).

Let D:={y € C| f(y) = f(b)}. Then D is a compact and convex subset of
C. Because f # 0 it follows that dim(D) < k. By the induction hypothesis, D =
conv(ext(D)). Also, ext(D) C ext(C), see Problem 22.7. Hence, b € D = conv
(ext(D)) C conv(ext(C)). Further, e € ext(C). Because x € conv{b,e} it follows
that x € conv(ext(C)). So C C conv(ext(C)). O

Proof of Theorem 22.11. Because D, ., is compact and convex, part (2) follows
from part (1) and Theorem 22.13. So only (1) still has to be proved.

(a) We first prove that P, € ext(D,x,). Let P = [p;;]! = be a permutation matrix
with P = }(A + B) for some A, B € Dyy,. Then p;; = } (a;; + b;j) and p;; € {0,1}
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foralli,je {],2,...711}. If p;; = 0 then a;; = b;; = 0 because a;;,b;; > 0.If p;; = 1
then a;; = b;j = 1 because a;;,b;; < 1. Hence, A = B, so that P € ext(Dyxy).

(b) Let now D = [d; j] € Dy« such that D is not a permutation matrix. The proof is
complete if we show that D is not an extreme point. For this, it is sufficient to show
that there exists an n x n-matrix C # [0] with:

(1) ¢;j =0 wheneverd;; =0ord;;=1.
(2) YL cij=0forall j € {1,2,...,n} with d;; # 1 for every i.
(3) Xj_jcij=0forallie {1,2,...,n} with d;; # 1 for every j.

For in that case, for € > 0 sufficiently small, the matrices D+ €C and D — €C are two
different doubly stochastic matrices with D = (D + &C) + (D — €C)), implying
that D & ext(Dyxp)-

We are left to construct C. In order to satisfy (1), for those rows or columns of D
that contain a 1 the corresponding rows or columns of C contain only zeros. Suppose
there are k rows (and hence columns) of D that do not contain a 1. Because D is not a
permutation matrix, 2 < k < n. In these k rows there are at least 2k elements unequal
to 0 and 1. The corresponding 2k or more elements of C are to be chosen such that
they satisfy the system of 2k homogeneous linear equations described in (2) and (3).
This system is dependent (¥}_; Yy ¢;j = XLy X} ¢ij) so that it has a nontrivial
solution (because there are more variables than independent equalities). This gives
the required C # [0]. O

22.7 The Max-Flow Min-Cut Theorem

A capacitated network is a triple (V, E, k), where V is a finite set containing at least
two distinguished elements ¢,s € V called source (q) and sink (s); E is a subset of
V xV suchthatv#w, v#£s, and w # g forall (v,w) € E; and k : E — R . Elements
of V are called vertices and elements of E are called edges. The number k(e) is the
capacity of the edge e; if e = (v,w) then k(e) is interpreted as the maximal amount
that can flow from v to w through edge e. The source has only outgoing and the sink
only incoming edges. See Fig. 22.2 for an example.

€2

4] €4

Fig. 22.2 A capacitated
network €3
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A flow in this network is a map f : E — R with f(e) < k(e) and such that for
allve V\{q,s}

Z f(W7V) = Z f(v7w)'

weV: (wy)eE weV: (vw)eE

In other words, a flow satisfies the capacity constraints and for all vertices (except
source and sink) the ‘inflow’ equals the ‘outflow’.
The value of a flow f is defined as the inflow in the sink, i.e., as the number

Z fvs).

veV: (vs)eE

A flow is called maximal if it has maximal value among all possible flows. Intu-
itively, the value of a maximal flow is determined by the ‘bottlenecks’ in the
network. In order to formalize this, define a cut in the network to be a partition
of V into two subsets V| and V; such that ¢ € V| and s € V5. Such a cut is denoted
by (V1,V2). The capacity of a cut is the number

k(V17V2> = Z k(v,w),

veVy,weVa:(vw)eE

i.e., the total capacity along edges going from V; to V,. A cut is called minimal if it
has minimal capacity among all possible cuts.

In the example in Fig. 22.2, a minimal cut has only the sink in V5, and its capacity
is equal to 3. Obviously, this is also the value of a maximal flow, but such a flow is
not unique.

Flows and cuts are, first of all, related as described in the following lemma.

Lemma 22.14. Let f be a flow in the capacitated network (V,E k), and let ¢ : E —
R be an arbitrary function. Then:

(1) )y Y (p(W,V): )y Y (p(V,W).

veV (wy): (wy)€E VeV (vw): (vw)eE
2 X flev= ¥ fns).
(q.v): (q.,v)EE (v,8): (v,8)EE

(3) For every cut (V1,Vs) the value of the flow f is equal to

Z f(v7 W) - Z f(v7 W)'

(vw): (vw)€E veV) weV, (vw): (mw)€E veV, weV)

Proof. (1) follows because summation at both sides is taken over the same sets. Part
(1) moreover implies

Y flev+ Y fow= Y fvs)
(g,v): (¢,v)€E (vWw)EE: v£q (v,s): (vs)EE

+ Y fluw

(vw)EE: w#s
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which implies (2) because ¥, ) cg: vzq f (; W) = L(vw)ek: wts f (v, w) by definition
of a flow (‘inflow’ equals ‘outflow’ at every vertex that is not the source and not the
sink). For part (3), let (V1, V) be a cut of the network. Then

Z f(V, W) - Z f(V, W) - Z f(V, W)

(vyw)€EE: veVi,weV, (v,w)€E: veV; (vw)€EE: vweV,
= )Y foew+ Y fluw
(vw)€E: v=¢q (vw)€E: weV)

- Z f(v7 W)

(vw)€EE: vweV)

= ), flw+ )y fvw)

(vw)€E: v=¢q (v,w)€E: veVp,weV,
= )Y  fhw+ Y fvw).
(vw)€eE: w=s (vyw)€EE: veV,p,weV
This implies part (3) of the lemma. a

The following theorem is the famous Max-Flow Min-Cut Theorem of Ford and
Fulkerson [36].

Theorem 22.15. Let (V, E k) be a capacitated network. Then the value of a maximal
flow is equal to the capacity of a minimal cut.

Proof. Let f be a maximal flow. (Note that f is an optimal solution of a fea-
sible bounded linear program, so that existence of f is guaranteed.) Part (3) of
Lemma 22.14 implies that the value of any flow is smaller than or equal to the
capacity of any cut, so that it is sufficient to find a cut of which the capacity is equal
to the value of f.

For points v,w in the network define a path as a sequence of different non-
directed edges starting in v and ending in w; ‘non-directed’ means that for any edge
(x,y) € E, (x,y) as well as (y,x) may be used in this path. Such a path may be
described by a sequence v = x1,x2,...,%, = w with (x;,x;41) € E or (xj41,x;) €E
foreveryi=1,...,m— 1. Call such a path non-satiated if foreveryi=1,... m—1it
holds that f(x;,xi11) < k(x;,x;41) if (x;,x41) € E, and f(xi41,x;) > 0 if (x;41,%) €
E. In other words, the flow is below capacity in edges that are traversed in the ‘right’
way, and positive in edges that are traversed in the ‘wrong’ way.

Define V] to be the set of vertices x for which there is a non-satiated path from ¢
to x, together with the vertex g, and let V, be the complement of V; in V. Then s € V,
because otherwise there would be a non-satiated path from ¢ to s, implying that f
would not be maximal; the flow f could be increased by increasing it in edges on
this path that are traversed in the right way and decreasing it in edges along the path
that are traversed in the wrong way, without violating the capacity constraints or the
inflow—outflow equalities. Hence (V;,V>) is a cut in the network.

Let (x,y) € E with x € V; and y € V5. Then f(x,y) = k(x,y) because otherwise
there would be a non-satiated path from g to a vertex in V,. Similarly, f(x’,y') =0
whenever (x',y") € E with X’ € V, and y' € V|. By Lemma 22.14, part (3), the value
of the flow f is equal to
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Z fvw)— Z Fv,w)

(vw): (v,w)€E veV) weV, (vw): (v,w)€E veVy weV)
hence to y k(v,w), which is by definition the capacity of the cut
(vyw): (v,w)€E veV weV,
(V1,V2). This completes the proof. O

Observe that the proof of Theorem 22.15 suggests an algorithm to determine a max-
imal flow, by starting with an arbitrary flow, looking for a non-satiated path, and
improving this path. By finding an appropriate cut, maximality of a flow can be
checked. Theorem 22.15 is actually a (linear) duality result, but the above proof is
elementary.

Problems

22.1. Convex Sets
Prove that a closed set Z C R”" is convex if and only if éx + éy € Zforallx,y € Z.
22.2. Proof of Lemma 22.3

Prove that at most one of the systems in Lemma 22.3 has a solution.

22.3. Proof of Lemma 22.4

Prove that at most one of the systems in Lemma 22.4 has a solution.

22.4. Proof of Lemma 22.6

Prove Lemma 22.6.

22.5. Extreme Points

Let C be a convex set in a linear space V and let e € C. Prove that the following three
statements are equivalent:

(1) e € ext(C).
(2) Forall 0 < a < 1 and all x,y € C, if x # y then e # ax+ (1 — o)y.
(3) C\ {e} is a convex set.

22.6. Affine Subspaces

Prove that a subset A of a linear space V is affine if, and only if, with any two
different elements x and y of A, also the straight line through x and y is contained
in A.

22.7. The Set of Sup-Points of a Linear Function on a Convex Set

Let f: R" — R” be a linear function. Let C be a convex subset of R"” and
o :=sup{f(x)|xe€C}, D:={xe€C| f(x) = a}. Show that D is convex and that
ext(D) C ext(C).
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Problems of Chap. 1

1.2 Variant of Matching Pennies
There are saddlepoint(s) if and only if x < —1.

1.3 Mixed Strategies

(b) (3/4,1/4).

(©) (]/2> ]/2>'

(d) By playing (3/4,1/4) player 1 obtains 10/4 = 2.5 for sure (independent of what
player 2 does). Similarly, by playing (1/2,1/2), player 2 is sure to pay 2.5. So 2.5
is the value of this game. Given a rational opponent, no player can hope to do better
by playing differently.

1.5 Glove Game
(a) (0,0,1) is the unique vector in the core of the glove game.

1.6 Dentist Appointments
The Shapley value (9% , 6; ,8) is not in the core of this game. The nucleolus is in the
core of the game.

1.7 Nash Bargaining
The problem to solve is maxp<g<1 o+/1 — . Obviously, the solution must be inte-
rior: 0 < a < 1. Set the first derivative equal to 0, solve, and check that the second
derivative is negative.

1.8 Variant of Glove Game

The worth of a coalition S depends on the minimum of the numbers of right-hand
and left-hand players in the coalition. Write N = LUR and find a formal expression
for v(S).

321
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Problems of Chap. 2

2.1 Solving Matrix Games

(a) The optimal strategies are (5/11,6/11) for player 1 and (5/11,6/11) for player
2. The value of the game is 30/11. In the original game the optimal strategies are
(5/11,6/11,0) for player 1 and (5/11,6/11,0) for player 2.

(b) The value of the game is 0. The unique maximin strategy is (0,1,0). The
minimax strategies are (0,q,1 —¢,0) forany 0 < ¢ < 1.

(c) The value of the game is 1, the unique minimax strategy is (1,/2,0,1/2), and the
maximin strategies are: (p, (1 —p)/2,(1—=p)/2)for0< p <.

(d) The value of the game is 9 and player 1’s maximin strategy is (1/2,1/2,0,0).
The set of all minimax strategies is {(a, /%, *{3*) e R} [0 < < 1/2}.

(e) The value is 8/5. The unique maximin strategy is (2/5,3/5) and the unique
minimax strategy is (0,4/5,1/5,0).

(f) The value is equal to 1, player 2 has a unique minimax strategy namely (0, 1,0),
and the set of maximin strategies is {(0,p,1 —p) |0 < p < 1}.

2.2 Saddlepoints
(b) There are saddlepoints at (1,4) and at (4,1).

2.3 Rock—Paper—Scissors
The associated matrix game is

R P S
RO -1 1
Pl 1 0 -1
S\—-1 1 0

Problems of Chap. 3

3.1 Some Applications
(a) Let Smith be the row player and Brown the column player, then the bimatrix
game is

L S

L 2,2 -1,—-1
S\—-1,—-1 1,1 )
(b) Let the government be the row player and the pauper the column player. The

bimatrix game is
work  not

aid ( 3,2 -1,3
not \ —1,1 0,0 /-
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(c) This game has two pure strategy Nash equilibria and one other (mixed strategy)
Nash equilibrium.

(e) This situation can be modeled as a 3 x 3 bimatrix game.

3.2 Matrix Games
(a) You should find the same solution, namely (5/11,6/11) for player 1 and
(5/11,6/11) for player 2, as the unique Nash equilibrium.

(b) If player 2 plays a minimax strategy then 2’s payoff is at least —v, where v is
the value of the game. Hence, any strategy that gives player 1 at least v is a best
reply. So a maximin strategy is a best reply. Similarly, a minimax strategy is a best
reply against a maximin strategy, so any pair consisting of a maximin and a minimax
strategy is a Nash equilibrium.

Conversely, in a Nash equilibrium the payoffs must be (v, —v) otherwise one of
the players could improve by playing an optimal (maximin or minimax) strategy.
But then player 1’s strategy must be a maximin strategy since otherwise player 2
would have a better reply, and player 2’s strategy must be a minimax strategy since
otherwise player 1 would have a better reply.

(c) The appropriate definition for player 2 would be: a maximin strategy for player
2 in B, since now B represents the payoffs to player 2, and not what player 2 has to
pay to player 1.

The Nash equilibrium of Problem 3.1(b), for instance, does not consist of max-
imin strategies of the players. The maximin strategy of player 1 in A is (1/5,4/5),
which is not part of a (the) Nash equilibrium. The maximin strategy of player 2 (!)
in B is (1,0), which is not part of a (the) Nash equilibrium.

3.3 Strict Domination

(c) There are three Nash equilibria: ((1,0), (1,0,0,0)), ((0,1),(0,0,1,0)), and
((3/7,4/7),(1/3,0,2/3,0)).

3.4 Iterated Elimination (1)

(b) The unique equilibrium is (B,Y).

3.5 Iterated Elimination (2)
The Nash equilibria are ((1/3,2/3,0),(2/3,0,1/3)), ((0,1,0),(1,0,0)), and
((1,0,0),(0,0,1)).

3.6 Weakly Dominated Strategies

(b) Consecutive deletion of Z, C, A results in the Nash equilibria (B,X) and (B,Y).
Consecutive deletion of C, Y, B, Z results in the Nash equilibrium (4,X).

3.7 A Parameter Game
Distinguish three cases: a > 2,a =2, and a < 2.

3.8 Equalizing Property of Mixed Equilibrium Strategies

(a) Check by substitution.

(b) Suppose the expected payoff (computed by using q*) of row i played with
positive probability (p}) in a Nash equilibrium (p*,q*), hence the number e'Aq”,
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would not be maximal. Then player 1 would improve by adding the probability p}
to some row j with higher expected payoff e/Aq* > e’/Aq*, and in this way increase
his payoff, a contradiction. A similar argument can be made for player 2 and the
columns.

Problems of Chap. 4

4.1 Counting Strategies
White has 20 possible opening moves, and therefore also 20 possible strategies.
Black has many more strategies.

4.2 Extensive vs. Strategic Form

One possibility is the following extensive form game. Player 1 starts and has two
possible actions, say U and D (corresponding to the two rows of player 1). These
actions lead to the unique information set of player 2. At each of the two nodes in
this information set, player 2 has four actions, namely C;, C,, C3, and C4 (corre-
sponding to the four columns of player 2). The payoffs following U are (aj,a),
(b1,b2), (e1,e2), and (f1,f2), respectively. The payoffs following D are (c,cz),
(dy,da), (g1,82), and (hy,hy), respectively.

Another possibility is to switch the roles of the players. Player 2 starts and has
four actions Ci, C;, Cs, and Cy4. Player 1 has one information set with four nodes
and at each node the actions U and D. The payoffs (following U and D) are: (ay,a;)
and (C],Cz); (b],bz) and (d],dz); (61,62) and (gl,gz); and (f],fz) and (h],hz),
respectively.

If, for instance, b; = a;, f; = e;, gi = ci, and h; = d; for i = 1,2, then the following
extensive form game of perfect information is possible. Player 1 starts and has two
actions, U and D. After U player 2 has two actions, say L and R, and after D player
2 has again two actions, say / and r. The path U, L is followed by the payoff pair
(ay,a2), the path U,R by (ey,ez), the path D, by (cy,cz), and the path D,r by
(dv,da).

Still another possibility is to let player 2 start with two possible actions, leading to
one information set of player 1 with two actions at each of the two nodes. Finally, all
the actions of player 1 result in one information set of player 2 at which this player
has again two actions. Formally, this extensive form is not allowed since player 2
has imperfect recall.

4.4 Choosing Objects

(c) In any subgame perfect equilibrium the game is played as follows: player 1 picks
O3, then player 2 picks O; or Oy, and finally player 1 picks O4. These are the (two)
subgame perfect equilibrium outcomes of the game. Due to ties (of player 2) there
is more than one subgame perfect equilibrium, namely eight in total. All subgame
perfect equilibria result in the same distribution of the objects.
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4.5 An Extensive Form Game
There is a unique pure strategy Nash equilibrium, which is also subgame perfect.
This equilibrium is perfect Bayesian for an appropriate choice of player 2’s belief.

4.6 Another Extensive Form Game
There is a unique Nash equilibrium (in pure strategies). This equilibrium is not
perfect Bayesian.

4.7 A Centipede Game

(b) Consider any strategy combination. The last player that has continued when
playing his strategy could have improved by stopping if possible. Hence, in equilib-
rium the play of the game must have stopped immediately.

To exhibit a non-subgame perfect Nash equilibrium, assume that player 1 always
stops, and that player 2 also always stops except at his second decision node. Check
that this is a Nash equilibrium. (One can also write down the strategic form, which
is an 8 x 8 bimatrix game.)

4.8 Finitely Repeated Games
(c) The unique subgame perfect Nash equilibrium is where player 1 always plays B
and player 2 always R. This is true for any finite repetition of the game.

(e) Player 1: play T at the first stage. Player 2: play L at the first stage. Second stage
play is given by the following diagram:

L M R
T (B,R C,R C,R
c|BM BR BR
B\BM B,R B,R

For instance, if first stage play results in (C, L), then player 1 plays B and player 2
plays M at stage 2. Verify that this defines a subgame perfect equilibrium in which
(T, L) is played at the second stage. (Other solutions are possible, as long as players
1 and 2 are punished for unilateral deviations at stage 1.)

Problems of Chap. 5

5.1 Battle-of-the-Sexes

The strategic form is a 4 x 4 bimatrix game. List the strategies of the players as in the
text. We can then compute the expected payoffs. E.g., if the first row corresponds to
strategy SS of player 1 and strategies SS, SB, BS, and BB of player 2, then the payoffs
are, respectively, 1/6 times (8,3), (6,9), (6,0), and (4,6). The (pure strategy) Nash
equilibria are (SS,SB) and (BS,BB).

5.2 A Static Game of Incomplete Information
There are three pure Nash equilibria: (TT,L), (TB,R), and (BB, R). (The first letter
in a strategy of player 1 applies to Game 1, the second letter to Game 2.)
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5.3 Another Static Game of Incomplete Information
(b) The unique pure strategy Nash equilibrium is: #; and #] play B, 1, and 7} play R.

5.4 Job-Market Signaling
(b) There is a pooling equilibrium where both worker types take no education, and
wages are always low. This equilibrium is sustained by the firm’s belief that an
educated worker is of the high type with probability at least 1/2. It survives the
intuitive criterion if the firm believes that an educated worker is of the high type
with probability 1.

There is also a separating equilibrium in which the high type takes education and
the low type doesn’t. Both types get offered the low wage.

5.5 A Joint Venture
(c) There is a unique Nash equilibrium (even in mixed strategies). This is also
subgame perfect and perfect Bayesian.

5.6 Entry Deterrence

For x < 100 the strategy combination where the entrant always enters and the incum-
bent colludes is a perfect Bayesian equilibrium. For x > 50, the combination where
the entrant always stays out and the incumbent fights is a perfect Bayesian equilib-
rium if the incumbent believes that, if the entrant enters, then fighting yields 0 with
probability at most 1 — SXO. Both equilibria satisfy the intuitive criterion.

5.7 The Beer—Quiche Game

(b) There are two perfect Bayesian equilibria, both of which are pooling. In the first
one, player 1 always eats quiche. This equilibrium does not survive the intuitive
criterion. In the second one, player 1 always drinks beer. This equilibrium does
survive the intuitive criterion.

5.8 Issuing Stock
(b) There is a pooling equilibrium in which the manager never proposes to issue new
stock, and such a proposal would not be approved of by the existing shareholders
since they believe that this proposal signals a good state with high enough proba-
bility. (The background of this is that a new stock issue would dilute the value of
the stock of the existing shareholders in a good state of the world, see the original
article for details.) This equilibrium (just about) survives the intuitive criterion.

There is also a separating equilibrium in which a stock issue is proposed in the
bad state but not in the good state. If a stock issue is proposed, then it is approved
of.

Finally, there is a separating equilibrium in which a stock issue is proposed in
the good state but not in the bad state. If a stock issue is proposed, then it is not
approved of.

(c) In this case, a stock issue proposal would always be approved of, so the ‘bad
news effect’ of a stock issue vanishes. The reason is that the investment opportunity
is now much more attractive.
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5.9 More Signaling Games
(a) There is a unique, pooling perfect Bayesian equilibrium. This equilibrium does
not survive the intuitive criterion.

(b) There are two strategy combinations that are perfect Bayesian. Only one of them
survives the intuitive criterion.

Problems of Chap. 6

6.1 Cournot with Asymmetric Costs
The Nash equilibrium is ¢; = (a —2c; +¢2)/3 and g2 = (a —2¢2 +¢1) /3, given that
these amounts are nonnegative.

6.2 Cournot Oligopoly

(b) The reaction function of player i is: Bi(q1,---,qi—1,Gi+1,---,qn) = (@ —c —
Z#iqj)/z iij?él‘qj <a-—c,and ﬁi(ql,...,qi,],qi+1,...,qn) = 0 otherwise.

(c) One should compute the point of intersection of the n reaction functions.
This amounts to solving a system of n linear equations in n unknowns qi,...,q,.
Alternatively, one may guess that there is a solution ¢; = g» = ... = g,. Then
q1 = (a—c—(n—1)q1)/2, resulting in g, = ,{. Hence, each firm producing
w1 is a Nash equilibrium. If the number of firms becomes large then this amount
converges to 0, which is no surprise since demand is bounded by a.

(d) To show that this equilibrium is unique, one may first argue that it is unique given
that all equilibrium outputs are positive (e.g., by showing that the given system
of n linear equations has a unique solution by computing the determinant of the
coefficient matrix). Moreover, in equilibrium there is at least one firm producing a
positive output and having positive profit. If there would be some other firm with
zero output, then that firm could improve by producing a small amount and making
positive profit.

6.3 Quantity Competition with Heterogenous Goods

(@) i(q1,92) = qipi(q1,92) — cqi fori=1,2.

(b) The equilibrium is: g; = (21 —4¢)/33, g2 = (13—3¢)/22, py = (21 +7¢) /11,
p2 = (39+13c)/22.

(©) g1 = (57— 10¢)/95, g2 = (38 — 10¢) /95, p1 = (228 +50¢)/95, p, = (228 +
45¢)/95.

(d) g1 = max{1l — épl + ;pz,O}, q> = max{l — épz + }‘pl}. The profit functions
are now I (p1,p2) = p1q1 — cqi and I (py, p2) = paga — cq2, with ¢ and g5 as
given.

(e) The equilibrium is p; = ]C’HSC, P2 = 30;2] 3¢ Note that these prices are different

from the ones in (c).

(f) These are the same prices and quantities as under (c).
(g) See the answers to (e) and (f).
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6.4 A Numerical Example of Cournot with Incomplete Information

q1 = 18/48,qu =9/48, q1. = 15/48. In the complete information case with low cost
we have g1 = ¢o = 16/48, with high cost it is ¢; = 20/48 and g, = 8/48. Note that
the low cost firm ‘suffers’ from incomplete information since firm 1 attaches some
positive probability to firm 2 having high cost and therefore has higher supply. For
the high cost firm the situation is reversed: it ‘benefits’ from incomplete information.

6.5 Cournot with Two-sided Incomplete Information
Similar to (6.3) we derive

_ _a—c—%qu—(1-9)qL
qc=qe(qn,qL) = 5 ;

_ _a_ch—ﬂqH—(l_ﬁ)tIL
an = qn(qu,qL) =

2 b

B _a—cL—7gp—(1-7)q
qL = CIL(‘Iha‘M) - 2 )
3 _a—cy—ng,—(1-7)g
qu = qu(qn,qc) = 5 .

Here, g; and gy, correspond to the low and high cost types of firm 1 and g, and
qn correspond to the low and high cost types of firm 2. The (Bayesian) Nash
equilibrium follows by solving these four equations in the four unknown quantities.

6.6 Incomplete Information about Demand

Yag+(1-9%)ap—c ag—c 1-9 ap—c
" <3 J=e gy = o YV (ag —ar), qr = 5 —

2 (ag — ar,). (Assume that all these quantities are positive.)

The equilibrium is: g =

6.7 Variations on Two-person Bertrand
(a) If ¢ < ¢; then there is no Nash equilibrium. (Write down the reaction functions
or — easier — consider different cases.)

(b) If ¢c; = ¢2 = ¢ < a—1 then there are two equilibria, namely p; = p» = ¢ and
p1 =p2=c+ 1. (f c = a— 1 then there are two additional equilibria, namely p; =
c,pp=c+1and p; =c+1,pr=c.) Assume c| < c,. There are several cases. E.g., if
c1 < cp—1anda > 2c; — ¢ then there are two equilibria, namely p; =cy — 1, p2 =
cpand py =c,pr =cr+ 1.

6.8 Bertrand with More than Two Firms
A strategy combination is a Nash equilibrium if and only if at least two firms charge
a price of ¢ and the other firms charge prices higher than c.

6.9 Variations on Stackelberg

(a) With firm 1 as a leader we have g; = (1/2)(a —2c¢; 4+ ¢;2) and g2 = (1/4)(a +
2¢y — 3cy). With firm 2 as a leader we have g, = (1/2)(a—2¢; +¢1) and g1 =
(1/4)(a—|—202— 36‘1).

(b) The leader in the Stackelberg game can always play the Cournot quantity: since
the follower plays the best reply, this results in the Cournot outcome. Hence, the
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Stackelberg equilibrium — where the leader maximizes — can only give a higher
payoff. (This argument holds for an arbitrary game where one player moves first
and the other player moves next, having observed the move of the first player.)

(©) qgi=(1/2)(a—c)fori=1,2,...,n.

6.10 First-price Sealed-bid Auction

(b) Suppose that in some Nash equilibrium player i wins with valuation v; < vy.
Then the winning bid b; must be at most v; otherwise player i makes a negative
profit and therefore can improve by bidding (e.g.) v;. But then player 1 can improve
by bidding higher than b; (and win) but lower than v; (and make positive profit).
Other Nash equilibria: (v1,v1,0,0,...,0), (b,b,b,...,b) with vi > b > vy, etc.

(d) If not, then there would be a Nash equilibrium in which — in view of (c) — all
players bid below their valuations. By (b) a player with the highest valuation wins
the auction, so this must be player 1 if each player bids below his true valuation. But
then player 1 can improve if b; > v, and player 2 can improve if by < v,.

6.11 Second-price Sealed-bid Auction
(d) Also (v1,0...,0) is a Nash equilibrium.

(e) The equilibria are: {(b],bz) ‘ bz Z Vi, 0 S b] S Vz} ] {(b],bz) ‘ b] Z V2, bz S
by, 0 <by >v1}.

6.12 Third-price Sealed-bid Auction
(b) Suppose v{ > vy > v3 > ---, then bidder 2 could improve by bidding higher than
Vi.

(c) Everybody bidding the highest valuation v; is a Nash equilibrium. Also every-
body bidding the second highest valuation v, is a Nash equilibrium. (There are many
more!)

6.13 n-Player First-price Sealed-bid with Incomplete Information

Suppose every player j # i plays s;‘.. If player i’s type is v; and he bids b; (which can
be assumed to be at most 1 — 1 /n since no other bidder bids higher than this) then the
probability of winning the auction is equal to the probability that very bid b;, j # i, is
at most b; (including equality since this happens with zero probability). In turn, this
is equal to the probability that v; < n/(n— 1)b; for every j # i. Since the players’s
valuations are independently drawn from the uniform distribution, the probability
that player i wins the auction is equal to (n/(n — 1)b;)"~!, hence player i should
maximize the expression (v; — b;)(n/(n— 1)b;)"~!, resulting in b; = (1 —1/n)v;.

6.14 Mixed Strategies and Objective Uncertainty
(@) ((1/2,1/2),(2/5,3/5)).

6.15 Variations on Finite Horizon Bargaining
(a) Adapt Table 6.1 for the various cases.

(b) The subgame perfect equilibrium outcome is: player 1 proposes (1 — & +
016,,8, — 8,0,) at r = 0 and player 2 accepts.



330 Hints, Answers and Solutions

(c) The subgame perfect equilibrium outcome in shares of the good is: player 1
proposes (1 — 87 + 867,57 — 8,67) att = 0 and player 2 accepts.

(d) The subgame perfect equilibrium outcome is: player 1 proposes (1 — & + 8% —
+ 871 875,86 —82+...— 871+ 87sy) att = 0 and player 2 accepts.

(e) The limits are ( Hl 5 lf 5 )» independent of s.

6.16 Variations on Infinite Horizon Bargaining

(a) Conditions (6.6) are replaced by x5 = 8,y5 and y; = ;x}. This implies x] =
11:5?282 and yf = 51':3'5‘22. In the strategies (o} ) and (o3), replace 8 by 8, and
0,, respectively. The equilibrium outcome is that player 1’s proposal x* at t = 0
is accepted.

(b) Nothing essential changes. Player 2’s proposal y* is accepted at 7 = 0.

(c) Nothing changes compared to the situation in the text, since s is only obtained at

t = oo,

(e) Let p denote the probability that the game ends. Then p is also the probability
that the game ends given that it does not end at t = 0. Hence, p = (1 —38) + 6 p, so
that p = 1.

6.17 A Principal-agent Game

(a) This is a game of complete information. The employer starts and has an infinite
number of actions available, namely any pair (wr, wy ) of nonnegative wages. After
each of these actions, the worker has three possible actions: reject, resulting in 0
for the employer and 2 for the worker; accept and exert high effort, resulting in
the (expected) payoffs of 9.2 — 5" BZWL for the employer and *"# HWL — 3 for the
worker; accept and exert low effort, resulting in the (expected) payoffs of 6.8 —
2W”1T)8WL for the employer and ZW”IBSWL for the worker. The actions of the employer
are also his strategies. A strategy for the worker is a function (wz,wy) — { reject
(r), accept and exert high effort (h), accept and exert low effort (/) }.

(b) Any pair of wages (wp,wy) with 2W”1T)8WL 2 and wy < wy + 5, together
with the worker choosing a payoff maximizing action but certainly [ if / is pay-
off maximizing following any wage offer package (wr,wp ), is a subgame perfect
equilibrium. All these equilibria result in the worker accepting and exerting low

effort, and final payoffs of 4.8 for the employer and 2 for the worker.

6.18 The Market for Lemons

(b) There are many subgame perfect equilibria: the buyer offers p < 5,000 and the
seller accepts any price of at least 5,000 if the car is bad and of at least 15,000 if the
car is good. All these equilibria result in expected payoff of zero for both. There are
no other subgame perfect equilibria.

6.19 Corporate Investment and Capital Structure
(b) Suppose the investor’s belief that & = L after observing s is equal to g. Then the
investor accepts s if and only if

slgL+(1—q)H+R] >I(1+7r). (%)



Hints, Answers and Solutions 331
The entrepreneur prefers to receive the investment if and only if
s<R/(m+R), ()

forme {L,H}.
In a pooling equilibrium, ¢ = p. Note that () is more difficult to satisfy for
7 = H than for £ = L. Thus, (x) and (*x) imply that a pooling equilibrium exists
only if
I(1+47r) - R
pL+(1—pH+R ~— H+R’

A separating equilibrium always exists. The low-profit type offers s = I(1
r)/(L+ R), which the investor accepts, and the high-profit type offers s < (1
r)/(H + R), which the investor rejects.

6.20 A Poker Game
(a) The strategic form of this game is as follows:

+
+

aa aq ka kq
believe -1,1 —1/3,1/3 —-2/3,2/3 0,0
show 2/3,-2/3 1/3,—1/3 0,0 —1/3,1/3 )"

Here, ‘believe’ and ‘show’ are the strategies of player 1. The first letter in any strat-
egy of player II is what player II says if the dealt card is a King, the second letter is
what II says if the dealt card is a Queen — if the dealt card is an Ace player II has no
choice.

(b) Player I has a unique optimal (maximin) strategy and player 2 has a unique
optimal (minimax) strategy. The value of the game is —2/9.

6.21 A Hotelling Location Problem
(a) X1 =X = ;

©) X1 =x=).

6.22 Median Voting

(a) The strategy set of each player is the interval [0,30]. If each player i plays x;, then

the payoff to each player i is —[*1 7 —7|. A Nash equilibrium always exists.

(b) The payoff to player i is now —|med(xy,...,x,) — ], where med(-) denotes the
median. For each player, proposing a temperature different from his true ideal tem-
perature either leaves the median unchanged or moves the median farther away from
the ideal temperature, whatever the proposals of the other players. Hence, proposing
one’s ideal temperature is a weakly dominant strategy.

6.23 The Uniform Rule
byM=4:(1,3/2,3/2),M=5: (1,2,2),M=5.5: (1,2,5/2),M =6: (1,2,3),
M=7:(2,23),M=8:(5/2,5/2,3),M=9: (3,3,3).

(c) If player i reports #; and receives s; > t; then, apparently the total reported quan-
tity is above M and thus, player i can only further increase (hence, worsen) his
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share by reporting a different quantity. If player i reports #; and receives s; < ¢; then,
apparently the total reported quantity is below M and thus, player i can only further
decrease (hence, worsen) his share by reporting a different quantity.

There exist other Nash equilibria, but they do not give different outcomes
(shares). E.g., if M > Z;?:ltj, then player 1 could just as well report O instead
of 1.

6.24 Reporting a Crime

(b)p=1- ().

(c) The probability of the crime being reported in this equilibriumis 1 — (1 — p)" =
1-(9) "1, This converges to 1 — (¢/v) for n going to infinity. Observe that both p

and the probability of the crime being reported decrease if n becomes larger.

6.25 Firm Concentration
Let, in equilibrium, n firms locate downtown and m firms in the suburbs, with n = 6
and m = 4.

6.26 Tragedy of the Commons
(d) Suppose, to the contrary, G* < G**. Then v(G*) > v(G**) since V' < 0, and
0>V (G*) >V (G**) since v/ < 0. Also, G*/n < G**. Hence

WG+ (1/R)GV (G*) — ¢ > v(G™) + GV (G™) e,

a contradiction since both sides should be zero.

Problems of Chap.7

7.1 On Discounting and Limiting Average
(a) See the solution to Problem 6.16(e).

(b) A sequence like 1,3,5,7,... has a limiting average of infinity. More interestingly,
one may construct a sequence containing only the numbers +1 and —1 of which the
finite averages ‘oscillate’, e.g., below —1/2 and above +1/2, so that the limit does
not exist.

7.2 Nash and Subgame Perfect Equilibrium in a Repeated Game

(a) The unique Nash equilibrium is (7, R); v(A) = 1 and the minimax strategy in A
is R; v(—B) = —1 and the maximin strategy in —B is row B.

(b) Only (1,5), independent of &.

(c)6 > ;, to keep player 2 from deviating to R.

7.3 Nash and Subgame Perfect Equilibrium in Another Repeated Game

(a) The limiting average payoffs (2,1), (1,2), and (2/3,2/3), resulting from play-
ing, respectively, the Nash equilibria (7,L), (B,R), and ((2/3,1/3),(1/3,2/3)) at
every stage; and all payoffs (x;,x,) with xj,x, > 2/3.
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(b) v(A) =2/3 and —v(—B) = 2/3. Hence, all payoffs (x1,x;) with xj,x, > 2/3.

7.4 Repeated Cournot and Bertrand
(a) The relevant restriction on 0 is given by é > 694(1 —-0)+ ;8, which yields
§> 7.

=17

(b)s>1.

Problems of Chap. 8

8.1 Symmetric Games

(a) (0,1) is the only ESS.

(b) Both (1,0) and (0, 1) are ESS. The (Nash equilibrium) strategy (1/3,2/3) is not
an ESS.

8.2 More Symmetric Games
The replicator dynamics in the matrix A is p = p(p — 1)(p — ;), with rest points
p=0,1, é of which only p = é is stable. The game (A,A”) has a unique symmetric

Nash equilibrium, namely ((}, 1), (3, 3)). The unique ESSis (1, 1).

8.3 Asymmetric Games

In (B,BT), the replicator dynamics is given by the equations p = pg(1 — p) and
G = pq(1 —q). There is one stable rest point, namely p = g = 1, corresponding to
the unique strict Nash equilibrium ((1,0), (1,0)) of the game. The other rest points
are all points in the set

{(p,q)| p=0and0<g<lorg=0and0<p<1}.

8.4 Frogs Call for Mates

Note that for (a) and (b) Proposition 8.6 can be used. Similarly, for (c) we can use
Proposition 8.7, by stating the conditions under which each of the four pure strategy
combinations is a strict Nash equilibrium: if z; < P+m — 1 and zp < P+m — 1 then
(Call, Call) is a strict Nash equilibrium, etc.

8.5 Video Market Game
There are four rest points, of which only one is stable.

Problems of Chap. 9

9.2 Computing the Core
(2) {(0,0,1)}; (b) polygon with vertices (15,5,4), (9,5,10), (14,6,4), and (8,6, 10).

9.4 ‘Non-monotonicity’ of the Core

(b) The core of (N,V') is the set {(0,0,1,1)} (use the fact that C(N,v') C C(N,v)).
Hence, player 1 can only obtain less in the core although the worth of coalition
{1,3,4} has increased.



334 Hints, Answers and Solutions

9.5 Efficiency of the Shapley Value

Consider an order iy, i3, .. .,1I, of the players. The sum of the coordinates of the asso-
ciated marginal vector is [v({i1 }) —v(0)] + [v({i1,i2}) —v{i1 })] + [v{i1,i2,i3}) —
v({ir, )]+ -+ [v(N) = v(N\{in})] = v(N) —v(0) = v(N). Hence, every marginal
vector is efficient, so the Shapley value is efficient since it is the average of the
marginal vectors.

9.6 Computing the Shapley Value

(2) @(N,v) = (1/6,1/6,2/3) ¢ C(N,v); (b) (91,6,8), not in the core.

9.7 The Shapley Value and the Core

(a) a = 3 (use Problem 9.3).

(b) (2.5,2,1.5).

(c) The Shapley value is (a/3+1/2,a/3,a/3 — 1/2). The minimal value of a for
which this is in the core is 15/4.

9.8 Shapley Value in a Two-player Game

O(N,v) = (v({1}) + V({IAZ})*V(Z{I})*V({Q})’v({z}) + V({ll})*v(z{l})*v({z})).

9.9 The Nucleolus and the Core
Use the fact that at a core element all excesses are nonpositive.

9.10 Computing the Nucleolus
(a) (0,0,1).

(b) (11.5,5.5,7).

() (1/5,1/5,1/5,1/5,1/5,0,...,0) € RS,

(d)In (N,v): (1/2,1/2,1/2,1/2);in (N,v): (0,0,1,1).

9.11 Nucleolus of Two-player Games

The nucleolus is (v({1}) + V({1»2})*V(2{1})*V({2})7‘,({2}) + V({1$2})*V(2{1})*V({2})>'
9.12 Computing the Core, the Shapley Value, and the Nucleolus

(a) The nucleolus and Shapley value coincide and are equal to (1.5,2,2.5).

(c) The maximal value of v({1}) is 2. For that value the unique core element is
(2,2,2).

9.13 Properties of the Shapley Value

(a) In ®;(N,v) the term v(SU {i}) — v(S) occurs the same number of times as the
term v(SU{j}) — v(S) in ®;(N,v), for every coalition S C N\ {i,j}. Let S be a
coalition with i € Sand j ¢ S. Then v(S\ {i} U{j}) = v(S\ {i} U{i}), so that

VSUL/H) —v(8) = v((S\ {3 U {iH) u{i}) —v((S\{i}) u{i})
= v((S\{U{7HUA{i) —v((S\{iH) U {j}),

and also these expressions occur the same umber of times. Similarly for coalitions
S that contain j but not i.

(b) This is obvious from Definition 9.3.
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[S]!(n—|S|—1)!
n!

(c) Observe that it is sufficient to show Y. = 1. To show this, note that

S:igtS

—1
Sl _ 1 <"Sl) 5o that

S%S \S\!(n—n\!s\—l)! _ 1SO7§:M (n;l) (n;l)l

Problems of Chap. 10

10.1 A Division Problem (1)
(b) In terms of utilities: (é\/”j7 %), in terms of distribution: (é\/”j7 1- % V3).

: : : * * 1 * 1 1
(c) The Rubinstein outcome is x* where x| = \/1+8+82 and x5 = 1 548

(d) limg_,; x7 = é /3, consistent with what was found under (a).

10.2 A Division Problem (2)
Use symmetry, Pareto optimality and covariance of the Nash bargaining solution.

10.3 A Division Problem (3)
(2) The distribution of the good is (21*53 2721753). In utility terms this is

-84 1-64
(1753 (/2 21753)
-84 Cf1-84 )

(b) By taking the limit for 8 — 1 in (b), we obtain (1.5,0.5) as the distribution
assigned by the Nash bargaining solution. In utilities: (0.75, V/ 0.5).

10.4 An Exchange Economy

(@ x} (p1,p2) = (3p2+2p1)/2p1, 55 = (4p1— pa2) [2p2, X} = (p1 +6p2) /2p1, %5 =
P1/2p2.

(b) (p1,p2) = (9,5) (or any positive multiple thereof); the equilibrium allocation is
((33/18,31/10),(39/18,9/10)).

(c) The (non-boundary part of the) contract curve is given by the equation xg =
(17x4 +5)/(2x} +8). The core is the part of this contract curve such that In(x{ +
1) +1In(x) +2) > In4 +1In3 = In12 (individual rationality constraint for A) and
3In(5 — ) +1n(5 —x3) > 3In2 +In4 = In 12 (individual rationality constraint for
B).

(d) The point x* = (33/18,31/10) satisfies the equation x5 = (17x{ +5)/(2x{ +8).

(e) For the disagreement point d one can take the point (In12,In12). The set S
contains all points u € R? that can be obtained as utilities from any distribution of
the goods that does not exceed total endowments e = (4,4). Unlike the Walrasian
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equilibrium allocation, the allocation obtained by applying the Nash bargaining
solution is not independent of arbitrary monotonic transformations of the utility
functions. It is a ‘cardinal’ concept, in contrast to the Walrasian allocation, which is
‘ordinal’.

10.5 The Matching Problem of Table 10.1 Continued
(a) The resulting matching is (wy,my), (wa,m,), w3 and m3 remain single.

10.6 Another Matching Problem

(a) With the men proposing: (my,w1), (mz,w2), (m3,ws3). With the women propos-
ing: (ml,wl), (MQ,W3), (mg,Wz).

(b) Since in any stable matching we must have (m;,w; ), the matchings found in (a)
are the only stable ones.

(c) Obvious: every man weakly or strongly prefers the men proposing matching in
(a); and vice versa for the women.

10.7 Yet Another Matching Problem: Strategic Behavior
(b) There are no other stable matchings.

(c) The resulting matching is (m,w;), (m2,w3), (m3,wy). This is clearly better
for wy.

10.8 Core Property of Top Trading Cycle Procedure

All players in a top trading cycle get their top houses, and thus none of these players
can be a member of a blocking coalition, say S. Omitting these players and their
houses from the problem, by the same argument none of the players in a top trading
cycle in the second round can be a member of S: the only house that such a player
may prefer is no longer available in S; etc.

10.9 House Exchange with Identical Preferences
Without loss of generality, assume that each player has the same preference
hihy...h,. Show that in a core allocation each player keeps his own house.

10.10 A House Exchange Problem
There are three core allocations namely: (1) 1: A3, 2: hy, 3: hy, 4 :hy; (2) 1: ho,
2:hg,3:hy,4:h3;3) 1:h3,2:hy,3: ha, 4: hy. Allocation (1) is in the strong core.

10.11 Cooperative Oligopoly
(a)—(c) Analogous to Problems 6.1, 6.2. Parts (d) and (f) follow directly from (c).
For parts (e) and (g) use the methods of Chap.9.

Problems of Chap. 11

11.1 Preferences
(a) If a # b and aRb and bRa then neither aPb nor bPa, so P is not necessarily
complete.

(b) I is not complete unless aRb for all a,b € A. I is only antisymmetric if R is a
linear order.



Hints, Answers and Solutions 337

11.2 Pairwise Comparison
(a) C(r) is reflexive and complete but not antisymmetric.

(c) There is no Condorcet winner in this example.

11.3 Independence of the Conditions in Theorem 11.1

The social welfare function based on the Borda scores is Pareto efficient but does
not satisfy IIA and is not dictatorial (cf. Sect. 11.1). The social welfare function that
assigns to each profile of preferences the reverse preference of agent 1 satisfies ITA
and is not dicatorial but also not Pareto efficient.

11.4 Independence of the Conditions in Theorem 11.2

A constant social welfare function (i.e., always assigning the same fixed alternative)
is strategy-proof and nondictatorial but not surjective. The social welfare function
that always assigns the bottom element of agent 1 is surjective, nondictatorial, and
not strategy-proof.

11.5 Independence of the Conditions in Theorem 11.3

A constant social welfare function (i.e., always assigning the same fixed alternative)
is monotonic and nondictatorial but not unanimous. A social welfare function that
assigns the common top alternative to any profile where all agents have the same
top alternative, and a fixed constant alternative to any other profile, is unanimous
and nondictatorial but not monotonic.

11.6 Copeland Score and Kramer Score

(a) The Copeland ranking is a preference. The Copeland ranking is not antisym-
metric. It is easy to see that the Copeland ranking is Pareto efficient. By Arrow’s
Theorem therefore, it does not satisfy IIA.

(b) The Kramer ranking is a preference. The Kramer ranking is not antisymmetric
and not Pareto efficient. It violates ITA.

11.7 Two Alternatives

Consider the social welfare function based on majority rule, i.e., it assigns aPb if
IN(a,b,r)| > |N(b,a,r)|; bPa if [N(a,b,r)| < |N(b,a,r)|; and alb if |N(a,b,r)| =
IN(b,a,r)|.

Problems of Chap. 12

12.2 2 x 2 Games
(a) To have no saddlepoints we need a;; > ajz or aj; < ajp. Assume the first, then
the other inequalities follow.

(b) For optimal strategies p = (p,1 — p) and q = (¢,1 — ¢) we must have 0 < p < 1
and 0 < g < 1. Then use that p should be such that player 2 is indifferent between
the two columns and ¢ such that player 1 is indifferent between the two rows.
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12.3 Symmetric Games

Let x be optimal for player 1. Then xAy > v(A) for all y; hence yAx = —xAy <
—v(A) for all y; hence (take y = x) v(A) < —v(A), so v(A) < 0. Similarly, derive the

converse inequality by considering an optimal strategy for player 2.

12.4 The Duality Theorem Implies the Minimax Theorem
Let A be an m x n matrix game. Without loss of generality assume that all entries of
A are positive. Consider the associated LP as in Sect. 12.2.

Consider the vector X = (1/m,...,1/m,n) € R™! with n > 0. Since all entries
of A are positive it is straightforward to check that x € V if n < Y/, a;;/m for
all j=1,...,n. Since X-c = —n < 0, it follows that the value of the LP must be
negative.

Letx € O,,, and y € O,,, be optimal solutions of the LP. Then —x,,,+1 = —yp4+1 <
0 is the value of the LP. We have x; > 0 for every i =1,...,m, ¥ x; < 1, and
(X1, ,Xm)Ae/ > x,41 (>0) forevery j = 1,...,n. Optimality in particular implies
Y7 xi =1, so that vi(A) > (xX1,...,%n)Ae > x,,,1 forall j, hence vi(A) > xpi1.
Similarly, it follows that vo(A) < y,+1 = X1, s that vo(A) < v;(A). The Minimax
Theorem now follows.

12.5 Infinite Matrix Games
(a) A is an infinite matrix game with for alli,j € N: g;; = 1if i > j, a;; =0if i = j,
anda;; = —1ifi < j.

(b) Fix a mixed strategy p = (p1, p2,...) for player 1 with p; > 0 for all i € N and
Yoapi=1.1f player 2 plays pure strategy j, then the expected payoff for player 1
is equal to 72 1 pi+Yi ~ j+1Di. Since Y.~ pi = 1, this expected payoff converges
to —1 as j approaches eo. Hence, infq pAq = —1, so0 sup, infq pAq = —1. Similarly,

one shows infq sup, pAq = I, hence the game has no ‘value’.

12.6 Equalizer Theorem
Assume, without loss of generality, v = 0. It is sufficient to show that there exists q €
R™ with q > 0, Aq < 0, and g, = 1. The required optimal strategy is then obtained
by normalization.

This is equivalent to existence of a vector (q,w) € R with q > 0, w > 0, such

(25)(2)-(2)

where row vector €’ € R”, I is the m x m identity matrix, 0 is an 1 X m vector on
the left hand side and an m x 1 vector on the right hand side. Thus, we have to show
that the vector x := (0,1) € R™*! is in the cone spanned by the columns of the
(m+1) X (n+ m) matrix on the left hand side. Call this matrix B and call this cone
Z. Assume x ¢ Z and derive a contradiction using Theorem 22.1.
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Problems of Chap. 13

13.1 Existence of Nash Equilibrium

For upper semi-continuity of f3, take a sequence o
¢ € B(c*) converging to 7, and show 7 € B(0).
13.2 Lemma 13.2

The only-if direction is straightforward from the definition of Nash equilibrium.

13.3 Lemma 13.3
Take i such that e’/Aq > e*Aq for all k = 1,...,m. Then, clearly, e’/Aq > p’Aq for all
p’ € A", so € € Bi(q). The second part is analogous.

k converging to &, a sequence

13.4 Dominated Strategies
(b) Denote by NE(A, B) the set of Nash equilibria of (A, B). Then

(p*,q") € NE(A,B) < (p*,(q,0)) € NE(A,B) where (¢',0) = q*
< Vp A", q €A [p*A(q',0) > pA(q',0),
p*B(q’,0) > p*B(q,0)]
& VpeA" qe A" [p*A'd > pAq,
p'B'q' > pBq|
< (p*.q') e NE(A',B).

Note that the first equivalence follows by part (a).

13.5 A 3 x 3 Bimatrix Game
(c) The unique Nash equilibrium is ((0,0,1),(0,0,1)).

13.6 A 3 x 2 Bimatrix Game
The set of Nash equilibriais {(p,q) € A’ x A% | p; =0, g1 > }U{((1,0,0),(0,1))}.

13.7 Proof of Theorem 13.8

‘If”: conditions (13.1) are satisfied and f = 0, which is optimal since f < 0 always.
‘Only-if’: clearly we must have a = pAq and b = pBq (otherwise f < 0 which
cannot be optimal). From the conditions (13.1) we have p’Aq < a = pAq and pBq' <
b=pBqforall p’ € A" and q' € A", which implies that (p, q) is a Nash equilibrium.

13.8 Matrix Games

This is a repetition of the proof of Theorem 12.4. Note that the solutions of program
(13.3) give exactly the value of the game a and the optimal (minimax) strategies of
player 2. The solutions of program (13.4) give exactly the value of the game —b and
the optimal (maximin) strategies of player 1.

13.9 Tic-Tac-Toe

(a) Start by putting a cross in the center square. Then player 2 has essentially two
possibilities for the second move, and it is easy to see that in each of the two cases
player 1 has a forcing third move. After this, it is equally easy to see that player 1
can always enforce a draw.
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(b) If player 1 does not start at the center, then player 2 can put his first circle at the
center and then can place his second circle in such a way that it becomes forcing. If
player 1 starts at the center then either a pattern as in (a) is followed, leading to a
draw, or player 2’s second circle becomes forcing, also resulting in a draw.

13.10 Iterated Elimination in a Three-player Game
The resulting strategy combination is (D, [, L).

13.11 Never a Best Reply and Domination

First argue that strategy Y is not strictly dominated. Next assume that ¥ is a best
reply to strategies (p,1 — p) of player 1 and (g,1 — g) of player 2, and derive a
contradiction.

13.13 A Three-player Game with an Undominated but not Perfect Equilibrium
(a) (U,1,L) is the only perfect equilibrium.

(b) The equilibrium (D,,L) is undominated.

13.14 Existence of Proper Equilibrium
Tedious but straightforward.

13.15 Strictly Dominated Strategies and Proper Equilibrium
(a) The only Nash equilibria are (U,I(,L)) and (D,r(,L)). Obviously, only the first
one is perfect and proper.

(b) (D, r,L), is a proper Nash equilibrium.

13.16 Strictly Perfect Equilibrium

(a) Identical to the proof of Lemma 13.16, see Problem 13.12: note that any
sequence of perturbed games converging to the given game must eventually contain
any given completely mixed Nash equilibrium o©.

(c) The set of Nash equilibria is {((p,1—p),L) | 0 < p < 1}, where p is the prob-
ability on U. Every Nash equilibrium of the game (A, B) is perfect and proper. No
Nash equilibrium is strictly perfect.

13.17 Correlated Equilibria in the Two-driver Example (1)
Use inequalities (13.5) and (13.6) to derive the conditions: py; +pi2+p21+p2 =1,
pij > 0foralli,j € {1,2}, pi1 < Imin{pi2, p21}, p2o < 3min{p12, po1 }.

13.18 Nash Equilibria are Correlated
Check that (13.5) and (13.6) are satisfied for P.

13.19 The Set of Correlated Equilibria is Convex
Let P and Q be correlated equilibria and 0 < ¢ < 1. Check that (13.5) and (13.6) are
satisfied for P+ (1 —1)Q.

13.20 Correlated vs. Nash Equilibrium
(a) The Nash equilibria are: ((1,0),(0,1)), ((0,1),(1,0)), and ((2/3,1/3),
(2/3,1/3)).
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13.21 Correlated Equilibria in the Two-driver Example (2)
The matrix C is

(1,2) (2,1) (1,2") (2,1

(1,1 [ =10 0 0 ~10
(1,2)| 6 0 10 0
1) o 10 0 6
229\ 0o -6 -6 0

13.22 Finding Correlated Equilibria
There is a unique correlated equilibrium

~

I
N
N — W —
QN = W=

) |

13.23 Independence of the Axioms in Corollary 13.35

Not OPR: take the set of all strategy combinations in every game. Not CONS:
in games with maximal player set take all strategy combinations, in other games
take the set of Nash equilibria. Not COCONS: drop a Nash equilibrium in some
game with maximal player set, but otherwise always take the set of all Nash
equilibria.

13.24 Inconsistency of Perfect Equilibria

First show that the perfect equilibria in Gy are all strategy combinations where
player 2 plays L, player 3 plays D, and player | plays any mixture between 7" and
B. Next consider the reduced game by fixing player 3’s strategy at D.

Problems of Chap. 14

14.2 An Extensive form Structure without Perfect Recall
(a) The paths {(xq,x;)} and {(xo,x2)} contain different player | actions.

14.3 Consistency Implies Bayesian Consistency

With notations as in Definition 14.12, for # € H with P,(h) > 0 and x € h we have
Br(x) =1limy, oo B} (x) = limy, .00 Ppyn (x) /Py (h) = P (x) /Py (). Here, the second
equality follows from Bayesian consistency of the (6™, ).

14.4 (Bayesian) Consistency in Signaling Games

The idea of the proof is as follows. Suppose player 1 puts zero probability on some
action a, so that P, (k) = 0, where h is player 2’s information set following a. Let
the beliefs of player 2 on & be given by B,..., B for the different types of player
1. Consider, for any € > 0, a behavioral strategy of player 1 that puts probability
€By on action a for type k. Do this for any action of player 1 played with zero
probability, and complete the behavioral strategies thus obtained by maintaining the
original (conditional) probabilities on actions played with positive probabilities in
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the original assessment. Letting € go to zero, we have a sequence of completely
mixed Bayesian consistent assessments converging to the original assessment.

14.5 Computation of Sequential Equilibrium (1)

The unique sequential equilibrium consists of the behavioral strategies where player
1 plays B with probability 1 and / with probability 1/2, and player 2 plays L with
probability 1/2; and player 1 believes that x3 and x4 are equally likely.

14.6 Computation of Sequential Equilibrium (2)
(b) The Nash equilibria are (L,!), and (R, (¢t,1 — a)) for all o < 1/2, where « is
the probability with which player 2 plays /.

(c) Let & be the belief player 2 attaches to node y;. Then the sequential equilibria
are: (L,1) with belief & = 1; (R, r) with belief 7 < 1/2; and (R, (o,1 — &)) for any
o < 1/2 with belief 7 = 1/2.

14.7 Computation of Sequential Equilibrium (3)
(b) The Nash equilibria are (R, (g,1 —¢)) with 1/3 < g < 2/3. (The conditions on
q keep player 1 from deviating to L or M.)

14.8 Computation of Sequential Equilibrium (4)
The Nash equilibria in this game are: (R,(q1,492,93)) with g3 < 1/3 and ¢; <
1/2 —(3/4)q3, where q1,q2, g3 are the probabilities put on [,m, r, respectively; and
((1/4,3/4,0),(1/4,0,3/4) (probabilities on L,M,R and [, m, r, respectively).

Let 7 be the belief attached by player 2 to y;. Then with 7 = 1/4 the equilibrium
((1/4,3/4,0),(1/4,0,3/4) becomes sequential. The first set of equilibria contains
no equilibrium that can be extended to a sequential equilibrium.

14.9 Computation of Sequential Equilibrium (5)

The Nash equilibria are: (DB, r); (R, (s,1 —35)),(¢,1 —¢)) with0 <s <1 and g >
1/3, where s is the probability on A and ¢ is the probability on /. The subgame
perfect equilibria are: (DB,r); (RA,l); ((R,(3/4,1/4)),(3/5,2/5)). The first one
becomes sequential with § = 0; the second one with § = 1; and the third one with

B =3/5.

Problems of Chap. 15

15.1 Computing ESS in 2 x 2 Games (1)
ESS(A) can be computed using Proposition 15.3.
(a) ESS(A) = {€*}. (b) ESS(A) = {e',e?}. (c) ESS(A) = {(2/3,1/3)}.

15.2 Computing ESS in 2 x 2 Games (2)
Case (1): ESS(A’) = {€?}; case (2): ESS(A’) = {e!,e?}; case (3): ESS(A') = {&} =
{(a2/ (a1 +ar),ar/(a1+a2))}

15.3 Rock—Paper—Scissors (1)
The unique Nash equilibrium is ((1/3,1/3,1/3),(1/3,1/3,1/3)), which is sym-
metric. But (1/3,1/3,1/3) is not an ESS.
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15.4 Uniform Invasion Barriers

Case (1), e2: maximal uniform invasion barrier is 1.

Case (2), e': maximal uniform invasion barrier is a; /(a; + ay).
Case (2), €*: maximal uniform invasion barrier is a, /(a; + ay).
Case (3), X: maximal uniform invasion barrier is 1.

15.5 Replicator Dynamics in Normalized Game (1)
Straightforward computation.

15.6 Replicator Dynamics in Normalized Game (2)

The replicator dynamics can be written as % = [x(a; + a2) — az]x(1 — x), where x =
x1.So x =0 and x = 1 are always stationary points. In case I the graph of x on (0, 1)
is below the horizontal axis. In case II there is another stationary point, namely at
x=az/(a1+az);on (0,a2/(a; +az)) the function X is negative, on (a2 /(a; +az), 1)
it is positive. In case III the situation of case Il is reversed: the function x is positive
on (0,az/(a; + az)) and negative on ((az/(a; +az), 1).

15.7 Weakly Dominated Strategies and Replicator Dynamics

(b) The stationary points are e', e, e, and all points with x3 = 0. Except €, all
stationary points are Lyapunov stable. None of these points is asymptotically stable.
Also, €3 is strictly dominated (by e'). (One can also derive d(x; /x2) /dt = x1x3/x2 >
0 at completely mixed strategies, i.e., at the interior of A3. Hence, the share of sub-
population 1 grows faster than that of 2 but this difference goes to zero if x3 goes to
zero [e” is weakly dominated by e'].)

15.8 Stationary Points and Nash Equilibria
(@ NEA)={(a,a,1 —2a) |0< a <1/2}.

(b) By Proposition 15.15 and (a) it follows that {(ct, 0,1 —20) |0 < a < 1/2} U
{e',e?,e’} C ST(A), and that possibly other stationary points must be boundary
points of A3. By considering the replicator dynamics it follows that there are no
additional stationary points. All stationary points except e' and e? are Lyapunov
stable, but no point is asymptotically stable.

15.9 Lyapunov Stable States in 2 x 2 Games
Case (1): e'; case (2): e! and e?; case (3): % (cf. Problem 15.6).

15.10 Nash Equilibrium and Lyapunov Stability

NE(A) = {e'}. If we start at a completely mixed strategy close to e', then first x3
increases, and we can make the solution trajectory pass e’ as closely as desired. This
shows that e! is not Lyapunov stable.

15.11 Rock—Paper-Scissors (2)

(e) Follows from (d). If a > 0 then any trajectory converges to the maximum point
of x1xpx3, i.e., to (1/3,1/3,1/3). If a = 0 then the trajectories are orbits (x;xpx3
constant) around (1/3,1/3,1/3).If a < 0 then the trajectories move outward, away
from (1/3,1/3,1/3).
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Problems of Chap. 16

16.1 Imputation Set of an Essential Game

Note that /(v) is a convex set and f' € I(v) forevery i = 1,...,n. Thus, I(v) contains
the convex hull of {f' | i € N}. Now let x € I(v), and write x = (v(1),...,v(n)) +
(a,...,00), where Y ;cn 0y = v(N) — Yy v(i) =: a.

16.2 Convexity of the Domination Core
First prove the following claim: For each x € I(v) and @ # S C N we have

Jz €I(v) : zdomgx < x(S) <v(S) and x(S) <v(N)-— Zv(i).
i2S
Use this claim to show that I(v) \ D(S) is a convex set. Finally, conclude that DC(v)
must be convex.
16.3 Dominated Sets of Imputations
(2) In both games, D(ij) ={x € I(v) | x;+xj <v(ij)},i,j € {1,2,3},i # j.

16.7 A Glove Game
(b) The core and the domination core are both equal to {(0,1,0)}, cf. Theo-
rem 16.11.

16.11 Core and D-core

Condition (16.1) is not a necessary condition for equality of the core and the D-
core. To find a counterexample, first note that if C(v) # @ then (16.1) must hold.
Therefore, a counterexample has to be some game with empty core and D-core.

16.12 Strategic Equivalence
Straightforward using the definitions.

16.13 Proof of Theorem 16.19

Write B = ( _g > . Then

max{b-y[Ay =e¢,y >0} = max{b-y|By < (¢, —¢),y > 0}

= min{(c,—¢) - (x,z) | (x,z)B > b, (x,z) >0}
min{c- (x—2z) | (x—2z)A > b, (x,z) > 0}
= min{c-x' | xX'A > b}.

The second equality follows from Theorem 22.5.

16.14 Infeasible Programs in Theorem 16.19
Follow the hint.

16.16 Minimum of Balanced Games
Follows by using the definition of balancedness or by Theorem 16.21.
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16.17 Balanced Simple Games
Let (N,v) be a simple game.
Suppose i is a veto player. Let B be a balanced collection with balanced map A.

Then
Y ASES) =Y AS)v(S) < 1=v(N),
SeB SeBies
since i is a veto player. Hence, v is balanced.
For the converse, suppose v is balanced, and distinguish two cases:
Case 1: There is an i with v({i}) = 1. Show that i is a veto player.
Case 2: v({i}) = 0 for every i € N. Show that also in this case v has veto players.

Problems of Chap. 17

17.1 The Games 11 ’ ’
(c) Fori € T: &;(17) = (Tt

n

17.2 Unanimity Games
(a) Suppose Y7 arur = 0, where 0 means the zero-game, for some a7 € R. Show
that all o are zero by induction, starting with one-person coalitions.

(b) Let W € 2V, then show

Y crurW)=vW)+ Y w(s) ¥ (-7,
T#0 S: SCW T:SCTCW

It is sufficient to show that the second term of the last expression is equal to 0, hence
that Y r.scrcw (—1)717S = 0.

17.3 Necessity of the Axioms in Theorem 17.4

EFF, NP and ADD are straightforward. SYM needs more attention. Let i, j be sym-
metric in v. Note that for § C N with i ¢ S and j € S we have v((SUIQ) \ j) = v(S)
by symmetry of i and j, since v((SUi)\ j) = v((S\ j)Ui) and v(S) = v((S\ j) U ).
Use this to show ®;(v) = ®;(v) by collecting terms in a clever way.

17.4 Dummy Player Property and Anonymity

That DUM implies NP and the Shapley value satisfies DUM is straightforward. AN
implies SYM: Let i and j be symmetric players, and let the value y satisfy AN.
Then consider the permutation o with 6(i) = j, 6(j) = i, and o (k) = k otherwise.

17.5 Shapley Value, Core, and Imputation Set

In the case of two players the core and the imputation set coincide. If the core is not
empty then the Shapley value is in the core, cf. Example 17.2. In general, consider
any game with v(1) =2, v(N) =3, and v(S) = 0 otherwise. Then the Shapley value
is not even in the imputation set as soon as n > 3.

17.6 Shapley Value as a Projection
If @ is an additive game then ®(a) = (a(1),a(2),...,a(n)). For a general game v let
a be the additive game generated by ®(v). Then ®(a") = (a"(1),...,a"(n)) = D(v).
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17.7 Shapley Value of Dual Game
Follow the hint, or give a direct proof by using (17.4).

17.8 Multilinear Extension
(3) Let g be another multilinear extension of v to [0,1]", say g(x) = Yrcybr
(ILer xi)- Show by = cr for all T by induction, starting with one-player coalitions.

17.9 The Beta-integral Formula
Apply partial integration.

17.10 Path Independence of ®
Use Theorem 17.12(3).

17.11 An Alternative Characterization of the Shapley Value
The Shapley value satisfies all these conditions. Conversely, (2)—(4) imply standard-
ness for two-person games, so the result follows from Theorem 17.18.

Problems of Chap. 18

18.1 Marginal Vectors and Dividends
(2) For eachi € N, ml” = ZTQP;;(Z')UZ', icT AV(T)

18.2 Convexity and Marginal Vectors
Use Theorems 18.3 and 18.6.

18.3 Strictly Convex Games
Let # and o be two different permutations and suppose that k > 1 is the minimal
number such that (k) # o (k). Then show that mg(b(v) < mg(k) (v). Hence, m™ #

m°.

18.4 Sharing Profits

(a) For the landlord: ®o(v) = 1| [Er_ f(s)]-

(c) Extend f to a piecewise linear function on [0,#n]. Then v is convex if and only if
f is convex.

18.5 Sharing Costs

(a) For every nonempty coalition S, v(S) = ¥ ;cgc;i —max{c; | i € S}. If we regard
¢ =(cy,...,cz) as an additive game we can write v = ¢ — Cmax, Where cmax (S) =
max{c; | i € S}.

18.6 Independence of the Axioms in Theorem 18.8

(1) Consider the value which, for every game v, gives each dummy player his indi-
vidual worth and distributes the rest, v(N) — Y;cpv(i) where D is the subset of
dummy players, evenly among the players. This value satisfies all axioms except
LIN.

(2) Consider the value which, for every game v, distributes v(N) evenly among all
players. This value satisfies all axioms except DUM.
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(3) The value which gives each player his individual worth satisfies all axioms
except EFF.

(4) Consider any set of weights {a; | ® € II(N)} with a; € R for all 7 and
Yrenn) O = 1. The value Y zcryy) @xm™ satisfies LIN, DUM and EFF, but not
MON unless all weights are nonnegative.

18.7 Null-player in Theorem 18.8

Check that the dummy axiom in the proof of this theorem is only used for unanimity
games. In those games, dummy players are also null-players, so it is sufficient to
require NP. Alternatively, one can show that DUM is implied by ADD (and, thus,
LIN), EFF and NP.

18.8 Equation (18.4)
When considering the sum Y.z 7(v) p(7) we may leave out any 7 with p() = 0.
This means in particular that in what follows all expressions A(; ) are positive. Now

Y rm=Y Y - Y phAlin{i}) xAlin{ii,i})
well(N) i1EN i eN\i; in—1EN\i{ip_2
><~~XA(l'nfl;{il,...,in,Q})XA(in;{il,...,infl})
=Y Y - Y piAG:{i}) xA(iz:{i1,i2})
i1ENHEN\i| iy _2EN\ij iy 3

Xoews XA(in,Q;{il,...,in,3})

4 k
" ( PNiyin_s PMiy iy s )
V4 k V4 k
PNyt 2 VPN iy s PN\ipdy 2 T PNy iy s
=Y Y Y pjAG{i}) x Al {ir,i})
i1ENHEN\i| iy 2EN\ij iy 3
X XA(infz;{il,...,in,3}>

Y Y Y phAGs{i)) x Al {in,i2})

ENiEN\I]  ip—3EN\i|-ip_4
X X A(infg; {il, RN in,4}>

=Y »i.

i1eEN

where after the first equality sign, i, € N\ {i1,...,ip—1}, and A(in; {i1,..., in—1})
= 1 by definition; after the second equality sign ¢,k € N\ {i1,...,i,—o} with £ # k;
the third equality sign follows since the sum involving ¢ and k is equal to 1; the
remaining equality signs follow from repetition of this argument.

18.9 Equation (18.6)
Let |T| =¢. By using a similar argument as for the proof of (18.4) in the solution to
Problem 18.8, we can write
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Y rm=Y Y - ¥ ppAlxn{n})--AGsT\{i})

w:T=Pr(i) iIETizeT\il i[ET\i]l'zml',«,]
< A(i;T).

Hence,

P
Z p(m) = ! j
TT=Px(i) Yienr Pr
it i1
Pry;, y Prvii,_,

i€l Zje(N\T)ui, P]f\i, ir—1€T\iz ZjE(N\T>Uitit—l p]f\i,i,,l
<o Y ph

i €T \ig-++in
ZjeTPJT\j

X

ir i1
y Z pT\iT " Z pT\i,i,',l
E J J
€T Lje\ie Pipvi)\j  ir1€\ie ZjeT\ivii—1 P(r\ii, )\j

X e X Z pé)l

i ET\l}miz
= pf.
Here, the first equality sign follows from rearranging terms and substituting the
expressions for A(-;-); the second equality sign follows from Lemma 18.12; the
final equality sign follows from reading the preceding expression from right to left,

noting that the remaining sum in each enumerator cancels against the preceding
denominator.

18.10 Characterization of Weighted Shapley Values

Check that every weighted Shapley value satisfies the Partnership axiom. Con-
versely, let ¥ be a value satisfying the Partnership axiom and the four other axioms.
Let S':={i € N | w;(uy) > 0} and for every i € S' let @; := y;(uy). Define, recur-
sively, S := {i e N\ (ST U---US*™ 1) [ Wi (s1...5-1)) > 0} and for every i € S*
let @; := Y;(up, (51, sk-1))- This results in a partition (S',...,5™) of N. Now define
the weight system w by the partition (Sy,...,S,,) with S := 5™, 5 := "1, ..,
S, :=S!, and the weights @. Then it is sufficient to prove that for each coalition
S and each player i € S we have yi(us) = P! (us). Let h:=max{j | SNS; # 0},
then with 7 = N\ (Sj41 U---US,,) we have by the Partnership axiom: y;(ug) =

WHT')(S) Wi(ur). If i ¢ S; then y;(ur) = 0, hence y;(ug) =0 = @Y (ug). If i € S), then
Vilus) =y ™ =@ (us).

~ Ljesns, @)
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18.11 Core and Weighted Shapley Values in Example 18.2
First write the game as a sum of unanimity games:

V= M{Lz} + M{173} — I/t{z_’g} + ZMN.

Then consider all possible ordered partitions of N, there are 13 different ones,
and associated weight vectors. This results in a description of all payoff vectors
associated with weighted Shapley values, including those in the core of the game.

Problems of Chap. 19

19.1 Binary Relations

Not (4): = on R defined by x > y < x> > y2.

Not (3): > on R2.

Not (2): = on R defined by: for all x,y,x > y,letx = yif x—y > 1, and let y > x if
x—y<lLl.

Not (1): > on R.

The ordering on R, defined by [x = y] < [x =yor0 < x,y < 1] is reflexive and
transitive but not complete and not anti-symmetric.

19.2 Linear Orders

If x > y then by definition x > y and not y > x: hence x # y since otherwise y > x
by reflexivity.

If x = y and x # y then not y > x since otherwise X =y by anti-symmetry. Hence
X >y.

19.3 The Lexicographic Order (1)
Check (1)—(4) in Sect. 19.2 for >jex. Straightforward.

19.4 The Lexicographic Order (2)
This is the set {(x1,x) € R? | [x; =3, xo > 1] or [x; > 3]}. This set is not closed.

19.5 Representability of Lexicographic Order (1)

Consider Problem 19.4. Since (a,0) =x (3,1) for all ov > 3, we have u(o,0) >
u(3,1) for all o > 3 and hence, by continuity of u, limg|zu(o,0) > u(3,1).
Therefore (3,0) =ex (3,1), a contradiction.

19.6 Representability of Lexicographic Order (2)

Suppose that u represents >=jx on R?, that is, X >ex ¥ if and only if u(x) > u(y)
for all x,y € R2. Then for any ¢ € R let () be a rational number in the interval
[u(2,0),u(t,1)]. Since (¢,0t) =ex (s, ) and hence u(t, o) > u(s,B) for all # > s and
all o, €[0,1], we have [u(7,0),u(t,1)] N [u(s,0),u(s,1)] = 0 for all  # s. Hence,
q(t) # q(s) for all t # s. Therefore, we have found uncountably many different
rational numbers, a contradiction.

19.7 Single-valuedness of the Pre-nucleolus
Consider the pre-nucleolus on a suitable compact convex subset and apply Theo-
rem 19.4.
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19.8 (Pre-)nucleolus and Core
Use the fact that core elements have all excesses non-positive.

19.9 Kohlberg Criterion for the Nucleolus
First observe that the following modification of Theorem 19.5 holds:

Theorem 19.5" Let (N,v) be a game and x € I(N,v). Then the following two
statements are equivalent:

(1) x=Vv(N,v).

(2) Forevery a such that 2(o,x,v) # 0 and for every side-payment y with y(S) > 0
for every S € P(a,x,v) and with y; > 0 for all i € N with x; = v(i) we have
¥(S) =0 forevery S € Z(a,x,v).

The proof of this theorem is almost identical to the proof of Theorem 19.5. In the
second sentence of the proof, note that ze € I(N,v) for € small enough. In the second
part of the proof, (2) = (1), note that y; = z; —x; > 0 whenever x; = v(i).

For the ‘if’-part of the statement in this problem, let x € I(N,v), Z(a,x,v) # 0,
and & (o, x,v) such that Z(a, x,v)U& (a,x,v) is balanced. Consider a side-payment
y with y(S) > 0 for every S € Z(a,x,v) and y; > 0 for every i with x; = v(i) (hence
in particular for every i with {i} € &(a,x,v)). The argument in the first part of the
proof of Theorem 19.6 now applies to Z2(a,x,v) U&(at,x,v), and Theorem 19.5’
implies x = V(N,v).

For the ‘only-if” part, consider the program (19.4) in the second part of the proof
of Theorem 19.6 but add the constraints —y; < 0 for every i € N with x; = v(i).
Theorem 19.5" implies that the dual of this program is feasible, that is, there are
A(S) >0, S e 2(a,x,v), A({i}) > 0, i such that x; = v(i), and A(N) € R such
that

- Y Al Y A +ane’ = ) €

i€EN: x;j=v(i) SeZ(ax,v) SeZ(ax,v)

Hence 2’(1\])3]\, = ZSE.@(OLX,V)(I + )‘(S))es + ZiEN: x;i=v(i) 2’({l})e{l} Let (g)(OC,X,V)
consist of those one-person coalitions {i} with x; = v(i) and A({i}) > 0, then
Z(a,x,v)Ué(a,x,v) is balanced.

19.10 Proof of Theorem 19.6

To formulate the dual program, use for instance the formulation in Theorem 16.19.
For instance, the primal (19.4) can be converted to the minimization problem
in Theorem 16.19; then the dual corresponds to the maximization problem in
Theorem 16.19. Feasibility of the dual follows from Problem 16.14.

19.11 Nucleolus of a Three-person Game (1)
The nucleolus is (5,4,3).

19.12 Nucleolus of a Three-person Game (2)
The (pre-)nucleolus is (5,3,2).
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19.14 Individual Rationality Restrictions for the Nucleolus
The nucleolus is (1,0,0). The pre-nucleolus is (5/3,—1/3,—1/3).

19.15 Example 19.8

The set A = {123,124,34} is balanced with weights all equal to 1/2. The set
By UB, ={123,124,34,134,234} is balanced with weights, respectively, equal to
5/12,5/12,3/12,2/12,2/12.

19.16 (Pre-)nucleolus of a Symmetric Game

(@) v(v) = v*(v) = (v(N)/n)e".

(b) The maximal excess is reached by all coalitions S for which f(|S|) — (|S|/n)f(n)
is maximal.

19.17 COV and AN of the Pre-nucleolus
Covariance of the pre-nucleolus follows since applying a transformation as in
the definition of this property changes all excesses (only) by the same positive
(multiplicative) factor.

Anonymity of the pre-nucleolus follows since a permutation of the players does
not change the ordered vectors 6(x), but only permutes the coalitions to which the
excesses correspond.

19.18 Apex Game
The (pre-)nucleolus is (3/7,1/7,1/7,1/7,1/7). This can easily be verified using
the Kohlberg criterion.

19.19 Landlord Game

(a) By anonymity, each worker is assigned ;[ f(n) = f(n—1)]. By computing the
excesses, it follows that among all coalitions containing the landlord, with this
payoff vector the maximal excesses are reached by the coalitions containing n — 1
workers, and further also by the coalitions consisting of a single worker and not the
landlord. By the Kohlberg criterion this immediately implies that the given vector is
the (pre-)nucleolus. For the Shapley value, see Problem 18.4.

(b) Compute the excesses for the payoff vector f(n) e{ovlv'"*”} 5 and apply the Kohlber
p pay n+1 pply g
criterion.

19.20 Game in Sect. 19.1
The first linear program is: minimize o subject to the constraints x; + @ > 4 for
i=1,23, x1j+0+a>8, x1+x3+a > 12, xp +x3+ 0 > 16, x; + xp + x3 = 24.
The program has optimal value oc = —2, reached for x; = 6 and xp,x3 > 6.

In the second program x; has been eliminated. This program reduces to: mini-
mize o subject to xp + o >4, xo < 12+ a, x +x3 = 18. This has optimal value
o = —4, reached for x; = 8, x3 = 10.

19.21 The Prekernel
For i, j € N denote by .7;; those coalitions that contain player i and not player ;.
For a payoff vector x denote by s;;(x,v) the maximum of e(S,x,v) over all § €

Tij-
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Let now x be the pre-nucleolus and suppose, contrary to what has to be proved,
that there are two distinct players k,¢ such that sg(x,v) > sg(x,v). Let § =
(spe(x,v) — s (x,v))/2 and define y by yy = x; + 8, y¢ = x;, — 0, and y; = x; for
all i # k,{. Denote .7 = {S € 2V \ F, | e(S,x,v) > sp(x,v)} and s = |S|. Then
Os11(x) = spe(x,v). For S € 2V \ (F U Ti), we have e(S,x,v) = e(S,y,v). For
S € iy we have ¢(S,y,v) = e(S,x,v) — 6. Finally, for S € .7 we have

e(S,y,v) =e(S,x,v) + 8 < sp(x,v) + 8 = sp0(x,v) — 8.

Thus, 6;(y) = 6;(x) forall t < s and 6,41 (y) < sre(X,v) = O541(x). Hence 6(X) >jex
0(y), a contradiction.

Problems of Chap. 20

20.2 Example 20.3
Argue that ajp = a;3 = 3 if v were an assignment game. Use this to derive a
contradiction.

20.3 Subgames of Permutation Games

That a subgame of a permutation game is again a permutation game follows imme-
diately from the definition: in (20.3) the worth v(S) depends only on the numbers k;;;
for i, j € S. By a similar argument (consider (20.1)) this also holds for assignment
games.

20.4 A Flow Game
(3) (1,1,0,0), corresponding to the minimum cut through e; and ey; {(0,0,1+
o,1—a)|0<a< 1}, corresponding to the minimum cut through e3 and eq4.

20.5 Every Nonnegative Balanced Game is a Flow Game

Let v be a nonnegative balanced game, and write (following the hint to the problem)
Vv = lezl o, wy, where o > 0 and w, a balanced simple game for each r = 1,... k.
Consider the controlled capacitated network with two vertices, the source and the
sink, and k edges connecting them, where each edge e, has capacity o, and is
controlled by w,. Then show that the associated flow game is v.

20.6 On Theorem 20.6 (1)

(1) This follows straightforwardly from the proof of Theorem 20.6.
(2) E.g., each player receiving 5}‘ is a core element.

20.7 On Theorem 20.6 (2)

In any core element, player should 1 receive at least 1 and player 2 also, but v(N) =
1. Hence the game has an empty core.

20.8 Totally Balanced Flow Games
This follows immediately from Theorem 20.6, since every dictatorial game is
balanced, i.e., has veto players.
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20.9 If-part of Theorem 20.9

We show that the Banzhaf value satisfies 2-EFF (the other properties are obvious).
With notations as in the formulation of 2-EFF, we have

Wi = T DU (S]]
SC(N\p)u{p}: p¢S

= Y DSUGE) )

SCN\{i,j}

= Y RSO - 20(s))

SCN\{i,j}
The term in brackets can be written as

V(ESU{i,j}) —v(SU{i}) +v(SU{j}) —v(S)]
+ v(SU{i, j}) —v(SU{j}) +v(SU{i}) —v(S)],

hence ¥, (v,) = y;(v) + yi(v).
Show that DUM cannot be weakened to NP by finding a different value satisfying
2-EFF, SYM, NP, and SMON.

Problems of Chap. 21

21.1 Anonymity and Symmetry

An example of a symmetric but not anonymous solution is as follows. To symmetric
problems, assign the point in W (S) with equal coordinates; otherwise, assign the
point of S that is lexicographically (first player 1, then player 2) maximal.

21.3 The Nash Solution is Well-defined

The function x — (x; —d})(x2 — d>) is continuous on the compact set {x € S | x > d}
and hence attains a maximum on this set. We have to show that this maximum
is attained at a unique point. In general, consider two points z,z' € {x € S | x > d}
with (z1 —d1)(z2 —d>) = (2} —dy) (24 —d>) = . Then one can show that at the point
w = )(z+12') € S one has (w; —d;)(w> —d>) > . This implies that the maximum
is attained at a unique point.

214 (1) = (2) in Theorem 21.1

WPO and ITA are straightforward by definition, and SC follows from an easy com-
putation. For SYM, note that if N(S,d) = z for a symmetric problem (S,d), then
also (z2,21) = N(S,d) by definition of the Nash bargaining solution. Hence, z; = z»
by uniqueness.

21.5 Geometric Characterization of the Nash Bargaining Solution
Let (S,d) € B and N(S,d) = z. The slope of the tangent line ¢ to the graph of the
function x1 — (21 — di1)(z2 — d2)/(x1 — dy) + d» (which describes the level set of
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X — (x; —d))(xp — dp) through z) at z is equal to —(z2 — d3)(z1 — dy), i.e., the
negative of the slope of the straight line through d and z. Clearly, ¢ supports S at z:
this can be seen by invoking a separating hyperplane theorem, but also as follows.
Suppose there were some point ' of S on the other side of £ than d. Then there is a
point w on the line segment connecting z' and z (hence, w € S) with (wy —d)(wy —
dy) > (z1 — d1)(z2 — da), contradicting z = N(S,d). The existence of such a point
w follows since otherwise the straight line through z’ and z would also be a tangent
line to the level curve of the Nash product at z.

For the converse, suppose that at a point z there is a supporting line of S with
slope —(z2 — da)(z1 — d). Clearly, this line is tangent to the graph of the function
x1+—(z1 —di)(za—da)/(x1 — dy) + dy at z. Tt follows that z = N(S,d).

21.6 Strong Individual Rationality

The implication (1) = (2) is straightforward. For (2) = (1), if F is also weakly
Pareto optimal, then F = N by Theorem 21.1. So it is sufficient to show that, if
F is not weakly Pareto optimal then F' = D. Suppose that F' is not weakly Pareto
optimal. Then there is an (S,d) € B with F(S,d) ¢ W(S). By IR, F(S,d) > d. Sup-
pose F(S,d) # d. By SC, we may assume w.l.o.g. d = (0,0). Let @ > 0 be such
that F(S,(0,0)) € W((a,a)S). Since F(S,(0,0)) ¢ W(S), o« < 1. So (a,a)S C S.
By IIA, F((a,a)S,(0,0)) = F(S,(0,0)), so by SC, F((a,«)S,(0,0)) = (o, )
F(S,(0,0)) = F(S,(0,0)), contradicting & < 1. So F(S,(0,0)) = (0,0). Suppose
F(T,(0,0)) # (0,0) for some (7,(0,0)) € B. By SC we may assume (0,0) #
F(T,(0,0)) € S. By IIA applied twice, (0,0) = F(SNT,(0,0)) = F(T,(0,0)) #
(0,0), a contradiction. Hence, F = D.

21.7 (1) = (2) in Theorem 21.2
Straightforward. Note in particular that in a symmetric game the utopia point is also
symmetric, and that the utopia point is ‘scale covariant’.

21.8 Restricted Monotonicity

(1) Follows from applying IM twice.

(2) For (S,d) withd = (0,0) and u(S,d) = (1,1), let F(S,d) be the lexicographically
(first player 1, then player 2) maximal point of SN Ri. Otherwise, let F' be equal to
R. This F satisfies RM but not IM.

21.9 Global Individual Monotonicity

It is straightforward to verify that G satisfies WPO, SYM, SC, and GIM. For the con-
verse, suppose that F' satisfies these four axioms, let (S,d) € Band z := G(S,d). By
SC, w.lo.g.d = (0,0) and g(S) = (1,1). Let & < 0 such that § C § where S := {x €
R? | (o, ) < x <y for some y € S} In order to prove F (S, (0,0)) = G(S,(0,0)) it
is sufficient to prove that F(S,(0,0)) = G(S,(0,0)) (in view of GIM and WPO).
Let T = conv{z, (a,g2(S)), (g1 (S), a)} = conv{z,(a,1),(1,a)}. By SYM and
WPO, F(T,(0,0)) = z. By GIM, F(5,(0,0)) > F(T,(0,0)) = z = G(5,(0,0)) =
G(S,(0,0)), so by WPO: F(S,(0,0)) = G(S, (0,0)). (Make pictures. Note that this
proof is analogous to the proof of Theorem 21.2.)
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21.10 Monotonicity and (weak) Pareto Optimality
(1) Consider problems of the kind (conv{d,a},d) for some a > d.

(2) The egalitarian solution E satisfies MON and WPO on By.

21.11 The Egalitarian Solution (1)
Straightforward.

21.12 The Egalitarian Solution (2)

Letz:= E(S,d) + E(T,e). Then it is straightforward to derive that z; — (d| +¢;) =
22— (dy+e3). Since E(S+T,d + e) is the maximal point x such thatx; — (d +¢;) =
xp — (da+ €2), it follows that E(S+T,d + E) > z.

21.13 Independence of Axioms
Theorem 21.1:

WPO, SYM, SC: F = R; WPO, SYM, [IA: F = L, where L(S,d) is the point of
P(S) nearest to the point z > d with z; —d; = z, — d, measured along the boundary
of S; WPO, SC, TIA: F = D!, where D' (S,d) is the point of {x € P(S) | x > d} with
maximal first coordinate; SYM, SC, IIA: F = D (disagreement solution).

Theorem 21.2:

WPO, SYM, SC: F =N; WPO, SYM, IM: F = L; WPO, SC, IM: ifd = (0,0) and
u(S,d) = (1,1), let F assign the point of intersection of W(S) and the line segment
connecting (1/4,3/4) and (1, 1) and, otherwise, let F be determined by SC; SYM,
SC,IM: F =D.

Theorem 21.2:

WPO, MON, SYM: F(S,d) is the maximal point of S on the straight line through
d with slope 1/3 if d = (1,0), F(S,d) = E(S,d) otherwise; WPO, MON, TC:
F(S,d) is the maximal point of S on the straight line through d with slope 1/3;
WPO, SYM, TC: F = N; MON, SYM, TC: F = D.

21.14 Nash and Rubinstein

(b) The Nash bargaining solution outcome is (}v/3,3), hence (3v/3,1— 1+/3) is
the resulting distribution of the good.

. . .. . 1-85 6-83
(c) The Rubinstein bargaining outcome is (\/1753 g3 )

(d) The outcome in (c) converges to the outcome in (b) if § convergesto 1.

Problems of Chap. 22

22.1 Convex Sets

The only-if part is obvious. For the if-part, for any two vectors x and y in Z the
condition implies that 2’§nx + ZZ,Qky € Z foreverym € Nand k € {0,1,...,2"}. By
closedness of Z, this implies that conv{x,y} C Z, hence Z is convex.
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22.2 Proof of Lemma 22.3

Suppose that both systems have a solution, say (y,z) > 0, (y,z) # 0, Ay+z =0,
x> 0, xA > 0. Then xAy +x-z = x(Ay+2z) = 0, hence y = 0 and z = 0 since x > 0,
xA > 0. This contradicts (y,z) # 0.

22.3 Proof of Lemma 22.4
Suppose that both systems have a solution, say x > 0, xA =b, Ay >0, b-y < 0.
Then xAy < 0, contradicting x > 0 and Ay > 0.

22.4 Proof of Lemma 22.6
(@Ifx>0,xA<b,y>0andb-y < 0thenxAy <b-y <0, so Ay # 0. This shows
that at most one of the two systems has a solution.

(b) Suppose the system in (1) has no solution. Then also the system XA +z/ = b,

x > 0, z > 0 has no solution. Hence, by Farkas’ Lemma the system (?) y>0,
b -y < 0 has a solution. Therefore, the system in (2) has a solution.

22.5 Extreme Points
The implication (2) = (1) follows by definition of an extreme point.

For the implication (1) = (3), letx,y € C\ {e} and 0 <A < 1. Letz = Ax+ (1 —
A)y. If z# e then z € C\ {e} by convexity of C. Suppose now that z = e. W.L.o.g. let
A >1/2.Thene=Ax+(1—A)y=(1/2)x+(1/2)[ux+ (1 — p)y] for p =24 — 1.
Since ux+ (1 — w)y € C, this implies that e is not an extreme point of C. This proves
the implication (1) = (3).

For the implication (3) = (2),letx,ye C,x#y,and0<a < 1l.Ifx=eory=e
then clearly ox+ (1 — a)y # e. If x # e and y # e then ax+ (1 — )y € C\ {e} by
convexity of C'\ {e}, hence ax+ (1 — o)y # e as well.

22.6 Affine Subspaces

Let A =a+ L be an affine subspace, x,y € A,and A € R. Writex=a+xandy=a+y
forx,ye L, then Ax+ (1 —A)y=a+ A%+ (1 —A)y€Asince Ax+ (1 —A)ye L (L
is a linear subspace).

Conversely, suppose that A contains the straight line through any two of its ele-
ments. Let a be an arbitrary element of A and let L := {x—a|x € A}. Then it follows
straightforwardly that L is a linear subspace of V, and thus A = a + L is an affine
subspace.

22.7 The Set of Sup-points of a Linear Function on a Convex Set
In general, linearity of f implies that, if f(x) = f(y), then f(Ax+ (1 —A)y) =
F(x) = f(y) for any two points of C and 0 < A < 1. It follows, in particular, that the
set D is convex.

Let e € ext(D) and suppose e = (1/2)x+ (1/2)y for some x,y € C. Then by
linearity of f, f(e) = (1/2)f(x)+ (1/2)f(y), hence x,y € D since e € D. So e =
X =Yy since e is an extreme point of D. Thus, e is also an extreme point of C.
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Nash equilibrium, 34, 49, 76, 204, 222
Nash equilibrium (existence), 172

never a best reply, 181

nonzero-sum game, 6, 33

normalized Banzhaf—-Coleman index, 293
nucleolus, 129, 275, 277

Null-player Property (TU-value), 245

One-Person Rationality (Nash equilibrium),
191
optimal strategy, 25, 166

Pareto Efficiency (social welfare function),
156

Pareto Optimality (bargaining), 137, 302

Pareto optimality (in Cournot competition), 78

partial order, 275

perfect Bayesian equilibrium, 53, 67, 209

perfect equilibrium, 182, 217, 224

perfect information, 46, 201

perfect recall, 46, 201

permutation game, 16, 124, 288

player type, 61

pooling perfect Bayesian equilibrium, 67

potential, 252

power index, 293

pre-nucleolus, 277

prekernel, 286

principal-agent game, 97



Index

prisoners’ dilemma, 6, 103
proper equilibrium, 186, 217

Raiffa—Kalai—-Smorodinsky solution, 301
random order value, 264

rationalizable strategies, 182

reaction function, 77

reduced game (Davis—Maschler), 282
reduced game (Hart—-Mas-Colell), 255
reflexivity, 155, 275

repeated game, 58, 103

replicator dynamics, 116, 221

Restricted Monotonicity (bargaining), 307, 356
revealed preference, 306
rock—paper—scissors, 31, 225, 227

saddlepoint, 25, 168

Scale Covariance (bargaining), 138, 300

separating perfect Bayesian equilibrium, 67

sequential bargaining, 88, 139, 304

sequential equilibrium, 209

sequential rationality, 209

Shapley value, 127, 244, 264

Shapley—Shubik power index, 293

side-payment, 277

signaling game, 66

simple game, 235, 291

social choice function, 155

social welfare function, 155

stable matching, 146

stable set (TU-game), 236

Stackelberg competition, 11, 82

Stackelberg equilibrium, 82

standardness (two-person games), 257

strategic equivalence (TU-game), 241

strategic form, 49

strategic game, 75

strategy (extensive form game), 48

Strategy-Proofness (social choice function),
159

strict domination, 29, 38, 76, 222

strict Nash equilibrium, 120

strictly perfect equilibrium, 187

strong core (house exchange), 148

Strong Individual Rationality (bargaining),
306, 356

365

Strong Monotonicity (TU-value), 249
subgame (in extensive form game), 51
subgame (of a TU-game), 254, 290
subgame perfect equilibrium, 51, 206
Super-Additivity (bargaining), 303
super-additivity (TU-game), 234
symmetric game, 114, 168, 215
symmetric Nash equilibrium, 215
Symmetry (bargaining), 138, 300
Symmetry (TU-value), 245

Tic-Tac-Toe, 194

top trading cycle, 148

totally balanced, 290

tragedy of the commons, 101

transitivity, 155, 275

Translation Covariance (bargaining), 303
trigger strategy, 105

TU-game, 125, 231

Unanimity (social choice function), 159
unanimity game, 235, 246
undominated equilibrium, 184, 217
uniform invasion barrier, 218

uniform rule, 100

upper semi-continuity, 316

utopia point, 301

value (matrix game), 25, 166
value (TU-game), 245

veto player, 235

voting game, 125, 293

Walrasian equilibrium, 142

weak domination, 42, 76

weak order, 275

Weak Pareto Optimality (bargaining), 299
Weber set, 261

weight system, 269

weighted Shapley value, 268

Zermelo’s Theorem, 179
zero-one game, 237
zero-sum game, 3, 23, 110, 165
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